1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support six policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * weighted interleave
23 * Allocate memory interleaved over a set of nodes based on
24 * a set of weights (per-node), with normal fallback if it
25 * fails. Otherwise operates the same as interleave.
26 * Example: nodeset(0,1) & weights (2,1) - 2 pages allocated
27 * on node 0 for every 1 page allocated on node 1.
28 *
29 * bind Only allocate memory on a specific set of nodes,
30 * no fallback.
31 * FIXME: memory is allocated starting with the first node
32 * to the last. It would be better if bind would truly restrict
33 * the allocation to memory nodes instead
34 *
35 * preferred Try a specific node first before normal fallback.
36 * As a special case NUMA_NO_NODE here means do the allocation
37 * on the local CPU. This is normally identical to default,
38 * but useful to set in a VMA when you have a non default
39 * process policy.
40 *
41 * preferred many Try a set of nodes first before normal fallback. This is
42 * similar to preferred without the special case.
43 *
44 * default Allocate on the local node first, or when on a VMA
45 * use the process policy. This is what Linux always did
46 * in a NUMA aware kernel and still does by, ahem, default.
47 *
48 * The process policy is applied for most non interrupt memory allocations
49 * in that process' context. Interrupts ignore the policies and always
50 * try to allocate on the local CPU. The VMA policy is only applied for memory
51 * allocations for a VMA in the VM.
52 *
53 * Currently there are a few corner cases in swapping where the policy
54 * is not applied, but the majority should be handled. When process policy
55 * is used it is not remembered over swap outs/swap ins.
56 *
57 * Only the highest zone in the zone hierarchy gets policied. Allocations
58 * requesting a lower zone just use default policy. This implies that
59 * on systems with highmem kernel lowmem allocation don't get policied.
60 * Same with GFP_DMA allocations.
61 *
62 * For shmem/tmpfs shared memory the policy is shared between
63 * all users and remembered even when nobody has memory mapped.
64 */
65
66 /* Notebook:
67 fix mmap readahead to honour policy and enable policy for any page cache
68 object
69 statistics for bigpages
70 global policy for page cache? currently it uses process policy. Requires
71 first item above.
72 handle mremap for shared memory (currently ignored for the policy)
73 grows down?
74 make bind policy root only? It can trigger oom much faster and the
75 kernel is not always grateful with that.
76 */
77
78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
79
80 #include <linux/mempolicy.h>
81 #include <linux/pagewalk.h>
82 #include <linux/highmem.h>
83 #include <linux/hugetlb.h>
84 #include <linux/kernel.h>
85 #include <linux/sched.h>
86 #include <linux/sched/mm.h>
87 #include <linux/sched/numa_balancing.h>
88 #include <linux/sched/task.h>
89 #include <linux/nodemask.h>
90 #include <linux/cpuset.h>
91 #include <linux/slab.h>
92 #include <linux/string.h>
93 #include <linux/export.h>
94 #include <linux/nsproxy.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compat.h>
98 #include <linux/ptrace.h>
99 #include <linux/swap.h>
100 #include <linux/seq_file.h>
101 #include <linux/proc_fs.h>
102 #include <linux/migrate.h>
103 #include <linux/ksm.h>
104 #include <linux/rmap.h>
105 #include <linux/security.h>
106 #include <linux/syscalls.h>
107 #include <linux/ctype.h>
108 #include <linux/mm_inline.h>
109 #include <linux/mmu_notifier.h>
110 #include <linux/printk.h>
111 #include <linux/swapops.h>
112 #include <linux/gcd.h>
113
114 #include <asm/tlbflush.h>
115 #include <asm/tlb.h>
116 #include <linux/uaccess.h>
117 #include <linux/memory.h>
118
119 #include "internal.h"
120
121 /* Internal flags */
122 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
123 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
124 #define MPOL_MF_WRLOCK (MPOL_MF_INTERNAL << 2) /* Write-lock walked vmas */
125
126 static struct kmem_cache *policy_cache;
127 static struct kmem_cache *sn_cache;
128
129 /* Highest zone. An specific allocation for a zone below that is not
130 policied. */
131 enum zone_type policy_zone = 0;
132
133 /*
134 * run-time system-wide default policy => local allocation
135 */
136 static struct mempolicy default_policy = {
137 .refcnt = ATOMIC_INIT(1), /* never free it */
138 .mode = MPOL_LOCAL,
139 };
140
141 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
142
143 /*
144 * weightiness balances the tradeoff between small weights (cycles through nodes
145 * faster, more fair/even distribution) and large weights (smaller errors
146 * between actual bandwidth ratios and weight ratios). 32 is a number that has
147 * been found to perform at a reasonable compromise between the two goals.
148 */
149 static const int weightiness = 32;
150
151 /*
152 * A null weighted_interleave_state is interpreted as having .mode="auto",
153 * and .iw_table is interpreted as an array of 1s with length nr_node_ids.
154 */
155 struct weighted_interleave_state {
156 bool mode_auto;
157 u8 iw_table[];
158 };
159 static struct weighted_interleave_state __rcu *wi_state;
160 static unsigned int *node_bw_table;
161
162 /*
163 * wi_state_lock protects both wi_state and node_bw_table.
164 * node_bw_table is only used by writers to update wi_state.
165 */
166 static DEFINE_MUTEX(wi_state_lock);
167
get_il_weight(int node)168 static u8 get_il_weight(int node)
169 {
170 struct weighted_interleave_state *state;
171 u8 weight = 1;
172
173 rcu_read_lock();
174 state = rcu_dereference(wi_state);
175 if (state)
176 weight = state->iw_table[node];
177 rcu_read_unlock();
178 return weight;
179 }
180
181 /*
182 * Convert bandwidth values into weighted interleave weights.
183 * Call with wi_state_lock.
184 */
reduce_interleave_weights(unsigned int * bw,u8 * new_iw)185 static void reduce_interleave_weights(unsigned int *bw, u8 *new_iw)
186 {
187 u64 sum_bw = 0;
188 unsigned int cast_sum_bw, scaling_factor = 1, iw_gcd = 0;
189 int nid;
190
191 for_each_node_state(nid, N_MEMORY)
192 sum_bw += bw[nid];
193
194 /* Scale bandwidths to whole numbers in the range [1, weightiness] */
195 for_each_node_state(nid, N_MEMORY) {
196 /*
197 * Try not to perform 64-bit division.
198 * If sum_bw < scaling_factor, then sum_bw < U32_MAX.
199 * If sum_bw > scaling_factor, then round the weight up to 1.
200 */
201 scaling_factor = weightiness * bw[nid];
202 if (bw[nid] && sum_bw < scaling_factor) {
203 cast_sum_bw = (unsigned int)sum_bw;
204 new_iw[nid] = scaling_factor / cast_sum_bw;
205 } else {
206 new_iw[nid] = 1;
207 }
208 if (!iw_gcd)
209 iw_gcd = new_iw[nid];
210 iw_gcd = gcd(iw_gcd, new_iw[nid]);
211 }
212
213 /* 1:2 is strictly better than 16:32. Reduce by the weights' GCD. */
214 for_each_node_state(nid, N_MEMORY)
215 new_iw[nid] /= iw_gcd;
216 }
217
mempolicy_set_node_perf(unsigned int node,struct access_coordinate * coords)218 int mempolicy_set_node_perf(unsigned int node, struct access_coordinate *coords)
219 {
220 struct weighted_interleave_state *new_wi_state, *old_wi_state = NULL;
221 unsigned int *old_bw, *new_bw;
222 unsigned int bw_val;
223 int i;
224
225 bw_val = min(coords->read_bandwidth, coords->write_bandwidth);
226 new_bw = kcalloc(nr_node_ids, sizeof(unsigned int), GFP_KERNEL);
227 if (!new_bw)
228 return -ENOMEM;
229
230 new_wi_state = kmalloc(struct_size(new_wi_state, iw_table, nr_node_ids),
231 GFP_KERNEL);
232 if (!new_wi_state) {
233 kfree(new_bw);
234 return -ENOMEM;
235 }
236 new_wi_state->mode_auto = true;
237 for (i = 0; i < nr_node_ids; i++)
238 new_wi_state->iw_table[i] = 1;
239
240 /*
241 * Update bandwidth info, even in manual mode. That way, when switching
242 * to auto mode in the future, iw_table can be overwritten using
243 * accurate bw data.
244 */
245 mutex_lock(&wi_state_lock);
246
247 old_bw = node_bw_table;
248 if (old_bw)
249 memcpy(new_bw, old_bw, nr_node_ids * sizeof(*old_bw));
250 new_bw[node] = bw_val;
251 node_bw_table = new_bw;
252
253 old_wi_state = rcu_dereference_protected(wi_state,
254 lockdep_is_held(&wi_state_lock));
255 if (old_wi_state && !old_wi_state->mode_auto) {
256 /* Manual mode; skip reducing weights and updating wi_state */
257 mutex_unlock(&wi_state_lock);
258 kfree(new_wi_state);
259 goto out;
260 }
261
262 /* NULL wi_state assumes auto=true; reduce weights and update wi_state*/
263 reduce_interleave_weights(new_bw, new_wi_state->iw_table);
264 rcu_assign_pointer(wi_state, new_wi_state);
265
266 mutex_unlock(&wi_state_lock);
267 if (old_wi_state) {
268 synchronize_rcu();
269 kfree(old_wi_state);
270 }
271 out:
272 kfree(old_bw);
273 return 0;
274 }
275
276 /**
277 * numa_nearest_node - Find nearest node by state
278 * @node: Node id to start the search
279 * @state: State to filter the search
280 *
281 * Lookup the closest node by distance if @nid is not in state.
282 *
283 * Return: this @node if it is in state, otherwise the closest node by distance
284 */
numa_nearest_node(int node,unsigned int state)285 int numa_nearest_node(int node, unsigned int state)
286 {
287 int min_dist = INT_MAX, dist, n, min_node;
288
289 if (state >= NR_NODE_STATES)
290 return -EINVAL;
291
292 if (node == NUMA_NO_NODE || node_state(node, state))
293 return node;
294
295 min_node = node;
296 for_each_node_state(n, state) {
297 dist = node_distance(node, n);
298 if (dist < min_dist) {
299 min_dist = dist;
300 min_node = n;
301 }
302 }
303
304 return min_node;
305 }
306 EXPORT_SYMBOL_GPL(numa_nearest_node);
307
308 /**
309 * nearest_node_nodemask - Find the node in @mask at the nearest distance
310 * from @node.
311 *
312 * @node: a valid node ID to start the search from.
313 * @mask: a pointer to a nodemask representing the allowed nodes.
314 *
315 * This function iterates over all nodes in @mask and calculates the
316 * distance from the starting @node, then it returns the node ID that is
317 * the closest to @node, or MAX_NUMNODES if no node is found.
318 *
319 * Note that @node must be a valid node ID usable with node_distance(),
320 * providing an invalid node ID (e.g., NUMA_NO_NODE) may result in crashes
321 * or unexpected behavior.
322 */
nearest_node_nodemask(int node,nodemask_t * mask)323 int nearest_node_nodemask(int node, nodemask_t *mask)
324 {
325 int dist, n, min_dist = INT_MAX, min_node = MAX_NUMNODES;
326
327 for_each_node_mask(n, *mask) {
328 dist = node_distance(node, n);
329 if (dist < min_dist) {
330 min_dist = dist;
331 min_node = n;
332 }
333 }
334
335 return min_node;
336 }
337 EXPORT_SYMBOL_GPL(nearest_node_nodemask);
338
get_task_policy(struct task_struct * p)339 struct mempolicy *get_task_policy(struct task_struct *p)
340 {
341 struct mempolicy *pol = p->mempolicy;
342 int node;
343
344 if (pol)
345 return pol;
346
347 node = numa_node_id();
348 if (node != NUMA_NO_NODE) {
349 pol = &preferred_node_policy[node];
350 /* preferred_node_policy is not initialised early in boot */
351 if (pol->mode)
352 return pol;
353 }
354
355 return &default_policy;
356 }
357
358 static const struct mempolicy_operations {
359 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
360 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
361 } mpol_ops[MPOL_MAX];
362
mpol_store_user_nodemask(const struct mempolicy * pol)363 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
364 {
365 return pol->flags & MPOL_MODE_FLAGS;
366 }
367
mpol_relative_nodemask(nodemask_t * ret,const nodemask_t * orig,const nodemask_t * rel)368 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
369 const nodemask_t *rel)
370 {
371 nodemask_t tmp;
372 nodes_fold(tmp, *orig, nodes_weight(*rel));
373 nodes_onto(*ret, tmp, *rel);
374 }
375
mpol_new_nodemask(struct mempolicy * pol,const nodemask_t * nodes)376 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
377 {
378 if (nodes_empty(*nodes))
379 return -EINVAL;
380 pol->nodes = *nodes;
381 return 0;
382 }
383
mpol_new_preferred(struct mempolicy * pol,const nodemask_t * nodes)384 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
385 {
386 if (nodes_empty(*nodes))
387 return -EINVAL;
388
389 nodes_clear(pol->nodes);
390 node_set(first_node(*nodes), pol->nodes);
391 return 0;
392 }
393
394 /*
395 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
396 * any, for the new policy. mpol_new() has already validated the nodes
397 * parameter with respect to the policy mode and flags.
398 *
399 * Must be called holding task's alloc_lock to protect task's mems_allowed
400 * and mempolicy. May also be called holding the mmap_lock for write.
401 */
mpol_set_nodemask(struct mempolicy * pol,const nodemask_t * nodes,struct nodemask_scratch * nsc)402 static int mpol_set_nodemask(struct mempolicy *pol,
403 const nodemask_t *nodes, struct nodemask_scratch *nsc)
404 {
405 int ret;
406
407 /*
408 * Default (pol==NULL) resp. local memory policies are not a
409 * subject of any remapping. They also do not need any special
410 * constructor.
411 */
412 if (!pol || pol->mode == MPOL_LOCAL)
413 return 0;
414
415 /* Check N_MEMORY */
416 nodes_and(nsc->mask1,
417 cpuset_current_mems_allowed, node_states[N_MEMORY]);
418
419 VM_BUG_ON(!nodes);
420
421 if (pol->flags & MPOL_F_RELATIVE_NODES)
422 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
423 else
424 nodes_and(nsc->mask2, *nodes, nsc->mask1);
425
426 if (mpol_store_user_nodemask(pol))
427 pol->w.user_nodemask = *nodes;
428 else
429 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
430
431 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
432 return ret;
433 }
434
435 /*
436 * This function just creates a new policy, does some check and simple
437 * initialization. You must invoke mpol_set_nodemask() to set nodes.
438 */
mpol_new(unsigned short mode,unsigned short flags,nodemask_t * nodes)439 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
440 nodemask_t *nodes)
441 {
442 struct mempolicy *policy;
443
444 if (mode == MPOL_DEFAULT) {
445 if (nodes && !nodes_empty(*nodes))
446 return ERR_PTR(-EINVAL);
447 return NULL;
448 }
449 VM_BUG_ON(!nodes);
450
451 /*
452 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
453 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
454 * All other modes require a valid pointer to a non-empty nodemask.
455 */
456 if (mode == MPOL_PREFERRED) {
457 if (nodes_empty(*nodes)) {
458 if (((flags & MPOL_F_STATIC_NODES) ||
459 (flags & MPOL_F_RELATIVE_NODES)))
460 return ERR_PTR(-EINVAL);
461
462 mode = MPOL_LOCAL;
463 }
464 } else if (mode == MPOL_LOCAL) {
465 if (!nodes_empty(*nodes) ||
466 (flags & MPOL_F_STATIC_NODES) ||
467 (flags & MPOL_F_RELATIVE_NODES))
468 return ERR_PTR(-EINVAL);
469 } else if (nodes_empty(*nodes))
470 return ERR_PTR(-EINVAL);
471
472 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
473 if (!policy)
474 return ERR_PTR(-ENOMEM);
475 atomic_set(&policy->refcnt, 1);
476 policy->mode = mode;
477 policy->flags = flags;
478 policy->home_node = NUMA_NO_NODE;
479
480 return policy;
481 }
482
483 /* Slow path of a mpol destructor. */
__mpol_put(struct mempolicy * pol)484 void __mpol_put(struct mempolicy *pol)
485 {
486 if (!atomic_dec_and_test(&pol->refcnt))
487 return;
488 kmem_cache_free(policy_cache, pol);
489 }
490
mpol_rebind_default(struct mempolicy * pol,const nodemask_t * nodes)491 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
492 {
493 }
494
mpol_rebind_nodemask(struct mempolicy * pol,const nodemask_t * nodes)495 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
496 {
497 nodemask_t tmp;
498
499 if (pol->flags & MPOL_F_STATIC_NODES)
500 nodes_and(tmp, pol->w.user_nodemask, *nodes);
501 else if (pol->flags & MPOL_F_RELATIVE_NODES)
502 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
503 else {
504 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
505 *nodes);
506 pol->w.cpuset_mems_allowed = *nodes;
507 }
508
509 if (nodes_empty(tmp))
510 tmp = *nodes;
511
512 pol->nodes = tmp;
513 }
514
mpol_rebind_preferred(struct mempolicy * pol,const nodemask_t * nodes)515 static void mpol_rebind_preferred(struct mempolicy *pol,
516 const nodemask_t *nodes)
517 {
518 pol->w.cpuset_mems_allowed = *nodes;
519 }
520
521 /*
522 * mpol_rebind_policy - Migrate a policy to a different set of nodes
523 *
524 * Per-vma policies are protected by mmap_lock. Allocations using per-task
525 * policies are protected by task->mems_allowed_seq to prevent a premature
526 * OOM/allocation failure due to parallel nodemask modification.
