1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /*
4 * VMA-specific functions.
5 */
6
7 #include "vma_internal.h"
8 #include "vma.h"
9
10 struct mmap_state {
11 struct mm_struct *mm;
12 struct vma_iterator *vmi;
13
14 unsigned long addr;
15 unsigned long end;
16 pgoff_t pgoff;
17 unsigned long pglen;
18 unsigned long flags;
19 struct file *file;
20 pgprot_t page_prot;
21
22 /* User-defined fields, perhaps updated by .mmap_prepare(). */
23 const struct vm_operations_struct *vm_ops;
24 void *vm_private_data;
25
26 unsigned long charged;
27
28 struct vm_area_struct *prev;
29 struct vm_area_struct *next;
30
31 /* Unmapping state. */
32 struct vma_munmap_struct vms;
33 struct ma_state mas_detach;
34 struct maple_tree mt_detach;
35 };
36
37 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, flags_, file_) \
38 struct mmap_state name = { \
39 .mm = mm_, \
40 .vmi = vmi_, \
41 .addr = addr_, \
42 .end = (addr_) + (len_), \
43 .pgoff = pgoff_, \
44 .pglen = PHYS_PFN(len_), \
45 .flags = flags_, \
46 .file = file_, \
47 .page_prot = vm_get_page_prot(flags_), \
48 }
49
50 #define VMG_MMAP_STATE(name, map_, vma_) \
51 struct vma_merge_struct name = { \
52 .mm = (map_)->mm, \
53 .vmi = (map_)->vmi, \
54 .start = (map_)->addr, \
55 .end = (map_)->end, \
56 .flags = (map_)->flags, \
57 .pgoff = (map_)->pgoff, \
58 .file = (map_)->file, \
59 .prev = (map_)->prev, \
60 .middle = vma_, \
61 .next = (vma_) ? NULL : (map_)->next, \
62 .state = VMA_MERGE_START, \
63 }
64
65 /*
66 * If, at any point, the VMA had unCoW'd mappings from parents, it will maintain
67 * more than one anon_vma_chain connecting it to more than one anon_vma. A merge
68 * would mean a wider range of folios sharing the root anon_vma lock, and thus
69 * potential lock contention, we do not wish to encourage merging such that this
70 * scales to a problem.
71 */
vma_had_uncowed_parents(struct vm_area_struct * vma)72 static bool vma_had_uncowed_parents(struct vm_area_struct *vma)
73 {
74 /*
75 * The list_is_singular() test is to avoid merging VMA cloned from
76 * parents. This can improve scalability caused by anon_vma lock.
77 */
78 return vma && vma->anon_vma && !list_is_singular(&vma->anon_vma_chain);
79 }
80
is_mergeable_vma(struct vma_merge_struct * vmg,bool merge_next)81 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next)
82 {
83 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev;
84
85 if (!mpol_equal(vmg->policy, vma_policy(vma)))
86 return false;
87 /*
88 * VM_SOFTDIRTY should not prevent from VMA merging, if we
89 * match the flags but dirty bit -- the caller should mark
90 * merged VMA as dirty. If dirty bit won't be excluded from
91 * comparison, we increase pressure on the memory system forcing
92 * the kernel to generate new VMAs when old one could be
93 * extended instead.
94 */
95 if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY)
96 return false;
97 if (vma->vm_file != vmg->file)
98 return false;
99 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx))
100 return false;
101 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name))
102 return false;
103 return true;
104 }
105
is_mergeable_anon_vma(struct vma_merge_struct * vmg,bool merge_next)106 static bool is_mergeable_anon_vma(struct vma_merge_struct *vmg, bool merge_next)
107 {
108 struct vm_area_struct *tgt = merge_next ? vmg->next : vmg->prev;
109 struct vm_area_struct *src = vmg->middle; /* exisitng merge case. */
110 struct anon_vma *tgt_anon = tgt->anon_vma;
111 struct anon_vma *src_anon = vmg->anon_vma;
112
113 /*
114 * We _can_ have !src, vmg->anon_vma via copy_vma(). In this instance we
115 * will remove the existing VMA's anon_vma's so there's no scalability
116 * concerns.
117 */
118 VM_WARN_ON(src && src_anon != src->anon_vma);
119
120 /* Case 1 - we will dup_anon_vma() from src into tgt. */
121 if (!tgt_anon && src_anon)
122 return !vma_had_uncowed_parents(src);
123 /* Case 2 - we will simply use tgt's anon_vma. */
124 if (tgt_anon && !src_anon)
125 return !vma_had_uncowed_parents(tgt);
126 /* Case 3 - the anon_vma's are already shared. */
127 return src_anon == tgt_anon;
128 }
129
130 /*
131 * init_multi_vma_prep() - Initializer for struct vma_prepare
132 * @vp: The vma_prepare struct
133 * @vma: The vma that will be altered once locked
134 * @vmg: The merge state that will be used to determine adjustment and VMA
135 * removal.
136 */
init_multi_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma,struct vma_merge_struct * vmg)137 static void init_multi_vma_prep(struct vma_prepare *vp,
138 struct vm_area_struct *vma,
139 struct vma_merge_struct *vmg)
140 {
141 struct vm_area_struct *adjust;
142 struct vm_area_struct **remove = &vp->remove;
143
144 memset(vp, 0, sizeof(struct vma_prepare));
145 vp->vma = vma;
146 vp->anon_vma = vma->anon_vma;
147
148 if (vmg && vmg->__remove_middle) {
149 *remove = vmg->middle;
150 remove = &vp->remove2;
151 }
152 if (vmg && vmg->__remove_next)
153 *remove = vmg->next;
154
155 if (vmg && vmg->__adjust_middle_start)
156 adjust = vmg->middle;
157 else if (vmg && vmg->__adjust_next_start)
158 adjust = vmg->next;
159 else
160 adjust = NULL;
161
162 vp->adj_next = adjust;
163 if (!vp->anon_vma && adjust)
164 vp->anon_vma = adjust->anon_vma;
165
166 VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma &&
167 vp->anon_vma != adjust->anon_vma);
168
169 vp->file = vma->vm_file;
170 if (vp->file)
171 vp->mapping = vma->vm_file->f_mapping;
172
173 if (vmg && vmg->skip_vma_uprobe)
174 vp->skip_vma_uprobe = true;
175 }
176
177 /*
178 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
179 * in front of (at a lower virtual address and file offset than) the vma.
180 *
181 * We cannot merge two vmas if they have differently assigned (non-NULL)
182 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
183 *
184 * We don't check here for the merged mmap wrapping around the end of pagecache
185 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
186 * wrap, nor mmaps which cover the final page at index -1UL.
187 *
188 * We assume the vma may be removed as part of the merge.
189 */
can_vma_merge_before(struct vma_merge_struct * vmg)190 static bool can_vma_merge_before(struct vma_merge_struct *vmg)
191 {
192 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
193
194 if (is_mergeable_vma(vmg, /* merge_next = */ true) &&
195 is_mergeable_anon_vma(vmg, /* merge_next = */ true)) {
196 if (vmg->next->vm_pgoff == vmg->pgoff + pglen)
197 return true;
198 }
199
200 return false;
201 }
202
203 /*
204 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
205 * beyond (at a higher virtual address and file offset than) the vma.
206 *
207 * We cannot merge two vmas if they have differently assigned (non-NULL)
208 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
209 *
210 * We assume that vma is not removed as part of the merge.
211 */
can_vma_merge_after(struct vma_merge_struct * vmg)212 static bool can_vma_merge_after(struct vma_merge_struct *vmg)
213 {
214 if (is_mergeable_vma(vmg, /* merge_next = */ false) &&
215 is_mergeable_anon_vma(vmg, /* merge_next = */ false)) {
216 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff)
217 return true;
218 }
219 return false;
220 }
221
__vma_link_file(struct vm_area_struct * vma,struct address_space * mapping)222 static void __vma_link_file(struct vm_area_struct *vma,
223 struct address_space *mapping)
224 {
225 if (vma_is_shared_maywrite(vma))
226 mapping_allow_writable(mapping);
227
228 flush_dcache_mmap_lock(mapping);
229 vma_interval_tree_insert(vma, &mapping->i_mmap);
230 flush_dcache_mmap_unlock(mapping);
231 }
232
233 /*
234 * Requires inode->i_mapping->i_mmap_rwsem
235 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct address_space * mapping)236 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
237 struct address_space *mapping)
238 {
239 if (vma_is_shared_maywrite(vma))
240 mapping_unmap_writable(mapping);
241
242 flush_dcache_mmap_lock(mapping);
243 vma_interval_tree_remove(vma, &mapping->i_mmap);
244 flush_dcache_mmap_unlock(mapping);
245 }
246
247 /*
248 * vma has some anon_vma assigned, and is already inserted on that
249 * anon_vma's interval trees.
250 *
251 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
252 * vma must be removed from the anon_vma's interval trees using
253 * anon_vma_interval_tree_pre_update_vma().
254 *
255 * After the update, the vma will be reinserted using
256 * anon_vma_interval_tree_post_update_vma().
257 *
258 * The entire update must be protected by exclusive mmap_lock and by
259 * the root anon_vma's mutex.
260 */
261 static void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)262 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
263 {
264 struct anon_vma_chain *avc;
265
266 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
267 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
268 }
269
270 static void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)271 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
272 {
273 struct anon_vma_chain *avc;
274
275 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
276 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
277 }
278
279 /*
280 * vma_prepare() - Helper function for handling locking VMAs prior to altering
281 * @vp: The initialized vma_prepare struct
282 */
vma_prepare(struct vma_prepare * vp)283 static void vma_prepare(struct vma_prepare *vp)
284 {
285 if (vp->file) {
286 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
287
288 if (vp->adj_next)
289 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
290 vp->adj_next->vm_end);
291
292 i_mmap_lock_write(vp->mapping);
293 if (vp->insert && vp->insert->vm_file) {
294 /*
295 * Put into interval tree now, so instantiated pages
296 * are visible to arm/parisc __flush_dcache_page
297 * throughout; but we cannot insert into address
298 * space until vma start or end is updated.
299 */
300 __vma_link_file(vp->insert,
301 vp->insert->vm_file->f_mapping);
302 }
303 }
304
305 if (vp->anon_vma) {
306 anon_vma_lock_write(vp->anon_vma);
307 anon_vma_interval_tree_pre_update_vma(vp->vma);
308 if (vp->adj_next)
309 anon_vma_interval_tree_pre_update_vma(vp->adj_next);
310 }
311
312 if (vp->file) {
313 flush_dcache_mmap_lock(vp->mapping);
314 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
315 if (vp->adj_next)
316 vma_interval_tree_remove(vp->adj_next,
317 &vp->mapping->i_mmap);
318 }
319
320 }
321
322 /*
323 * vma_complete- Helper function for handling the unlocking after altering VMAs,
324 * or for inserting a VMA.
325 *
326 * @vp: The vma_prepare struct
327 * @vmi: The vma iterator
328 * @mm: The mm_struct
329 */
vma_complete(struct vma_prepare * vp,struct vma_iterator * vmi,struct mm_struct * mm)330 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi,
331 struct mm_struct *mm)
332 {
333 if (vp->file) {
334 if (vp->adj_next)
335 vma_interval_tree_insert(vp->adj_next,
336 &vp->mapping->i_mmap);
337 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
338 flush_dcache_mmap_unlock(vp->mapping);
339 }
340
341 if (vp->remove && vp->file) {
342 __remove_shared_vm_struct(vp->remove, vp->mapping);
343 if (vp->remove2)
344 __remove_shared_vm_struct(vp->remove2, vp->mapping);
345 } else if (vp->insert) {
346 /*
347 * split_vma has split insert from vma, and needs
348 * us to insert it before dropping the locks
349 * (it may either follow vma or precede it).
350 */
351 vma_iter_store_new(vmi, vp->insert);
352 mm->map_count++;
353 }
354
355 if (vp->anon_vma) {
356 anon_vma_interval_tree_post_update_vma(vp->vma);
357 if (vp->adj_next)
358 anon_vma_interval_tree_post_update_vma(vp->adj_next);
359 anon_vma_unlock_write(vp->anon_vma);
360 }
361
362 if (vp->file) {
363 i_mmap_unlock_write(vp->mapping);
364
365 if (!vp->skip_vma_uprobe) {
366 uprobe_mmap(vp->vma);
367
368 if (vp->adj_next)
369 uprobe_mmap(vp->adj_next);
370 }
371 }
372
373 if (vp->remove) {
374 again:
375 vma_mark_detached(vp->remove);
376 if (vp->file) {
377 uprobe_munmap(vp->remove, vp->remove->vm_start,
378 vp->remove->vm_end);
379 fput(vp->file);
380 }
381 if (vp->remove->anon_vma)
382 anon_vma_merge(vp->vma, vp->remove);
383 mm->map_count--;
384 mpol_put(vma_policy(vp->remove));
385 if (!vp->remove2)
386 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
387 vm_area_free(vp->remove);
388
389 /*
390 * In mprotect's case 6 (see comments on vma_merge),
391 * we are removing both mid and next vmas
392 */
393 if (vp->remove2) {
394 vp->remove = vp->remove2;
395 vp->remove2 = NULL;
396 goto again;
397 }
398 }
399 if (vp->insert && vp->file)
400 uprobe_mmap(vp->insert);
401 }
402
403 /*
404 * init_vma_prep() - Initializer wrapper for vma_prepare struct
405 * @vp: The vma_prepare struct
406 * @vma: The vma that will be altered once locked
407 */
init_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma)408 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma)
409 {
410 init_multi_vma_prep(vp, vma, NULL);
411 }
412
413 /*
414 * Can the proposed VMA be merged with the left (previous) VMA taking into
415 * account the start position of the proposed range.
