xref: /linux/mm/memcontrol.c (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/cgroup-defs.h>
29 #include <linux/page_counter.h>
30 #include <linux/memcontrol.h>
31 #include <linux/cgroup.h>
32 #include <linux/cpuset.h>
33 #include <linux/sched/mm.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/hugetlb.h>
36 #include <linux/pagemap.h>
37 #include <linux/pagevec.h>
38 #include <linux/vm_event_item.h>
39 #include <linux/smp.h>
40 #include <linux/page-flags.h>
41 #include <linux/backing-dev.h>
42 #include <linux/bit_spinlock.h>
43 #include <linux/rcupdate.h>
44 #include <linux/limits.h>
45 #include <linux/export.h>
46 #include <linux/list.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swapops.h>
51 #include <linux/spinlock.h>
52 #include <linux/fs.h>
53 #include <linux/seq_file.h>
54 #include <linux/vmpressure.h>
55 #include <linux/memremap.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/resume_user_mode.h>
62 #include <linux/psi.h>
63 #include <linux/seq_buf.h>
64 #include <linux/sched/isolation.h>
65 #include <linux/kmemleak.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "memcontrol-v1.h"
71 
72 #include <linux/uaccess.h>
73 
74 #define CREATE_TRACE_POINTS
75 #include <trace/events/memcg.h>
76 #undef CREATE_TRACE_POINTS
77 
78 #include <trace/events/vmscan.h>
79 
80 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
81 EXPORT_SYMBOL(memory_cgrp_subsys);
82 
83 struct mem_cgroup *root_mem_cgroup __read_mostly;
84 
85 /* Active memory cgroup to use from an interrupt context */
86 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
87 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
88 
89 /* Socket memory accounting disabled? */
90 static bool cgroup_memory_nosocket __ro_after_init;
91 
92 /* Kernel memory accounting disabled? */
93 static bool cgroup_memory_nokmem __ro_after_init;
94 
95 /* BPF memory accounting disabled? */
96 static bool cgroup_memory_nobpf __ro_after_init;
97 
98 static struct kmem_cache *memcg_cachep;
99 static struct kmem_cache *memcg_pn_cachep;
100 
101 #ifdef CONFIG_CGROUP_WRITEBACK
102 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
103 #endif
104 
task_is_dying(void)105 static inline bool task_is_dying(void)
106 {
107 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
108 		(current->flags & PF_EXITING);
109 }
110 
111 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)112 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
113 {
114 	if (!memcg)
115 		memcg = root_mem_cgroup;
116 	return &memcg->vmpressure;
117 }
118 
vmpressure_to_memcg(struct vmpressure * vmpr)119 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
120 {
121 	return container_of(vmpr, struct mem_cgroup, vmpressure);
122 }
123 
124 #define SEQ_BUF_SIZE SZ_4K
125 #define CURRENT_OBJCG_UPDATE_BIT 0
126 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
127 
128 static DEFINE_SPINLOCK(objcg_lock);
129 
mem_cgroup_kmem_disabled(void)130 bool mem_cgroup_kmem_disabled(void)
131 {
132 	return cgroup_memory_nokmem;
133 }
134 
135 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
136 
obj_cgroup_release(struct percpu_ref * ref)137 static void obj_cgroup_release(struct percpu_ref *ref)
138 {
139 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
140 	unsigned int nr_bytes;
141 	unsigned int nr_pages;
142 	unsigned long flags;
143 
144 	/*
145 	 * At this point all allocated objects are freed, and
146 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
147 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
148 	 *
149 	 * The following sequence can lead to it:
150 	 * 1) CPU0: objcg == stock->cached_objcg
151 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
152 	 *          PAGE_SIZE bytes are charged
153 	 * 3) CPU1: a process from another memcg is allocating something,
154 	 *          the stock if flushed,
155 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
156 	 * 5) CPU0: we do release this object,
157 	 *          92 bytes are added to stock->nr_bytes
158 	 * 6) CPU0: stock is flushed,
159 	 *          92 bytes are added to objcg->nr_charged_bytes
160 	 *
161 	 * In the result, nr_charged_bytes == PAGE_SIZE.
162 	 * This page will be uncharged in obj_cgroup_release().
163 	 */
164 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
165 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
166 	nr_pages = nr_bytes >> PAGE_SHIFT;
167 
168 	if (nr_pages) {
169 		struct mem_cgroup *memcg;
170 
171 		memcg = get_mem_cgroup_from_objcg(objcg);
172 		mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
173 		memcg1_account_kmem(memcg, -nr_pages);
174 		if (!mem_cgroup_is_root(memcg))
175 			memcg_uncharge(memcg, nr_pages);
176 		mem_cgroup_put(memcg);
177 	}
178 
179 	spin_lock_irqsave(&objcg_lock, flags);
180 	list_del(&objcg->list);
181 	spin_unlock_irqrestore(&objcg_lock, flags);
182 
183 	percpu_ref_exit(ref);
184 	kfree_rcu(objcg, rcu);
185 }
186 
obj_cgroup_alloc(void)187 static struct obj_cgroup *obj_cgroup_alloc(void)
188 {
189 	struct obj_cgroup *objcg;
190 	int ret;
191 
192 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
193 	if (!objcg)
194 		return NULL;
195 
196 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
197 			      GFP_KERNEL);
198 	if (ret) {
199 		kfree(objcg);
200 		return NULL;
201 	}
202 	INIT_LIST_HEAD(&objcg->list);
203 	return objcg;
204 }
205 
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)206 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
207 				  struct mem_cgroup *parent)
208 {
209 	struct obj_cgroup *objcg, *iter;
210 
211 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
212 
213 	spin_lock_irq(&objcg_lock);
214 
215 	/* 1) Ready to reparent active objcg. */
216 	list_add(&objcg->list, &memcg->objcg_list);
217 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
218 	list_for_each_entry(iter, &memcg->objcg_list, list)
219 		WRITE_ONCE(iter->memcg, parent);
220 	/* 3) Move already reparented objcgs to the parent's list */
221 	list_splice(&memcg->objcg_list, &parent->objcg_list);
222 
223 	spin_unlock_irq(&objcg_lock);
224 
225 	percpu_ref_kill(&objcg->refcnt);
226 }
227 
228 /*
229  * A lot of the calls to the cache allocation functions are expected to be
230  * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
231  * conditional to this static branch, we'll have to allow modules that does
232  * kmem_cache_alloc and the such to see this symbol as well
233  */
234 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
235 EXPORT_SYMBOL(memcg_kmem_online_key);
236 
237 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
238 EXPORT_SYMBOL(memcg_bpf_enabled_key);
239 
240 /**
241  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
242  * @folio: folio of interest
243  *
244  * If memcg is bound to the default hierarchy, css of the memcg associated
245  * with @folio is returned.  The returned css remains associated with @folio
246  * until it is released.
