1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HIGHMEM_H
3 #define _LINUX_HIGHMEM_H
4
5 #include <linux/fs.h>
6 #include <linux/kernel.h>
7 #include <linux/bug.h>
8 #include <linux/cacheflush.h>
9 #include <linux/kmsan.h>
10 #include <linux/mm.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13
14 #include "highmem-internal.h"
15
16 /**
17 * kmap - Map a page for long term usage
18 * @page: Pointer to the page to be mapped
19 *
20 * Returns: The virtual address of the mapping
21 *
22 * Can only be invoked from preemptible task context because on 32bit
23 * systems with CONFIG_HIGHMEM enabled this function might sleep.
24 *
25 * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area
26 * this returns the virtual address of the direct kernel mapping.
27 *
28 * The returned virtual address is globally visible and valid up to the
29 * point where it is unmapped via kunmap(). The pointer can be handed to
30 * other contexts.
31 *
32 * For highmem pages on 32bit systems this can be slow as the mapping space
33 * is limited and protected by a global lock. In case that there is no
34 * mapping slot available the function blocks until a slot is released via
35 * kunmap().
36 */
37 static inline void *kmap(struct page *page);
38
39 /**
40 * kunmap - Unmap the virtual address mapped by kmap()
41 * @page: Pointer to the page which was mapped by kmap()
42 *
43 * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of
44 * pages in the low memory area.
45 */
46 static inline void kunmap(const struct page *page);
47
48 /**
49 * kmap_to_page - Get the page for a kmap'ed address
50 * @addr: The address to look up
51 *
52 * Returns: The page which is mapped to @addr.
53 */
54 static inline struct page *kmap_to_page(void *addr);
55
56 /**
57 * kmap_flush_unused - Flush all unused kmap mappings in order to
58 * remove stray mappings
59 */
60 static inline void kmap_flush_unused(void);
61
62 /**
63 * kmap_local_page - Map a page for temporary usage
64 * @page: Pointer to the page to be mapped
65 *
66 * Returns: The virtual address of the mapping
67 *
68 * Can be invoked from any context, including interrupts.
69 *
70 * Requires careful handling when nesting multiple mappings because the map
71 * management is stack based. The unmap has to be in the reverse order of
72 * the map operation:
73 *
74 * addr1 = kmap_local_page(page1);
75 * addr2 = kmap_local_page(page2);
76 * ...
77 * kunmap_local(addr2);
78 * kunmap_local(addr1);
79 *
80 * Unmapping addr1 before addr2 is invalid and causes malfunction.
81 *
82 * Contrary to kmap() mappings the mapping is only valid in the context of
83 * the caller and cannot be handed to other contexts.
84 *
85 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
86 * virtual address of the direct mapping. Only real highmem pages are
87 * temporarily mapped.
88 *
89 * While kmap_local_page() is significantly faster than kmap() for the highmem
90 * case it comes with restrictions about the pointer validity.
91 *
92 * On HIGHMEM enabled systems mapping a highmem page has the side effect of
93 * disabling migration in order to keep the virtual address stable across
94 * preemption. No caller of kmap_local_page() can rely on this side effect.
95 */
96 static inline void *kmap_local_page(const struct page *page);
97
98 /**
99 * kmap_local_folio - Map a page in this folio for temporary usage
100 * @folio: The folio containing the page.
101 * @offset: The byte offset within the folio which identifies the page.
102 *
103 * Requires careful handling when nesting multiple mappings because the map
104 * management is stack based. The unmap has to be in the reverse order of
105 * the map operation::
106 *
107 * addr1 = kmap_local_folio(folio1, offset1);
108 * addr2 = kmap_local_folio(folio2, offset2);
109 * ...
110 * kunmap_local(addr2);
111 * kunmap_local(addr1);
112 *
113 * Unmapping addr1 before addr2 is invalid and causes malfunction.
114 *
115 * Contrary to kmap() mappings the mapping is only valid in the context of
116 * the caller and cannot be handed to other contexts.
117 *
118 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
119 * virtual address of the direct mapping. Only real highmem pages are
120 * temporarily mapped.
121 *
122 * While it is significantly faster than kmap() for the highmem case it
123 * comes with restrictions about the pointer validity.