416 */
can_vma_merge_left(struct vma_merge_struct * vmg)417 static bool can_vma_merge_left(struct vma_merge_struct *vmg)
418
419 {
420 return vmg->prev && vmg->prev->vm_end == vmg->start &&
421 can_vma_merge_after(vmg);
422 }
423
424 /*
425 * Can the proposed VMA be merged with the right (next) VMA taking into
426 * account the end position of the proposed range.
427 *
428 * In addition, if we can merge with the left VMA, ensure that left and right
429 * anon_vma's are also compatible.
430 */
can_vma_merge_right(struct vma_merge_struct * vmg,bool can_merge_left)431 static bool can_vma_merge_right(struct vma_merge_struct *vmg,
432 bool can_merge_left)
433 {
434 struct vm_area_struct *next = vmg->next;
435 struct vm_area_struct *prev;
436
437 if (!next || vmg->end != next->vm_start || !can_vma_merge_before(vmg))
438 return false;
439
440 if (!can_merge_left)
441 return true;
442
443 /*
444 * If we can merge with prev (left) and next (right), indicating that
445 * each VMA's anon_vma is compatible with the proposed anon_vma, this
446 * does not mean prev and next are compatible with EACH OTHER.
447 *
448 * We therefore check this in addition to mergeability to either side.
449 */
450 prev = vmg->prev;
451 return !prev->anon_vma || !next->anon_vma ||
452 prev->anon_vma == next->anon_vma;
453 }
454
455 /*
456 * Close a vm structure and free it.
457 */
remove_vma(struct vm_area_struct * vma)458 void remove_vma(struct vm_area_struct *vma)
459 {
460 might_sleep();
461 vma_close(vma);
462 if (vma->vm_file)
463 fput(vma->vm_file);
464 mpol_put(vma_policy(vma));
465 vm_area_free(vma);
466 }
467
468 /*
469 * Get rid of page table information in the indicated region.
470 *
471 * Called with the mm semaphore held.
472 */
unmap_region(struct ma_state * mas,struct vm_area_struct * vma,struct vm_area_struct * prev,struct vm_area_struct * next)473 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
474 struct vm_area_struct *prev, struct vm_area_struct *next)
475 {
476 struct mm_struct *mm = vma->vm_mm;
477 struct mmu_gather tlb;
478
479 tlb_gather_mmu(&tlb, mm);
480 update_hiwater_rss(mm);
481 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end,
482 /* mm_wr_locked = */ true);
483 mas_set(mas, vma->vm_end);
484 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
485 next ? next->vm_start : USER_PGTABLES_CEILING,
486 /* mm_wr_locked = */ true);
487 tlb_finish_mmu(&tlb);
488 }
489
490 /*
491 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
492 * has already been checked or doesn't make sense to fail.
493 * VMA Iterator will point to the original VMA.
494 */
495 static __must_check int
__split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)496 __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
497 unsigned long addr, int new_below)
498 {
499 struct vma_prepare vp;
500 struct vm_area_struct *new;
501 int err;
502
503 WARN_ON(vma->vm_start >= addr);
504 WARN_ON(vma->vm_end <= addr);
505
506 if (vma->vm_ops && vma->vm_ops->may_split) {
507 err = vma->vm_ops->may_split(vma, addr);
508 if (err)
509 return err;
510 }
511
512 new = vm_area_dup(vma);
513 if (!new)
514 return -ENOMEM;
515
516 if (new_below) {
517 new->vm_end = addr;
518 } else {
519 new->vm_start = addr;
520 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
521 }
522
523 err = -ENOMEM;
524 vma_iter_config(vmi, new->vm_start, new->vm_end);
525 if (vma_iter_prealloc(vmi, new))
526 goto out_free_vma;
527
528 err = vma_dup_policy(vma, new);
529 if (err)
530 goto out_free_vmi;
531
532 err = anon_vma_clone(new, vma);
533 if (err)
534 goto out_free_mpol;
535
536 if (new->vm_file)
537 get_file(new->vm_file);
538
539 if (new->vm_ops && new->vm_ops->open)
540 new->vm_ops->open(new);
541
542 vma_start_write(vma);
543 vma_start_write(new);
544
545 init_vma_prep(&vp, vma);
546 vp.insert = new;
547 vma_prepare(&vp);
548
549 /*
550 * Get rid of huge pages and shared page tables straddling the split
551 * boundary.
552 */
553 vma_adjust_trans_huge(vma, vma->vm_start, addr, NULL);
554 if (is_vm_hugetlb_page(vma))
555 hugetlb_split(vma, addr);
556
557 if (new_below) {
558 vma->vm_start = addr;
559 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
560 } else {
561 vma->vm_end = addr;
562 }
563
564 /* vma_complete stores the new vma */
565 vma_complete(&vp, vmi, vma->vm_mm);
566 validate_mm(vma->vm_mm);
567
568 /* Success. */
569 if (new_below)
570 vma_next(vmi);
571 else
572 vma_prev(vmi);
573
574 return 0;
575
576 out_free_mpol:
577 mpol_put(vma_policy(new));
578 out_free_vmi:
579 vma_iter_free(vmi);
580 out_free_vma:
581 vm_area_free(new);
582 return err;
583 }
584
585 /*
586 * Split a vma into two pieces at address 'addr', a new vma is allocated
587 * either for the first part or the tail.
588 */
split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)589 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
590 unsigned long addr, int new_below)
591 {
592 if (vma->vm_mm->map_count >= sysctl_max_map_count)
593 return -ENOMEM;
594
595 return __split_vma(vmi, vma, addr, new_below);
596 }
597
598 /*
599 * dup_anon_vma() - Helper function to duplicate anon_vma on VMA merge in the
600 * instance that the destination VMA has no anon_vma but the source does.
601 *
602 * @dst: The destination VMA
603 * @src: The source VMA
604 * @dup: Pointer to the destination VMA when successful.
605 *
606 * Returns: 0 on success.
607 */
dup_anon_vma(struct vm_area_struct * dst,struct vm_area_struct * src,struct vm_area_struct ** dup)608 static int dup_anon_vma(struct vm_area_struct *dst,
609 struct vm_area_struct *src, struct vm_area_struct **dup)
610 {
611 /*
612 * There are three cases to consider for correctly propagating
613 * anon_vma's on merge.
614 *
615 * The first is trivial - neither VMA has anon_vma, we need not do
616 * anything.
617 *
618 * The second where both have anon_vma is also a no-op, as they must
619 * then be the same, so there is simply nothing to copy.
620 *
621 * Here we cover the third - if the destination VMA has no anon_vma,
622 * that is it is unfaulted, we need to ensure that the newly merged
623 * range is referenced by the anon_vma's of the source.
624 */
625 if (src->anon_vma && !dst->anon_vma) {
626 int ret;
627
628 vma_assert_write_locked(dst);
629 dst->anon_vma = src->anon_vma;
630 ret = anon_vma_clone(dst, src);
631 if (ret)
632 return ret;
633
634 *dup = dst;
635 }
636
637 return 0;
638 }
639
640 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
validate_mm(struct mm_struct * mm)641 void validate_mm(struct mm_struct *mm)
642 {
643 int bug = 0;
644 int i = 0;
645 struct vm_area_struct *vma;
646 VMA_ITERATOR(vmi, mm, 0);
647
648 mt_validate(&mm->mm_mt);
649 for_each_vma(vmi, vma) {
650 #ifdef CONFIG_DEBUG_VM_RB
651 struct anon_vma *anon_vma = vma->anon_vma;
652 struct anon_vma_chain *avc;
653 #endif
654 unsigned long vmi_start, vmi_end;
655 bool warn = 0;
656
657 vmi_start = vma_iter_addr(&vmi);
658 vmi_end = vma_iter_end(&vmi);
659 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
660 warn = 1;
661
662 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
663 warn = 1;
664
665 if (warn) {
666 pr_emerg("issue in %s\n", current->comm);
667 dump_stack();
668 dump_vma(vma);
669 pr_emerg("tree range: %px start %lx end %lx\n", vma,
670 vmi_start, vmi_end - 1);
671 vma_iter_dump_tree(&vmi);
672 }
673
674 #ifdef CONFIG_DEBUG_VM_RB
675 if (anon_vma) {
676 anon_vma_lock_read(anon_vma);
677 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
678 anon_vma_interval_tree_verify(avc);
679 anon_vma_unlock_read(anon_vma);
680 }
681 #endif
682 /* Check for a infinite loop */
683 if (++i > mm->map_count + 10) {
684 i = -1;
685 break;
686 }
687 }
688 if (i != mm->map_count) {
689 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
690 bug = 1;
691 }
692 VM_BUG_ON_MM(bug, mm);
693 }
694 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
695
696 /*
697 * Based on the vmg flag indicating whether we need to adjust the vm_start field
698 * for the middle or next VMA, we calculate what the range of the newly adjusted
699 * VMA ought to be, and set the VMA's range accordingly.
700 */
vmg_adjust_set_range(struct vma_merge_struct * vmg)701 static void vmg_adjust_set_range(struct vma_merge_struct *vmg)
702 {
703 struct vm_area_struct *adjust;
704 pgoff_t pgoff;
705
706 if (vmg->__adjust_middle_start) {
707 adjust = vmg->middle;
708 pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start);
709 } else if (vmg->__adjust_next_start) {
710 adjust = vmg->next;
711 pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end);
712 } else {
713 return;
714 }
715
716 vma_set_range(adjust, vmg->end, adjust->vm_end, pgoff);
717 }
718
719 /*
720 * Actually perform the VMA merge operation.
721 *
722 * IMPORTANT: We guarantee that, should vmg->give_up_on_oom is set, to not
723 * modify any VMAs or cause inconsistent state should an OOM condition arise.
724 *
725 * Returns 0 on success, or an error value on failure.
726 */
commit_merge(struct vma_merge_struct * vmg)727 static int commit_merge(struct vma_merge_struct *vmg)
728 {
729 struct vm_area_struct *vma;
730 struct vma_prepare vp;
731
732 if (vmg->__adjust_next_start) {
733 /* We manipulate middle and adjust next, which is the target. */
734 vma = vmg->middle;
735 vma_iter_config(vmg->vmi, vmg->end, vmg->next->vm_end);
736 } else {
737 vma = vmg->target;
738 /* Note: vma iterator must be pointing to 'start'. */
739 vma_iter_config(vmg->vmi, vmg->start, vmg->end);
740 }
741
742 init_multi_vma_prep(&vp, vma, vmg);
743
744 /*
745 * If vmg->give_up_on_oom is set, we're safe, because we don't actually
746 * manipulate any VMAs until we succeed at preallocation.
747 *
748 * Past this point, we will not return an error.
749 */
750 if (vma_iter_prealloc(vmg->vmi, vma))
751 return -ENOMEM;
752
753 vma_prepare(&vp);
754 /*
755 * THP pages may need to do additional splits if we increase
756 * middle->vm_start.
757 */
758 vma_adjust_trans_huge(vma, vmg->start, vmg->end,
759 vmg->__adjust_middle_start ? vmg->middle : NULL);
760 vma_set_range(vma, vmg->start, vmg->end, vmg->pgoff);
761 vmg_adjust_set_range(vmg);
762 vma_iter_store_overwrite(vmg->vmi, vmg->target);
763
764 vma_complete(&vp, vmg->vmi, vma->vm_mm);
765
766 return 0;
767 }
768
769 /* We can only remove VMAs when merging if they do not have a close hook. */
can_merge_remove_vma(struct vm_area_struct * vma)770 static bool can_merge_remove_vma(struct vm_area_struct *vma)
771 {
772 return !vma->vm_ops || !vma->vm_ops->close;
773 }
774
775 /*
776 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its
777 * attributes modified.
778 *
779 * @vmg: Describes the modifications being made to a VMA and associated
780 * metadata.
781 *
782 * When the attributes of a range within a VMA change, then it might be possible
783 * for immediately adjacent VMAs to be merged into that VMA due to having
784 * identical properties.
785 *
786 * This function checks for the existence of any such mergeable VMAs and updates
787 * the maple tree describing the @vmg->middle->vm_mm address space to account
788 * for this, as well as any VMAs shrunk/expanded/deleted as a result of this
789 * merge.
790 *
791 * As part of this operation, if a merge occurs, the @vmg object will have its
792 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent
793 * calls to this function should reset these fields.
794 *
795 * Returns: The merged VMA if merge succeeds, or NULL otherwise.
796 *
797 * ASSUMPTIONS:
798 * - The caller must assign the VMA to be modifed to @vmg->middle.
799 * - The caller must have set @vmg->prev to the previous VMA, if there is one.
800 * - The caller must not set @vmg->next, as we determine this.
801 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
802 * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end).
803 */
vma_merge_existing_range(struct vma_merge_struct * vmg)804 static __must_check struct vm_area_struct *vma_merge_existing_range(
805 struct vma_merge_struct *vmg)
806 {
807 struct vm_area_struct *middle = vmg->middle;
808 struct vm_area_struct *prev = vmg->prev;
809 struct vm_area_struct *next;
810 struct vm_area_struct *anon_dup = NULL;
811 unsigned long start = vmg->start;
812 unsigned long end = vmg->end;
813 bool left_side = middle && start == middle->vm_start;
814 bool right_side = middle && end == middle->vm_end;
815 int err = 0;
816 bool merge_left, merge_right, merge_both;
817
818 mmap_assert_write_locked(vmg->mm);
819 VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */
820 VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */
821 VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg);
822 VM_WARN_ON_VMG(start >= end, vmg);
823
824 /*
825 * If middle == prev, then we are offset into a VMA. Otherwise, if we are
826 * not, we must span a portion of the VMA.