247  *
248  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
249  * is returned.
250  */
mem_cgroup_css_from_folio(struct folio * folio)251 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
252 {
253 	struct mem_cgroup *memcg = folio_memcg(folio);
254 
255 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
256 		memcg = root_mem_cgroup;
257 
258 	return &memcg->css;
259 }
260 
261 /**
262  * page_cgroup_ino - return inode number of the memcg a page is charged to
263  * @page: the page
264  *
265  * Look up the closest online ancestor of the memory cgroup @page is charged to
266  * and return its inode number or 0 if @page is not charged to any cgroup. It
267  * is safe to call this function without holding a reference to @page.
268  *
269  * Note, this function is inherently racy, because there is nothing to prevent
270  * the cgroup inode from getting torn down and potentially reallocated a moment
271  * after page_cgroup_ino() returns, so it only should be used by callers that
272  * do not care (such as procfs interfaces).
273  */
page_cgroup_ino(struct page * page)274 ino_t page_cgroup_ino(struct page *page)
275 {
276 	struct mem_cgroup *memcg;
277 	unsigned long ino = 0;
278 
279 	rcu_read_lock();
280 	/* page_folio() is racy here, but the entire function is racy anyway */
281 	memcg = folio_memcg_check(page_folio(page));
282 
283 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
284 		memcg = parent_mem_cgroup(memcg);
285 	if (memcg)
286 		ino = cgroup_ino(memcg->css.cgroup);
287 	rcu_read_unlock();
288 	return ino;
289 }
290 EXPORT_SYMBOL_GPL(page_cgroup_ino);
291 
292 /* Subset of node_stat_item for memcg stats */
293 static const unsigned int memcg_node_stat_items[] = {
294 	NR_INACTIVE_ANON,
295 	NR_ACTIVE_ANON,
296 	NR_INACTIVE_FILE,
297 	NR_ACTIVE_FILE,
298 	NR_UNEVICTABLE,
299 	NR_SLAB_RECLAIMABLE_B,
300 	NR_SLAB_UNRECLAIMABLE_B,
301 	WORKINGSET_REFAULT_ANON,
302 	WORKINGSET_REFAULT_FILE,
303 	WORKINGSET_ACTIVATE_ANON,
304 	WORKINGSET_ACTIVATE_FILE,
305 	WORKINGSET_RESTORE_ANON,
306 	WORKINGSET_RESTORE_FILE,
307 	WORKINGSET_NODERECLAIM,
308 	NR_ANON_MAPPED,
309 	NR_FILE_MAPPED,
310 	NR_FILE_PAGES,
311 	NR_FILE_DIRTY,
312 	NR_WRITEBACK,
313 	NR_SHMEM,
314 	NR_SHMEM_THPS,
315 	NR_FILE_THPS,
316 	NR_ANON_THPS,
317 	NR_KERNEL_STACK_KB,
318 	NR_PAGETABLE,
319 	NR_SECONDARY_PAGETABLE,
320 #ifdef CONFIG_SWAP
321 	NR_SWAPCACHE,
322 #endif
323 #ifdef CONFIG_NUMA_BALANCING
324 	PGPROMOTE_SUCCESS,
325 #endif
326 	PGDEMOTE_KSWAPD,
327 	PGDEMOTE_DIRECT,
328 	PGDEMOTE_KHUGEPAGED,
329 	PGDEMOTE_PROACTIVE,
330 #ifdef CONFIG_HUGETLB_PAGE
331 	NR_HUGETLB,
332 #endif
333 };
334 
335 static const unsigned int memcg_stat_items[] = {
336 	MEMCG_SWAP,
337 	MEMCG_SOCK,
338 	MEMCG_PERCPU_B,
339 	MEMCG_VMALLOC,
340 	MEMCG_KMEM,
341 	MEMCG_ZSWAP_B,
342 	MEMCG_ZSWAPPED,
343 };
344 
345 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
346 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
347 			   ARRAY_SIZE(memcg_stat_items))
348 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
349 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
350 
init_memcg_stats(void)351 static void init_memcg_stats(void)
352 {
353 	u8 i, j = 0;
354 
355 	BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
356 
357 	memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
358 
359 	for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
360 		mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
361 
362 	for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
363 		mem_cgroup_stats_index[memcg_stat_items[i]] = j;
364 }
365 
memcg_stats_index(int idx)366 static inline int memcg_stats_index(int idx)
367 {
368 	return mem_cgroup_stats_index[idx];
369 }
370 
371 struct lruvec_stats_percpu {
372 	/* Local (CPU and cgroup) state */
373 	long state[NR_MEMCG_NODE_STAT_ITEMS];
374 
375 	/* Delta calculation for lockless upward propagation */
376 	long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
377 };
378 
379 struct lruvec_stats {
380 	/* Aggregated (CPU and subtree) state */
381 	long state[NR_MEMCG_NODE_STAT_ITEMS];
382 
383 	/* Non-hierarchical (CPU aggregated) state */
384 	long state_local[NR_MEMCG_NODE_STAT_ITEMS];
385 
386 	/* Pending child counts during tree propagation */
387 	long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
388 };
389 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)390 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
391 {
392 	struct mem_cgroup_per_node *pn;
393 	long x;
394 	int i;
395 
396 	if (mem_cgroup_disabled())
397 		return node_page_state(lruvec_pgdat(lruvec), idx);
398 
399 	i = memcg_stats_index(idx);
400 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
401 		return 0;
402 
403 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
404 	x = READ_ONCE(pn->lruvec_stats->state[i]);
405 #ifdef CONFIG_SMP
406 	if (x < 0)
407 		x = 0;
408 #endif
409 	return x;
410 }
411 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)412 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
413 				      enum node_stat_item idx)
414 {
415 	struct mem_cgroup_per_node *pn;
416 	long x;
417 	int i;
418 
419 	if (mem_cgroup_disabled())
420 		return node_page_state(lruvec_pgdat(lruvec), idx);
421 
422 	i = memcg_stats_index(idx);
423 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
424 		return 0;
425 
426 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
427 	x = READ_ONCE(pn->lruvec_stats->state_local[i]);
428 #ifdef CONFIG_SMP
429 	if (x < 0)
430 		x = 0;
431 #endif
432 	return x;
433 }
434 
435 /* Subset of vm_event_item to report for memcg event stats */
436 static const unsigned int memcg_vm_event_stat[] = {
437 #ifdef CONFIG_MEMCG_V1
438 	PGPGIN,
439 	PGPGOUT,
440 #endif
441 	PSWPIN,
442 	PSWPOUT,
443 	PGSCAN_KSWAPD,
444 	PGSCAN_DIRECT,
445 	PGSCAN_KHUGEPAGED,
446 	PGSCAN_PROACTIVE,
447 	PGSTEAL_KSWAPD,
448 	PGSTEAL_DIRECT,
449 	PGSTEAL_KHUGEPAGED,
450 	PGSTEAL_PROACTIVE,
451 	PGFAULT,
452 	PGMAJFAULT,
453 	PGREFILL,
454 	PGACTIVATE,
455 	PGDEACTIVATE,
456 	PGLAZYFREE,
457 	PGLAZYFREED,
458 #ifdef CONFIG_SWAP
459 	SWPIN_ZERO,
460 	SWPOUT_ZERO,
461 #endif
462 #ifdef CONFIG_ZSWAP