124 *
125 * On HIGHMEM enabled systems mapping a highmem page has the side effect of
126 * disabling migration in order to keep the virtual address stable across
127 * preemption. No caller of kmap_local_folio() can rely on this side effect.
128 *
129 * Context: Can be invoked from any context.
130 * Return: The virtual address of @offset.
131 */
132 static inline void *kmap_local_folio(const struct folio *folio, size_t offset);
133
134 /**
135 * kmap_atomic - Atomically map a page for temporary usage - Deprecated!
136 * @page: Pointer to the page to be mapped
137 *
138 * Returns: The virtual address of the mapping
139 *
140 * In fact a wrapper around kmap_local_page() which also disables pagefaults
141 * and, depending on PREEMPT_RT configuration, also CPU migration and
142 * preemption. Therefore users should not count on the latter two side effects.
143 *
144 * Mappings should always be released by kunmap_atomic().
145 *
146 * Do not use in new code. Use kmap_local_page() instead.
147 *
148 * It is used in atomic context when code wants to access the contents of a
149 * page that might be allocated from high memory (see __GFP_HIGHMEM), for
150 * example a page in the pagecache. The API has two functions, and they
151 * can be used in a manner similar to the following::
152 *
153 * // Find the page of interest.
154 * struct page *page = find_get_page(mapping, offset);
155 *
156 * // Gain access to the contents of that page.
157 * void *vaddr = kmap_atomic(page);
158 *
159 * // Do something to the contents of that page.
160 * memset(vaddr, 0, PAGE_SIZE);
161 *
162 * // Unmap that page.
163 * kunmap_atomic(vaddr);
164 *
165 * Note that the kunmap_atomic() call takes the result of the kmap_atomic()
166 * call, not the argument.
167 *
168 * If you need to map two pages because you want to copy from one page to
169 * another you need to keep the kmap_atomic calls strictly nested, like:
170 *
171 * vaddr1 = kmap_atomic(page1);
172 * vaddr2 = kmap_atomic(page2);
173 *
174 * memcpy(vaddr1, vaddr2, PAGE_SIZE);
175 *
176 * kunmap_atomic(vaddr2);
177 * kunmap_atomic(vaddr1);
178 */
179 static inline void *kmap_atomic(const struct page *page);
180
181 /* Highmem related interfaces for management code */
182 static inline unsigned long nr_free_highpages(void);
183 static inline unsigned long totalhigh_pages(void);
184
185 #ifndef ARCH_HAS_FLUSH_ANON_PAGE
flush_anon_page(struct vm_area_struct * vma,struct page * page,unsigned long vmaddr)186 static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
187 {
188 }
189 #endif
190
191 #ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
flush_kernel_vmap_range(void * vaddr,int size)192 static inline void flush_kernel_vmap_range(void *vaddr, int size)
193 {
194 }
invalidate_kernel_vmap_range(void * vaddr,int size)195 static inline void invalidate_kernel_vmap_range(void *vaddr, int size)
196 {
197 }
198 #endif
199
200 /* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */
201 #ifndef clear_user_highpage
clear_user_highpage(struct page * page,unsigned long vaddr)202 static inline void clear_user_highpage(struct page *page, unsigned long vaddr)
203 {
204 void *addr = kmap_local_page(page);
205 clear_user_page(addr, vaddr, page);
206 kunmap_local(addr);
207 }
208 #endif
209
210 #ifndef vma_alloc_zeroed_movable_folio
211 /**
212 * vma_alloc_zeroed_movable_folio - Allocate a zeroed page for a VMA.
213 * @vma: The VMA the page is to be allocated for.
214 * @vaddr: The virtual address the page will be inserted into.
215 *
216 * This function will allocate a page suitable for inserting into this
217 * VMA at this virtual address. It may be allocated from highmem or
218 * the movable zone. An architecture may provide its own implementation.
219 *
220 * Return: A folio containing one allocated and zeroed page or NULL if
221 * we are out of memory.