827 */
828 VM_WARN_ON_VMG(middle &&
829 ((middle != prev && vmg->start != middle->vm_start) ||
830 vmg->end > middle->vm_end), vmg);
831 /* The vmi must be positioned within vmg->middle. */
832 VM_WARN_ON_VMG(middle &&
833 !(vma_iter_addr(vmg->vmi) >= middle->vm_start &&
834 vma_iter_addr(vmg->vmi) < middle->vm_end), vmg);
835
836 vmg->state = VMA_MERGE_NOMERGE;
837
838 /*
839 * If a special mapping or if the range being modified is neither at the
840 * furthermost left or right side of the VMA, then we have no chance of
841 * merging and should abort.
842 */
843 if (vmg->flags & VM_SPECIAL || (!left_side && !right_side))
844 return NULL;
845
846 if (left_side)
847 merge_left = can_vma_merge_left(vmg);
848 else
849 merge_left = false;
850
851 if (right_side) {
852 next = vmg->next = vma_iter_next_range(vmg->vmi);
853 vma_iter_prev_range(vmg->vmi);
854
855 merge_right = can_vma_merge_right(vmg, merge_left);
856 } else {
857 merge_right = false;
858 next = NULL;
859 }
860
861 if (merge_left) /* If merging prev, position iterator there. */
862 vma_prev(vmg->vmi);
863 else if (!merge_right) /* If we have nothing to merge, abort. */
864 return NULL;
865
866 merge_both = merge_left && merge_right;
867 /* If we span the entire VMA, a merge implies it will be deleted. */
868 vmg->__remove_middle = left_side && right_side;
869
870 /*
871 * If we need to remove middle in its entirety but are unable to do so,
872 * we have no sensible recourse but to abort the merge.
873 */
874 if (vmg->__remove_middle && !can_merge_remove_vma(middle))
875 return NULL;
876
877 /*
878 * If we merge both VMAs, then next is also deleted. This implies
879 * merge_will_delete_vma also.
880 */
881 vmg->__remove_next = merge_both;
882
883 /*
884 * If we cannot delete next, then we can reduce the operation to merging
885 * prev and middle (thereby deleting middle).
886 */
887 if (vmg->__remove_next && !can_merge_remove_vma(next)) {
888 vmg->__remove_next = false;
889 merge_right = false;
890 merge_both = false;
891 }
892
893 /* No matter what happens, we will be adjusting middle. */
894 vma_start_write(middle);
895
896 if (merge_right) {
897 vma_start_write(next);
898 vmg->target = next;
899 }
900
901 if (merge_left) {
902 vma_start_write(prev);
903 vmg->target = prev;
904 }
905
906 if (merge_both) {
907 /*
908 * |<-------------------->|
909 * |-------********-------|
910 * prev middle next
911 * extend delete delete
912 */
913
914 vmg->start = prev->vm_start;
915 vmg->end = next->vm_end;
916 vmg->pgoff = prev->vm_pgoff;
917
918 /*
919 * We already ensured anon_vma compatibility above, so now it's
920 * simply a case of, if prev has no anon_vma object, which of
921 * next or middle contains the anon_vma we must duplicate.
922 */
923 err = dup_anon_vma(prev, next->anon_vma ? next : middle,
924 &anon_dup);
925 } else if (merge_left) {
926 /*
927 * |<------------>| OR
928 * |<----------------->|
929 * |-------*************
930 * prev middle
931 * extend shrink/delete
932 */
933
934 vmg->start = prev->vm_start;
935 vmg->pgoff = prev->vm_pgoff;
936
937 if (!vmg->__remove_middle)
938 vmg->__adjust_middle_start = true;
939
940 err = dup_anon_vma(prev, middle, &anon_dup);
941 } else { /* merge_right */
942 /*
943 * |<------------->| OR
944 * |<----------------->|
945 * *************-------|
946 * middle next
947 * shrink/delete extend
948 */
949
950 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
951
952 VM_WARN_ON_VMG(!merge_right, vmg);
953 /* If we are offset into a VMA, then prev must be middle. */
954 VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg);
955
956 if (vmg->__remove_middle) {
957 vmg->end = next->vm_end;
958 vmg->pgoff = next->vm_pgoff - pglen;
959 } else {
960 /* We shrink middle and expand next. */
961 vmg->__adjust_next_start = true;
962 vmg->start = middle->vm_start;
963 vmg->end = start;
964 vmg->pgoff = middle->vm_pgoff;
965 }
966
967 err = dup_anon_vma(next, middle, &anon_dup);
968 }
969
970 if (err || commit_merge(vmg))
971 goto abort;
972
973 khugepaged_enter_vma(vmg->target, vmg->flags);
974 vmg->state = VMA_MERGE_SUCCESS;
975 return vmg->target;
976
977 abort:
978 vma_iter_set(vmg->vmi, start);
979 vma_iter_load(vmg->vmi);
980
981 if (anon_dup)
982 unlink_anon_vmas(anon_dup);
983
984 /*
985 * This means we have failed to clone anon_vma's correctly, but no
986 * actual changes to VMAs have occurred, so no harm no foul - if the
987 * user doesn't want this reported and instead just wants to give up on
988 * the merge, allow it.
989 */
990 if (!vmg->give_up_on_oom)
991 vmg->state = VMA_MERGE_ERROR_NOMEM;
992 return NULL;
993 }
994
995 /*
996 * vma_merge_new_range - Attempt to merge a new VMA into address space
997 *
998 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end
999 * (exclusive), which we try to merge with any adjacent VMAs if possible.
1000 *
1001 * We are about to add a VMA to the address space starting at @vmg->start and
1002 * ending at @vmg->end. There are three different possible scenarios:
1003 *
1004 * 1. There is a VMA with identical properties immediately adjacent to the
1005 * proposed new VMA [@vmg->start, @vmg->end) either before or after it -
1006 * EXPAND that VMA:
1007 *
1008 * Proposed: |-----| or |-----|
1009 * Existing: |----| |----|
1010 *
1011 * 2. There are VMAs with identical properties immediately adjacent to the
1012 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it -
1013 * EXPAND the former and REMOVE the latter:
1014 *
1015 * Proposed: |-----|
1016 * Existing: |----| |----|
1017 *
1018 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those
1019 * VMAs do not have identical attributes - NO MERGE POSSIBLE.
1020 *
1021 * In instances where we can merge, this function returns the expanded VMA which
1022 * will have its range adjusted accordingly and the underlying maple tree also
1023 * adjusted.
1024 *
1025 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
1026 * to the VMA we expanded.
1027 *
1028 * This function adjusts @vmg to provide @vmg->next if not already specified,
1029 * and adjusts [@vmg->start, @vmg->end) to span the expanded range.
1030 *
1031 * ASSUMPTIONS:
1032 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
1033 * - The caller must have determined that [@vmg->start, @vmg->end) is empty,
1034 other than VMAs that will be unmapped should the operation succeed.
1035 * - The caller must have specified the previous vma in @vmg->prev.
1036 * - The caller must have specified the next vma in @vmg->next.
1037 * - The caller must have positioned the vmi at or before the gap.
1038 */
vma_merge_new_range(struct vma_merge_struct * vmg)1039 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg)
1040 {
1041 struct vm_area_struct *prev = vmg->prev;
1042 struct vm_area_struct *next = vmg->next;
1043 unsigned long end = vmg->end;
1044 bool can_merge_left, can_merge_right;
1045
1046 mmap_assert_write_locked(vmg->mm);
1047 VM_WARN_ON_VMG(vmg->middle, vmg);
1048 /* vmi must point at or before the gap. */
1049 VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg);
1050
1051 vmg->state = VMA_MERGE_NOMERGE;
1052
1053 /* Special VMAs are unmergeable, also if no prev/next. */
1054 if ((vmg->flags & VM_SPECIAL) || (!prev && !next))
1055 return NULL;
1056
1057 can_merge_left = can_vma_merge_left(vmg);
1058 can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left);
1059
1060 /* If we can merge with the next VMA, adjust vmg accordingly. */
1061 if (can_merge_right) {
1062 vmg->end = next->vm_end;
1063 vmg->middle = next;
1064 }
1065
1066 /* If we can merge with the previous VMA, adjust vmg accordingly. */
1067 if (can_merge_left) {
1068 vmg->start = prev->vm_start;
1069 vmg->middle = prev;
1070 vmg->pgoff = prev->vm_pgoff;
1071
1072 /*
1073 * If this merge would result in removal of the next VMA but we
1074 * are not permitted to do so, reduce the operation to merging
1075 * prev and vma.
1076 */
1077 if (can_merge_right && !can_merge_remove_vma(next))
1078 vmg->end = end;
1079
1080 /* In expand-only case we are already positioned at prev. */
1081 if (!vmg->just_expand) {
1082 /* Equivalent to going to the previous range. */
1083 vma_prev(vmg->vmi);
1084 }
1085 }
1086
1087 /*
1088 * Now try to expand adjacent VMA(s). This takes care of removing the
1089 * following VMA if we have VMAs on both sides.
1090 */
1091 if (vmg->middle && !vma_expand(vmg)) {
1092 khugepaged_enter_vma(vmg->middle, vmg->flags);
1093 vmg->state = VMA_MERGE_SUCCESS;
1094 return vmg->middle;
1095 }
1096
1097 return NULL;
1098 }
1099
1100 /*
1101 * vma_expand - Expand an existing VMA
1102 *
1103 * @vmg: Describes a VMA expansion operation.
1104 *
1105 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end.
1106 * Will expand over vmg->next if it's different from vmg->middle and vmg->end ==
1107 * vmg->next->vm_end. Checking if the vmg->middle can expand and merge with
1108 * vmg->next needs to be handled by the caller.
1109 *
1110 * Returns: 0 on success.
1111 *
1112 * ASSUMPTIONS:
1113 * - The caller must hold a WRITE lock on vmg->middle->mm->mmap_lock.
1114 * - The caller must have set @vmg->middle and @vmg->next.
1115 */
vma_expand(struct vma_merge_struct * vmg)1116 int vma_expand(struct vma_merge_struct *vmg)
1117 {
1118 struct vm_area_struct *anon_dup = NULL;
1119 bool remove_next = false;
1120 struct vm_area_struct *middle = vmg->middle;
1121 struct vm_area_struct *next = vmg->next;
1122
1123 mmap_assert_write_locked(vmg->mm);
1124
1125 vma_start_write(middle);
1126 if (next && (middle != next) && (vmg->end == next->vm_end)) {
1127 int ret;
1128
1129 remove_next = true;
1130 /* This should already have been checked by this point. */
1131 VM_WARN_ON_VMG(!can_merge_remove_vma(next), vmg);
1132 vma_start_write(next);
1133 /*
1134 * In this case we don't report OOM, so vmg->give_up_on_mm is
1135 * safe.
1136 */
1137 ret = dup_anon_vma(middle, next, &anon_dup);
1138 if (ret)
1139 return ret;
1140 }
1141
1142 /* Not merging but overwriting any part of next is not handled. */
1143 VM_WARN_ON_VMG(next && !remove_next &&
1144 next != middle && vmg->end > next->vm_start, vmg);
1145 /* Only handles expanding */
1146 VM_WARN_ON_VMG(middle->vm_start < vmg->start ||
1147 middle->vm_end > vmg->end, vmg);
1148
1149 vmg->target = middle;
1150 if (remove_next)
1151 vmg->__remove_next = true;
1152
1153 if (commit_merge(vmg))
1154 goto nomem;
1155
1156 return 0;
1157
1158 nomem:
1159 if (anon_dup)
1160 unlink_anon_vmas(anon_dup);
1161 /*
1162 * If the user requests that we just give upon OOM, we are safe to do so
1163 * here, as commit merge provides this contract to us. Nothing has been
1164 * changed - no harm no foul, just don't report it.
1165 */
1166 if (!vmg->give_up_on_oom)
1167 vmg->state = VMA_MERGE_ERROR_NOMEM;
1168 return -ENOMEM;
1169 }
1170
1171 /*
1172 * vma_shrink() - Reduce an existing VMAs memory area
1173 * @vmi: The vma iterator
1174 * @vma: The VMA to modify
1175 * @start: The new start
1176 * @end: The new end
1177 *
1178 * Returns: 0 on success, -ENOMEM otherwise
1179 */
vma_shrink(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff)1180 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
1181 unsigned long start, unsigned long end, pgoff_t pgoff)
1182 {
1183 struct vma_prepare vp;
1184
1185 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
1186
1187 if (vma->vm_start < start)
1188 vma_iter_config(vmi, vma->vm_start, start);
1189 else
1190 vma_iter_config(vmi, end, vma->vm_end);
1191
1192 if (vma_iter_prealloc(vmi, NULL))
1193 return -ENOMEM;
1194
1195 vma_start_write(vma);
1196
1197 init_vma_prep(&vp, vma);
1198 vma_prepare(&vp);
1199 vma_adjust_trans_huge(vma, start, end, NULL);
1200
1201 vma_iter_clear(vmi);
1202 vma_set_range(vma, start, end, pgoff);
1203 vma_complete(&vp, vmi, vma->vm_mm);
1204 validate_mm(vma->vm_mm);
1205 return 0;
1206 }
1207
vms_clear_ptes(struct vma_munmap_struct * vms,struct ma_state * mas_detach,bool mm_wr_locked)1208 static inline void vms_clear_ptes(struct vma_munmap_struct *vms,
1209 struct ma_state *mas_detach, bool mm_wr_locked)
1210 {
1211 struct mmu_gather tlb;
1212
1213 if (!vms->clear_ptes) /* Nothing to do */
1214 return;
1215
1216 /*
1217 * We can free page tables without write-locking mmap_lock because VMAs
1218 * were isolated before we downgraded mmap_lock.