527 */
mpol_rebind_policy(struct mempolicy * pol,const nodemask_t * newmask)528 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
529 {
530 if (!pol || pol->mode == MPOL_LOCAL)
531 return;
532 if (!mpol_store_user_nodemask(pol) &&
533 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
534 return;
535
536 mpol_ops[pol->mode].rebind(pol, newmask);
537 }
538
539 /*
540 * Wrapper for mpol_rebind_policy() that just requires task
541 * pointer, and updates task mempolicy.
542 *
543 * Called with task's alloc_lock held.
544 */
mpol_rebind_task(struct task_struct * tsk,const nodemask_t * new)545 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
546 {
547 mpol_rebind_policy(tsk->mempolicy, new);
548 }
549
550 /*
551 * Rebind each vma in mm to new nodemask.
552 *
553 * Call holding a reference to mm. Takes mm->mmap_lock during call.
554 */
mpol_rebind_mm(struct mm_struct * mm,nodemask_t * new)555 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
556 {
557 struct vm_area_struct *vma;
558 VMA_ITERATOR(vmi, mm, 0);
559
560 mmap_write_lock(mm);
561 for_each_vma(vmi, vma) {
562 vma_start_write(vma);
563 mpol_rebind_policy(vma->vm_policy, new);
564 }
565 mmap_write_unlock(mm);
566 }
567
568 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
569 [MPOL_DEFAULT] = {
570 .rebind = mpol_rebind_default,
571 },
572 [MPOL_INTERLEAVE] = {
573 .create = mpol_new_nodemask,
574 .rebind = mpol_rebind_nodemask,
575 },
576 [MPOL_PREFERRED] = {
577 .create = mpol_new_preferred,
578 .rebind = mpol_rebind_preferred,
579 },
580 [MPOL_BIND] = {
581 .create = mpol_new_nodemask,
582 .rebind = mpol_rebind_nodemask,
583 },
584 [MPOL_LOCAL] = {
585 .rebind = mpol_rebind_default,
586 },
587 [MPOL_PREFERRED_MANY] = {
588 .create = mpol_new_nodemask,
589 .rebind = mpol_rebind_preferred,
590 },
591 [MPOL_WEIGHTED_INTERLEAVE] = {
592 .create = mpol_new_nodemask,
593 .rebind = mpol_rebind_nodemask,
594 },
595 };
596
597 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
598 unsigned long flags);
599 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
600 pgoff_t ilx, int *nid);
601
strictly_unmovable(unsigned long flags)602 static bool strictly_unmovable(unsigned long flags)
603 {
604 /*
605 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO
606 * if any misplaced page is found.
607 */
608 return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ==
609 MPOL_MF_STRICT;
610 }
611
612 struct migration_mpol { /* for alloc_migration_target_by_mpol() */
613 struct mempolicy *pol;
614 pgoff_t ilx;
615 };
616
617 struct queue_pages {
618 struct list_head *pagelist;
619 unsigned long flags;
620 nodemask_t *nmask;
621 unsigned long start;
622 unsigned long end;
623 struct vm_area_struct *first;
624 struct folio *large; /* note last large folio encountered */
625 long nr_failed; /* could not be isolated at this time */
626 };
627
628 /*
629 * Check if the folio's nid is in qp->nmask.
630 *
631 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
632 * in the invert of qp->nmask.
633 */
queue_folio_required(struct folio * folio,struct queue_pages * qp)634 static inline bool queue_folio_required(struct folio *folio,
635 struct queue_pages *qp)
636 {
637 int nid = folio_nid(folio);
638 unsigned long flags = qp->flags;
639
640 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
641 }
642
queue_folios_pmd(pmd_t * pmd,struct mm_walk * walk)643 static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk)
644 {
645 struct folio *folio;
646 struct queue_pages *qp = walk->private;
647
648 if (unlikely(is_pmd_migration_entry(*pmd))) {
649 qp->nr_failed++;
650 return;
651 }
652 folio = pmd_folio(*pmd);
653 if (is_huge_zero_folio(folio)) {
654 walk->action = ACTION_CONTINUE;
655 return;
656 }
657 if (!queue_folio_required(folio, qp))
658 return;
659 if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
660 !vma_migratable(walk->vma) ||
661 !migrate_folio_add(folio, qp->pagelist, qp->flags))
662 qp->nr_failed++;
663 }
664
665 /*
666 * Scan through folios, checking if they satisfy the required conditions,
667 * moving them from LRU to local pagelist for migration if they do (or not).
668 *
669 * queue_folios_pte_range() has two possible return values:
670 * 0 - continue walking to scan for more, even if an existing folio on the
671 * wrong node could not be isolated and queued for migration.
672 * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL,
673 * and an existing folio was on a node that does not follow the policy.
674 */
queue_folios_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)675 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
676 unsigned long end, struct mm_walk *walk)
677 {
678 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
679 struct vm_area_struct *vma = walk->vma;
680 struct folio *folio;
681 struct queue_pages *qp = walk->private;
682 unsigned long flags = qp->flags;
683 pte_t *pte, *mapped_pte;
684 pte_t ptent;
685 spinlock_t *ptl;
686 int max_nr, nr;
687
688 ptl = pmd_trans_huge_lock(pmd, vma);
689 if (ptl) {
690 queue_folios_pmd(pmd, walk);
691 spin_unlock(ptl);
692 goto out;
693 }
694
695 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
696 if (!pte) {
697 walk->action = ACTION_AGAIN;
698 return 0;
699 }
700 for (; addr != end; pte += nr, addr += nr * PAGE_SIZE) {
701 max_nr = (end - addr) >> PAGE_SHIFT;
702 nr = 1;
703 ptent = ptep_get(pte);
704 if (pte_none(ptent))
705 continue;
706 if (!pte_present(ptent)) {
707 if (is_migration_entry(pte_to_swp_entry(ptent)))
708 qp->nr_failed++;
709 continue;
710 }
711 folio = vm_normal_folio(vma, addr, ptent);
712 if (!folio || folio_is_zone_device(folio))
713 continue;
714 if (folio_test_large(folio) && max_nr != 1)
715 nr = folio_pte_batch(folio, addr, pte, ptent,
716 max_nr, fpb_flags,
717 NULL, NULL, NULL);
718 /*
719 * vm_normal_folio() filters out zero pages, but there might
720 * still be reserved folios to skip, perhaps in a VDSO.
721 */
722 if (folio_test_reserved(folio))
723 continue;
724 if (!queue_folio_required(folio, qp))
725 continue;
726 if (folio_test_large(folio)) {
727 /*
728 * A large folio can only be isolated from LRU once,
729 * but may be mapped by many PTEs (and Copy-On-Write may
730 * intersperse PTEs of other, order 0, folios). This is
731 * a common case, so don't mistake it for failure (but
732 * there can be other cases of multi-mapped pages which
733 * this quick check does not help to filter out - and a
734 * search of the pagelist might grow to be prohibitive).
735 *
736 * migrate_pages(&pagelist) returns nr_failed folios, so
737 * check "large" now so that queue_pages_range() returns
738 * a comparable nr_failed folios. This does imply that
739 * if folio could not be isolated for some racy reason
740 * at its first PTE, later PTEs will not give it another
741 * chance of isolation; but keeps the accounting simple.
742 */
743 if (folio == qp->large)
744 continue;
745 qp->large = folio;
746 }
747 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
748 !vma_migratable(vma) ||
749 !migrate_folio_add(folio, qp->pagelist, flags)) {
750 qp->nr_failed += nr;
751 if (strictly_unmovable(flags))
752 break;
753 }
754 }
755 pte_unmap_unlock(mapped_pte, ptl);
756 cond_resched();
757 out:
758 if (qp->nr_failed && strictly_unmovable(flags))
759 return -EIO;
760 return 0;
761 }
762
queue_folios_hugetlb(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)763 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
764 unsigned long addr, unsigned long end,
765 struct mm_walk *walk)
766 {
767 #ifdef CONFIG_HUGETLB_PAGE
768 struct queue_pages *qp = walk->private;
769 unsigned long flags = qp->flags;
770 struct folio *folio;
771 spinlock_t *ptl;
772 pte_t entry;
773
774 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
775 entry = huge_ptep_get(walk->mm, addr, pte);
776 if (!pte_present(entry)) {
777 if (unlikely(is_hugetlb_entry_migration(entry)))
778 qp->nr_failed++;
779 goto unlock;
780 }
781 folio = pfn_folio(pte_pfn(entry));
782 if (!queue_folio_required(folio, qp))
783 goto unlock;
784 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
785 !vma_migratable(walk->vma)) {
786 qp->nr_failed++;
787 goto unlock;
788 }
789 /*
790 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
791 * Choosing not to migrate a shared folio is not counted as a failure.
792 *
793 * See folio_maybe_mapped_shared() on possible imprecision when we
794 * cannot easily detect if a folio is shared.
795 */
796 if ((flags & MPOL_MF_MOVE_ALL) ||
797 (!folio_maybe_mapped_shared(folio) && !hugetlb_pmd_shared(pte)))
798 if (!folio_isolate_hugetlb(folio, qp->pagelist))
799 qp->nr_failed++;
800 unlock:
801 spin_unlock(ptl);
802 if (qp->nr_failed && strictly_unmovable(flags))
803 return -EIO;
804 #endif
805 return 0;
806 }
807
808 #ifdef CONFIG_NUMA_BALANCING
809 /*
810 * This is used to mark a range of virtual addresses to be inaccessible.
811 * These are later cleared by a NUMA hinting fault. Depending on these
812 * faults, pages may be migrated for better NUMA placement.
813 *
814 * This is assuming that NUMA faults are handled using PROT_NONE. If
815 * an architecture makes a different choice, it will need further
816 * changes to the core.
817 */
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)818 unsigned long change_prot_numa(struct vm_area_struct *vma,
819 unsigned long addr, unsigned long end)
820 {
821 struct mmu_gather tlb;
822 long nr_updated;
823
824 tlb_gather_mmu(&tlb, vma->vm_mm);
825
826 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
827 if (nr_updated > 0) {
828 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
829 count_memcg_events_mm(vma->vm_mm, NUMA_PTE_UPDATES, nr_updated);
830 }
831
832 tlb_finish_mmu(&tlb);
833
834 return nr_updated;
835 }
836 #endif /* CONFIG_NUMA_BALANCING */
837
queue_pages_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)838 static int queue_pages_test_walk(unsigned long start, unsigned long end,
839 struct mm_walk *walk)
840 {
841 struct vm_area_struct *next, *vma = walk->vma;
842 struct queue_pages *qp = walk->private;
843 unsigned long flags = qp->flags;
844
845 /* range check first */
846 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
847
848 if (!qp->first) {
849 qp->first = vma;
850 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
851 (qp->start < vma->vm_start))
852 /* hole at head side of range */
853 return -EFAULT;
854 }
855 next = find_vma(vma->vm_mm, vma->vm_end);
856 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
857 ((vma->vm_end < qp->end) &&
858 (!next || vma->vm_end < next->vm_start)))
859 /* hole at middle or tail of range */
860 return -EFAULT;
861
862 /*
863 * Need check MPOL_MF_STRICT to return -EIO if possible
864 * regardless of vma_migratable
865 */
866 if (!vma_migratable(vma) &&
867 !(flags & MPOL_MF_STRICT))
868 return 1;
869
870 /*
871 * Check page nodes, and queue pages to move, in the current vma.
872 * But if no moving, and no strict checking, the scan can be skipped.
873 */
874 if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
875 return 0;
876 return 1;
877 }
878
879 static const struct mm_walk_ops queue_pages_walk_ops = {
880 .hugetlb_entry = queue_folios_hugetlb,
881 .pmd_entry = queue_folios_pte_range,
882 .test_walk = queue_pages_test_walk,
883 .walk_lock = PGWALK_RDLOCK,
884 };
885
886 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
887 .hugetlb_entry = queue_folios_hugetlb,
888 .pmd_entry = queue_folios_pte_range,
889 .test_walk = queue_pages_test_walk,
890 .walk_lock = PGWALK_WRLOCK,
891 };
892
893 /*
894 * Walk through page tables and collect pages to be migrated.
895 *
896 * If pages found in a given range are not on the required set of @nodes,
897 * and migration is allowed, they are isolated and queued to @pagelist.
898 *
899 * queue_pages_range() may return:
900 * 0 - all pages already on the right node, or successfully queued for moving
901 * (or neither strict checking nor moving requested: only range checking).
902 * >0 - this number of misplaced folios could not be queued for moving
903 * (a hugetlbfs page or a transparent huge page being counted as 1).
904 * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs.
905 * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified.
906 */
907 static long
queue_pages_range(struct mm_struct * mm,unsigned long start,unsigned long end,nodemask_t * nodes,unsigned long flags,struct list_head * pagelist)908 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
909 nodemask_t *nodes, unsigned long flags,
910 struct list_head *pagelist)
911 {
912 int err;
913 struct queue_pages qp = {
914 .pagelist = pagelist,
915 .flags = flags,
916 .nmask = nodes,
917 .start = start,
918 .end = end,
919 .first = NULL,
920 };
921 const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ?
922 &queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
923
924 err = walk_page_range(mm, start, end, ops, &qp);
925
926 if (!qp.first)
927 /* whole range in hole */
928 err = -EFAULT;
929
930 return err ? : qp.nr_failed;
931 }
932
933 /*
934 * Apply policy to a single VMA
935 * This must be called with the mmap_lock held for writing.