463 	ZSWPIN,
464 	ZSWPOUT,
465 	ZSWPWB,
466 #endif
467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
468 	THP_FAULT_ALLOC,
469 	THP_COLLAPSE_ALLOC,
470 	THP_SWPOUT,
471 	THP_SWPOUT_FALLBACK,
472 #endif
473 #ifdef CONFIG_NUMA_BALANCING
474 	NUMA_PAGE_MIGRATE,
475 	NUMA_PTE_UPDATES,
476 	NUMA_HINT_FAULTS,
477 #endif
478 };
479 
480 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
481 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
482 
init_memcg_events(void)483 static void init_memcg_events(void)
484 {
485 	u8 i;
486 
487 	BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
488 
489 	memset(mem_cgroup_events_index, U8_MAX,
490 	       sizeof(mem_cgroup_events_index));
491 
492 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
493 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
494 }
495 
memcg_events_index(enum vm_event_item idx)496 static inline int memcg_events_index(enum vm_event_item idx)
497 {
498 	return mem_cgroup_events_index[idx];
499 }
500 
501 struct memcg_vmstats_percpu {
502 	/* Stats updates since the last flush */
503 	unsigned int			stats_updates;
504 
505 	/* Cached pointers for fast iteration in memcg_rstat_updated() */
506 	struct memcg_vmstats_percpu __percpu	*parent_pcpu;
507 	struct memcg_vmstats			*vmstats;
508 
509 	/* The above should fit a single cacheline for memcg_rstat_updated() */
510 
511 	/* Local (CPU and cgroup) page state & events */
512 	long			state[MEMCG_VMSTAT_SIZE];
513 	unsigned long		events[NR_MEMCG_EVENTS];
514 
515 	/* Delta calculation for lockless upward propagation */
516 	long			state_prev[MEMCG_VMSTAT_SIZE];
517 	unsigned long		events_prev[NR_MEMCG_EVENTS];
518 } ____cacheline_aligned;
519 
520 struct memcg_vmstats {
521 	/* Aggregated (CPU and subtree) page state & events */
522 	long			state[MEMCG_VMSTAT_SIZE];
523 	unsigned long		events[NR_MEMCG_EVENTS];
524 
525 	/* Non-hierarchical (CPU aggregated) page state & events */
526 	long			state_local[MEMCG_VMSTAT_SIZE];
527 	unsigned long		events_local[NR_MEMCG_EVENTS];
528 
529 	/* Pending child counts during tree propagation */
530 	long			state_pending[MEMCG_VMSTAT_SIZE];
531 	unsigned long		events_pending[NR_MEMCG_EVENTS];
532 
533 	/* Stats updates since the last flush */
534 	atomic_t		stats_updates;
535 };
536 
537 /*
538  * memcg and lruvec stats flushing
539  *
540  * Many codepaths leading to stats update or read are performance sensitive and
541  * adding stats flushing in such codepaths is not desirable. So, to optimize the
542  * flushing the kernel does:
543  *
544  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
545  *    rstat update tree grow unbounded.
546  *
547  * 2) Flush the stats synchronously on reader side only when there are more than
548  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
549  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
550  *    only for 2 seconds due to (1).
551  */
552 static void flush_memcg_stats_dwork(struct work_struct *w);
553 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
554 static u64 flush_last_time;
555 
556 #define FLUSH_TIME (2UL*HZ)
557 
memcg_vmstats_needs_flush(struct memcg_vmstats * vmstats)558 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
559 {
560 	return atomic_read(&vmstats->stats_updates) >
561 		MEMCG_CHARGE_BATCH * num_online_cpus();
562 }
563 
memcg_rstat_updated(struct mem_cgroup * memcg,int val,int cpu)564 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val,
565 				       int cpu)
566 {
567 	struct memcg_vmstats_percpu __percpu *statc_pcpu;
568 	struct memcg_vmstats_percpu *statc;
569 	unsigned int stats_updates;
570 
571 	if (!val)
572 		return;
573 
574 	css_rstat_updated(&memcg->css, cpu);
575 	statc_pcpu = memcg->vmstats_percpu;
576 	for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) {
577 		statc = this_cpu_ptr(statc_pcpu);
578 		/*
579 		 * If @memcg is already flushable then all its ancestors are
580 		 * flushable as well and also there is no need to increase
581 		 * stats_updates.
582 		 */
583 		if (memcg_vmstats_needs_flush(statc->vmstats))
584 			break;
585 
586 		stats_updates = this_cpu_add_return(statc_pcpu->stats_updates,
587 						    abs(val));
588 		if (stats_updates < MEMCG_CHARGE_BATCH)
589 			continue;
590 
591 		stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0);
592 		atomic_add(stats_updates, &statc->vmstats->stats_updates);
593 	}
594 }
595 
__mem_cgroup_flush_stats(struct mem_cgroup * memcg,bool force)596 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
597 {
598 	bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
599 
600 	trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates),
601 		force, needs_flush);
602 
603 	if (!force && !needs_flush)
604 		return;
605 
606 	if (mem_cgroup_is_root(memcg))
607 		WRITE_ONCE(flush_last_time, jiffies_64);
608 
609 	css_rstat_flush(&memcg->css);
610 }
611 
612 /*
613  * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
614  * @memcg: root of the subtree to flush
615  *
616  * Flushing is serialized by the underlying global rstat lock. There is also a
617  * minimum amount of work to be done even if there are no stat updates to flush.
618  * Hence, we only flush the stats if the updates delta exceeds a threshold. This
619  * avoids unnecessary work and contention on the underlying lock.
620  */
mem_cgroup_flush_stats(struct mem_cgroup * memcg)621 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
622 {
623 	if (mem_cgroup_disabled())
624 		return;
625 
626 	if (!memcg)
627 		memcg = root_mem_cgroup;
628 
629 	__mem_cgroup_flush_stats(memcg, false);
630 }
631 
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)632 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
633 {
634 	/* Only flush if the periodic flusher is one full cycle late */
635 	if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
636 		mem_cgroup_flush_stats(memcg);
637 }
638 
flush_memcg_stats_dwork(struct work_struct * w)639 static void flush_memcg_stats_dwork(struct work_struct *w)
640 {
641 	/*
642 	 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
643 	 * in latency-sensitive paths is as cheap as possible.