1219 */
1220 mas_set(mas_detach, 1);
1221 tlb_gather_mmu(&tlb, vms->vma->vm_mm);
1222 update_hiwater_rss(vms->vma->vm_mm);
1223 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end,
1224 vms->vma_count, mm_wr_locked);
1225
1226 mas_set(mas_detach, 1);
1227 /* start and end may be different if there is no prev or next vma. */
1228 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start,
1229 vms->unmap_end, mm_wr_locked);
1230 tlb_finish_mmu(&tlb);
1231 vms->clear_ptes = false;
1232 }
1233
vms_clean_up_area(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1234 static void vms_clean_up_area(struct vma_munmap_struct *vms,
1235 struct ma_state *mas_detach)
1236 {
1237 struct vm_area_struct *vma;
1238
1239 if (!vms->nr_pages)
1240 return;
1241
1242 vms_clear_ptes(vms, mas_detach, true);
1243 mas_set(mas_detach, 0);
1244 mas_for_each(mas_detach, vma, ULONG_MAX)
1245 vma_close(vma);
1246 }
1247
1248 /*
1249 * vms_complete_munmap_vmas() - Finish the munmap() operation
1250 * @vms: The vma munmap struct
1251 * @mas_detach: The maple state of the detached vmas
1252 *
1253 * This updates the mm_struct, unmaps the region, frees the resources
1254 * used for the munmap() and may downgrade the lock - if requested. Everything
1255 * needed to be done once the vma maple tree is updated.
1256 */
vms_complete_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1257 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
1258 struct ma_state *mas_detach)
1259 {
1260 struct vm_area_struct *vma;
1261 struct mm_struct *mm;
1262
1263 mm = current->mm;
1264 mm->map_count -= vms->vma_count;
1265 mm->locked_vm -= vms->locked_vm;
1266 if (vms->unlock)
1267 mmap_write_downgrade(mm);
1268
1269 if (!vms->nr_pages)
1270 return;
1271
1272 vms_clear_ptes(vms, mas_detach, !vms->unlock);
1273 /* Update high watermark before we lower total_vm */
1274 update_hiwater_vm(mm);
1275 /* Stat accounting */
1276 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages);
1277 /* Paranoid bookkeeping */
1278 VM_WARN_ON(vms->exec_vm > mm->exec_vm);
1279 VM_WARN_ON(vms->stack_vm > mm->stack_vm);
1280 VM_WARN_ON(vms->data_vm > mm->data_vm);
1281 mm->exec_vm -= vms->exec_vm;
1282 mm->stack_vm -= vms->stack_vm;
1283 mm->data_vm -= vms->data_vm;
1284
1285 /* Remove and clean up vmas */
1286 mas_set(mas_detach, 0);
1287 mas_for_each(mas_detach, vma, ULONG_MAX)
1288 remove_vma(vma);
1289
1290 vm_unacct_memory(vms->nr_accounted);
1291 validate_mm(mm);
1292 if (vms->unlock)
1293 mmap_read_unlock(mm);
1294
1295 __mt_destroy(mas_detach->tree);
1296 }
1297
1298 /*
1299 * reattach_vmas() - Undo any munmap work and free resources
1300 * @mas_detach: The maple state with the detached maple tree
1301 *
1302 * Reattach any detached vmas and free up the maple tree used to track the vmas.
1303 */
reattach_vmas(struct ma_state * mas_detach)1304 static void reattach_vmas(struct ma_state *mas_detach)
1305 {
1306 struct vm_area_struct *vma;
1307
1308 mas_set(mas_detach, 0);
1309 mas_for_each(mas_detach, vma, ULONG_MAX)
1310 vma_mark_attached(vma);
1311
1312 __mt_destroy(mas_detach->tree);
1313 }
1314
1315 /*
1316 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree
1317 * for removal at a later date. Handles splitting first and last if necessary
1318 * and marking the vmas as isolated.
1319 *
1320 * @vms: The vma munmap struct
1321 * @mas_detach: The maple state tracking the detached tree
1322 *
1323 * Return: 0 on success, error otherwise
1324 */
vms_gather_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1325 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
1326 struct ma_state *mas_detach)
1327 {
1328 struct vm_area_struct *next = NULL;
1329 int error;
1330
1331 /*
1332 * If we need to split any vma, do it now to save pain later.
1333 * Does it split the first one?
1334 */
1335 if (vms->start > vms->vma->vm_start) {
1336
1337 /*
1338 * Make sure that map_count on return from munmap() will
1339 * not exceed its limit; but let map_count go just above
1340 * its limit temporarily, to help free resources as expected.
1341 */
1342 if (vms->end < vms->vma->vm_end &&
1343 vms->vma->vm_mm->map_count >= sysctl_max_map_count) {
1344 error = -ENOMEM;
1345 goto map_count_exceeded;
1346 }
1347
1348 /* Don't bother splitting the VMA if we can't unmap it anyway */
1349 if (!can_modify_vma(vms->vma)) {
1350 error = -EPERM;
1351 goto start_split_failed;
1352 }
1353
1354 error = __split_vma(vms->vmi, vms->vma, vms->start, 1);
1355 if (error)
1356 goto start_split_failed;
1357 }
1358 vms->prev = vma_prev(vms->vmi);
1359 if (vms->prev)
1360 vms->unmap_start = vms->prev->vm_end;
1361
1362 /*
1363 * Detach a range of VMAs from the mm. Using next as a temp variable as
1364 * it is always overwritten.
1365 */
1366 for_each_vma_range(*(vms->vmi), next, vms->end) {
1367 long nrpages;
1368
1369 if (!can_modify_vma(next)) {
1370 error = -EPERM;
1371 goto modify_vma_failed;
1372 }
1373 /* Does it split the end? */
1374 if (next->vm_end > vms->end) {
1375 error = __split_vma(vms->vmi, next, vms->end, 0);
1376 if (error)
1377 goto end_split_failed;
1378 }
1379 vma_start_write(next);
1380 mas_set(mas_detach, vms->vma_count++);
1381 error = mas_store_gfp(mas_detach, next, GFP_KERNEL);
1382 if (error)
1383 goto munmap_gather_failed;
1384
1385 vma_mark_detached(next);
1386 nrpages = vma_pages(next);
1387
1388 vms->nr_pages += nrpages;
1389 if (next->vm_flags & VM_LOCKED)
1390 vms->locked_vm += nrpages;
1391
1392 if (next->vm_flags & VM_ACCOUNT)
1393 vms->nr_accounted += nrpages;
1394
1395 if (is_exec_mapping(next->vm_flags))
1396 vms->exec_vm += nrpages;
1397 else if (is_stack_mapping(next->vm_flags))
1398 vms->stack_vm += nrpages;
1399 else if (is_data_mapping(next->vm_flags))
1400 vms->data_vm += nrpages;
1401
1402 if (vms->uf) {
1403 /*
1404 * If userfaultfd_unmap_prep returns an error the vmas
1405 * will remain split, but userland will get a
1406 * highly unexpected error anyway. This is no
1407 * different than the case where the first of the two
1408 * __split_vma fails, but we don't undo the first
1409 * split, despite we could. This is unlikely enough
1410 * failure that it's not worth optimizing it for.
1411 */
1412 error = userfaultfd_unmap_prep(next, vms->start,
1413 vms->end, vms->uf);
1414 if (error)
1415 goto userfaultfd_error;
1416 }
1417 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
1418 BUG_ON(next->vm_start < vms->start);
1419 BUG_ON(next->vm_start > vms->end);
1420 #endif
1421 }
1422
1423 vms->next = vma_next(vms->vmi);
1424 if (vms->next)
1425 vms->unmap_end = vms->next->vm_start;
1426
1427 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1428 /* Make sure no VMAs are about to be lost. */
1429 {
1430 MA_STATE(test, mas_detach->tree, 0, 0);
1431 struct vm_area_struct *vma_mas, *vma_test;
1432 int test_count = 0;
1433
1434 vma_iter_set(vms->vmi, vms->start);
1435 rcu_read_lock();
1436 vma_test = mas_find(&test, vms->vma_count - 1);
1437 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) {
1438 BUG_ON(vma_mas != vma_test);
1439 test_count++;
1440 vma_test = mas_next(&test, vms->vma_count - 1);
1441 }
1442 rcu_read_unlock();
1443 BUG_ON(vms->vma_count != test_count);
1444 }
1445 #endif
1446
1447 while (vma_iter_addr(vms->vmi) > vms->start)
1448 vma_iter_prev_range(vms->vmi);
1449
1450 vms->clear_ptes = true;
1451 return 0;
1452
1453 userfaultfd_error:
1454 munmap_gather_failed:
1455 end_split_failed:
1456 modify_vma_failed:
1457 reattach_vmas(mas_detach);
1458 start_split_failed:
1459 map_count_exceeded:
1460 return error;
1461 }
1462
1463 /*
1464 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct
1465 * @vms: The vma munmap struct
1466 * @vmi: The vma iterator
1467 * @vma: The first vm_area_struct to munmap
1468 * @start: The aligned start address to munmap
1469 * @end: The aligned end address to munmap
1470 * @uf: The userfaultfd list_head
1471 * @unlock: Unlock after the operation. Only unlocked on success
1472 */
init_vma_munmap(struct vma_munmap_struct * vms,struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)1473 static void init_vma_munmap(struct vma_munmap_struct *vms,
1474 struct vma_iterator *vmi, struct vm_area_struct *vma,
1475 unsigned long start, unsigned long end, struct list_head *uf,
1476 bool unlock)
1477 {
1478 vms->vmi = vmi;
1479 vms->vma = vma;
1480 if (vma) {
1481 vms->start = start;
1482 vms->end = end;
1483 } else {
1484 vms->start = vms->end = 0;
1485 }
1486 vms->unlock = unlock;
1487 vms->uf = uf;
1488 vms->vma_count = 0;
1489 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0;
1490 vms->exec_vm = vms->stack_vm = vms->data_vm = 0;
1491 vms->unmap_start = FIRST_USER_ADDRESS;
1492 vms->unmap_end = USER_PGTABLES_CEILING;
1493 vms->clear_ptes = false;
1494 }
1495
1496 /*
1497 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
1498 * @vmi: The vma iterator
1499 * @vma: The starting vm_area_struct
1500 * @mm: The mm_struct
1501 * @start: The aligned start address to munmap.
1502 * @end: The aligned end address to munmap.
1503 * @uf: The userfaultfd list_head
1504 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on
1505 * success.
1506 *
1507 * Return: 0 on success and drops the lock if so directed, error and leaves the
1508 * lock held otherwise.
1509 */
do_vmi_align_munmap(struct vma_iterator * vmi,struct vm_area_struct * vma,struct mm_struct * mm,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)1510 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
1511 struct mm_struct *mm, unsigned long start, unsigned long end,
1512 struct list_head *uf, bool unlock)
1513 {
1514 struct maple_tree mt_detach;
1515 MA_STATE(mas_detach, &mt_detach, 0, 0);
1516 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1517 mt_on_stack(mt_detach);
1518 struct vma_munmap_struct vms;
1519 int error;
1520
1521 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock);
1522 error = vms_gather_munmap_vmas(&vms, &mas_detach);
1523 if (error)
1524 goto gather_failed;
1525
1526 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
1527 if (error)
1528 goto clear_tree_failed;
1529
1530 /* Point of no return */
1531 vms_complete_munmap_vmas(&vms, &mas_detach);
1532 return 0;
1533
1534 clear_tree_failed:
1535 reattach_vmas(&mas_detach);
1536 gather_failed:
1537 validate_mm(mm);
1538 return error;
1539 }
1540
1541 /*
1542 * do_vmi_munmap() - munmap a given range.
1543 * @vmi: The vma iterator
1544 * @mm: The mm_struct
1545 * @start: The start address to munmap
1546 * @len: The length of the range to munmap
1547 * @uf: The userfaultfd list_head
1548 * @unlock: set to true if the user wants to drop the mmap_lock on success
1549 *
1550 * This function takes a @mas that is either pointing to the previous VMA or set
1551 * to MA_START and sets it up to remove the mapping(s). The @len will be
1552 * aligned.
1553 *
1554 * Return: 0 on success and drops the lock if so directed, error and leaves the
1555 * lock held otherwise.
1556 */
do_vmi_munmap(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool unlock)1557 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
1558 unsigned long start, size_t len, struct list_head *uf,
1559 bool unlock)
1560 {
1561 unsigned long end;
1562 struct vm_area_struct *vma;
1563
1564 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
1565 return -EINVAL;
1566
1567 end = start + PAGE_ALIGN(len);
1568 if (end == start)
1569 return -EINVAL;
1570
1571 /* Find the first overlapping VMA */
1572 vma = vma_find(vmi, end);
1573 if (!vma) {
1574 if (unlock)
1575 mmap_write_unlock(mm);
1576 return 0;
1577 }
1578
1579 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
1580 }
1581
1582 /*
1583 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
1584 * context and anonymous VMA name within the range [start, end).
1585 *
1586 * As a result, we might be able to merge the newly modified VMA range with an
1587 * adjacent VMA with identical properties.