936 */
vma_replace_policy(struct vm_area_struct * vma,struct mempolicy * pol)937 static int vma_replace_policy(struct vm_area_struct *vma,
938 struct mempolicy *pol)
939 {
940 int err;
941 struct mempolicy *old;
942 struct mempolicy *new;
943
944 vma_assert_write_locked(vma);
945
946 new = mpol_dup(pol);
947 if (IS_ERR(new))
948 return PTR_ERR(new);
949
950 if (vma->vm_ops && vma->vm_ops->set_policy) {
951 err = vma->vm_ops->set_policy(vma, new);
952 if (err)
953 goto err_out;
954 }
955
956 old = vma->vm_policy;
957 vma->vm_policy = new; /* protected by mmap_lock */
958 mpol_put(old);
959
960 return 0;
961 err_out:
962 mpol_put(new);
963 return err;
964 }
965
966 /* Split or merge the VMA (if required) and apply the new policy */
mbind_range(struct vma_iterator * vmi,struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,struct mempolicy * new_pol)967 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
968 struct vm_area_struct **prev, unsigned long start,
969 unsigned long end, struct mempolicy *new_pol)
970 {
971 unsigned long vmstart, vmend;
972
973 vmend = min(end, vma->vm_end);
974 if (start > vma->vm_start) {
975 *prev = vma;
976 vmstart = start;
977 } else {
978 vmstart = vma->vm_start;
979 }
980
981 if (mpol_equal(vma->vm_policy, new_pol)) {
982 *prev = vma;
983 return 0;
984 }
985
986 vma = vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol);
987 if (IS_ERR(vma))
988 return PTR_ERR(vma);
989
990 *prev = vma;
991 return vma_replace_policy(vma, new_pol);
992 }
993
994 /* Set the process memory policy */
do_set_mempolicy(unsigned short mode,unsigned short flags,nodemask_t * nodes)995 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
996 nodemask_t *nodes)
997 {
998 struct mempolicy *new, *old;
999 NODEMASK_SCRATCH(scratch);
1000 int ret;
1001
1002 if (!scratch)
1003 return -ENOMEM;
1004
1005 new = mpol_new(mode, flags, nodes);
1006 if (IS_ERR(new)) {
1007 ret = PTR_ERR(new);
1008 goto out;
1009 }
1010
1011 task_lock(current);
1012 ret = mpol_set_nodemask(new, nodes, scratch);
1013 if (ret) {
1014 task_unlock(current);
1015 mpol_put(new);
1016 goto out;
1017 }
1018
1019 old = current->mempolicy;
1020 current->mempolicy = new;
1021 if (new && (new->mode == MPOL_INTERLEAVE ||
1022 new->mode == MPOL_WEIGHTED_INTERLEAVE)) {
1023 current->il_prev = MAX_NUMNODES-1;
1024 current->il_weight = 0;
1025 }
1026 task_unlock(current);
1027 mpol_put(old);
1028 ret = 0;
1029 out:
1030 NODEMASK_SCRATCH_FREE(scratch);
1031 return ret;
1032 }
1033
1034 /*
1035 * Return nodemask for policy for get_mempolicy() query
1036 *
1037 * Called with task's alloc_lock held
1038 */
get_policy_nodemask(struct mempolicy * pol,nodemask_t * nodes)1039 static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes)
1040 {
1041 nodes_clear(*nodes);
1042 if (pol == &default_policy)
1043 return;
1044
1045 switch (pol->mode) {
1046 case MPOL_BIND:
1047 case MPOL_INTERLEAVE:
1048 case MPOL_PREFERRED:
1049 case MPOL_PREFERRED_MANY:
1050 case MPOL_WEIGHTED_INTERLEAVE:
1051 *nodes = pol->nodes;
1052 break;
1053 case MPOL_LOCAL:
1054 /* return empty node mask for local allocation */
1055 break;
1056 default:
1057 BUG();
1058 }
1059 }
1060
lookup_node(struct mm_struct * mm,unsigned long addr)1061 static int lookup_node(struct mm_struct *mm, unsigned long addr)
1062 {
1063 struct page *p = NULL;
1064 int ret;
1065
1066 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
1067 if (ret > 0) {
1068 ret = page_to_nid(p);
1069 put_page(p);
1070 }
1071 return ret;
1072 }
1073
1074 /* Retrieve NUMA policy */
do_get_mempolicy(int * policy,nodemask_t * nmask,unsigned long addr,unsigned long flags)1075 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
1076 unsigned long addr, unsigned long flags)
1077 {
1078 int err;
1079 struct mm_struct *mm = current->mm;
1080 struct vm_area_struct *vma = NULL;
1081 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
1082
1083 if (flags &
1084 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
1085 return -EINVAL;
1086
1087 if (flags & MPOL_F_MEMS_ALLOWED) {
1088 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
1089 return -EINVAL;
1090 *policy = 0; /* just so it's initialized */
1091 task_lock(current);
1092 *nmask = cpuset_current_mems_allowed;
1093 task_unlock(current);
1094 return 0;
1095 }
1096
1097 if (flags & MPOL_F_ADDR) {
1098 pgoff_t ilx; /* ignored here */
1099 /*
1100 * Do NOT fall back to task policy if the
1101 * vma/shared policy at addr is NULL. We
1102 * want to return MPOL_DEFAULT in this case.
1103 */
1104 mmap_read_lock(mm);
1105 vma = vma_lookup(mm, addr);
1106 if (!vma) {
1107 mmap_read_unlock(mm);
1108 return -EFAULT;
1109 }
1110 pol = __get_vma_policy(vma, addr, &ilx);
1111 } else if (addr)
1112 return -EINVAL;
1113
1114 if (!pol)
1115 pol = &default_policy; /* indicates default behavior */
1116
1117 if (flags & MPOL_F_NODE) {
1118 if (flags & MPOL_F_ADDR) {
1119 /*
1120 * Take a refcount on the mpol, because we are about to
1121 * drop the mmap_lock, after which only "pol" remains
1122 * valid, "vma" is stale.
1123 */
1124 pol_refcount = pol;
1125 vma = NULL;
1126 mpol_get(pol);
1127 mmap_read_unlock(mm);
1128 err = lookup_node(mm, addr);
1129 if (err < 0)
1130 goto out;
1131 *policy = err;
1132 } else if (pol == current->mempolicy &&
1133 pol->mode == MPOL_INTERLEAVE) {
1134 *policy = next_node_in(current->il_prev, pol->nodes);
1135 } else if (pol == current->mempolicy &&
1136 pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
1137 if (current->il_weight)
1138 *policy = current->il_prev;
1139 else
1140 *policy = next_node_in(current->il_prev,
1141 pol->nodes);
1142 } else {
1143 err = -EINVAL;
1144 goto out;
1145 }
1146 } else {
1147 *policy = pol == &default_policy ? MPOL_DEFAULT :
1148 pol->mode;
1149 /*
1150 * Internal mempolicy flags must be masked off before exposing
1151 * the policy to userspace.
1152 */
1153 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1154 }
1155
1156 err = 0;
1157 if (nmask) {
1158 if (mpol_store_user_nodemask(pol)) {
1159 *nmask = pol->w.user_nodemask;
1160 } else {
1161 task_lock(current);
1162 get_policy_nodemask(pol, nmask);
1163 task_unlock(current);
1164 }
1165 }
1166
1167 out:
1168 mpol_cond_put(pol);
1169 if (vma)
1170 mmap_read_unlock(mm);
1171 if (pol_refcount)
1172 mpol_put(pol_refcount);
1173 return err;
1174 }
1175
1176 #ifdef CONFIG_MIGRATION
migrate_folio_add(struct folio * folio,struct list_head * foliolist,unsigned long flags)1177 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1178 unsigned long flags)
1179 {
1180 /*
1181 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
1182 * Choosing not to migrate a shared folio is not counted as a failure.
1183 *
1184 * See folio_maybe_mapped_shared() on possible imprecision when we
1185 * cannot easily detect if a folio is shared.
1186 */
1187 if ((flags & MPOL_MF_MOVE_ALL) || !folio_maybe_mapped_shared(folio)) {
1188 if (folio_isolate_lru(folio)) {
1189 list_add_tail(&folio->lru, foliolist);
1190 node_stat_mod_folio(folio,
1191 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1192 folio_nr_pages(folio));
1193 } else {
1194 /*
1195 * Non-movable folio may reach here. And, there may be
1196 * temporary off LRU folios or non-LRU movable folios.
1197 * Treat them as unmovable folios since they can't be
1198 * isolated, so they can't be moved at the moment.
1199 */
1200 return false;
1201 }
1202 }
1203 return true;
1204 }
1205
1206 /*
1207 * Migrate pages from one node to a target node.
1208 * Returns error or the number of pages not migrated.
1209 */
migrate_to_node(struct mm_struct * mm,int source,int dest,int flags)1210 static long migrate_to_node(struct mm_struct *mm, int source, int dest,
1211 int flags)
1212 {
1213 nodemask_t nmask;
1214 struct vm_area_struct *vma;
1215 LIST_HEAD(pagelist);
1216 long nr_failed;
1217 long err = 0;
1218 struct migration_target_control mtc = {
1219 .nid = dest,
1220 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1221 .reason = MR_SYSCALL,
1222 };
1223
1224 nodes_clear(nmask);
1225 node_set(source, nmask);
1226
1227 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1228
1229 mmap_read_lock(mm);
1230 vma = find_vma(mm, 0);
1231 if (unlikely(!vma)) {
1232 mmap_read_unlock(mm);
1233 return 0;
1234 }
1235
1236 /*
1237 * This does not migrate the range, but isolates all pages that
1238 * need migration. Between passing in the full user address
1239 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail,
1240 * but passes back the count of pages which could not be isolated.
1241 */
1242 nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1243 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1244 mmap_read_unlock(mm);
1245
1246 if (!list_empty(&pagelist)) {
1247 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1248 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1249 if (err)
1250 putback_movable_pages(&pagelist);
1251 }
1252
1253 if (err >= 0)
1254 err += nr_failed;
1255 return err;
1256 }
1257
1258 /*
1259 * Move pages between the two nodesets so as to preserve the physical
1260 * layout as much as possible.
1261 *
1262 * Returns the number of page that could not be moved.
1263 */
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1264 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1265 const nodemask_t *to, int flags)
1266 {
1267 long nr_failed = 0;
1268 long err = 0;
1269 nodemask_t tmp;
1270
1271 lru_cache_disable();
1272
1273 /*
1274 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1275 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1276 * bit in 'tmp', and return that <source, dest> pair for migration.
1277 * The pair of nodemasks 'to' and 'from' define the map.
1278 *
1279 * If no pair of bits is found that way, fallback to picking some
1280 * pair of 'source' and 'dest' bits that are not the same. If the
1281 * 'source' and 'dest' bits are the same, this represents a node
1282 * that will be migrating to itself, so no pages need move.
1283 *
1284 * If no bits are left in 'tmp', or if all remaining bits left
1285 * in 'tmp' correspond to the same bit in 'to', return false
1286 * (nothing left to migrate).
1287 *
1288 * This lets us pick a pair of nodes to migrate between, such that
1289 * if possible the dest node is not already occupied by some other
1290 * source node, minimizing the risk of overloading the memory on a
1291 * node that would happen if we migrated incoming memory to a node
1292 * before migrating outgoing memory source that same node.
1293 *
1294 * A single scan of tmp is sufficient. As we go, we remember the
1295 * most recent <s, d> pair that moved (s != d). If we find a pair
1296 * that not only moved, but what's better, moved to an empty slot
1297 * (d is not set in tmp), then we break out then, with that pair.
1298 * Otherwise when we finish scanning from_tmp, we at least have the
1299 * most recent <s, d> pair that moved. If we get all the way through
1300 * the scan of tmp without finding any node that moved, much less
1301 * moved to an empty node, then there is nothing left worth migrating.
1302 */
1303
1304 tmp = *from;
1305 while (!nodes_empty(tmp)) {
1306 int s, d;
1307 int source = NUMA_NO_NODE;
1308 int dest = 0;
1309
1310 for_each_node_mask(s, tmp) {
1311
1312 /*
1313 * do_migrate_pages() tries to maintain the relative
1314 * node relationship of the pages established between
1315 * threads and memory areas.
1316 *
1317 * However if the number of source nodes is not equal to
1318 * the number of destination nodes we can not preserve
1319 * this node relative relationship. In that case, skip
1320 * copying memory from a node that is in the destination
1321 * mask.
1322 *
1323 * Example: [2,3,4] -> [3,4,5] moves everything.
1324 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1325 */
1326
1327 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1328 (node_isset(s, *to)))
1329 continue;
1330
1331 d = node_remap(s, *from, *to);
1332 if (s == d)
1333 continue;
1334
1335 source = s; /* Node moved. Memorize */
1336 dest = d;
1337
1338 /* dest not in remaining from nodes? */
1339 if (!node_isset(dest, tmp))
1340 break;
1341 }
1342 if (source == NUMA_NO_NODE)
1343 break;
1344
1345 node_clear(source, tmp);
1346 err = migrate_to_node(mm, source, dest, flags);
1347 if (err > 0)
1348 nr_failed += err;
1349 if (err < 0)
1350 break;
1351 }
1352
1353 lru_cache_enable();
1354 if (err < 0)
1355 return err;
1356 return (nr_failed < INT_MAX) ? nr_failed : INT_MAX;
1357 }
1358
1359 /*
1360 * Allocate a new folio for page migration, according to NUMA mempolicy.
1361 */
alloc_migration_target_by_mpol(struct folio * src,unsigned long private)1362 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1363 unsigned long private)
1364 {
1365 struct migration_mpol *mmpol = (struct migration_mpol *)private;
1366 struct mempolicy *pol = mmpol->pol;
1367 pgoff_t ilx = mmpol->ilx;
1368 unsigned int order;
1369 int nid = numa_node_id();
1370 gfp_t gfp;
1371
1372 order = folio_order(src);
1373 ilx += src->index >> order;
1374
1375 if (folio_test_hugetlb(src)) {
1376 nodemask_t *nodemask;
1377 struct hstate *h;
1378
1379 h = folio_hstate(src);
1380 gfp = htlb_alloc_mask(h);
1381 nodemask = policy_nodemask(gfp, pol, ilx, &nid);
1382 return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp,
1383 htlb_allow_alloc_fallback(MR_MEMPOLICY_MBIND));
1384 }
1385
1386 if (folio_test_large(src))
1387 gfp = GFP_TRANSHUGE;
1388 else
1389 gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP;
1390
1391 return folio_alloc_mpol(gfp, order, pol, ilx, nid);
1392 }
1393 #else
1394
migrate_folio_add(struct folio * folio,struct list_head * foliolist,unsigned long flags)1395 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1396 unsigned long flags)
1397 {
1398 return false;
1399 }
1400
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1401 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1402 const nodemask_t *to, int flags)
1403 {
1404 return -ENOSYS;
1405 }
1406
alloc_migration_target_by_mpol(struct folio * src,unsigned long private)1407 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1408 unsigned long private)
1409 {
1410 return NULL;
1411 }
1412 #endif
1413
do_mbind(unsigned long start,unsigned long len,unsigned short mode,unsigned short mode_flags,nodemask_t * nmask,unsigned long flags)1414 static long do_mbind(unsigned long start, unsigned long len,
1415 unsigned short mode, unsigned short mode_flags,
1416 nodemask_t *nmask, unsigned long flags)
1417 {
1418 struct mm_struct *mm = current->mm;
1419 struct vm_area_struct *vma, *prev;
1420 struct vma_iterator vmi;
1421 struct migration_mpol mmpol;
1422 struct mempolicy *new;
1423 unsigned long end;
1424 long err;
1425 long nr_failed;
1426 LIST_HEAD(pagelist);
1427
1428 if (flags & ~(unsigned long)MPOL_MF_VALID)
1429 return -EINVAL;
1430 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1431 return -EPERM;
1432
1433 if (start & ~PAGE_MASK)
1434 return -EINVAL;
1435
1436 if (mode == MPOL_DEFAULT)
1437 flags &= ~MPOL_MF_STRICT;
1438
1439 len = PAGE_ALIGN(len);
1440 end = start + len;
1441
1442 if (end < start)
1443 return -EINVAL;
1444 if (end == start)
1445 return 0;
1446
1447 new = mpol_new(mode, mode_flags, nmask);
1448 if (IS_ERR(new))
1449 return PTR_ERR(new);
1450
1451 /*
1452 * If we are using the default policy then operation
1453 * on discontinuous address spaces is okay after all
1454 */
1455 if (!new)
1456 flags |= MPOL_MF_DISCONTIG_OK;
1457
1458 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1459 lru_cache_disable();
1460 {
1461 NODEMASK_SCRATCH(scratch);
1462 if (scratch) {
1463 mmap_write_lock(mm);
1464 err = mpol_set_nodemask(new, nmask, scratch);
1465 if (err)
1466 mmap_write_unlock(mm);
1467 } else
1468 err = -ENOMEM;
1469 NODEMASK_SCRATCH_FREE(scratch);
1470 }
1471 if (err)
1472 goto mpol_out;
1473
1474 /*
1475 * Lock the VMAs before scanning for pages to migrate,
1476 * to ensure we don't miss a concurrently inserted page.
1477 */
1478 nr_failed = queue_pages_range(mm, start, end, nmask,
1479 flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist);
1480
1481 if (nr_failed < 0) {
1482 err = nr_failed;
1483 nr_failed = 0;
1484 } else {
1485 vma_iter_init(&vmi, mm, start);
1486 prev = vma_prev(&vmi);
1487 for_each_vma_range(vmi, vma, end) {
1488 err = mbind_range(&vmi, vma, &prev, start, end, new);
1489 if (err)
1490 break;
1491 }
1492 }
1493
1494 if (!err && !list_empty(&pagelist)) {
1495 /* Convert MPOL_DEFAULT's NULL to task or default policy */
1496 if (!new) {
1497 new = get_task_policy(current);
1498 mpol_get(new);
1499 }
1500 mmpol.pol = new;
1501 mmpol.ilx = 0;
1502
1503 /*
1504 * In the interleaved case, attempt to allocate on exactly the
1505 * targeted nodes, for the first VMA to be migrated; for later
1506 * VMAs, the nodes will still be interleaved from the targeted
1507 * nodemask, but one by one may be selected differently.