644 	 */
645 	__mem_cgroup_flush_stats(root_mem_cgroup, true);
646 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
647 }
648 
memcg_page_state(struct mem_cgroup * memcg,int idx)649 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
650 {
651 	long x;
652 	int i = memcg_stats_index(idx);
653 
654 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
655 		return 0;
656 
657 	x = READ_ONCE(memcg->vmstats->state[i]);
658 #ifdef CONFIG_SMP
659 	if (x < 0)
660 		x = 0;
661 #endif
662 	return x;
663 }
664 
665 static int memcg_page_state_unit(int item);
666 
667 /*
668  * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
669  * up non-zero sub-page updates to 1 page as zero page updates are ignored.
670  */
memcg_state_val_in_pages(int idx,int val)671 static int memcg_state_val_in_pages(int idx, int val)
672 {
673 	int unit = memcg_page_state_unit(idx);
674 
675 	if (!val || unit == PAGE_SIZE)
676 		return val;
677 	else
678 		return max(val * unit / PAGE_SIZE, 1UL);
679 }
680 
681 /**
682  * mod_memcg_state - update cgroup memory statistics
683  * @memcg: the memory cgroup
684  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
685  * @val: delta to add to the counter, can be negative
686  */
mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int val)687 void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
688 		       int val)
689 {
690 	int i = memcg_stats_index(idx);
691 	int cpu;
692 
693 	if (mem_cgroup_disabled())
694 		return;
695 
696 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
697 		return;
698 
699 	cpu = get_cpu();
700 
701 	this_cpu_add(memcg->vmstats_percpu->state[i], val);
702 	val = memcg_state_val_in_pages(idx, val);
703 	memcg_rstat_updated(memcg, val, cpu);
704 	trace_mod_memcg_state(memcg, idx, val);
705 
706 	put_cpu();
707 }
708 
709 #ifdef CONFIG_MEMCG_V1
710 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)711 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
712 {
713 	long x;
714 	int i = memcg_stats_index(idx);
715 
716 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
717 		return 0;
718 
719 	x = READ_ONCE(memcg->vmstats->state_local[i]);
720 #ifdef CONFIG_SMP
721 	if (x < 0)
722 		x = 0;
723 #endif
724 	return x;
725 }
726 #endif
727 
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)728 static void mod_memcg_lruvec_state(struct lruvec *lruvec,
729 				     enum node_stat_item idx,
730 				     int val)
731 {
732 	struct mem_cgroup_per_node *pn;
733 	struct mem_cgroup *memcg;
734 	int i = memcg_stats_index(idx);
735 	int cpu;
736 
737 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
738 		return;
739 
740 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741 	memcg = pn->memcg;
742 
743 	cpu = get_cpu();
744 
745 	/* Update memcg */
746 	this_cpu_add(memcg->vmstats_percpu->state[i], val);
747 
748 	/* Update lruvec */
749 	this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
750 
751 	val = memcg_state_val_in_pages(idx, val);
752 	memcg_rstat_updated(memcg, val, cpu);
753 	trace_mod_memcg_lruvec_state(memcg, idx, val);
754 
755 	put_cpu();
756 }
757 
758 /**
759  * __mod_lruvec_state - update lruvec memory statistics
760  * @lruvec: the lruvec
761  * @idx: the stat item
762  * @val: delta to add to the counter, can be negative
763  *
764  * The lruvec is the intersection of the NUMA node and a cgroup. This
765  * function updates the all three counters that are affected by a
766  * change of state at this level: per-node, per-cgroup, per-lruvec.
767  */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)768 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
769 			int val)
770 {
771 	/* Update node */
772 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
773 
774 	/* Update memcg and lruvec */
775 	if (!mem_cgroup_disabled())
776 		mod_memcg_lruvec_state(lruvec, idx, val);
777 }
778 
__lruvec_stat_mod_folio(struct folio * folio,enum node_stat_item idx,int val)779 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
780 			     int val)
781 {
782 	struct mem_cgroup *memcg;
783 	pg_data_t *pgdat = folio_pgdat(folio);
784 	struct lruvec *lruvec;
785 
786 	rcu_read_lock();
787 	memcg = folio_memcg(folio);
788 	/* Untracked pages have no memcg, no lruvec. Update only the node */
789 	if (!memcg) {
790 		rcu_read_unlock();
791 		__mod_node_page_state(pgdat, idx, val);
792 		return;
793 	}
794 
795 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
796 	__mod_lruvec_state(lruvec, idx, val);
797 	rcu_read_unlock();
798 }
799 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
800 
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)801 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
802 {
803 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
804 	struct mem_cgroup *memcg;
805 	struct lruvec *lruvec;
806 
807 	rcu_read_lock();
808 	memcg = mem_cgroup_from_slab_obj(p);
809 
810 	/*
811 	 * Untracked pages have no memcg, no lruvec. Update only the
812 	 * node. If we reparent the slab objects to the root memcg,
813 	 * when we free the slab object, we need to update the per-memcg
814 	 * vmstats to keep it correct for the root memcg.
815 	 */
816 	if (!memcg) {
817 		__mod_node_page_state(pgdat, idx, val);
818 	} else {
819 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
820 		__mod_lruvec_state(lruvec, idx, val);
821 	}
822 	rcu_read_unlock();
823 }
824 
825 /**
826  * count_memcg_events - account VM events in a cgroup
827  * @memcg: the memory cgroup
828  * @idx: the event item
829  * @count: the number of events that occurred
830  */
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)831 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
832 			  unsigned long count)
833 {
834 	int i = memcg_events_index(idx);
835 	int cpu;
836 
837 	if (mem_cgroup_disabled())
838 		return;
839 
840 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
841 		return;
842 
843 	cpu = get_cpu();
844 
845 	this_cpu_add(memcg->vmstats_percpu->events[i], count);
846 	memcg_rstat_updated(memcg, count, cpu);
847 	trace_count_memcg_events(memcg, idx, count);
848 
849 	put_cpu();
850 }
851 
memcg_events(struct mem_cgroup * memcg,int event)852 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
853 {
854 	int i = memcg_events_index(event);
855 
856 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
857 		return 0;
858 
859 	return READ_ONCE(memcg->vmstats->events[i]);
860 }
861 
862 #ifdef CONFIG_MEMCG_V1
memcg_events_local(struct mem_cgroup * memcg,int event)863 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
864 {
865 	int i = memcg_events_index(event);
866 
867 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
868 		return 0;
869 
870 	return READ_ONCE(memcg->vmstats->events_local[i]);
871 }
872 #endif
873 
mem_cgroup_from_task(struct task_struct * p)874 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
875 {
876 	/*
877 	 * mm_update_next_owner() may clear mm->owner to NULL
878 	 * if it races with swapoff, page migration, etc.