1588 *
1589 * If no merge is possible and the range does not span the entirety of the VMA,
1590 * we then need to split the VMA to accommodate the change.
1591 *
1592 * The function returns either the merged VMA, the original VMA if a split was
1593 * required instead, or an error if the split failed.
1594 */
vma_modify(struct vma_merge_struct * vmg)1595 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg)
1596 {
1597 struct vm_area_struct *vma = vmg->middle;
1598 unsigned long start = vmg->start;
1599 unsigned long end = vmg->end;
1600 struct vm_area_struct *merged;
1601
1602 /* First, try to merge. */
1603 merged = vma_merge_existing_range(vmg);
1604 if (merged)
1605 return merged;
1606 if (vmg_nomem(vmg))
1607 return ERR_PTR(-ENOMEM);
1608
1609 /*
1610 * Split can fail for reasons other than OOM, so if the user requests
1611 * this it's probably a mistake.
1612 */
1613 VM_WARN_ON(vmg->give_up_on_oom &&
1614 (vma->vm_start != start || vma->vm_end != end));
1615
1616 /* Split any preceding portion of the VMA. */
1617 if (vma->vm_start < start) {
1618 int err = split_vma(vmg->vmi, vma, start, 1);
1619
1620 if (err)
1621 return ERR_PTR(err);
1622 }
1623
1624 /* Split any trailing portion of the VMA. */
1625 if (vma->vm_end > end) {
1626 int err = split_vma(vmg->vmi, vma, end, 0);
1627
1628 if (err)
1629 return ERR_PTR(err);
1630 }
1631
1632 return vma;
1633 }
1634
vma_modify_flags(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long new_flags)1635 struct vm_area_struct *vma_modify_flags(
1636 struct vma_iterator *vmi, struct vm_area_struct *prev,
1637 struct vm_area_struct *vma, unsigned long start, unsigned long end,
1638 unsigned long new_flags)
1639 {
1640 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1641
1642 vmg.flags = new_flags;
1643
1644 return vma_modify(&vmg);
1645 }
1646
1647 struct vm_area_struct
vma_modify_flags_name(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long new_flags,struct anon_vma_name * new_name)1648 *vma_modify_flags_name(struct vma_iterator *vmi,
1649 struct vm_area_struct *prev,
1650 struct vm_area_struct *vma,
1651 unsigned long start,
1652 unsigned long end,
1653 unsigned long new_flags,
1654 struct anon_vma_name *new_name)
1655 {
1656 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1657
1658 vmg.flags = new_flags;
1659 vmg.anon_name = new_name;
1660
1661 return vma_modify(&vmg);
1662 }
1663
1664 struct vm_area_struct
vma_modify_policy(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct mempolicy * new_pol)1665 *vma_modify_policy(struct vma_iterator *vmi,
1666 struct vm_area_struct *prev,
1667 struct vm_area_struct *vma,
1668 unsigned long start, unsigned long end,
1669 struct mempolicy *new_pol)
1670 {
1671 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1672
1673 vmg.policy = new_pol;
1674
1675 return vma_modify(&vmg);
1676 }
1677
1678 struct vm_area_struct
vma_modify_flags_uffd(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long new_flags,struct vm_userfaultfd_ctx new_ctx,bool give_up_on_oom)1679 *vma_modify_flags_uffd(struct vma_iterator *vmi,
1680 struct vm_area_struct *prev,
1681 struct vm_area_struct *vma,
1682 unsigned long start, unsigned long end,
1683 unsigned long new_flags,
1684 struct vm_userfaultfd_ctx new_ctx,
1685 bool give_up_on_oom)
1686 {
1687 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1688
1689 vmg.flags = new_flags;
1690 vmg.uffd_ctx = new_ctx;
1691 if (give_up_on_oom)
1692 vmg.give_up_on_oom = true;
1693
1694 return vma_modify(&vmg);
1695 }
1696
1697 /*
1698 * Expand vma by delta bytes, potentially merging with an immediately adjacent
1699 * VMA with identical properties.
1700 */
vma_merge_extend(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long delta)1701 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1702 struct vm_area_struct *vma,
1703 unsigned long delta)
1704 {
1705 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta);
1706
1707 vmg.next = vma_iter_next_rewind(vmi, NULL);
1708 vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */
1709
1710 return vma_merge_new_range(&vmg);
1711 }
1712
unlink_file_vma_batch_init(struct unlink_vma_file_batch * vb)1713 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
1714 {
1715 vb->count = 0;
1716 }
1717
unlink_file_vma_batch_process(struct unlink_vma_file_batch * vb)1718 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
1719 {
1720 struct address_space *mapping;
1721 int i;
1722
1723 mapping = vb->vmas[0]->vm_file->f_mapping;
1724 i_mmap_lock_write(mapping);
1725 for (i = 0; i < vb->count; i++) {
1726 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
1727 __remove_shared_vm_struct(vb->vmas[i], mapping);
1728 }
1729 i_mmap_unlock_write(mapping);
1730
1731 unlink_file_vma_batch_init(vb);
1732 }
1733
unlink_file_vma_batch_add(struct unlink_vma_file_batch * vb,struct vm_area_struct * vma)1734 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
1735 struct vm_area_struct *vma)
1736 {
1737 if (vma->vm_file == NULL)
1738 return;
1739
1740 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
1741 vb->count == ARRAY_SIZE(vb->vmas))
1742 unlink_file_vma_batch_process(vb);
1743
1744 vb->vmas[vb->count] = vma;
1745 vb->count++;
1746 }
1747
unlink_file_vma_batch_final(struct unlink_vma_file_batch * vb)1748 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
1749 {
1750 if (vb->count > 0)
1751 unlink_file_vma_batch_process(vb);
1752 }
1753
1754 /*
1755 * Unlink a file-based vm structure from its interval tree, to hide
1756 * vma from rmap and vmtruncate before freeing its page tables.
1757 */
unlink_file_vma(struct vm_area_struct * vma)1758 void unlink_file_vma(struct vm_area_struct *vma)
1759 {
1760 struct file *file = vma->vm_file;
1761
1762 if (file) {
1763 struct address_space *mapping = file->f_mapping;
1764
1765 i_mmap_lock_write(mapping);
1766 __remove_shared_vm_struct(vma, mapping);
1767 i_mmap_unlock_write(mapping);
1768 }
1769 }
1770
vma_link_file(struct vm_area_struct * vma)1771 void vma_link_file(struct vm_area_struct *vma)
1772 {
1773 struct file *file = vma->vm_file;
1774 struct address_space *mapping;
1775
1776 if (file) {
1777 mapping = file->f_mapping;
1778 i_mmap_lock_write(mapping);
1779 __vma_link_file(vma, mapping);
1780 i_mmap_unlock_write(mapping);
1781 }
1782 }
1783
vma_link(struct mm_struct * mm,struct vm_area_struct * vma)1784 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
1785 {
1786 VMA_ITERATOR(vmi, mm, 0);
1787
1788 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1789 if (vma_iter_prealloc(&vmi, vma))
1790 return -ENOMEM;
1791
1792 vma_start_write(vma);
1793 vma_iter_store_new(&vmi, vma);
1794 vma_link_file(vma);
1795 mm->map_count++;
1796 validate_mm(mm);
1797 return 0;
1798 }
1799
1800 /*
1801 * Copy the vma structure to a new location in the same mm,
1802 * prior to moving page table entries, to effect an mremap move.
1803 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)1804 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1805 unsigned long addr, unsigned long len, pgoff_t pgoff,
1806 bool *need_rmap_locks)
1807 {
1808 struct vm_area_struct *vma = *vmap;
1809 unsigned long vma_start = vma->vm_start;
1810 struct mm_struct *mm = vma->vm_mm;
1811 struct vm_area_struct *new_vma;
1812 bool faulted_in_anon_vma = true;
1813 VMA_ITERATOR(vmi, mm, addr);
1814 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len);
1815
1816 /*
1817 * If anonymous vma has not yet been faulted, update new pgoff
1818 * to match new location, to increase its chance of merging.
1819 */
1820 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
1821 pgoff = addr >> PAGE_SHIFT;
1822 faulted_in_anon_vma = false;
1823 }
1824
1825 /*
1826 * If the VMA we are copying might contain a uprobe PTE, ensure
1827 * that we do not establish one upon merge. Otherwise, when mremap()
1828 * moves page tables, it will orphan the newly created PTE.
1829 */
1830 if (vma->vm_file)
1831 vmg.skip_vma_uprobe = true;
1832
1833 new_vma = find_vma_prev(mm, addr, &vmg.prev);
1834 if (new_vma && new_vma->vm_start < addr + len)
1835 return NULL; /* should never get here */
1836
1837 vmg.middle = NULL; /* New VMA range. */
1838 vmg.pgoff = pgoff;
1839 vmg.next = vma_iter_next_rewind(&vmi, NULL);
1840 new_vma = vma_merge_new_range(&vmg);
1841
1842 if (new_vma) {
1843 /*
1844 * Source vma may have been merged into new_vma
1845 */
1846 if (unlikely(vma_start >= new_vma->vm_start &&
1847 vma_start < new_vma->vm_end)) {
1848 /*
1849 * The only way we can get a vma_merge with
1850 * self during an mremap is if the vma hasn't
1851 * been faulted in yet and we were allowed to
1852 * reset the dst vma->vm_pgoff to the
1853 * destination address of the mremap to allow
1854 * the merge to happen. mremap must change the
1855 * vm_pgoff linearity between src and dst vmas
1856 * (in turn preventing a vma_merge) to be
1857 * safe. It is only safe to keep the vm_pgoff
1858 * linear if there are no pages mapped yet.
1859 */
1860 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
1861 *vmap = vma = new_vma;
1862 }
1863 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1864 } else {
1865 new_vma = vm_area_dup(vma);
1866 if (!new_vma)
1867 goto out;
1868 vma_set_range(new_vma, addr, addr + len, pgoff);
1869 if (vma_dup_policy(vma, new_vma))
1870 goto out_free_vma;
1871 if (anon_vma_clone(new_vma, vma))
1872 goto out_free_mempol;
1873 if (new_vma->vm_file)
1874 get_file(new_vma->vm_file);
1875 if (new_vma->vm_ops && new_vma->vm_ops->open)
1876 new_vma->vm_ops->open(new_vma);
1877 if (vma_link(mm, new_vma))
1878 goto out_vma_link;
1879 *need_rmap_locks = false;
1880 }
1881 return new_vma;
1882
1883 out_vma_link:
1884 fixup_hugetlb_reservations(new_vma);
1885 vma_close(new_vma);
1886
1887 if (new_vma->vm_file)
1888 fput(new_vma->vm_file);
1889
1890 unlink_anon_vmas(new_vma);
1891 out_free_mempol:
1892 mpol_put(vma_policy(new_vma));
1893 out_free_vma:
1894 vm_area_free(new_vma);
1895 out:
1896 return NULL;
1897 }
1898
1899 /*
1900 * Rough compatibility check to quickly see if it's even worth looking
1901 * at sharing an anon_vma.
1902 *
1903 * They need to have the same vm_file, and the flags can only differ
1904 * in things that mprotect may change.
1905 *
1906 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1907 * we can merge the two vma's. For example, we refuse to merge a vma if
1908 * there is a vm_ops->close() function, because that indicates that the
1909 * driver is doing some kind of reference counting. But that doesn't
1910 * really matter for the anon_vma sharing case.
1911 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1912 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1913 {
1914 return a->vm_end == b->vm_start &&
1915 mpol_equal(vma_policy(a), vma_policy(b)) &&
1916 a->vm_file == b->vm_file &&
1917 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1918 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1919 }
1920
1921 /*
1922 * Do some basic sanity checking to see if we can re-use the anon_vma
1923 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1924 * the same as 'old', the other will be the new one that is trying
1925 * to share the anon_vma.
1926 *
1927 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1928 * the anon_vma of 'old' is concurrently in the process of being set up
1929 * by another page fault trying to merge _that_. But that's ok: if it
1930 * is being set up, that automatically means that it will be a singleton
1931 * acceptable for merging, so we can do all of this optimistically. But
1932 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1933 *
1934 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1935 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1936 * is to return an anon_vma that is "complex" due to having gone through
1937 * a fork).
1938 *
1939 * We also make sure that the two vma's are compatible (adjacent,
1940 * and with the same memory policies). That's all stable, even with just
1941 * a read lock on the mmap_lock.
1942 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1943 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
1944 struct vm_area_struct *a,
1945 struct vm_area_struct *b)
1946 {
1947 if (anon_vma_compatible(a, b)) {
1948 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1949
1950 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1951 return anon_vma;
1952 }
1953 return NULL;
1954 }
1955
1956 /*
1957 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1958 * neighbouring vmas for a suitable anon_vma, before it goes off
1959 * to allocate a new anon_vma. It checks because a repetitive
1960 * sequence of mprotects and faults may otherwise lead to distinct
1961 * anon_vmas being allocated, preventing vma merge in subsequent
1962 * mprotect.
1963 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1964 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1965 {
1966 struct anon_vma *anon_vma = NULL;
1967 struct vm_area_struct *prev, *next;
1968 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1969
1970 /* Try next first. */
1971 next = vma_iter_load(&vmi);
1972 if (next) {
1973 anon_vma = reusable_anon_vma(next, vma, next);
1974 if (anon_vma)
1975 return anon_vma;
1976 }
1977
1978 prev = vma_prev(&vmi);
1979 VM_BUG_ON_VMA(prev != vma, vma);
1980 prev = vma_prev(&vmi);
1981 /* Try prev next. */
1982 if (prev)
1983 anon_vma = reusable_anon_vma(prev, prev, vma);
1984
1985 /*
1986 * We might reach here with anon_vma == NULL if we can't find
1987 * any reusable anon_vma.