1508 */
1509 if (new->mode == MPOL_INTERLEAVE ||
1510 new->mode == MPOL_WEIGHTED_INTERLEAVE) {
1511 struct folio *folio;
1512 unsigned int order;
1513 unsigned long addr = -EFAULT;
1514
1515 list_for_each_entry(folio, &pagelist, lru) {
1516 if (!folio_test_ksm(folio))
1517 break;
1518 }
1519 if (!list_entry_is_head(folio, &pagelist, lru)) {
1520 vma_iter_init(&vmi, mm, start);
1521 for_each_vma_range(vmi, vma, end) {
1522 addr = page_address_in_vma(folio,
1523 folio_page(folio, 0), vma);
1524 if (addr != -EFAULT)
1525 break;
1526 }
1527 }
1528 if (addr != -EFAULT) {
1529 order = folio_order(folio);
1530 /* We already know the pol, but not the ilx */
1531 mpol_cond_put(get_vma_policy(vma, addr, order,
1532 &mmpol.ilx));
1533 /* Set base from which to increment by index */
1534 mmpol.ilx -= folio->index >> order;
1535 }
1536 }
1537 }
1538
1539 mmap_write_unlock(mm);
1540
1541 if (!err && !list_empty(&pagelist)) {
1542 nr_failed |= migrate_pages(&pagelist,
1543 alloc_migration_target_by_mpol, NULL,
1544 (unsigned long)&mmpol, MIGRATE_SYNC,
1545 MR_MEMPOLICY_MBIND, NULL);
1546 }
1547
1548 if (nr_failed && (flags & MPOL_MF_STRICT))
1549 err = -EIO;
1550 if (!list_empty(&pagelist))
1551 putback_movable_pages(&pagelist);
1552 mpol_out:
1553 mpol_put(new);
1554 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1555 lru_cache_enable();
1556 return err;
1557 }
1558
1559 /*
1560 * User space interface with variable sized bitmaps for nodelists.
1561 */
get_bitmap(unsigned long * mask,const unsigned long __user * nmask,unsigned long maxnode)1562 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1563 unsigned long maxnode)
1564 {
1565 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1566 int ret;
1567
1568 if (in_compat_syscall())
1569 ret = compat_get_bitmap(mask,
1570 (const compat_ulong_t __user *)nmask,
1571 maxnode);
1572 else
1573 ret = copy_from_user(mask, nmask,
1574 nlongs * sizeof(unsigned long));
1575
1576 if (ret)
1577 return -EFAULT;
1578
1579 if (maxnode % BITS_PER_LONG)
1580 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1581
1582 return 0;
1583 }
1584
1585 /* Copy a node mask from user space. */
get_nodes(nodemask_t * nodes,const unsigned long __user * nmask,unsigned long maxnode)1586 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1587 unsigned long maxnode)
1588 {
1589 --maxnode;
1590 nodes_clear(*nodes);
1591 if (maxnode == 0 || !nmask)
1592 return 0;
1593 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1594 return -EINVAL;
1595
1596 /*
1597 * When the user specified more nodes than supported just check
1598 * if the non supported part is all zero, one word at a time,
1599 * starting at the end.
1600 */
1601 while (maxnode > MAX_NUMNODES) {
1602 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1603 unsigned long t;
1604
1605 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1606 return -EFAULT;
1607
1608 if (maxnode - bits >= MAX_NUMNODES) {
1609 maxnode -= bits;
1610 } else {
1611 maxnode = MAX_NUMNODES;
1612 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1613 }
1614 if (t)
1615 return -EINVAL;
1616 }
1617
1618 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1619 }
1620
1621 /* Copy a kernel node mask to user space */
copy_nodes_to_user(unsigned long __user * mask,unsigned long maxnode,nodemask_t * nodes)1622 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1623 nodemask_t *nodes)
1624 {
1625 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1626 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1627 bool compat = in_compat_syscall();
1628
1629 if (compat)
1630 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1631
1632 if (copy > nbytes) {
1633 if (copy > PAGE_SIZE)
1634 return -EINVAL;
1635 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1636 return -EFAULT;
1637 copy = nbytes;
1638 maxnode = nr_node_ids;
1639 }
1640
1641 if (compat)
1642 return compat_put_bitmap((compat_ulong_t __user *)mask,
1643 nodes_addr(*nodes), maxnode);
1644
1645 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1646 }
1647
1648 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
sanitize_mpol_flags(int * mode,unsigned short * flags)1649 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1650 {
1651 *flags = *mode & MPOL_MODE_FLAGS;
1652 *mode &= ~MPOL_MODE_FLAGS;
1653
1654 if ((unsigned int)(*mode) >= MPOL_MAX)
1655 return -EINVAL;
1656 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1657 return -EINVAL;
1658 if (*flags & MPOL_F_NUMA_BALANCING) {
1659 if (*mode == MPOL_BIND || *mode == MPOL_PREFERRED_MANY)
1660 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1661 else
1662 return -EINVAL;
1663 }
1664 return 0;
1665 }
1666
kernel_mbind(unsigned long start,unsigned long len,unsigned long mode,const unsigned long __user * nmask,unsigned long maxnode,unsigned int flags)1667 static long kernel_mbind(unsigned long start, unsigned long len,
1668 unsigned long mode, const unsigned long __user *nmask,
1669 unsigned long maxnode, unsigned int flags)
1670 {
1671 unsigned short mode_flags;
1672 nodemask_t nodes;
1673 int lmode = mode;
1674 int err;
1675
1676 start = untagged_addr(start);
1677 err = sanitize_mpol_flags(&lmode, &mode_flags);
1678 if (err)
1679 return err;
1680
1681 err = get_nodes(&nodes, nmask, maxnode);
1682 if (err)
1683 return err;
1684
1685 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1686 }
1687
SYSCALL_DEFINE4(set_mempolicy_home_node,unsigned long,start,unsigned long,len,unsigned long,home_node,unsigned long,flags)1688 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1689 unsigned long, home_node, unsigned long, flags)
1690 {
1691 struct mm_struct *mm = current->mm;
1692 struct vm_area_struct *vma, *prev;
1693 struct mempolicy *new, *old;
1694 unsigned long end;
1695 int err = -ENOENT;
1696 VMA_ITERATOR(vmi, mm, start);
1697
1698 start = untagged_addr(start);
1699 if (start & ~PAGE_MASK)
1700 return -EINVAL;
1701 /*
1702 * flags is used for future extension if any.
1703 */
1704 if (flags != 0)
1705 return -EINVAL;
1706
1707 /*
1708 * Check home_node is online to avoid accessing uninitialized
1709 * NODE_DATA.
1710 */
1711 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1712 return -EINVAL;
1713
1714 len = PAGE_ALIGN(len);
1715 end = start + len;
1716
1717 if (end < start)
1718 return -EINVAL;
1719 if (end == start)
1720 return 0;
1721 mmap_write_lock(mm);
1722 prev = vma_prev(&vmi);
1723 for_each_vma_range(vmi, vma, end) {
1724 /*
1725 * If any vma in the range got policy other than MPOL_BIND
1726 * or MPOL_PREFERRED_MANY we return error. We don't reset
1727 * the home node for vmas we already updated before.
1728 */
1729 old = vma_policy(vma);
1730 if (!old) {
1731 prev = vma;
1732 continue;
1733 }
1734 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1735 err = -EOPNOTSUPP;
1736 break;
1737 }
1738 new = mpol_dup(old);
1739 if (IS_ERR(new)) {
1740 err = PTR_ERR(new);
1741 break;
1742 }
1743
1744 vma_start_write(vma);
1745 new->home_node = home_node;
1746 err = mbind_range(&vmi, vma, &prev, start, end, new);
1747 mpol_put(new);
1748 if (err)
1749 break;
1750 }
1751 mmap_write_unlock(mm);
1752 return err;
1753 }
1754
SYSCALL_DEFINE6(mbind,unsigned long,start,unsigned long,len,unsigned long,mode,const unsigned long __user *,nmask,unsigned long,maxnode,unsigned int,flags)1755 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1756 unsigned long, mode, const unsigned long __user *, nmask,
1757 unsigned long, maxnode, unsigned int, flags)
1758 {
1759 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1760 }
1761
1762 /* Set the process memory policy */
kernel_set_mempolicy(int mode,const unsigned long __user * nmask,unsigned long maxnode)1763 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1764 unsigned long maxnode)
1765 {
1766 unsigned short mode_flags;
1767 nodemask_t nodes;
1768 int lmode = mode;
1769 int err;
1770
1771 err = sanitize_mpol_flags(&lmode, &mode_flags);
1772 if (err)
1773 return err;
1774
1775 err = get_nodes(&nodes, nmask, maxnode);
1776 if (err)
1777 return err;
1778
1779 return do_set_mempolicy(lmode, mode_flags, &nodes);
1780 }
1781
SYSCALL_DEFINE3(set_mempolicy,int,mode,const unsigned long __user *,nmask,unsigned long,maxnode)1782 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1783 unsigned long, maxnode)
1784 {
1785 return kernel_set_mempolicy(mode, nmask, maxnode);
1786 }
1787
kernel_migrate_pages(pid_t pid,unsigned long maxnode,const unsigned long __user * old_nodes,const unsigned long __user * new_nodes)1788 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1789 const unsigned long __user *old_nodes,
1790 const unsigned long __user *new_nodes)
1791 {
1792 struct mm_struct *mm = NULL;
1793 struct task_struct *task;
1794 nodemask_t task_nodes;
1795 int err;
1796 nodemask_t *old;
1797 nodemask_t *new;
1798 NODEMASK_SCRATCH(scratch);
1799
1800 if (!scratch)
1801 return -ENOMEM;
1802
1803 old = &scratch->mask1;
1804 new = &scratch->mask2;
1805
1806 err = get_nodes(old, old_nodes, maxnode);
1807 if (err)
1808 goto out;
1809
1810 err = get_nodes(new, new_nodes, maxnode);
1811 if (err)
1812 goto out;
1813
1814 /* Find the mm_struct */
1815 rcu_read_lock();
1816 task = pid ? find_task_by_vpid(pid) : current;
1817 if (!task) {
1818 rcu_read_unlock();
1819 err = -ESRCH;
1820 goto out;
1821 }
1822 get_task_struct(task);
1823
1824 err = -EINVAL;
1825
1826 /*
1827 * Check if this process has the right to modify the specified process.
1828 * Use the regular "ptrace_may_access()" checks.
1829 */
1830 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1831 rcu_read_unlock();
1832 err = -EPERM;
1833 goto out_put;
1834 }
1835 rcu_read_unlock();
1836
1837 task_nodes = cpuset_mems_allowed(task);
1838 /* Is the user allowed to access the target nodes? */
1839 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1840 err = -EPERM;
1841 goto out_put;
1842 }
1843
1844 task_nodes = cpuset_mems_allowed(current);
1845 nodes_and(*new, *new, task_nodes);
1846 if (nodes_empty(*new))
1847 goto out_put;
1848
1849 err = security_task_movememory(task);
1850 if (err)
1851 goto out_put;
1852
1853 mm = get_task_mm(task);
1854 put_task_struct(task);
1855
1856 if (!mm) {
1857 err = -EINVAL;
1858 goto out;
1859 }
1860
1861 err = do_migrate_pages(mm, old, new,
1862 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1863
1864 mmput(mm);
1865 out:
1866 NODEMASK_SCRATCH_FREE(scratch);
1867
1868 return err;
1869
1870 out_put:
1871 put_task_struct(task);
1872 goto out;
1873 }
1874
SYSCALL_DEFINE4(migrate_pages,pid_t,pid,unsigned long,maxnode,const unsigned long __user *,old_nodes,const unsigned long __user *,new_nodes)1875 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1876 const unsigned long __user *, old_nodes,
1877 const unsigned long __user *, new_nodes)
1878 {
1879 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1880 }
1881
1882 /* Retrieve NUMA policy */
kernel_get_mempolicy(int __user * policy,unsigned long __user * nmask,unsigned long maxnode,unsigned long addr,unsigned long flags)1883 static int kernel_get_mempolicy(int __user *policy,
1884 unsigned long __user *nmask,
1885 unsigned long maxnode,
1886 unsigned long addr,
1887 unsigned long flags)
1888 {
1889 int err;
1890 int pval;
1891 nodemask_t nodes;
1892
1893 if (nmask != NULL && maxnode < nr_node_ids)
1894 return -EINVAL;
1895
1896 addr = untagged_addr(addr);
1897
1898 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1899
1900 if (err)
1901 return err;
1902
1903 if (policy && put_user(pval, policy))
1904 return -EFAULT;
1905
1906 if (nmask)
1907 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1908
1909 return err;
1910 }
1911
SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,unsigned long __user *,nmask,unsigned long,maxnode,unsigned long,addr,unsigned long,flags)1912 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1913 unsigned long __user *, nmask, unsigned long, maxnode,
1914 unsigned long, addr, unsigned long, flags)
1915 {
1916 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1917 }
1918
vma_migratable(struct vm_area_struct * vma)1919 bool vma_migratable(struct vm_area_struct *vma)
1920 {
1921 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1922 return false;
1923
1924 /*
1925 * DAX device mappings require predictable access latency, so avoid
1926 * incurring periodic faults.
1927 */
1928 if (vma_is_dax(vma))
1929 return false;
1930
1931 if (is_vm_hugetlb_page(vma) &&
1932 !hugepage_migration_supported(hstate_vma(vma)))
1933 return false;
1934
1935 /*
1936 * Migration allocates pages in the highest zone. If we cannot
1937 * do so then migration (at least from node to node) is not
1938 * possible.
1939 */
1940 if (vma->vm_file &&
1941 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1942 < policy_zone)
1943 return false;
1944 return true;
1945 }
1946
__get_vma_policy(struct vm_area_struct * vma,unsigned long addr,pgoff_t * ilx)1947 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1948 unsigned long addr, pgoff_t *ilx)
1949 {
1950 *ilx = 0;
1951 return (vma->vm_ops && vma->vm_ops->get_policy) ?
1952 vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy;
1953 }
1954
1955 /*
1956 * get_vma_policy(@vma, @addr, @order, @ilx)
1957 * @vma: virtual memory area whose policy is sought
1958 * @addr: address in @vma for shared policy lookup
1959 * @order: 0, or appropriate huge_page_order for interleaving
1960 * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE or
1961 * MPOL_WEIGHTED_INTERLEAVE
1962 *
1963 * Returns effective policy for a VMA at specified address.
1964 * Falls back to current->mempolicy or system default policy, as necessary.
1965 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1966 * count--added by the get_policy() vm_op, as appropriate--to protect against
1967 * freeing by another task. It is the caller's responsibility to free the
1968 * extra reference for shared policies.
1969 */
get_vma_policy(struct vm_area_struct * vma,unsigned long addr,int order,pgoff_t * ilx)1970 struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1971 unsigned long addr, int order, pgoff_t *ilx)
1972 {
1973 struct mempolicy *pol;
1974
1975 pol = __get_vma_policy(vma, addr, ilx);
1976 if (!pol)
1977 pol = get_task_policy(current);
1978 if (pol->mode == MPOL_INTERLEAVE ||
1979 pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
1980 *ilx += vma->vm_pgoff >> order;
1981 *ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
1982 }
1983 return pol;
1984 }
1985
vma_policy_mof(struct vm_area_struct * vma)1986 bool vma_policy_mof(struct vm_area_struct *vma)
1987 {
1988 struct mempolicy *pol;
1989
1990 if (vma->vm_ops && vma->vm_ops->get_policy) {
1991 bool ret = false;
1992 pgoff_t ilx; /* ignored here */
1993
1994 pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx);
1995 if (pol && (pol->flags & MPOL_F_MOF))
1996 ret = true;
1997 mpol_cond_put(pol);
1998
1999 return ret;
2000 }
2001
2002 pol = vma->vm_policy;
2003 if (!pol)
2004 pol = get_task_policy(current);
2005
2006 return pol->flags & MPOL_F_MOF;
2007 }
2008
apply_policy_zone(struct mempolicy * policy,enum zone_type zone)2009 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
2010 {
2011 enum zone_type dynamic_policy_zone = policy_zone;
2012
2013 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
2014
2015 /*
2016 * if policy->nodes has movable memory only,
2017 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
2018 *
2019 * policy->nodes is intersect with node_states[N_MEMORY].
2020 * so if the following test fails, it implies
2021 * policy->nodes has movable memory only.