222 */
223 static inline
vma_alloc_zeroed_movable_folio(struct vm_area_struct * vma,unsigned long vaddr)224 struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
225 unsigned long vaddr)
226 {
227 struct folio *folio;
228
229 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vaddr);
230 if (folio && user_alloc_needs_zeroing())
231 clear_user_highpage(&folio->page, vaddr);
232
233 return folio;
234 }
235 #endif
236
clear_highpage(struct page * page)237 static inline void clear_highpage(struct page *page)
238 {
239 void *kaddr = kmap_local_page(page);
240 clear_page(kaddr);
241 kunmap_local(kaddr);
242 }
243
clear_highpage_kasan_tagged(struct page * page)244 static inline void clear_highpage_kasan_tagged(struct page *page)
245 {
246 void *kaddr = kmap_local_page(page);
247
248 clear_page(kasan_reset_tag(kaddr));
249 kunmap_local(kaddr);
250 }
251
252 #ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGES
253
254 /* Return false to let people know we did not initialize the pages */
tag_clear_highpages(struct page * page,int numpages)255 static inline bool tag_clear_highpages(struct page *page, int numpages)
256 {
257 return false;
258 }
259
260 #endif
261
262 /*
263 * If we pass in a base or tail page, we can zero up to PAGE_SIZE.
264 * If we pass in a head page, we can zero up to the size of the compound page.
265 */
266 #ifdef CONFIG_HIGHMEM
267 void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
268 unsigned start2, unsigned end2);
269 #else
zero_user_segments(struct page * page,unsigned start1,unsigned end1,unsigned start2,unsigned end2)270 static inline void zero_user_segments(struct page *page,
271 unsigned start1, unsigned end1,
272 unsigned start2, unsigned end2)
273 {
274 void *kaddr = kmap_local_page(page);
275 unsigned int i;
276
277 BUG_ON(end1 > page_size(page) || end2 > page_size(page));
278
279 if (end1 > start1)
280 memset(kaddr + start1, 0, end1 - start1);
281
282 if (end2 > start2)
283 memset(kaddr + start2, 0, end2 - start2);
284
285 kunmap_local(kaddr);
286 for (i = 0; i < compound_nr(page); i++)
287 flush_dcache_page(page + i);
288 }
289 #endif
290
zero_user_segment(struct page * page,unsigned start,unsigned end)291 static inline void zero_user_segment(struct page *page,
292 unsigned start, unsigned end)
293 {
294 zero_user_segments(page, start, end, 0, 0);
295 }
296
297 #ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE
298
copy_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)299 static inline void copy_user_highpage(struct page *to, struct page *from,
300 unsigned long vaddr, struct vm_area_struct *vma)
301 {
302 char *vfrom, *vto;
303
304 vfrom = kmap_local_page(from);
305 vto = kmap_local_page(to);
306 copy_user_page(vto, vfrom, vaddr, to);
307 kmsan_unpoison_memory(page_address(to), PAGE_SIZE);
308 kunmap_local(vto);
309 kunmap_local(vfrom);
310 }
311
312 #endif
313
314 #ifndef __HAVE_ARCH_COPY_HIGHPAGE
315
copy_highpage(struct page * to,struct page * from)316 static inline void copy_highpage(struct page *to, struct page *from)
317 {
318 char *vfrom, *vto;
319
320 vfrom = kmap_local_page(from);
321 vto = kmap_local_page(to);
322 copy_page(vto, vfrom);
323 kmsan_copy_page_meta(to, from);
324 kunmap_local(vto);
325 kunmap_local(vfrom);
326 }
327
328 #endif
329
330 #ifdef copy_mc_to_kernel
331 /*
332 * If architecture supports machine check exception handling, define the
333 * #MC versions of copy_user_highpage and copy_highpage. They copy a memory
334 * page with #MC in source page (@from) handled, and return the number
335 * of bytes not copied if there was a #MC, otherwise 0 for success.