879 	 * So this can be called with p == NULL.
880 	 */
881 	if (unlikely(!p))
882 		return NULL;
883 
884 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
885 }
886 EXPORT_SYMBOL(mem_cgroup_from_task);
887 
active_memcg(void)888 static __always_inline struct mem_cgroup *active_memcg(void)
889 {
890 	if (!in_task())
891 		return this_cpu_read(int_active_memcg);
892 	else
893 		return current->active_memcg;
894 }
895 
896 /**
897  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
898  * @mm: mm from which memcg should be extracted. It can be NULL.
899  *
900  * Obtain a reference on mm->memcg and returns it if successful. If mm
901  * is NULL, then the memcg is chosen as follows:
902  * 1) The active memcg, if set.
903  * 2) current->mm->memcg, if available
904  * 3) root memcg
905  * If mem_cgroup is disabled, NULL is returned.
906  */
get_mem_cgroup_from_mm(struct mm_struct * mm)907 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
908 {
909 	struct mem_cgroup *memcg;
910 
911 	if (mem_cgroup_disabled())
912 		return NULL;
913 
914 	/*
915 	 * Page cache insertions can happen without an
916 	 * actual mm context, e.g. during disk probing
917 	 * on boot, loopback IO, acct() writes etc.
918 	 *
919 	 * No need to css_get on root memcg as the reference
920 	 * counting is disabled on the root level in the
921 	 * cgroup core. See CSS_NO_REF.
922 	 */
923 	if (unlikely(!mm)) {
924 		memcg = active_memcg();
925 		if (unlikely(memcg)) {
926 			/* remote memcg must hold a ref */
927 			css_get(&memcg->css);
928 			return memcg;
929 		}
930 		mm = current->mm;
931 		if (unlikely(!mm))
932 			return root_mem_cgroup;
933 	}
934 
935 	rcu_read_lock();
936 	do {
937 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
938 		if (unlikely(!memcg))
939 			memcg = root_mem_cgroup;
940 	} while (!css_tryget(&memcg->css));
941 	rcu_read_unlock();
942 	return memcg;
943 }
944 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
945 
946 /**
947  * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
948  */
get_mem_cgroup_from_current(void)949 struct mem_cgroup *get_mem_cgroup_from_current(void)
950 {
951 	struct mem_cgroup *memcg;
952 
953 	if (mem_cgroup_disabled())
954 		return NULL;
955 
956 again:
957 	rcu_read_lock();
958 	memcg = mem_cgroup_from_task(current);
959 	if (!css_tryget(&memcg->css)) {
960 		rcu_read_unlock();
961 		goto again;
962 	}
963 	rcu_read_unlock();
964 	return memcg;
965 }
966 
967 /**
968  * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
969  * @folio: folio from which memcg should be extracted.
970  */
get_mem_cgroup_from_folio(struct folio * folio)971 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
972 {
973 	struct mem_cgroup *memcg = folio_memcg(folio);
974 
975 	if (mem_cgroup_disabled())
976 		return NULL;
977 
978 	rcu_read_lock();
979 	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
980 		memcg = root_mem_cgroup;
981 	rcu_read_unlock();
982 	return memcg;
983 }
984 
985 /**
986  * mem_cgroup_iter - iterate over memory cgroup hierarchy
987  * @root: hierarchy root
988  * @prev: previously returned memcg, NULL on first invocation
989  * @reclaim: cookie for shared reclaim walks, NULL for full walks
990  *
991  * Returns references to children of the hierarchy below @root, or
992  * @root itself, or %NULL after a full round-trip.
993  *
994  * Caller must pass the return value in @prev on subsequent
995  * invocations for reference counting, or use mem_cgroup_iter_break()
996  * to cancel a hierarchy walk before the round-trip is complete.
997  *
998  * Reclaimers can specify a node in @reclaim to divide up the memcgs
999  * in the hierarchy among all concurrent reclaimers operating on the
1000  * same node.
1001  */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1002 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1003 				   struct mem_cgroup *prev,
1004 				   struct mem_cgroup_reclaim_cookie *reclaim)
1005 {
1006 	struct mem_cgroup_reclaim_iter *iter;
1007 	struct cgroup_subsys_state *css;
1008 	struct mem_cgroup *pos;
1009 	struct mem_cgroup *next;
1010 
1011 	if (mem_cgroup_disabled())
1012 		return NULL;
1013 
1014 	if (!root)
1015 		root = root_mem_cgroup;
1016 
1017 	rcu_read_lock();
1018 restart:
1019 	next = NULL;
1020 
1021 	if (reclaim) {
1022 		int gen;
1023 		int nid = reclaim->pgdat->node_id;
1024 
1025 		iter = &root->nodeinfo[nid]->iter;
1026 		gen = atomic_read(&iter->generation);
1027 
1028 		/*
1029 		 * On start, join the current reclaim iteration cycle.
1030 		 * Exit when a concurrent walker completes it.
1031 		 */
1032 		if (!prev)
1033 			reclaim->generation = gen;
1034 		else if (reclaim->generation != gen)
1035 			goto out_unlock;
1036 
1037 		pos = READ_ONCE(iter->position);
1038 	} else
1039 		pos = prev;
1040 
1041 	css = pos ? &pos->css : NULL;
1042 
1043 	while ((css = css_next_descendant_pre(css, &root->css))) {
1044 		/*
1045 		 * Verify the css and acquire a reference.  The root
1046 		 * is provided by the caller, so we know it's alive
1047 		 * and kicking, and don't take an extra reference.
1048 		 */
1049 		if (css == &root->css || css_tryget(css))
1050 			break;
1051 	}
1052 
1053 	next = mem_cgroup_from_css(css);
1054 
1055 	if (reclaim) {
1056 		/*
1057 		 * The position could have already been updated by a competing
1058 		 * thread, so check that the value hasn't changed since we read
1059 		 * it to avoid reclaiming from the same cgroup twice.
1060 		 */
1061 		if (cmpxchg(&iter->position, pos, next) != pos) {
1062 			if (css && css != &root->css)
1063 				css_put(css);
1064 			goto restart;
1065 		}
1066 
1067 		if (!next) {
1068 			atomic_inc(&iter->generation);
1069 
1070 			/*
1071 			 * Reclaimers share the hierarchy walk, and a
1072 			 * new one might jump in right at the end of
1073 			 * the hierarchy - make sure they see at least
1074 			 * one group and restart from the beginning.