2022 */
2023 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
2024 dynamic_policy_zone = ZONE_MOVABLE;
2025
2026 return zone >= dynamic_policy_zone;
2027 }
2028
weighted_interleave_nodes(struct mempolicy * policy)2029 static unsigned int weighted_interleave_nodes(struct mempolicy *policy)
2030 {
2031 unsigned int node;
2032 unsigned int cpuset_mems_cookie;
2033
2034 retry:
2035 /* to prevent miscount use tsk->mems_allowed_seq to detect rebind */
2036 cpuset_mems_cookie = read_mems_allowed_begin();
2037 node = current->il_prev;
2038 if (!current->il_weight || !node_isset(node, policy->nodes)) {
2039 node = next_node_in(node, policy->nodes);
2040 if (read_mems_allowed_retry(cpuset_mems_cookie))
2041 goto retry;
2042 if (node == MAX_NUMNODES)
2043 return node;
2044 current->il_prev = node;
2045 current->il_weight = get_il_weight(node);
2046 }
2047 current->il_weight--;
2048 return node;
2049 }
2050
2051 /* Do dynamic interleaving for a process */
interleave_nodes(struct mempolicy * policy)2052 static unsigned int interleave_nodes(struct mempolicy *policy)
2053 {
2054 unsigned int nid;
2055 unsigned int cpuset_mems_cookie;
2056
2057 /* to prevent miscount, use tsk->mems_allowed_seq to detect rebind */
2058 do {
2059 cpuset_mems_cookie = read_mems_allowed_begin();
2060 nid = next_node_in(current->il_prev, policy->nodes);
2061 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2062
2063 if (nid < MAX_NUMNODES)
2064 current->il_prev = nid;
2065 return nid;
2066 }
2067
2068 /*
2069 * Depending on the memory policy provide a node from which to allocate the
2070 * next slab entry.
2071 */
mempolicy_slab_node(void)2072 unsigned int mempolicy_slab_node(void)
2073 {
2074 struct mempolicy *policy;
2075 int node = numa_mem_id();
2076
2077 if (!in_task())
2078 return node;
2079
2080 policy = current->mempolicy;
2081 if (!policy)
2082 return node;
2083
2084 switch (policy->mode) {
2085 case MPOL_PREFERRED:
2086 return first_node(policy->nodes);
2087
2088 case MPOL_INTERLEAVE:
2089 return interleave_nodes(policy);
2090
2091 case MPOL_WEIGHTED_INTERLEAVE:
2092 return weighted_interleave_nodes(policy);
2093
2094 case MPOL_BIND:
2095 case MPOL_PREFERRED_MANY:
2096 {
2097 struct zoneref *z;
2098
2099 /*
2100 * Follow bind policy behavior and start allocation at the
2101 * first node.
2102 */
2103 struct zonelist *zonelist;
2104 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
2105 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
2106 z = first_zones_zonelist(zonelist, highest_zoneidx,
2107 &policy->nodes);
2108 return zonelist_zone(z) ? zonelist_node_idx(z) : node;
2109 }
2110 case MPOL_LOCAL:
2111 return node;
2112
2113 default:
2114 BUG();
2115 }
2116 }
2117
read_once_policy_nodemask(struct mempolicy * pol,nodemask_t * mask)2118 static unsigned int read_once_policy_nodemask(struct mempolicy *pol,
2119 nodemask_t *mask)
2120 {
2121 /*
2122 * barrier stabilizes the nodemask locally so that it can be iterated
2123 * over safely without concern for changes. Allocators validate node
2124 * selection does not violate mems_allowed, so this is safe.
2125 */
2126 barrier();
2127 memcpy(mask, &pol->nodes, sizeof(nodemask_t));
2128 barrier();
2129 return nodes_weight(*mask);
2130 }
2131
weighted_interleave_nid(struct mempolicy * pol,pgoff_t ilx)2132 static unsigned int weighted_interleave_nid(struct mempolicy *pol, pgoff_t ilx)
2133 {
2134 struct weighted_interleave_state *state;
2135 nodemask_t nodemask;
2136 unsigned int target, nr_nodes;
2137 u8 *table = NULL;
2138 unsigned int weight_total = 0;
2139 u8 weight;
2140 int nid = 0;
2141
2142 nr_nodes = read_once_policy_nodemask(pol, &nodemask);
2143 if (!nr_nodes)
2144 return numa_node_id();
2145
2146 rcu_read_lock();
2147
2148 state = rcu_dereference(wi_state);
2149 /* Uninitialized wi_state means we should assume all weights are 1 */
2150 if (state)
2151 table = state->iw_table;
2152
2153 /* calculate the total weight */
2154 for_each_node_mask(nid, nodemask)
2155 weight_total += table ? table[nid] : 1;
2156
2157 /* Calculate the node offset based on totals */
2158 target = ilx % weight_total;
2159 nid = first_node(nodemask);
2160 while (target) {
2161 /* detect system default usage */
2162 weight = table ? table[nid] : 1;
2163 if (target < weight)
2164 break;
2165 target -= weight;
2166 nid = next_node_in(nid, nodemask);
2167 }
2168 rcu_read_unlock();
2169 return nid;
2170 }
2171
2172 /*
2173 * Do static interleaving for interleave index @ilx. Returns the ilx'th
2174 * node in pol->nodes (starting from ilx=0), wrapping around if ilx
2175 * exceeds the number of present nodes.
2176 */
interleave_nid(struct mempolicy * pol,pgoff_t ilx)2177 static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx)
2178 {
2179 nodemask_t nodemask;
2180 unsigned int target, nnodes;
2181 int i;
2182 int nid;
2183
2184 nnodes = read_once_policy_nodemask(pol, &nodemask);
2185 if (!nnodes)
2186 return numa_node_id();
2187 target = ilx % nnodes;
2188 nid = first_node(nodemask);
2189 for (i = 0; i < target; i++)
2190 nid = next_node(nid, nodemask);
2191 return nid;
2192 }
2193
2194 /*
2195 * Return a nodemask representing a mempolicy for filtering nodes for
2196 * page allocation, together with preferred node id (or the input node id).
2197 */
policy_nodemask(gfp_t gfp,struct mempolicy * pol,pgoff_t ilx,int * nid)2198 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
2199 pgoff_t ilx, int *nid)
2200 {
2201 nodemask_t *nodemask = NULL;
2202
2203 switch (pol->mode) {
2204 case MPOL_PREFERRED:
2205 /* Override input node id */
2206 *nid = first_node(pol->nodes);
2207 break;
2208 case MPOL_PREFERRED_MANY:
2209 nodemask = &pol->nodes;
2210 if (pol->home_node != NUMA_NO_NODE)
2211 *nid = pol->home_node;
2212 break;
2213 case MPOL_BIND:
2214 /* Restrict to nodemask (but not on lower zones) */
2215 if (apply_policy_zone(pol, gfp_zone(gfp)) &&
2216 cpuset_nodemask_valid_mems_allowed(&pol->nodes))
2217 nodemask = &pol->nodes;
2218 if (pol->home_node != NUMA_NO_NODE)
2219 *nid = pol->home_node;
2220 /*
2221 * __GFP_THISNODE shouldn't even be used with the bind policy
2222 * because we might easily break the expectation to stay on the
2223 * requested node and not break the policy.
2224 */
2225 WARN_ON_ONCE(gfp & __GFP_THISNODE);
2226 break;
2227 case MPOL_INTERLEAVE:
2228 /* Override input node id */
2229 *nid = (ilx == NO_INTERLEAVE_INDEX) ?
2230 interleave_nodes(pol) : interleave_nid(pol, ilx);
2231 break;
2232 case MPOL_WEIGHTED_INTERLEAVE:
2233 *nid = (ilx == NO_INTERLEAVE_INDEX) ?
2234 weighted_interleave_nodes(pol) :
2235 weighted_interleave_nid(pol, ilx);
2236 break;
2237 }
2238
2239 return nodemask;
2240 }
2241
2242 #ifdef CONFIG_HUGETLBFS
2243 /*
2244 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2245 * @vma: virtual memory area whose policy is sought
2246 * @addr: address in @vma for shared policy lookup and interleave policy
2247 * @gfp_flags: for requested zone
2248 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2249 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2250 *
2251 * Returns a nid suitable for a huge page allocation and a pointer
2252 * to the struct mempolicy for conditional unref after allocation.
2253 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2254 * to the mempolicy's @nodemask for filtering the zonelist.
2255 */
huge_node(struct vm_area_struct * vma,unsigned long addr,gfp_t gfp_flags,struct mempolicy ** mpol,nodemask_t ** nodemask)2256 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2257 struct mempolicy **mpol, nodemask_t **nodemask)
2258 {
2259 pgoff_t ilx;
2260 int nid;
2261
2262 nid = numa_node_id();
2263 *mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx);
2264 *nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid);
2265 return nid;
2266 }
2267
2268 /*
2269 * init_nodemask_of_mempolicy
2270 *
2271 * If the current task's mempolicy is "default" [NULL], return 'false'
2272 * to indicate default policy. Otherwise, extract the policy nodemask
2273 * for 'bind' or 'interleave' policy into the argument nodemask, or
2274 * initialize the argument nodemask to contain the single node for
2275 * 'preferred' or 'local' policy and return 'true' to indicate presence
2276 * of non-default mempolicy.
2277 *
2278 * We don't bother with reference counting the mempolicy [mpol_get/put]
2279 * because the current task is examining it's own mempolicy and a task's
2280 * mempolicy is only ever changed by the task itself.
2281 *
2282 * N.B., it is the caller's responsibility to free a returned nodemask.
2283 */
init_nodemask_of_mempolicy(nodemask_t * mask)2284 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2285 {
2286 struct mempolicy *mempolicy;
2287
2288 if (!(mask && current->mempolicy))
2289 return false;
2290
2291 task_lock(current);
2292 mempolicy = current->mempolicy;
2293 switch (mempolicy->mode) {
2294 case MPOL_PREFERRED:
2295 case MPOL_PREFERRED_MANY:
2296 case MPOL_BIND:
2297 case MPOL_INTERLEAVE:
2298 case MPOL_WEIGHTED_INTERLEAVE:
2299 *mask = mempolicy->nodes;
2300 break;
2301
2302 case MPOL_LOCAL:
2303 init_nodemask_of_node(mask, numa_node_id());
2304 break;
2305
2306 default:
2307 BUG();
2308 }
2309 task_unlock(current);
2310
2311 return true;
2312 }
2313 #endif
2314
2315 /*
2316 * mempolicy_in_oom_domain
2317 *
2318 * If tsk's mempolicy is "bind", check for intersection between mask and
2319 * the policy nodemask. Otherwise, return true for all other policies
2320 * including "interleave", as a tsk with "interleave" policy may have
2321 * memory allocated from all nodes in system.
2322 *
2323 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2324 */
mempolicy_in_oom_domain(struct task_struct * tsk,const nodemask_t * mask)2325 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2326 const nodemask_t *mask)
2327 {
2328 struct mempolicy *mempolicy;
2329 bool ret = true;
2330
2331 if (!mask)
2332 return ret;
2333
2334 task_lock(tsk);
2335 mempolicy = tsk->mempolicy;
2336 if (mempolicy && mempolicy->mode == MPOL_BIND)
2337 ret = nodes_intersects(mempolicy->nodes, *mask);
2338 task_unlock(tsk);
2339
2340 return ret;
2341 }
2342
alloc_pages_preferred_many(gfp_t gfp,unsigned int order,int nid,nodemask_t * nodemask)2343 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2344 int nid, nodemask_t *nodemask)
2345 {
2346 struct page *page;
2347 gfp_t preferred_gfp;
2348
2349 /*
2350 * This is a two pass approach. The first pass will only try the
2351 * preferred nodes but skip the direct reclaim and allow the
2352 * allocation to fail, while the second pass will try all the
2353 * nodes in system.
2354 */
2355 preferred_gfp = gfp | __GFP_NOWARN;
2356 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2357 page = __alloc_frozen_pages_noprof(preferred_gfp, order, nid, nodemask);
2358 if (!page)
2359 page = __alloc_frozen_pages_noprof(gfp, order, nid, NULL);
2360
2361 return page;
2362 }
2363
2364 /**
2365 * alloc_pages_mpol - Allocate pages according to NUMA mempolicy.
2366 * @gfp: GFP flags.
2367 * @order: Order of the page allocation.
2368 * @pol: Pointer to the NUMA mempolicy.
2369 * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()).
2370 * @nid: Preferred node (usually numa_node_id() but @mpol may override it).
2371 *
2372 * Return: The page on success or NULL if allocation fails.
2373 */
alloc_pages_mpol(gfp_t gfp,unsigned int order,struct mempolicy * pol,pgoff_t ilx,int nid)2374 static struct page *alloc_pages_mpol(gfp_t gfp, unsigned int order,
2375 struct mempolicy *pol, pgoff_t ilx, int nid)
2376 {
2377 nodemask_t *nodemask;
2378 struct page *page;
2379
2380 nodemask = policy_nodemask(gfp, pol, ilx, &nid);
2381
2382 if (pol->mode == MPOL_PREFERRED_MANY)
2383 return alloc_pages_preferred_many(gfp, order, nid, nodemask);
2384
2385 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2386 /* filter "hugepage" allocation, unless from alloc_pages() */
2387 order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) {
2388 /*
2389 * For hugepage allocation and non-interleave policy which
2390 * allows the current node (or other explicitly preferred
2391 * node) we only try to allocate from the current/preferred
2392 * node and don't fall back to other nodes, as the cost of
2393 * remote accesses would likely offset THP benefits.
2394 *
2395 * If the policy is interleave or does not allow the current
2396 * node in its nodemask, we allocate the standard way.
2397 */
2398 if (pol->mode != MPOL_INTERLEAVE &&
2399 pol->mode != MPOL_WEIGHTED_INTERLEAVE &&
2400 (!nodemask || node_isset(nid, *nodemask))) {
2401 /*
2402 * First, try to allocate THP only on local node, but
2403 * don't reclaim unnecessarily, just compact.
2404 */
2405 page = __alloc_frozen_pages_noprof(
2406 gfp | __GFP_THISNODE | __GFP_NORETRY, order,
2407 nid, NULL);
2408 if (page || !(gfp & __GFP_DIRECT_RECLAIM))
2409 return page;
2410 /*
2411 * If hugepage allocations are configured to always
2412 * synchronous compact or the vma has been madvised
2413 * to prefer hugepage backing, retry allowing remote
2414 * memory with both reclaim and compact as well.
2415 */
2416 }
2417 }
2418
2419 page = __alloc_frozen_pages_noprof(gfp, order, nid, nodemask);
2420
2421 if (unlikely(pol->mode == MPOL_INTERLEAVE ||
2422 pol->mode == MPOL_WEIGHTED_INTERLEAVE) && page) {
2423 /* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */
2424 if (static_branch_likely(&vm_numa_stat_key) &&
2425 page_to_nid(page) == nid) {
2426 preempt_disable();
2427 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2428 preempt_enable();
2429 }
2430 }
2431
2432 return page;
2433 }
2434
folio_alloc_mpol_noprof(gfp_t gfp,unsigned int order,struct mempolicy * pol,pgoff_t ilx,int nid)2435 struct folio *folio_alloc_mpol_noprof(gfp_t gfp, unsigned int order,
2436 struct mempolicy *pol, pgoff_t ilx, int nid)
2437 {
2438 struct page *page = alloc_pages_mpol(gfp | __GFP_COMP, order, pol,
2439 ilx, nid);
2440 if (!page)
2441 return NULL;
2442
2443 set_page_refcounted(page);
2444 return page_rmappable_folio(page);
2445 }
2446
2447 /**
2448 * vma_alloc_folio - Allocate a folio for a VMA.
2449 * @gfp: GFP flags.
2450 * @order: Order of the folio.
2451 * @vma: Pointer to VMA.
2452 * @addr: Virtual address of the allocation. Must be inside @vma.
2453 *
2454 * Allocate a folio for a specific address in @vma, using the appropriate
2455 * NUMA policy. The caller must hold the mmap_lock of the mm_struct of the
2456 * VMA to prevent it from going away. Should be used for all allocations
2457 * for folios that will be mapped into user space, excepting hugetlbfs, and
2458 * excepting where direct use of folio_alloc_mpol() is more appropriate.
2459 *
2460 * Return: The folio on success or NULL if allocation fails.