336 */
copy_mc_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)337 static inline int copy_mc_user_highpage(struct page *to, struct page *from,
338 unsigned long vaddr, struct vm_area_struct *vma)
339 {
340 unsigned long ret;
341 char *vfrom, *vto;
342
343 vfrom = kmap_local_page(from);
344 vto = kmap_local_page(to);
345 ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE);
346 if (!ret)
347 kmsan_unpoison_memory(page_address(to), PAGE_SIZE);
348 kunmap_local(vto);
349 kunmap_local(vfrom);
350
351 if (ret)
352 memory_failure_queue(page_to_pfn(from), 0);
353
354 return ret;
355 }
356
copy_mc_highpage(struct page * to,struct page * from)357 static inline int copy_mc_highpage(struct page *to, struct page *from)
358 {
359 unsigned long ret;
360 char *vfrom, *vto;
361
362 vfrom = kmap_local_page(from);
363 vto = kmap_local_page(to);
364 ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE);
365 if (!ret)
366 kmsan_copy_page_meta(to, from);
367 kunmap_local(vto);
368 kunmap_local(vfrom);
369
370 if (ret)
371 memory_failure_queue(page_to_pfn(from), 0);
372
373 return ret;
374 }
375 #else
copy_mc_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)376 static inline int copy_mc_user_highpage(struct page *to, struct page *from,
377 unsigned long vaddr, struct vm_area_struct *vma)
378 {
379 copy_user_highpage(to, from, vaddr, vma);
380 return 0;
381 }
382
copy_mc_highpage(struct page * to,struct page * from)383 static inline int copy_mc_highpage(struct page *to, struct page *from)
384 {
385 copy_highpage(to, from);
386 return 0;
387 }
388 #endif
389
memcpy_page(struct page * dst_page,size_t dst_off,struct page * src_page,size_t src_off,size_t len)390 static inline void memcpy_page(struct page *dst_page, size_t dst_off,
391 struct page *src_page, size_t src_off,
392 size_t len)
393 {
394 char *dst = kmap_local_page(dst_page);
395 char *src = kmap_local_page(src_page);
396
397 VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
398 memcpy(dst + dst_off, src + src_off, len);
399 kunmap_local(src);
400 kunmap_local(dst);
401 }
402
memcpy_folio(struct folio * dst_folio,size_t dst_off,struct folio * src_folio,size_t src_off,size_t len)403 static inline void memcpy_folio(struct folio *dst_folio, size_t dst_off,
404 struct folio *src_folio, size_t src_off, size_t len)
405 {
406 VM_BUG_ON(dst_off + len > folio_size(dst_folio));
407 VM_BUG_ON(src_off + len > folio_size(src_folio));
408
409 do {
410 char *dst = kmap_local_folio(dst_folio, dst_off);
411 const char *src = kmap_local_folio(src_folio, src_off);
412 size_t chunk = len;
413
414 if (folio_test_highmem(dst_folio) &&
415 chunk > PAGE_SIZE - offset_in_page(dst_off))
416 chunk = PAGE_SIZE - offset_in_page(dst_off);
417 if (folio_test_highmem(src_folio) &&
418 chunk > PAGE_SIZE - offset_in_page(src_off))
419 chunk = PAGE_SIZE - offset_in_page(src_off);
420 memcpy(dst, src, chunk);
421 kunmap_local(src);
422 kunmap_local(dst);
423
424 dst_off += chunk;
425 src_off += chunk;
426 len -= chunk;
427 } while (len > 0);
428 }
429
memset_page(struct page * page,size_t offset,int val,size_t len)430 static inline void memset_page(struct page *page, size_t offset, int val,
431 size_t len)
432 {
433 char *addr = kmap_local_page(page);
434
435 VM_BUG_ON(offset + len > PAGE_SIZE);
436 memset(addr + offset, val, len);
437 kunmap_local(addr);
438 }
439
memcpy_from_page(char * to,struct page * page,size_t offset,size_t len)440 static inline void memcpy_from_page(char *to, struct page *page,
441 size_t offset, size_t len)
442 {
443 char *from = kmap_local_page(page);
444
445 VM_BUG_ON(offset + len > PAGE_SIZE);
446 memcpy(to, from + offset, len);
447 kunmap_local(from);
448 }
449
memcpy_to_page(struct page * page,size_t offset,const char * from,size_t len)450 static inline void memcpy_to_page(struct page *page, size_t offset,
451 const char *from, size_t len)
452 {
453 char *to = kmap_local_page(page);
454
455 VM_BUG_ON(offset + len > PAGE_SIZE);
456 memcpy(to + offset, from, len);
457 flush_dcache_page(page);
458 kunmap_local(to);
459 }
460
memzero_page(struct page * page,size_t offset,size_t len)461 static inline void memzero_page(struct page *page, size_t offset, size_t len)
462 {
463 char *addr = kmap_local_page(page);
464
465 VM_BUG_ON(offset + len > PAGE_SIZE);
466 memset(addr + offset, 0, len);
467 flush_dcache_page(page);
468 kunmap_local(addr);
469 }
470
471 /**
472 * memcpy_from_folio - Copy a range of bytes from a folio.