1988 * There's no absolute need to look only at touching neighbours:
1989 * we could search further afield for "compatible" anon_vmas.
1990 * But it would probably just be a waste of time searching,
1991 * or lead to too many vmas hanging off the same anon_vma.
1992 * We're trying to allow mprotect remerging later on,
1993 * not trying to minimize memory used for anon_vmas.
1994 */
1995 return anon_vma;
1996 }
1997
vm_ops_needs_writenotify(const struct vm_operations_struct * vm_ops)1998 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1999 {
2000 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
2001 }
2002
vma_is_shared_writable(struct vm_area_struct * vma)2003 static bool vma_is_shared_writable(struct vm_area_struct *vma)
2004 {
2005 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
2006 (VM_WRITE | VM_SHARED);
2007 }
2008
vma_fs_can_writeback(struct vm_area_struct * vma)2009 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
2010 {
2011 /* No managed pages to writeback. */
2012 if (vma->vm_flags & VM_PFNMAP)
2013 return false;
2014
2015 return vma->vm_file && vma->vm_file->f_mapping &&
2016 mapping_can_writeback(vma->vm_file->f_mapping);
2017 }
2018
2019 /*
2020 * Does this VMA require the underlying folios to have their dirty state
2021 * tracked?
2022 */
vma_needs_dirty_tracking(struct vm_area_struct * vma)2023 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
2024 {
2025 /* Only shared, writable VMAs require dirty tracking. */
2026 if (!vma_is_shared_writable(vma))
2027 return false;
2028
2029 /* Does the filesystem need to be notified? */
2030 if (vm_ops_needs_writenotify(vma->vm_ops))
2031 return true;
2032
2033 /*
2034 * Even if the filesystem doesn't indicate a need for writenotify, if it
2035 * can writeback, dirty tracking is still required.
2036 */
2037 return vma_fs_can_writeback(vma);
2038 }
2039
2040 /*
2041 * Some shared mappings will want the pages marked read-only
2042 * to track write events. If so, we'll downgrade vm_page_prot
2043 * to the private version (using protection_map[] without the
2044 * VM_SHARED bit).
2045 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)2046 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
2047 {
2048 /* If it was private or non-writable, the write bit is already clear */
2049 if (!vma_is_shared_writable(vma))
2050 return false;
2051
2052 /* The backer wishes to know when pages are first written to? */
2053 if (vm_ops_needs_writenotify(vma->vm_ops))
2054 return true;
2055
2056 /* The open routine did something to the protections that pgprot_modify
2057 * won't preserve? */
2058 if (pgprot_val(vm_page_prot) !=
2059 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
2060 return false;
2061
2062 /*
2063 * Do we need to track softdirty? hugetlb does not support softdirty
2064 * tracking yet.
2065 */
2066 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
2067 return true;
2068
2069 /* Do we need write faults for uffd-wp tracking? */
2070 if (userfaultfd_wp(vma))
2071 return true;
2072
2073 /* Can the mapping track the dirty pages? */
2074 return vma_fs_can_writeback(vma);
2075 }
2076
2077 static DEFINE_MUTEX(mm_all_locks_mutex);
2078
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)2079 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2080 {
2081 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2082 /*
2083 * The LSB of head.next can't change from under us
2084 * because we hold the mm_all_locks_mutex.
2085 */
2086 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
2087 /*
2088 * We can safely modify head.next after taking the
2089 * anon_vma->root->rwsem. If some other vma in this mm shares
2090 * the same anon_vma we won't take it again.
2091 *
2092 * No need of atomic instructions here, head.next
2093 * can't change from under us thanks to the
2094 * anon_vma->root->rwsem.
2095 */
2096 if (__test_and_set_bit(0, (unsigned long *)
2097 &anon_vma->root->rb_root.rb_root.rb_node))
2098 BUG();
2099 }
2100 }
2101
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)2102 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2103 {
2104 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2105 /*
2106 * AS_MM_ALL_LOCKS can't change from under us because
2107 * we hold the mm_all_locks_mutex.
2108 *
2109 * Operations on ->flags have to be atomic because
2110 * even if AS_MM_ALL_LOCKS is stable thanks to the
2111 * mm_all_locks_mutex, there may be other cpus
2112 * changing other bitflags in parallel to us.
2113 */
2114 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2115 BUG();
2116 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
2117 }
2118 }
2119
2120 /*
2121 * This operation locks against the VM for all pte/vma/mm related
2122 * operations that could ever happen on a certain mm. This includes
2123 * vmtruncate, try_to_unmap, and all page faults.
2124 *
2125 * The caller must take the mmap_lock in write mode before calling
2126 * mm_take_all_locks(). The caller isn't allowed to release the
2127 * mmap_lock until mm_drop_all_locks() returns.
2128 *
2129 * mmap_lock in write mode is required in order to block all operations
2130 * that could modify pagetables and free pages without need of
2131 * altering the vma layout. It's also needed in write mode to avoid new
2132 * anon_vmas to be associated with existing vmas.
2133 *
2134 * A single task can't take more than one mm_take_all_locks() in a row
2135 * or it would deadlock.
2136 *
2137 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2138 * mapping->flags avoid to take the same lock twice, if more than one
2139 * vma in this mm is backed by the same anon_vma or address_space.
2140 *
2141 * We take locks in following order, accordingly to comment at beginning
2142 * of mm/rmap.c:
2143 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
2144 * hugetlb mapping);
2145 * - all vmas marked locked
2146 * - all i_mmap_rwsem locks;
2147 * - all anon_vma->rwseml
2148 *
2149 * We can take all locks within these types randomly because the VM code
2150 * doesn't nest them and we protected from parallel mm_take_all_locks() by
2151 * mm_all_locks_mutex.
2152 *
2153 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2154 * that may have to take thousand of locks.
2155 *
2156 * mm_take_all_locks() can fail if it's interrupted by signals.
2157 */
mm_take_all_locks(struct mm_struct * mm)2158 int mm_take_all_locks(struct mm_struct *mm)
2159 {
2160 struct vm_area_struct *vma;
2161 struct anon_vma_chain *avc;
2162 VMA_ITERATOR(vmi, mm, 0);
2163
2164 mmap_assert_write_locked(mm);
2165
2166 mutex_lock(&mm_all_locks_mutex);
2167
2168 /*
2169 * vma_start_write() does not have a complement in mm_drop_all_locks()
2170 * because vma_start_write() is always asymmetrical; it marks a VMA as
2171 * being written to until mmap_write_unlock() or mmap_write_downgrade()
2172 * is reached.
2173 */
2174 for_each_vma(vmi, vma) {
2175 if (signal_pending(current))
2176 goto out_unlock;
2177 vma_start_write(vma);
2178 }
2179
2180 vma_iter_init(&vmi, mm, 0);
2181 for_each_vma(vmi, vma) {
2182 if (signal_pending(current))
2183 goto out_unlock;
2184 if (vma->vm_file && vma->vm_file->f_mapping &&
2185 is_vm_hugetlb_page(vma))
2186 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2187 }
2188
2189 vma_iter_init(&vmi, mm, 0);
2190 for_each_vma(vmi, vma) {
2191 if (signal_pending(current))
2192 goto out_unlock;
2193 if (vma->vm_file && vma->vm_file->f_mapping &&
2194 !is_vm_hugetlb_page(vma))
2195 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2196 }
2197
2198 vma_iter_init(&vmi, mm, 0);
2199 for_each_vma(vmi, vma) {
2200 if (signal_pending(current))
2201 goto out_unlock;
2202 if (vma->anon_vma)
2203 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2204 vm_lock_anon_vma(mm, avc->anon_vma);
2205 }
2206
2207 return 0;
2208
2209 out_unlock:
2210 mm_drop_all_locks(mm);
2211 return -EINTR;
2212 }
2213
vm_unlock_anon_vma(struct anon_vma * anon_vma)2214 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2215 {
2216 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2217 /*
2218 * The LSB of head.next can't change to 0 from under
2219 * us because we hold the mm_all_locks_mutex.
2220 *
2221 * We must however clear the bitflag before unlocking
2222 * the vma so the users using the anon_vma->rb_root will
2223 * never see our bitflag.
2224 *
2225 * No need of atomic instructions here, head.next
2226 * can't change from under us until we release the
2227 * anon_vma->root->rwsem.
2228 */
2229 if (!__test_and_clear_bit(0, (unsigned long *)
2230 &anon_vma->root->rb_root.rb_root.rb_node))
2231 BUG();
2232 anon_vma_unlock_write(anon_vma);
2233 }
2234 }
2235
vm_unlock_mapping(struct address_space * mapping)2236 static void vm_unlock_mapping(struct address_space *mapping)
2237 {
2238 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2239 /*
2240 * AS_MM_ALL_LOCKS can't change to 0 from under us
2241 * because we hold the mm_all_locks_mutex.
2242 */
2243 i_mmap_unlock_write(mapping);
2244 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2245 &mapping->flags))
2246 BUG();
2247 }
2248 }
2249
2250 /*
2251 * The mmap_lock cannot be released by the caller until
2252 * mm_drop_all_locks() returns.
2253 */
mm_drop_all_locks(struct mm_struct * mm)2254 void mm_drop_all_locks(struct mm_struct *mm)
2255 {
2256 struct vm_area_struct *vma;
2257 struct anon_vma_chain *avc;
2258 VMA_ITERATOR(vmi, mm, 0);
2259
2260 mmap_assert_write_locked(mm);
2261 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2262
2263 for_each_vma(vmi, vma) {
2264 if (vma->anon_vma)
2265 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2266 vm_unlock_anon_vma(avc->anon_vma);
2267 if (vma->vm_file && vma->vm_file->f_mapping)
2268 vm_unlock_mapping(vma->vm_file->f_mapping);
2269 }
2270
2271 mutex_unlock(&mm_all_locks_mutex);
2272 }
2273
2274 /*
2275 * We account for memory if it's a private writeable mapping,
2276 * not hugepages and VM_NORESERVE wasn't set.
2277 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)2278 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
2279 {
2280 /*
2281 * hugetlb has its own accounting separate from the core VM
2282 * VM_HUGETLB may not be set yet so we cannot check for that flag.
2283 */
2284 if (file && is_file_hugepages(file))
2285 return false;
2286
2287 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
2288 }
2289
2290 /*
2291 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap()
2292 * operation.
2293 * @vms: The vma unmap structure
2294 * @mas_detach: The maple state with the detached maple tree
2295 *
2296 * Reattach any detached vmas, free up the maple tree used to track the vmas.
2297 * If that's not possible because the ptes are cleared (and vm_ops->closed() may
2298 * have been called), then a NULL is written over the vmas and the vmas are
2299 * removed (munmap() completed).
2300 */
vms_abort_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)2301 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms,
2302 struct ma_state *mas_detach)
2303 {
2304 struct ma_state *mas = &vms->vmi->mas;
2305
2306 if (!vms->nr_pages)
2307 return;
2308
2309 if (vms->clear_ptes)
2310 return reattach_vmas(mas_detach);
2311
2312 /*
2313 * Aborting cannot just call the vm_ops open() because they are often
2314 * not symmetrical and state data has been lost. Resort to the old
2315 * failure method of leaving a gap where the MAP_FIXED mapping failed.
2316 */
2317 mas_set_range(mas, vms->start, vms->end - 1);
2318 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL);
2319 /* Clean up the insertion of the unfortunate gap */
2320 vms_complete_munmap_vmas(vms, mas_detach);
2321 }
2322
2323 /*
2324 * __mmap_prepare() - Prepare to gather any overlapping VMAs that need to be
2325 * unmapped once the map operation is completed, check limits, account mapping
2326 * and clean up any pre-existing VMAs.
2327 *
2328 * @map: Mapping state.
2329 * @uf: Userfaultfd context list.
2330 *
2331 * Returns: 0 on success, error code otherwise.
2332 */
__mmap_prepare(struct mmap_state * map,struct list_head * uf)2333 static int __mmap_prepare(struct mmap_state *map, struct list_head *uf)
2334 {
2335 int error;
2336 struct vma_iterator *vmi = map->vmi;
2337 struct vma_munmap_struct *vms = &map->vms;
2338
2339 /* Find the first overlapping VMA and initialise unmap state. */
2340 vms->vma = vma_find(vmi, map->end);
2341 init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf,
2342 /* unlock = */ false);
2343
2344 /* OK, we have overlapping VMAs - prepare to unmap them. */
2345 if (vms->vma) {
2346 mt_init_flags(&map->mt_detach,
2347 vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2348 mt_on_stack(map->mt_detach);
2349 mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0);
2350 /* Prepare to unmap any existing mapping in the area */
2351 error = vms_gather_munmap_vmas(vms, &map->mas_detach);
2352 if (error) {
2353 /* On error VMAs will already have been reattached. */
2354 vms->nr_pages = 0;
2355 return error;
2356 }
2357
2358 map->next = vms->next;
2359 map->prev = vms->prev;
2360 } else {
2361 map->next = vma_iter_next_rewind(vmi, &map->prev);
2362 }
2363
2364 /* Check against address space limit. */
2365 if (!may_expand_vm(map->mm, map->flags, map->pglen - vms->nr_pages))
2366 return -ENOMEM;
2367
2368 /* Private writable mapping: check memory availability. */
2369 if (accountable_mapping(map->file, map->flags)) {
2370 map->charged = map->pglen;
2371 map->charged -= vms->nr_accounted;
2372 if (map->charged) {
2373 error = security_vm_enough_memory_mm(map->mm, map->charged);
2374 if (error)
2375 return error;
2376 }
2377
2378 vms->nr_accounted = 0;
2379 map->flags |= VM_ACCOUNT;
2380 }
2381
2382 /*
2383 * Clear PTEs while the vma is still in the tree so that rmap
2384 * cannot race with the freeing later in the truncate scenario.