2461 */
vma_alloc_folio_noprof(gfp_t gfp,int order,struct vm_area_struct * vma,unsigned long addr)2462 struct folio *vma_alloc_folio_noprof(gfp_t gfp, int order, struct vm_area_struct *vma,
2463 unsigned long addr)
2464 {
2465 struct mempolicy *pol;
2466 pgoff_t ilx;
2467 struct folio *folio;
2468
2469 if (vma->vm_flags & VM_DROPPABLE)
2470 gfp |= __GFP_NOWARN;
2471
2472 pol = get_vma_policy(vma, addr, order, &ilx);
2473 folio = folio_alloc_mpol_noprof(gfp, order, pol, ilx, numa_node_id());
2474 mpol_cond_put(pol);
2475 return folio;
2476 }
2477 EXPORT_SYMBOL(vma_alloc_folio_noprof);
2478
alloc_frozen_pages_noprof(gfp_t gfp,unsigned order)2479 struct page *alloc_frozen_pages_noprof(gfp_t gfp, unsigned order)
2480 {
2481 struct mempolicy *pol = &default_policy;
2482
2483 /*
2484 * No reference counting needed for current->mempolicy
2485 * nor system default_policy
2486 */
2487 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2488 pol = get_task_policy(current);
2489
2490 return alloc_pages_mpol(gfp, order, pol, NO_INTERLEAVE_INDEX,
2491 numa_node_id());
2492 }
2493
2494 /**
2495 * alloc_pages - Allocate pages.
2496 * @gfp: GFP flags.
2497 * @order: Power of two of number of pages to allocate.
2498 *
2499 * Allocate 1 << @order contiguous pages. The physical address of the
2500 * first page is naturally aligned (eg an order-3 allocation will be aligned
2501 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2502 * process is honoured when in process context.
2503 *
2504 * Context: Can be called from any context, providing the appropriate GFP
2505 * flags are used.
2506 * Return: The page on success or NULL if allocation fails.
2507 */
alloc_pages_noprof(gfp_t gfp,unsigned int order)2508 struct page *alloc_pages_noprof(gfp_t gfp, unsigned int order)
2509 {
2510 struct page *page = alloc_frozen_pages_noprof(gfp, order);
2511
2512 if (page)
2513 set_page_refcounted(page);
2514 return page;
2515 }
2516 EXPORT_SYMBOL(alloc_pages_noprof);
2517
folio_alloc_noprof(gfp_t gfp,unsigned int order)2518 struct folio *folio_alloc_noprof(gfp_t gfp, unsigned int order)
2519 {
2520 return page_rmappable_folio(alloc_pages_noprof(gfp | __GFP_COMP, order));
2521 }
2522 EXPORT_SYMBOL(folio_alloc_noprof);
2523
alloc_pages_bulk_interleave(gfp_t gfp,struct mempolicy * pol,unsigned long nr_pages,struct page ** page_array)2524 static unsigned long alloc_pages_bulk_interleave(gfp_t gfp,
2525 struct mempolicy *pol, unsigned long nr_pages,
2526 struct page **page_array)
2527 {
2528 int nodes;
2529 unsigned long nr_pages_per_node;
2530 int delta;
2531 int i;
2532 unsigned long nr_allocated;
2533 unsigned long total_allocated = 0;
2534
2535 nodes = nodes_weight(pol->nodes);
2536 nr_pages_per_node = nr_pages / nodes;
2537 delta = nr_pages - nodes * nr_pages_per_node;
2538
2539 for (i = 0; i < nodes; i++) {
2540 if (delta) {
2541 nr_allocated = alloc_pages_bulk_noprof(gfp,
2542 interleave_nodes(pol), NULL,
2543 nr_pages_per_node + 1,
2544 page_array);
2545 delta--;
2546 } else {
2547 nr_allocated = alloc_pages_bulk_noprof(gfp,
2548 interleave_nodes(pol), NULL,
2549 nr_pages_per_node, page_array);
2550 }
2551
2552 page_array += nr_allocated;
2553 total_allocated += nr_allocated;
2554 }
2555
2556 return total_allocated;
2557 }
2558
alloc_pages_bulk_weighted_interleave(gfp_t gfp,struct mempolicy * pol,unsigned long nr_pages,struct page ** page_array)2559 static unsigned long alloc_pages_bulk_weighted_interleave(gfp_t gfp,
2560 struct mempolicy *pol, unsigned long nr_pages,
2561 struct page **page_array)
2562 {
2563 struct weighted_interleave_state *state;
2564 struct task_struct *me = current;
2565 unsigned int cpuset_mems_cookie;
2566 unsigned long total_allocated = 0;
2567 unsigned long nr_allocated = 0;
2568 unsigned long rounds;
2569 unsigned long node_pages, delta;
2570 u8 *weights, weight;
2571 unsigned int weight_total = 0;
2572 unsigned long rem_pages = nr_pages;
2573 nodemask_t nodes;
2574 int nnodes, node;
2575 int resume_node = MAX_NUMNODES - 1;
2576 u8 resume_weight = 0;
2577 int prev_node;
2578 int i;
2579
2580 if (!nr_pages)
2581 return 0;
2582
2583 /* read the nodes onto the stack, retry if done during rebind */
2584 do {
2585 cpuset_mems_cookie = read_mems_allowed_begin();
2586 nnodes = read_once_policy_nodemask(pol, &nodes);
2587 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2588
2589 /* if the nodemask has become invalid, we cannot do anything */
2590 if (!nnodes)
2591 return 0;
2592
2593 /* Continue allocating from most recent node and adjust the nr_pages */
2594 node = me->il_prev;
2595 weight = me->il_weight;
2596 if (weight && node_isset(node, nodes)) {
2597 node_pages = min(rem_pages, weight);
2598 nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2599 page_array);
2600 page_array += nr_allocated;
2601 total_allocated += nr_allocated;
2602 /* if that's all the pages, no need to interleave */
2603 if (rem_pages <= weight) {
2604 me->il_weight -= rem_pages;
2605 return total_allocated;
2606 }
2607 /* Otherwise we adjust remaining pages, continue from there */
2608 rem_pages -= weight;
2609 }
2610 /* clear active weight in case of an allocation failure */
2611 me->il_weight = 0;
2612 prev_node = node;
2613
2614 /* create a local copy of node weights to operate on outside rcu */
2615 weights = kzalloc(nr_node_ids, GFP_KERNEL);
2616 if (!weights)
2617 return total_allocated;
2618
2619 rcu_read_lock();
2620 state = rcu_dereference(wi_state);
2621 if (state) {
2622 memcpy(weights, state->iw_table, nr_node_ids * sizeof(u8));
2623 rcu_read_unlock();
2624 } else {
2625 rcu_read_unlock();
2626 for (i = 0; i < nr_node_ids; i++)
2627 weights[i] = 1;
2628 }
2629
2630 /* calculate total, detect system default usage */
2631 for_each_node_mask(node, nodes)
2632 weight_total += weights[node];
2633
2634 /*
2635 * Calculate rounds/partial rounds to minimize __alloc_pages_bulk calls.
2636 * Track which node weighted interleave should resume from.
2637 *
2638 * if (rounds > 0) and (delta == 0), resume_node will always be
2639 * the node following prev_node and its weight.
2640 */
2641 rounds = rem_pages / weight_total;
2642 delta = rem_pages % weight_total;
2643 resume_node = next_node_in(prev_node, nodes);
2644 resume_weight = weights[resume_node];
2645 for (i = 0; i < nnodes; i++) {
2646 node = next_node_in(prev_node, nodes);
2647 weight = weights[node];
2648 node_pages = weight * rounds;
2649 /* If a delta exists, add this node's portion of the delta */
2650 if (delta > weight) {
2651 node_pages += weight;
2652 delta -= weight;
2653 } else if (delta) {
2654 /* when delta is depleted, resume from that node */
2655 node_pages += delta;
2656 resume_node = node;
2657 resume_weight = weight - delta;
2658 delta = 0;
2659 }
2660 /* node_pages can be 0 if an allocation fails and rounds == 0 */
2661 if (!node_pages)
2662 break;
2663 nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2664 page_array);
2665 page_array += nr_allocated;
2666 total_allocated += nr_allocated;
2667 if (total_allocated == nr_pages)
2668 break;
2669 prev_node = node;
2670 }
2671 me->il_prev = resume_node;
2672 me->il_weight = resume_weight;
2673 kfree(weights);
2674 return total_allocated;
2675 }
2676
alloc_pages_bulk_preferred_many(gfp_t gfp,int nid,struct mempolicy * pol,unsigned long nr_pages,struct page ** page_array)2677 static unsigned long alloc_pages_bulk_preferred_many(gfp_t gfp, int nid,
2678 struct mempolicy *pol, unsigned long nr_pages,
2679 struct page **page_array)
2680 {
2681 gfp_t preferred_gfp;
2682 unsigned long nr_allocated = 0;
2683
2684 preferred_gfp = gfp | __GFP_NOWARN;
2685 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2686
2687 nr_allocated = alloc_pages_bulk_noprof(preferred_gfp, nid, &pol->nodes,
2688 nr_pages, page_array);
2689
2690 if (nr_allocated < nr_pages)
2691 nr_allocated += alloc_pages_bulk_noprof(gfp, numa_node_id(), NULL,
2692 nr_pages - nr_allocated,
2693 page_array + nr_allocated);
2694 return nr_allocated;
2695 }
2696
2697 /* alloc pages bulk and mempolicy should be considered at the
2698 * same time in some situation such as vmalloc.
2699 *
2700 * It can accelerate memory allocation especially interleaving
2701 * allocate memory.
2702 */
alloc_pages_bulk_mempolicy_noprof(gfp_t gfp,unsigned long nr_pages,struct page ** page_array)2703 unsigned long alloc_pages_bulk_mempolicy_noprof(gfp_t gfp,
2704 unsigned long nr_pages, struct page **page_array)
2705 {
2706 struct mempolicy *pol = &default_policy;
2707 nodemask_t *nodemask;
2708 int nid;
2709
2710 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2711 pol = get_task_policy(current);
2712
2713 if (pol->mode == MPOL_INTERLEAVE)
2714 return alloc_pages_bulk_interleave(gfp, pol,
2715 nr_pages, page_array);
2716
2717 if (pol->mode == MPOL_WEIGHTED_INTERLEAVE)
2718 return alloc_pages_bulk_weighted_interleave(
2719 gfp, pol, nr_pages, page_array);
2720
2721 if (pol->mode == MPOL_PREFERRED_MANY)
2722 return alloc_pages_bulk_preferred_many(gfp,
2723 numa_node_id(), pol, nr_pages, page_array);
2724
2725 nid = numa_node_id();
2726 nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid);
2727 return alloc_pages_bulk_noprof(gfp, nid, nodemask,
2728 nr_pages, page_array);
2729 }
2730
vma_dup_policy(struct vm_area_struct * src,struct vm_area_struct * dst)2731 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2732 {
2733 struct mempolicy *pol = mpol_dup(src->vm_policy);
2734
2735 if (IS_ERR(pol))
2736 return PTR_ERR(pol);
2737 dst->vm_policy = pol;
2738 return 0;
2739 }
2740
2741 /*
2742 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2743 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2744 * with the mems_allowed returned by cpuset_mems_allowed(). This
2745 * keeps mempolicies cpuset relative after its cpuset moves. See
2746 * further kernel/cpuset.c update_nodemask().
2747 *
2748 * current's mempolicy may be rebinded by the other task(the task that changes
2749 * cpuset's mems), so we needn't do rebind work for current task.
2750 */
2751
2752 /* Slow path of a mempolicy duplicate */
__mpol_dup(struct mempolicy * old)2753 struct mempolicy *__mpol_dup(struct mempolicy *old)
2754 {
2755 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2756
2757 if (!new)
2758 return ERR_PTR(-ENOMEM);
2759
2760 /* task's mempolicy is protected by alloc_lock */
2761 if (old == current->mempolicy) {
2762 task_lock(current);
2763 *new = *old;
2764 task_unlock(current);
2765 } else
2766 *new = *old;
2767
2768 if (current_cpuset_is_being_rebound()) {
2769 nodemask_t mems = cpuset_mems_allowed(current);
2770 mpol_rebind_policy(new, &mems);
2771 }
2772 atomic_set(&new->refcnt, 1);
2773 return new;
2774 }
2775
2776 /* Slow path of a mempolicy comparison */
__mpol_equal(struct mempolicy * a,struct mempolicy * b)2777 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2778 {
2779 if (!a || !b)
2780 return false;
2781 if (a->mode != b->mode)
2782 return false;
2783 if (a->flags != b->flags)
2784 return false;
2785 if (a->home_node != b->home_node)
2786 return false;
2787 if (mpol_store_user_nodemask(a))
2788 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2789 return false;
2790
2791 switch (a->mode) {
2792 case MPOL_BIND:
2793 case MPOL_INTERLEAVE:
2794 case MPOL_PREFERRED:
2795 case MPOL_PREFERRED_MANY:
2796 case MPOL_WEIGHTED_INTERLEAVE:
2797 return !!nodes_equal(a->nodes, b->nodes);
2798 case MPOL_LOCAL:
2799 return true;
2800 default:
2801 BUG();
2802 return false;
2803 }
2804 }
2805
2806 /*
2807 * Shared memory backing store policy support.
2808 *
2809 * Remember policies even when nobody has shared memory mapped.
2810 * The policies are kept in Red-Black tree linked from the inode.
2811 * They are protected by the sp->lock rwlock, which should be held
2812 * for any accesses to the tree.
2813 */
2814
2815 /*
2816 * lookup first element intersecting start-end. Caller holds sp->lock for
2817 * reading or for writing
2818 */
sp_lookup(struct shared_policy * sp,pgoff_t start,pgoff_t end)2819 static struct sp_node *sp_lookup(struct shared_policy *sp,
2820 pgoff_t start, pgoff_t end)
2821 {
2822 struct rb_node *n = sp->root.rb_node;
2823
2824 while (n) {
2825 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2826
2827 if (start >= p->end)
2828 n = n->rb_right;
2829 else if (end <= p->start)
2830 n = n->rb_left;
2831 else
2832 break;
2833 }
2834 if (!n)
2835 return NULL;
2836 for (;;) {
2837 struct sp_node *w = NULL;
2838 struct rb_node *prev = rb_prev(n);
2839 if (!prev)
2840 break;
2841 w = rb_entry(prev, struct sp_node, nd);
2842 if (w->end <= start)
2843 break;
2844 n = prev;
2845 }
2846 return rb_entry(n, struct sp_node, nd);
2847 }
2848
2849 /*
2850 * Insert a new shared policy into the list. Caller holds sp->lock for
2851 * writing.
2852 */
sp_insert(struct shared_policy * sp,struct sp_node * new)2853 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2854 {
2855 struct rb_node **p = &sp->root.rb_node;
2856 struct rb_node *parent = NULL;
2857 struct sp_node *nd;
2858
2859 while (*p) {
2860 parent = *p;
2861 nd = rb_entry(parent, struct sp_node, nd);
2862 if (new->start < nd->start)
2863 p = &(*p)->rb_left;
2864 else if (new->end > nd->end)
2865 p = &(*p)->rb_right;
2866 else
2867 BUG();
2868 }
2869 rb_link_node(&new->nd, parent, p);
2870 rb_insert_color(&new->nd, &sp->root);
2871 }
2872
2873 /* Find shared policy intersecting idx */
mpol_shared_policy_lookup(struct shared_policy * sp,pgoff_t idx)2874 struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp,
2875 pgoff_t idx)
2876 {
2877 struct mempolicy *pol = NULL;
2878 struct sp_node *sn;
2879
2880 if (!sp->root.rb_node)
2881 return NULL;
2882 read_lock(&sp->lock);
2883 sn = sp_lookup(sp, idx, idx+1);
2884 if (sn) {
2885 mpol_get(sn->policy);
2886 pol = sn->policy;
2887 }
2888 read_unlock(&sp->lock);
2889 return pol;
2890 }
2891
sp_free(struct sp_node * n)2892 static void sp_free(struct sp_node *n)
2893 {
2894 mpol_put(n->policy);
2895 kmem_cache_free(sn_cache, n);
2896 }
2897
2898 /**
2899 * mpol_misplaced - check whether current folio node is valid in policy
2900 *
2901 * @folio: folio to be checked
2902 * @vmf: structure describing the fault
2903 * @addr: virtual address in @vma for shared policy lookup and interleave policy
2904 *
2905 * Lookup current policy node id for vma,addr and "compare to" folio's
2906 * node id. Policy determination "mimics" alloc_page_vma().
2907 * Called from fault path where we know the vma and faulting address.
2908 *
2909 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2910 * policy, or a suitable node ID to allocate a replacement folio from.