1075 			 */
1076 			if (!prev)
1077 				goto restart;
1078 		}
1079 	}
1080 
1081 out_unlock:
1082 	rcu_read_unlock();
1083 	if (prev && prev != root)
1084 		css_put(&prev->css);
1085 
1086 	return next;
1087 }
1088 
1089 /**
1090  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1091  * @root: hierarchy root
1092  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1093  */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1094 void mem_cgroup_iter_break(struct mem_cgroup *root,
1095 			   struct mem_cgroup *prev)
1096 {
1097 	if (!root)
1098 		root = root_mem_cgroup;
1099 	if (prev && prev != root)
1100 		css_put(&prev->css);
1101 }
1102 
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1103 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1104 					struct mem_cgroup *dead_memcg)
1105 {
1106 	struct mem_cgroup_reclaim_iter *iter;
1107 	struct mem_cgroup_per_node *mz;
1108 	int nid;
1109 
1110 	for_each_node(nid) {
1111 		mz = from->nodeinfo[nid];
1112 		iter = &mz->iter;
1113 		cmpxchg(&iter->position, dead_memcg, NULL);
1114 	}
1115 }
1116 
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1117 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1118 {
1119 	struct mem_cgroup *memcg = dead_memcg;
1120 	struct mem_cgroup *last;
1121 
1122 	do {
1123 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1124 		last = memcg;
1125 	} while ((memcg = parent_mem_cgroup(memcg)));
1126 
1127 	/*
1128 	 * When cgroup1 non-hierarchy mode is used,
1129 	 * parent_mem_cgroup() does not walk all the way up to the
1130 	 * cgroup root (root_mem_cgroup). So we have to handle
1131 	 * dead_memcg from cgroup root separately.
1132 	 */
1133 	if (!mem_cgroup_is_root(last))
1134 		__invalidate_reclaim_iterators(root_mem_cgroup,
1135 						dead_memcg);
1136 }
1137 
1138 /**
1139  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1140  * @memcg: hierarchy root
1141  * @fn: function to call for each task
1142  * @arg: argument passed to @fn
1143  *
1144  * This function iterates over tasks attached to @memcg or to any of its
1145  * descendants and calls @fn for each task. If @fn returns a non-zero
1146  * value, the function breaks the iteration loop. Otherwise, it will iterate
1147  * over all tasks and return 0.
1148  *
1149  * This function must not be called for the root memory cgroup.
1150  */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1151 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1152 			   int (*fn)(struct task_struct *, void *), void *arg)
1153 {
1154 	struct mem_cgroup *iter;
1155 	int ret = 0;
1156 
1157 	BUG_ON(mem_cgroup_is_root(memcg));
1158 
1159 	for_each_mem_cgroup_tree(iter, memcg) {
1160 		struct css_task_iter it;
1161 		struct task_struct *task;
1162 
1163 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1164 		while (!ret && (task = css_task_iter_next(&it))) {
1165 			ret = fn(task, arg);
1166 			/* Avoid potential softlockup warning */
1167 			cond_resched();
1168 		}
1169 		css_task_iter_end(&it);
1170 		if (ret) {
1171 			mem_cgroup_iter_break(memcg, iter);
1172 			break;
1173 		}
1174 	}
1175 }
1176 
1177 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1178 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1179 {
1180 	struct mem_cgroup *memcg;
1181 
1182 	if (mem_cgroup_disabled())
1183 		return;
1184 
1185 	memcg = folio_memcg(folio);
1186 
1187 	if (!memcg)
1188 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1189 	else
1190 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1191 }
1192 #endif
1193 
1194 /**
1195  * folio_lruvec_lock - Lock the lruvec for a folio.
1196  * @folio: Pointer to the folio.
1197  *
1198  * These functions are safe to use under any of the following conditions:
1199  * - folio locked
1200  * - folio_test_lru false
1201  * - folio frozen (refcount of 0)
1202  *
1203  * Return: The lruvec this folio is on with its lock held.
1204  */
folio_lruvec_lock(struct folio * folio)1205 struct lruvec *folio_lruvec_lock(struct folio *folio)
1206 {
1207 	struct lruvec *lruvec = folio_lruvec(folio);
1208 
1209 	spin_lock(&lruvec->lru_lock);
1210 	lruvec_memcg_debug(lruvec, folio);
1211 
1212 	return lruvec;
1213 }
1214 
1215 /**
1216  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1217  * @folio: Pointer to the folio.
1218  *
1219  * These functions are safe to use under any of the following conditions:
1220  * - folio locked
1221  * - folio_test_lru false
1222  * - folio frozen (refcount of 0)
1223  *
1224  * Return: The lruvec this folio is on with its lock held and interrupts
1225  * disabled.
1226  */
folio_lruvec_lock_irq(struct folio * folio)1227 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1228 {
1229 	struct lruvec *lruvec = folio_lruvec(folio);
1230 
1231 	spin_lock_irq(&lruvec->lru_lock);
1232 	lruvec_memcg_debug(lruvec, folio);
1233 
1234 	return lruvec;
1235 }
1236 
1237 /**
1238  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1239  * @folio: Pointer to the folio.
1240  * @flags: Pointer to irqsave flags.
1241  *
1242  * These functions are safe to use under any of the following conditions:
1243  * - folio locked
1244  * - folio_test_lru false
1245  * - folio frozen (refcount of 0)
1246  *
1247  * Return: The lruvec this folio is on with its lock held and interrupts
1248  * disabled.
1249  */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1250 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1251 		unsigned long *flags)
1252 {
1253 	struct lruvec *lruvec = folio_lruvec(folio);
1254 
1255 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1256 	lruvec_memcg_debug(lruvec, folio);
1257 
1258 	return lruvec;
1259 }
1260 
1261 /**
1262  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1263  * @lruvec: mem_cgroup per zone lru vector
1264  * @lru: index of lru list the page is sitting on
1265  * @zid: zone id of the accounted pages
1266  * @nr_pages: positive when adding or negative when removing
1267  *
1268  * This function must be called under lru_lock, just before a page is added
1269  * to or just after a page is removed from an lru list.
1270  */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1271 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1272 				int zid, int nr_pages)
1273 {
1274 	struct mem_cgroup_per_node *mz;
1275 	unsigned long *lru_size;
1276 	long size;
1277 
1278 	if (mem_cgroup_disabled())
1279 		return;
1280 
1281 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1282 	lru_size = &mz->lru_zone_size[zid][lru];
1283 
1284 	if (nr_pages < 0)
1285 		*lru_size += nr_pages;
1286 
1287 	size = *lru_size;
1288 	if (WARN_ONCE(size < 0,
1289 		"%s(%p, %d, %d): lru_size %ld\n",
1290 		__func__, lruvec, lru, nr_pages, size)) {
1291 		VM_BUG_ON(1);
1292 		*lru_size = 0;
1293 	}
1294 
1295 	if (nr_pages > 0)
1296 		*lru_size += nr_pages;
1297 }
1298 
1299 /**
1300  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1301  * @memcg: the memory cgroup
1302  *
1303  * Returns the maximum amount of memory @mem can be charged with, in
1304  * pages.