2385 * This is also needed for mmap_file(), which is why vm_ops
2386 * close function is called.
2387 */
2388 vms_clean_up_area(vms, &map->mas_detach);
2389
2390 return 0;
2391 }
2392
2393
__mmap_new_file_vma(struct mmap_state * map,struct vm_area_struct * vma)2394 static int __mmap_new_file_vma(struct mmap_state *map,
2395 struct vm_area_struct *vma)
2396 {
2397 struct vma_iterator *vmi = map->vmi;
2398 int error;
2399
2400 vma->vm_file = get_file(map->file);
2401
2402 if (!map->file->f_op->mmap)
2403 return 0;
2404
2405 error = mmap_file(vma->vm_file, vma);
2406 if (error) {
2407 fput(vma->vm_file);
2408 vma->vm_file = NULL;
2409
2410 vma_iter_set(vmi, vma->vm_end);
2411 /* Undo any partial mapping done by a device driver. */
2412 unmap_region(&vmi->mas, vma, map->prev, map->next);
2413
2414 return error;
2415 }
2416
2417 /* Drivers cannot alter the address of the VMA. */
2418 WARN_ON_ONCE(map->addr != vma->vm_start);
2419 /*
2420 * Drivers should not permit writability when previously it was
2421 * disallowed.
2422 */
2423 VM_WARN_ON_ONCE(map->flags != vma->vm_flags &&
2424 !(map->flags & VM_MAYWRITE) &&
2425 (vma->vm_flags & VM_MAYWRITE));
2426
2427 map->flags = vma->vm_flags;
2428
2429 return 0;
2430 }
2431
2432 /*
2433 * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not
2434 * possible.
2435 *
2436 * @map: Mapping state.
2437 * @vmap: Output pointer for the new VMA.
2438 *
2439 * Returns: Zero on success, or an error.
2440 */
__mmap_new_vma(struct mmap_state * map,struct vm_area_struct ** vmap)2441 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap)
2442 {
2443 struct vma_iterator *vmi = map->vmi;
2444 int error = 0;
2445 struct vm_area_struct *vma;
2446
2447 /*
2448 * Determine the object being mapped and call the appropriate
2449 * specific mapper. the address has already been validated, but
2450 * not unmapped, but the maps are removed from the list.
2451 */
2452 vma = vm_area_alloc(map->mm);
2453 if (!vma)
2454 return -ENOMEM;
2455
2456 vma_iter_config(vmi, map->addr, map->end);
2457 vma_set_range(vma, map->addr, map->end, map->pgoff);
2458 vm_flags_init(vma, map->flags);
2459 vma->vm_page_prot = map->page_prot;
2460
2461 if (vma_iter_prealloc(vmi, vma)) {
2462 error = -ENOMEM;
2463 goto free_vma;
2464 }
2465
2466 if (map->file)
2467 error = __mmap_new_file_vma(map, vma);
2468 else if (map->flags & VM_SHARED)
2469 error = shmem_zero_setup(vma);
2470 else
2471 vma_set_anonymous(vma);
2472
2473 if (error)
2474 goto free_iter_vma;
2475
2476 #ifdef CONFIG_SPARC64
2477 /* TODO: Fix SPARC ADI! */
2478 WARN_ON_ONCE(!arch_validate_flags(map->flags));
2479 #endif
2480
2481 /* Lock the VMA since it is modified after insertion into VMA tree */
2482 vma_start_write(vma);
2483 vma_iter_store_new(vmi, vma);
2484 map->mm->map_count++;
2485 vma_link_file(vma);
2486
2487 /*
2488 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below
2489 * call covers the non-merge case.
2490 */
2491 if (!vma_is_anonymous(vma))
2492 khugepaged_enter_vma(vma, map->flags);
2493 ksm_add_vma(vma);
2494 *vmap = vma;
2495 return 0;
2496
2497 free_iter_vma:
2498 vma_iter_free(vmi);
2499 free_vma:
2500 vm_area_free(vma);
2501 return error;
2502 }
2503
2504 /*
2505 * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping
2506 * statistics, handle locking and finalise the VMA.
2507 *
2508 * @map: Mapping state.
2509 * @vma: Merged or newly allocated VMA for the mmap()'d region.
2510 */
__mmap_complete(struct mmap_state * map,struct vm_area_struct * vma)2511 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma)
2512 {
2513 struct mm_struct *mm = map->mm;
2514 unsigned long vm_flags = vma->vm_flags;
2515
2516 perf_event_mmap(vma);
2517
2518 /* Unmap any existing mapping in the area. */
2519 vms_complete_munmap_vmas(&map->vms, &map->mas_detach);
2520
2521 vm_stat_account(mm, vma->vm_flags, map->pglen);
2522 if (vm_flags & VM_LOCKED) {
2523 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2524 is_vm_hugetlb_page(vma) ||
2525 vma == get_gate_vma(mm))
2526 vm_flags_clear(vma, VM_LOCKED_MASK);
2527 else
2528 mm->locked_vm += map->pglen;
2529 }
2530
2531 if (vma->vm_file)
2532 uprobe_mmap(vma);
2533
2534 /*
2535 * New (or expanded) vma always get soft dirty status.
2536 * Otherwise user-space soft-dirty page tracker won't
2537 * be able to distinguish situation when vma area unmapped,
2538 * then new mapped in-place (which must be aimed as
2539 * a completely new data area).
2540 */
2541 vm_flags_set(vma, VM_SOFTDIRTY);
2542
2543 vma_set_page_prot(vma);
2544 }
2545
2546 /*
2547 * Invoke the f_op->mmap_prepare() callback for a file-backed mapping that
2548 * specifies it.
2549 *
2550 * This is called prior to any merge attempt, and updates whitelisted fields
2551 * that are permitted to be updated by the caller.
2552 *
2553 * All but user-defined fields will be pre-populated with original values.
2554 *
2555 * Returns 0 on success, or an error code otherwise.
2556 */
call_mmap_prepare(struct mmap_state * map)2557 static int call_mmap_prepare(struct mmap_state *map)
2558 {
2559 int err;
2560 struct vm_area_desc desc = {
2561 .mm = map->mm,
2562 .start = map->addr,
2563 .end = map->end,
2564
2565 .pgoff = map->pgoff,
2566 .file = map->file,
2567 .vm_flags = map->flags,
2568 .page_prot = map->page_prot,
2569 };
2570
2571 /* Invoke the hook. */
2572 err = __call_mmap_prepare(map->file, &desc);
2573 if (err)
2574 return err;
2575
2576 /* Update fields permitted to be changed. */
2577 map->pgoff = desc.pgoff;
2578 map->file = desc.file;
2579 map->flags = desc.vm_flags;
2580 map->page_prot = desc.page_prot;
2581 /* User-defined fields. */
2582 map->vm_ops = desc.vm_ops;
2583 map->vm_private_data = desc.private_data;
2584
2585 return 0;
2586 }
2587
set_vma_user_defined_fields(struct vm_area_struct * vma,struct mmap_state * map)2588 static void set_vma_user_defined_fields(struct vm_area_struct *vma,
2589 struct mmap_state *map)
2590 {
2591 if (map->vm_ops)
2592 vma->vm_ops = map->vm_ops;
2593 vma->vm_private_data = map->vm_private_data;
2594 }
2595
__mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)2596 static unsigned long __mmap_region(struct file *file, unsigned long addr,
2597 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2598 struct list_head *uf)
2599 {
2600 struct mm_struct *mm = current->mm;
2601 struct vm_area_struct *vma = NULL;
2602 int error;
2603 bool have_mmap_prepare = file && file->f_op->mmap_prepare;
2604 VMA_ITERATOR(vmi, mm, addr);
2605 MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file);
2606
2607 error = __mmap_prepare(&map, uf);
2608 if (!error && have_mmap_prepare)
2609 error = call_mmap_prepare(&map);
2610 if (error)
2611 goto abort_munmap;
2612
2613 /* Attempt to merge with adjacent VMAs... */
2614 if (map.prev || map.next) {
2615 VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL);
2616
2617 vma = vma_merge_new_range(&vmg);
2618 }
2619
2620 /* ...but if we can't, allocate a new VMA. */
2621 if (!vma) {
2622 error = __mmap_new_vma(&map, &vma);
2623 if (error)
2624 goto unacct_error;
2625 }
2626
2627 if (have_mmap_prepare)
2628 set_vma_user_defined_fields(vma, &map);
2629
2630 __mmap_complete(&map, vma);
2631
2632 return addr;
2633
2634 /* Accounting was done by __mmap_prepare(). */
2635 unacct_error:
2636 if (map.charged)
2637 vm_unacct_memory(map.charged);
2638 abort_munmap:
2639 vms_abort_munmap_vmas(&map.vms, &map.mas_detach);
2640 return error;
2641 }
2642
2643 /**
2644 * mmap_region() - Actually perform the userland mapping of a VMA into
2645 * current->mm with known, aligned and overflow-checked @addr and @len, and
2646 * correctly determined VMA flags @vm_flags and page offset @pgoff.
2647 *
2648 * This is an internal memory management function, and should not be used
2649 * directly.
2650 *
2651 * The caller must write-lock current->mm->mmap_lock.
2652 *
2653 * @file: If a file-backed mapping, a pointer to the struct file describing the
2654 * file to be mapped, otherwise NULL.
2655 * @addr: The page-aligned address at which to perform the mapping.
2656 * @len: The page-aligned, non-zero, length of the mapping.
2657 * @vm_flags: The VMA flags which should be applied to the mapping.
2658 * @pgoff: If @file is specified, the page offset into the file, if not then
2659 * the virtual page offset in memory of the anonymous mapping.
2660 * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap
2661 * events.
2662 *
2663 * Returns: Either an error, or the address at which the requested mapping has
2664 * been performed.
2665 */
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)2666 unsigned long mmap_region(struct file *file, unsigned long addr,
2667 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2668 struct list_head *uf)
2669 {
2670 unsigned long ret;
2671 bool writable_file_mapping = false;
2672
2673 mmap_assert_write_locked(current->mm);
2674
2675 /* Check to see if MDWE is applicable. */
2676 if (map_deny_write_exec(vm_flags, vm_flags))
2677 return -EACCES;
2678
2679 /* Allow architectures to sanity-check the vm_flags. */
2680 if (!arch_validate_flags(vm_flags))
2681 return -EINVAL;
2682
2683 /* Map writable and ensure this isn't a sealed memfd. */
2684 if (file && is_shared_maywrite(vm_flags)) {
2685 int error = mapping_map_writable(file->f_mapping);
2686
2687 if (error)
2688 return error;
2689 writable_file_mapping = true;
2690 }
2691
2692 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf);
2693
2694 /* Clear our write mapping regardless of error. */
2695 if (writable_file_mapping)
2696 mapping_unmap_writable(file->f_mapping);
2697
2698 validate_mm(current->mm);
2699 return ret;
2700 }
2701
2702 /*
2703 * do_brk_flags() - Increase the brk vma if the flags match.
2704 * @vmi: The vma iterator
2705 * @addr: The start address
2706 * @len: The length of the increase
2707 * @vma: The vma,
2708 * @flags: The VMA Flags
2709 *
2710 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
2711 * do not match then create a new anonymous VMA. Eventually we may be able to
2712 * do some brk-specific accounting here.
2713 */
do_brk_flags(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,unsigned long len,unsigned long flags)2714 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2715 unsigned long addr, unsigned long len, unsigned long flags)
2716 {
2717 struct mm_struct *mm = current->mm;
2718
2719 /*
2720 * Check against address space limits by the changed size
2721 * Note: This happens *after* clearing old mappings in some code paths.
2722 */
2723 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2724 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2725 return -ENOMEM;
2726
2727 if (mm->map_count > sysctl_max_map_count)
2728 return -ENOMEM;
2729
2730 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2731 return -ENOMEM;
2732
2733 /*
2734 * Expand the existing vma if possible; Note that singular lists do not
2735 * occur after forking, so the expand will only happen on new VMAs.
2736 */
2737 if (vma && vma->vm_end == addr) {
2738 VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr));
2739
2740 vmg.prev = vma;
2741 /* vmi is positioned at prev, which this mode expects. */
2742 vmg.just_expand = true;
2743
2744 if (vma_merge_new_range(&vmg))
2745 goto out;
2746 else if (vmg_nomem(&vmg))
2747 goto unacct_fail;
2748 }
2749
2750 if (vma)
2751 vma_iter_next_range(vmi);
2752 /* create a vma struct for an anonymous mapping */
2753 vma = vm_area_alloc(mm);
2754 if (!vma)
2755 goto unacct_fail;
2756
2757 vma_set_anonymous(vma);
2758 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
2759 vm_flags_init(vma, flags);
2760 vma->vm_page_prot = vm_get_page_prot(flags);
2761 vma_start_write(vma);
2762 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
2763 goto mas_store_fail;
2764
2765 mm->map_count++;
2766 validate_mm(mm);
2767 ksm_add_vma(vma);
2768 out:
2769 perf_event_mmap(vma);
2770 mm->total_vm += len >> PAGE_SHIFT;
2771 mm->data_vm += len >> PAGE_SHIFT;
2772 if (flags & VM_LOCKED)
2773 mm->locked_vm += (len >> PAGE_SHIFT);
2774 vm_flags_set(vma, VM_SOFTDIRTY);
2775 return 0;
2776
2777 mas_store_fail:
2778 vm_area_free(vma);
2779 unacct_fail:
2780 vm_unacct_memory(len >> PAGE_SHIFT);
2781 return -ENOMEM;
2782 }
2783
2784 /**
2785 * unmapped_area() - Find an area between the low_limit and the high_limit with
2786 * the correct alignment and offset, all from @info. Note: current->mm is used
2787 * for the search.