2911 */
mpol_misplaced(struct folio * folio,struct vm_fault * vmf,unsigned long addr)2912 int mpol_misplaced(struct folio *folio, struct vm_fault *vmf,
2913 unsigned long addr)
2914 {
2915 struct mempolicy *pol;
2916 pgoff_t ilx;
2917 struct zoneref *z;
2918 int curnid = folio_nid(folio);
2919 struct vm_area_struct *vma = vmf->vma;
2920 int thiscpu = raw_smp_processor_id();
2921 int thisnid = numa_node_id();
2922 int polnid = NUMA_NO_NODE;
2923 int ret = NUMA_NO_NODE;
2924
2925 /*
2926 * Make sure ptl is held so that we don't preempt and we
2927 * have a stable smp processor id
2928 */
2929 lockdep_assert_held(vmf->ptl);
2930 pol = get_vma_policy(vma, addr, folio_order(folio), &ilx);
2931 if (!(pol->flags & MPOL_F_MOF))
2932 goto out;
2933
2934 switch (pol->mode) {
2935 case MPOL_INTERLEAVE:
2936 polnid = interleave_nid(pol, ilx);
2937 break;
2938
2939 case MPOL_WEIGHTED_INTERLEAVE:
2940 polnid = weighted_interleave_nid(pol, ilx);
2941 break;
2942
2943 case MPOL_PREFERRED:
2944 if (node_isset(curnid, pol->nodes))
2945 goto out;
2946 polnid = first_node(pol->nodes);
2947 break;
2948
2949 case MPOL_LOCAL:
2950 polnid = numa_node_id();
2951 break;
2952
2953 case MPOL_BIND:
2954 case MPOL_PREFERRED_MANY:
2955 /*
2956 * Even though MPOL_PREFERRED_MANY can allocate pages outside
2957 * policy nodemask we don't allow numa migration to nodes
2958 * outside policy nodemask for now. This is done so that if we
2959 * want demotion to slow memory to happen, before allocating
2960 * from some DRAM node say 'x', we will end up using a
2961 * MPOL_PREFERRED_MANY mask excluding node 'x'. In such scenario
2962 * we should not promote to node 'x' from slow memory node.
2963 */
2964 if (pol->flags & MPOL_F_MORON) {
2965 /*
2966 * Optimize placement among multiple nodes
2967 * via NUMA balancing
2968 */
2969 if (node_isset(thisnid, pol->nodes))
2970 break;
2971 goto out;
2972 }
2973
2974 /*
2975 * use current page if in policy nodemask,
2976 * else select nearest allowed node, if any.
2977 * If no allowed nodes, use current [!misplaced].
2978 */
2979 if (node_isset(curnid, pol->nodes))
2980 goto out;
2981 z = first_zones_zonelist(
2982 node_zonelist(thisnid, GFP_HIGHUSER),
2983 gfp_zone(GFP_HIGHUSER),
2984 &pol->nodes);
2985 polnid = zonelist_node_idx(z);
2986 break;
2987
2988 default:
2989 BUG();
2990 }
2991
2992 /* Migrate the folio towards the node whose CPU is referencing it */
2993 if (pol->flags & MPOL_F_MORON) {
2994 polnid = thisnid;
2995
2996 if (!should_numa_migrate_memory(current, folio, curnid,
2997 thiscpu))
2998 goto out;
2999 }
3000
3001 if (curnid != polnid)
3002 ret = polnid;
3003 out:
3004 mpol_cond_put(pol);
3005
3006 return ret;
3007 }
3008
3009 /*
3010 * Drop the (possibly final) reference to task->mempolicy. It needs to be
3011 * dropped after task->mempolicy is set to NULL so that any allocation done as
3012 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
3013 * policy.
3014 */
mpol_put_task_policy(struct task_struct * task)3015 void mpol_put_task_policy(struct task_struct *task)
3016 {
3017 struct mempolicy *pol;
3018
3019 task_lock(task);
3020 pol = task->mempolicy;
3021 task->mempolicy = NULL;
3022 task_unlock(task);
3023 mpol_put(pol);
3024 }
3025
sp_delete(struct shared_policy * sp,struct sp_node * n)3026 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
3027 {
3028 rb_erase(&n->nd, &sp->root);
3029 sp_free(n);
3030 }
3031
sp_node_init(struct sp_node * node,unsigned long start,unsigned long end,struct mempolicy * pol)3032 static void sp_node_init(struct sp_node *node, unsigned long start,
3033 unsigned long end, struct mempolicy *pol)
3034 {
3035 node->start = start;
3036 node->end = end;
3037 node->policy = pol;
3038 }
3039
sp_alloc(unsigned long start,unsigned long end,struct mempolicy * pol)3040 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
3041 struct mempolicy *pol)
3042 {
3043 struct sp_node *n;
3044 struct mempolicy *newpol;
3045
3046 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
3047 if (!n)
3048 return NULL;
3049
3050 newpol = mpol_dup(pol);
3051 if (IS_ERR(newpol)) {
3052 kmem_cache_free(sn_cache, n);
3053 return NULL;
3054 }
3055 newpol->flags |= MPOL_F_SHARED;
3056 sp_node_init(n, start, end, newpol);
3057
3058 return n;
3059 }
3060
3061 /* Replace a policy range. */
shared_policy_replace(struct shared_policy * sp,pgoff_t start,pgoff_t end,struct sp_node * new)3062 static int shared_policy_replace(struct shared_policy *sp, pgoff_t start,
3063 pgoff_t end, struct sp_node *new)
3064 {
3065 struct sp_node *n;
3066 struct sp_node *n_new = NULL;
3067 struct mempolicy *mpol_new = NULL;
3068 int ret = 0;
3069
3070 restart:
3071 write_lock(&sp->lock);
3072 n = sp_lookup(sp, start, end);
3073 /* Take care of old policies in the same range. */
3074 while (n && n->start < end) {
3075 struct rb_node *next = rb_next(&n->nd);
3076 if (n->start >= start) {
3077 if (n->end <= end)
3078 sp_delete(sp, n);
3079 else
3080 n->start = end;
3081 } else {
3082 /* Old policy spanning whole new range. */
3083 if (n->end > end) {
3084 if (!n_new)
3085 goto alloc_new;
3086
3087 *mpol_new = *n->policy;
3088 atomic_set(&mpol_new->refcnt, 1);
3089 sp_node_init(n_new, end, n->end, mpol_new);
3090 n->end = start;
3091 sp_insert(sp, n_new);
3092 n_new = NULL;
3093 mpol_new = NULL;
3094 break;
3095 } else
3096 n->end = start;
3097 }
3098 if (!next)
3099 break;
3100 n = rb_entry(next, struct sp_node, nd);
3101 }
3102 if (new)
3103 sp_insert(sp, new);
3104 write_unlock(&sp->lock);
3105 ret = 0;
3106
3107 err_out:
3108 if (mpol_new)
3109 mpol_put(mpol_new);
3110 if (n_new)
3111 kmem_cache_free(sn_cache, n_new);
3112
3113 return ret;
3114
3115 alloc_new:
3116 write_unlock(&sp->lock);
3117 ret = -ENOMEM;
3118 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
3119 if (!n_new)
3120 goto err_out;
3121 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
3122 if (!mpol_new)
3123 goto err_out;
3124 atomic_set(&mpol_new->refcnt, 1);
3125 goto restart;
3126 }
3127
3128 /**
3129 * mpol_shared_policy_init - initialize shared policy for inode
3130 * @sp: pointer to inode shared policy
3131 * @mpol: struct mempolicy to install
3132 *
3133 * Install non-NULL @mpol in inode's shared policy rb-tree.
3134 * On entry, the current task has a reference on a non-NULL @mpol.
3135 * This must be released on exit.
3136 * This is called at get_inode() calls and we can use GFP_KERNEL.
3137 */
mpol_shared_policy_init(struct shared_policy * sp,struct mempolicy * mpol)3138 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
3139 {
3140 int ret;
3141
3142 sp->root = RB_ROOT; /* empty tree == default mempolicy */
3143 rwlock_init(&sp->lock);
3144
3145 if (mpol) {
3146 struct sp_node *sn;
3147 struct mempolicy *npol;
3148 NODEMASK_SCRATCH(scratch);
3149
3150 if (!scratch)
3151 goto put_mpol;
3152
3153 /* contextualize the tmpfs mount point mempolicy to this file */
3154 npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
3155 if (IS_ERR(npol))
3156 goto free_scratch; /* no valid nodemask intersection */
3157
3158 task_lock(current);
3159 ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch);
3160 task_unlock(current);
3161 if (ret)
3162 goto put_npol;
3163
3164 /* alloc node covering entire file; adds ref to file's npol */
3165 sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol);
3166 if (sn)
3167 sp_insert(sp, sn);
3168 put_npol:
3169 mpol_put(npol); /* drop initial ref on file's npol */
3170 free_scratch:
3171 NODEMASK_SCRATCH_FREE(scratch);
3172 put_mpol:
3173 mpol_put(mpol); /* drop our incoming ref on sb mpol */
3174 }
3175 }
3176
mpol_set_shared_policy(struct shared_policy * sp,struct vm_area_struct * vma,struct mempolicy * pol)3177 int mpol_set_shared_policy(struct shared_policy *sp,
3178 struct vm_area_struct *vma, struct mempolicy *pol)
3179 {
3180 int err;
3181 struct sp_node *new = NULL;
3182 unsigned long sz = vma_pages(vma);
3183
3184 if (pol) {
3185 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol);
3186 if (!new)
3187 return -ENOMEM;
3188 }
3189 err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new);
3190 if (err && new)
3191 sp_free(new);
3192 return err;
3193 }
3194
3195 /* Free a backing policy store on inode delete. */
mpol_free_shared_policy(struct shared_policy * sp)3196 void mpol_free_shared_policy(struct shared_policy *sp)
3197 {
3198 struct sp_node *n;
3199 struct rb_node *next;
3200
3201 if (!sp->root.rb_node)
3202 return;
3203 write_lock(&sp->lock);
3204 next = rb_first(&sp->root);
3205 while (next) {
3206 n = rb_entry(next, struct sp_node, nd);
3207 next = rb_next(&n->nd);
3208 sp_delete(sp, n);
3209 }
3210 write_unlock(&sp->lock);
3211 }
3212
3213 #ifdef CONFIG_NUMA_BALANCING
3214 static int __initdata numabalancing_override;
3215
check_numabalancing_enable(void)3216 static void __init check_numabalancing_enable(void)
3217 {
3218 bool numabalancing_default = false;
3219
3220 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
3221 numabalancing_default = true;
3222
3223 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
3224 if (numabalancing_override)
3225 set_numabalancing_state(numabalancing_override == 1);
3226
3227 if (num_online_nodes() > 1 && !numabalancing_override) {
3228 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
3229 numabalancing_default ? "Enabling" : "Disabling");
3230 set_numabalancing_state(numabalancing_default);
3231 }
3232 }
3233
setup_numabalancing(char * str)3234 static int __init setup_numabalancing(char *str)
3235 {
3236 int ret = 0;
3237 if (!str)
3238 goto out;
3239
3240 if (!strcmp(str, "enable")) {
3241 numabalancing_override = 1;
3242 ret = 1;
3243 } else if (!strcmp(str, "disable")) {
3244 numabalancing_override = -1;
3245 ret = 1;
3246 }
3247 out:
3248 if (!ret)
3249 pr_warn("Unable to parse numa_balancing=\n");
3250
3251 return ret;
3252 }
3253 __setup("numa_balancing=", setup_numabalancing);
3254 #else
check_numabalancing_enable(void)3255 static inline void __init check_numabalancing_enable(void)
3256 {
3257 }
3258 #endif /* CONFIG_NUMA_BALANCING */
3259
numa_policy_init(void)3260 void __init numa_policy_init(void)
3261 {
3262 nodemask_t interleave_nodes;
3263 unsigned long largest = 0;
3264 int nid, prefer = 0;
3265
3266 policy_cache = kmem_cache_create("numa_policy",
3267 sizeof(struct mempolicy),
3268 0, SLAB_PANIC, NULL);
3269
3270 sn_cache = kmem_cache_create("shared_policy_node",
3271 sizeof(struct sp_node),
3272 0, SLAB_PANIC, NULL);
3273
3274 for_each_node(nid) {
3275 preferred_node_policy[nid] = (struct mempolicy) {
3276 .refcnt = ATOMIC_INIT(1),
3277 .mode = MPOL_PREFERRED,
3278 .flags = MPOL_F_MOF | MPOL_F_MORON,
3279 .nodes = nodemask_of_node(nid),
3280 };
3281 }
3282
3283 /*
3284 * Set interleaving policy for system init. Interleaving is only
3285 * enabled across suitably sized nodes (default is >= 16MB), or
3286 * fall back to the largest node if they're all smaller.
3287 */
3288 nodes_clear(interleave_nodes);
3289 for_each_node_state(nid, N_MEMORY) {
3290 unsigned long total_pages = node_present_pages(nid);
3291
3292 /* Preserve the largest node */
3293 if (largest < total_pages) {
3294 largest = total_pages;
3295 prefer = nid;
3296 }
3297
3298 /* Interleave this node? */
3299 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
3300 node_set(nid, interleave_nodes);
3301 }
3302
3303 /* All too small, use the largest */
3304 if (unlikely(nodes_empty(interleave_nodes)))
3305 node_set(prefer, interleave_nodes);
3306
3307 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
3308 pr_err("%s: interleaving failed\n", __func__);
3309
3310 check_numabalancing_enable();
3311 }
3312
3313 /* Reset policy of current process to default */
numa_default_policy(void)3314 void numa_default_policy(void)
3315 {
3316 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
3317 }
3318
3319 /*
3320 * Parse and format mempolicy from/to strings
3321 */
3322 static const char * const policy_modes[] =
3323 {
3324 [MPOL_DEFAULT] = "default",
3325 [MPOL_PREFERRED] = "prefer",
3326 [MPOL_BIND] = "bind",
3327 [MPOL_INTERLEAVE] = "interleave",
3328 [MPOL_WEIGHTED_INTERLEAVE] = "weighted interleave",
3329 [MPOL_LOCAL] = "local",
3330 [MPOL_PREFERRED_MANY] = "prefer (many)",
3331 };
3332
3333 #ifdef CONFIG_TMPFS
3334 /**
3335 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
3336 * @str: string containing mempolicy to parse
3337 * @mpol: pointer to struct mempolicy pointer, returned on success.
3338 *
3339 * Format of input:
3340 * <mode>[=<flags>][:<nodelist>]
3341 *
3342 * Return: %0 on success, else %1
3343 */
mpol_parse_str(char * str,struct mempolicy ** mpol)3344 int mpol_parse_str(char *str, struct mempolicy **mpol)
3345 {
3346 struct mempolicy *new = NULL;
3347 unsigned short mode_flags;
3348 nodemask_t nodes;
3349 char *nodelist = strchr(str, ':');
3350 char *flags = strchr(str, '=');
3351 int err = 1, mode;
3352
3353 if (flags)
3354 *flags++ = '\0'; /* terminate mode string */
3355
3356 if (nodelist) {
3357 /* NUL-terminate mode or flags string */
3358 *nodelist++ = '\0';
3359 if (nodelist_parse(nodelist, nodes))
3360 goto out;
3361 if (!nodes_subset(nodes, node_states[N_MEMORY]))
3362 goto out;
3363 } else
3364 nodes_clear(nodes);
3365
3366 mode = match_string(policy_modes, MPOL_MAX, str);
3367 if (mode < 0)
3368 goto out;
3369
3370 switch (mode) {
3371 case MPOL_PREFERRED:
3372 /*
3373 * Insist on a nodelist of one node only, although later
3374 * we use first_node(nodes) to grab a single node, so here
3375 * nodelist (or nodes) cannot be empty.
3376 */
3377 if (nodelist) {
3378 char *rest = nodelist;
3379 while (isdigit(*rest))
3380 rest++;
3381 if (*rest)
3382 goto out;
3383 if (nodes_empty(nodes))
3384 goto out;
3385 }
3386 break;
3387 case MPOL_INTERLEAVE:
3388 case MPOL_WEIGHTED_INTERLEAVE:
3389 /*
3390 * Default to online nodes with memory if no nodelist
3391 */
3392 if (!nodelist)
3393 nodes = node_states[N_MEMORY];
3394 break;
3395 case MPOL_LOCAL:
3396 /*
3397 * Don't allow a nodelist; mpol_new() checks flags
3398 */
3399 if (nodelist)
3400 goto out;
3401 break;
3402 case MPOL_DEFAULT:
3403 /*
3404 * Insist on a empty nodelist
3405 */
3406 if (!nodelist)
3407 err = 0;
3408 goto out;
3409 case MPOL_PREFERRED_MANY:
3410 case MPOL_BIND:
3411 /*
3412 * Insist on a nodelist
3413 */
3414 if (!nodelist)
3415 goto out;
3416 }
3417
3418 mode_flags = 0;
3419 if (flags) {
3420 /*
3421 * Currently, we only support two mutually exclusive
3422 * mode flags.