1305  */
mem_cgroup_margin(struct mem_cgroup * memcg)1306 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1307 {
1308 	unsigned long margin = 0;
1309 	unsigned long count;
1310 	unsigned long limit;
1311 
1312 	count = page_counter_read(&memcg->memory);
1313 	limit = READ_ONCE(memcg->memory.max);
1314 	if (count < limit)
1315 		margin = limit - count;
1316 
1317 	if (do_memsw_account()) {
1318 		count = page_counter_read(&memcg->memsw);
1319 		limit = READ_ONCE(memcg->memsw.max);
1320 		if (count < limit)
1321 			margin = min(margin, limit - count);
1322 		else
1323 			margin = 0;
1324 	}
1325 
1326 	return margin;
1327 }
1328 
1329 struct memory_stat {
1330 	const char *name;
1331 	unsigned int idx;
1332 };
1333 
1334 static const struct memory_stat memory_stats[] = {
1335 	{ "anon",			NR_ANON_MAPPED			},
1336 	{ "file",			NR_FILE_PAGES			},
1337 	{ "kernel",			MEMCG_KMEM			},
1338 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1339 	{ "pagetables",			NR_PAGETABLE			},
1340 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1341 	{ "percpu",			MEMCG_PERCPU_B			},
1342 	{ "sock",			MEMCG_SOCK			},
1343 	{ "vmalloc",			MEMCG_VMALLOC			},
1344 	{ "shmem",			NR_SHMEM			},
1345 #ifdef CONFIG_ZSWAP
1346 	{ "zswap",			MEMCG_ZSWAP_B			},
1347 	{ "zswapped",			MEMCG_ZSWAPPED			},
1348 #endif
1349 	{ "file_mapped",		NR_FILE_MAPPED			},
1350 	{ "file_dirty",			NR_FILE_DIRTY			},
1351 	{ "file_writeback",		NR_WRITEBACK			},
1352 #ifdef CONFIG_SWAP
1353 	{ "swapcached",			NR_SWAPCACHE			},
1354 #endif
1355 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1356 	{ "anon_thp",			NR_ANON_THPS			},
1357 	{ "file_thp",			NR_FILE_THPS			},
1358 	{ "shmem_thp",			NR_SHMEM_THPS			},
1359 #endif
1360 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1361 	{ "active_anon",		NR_ACTIVE_ANON			},
1362 	{ "inactive_file",		NR_INACTIVE_FILE		},
1363 	{ "active_file",		NR_ACTIVE_FILE			},
1364 	{ "unevictable",		NR_UNEVICTABLE			},
1365 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1366 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1367 #ifdef CONFIG_HUGETLB_PAGE
1368 	{ "hugetlb",			NR_HUGETLB			},
1369 #endif
1370 
1371 	/* The memory events */
1372 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1373 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1374 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1375 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1376 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1377 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1378 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1379 
1380 	{ "pgdemote_kswapd",		PGDEMOTE_KSWAPD		},
1381 	{ "pgdemote_direct",		PGDEMOTE_DIRECT		},
1382 	{ "pgdemote_khugepaged",	PGDEMOTE_KHUGEPAGED	},
1383 	{ "pgdemote_proactive",		PGDEMOTE_PROACTIVE	},
1384 #ifdef CONFIG_NUMA_BALANCING
1385 	{ "pgpromote_success",		PGPROMOTE_SUCCESS	},
1386 #endif
1387 };
1388 
1389 /* The actual unit of the state item, not the same as the output unit */
memcg_page_state_unit(int item)1390 static int memcg_page_state_unit(int item)
1391 {
1392 	switch (item) {
1393 	case MEMCG_PERCPU_B:
1394 	case MEMCG_ZSWAP_B:
1395 	case NR_SLAB_RECLAIMABLE_B:
1396 	case NR_SLAB_UNRECLAIMABLE_B:
1397 		return 1;
1398 	case NR_KERNEL_STACK_KB:
1399 		return SZ_1K;
1400 	default:
1401 		return PAGE_SIZE;
1402 	}
1403 }
1404 
1405 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_output_unit(int item)1406 static int memcg_page_state_output_unit(int item)
1407 {
1408 	/*
1409 	 * Workingset state is actually in pages, but we export it to userspace
1410 	 * as a scalar count of events, so special case it here.
1411 	 *
1412 	 * Demotion and promotion activities are exported in pages, consistent
1413 	 * with their global counterparts.
1414 	 */
1415 	switch (item) {
1416 	case WORKINGSET_REFAULT_ANON:
1417 	case WORKINGSET_REFAULT_FILE:
1418 	case WORKINGSET_ACTIVATE_ANON:
1419 	case WORKINGSET_ACTIVATE_FILE:
1420 	case WORKINGSET_RESTORE_ANON:
1421 	case WORKINGSET_RESTORE_FILE:
1422 	case WORKINGSET_NODERECLAIM:
1423 	case PGDEMOTE_KSWAPD:
1424 	case PGDEMOTE_DIRECT:
1425 	case PGDEMOTE_KHUGEPAGED:
1426 	case PGDEMOTE_PROACTIVE:
1427 #ifdef CONFIG_NUMA_BALANCING
1428 	case PGPROMOTE_SUCCESS:
1429 #endif
1430 		return 1;
1431 	default:
1432 		return memcg_page_state_unit(item);
1433 	}
1434 }
1435 
memcg_page_state_output(struct mem_cgroup * memcg,int item)1436 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1437 {
1438 	return memcg_page_state(memcg, item) *
1439 		memcg_page_state_output_unit(item);
1440 }
1441 
1442 #ifdef CONFIG_MEMCG_V1
memcg_page_state_local_output(struct mem_cgroup * memcg,int item)1443 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1444 {
1445 	return memcg_page_state_local(memcg, item) *
1446 		memcg_page_state_output_unit(item);
1447 }
1448 #endif
1449 
1450 #ifdef CONFIG_HUGETLB_PAGE
memcg_accounts_hugetlb(void)1451 static bool memcg_accounts_hugetlb(void)
1452 {
1453 	return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1454 }
1455 #else /* CONFIG_HUGETLB_PAGE */
memcg_accounts_hugetlb(void)1456 static bool memcg_accounts_hugetlb(void)
1457 {
1458 	return false;
1459 }
1460 #endif /* CONFIG_HUGETLB_PAGE */
1461 
memcg_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1462 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1463 {
1464 	int i;
1465 
1466 	/*
1467 	 * Provide statistics on the state of the memory subsystem as
1468 	 * well as cumulative event counters that show past behavior.