2788 *
2789 * @info: The unmapped area information including the range [low_limit -
2790 * high_limit), the alignment offset and mask.
2791 *
2792 * Return: A memory address or -ENOMEM.
2793 */
unmapped_area(struct vm_unmapped_area_info * info)2794 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
2795 {
2796 unsigned long length, gap;
2797 unsigned long low_limit, high_limit;
2798 struct vm_area_struct *tmp;
2799 VMA_ITERATOR(vmi, current->mm, 0);
2800
2801 /* Adjust search length to account for worst case alignment overhead */
2802 length = info->length + info->align_mask + info->start_gap;
2803 if (length < info->length)
2804 return -ENOMEM;
2805
2806 low_limit = info->low_limit;
2807 if (low_limit < mmap_min_addr)
2808 low_limit = mmap_min_addr;
2809 high_limit = info->high_limit;
2810 retry:
2811 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
2812 return -ENOMEM;
2813
2814 /*
2815 * Adjust for the gap first so it doesn't interfere with the
2816 * later alignment. The first step is the minimum needed to
2817 * fulill the start gap, the next steps is the minimum to align
2818 * that. It is the minimum needed to fulill both.
2819 */
2820 gap = vma_iter_addr(&vmi) + info->start_gap;
2821 gap += (info->align_offset - gap) & info->align_mask;
2822 tmp = vma_next(&vmi);
2823 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
2824 if (vm_start_gap(tmp) < gap + length - 1) {
2825 low_limit = tmp->vm_end;
2826 vma_iter_reset(&vmi);
2827 goto retry;
2828 }
2829 } else {
2830 tmp = vma_prev(&vmi);
2831 if (tmp && vm_end_gap(tmp) > gap) {
2832 low_limit = vm_end_gap(tmp);
2833 vma_iter_reset(&vmi);
2834 goto retry;
2835 }
2836 }
2837
2838 return gap;
2839 }
2840
2841 /**
2842 * unmapped_area_topdown() - Find an area between the low_limit and the
2843 * high_limit with the correct alignment and offset at the highest available
2844 * address, all from @info. Note: current->mm is used for the search.
2845 *
2846 * @info: The unmapped area information including the range [low_limit -
2847 * high_limit), the alignment offset and mask.
2848 *
2849 * Return: A memory address or -ENOMEM.
2850 */
unmapped_area_topdown(struct vm_unmapped_area_info * info)2851 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2852 {
2853 unsigned long length, gap, gap_end;
2854 unsigned long low_limit, high_limit;
2855 struct vm_area_struct *tmp;
2856 VMA_ITERATOR(vmi, current->mm, 0);
2857
2858 /* Adjust search length to account for worst case alignment overhead */
2859 length = info->length + info->align_mask + info->start_gap;
2860 if (length < info->length)
2861 return -ENOMEM;
2862
2863 low_limit = info->low_limit;
2864 if (low_limit < mmap_min_addr)
2865 low_limit = mmap_min_addr;
2866 high_limit = info->high_limit;
2867 retry:
2868 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
2869 return -ENOMEM;
2870
2871 gap = vma_iter_end(&vmi) - info->length;
2872 gap -= (gap - info->align_offset) & info->align_mask;
2873 gap_end = vma_iter_end(&vmi);
2874 tmp = vma_next(&vmi);
2875 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
2876 if (vm_start_gap(tmp) < gap_end) {
2877 high_limit = vm_start_gap(tmp);
2878 vma_iter_reset(&vmi);
2879 goto retry;
2880 }
2881 } else {
2882 tmp = vma_prev(&vmi);
2883 if (tmp && vm_end_gap(tmp) > gap) {
2884 high_limit = tmp->vm_start;
2885 vma_iter_reset(&vmi);
2886 goto retry;
2887 }
2888 }
2889
2890 return gap;
2891 }
2892
2893 /*
2894 * Verify that the stack growth is acceptable and
2895 * update accounting. This is shared with both the
2896 * grow-up and grow-down cases.
2897 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2898 static int acct_stack_growth(struct vm_area_struct *vma,
2899 unsigned long size, unsigned long grow)
2900 {
2901 struct mm_struct *mm = vma->vm_mm;
2902 unsigned long new_start;
2903
2904 /* address space limit tests */
2905 if (!may_expand_vm(mm, vma->vm_flags, grow))
2906 return -ENOMEM;
2907
2908 /* Stack limit test */
2909 if (size > rlimit(RLIMIT_STACK))
2910 return -ENOMEM;
2911
2912 /* mlock limit tests */
2913 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
2914 return -ENOMEM;
2915
2916 /* Check to ensure the stack will not grow into a hugetlb-only region */
2917 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2918 vma->vm_end - size;
2919 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2920 return -EFAULT;
2921
2922 /*
2923 * Overcommit.. This must be the final test, as it will
2924 * update security statistics.
2925 */
2926 if (security_vm_enough_memory_mm(mm, grow))
2927 return -ENOMEM;
2928
2929 return 0;
2930 }
2931
2932 #if defined(CONFIG_STACK_GROWSUP)
2933 /*
2934 * PA-RISC uses this for its stack.
2935 * vma is the last one with address > vma->vm_end. Have to extend vma.
2936 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2937 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2938 {
2939 struct mm_struct *mm = vma->vm_mm;
2940 struct vm_area_struct *next;
2941 unsigned long gap_addr;
2942 int error = 0;
2943 VMA_ITERATOR(vmi, mm, vma->vm_start);
2944
2945 if (!(vma->vm_flags & VM_GROWSUP))
2946 return -EFAULT;
2947
2948 mmap_assert_write_locked(mm);
2949
2950 /* Guard against exceeding limits of the address space. */
2951 address &= PAGE_MASK;
2952 if (address >= (TASK_SIZE & PAGE_MASK))
2953 return -ENOMEM;
2954 address += PAGE_SIZE;
2955
2956 /* Enforce stack_guard_gap */
2957 gap_addr = address + stack_guard_gap;
2958
2959 /* Guard against overflow */
2960 if (gap_addr < address || gap_addr > TASK_SIZE)
2961 gap_addr = TASK_SIZE;
2962
2963 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2964 if (next && vma_is_accessible(next)) {
2965 if (!(next->vm_flags & VM_GROWSUP))
2966 return -ENOMEM;
2967 /* Check that both stack segments have the same anon_vma? */
2968 }
2969
2970 if (next)
2971 vma_iter_prev_range_limit(&vmi, address);
2972
2973 vma_iter_config(&vmi, vma->vm_start, address);
2974 if (vma_iter_prealloc(&vmi, vma))
2975 return -ENOMEM;
2976
2977 /* We must make sure the anon_vma is allocated. */
2978 if (unlikely(anon_vma_prepare(vma))) {
2979 vma_iter_free(&vmi);
2980 return -ENOMEM;
2981 }
2982
2983 /* Lock the VMA before expanding to prevent concurrent page faults */
2984 vma_start_write(vma);
2985 /* We update the anon VMA tree. */
2986 anon_vma_lock_write(vma->anon_vma);
2987
2988 /* Somebody else might have raced and expanded it already */
2989 if (address > vma->vm_end) {
2990 unsigned long size, grow;
2991
2992 size = address - vma->vm_start;
2993 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2994
2995 error = -ENOMEM;
2996 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2997 error = acct_stack_growth(vma, size, grow);
2998 if (!error) {
2999 if (vma->vm_flags & VM_LOCKED)
3000 mm->locked_vm += grow;
3001 vm_stat_account(mm, vma->vm_flags, grow);
3002 anon_vma_interval_tree_pre_update_vma(vma);
3003 vma->vm_end = address;
3004 /* Overwrite old entry in mtree. */
3005 vma_iter_store_overwrite(&vmi, vma);
3006 anon_vma_interval_tree_post_update_vma(vma);
3007
3008 perf_event_mmap(vma);
3009 }
3010 }
3011 }
3012 anon_vma_unlock_write(vma->anon_vma);
3013 vma_iter_free(&vmi);
3014 validate_mm(mm);
3015 return error;
3016 }
3017 #endif /* CONFIG_STACK_GROWSUP */
3018
3019 /*
3020 * vma is the first one with address < vma->vm_start. Have to extend vma.
3021 * mmap_lock held for writing.
3022 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)3023 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
3024 {
3025 struct mm_struct *mm = vma->vm_mm;
3026 struct vm_area_struct *prev;
3027 int error = 0;
3028 VMA_ITERATOR(vmi, mm, vma->vm_start);
3029
3030 if (!(vma->vm_flags & VM_GROWSDOWN))
3031 return -EFAULT;
3032
3033 mmap_assert_write_locked(mm);
3034
3035 address &= PAGE_MASK;
3036 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
3037 return -EPERM;
3038
3039 /* Enforce stack_guard_gap */
3040 prev = vma_prev(&vmi);
3041 /* Check that both stack segments have the same anon_vma? */
3042 if (prev) {
3043 if (!(prev->vm_flags & VM_GROWSDOWN) &&
3044 vma_is_accessible(prev) &&
3045 (address - prev->vm_end < stack_guard_gap))
3046 return -ENOMEM;
3047 }
3048
3049 if (prev)
3050 vma_iter_next_range_limit(&vmi, vma->vm_start);
3051
3052 vma_iter_config(&vmi, address, vma->vm_end);
3053 if (vma_iter_prealloc(&vmi, vma))
3054 return -ENOMEM;
3055
3056 /* We must make sure the anon_vma is allocated. */
3057 if (unlikely(anon_vma_prepare(vma))) {
3058 vma_iter_free(&vmi);
3059 return -ENOMEM;
3060 }
3061
3062 /* Lock the VMA before expanding to prevent concurrent page faults */
3063 vma_start_write(vma);
3064 /* We update the anon VMA tree. */
3065 anon_vma_lock_write(vma->anon_vma);
3066
3067 /* Somebody else might have raced and expanded it already */
3068 if (address < vma->vm_start) {
3069 unsigned long size, grow;
3070
3071 size = vma->vm_end - address;
3072 grow = (vma->vm_start - address) >> PAGE_SHIFT;
3073
3074 error = -ENOMEM;
3075 if (grow <= vma->vm_pgoff) {
3076 error = acct_stack_growth(vma, size, grow);
3077 if (!error) {
3078 if (vma->vm_flags & VM_LOCKED)
3079 mm->locked_vm += grow;
3080 vm_stat_account(mm, vma->vm_flags, grow);
3081 anon_vma_interval_tree_pre_update_vma(vma);
3082 vma->vm_start = address;
3083 vma->vm_pgoff -= grow;
3084 /* Overwrite old entry in mtree. */
3085 vma_iter_store_overwrite(&vmi, vma);
3086 anon_vma_interval_tree_post_update_vma(vma);
3087
3088 perf_event_mmap(vma);
3089 }
3090 }
3091 }
3092 anon_vma_unlock_write(vma->anon_vma);
3093 vma_iter_free(&vmi);
3094 validate_mm(mm);
3095 return error;
3096 }
3097
__vm_munmap(unsigned long start,size_t len,bool unlock)3098 int __vm_munmap(unsigned long start, size_t len, bool unlock)
3099 {
3100 int ret;
3101 struct mm_struct *mm = current->mm;
3102 LIST_HEAD(uf);
3103 VMA_ITERATOR(vmi, mm, start);
3104
3105 if (mmap_write_lock_killable(mm))
3106 return -EINTR;
3107
3108 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3109 if (ret || !unlock)
3110 mmap_write_unlock(mm);
3111
3112 userfaultfd_unmap_complete(mm, &uf);
3113 return ret;
3114 }
3115
3116 /* Insert vm structure into process list sorted by address
3117 * and into the inode's i_mmap tree. If vm_file is non-NULL
3118 * then i_mmap_rwsem is taken here.
3119 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3120 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3121 {
3122 unsigned long charged = vma_pages(vma);
3123
3124
3125 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3126 return -ENOMEM;
3127
3128 if ((vma->vm_flags & VM_ACCOUNT) &&
3129 security_vm_enough_memory_mm(mm, charged))
3130 return -ENOMEM;
3131
3132 /*
3133 * The vm_pgoff of a purely anonymous vma should be irrelevant
3134 * until its first write fault, when page's anon_vma and index
3135 * are set. But now set the vm_pgoff it will almost certainly
3136 * end up with (unless mremap moves it elsewhere before that
3137 * first wfault), so /proc/pid/maps tells a consistent story.
3138 *
3139 * By setting it to reflect the virtual start address of the
3140 * vma, merges and splits can happen in a seamless way, just
3141 * using the existing file pgoff checks and manipulations.
3142 * Similarly in do_mmap and in do_brk_flags.
3143 */
3144 if (vma_is_anonymous(vma)) {
3145 BUG_ON(vma->anon_vma);
3146 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3147 }
3148
3149 if (vma_link(mm, vma)) {
3150 if (vma->vm_flags & VM_ACCOUNT)
3151 vm_unacct_memory(charged);
3152 return -ENOMEM;
3153 }
3154
3155 return 0;
3156 }
3157