3423 */
3424 if (!strcmp(flags, "static"))
3425 mode_flags |= MPOL_F_STATIC_NODES;
3426 else if (!strcmp(flags, "relative"))
3427 mode_flags |= MPOL_F_RELATIVE_NODES;
3428 else
3429 goto out;
3430 }
3431
3432 new = mpol_new(mode, mode_flags, &nodes);
3433 if (IS_ERR(new))
3434 goto out;
3435
3436 /*
3437 * Save nodes for mpol_to_str() to show the tmpfs mount options
3438 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3439 */
3440 if (mode != MPOL_PREFERRED) {
3441 new->nodes = nodes;
3442 } else if (nodelist) {
3443 nodes_clear(new->nodes);
3444 node_set(first_node(nodes), new->nodes);
3445 } else {
3446 new->mode = MPOL_LOCAL;
3447 }
3448
3449 /*
3450 * Save nodes for contextualization: this will be used to "clone"
3451 * the mempolicy in a specific context [cpuset] at a later time.
3452 */
3453 new->w.user_nodemask = nodes;
3454
3455 err = 0;
3456
3457 out:
3458 /* Restore string for error message */
3459 if (nodelist)
3460 *--nodelist = ':';
3461 if (flags)
3462 *--flags = '=';
3463 if (!err)
3464 *mpol = new;
3465 return err;
3466 }
3467 #endif /* CONFIG_TMPFS */
3468
3469 /**
3470 * mpol_to_str - format a mempolicy structure for printing
3471 * @buffer: to contain formatted mempolicy string
3472 * @maxlen: length of @buffer
3473 * @pol: pointer to mempolicy to be formatted
3474 *
3475 * Convert @pol into a string. If @buffer is too short, truncate the string.
3476 * Recommend a @maxlen of at least 51 for the longest mode, "weighted
3477 * interleave", plus the longest flag flags, "relative|balancing", and to
3478 * display at least a few node ids.
3479 */
mpol_to_str(char * buffer,int maxlen,struct mempolicy * pol)3480 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3481 {
3482 char *p = buffer;
3483 nodemask_t nodes = NODE_MASK_NONE;
3484 unsigned short mode = MPOL_DEFAULT;
3485 unsigned short flags = 0;
3486
3487 if (pol &&
3488 pol != &default_policy &&
3489 !(pol >= &preferred_node_policy[0] &&
3490 pol <= &preferred_node_policy[ARRAY_SIZE(preferred_node_policy) - 1])) {
3491 mode = pol->mode;
3492 flags = pol->flags;
3493 }
3494
3495 switch (mode) {
3496 case MPOL_DEFAULT:
3497 case MPOL_LOCAL:
3498 break;
3499 case MPOL_PREFERRED:
3500 case MPOL_PREFERRED_MANY:
3501 case MPOL_BIND:
3502 case MPOL_INTERLEAVE:
3503 case MPOL_WEIGHTED_INTERLEAVE:
3504 nodes = pol->nodes;
3505 break;
3506 default:
3507 WARN_ON_ONCE(1);
3508 snprintf(p, maxlen, "unknown");
3509 return;
3510 }
3511
3512 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3513
3514 if (flags & MPOL_MODE_FLAGS) {
3515 p += snprintf(p, buffer + maxlen - p, "=");
3516
3517 /*
3518 * Static and relative are mutually exclusive.
3519 */
3520 if (flags & MPOL_F_STATIC_NODES)
3521 p += snprintf(p, buffer + maxlen - p, "static");
3522 else if (flags & MPOL_F_RELATIVE_NODES)
3523 p += snprintf(p, buffer + maxlen - p, "relative");
3524
3525 if (flags & MPOL_F_NUMA_BALANCING) {
3526 if (!is_power_of_2(flags & MPOL_MODE_FLAGS))
3527 p += snprintf(p, buffer + maxlen - p, "|");
3528 p += snprintf(p, buffer + maxlen - p, "balancing");
3529 }
3530 }
3531
3532 if (!nodes_empty(nodes))
3533 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3534 nodemask_pr_args(&nodes));
3535 }
3536
3537 #ifdef CONFIG_SYSFS
3538 struct iw_node_attr {
3539 struct kobj_attribute kobj_attr;
3540 int nid;
3541 };
3542
3543 struct sysfs_wi_group {
3544 struct kobject wi_kobj;
3545 struct mutex kobj_lock;
3546 struct iw_node_attr *nattrs[];
3547 };
3548
3549 static struct sysfs_wi_group *wi_group;
3550
node_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3551 static ssize_t node_show(struct kobject *kobj, struct kobj_attribute *attr,
3552 char *buf)
3553 {
3554 struct iw_node_attr *node_attr;
3555 u8 weight;
3556
3557 node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3558 weight = get_il_weight(node_attr->nid);
3559 return sysfs_emit(buf, "%d\n", weight);
3560 }
3561
node_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3562 static ssize_t node_store(struct kobject *kobj, struct kobj_attribute *attr,
3563 const char *buf, size_t count)
3564 {
3565 struct weighted_interleave_state *new_wi_state, *old_wi_state = NULL;
3566 struct iw_node_attr *node_attr;
3567 u8 weight = 0;
3568 int i;
3569
3570 node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3571 if (count == 0 || sysfs_streq(buf, "") ||
3572 kstrtou8(buf, 0, &weight) || weight == 0)
3573 return -EINVAL;
3574
3575 new_wi_state = kzalloc(struct_size(new_wi_state, iw_table, nr_node_ids),
3576 GFP_KERNEL);
3577 if (!new_wi_state)
3578 return -ENOMEM;
3579
3580 mutex_lock(&wi_state_lock);
3581 old_wi_state = rcu_dereference_protected(wi_state,
3582 lockdep_is_held(&wi_state_lock));
3583 if (old_wi_state) {
3584 memcpy(new_wi_state->iw_table, old_wi_state->iw_table,
3585 nr_node_ids * sizeof(u8));
3586 } else {
3587 for (i = 0; i < nr_node_ids; i++)
3588 new_wi_state->iw_table[i] = 1;
3589 }
3590 new_wi_state->iw_table[node_attr->nid] = weight;
3591 new_wi_state->mode_auto = false;
3592
3593 rcu_assign_pointer(wi_state, new_wi_state);
3594 mutex_unlock(&wi_state_lock);
3595 if (old_wi_state) {
3596 synchronize_rcu();
3597 kfree(old_wi_state);
3598 }
3599 return count;
3600 }
3601
weighted_interleave_auto_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3602 static ssize_t weighted_interleave_auto_show(struct kobject *kobj,
3603 struct kobj_attribute *attr, char *buf)
3604 {
3605 struct weighted_interleave_state *state;
3606 bool wi_auto = true;
3607
3608 rcu_read_lock();
3609 state = rcu_dereference(wi_state);
3610 if (state)
3611 wi_auto = state->mode_auto;
3612 rcu_read_unlock();
3613
3614 return sysfs_emit(buf, "%s\n", str_true_false(wi_auto));
3615 }
3616
weighted_interleave_auto_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3617 static ssize_t weighted_interleave_auto_store(struct kobject *kobj,
3618 struct kobj_attribute *attr, const char *buf, size_t count)
3619 {
3620 struct weighted_interleave_state *new_wi_state, *old_wi_state = NULL;
3621 unsigned int *bw;
3622 bool input;
3623 int i;
3624
3625 if (kstrtobool(buf, &input))
3626 return -EINVAL;
3627
3628 new_wi_state = kzalloc(struct_size(new_wi_state, iw_table, nr_node_ids),
3629 GFP_KERNEL);
3630 if (!new_wi_state)
3631 return -ENOMEM;
3632 for (i = 0; i < nr_node_ids; i++)
3633 new_wi_state->iw_table[i] = 1;
3634
3635 mutex_lock(&wi_state_lock);
3636 if (!input) {
3637 old_wi_state = rcu_dereference_protected(wi_state,
3638 lockdep_is_held(&wi_state_lock));
3639 if (!old_wi_state)
3640 goto update_wi_state;
3641 if (input == old_wi_state->mode_auto) {
3642 mutex_unlock(&wi_state_lock);
3643 return count;
3644 }
3645
3646 memcpy(new_wi_state->iw_table, old_wi_state->iw_table,
3647 nr_node_ids * sizeof(u8));
3648 goto update_wi_state;
3649 }
3650
3651 bw = node_bw_table;
3652 if (!bw) {
3653 mutex_unlock(&wi_state_lock);
3654 kfree(new_wi_state);
3655 return -ENODEV;
3656 }
3657
3658 new_wi_state->mode_auto = true;
3659 reduce_interleave_weights(bw, new_wi_state->iw_table);
3660
3661 update_wi_state:
3662 rcu_assign_pointer(wi_state, new_wi_state);
3663 mutex_unlock(&wi_state_lock);
3664 if (old_wi_state) {
3665 synchronize_rcu();
3666 kfree(old_wi_state);
3667 }
3668 return count;
3669 }
3670
sysfs_wi_node_delete(int nid)3671 static void sysfs_wi_node_delete(int nid)
3672 {
3673 struct iw_node_attr *attr;
3674
3675 if (nid < 0 || nid >= nr_node_ids)
3676 return;
3677
3678 mutex_lock(&wi_group->kobj_lock);
3679 attr = wi_group->nattrs[nid];
3680 if (!attr) {
3681 mutex_unlock(&wi_group->kobj_lock);
3682 return;
3683 }
3684
3685 wi_group->nattrs[nid] = NULL;
3686 mutex_unlock(&wi_group->kobj_lock);
3687
3688 sysfs_remove_file(&wi_group->wi_kobj, &attr->kobj_attr.attr);
3689 kfree(attr->kobj_attr.attr.name);
3690 kfree(attr);
3691 }
3692
sysfs_wi_node_delete_all(void)3693 static void sysfs_wi_node_delete_all(void)
3694 {
3695 int nid;
3696
3697 for (nid = 0; nid < nr_node_ids; nid++)
3698 sysfs_wi_node_delete(nid);
3699 }
3700
wi_state_free(void)3701 static void wi_state_free(void)
3702 {
3703 struct weighted_interleave_state *old_wi_state;
3704
3705 mutex_lock(&wi_state_lock);
3706
3707 old_wi_state = rcu_dereference_protected(wi_state,
3708 lockdep_is_held(&wi_state_lock));
3709 if (!old_wi_state) {
3710 mutex_unlock(&wi_state_lock);
3711 return;
3712 }
3713
3714 rcu_assign_pointer(wi_state, NULL);
3715 mutex_unlock(&wi_state_lock);
3716 synchronize_rcu();
3717 kfree(old_wi_state);
3718 }
3719
3720 static struct kobj_attribute wi_auto_attr =
3721 __ATTR(auto, 0664, weighted_interleave_auto_show,
3722 weighted_interleave_auto_store);
3723
wi_cleanup(void)3724 static void wi_cleanup(void) {
3725 sysfs_remove_file(&wi_group->wi_kobj, &wi_auto_attr.attr);
3726 sysfs_wi_node_delete_all();
3727 wi_state_free();
3728 }
3729
wi_kobj_release(struct kobject * wi_kobj)3730 static void wi_kobj_release(struct kobject *wi_kobj)
3731 {
3732 kfree(wi_group);
3733 }
3734
3735 static const struct kobj_type wi_ktype = {
3736 .sysfs_ops = &kobj_sysfs_ops,
3737 .release = wi_kobj_release,
3738 };
3739
sysfs_wi_node_add(int nid)3740 static int sysfs_wi_node_add(int nid)
3741 {
3742 int ret;
3743 char *name;
3744 struct iw_node_attr *new_attr;
3745
3746 if (nid < 0 || nid >= nr_node_ids) {
3747 pr_err("invalid node id: %d\n", nid);
3748 return -EINVAL;
3749 }
3750
3751 new_attr = kzalloc(sizeof(*new_attr), GFP_KERNEL);
3752 if (!new_attr)
3753 return -ENOMEM;
3754
3755 name = kasprintf(GFP_KERNEL, "node%d", nid);
3756 if (!name) {
3757 kfree(new_attr);
3758 return -ENOMEM;
3759 }
3760
3761 sysfs_attr_init(&new_attr->kobj_attr.attr);
3762 new_attr->kobj_attr.attr.name = name;
3763 new_attr->kobj_attr.attr.mode = 0644;
3764 new_attr->kobj_attr.show = node_show;
3765 new_attr->kobj_attr.store = node_store;
3766 new_attr->nid = nid;
3767
3768 mutex_lock(&wi_group->kobj_lock);
3769 if (wi_group->nattrs[nid]) {
3770 mutex_unlock(&wi_group->kobj_lock);
3771 ret = -EEXIST;
3772 goto out;
3773 }
3774
3775 ret = sysfs_create_file(&wi_group->wi_kobj, &new_attr->kobj_attr.attr);
3776 if (ret) {
3777 mutex_unlock(&wi_group->kobj_lock);
3778 goto out;
3779 }
3780 wi_group->nattrs[nid] = new_attr;
3781 mutex_unlock(&wi_group->kobj_lock);
3782 return 0;
3783
3784 out:
3785 kfree(new_attr->kobj_attr.attr.name);
3786 kfree(new_attr);
3787 return ret;
3788 }
3789
wi_node_notifier(struct notifier_block * nb,unsigned long action,void * data)3790 static int wi_node_notifier(struct notifier_block *nb,
3791 unsigned long action, void *data)
3792 {
3793 int err;
3794 struct memory_notify *arg = data;
3795 int nid = arg->status_change_nid;
3796
3797 if (nid < 0)
3798 return NOTIFY_OK;
3799
3800 switch (action) {
3801 case MEM_ONLINE:
3802 err = sysfs_wi_node_add(nid);
3803 if (err)
3804 pr_err("failed to add sysfs for node%d during hotplug: %d\n",
3805 nid, err);
3806 break;
3807 case MEM_OFFLINE:
3808 sysfs_wi_node_delete(nid);
3809 break;
3810 }
3811
3812 return NOTIFY_OK;
3813 }
3814
add_weighted_interleave_group(struct kobject * mempolicy_kobj)3815 static int __init add_weighted_interleave_group(struct kobject *mempolicy_kobj)
3816 {
3817 int nid, err;
3818
3819 wi_group = kzalloc(struct_size(wi_group, nattrs, nr_node_ids),
3820 GFP_KERNEL);
3821 if (!wi_group)
3822 return -ENOMEM;
3823 mutex_init(&wi_group->kobj_lock);
3824
3825 err = kobject_init_and_add(&wi_group->wi_kobj, &wi_ktype, mempolicy_kobj,
3826 "weighted_interleave");
3827 if (err)
3828 goto err_put_kobj;
3829
3830 err = sysfs_create_file(&wi_group->wi_kobj, &wi_auto_attr.attr);
3831 if (err)
3832 goto err_put_kobj;
3833
3834 for_each_online_node(nid) {
3835 if (!node_state(nid, N_MEMORY))
3836 continue;
3837
3838 err = sysfs_wi_node_add(nid);
3839 if (err) {
3840 pr_err("failed to add sysfs for node%d during init: %d\n",
3841 nid, err);
3842 goto err_cleanup_kobj;
3843 }
3844 }
3845
3846 hotplug_memory_notifier(wi_node_notifier, DEFAULT_CALLBACK_PRI);
3847 return 0;
3848
3849 err_cleanup_kobj:
3850 wi_cleanup();
3851 kobject_del(&wi_group->wi_kobj);
3852 err_put_kobj:
3853 kobject_put(&wi_group->wi_kobj);
3854 return err;
3855 }
3856
mempolicy_sysfs_init(void)3857 static int __init mempolicy_sysfs_init(void)
3858 {
3859 int err;
3860 static struct kobject *mempolicy_kobj;
3861
3862 mempolicy_kobj = kobject_create_and_add("mempolicy", mm_kobj);
3863 if (!mempolicy_kobj)
3864 return -ENOMEM;
3865
3866 err = add_weighted_interleave_group(mempolicy_kobj);
3867 if (err)
3868 goto err_kobj;
3869
3870 return 0;
3871
3872 err_kobj:
3873 kobject_del(mempolicy_kobj);
3874 kobject_put(mempolicy_kobj);
3875 return err;
3876 }
3877
3878 late_initcall(mempolicy_sysfs_init);
3879 #endif /* CONFIG_SYSFS */
3880