473 * @to: The memory to copy to.
474 * @folio: The folio to read from.
475 * @offset: The first byte in the folio to read.
476 * @len: The number of bytes to copy.
477 */
memcpy_from_folio(char * to,struct folio * folio,size_t offset,size_t len)478 static inline void memcpy_from_folio(char *to, struct folio *folio,
479 size_t offset, size_t len)
480 {
481 VM_BUG_ON(offset + len > folio_size(folio));
482
483 do {
484 const char *from = kmap_local_folio(folio, offset);
485 size_t chunk = len;
486
487 if (folio_test_partial_kmap(folio) &&
488 chunk > PAGE_SIZE - offset_in_page(offset))
489 chunk = PAGE_SIZE - offset_in_page(offset);
490 memcpy(to, from, chunk);
491 kunmap_local(from);
492
493 to += chunk;
494 offset += chunk;
495 len -= chunk;
496 } while (len > 0);
497 }
498
499 /**
500 * memcpy_to_folio - Copy a range of bytes to a folio.
501 * @folio: The folio to write to.
502 * @offset: The first byte in the folio to store to.
503 * @from: The memory to copy from.
504 * @len: The number of bytes to copy.
505 */
memcpy_to_folio(struct folio * folio,size_t offset,const char * from,size_t len)506 static inline void memcpy_to_folio(struct folio *folio, size_t offset,
507 const char *from, size_t len)
508 {
509 VM_BUG_ON(offset + len > folio_size(folio));
510
511 do {
512 char *to = kmap_local_folio(folio, offset);
513 size_t chunk = len;
514
515 if (folio_test_partial_kmap(folio) &&
516 chunk > PAGE_SIZE - offset_in_page(offset))
517 chunk = PAGE_SIZE - offset_in_page(offset);
518 memcpy(to, from, chunk);
519 kunmap_local(to);
520
521 from += chunk;
522 offset += chunk;
523 len -= chunk;
524 } while (len > 0);
525
526 flush_dcache_folio(folio);
527 }
528
529 /**
530 * folio_zero_tail - Zero the tail of a folio.
531 * @folio: The folio to zero.
532 * @offset: The byte offset in the folio to start zeroing at.
533 * @kaddr: The address the folio is currently mapped to.
534 *
535 * If you have already used kmap_local_folio() to map a folio, written
536 * some data to it and now need to zero the end of the folio (and flush
537 * the dcache), you can use this function. If you do not have the
538 * folio kmapped (eg the folio has been partially populated by DMA),
539 * use folio_zero_range() or folio_zero_segment() instead.
540 *
541 * Return: An address which can be passed to kunmap_local().
542 */
folio_zero_tail(struct folio * folio,size_t offset,void * kaddr)543 static inline __must_check void *folio_zero_tail(struct folio *folio,
544 size_t offset, void *kaddr)
545 {
546 size_t len = folio_size(folio) - offset;
547
548 if (folio_test_partial_kmap(folio)) {
549 size_t max = PAGE_SIZE - offset_in_page(offset);
550
551 while (len > max) {
552 memset(kaddr, 0, max);
553 kunmap_local(kaddr);
554 len -= max;
555 offset += max;
556 max = PAGE_SIZE;
557 kaddr = kmap_local_folio(folio, offset);
558 }
559 }
560
561 memset(kaddr, 0, len);
562 flush_dcache_folio(folio);
563
564 return kaddr;
565 }
566
567 /**
568 * folio_fill_tail - Copy some data to a folio and pad with zeroes.
569 * @folio: The destination folio.
570 * @offset: The offset into @folio at which to start copying.
571 * @from: The data to copy.
572 * @len: How many bytes of data to copy.
573 *
574 * This function is most useful for filesystems which support inline data.
575 * When they want to copy data from the inode into the page cache, this
576 * function does everything for them. It supports large folios even on
577 * HIGHMEM configurations.
578 */
folio_fill_tail(struct folio * folio,size_t offset,const char * from,size_t len)579 static inline void folio_fill_tail(struct folio *folio, size_t offset,
580 const char *from, size_t len)
581 {
582 char *to = kmap_local_folio(folio, offset);
583
584 VM_BUG_ON(offset + len > folio_size(folio));
585
586 if (folio_test_partial_kmap(folio)) {
587 size_t max = PAGE_SIZE - offset_in_page(offset);
588
589 while (len > max) {
590 memcpy(to, from, max);
591 kunmap_local(to);
592 len -= max;
593 from += max;
594 offset += max;
595 max = PAGE_SIZE;
596 to = kmap_local_folio(folio, offset);
597 }
598 }
599
600 memcpy(to, from, len);
601 to = folio_zero_tail(folio, offset + len, to + len);
602 kunmap_local(to);
603 }
604
605 /**
606 * memcpy_from_file_folio - Copy some bytes from a file folio.
607 * @to: The destination buffer.
608 * @folio: The folio to copy from.
609 * @pos: The position in the file.
610 * @len: The maximum number of bytes to copy.
611 *
612 * Copy up to @len bytes from this folio. This may be limited by PAGE_SIZE
613 * if the folio comes from HIGHMEM, and by the size of the folio.
614 *
615 * Return: The number of bytes copied from the folio.
616 */
memcpy_from_file_folio(char * to,struct folio * folio,loff_t pos,size_t len)617 static inline size_t memcpy_from_file_folio(char *to, struct folio *folio,
618 loff_t pos, size_t len)
619 {
620 size_t offset = offset_in_folio(folio, pos);
621 char *from = kmap_local_folio(folio, offset);
622
623 if (folio_test_partial_kmap(folio)) {
624 offset = offset_in_page(offset);
625 len = min_t(size_t, len, PAGE_SIZE - offset);
626 } else
627 len = min(len, folio_size(folio) - offset);
628
629 memcpy(to, from, len);
630 kunmap_local(from);
631
632 return len;
633 }
634
635 /**
636 * folio_zero_segments() - Zero two byte ranges in a folio.
637 * @folio: The folio to write to.
638 * @start1: The first byte to zero.
639 * @xend1: One more than the last byte in the first range.
640 * @start2: The first byte to zero in the second range.
641 * @xend2: One more than the last byte in the second range.
642 */
folio_zero_segments(struct folio * folio,size_t start1,size_t xend1,size_t start2,size_t xend2)643 static inline void folio_zero_segments(struct folio *folio,
644 size_t start1, size_t xend1, size_t start2, size_t xend2)
645 {
646 zero_user_segments(&folio->page, start1, xend1, start2, xend2);
647 }
648
649 /**
650 * folio_zero_segment() - Zero a byte range in a folio.
651 * @folio: The folio to write to.
652 * @start: The first byte to zero.
653 * @xend: One more than the last byte to zero.
654 */
folio_zero_segment(struct folio * folio,size_t start,size_t xend)655 static inline void folio_zero_segment(struct folio *folio,
656 size_t start, size_t xend)
657 {
658 zero_user_segments(&folio->page, start, xend, 0, 0);
659 }
660
661 /**
662 * folio_zero_range() - Zero a byte range in a folio.
663 * @folio: The folio to write to.
664 * @start: The first byte to zero.
665 * @length: The number of bytes to zero.
666 */
folio_zero_range(struct folio * folio,size_t start,size_t length)667 static inline void folio_zero_range(struct folio *folio,
668 size_t start, size_t length)
669 {
670 zero_user_segments(&folio->page, start, start + length, 0, 0);
671 }
672
673 /**
674 * folio_release_kmap - Unmap a folio and drop a refcount.
675 * @folio: The folio to release.
676 * @addr: The address previously returned by a call to kmap_local_folio().
677 *
678 * It is common, eg in directory handling to kmap a folio. This function
679 * unmaps the folio and drops the refcount that was being held to keep the
680 * folio alive while we accessed it.
681 */
folio_release_kmap(struct folio * folio,void * addr)682 static inline void folio_release_kmap(struct folio *folio, void *addr)
683 {
684 kunmap_local(addr);
685 folio_put(folio);
686 }
687 #endif /* _LINUX_HIGHMEM_H */
688