1469 	 *
1470 	 * This list is ordered following a combination of these gradients:
1471 	 * 1) generic big picture -> specifics and details
1472 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1473 	 *
1474 	 * Current memory state:
1475 	 */
1476 	mem_cgroup_flush_stats(memcg);
1477 
1478 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1479 		u64 size;
1480 
1481 #ifdef CONFIG_HUGETLB_PAGE
1482 		if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1483 			!memcg_accounts_hugetlb())
1484 			continue;
1485 #endif
1486 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1487 		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1488 
1489 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1490 			size += memcg_page_state_output(memcg,
1491 							NR_SLAB_RECLAIMABLE_B);
1492 			seq_buf_printf(s, "slab %llu\n", size);
1493 		}
1494 	}
1495 
1496 	/* Accumulated memory events */
1497 	seq_buf_printf(s, "pgscan %lu\n",
1498 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1499 		       memcg_events(memcg, PGSCAN_DIRECT) +
1500 		       memcg_events(memcg, PGSCAN_PROACTIVE) +
1501 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1502 	seq_buf_printf(s, "pgsteal %lu\n",
1503 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1504 		       memcg_events(memcg, PGSTEAL_DIRECT) +
1505 		       memcg_events(memcg, PGSTEAL_PROACTIVE) +
1506 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1507 
1508 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1509 #ifdef CONFIG_MEMCG_V1
1510 		if (memcg_vm_event_stat[i] == PGPGIN ||
1511 		    memcg_vm_event_stat[i] == PGPGOUT)
1512 			continue;
1513 #endif
1514 		seq_buf_printf(s, "%s %lu\n",
1515 			       vm_event_name(memcg_vm_event_stat[i]),
1516 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1517 	}
1518 }
1519 
memory_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1520 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1521 {
1522 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1523 		memcg_stat_format(memcg, s);
1524 	else
1525 		memcg1_stat_format(memcg, s);
1526 	if (seq_buf_has_overflowed(s))
1527 		pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1528 }
1529 
1530 /**
1531  * mem_cgroup_print_oom_context: Print OOM information relevant to
1532  * memory controller.
1533  * @memcg: The memory cgroup that went over limit
1534  * @p: Task that is going to be killed
1535  *
1536  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1537  * enabled
1538  */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1539 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1540 {
1541 	rcu_read_lock();
1542 
1543 	if (memcg) {
1544 		pr_cont(",oom_memcg=");
1545 		pr_cont_cgroup_path(memcg->css.cgroup);
1546 	} else
1547 		pr_cont(",global_oom");
1548 	if (p) {
1549 		pr_cont(",task_memcg=");
1550 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1551 	}
1552 	rcu_read_unlock();
1553 }
1554 
1555 /**
1556  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1557  * memory controller.
1558  * @memcg: The memory cgroup that went over limit
1559  */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1560 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1561 {
1562 	/* Use static buffer, for the caller is holding oom_lock. */
1563 	static char buf[SEQ_BUF_SIZE];
1564 	struct seq_buf s;
1565 	unsigned long memory_failcnt;
1566 
1567 	lockdep_assert_held(&oom_lock);
1568 
1569 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1570 		memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]);
1571 	else
1572 		memory_failcnt = memcg->memory.failcnt;
1573 
1574 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1575 		K((u64)page_counter_read(&memcg->memory)),
1576 		K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt);
1577 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1578 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1579 			K((u64)page_counter_read(&memcg->swap)),
1580 			K((u64)READ_ONCE(memcg->swap.max)),
1581 			atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
1582 #ifdef CONFIG_MEMCG_V1
1583 	else {
1584 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1585 			K((u64)page_counter_read(&memcg->memsw)),
1586 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1587 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1588 			K((u64)page_counter_read(&memcg->kmem)),
1589 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1590 	}
1591 #endif
1592 
1593 	pr_info("Memory cgroup stats for ");
1594 	pr_cont_cgroup_path(memcg->css.cgroup);
1595 	pr_cont(":");
1596 	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1597 	memory_stat_format(memcg, &s);
1598 	seq_buf_do_printk(&s, KERN_INFO);
1599 }
1600 
1601 /*
1602  * Return the memory (and swap, if configured) limit for a memcg.
1603  */
mem_cgroup_get_max(struct mem_cgroup * memcg)1604 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1605 {
1606 	unsigned long max = READ_ONCE(memcg->memory.max);
1607 
1608 	if (do_memsw_account()) {
1609 		if (mem_cgroup_swappiness(memcg)) {
1610 			/* Calculate swap excess capacity from memsw limit */
1611 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1612 
1613 			max += min(swap, (unsigned long)total_swap_pages);
1614 		}
1615 	} else {
1616 		if (mem_cgroup_swappiness(memcg))
1617 			max += min(READ_ONCE(memcg->swap.max),
1618 				   (unsigned long)total_swap_pages);
1619 	}
1620 	return max;
1621 }
1622 
mem_cgroup_size(struct mem_cgroup * memcg)1623 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1624 {
1625 	return page_counter_read(&memcg->memory);
1626 }
1627 
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1628 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1629 				     int order)
1630 {
1631 	struct oom_control oc = {
1632 		.zonelist = NULL,
1633 		.nodemask = NULL,
1634 		.memcg = memcg,
1635 		.gfp_mask = gfp_mask,
1636 		.order = order,
1637 	};
1638 	bool ret = true;
1639 
1640 	if (mutex_lock_killable(&oom_lock))
1641 		return true;
1642 
1643 	if (mem_cgroup_margin(memcg) >= (1 << order))
1644 		goto unlock;
1645 
1646 	/*
1647 	 * A few threads which were not waiting at mutex_lock_killable() can
1648 	 * fail to bail out. Therefore, check again after holding oom_lock.
1649 	 */
1650 	ret = out_of_memory(&oc);
1651 
1652 unlock:
1653 	mutex_unlock(&oom_lock);
1654 	return ret;
1655 }
1656 
1657 /*
1658  * Returns true if successfully killed one or more processes. Though in some
1659  * corner cases it can return true even without killing any process.
1660  */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1661 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1662 {
1663 	bool locked, ret;
1664 
1665 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1666 		return false;
1667 
1668 	memcg_memory_event(memcg, MEMCG_OOM);
1669 
1670 	if (!memcg1_oom_prepare(memcg, &locked))
1671 		return false;
1672 
1673 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1674 
1675 	memcg1_oom_finish(memcg, locked);
1676 
1677 	return ret;
1678 }
1679 
1680 /**
1681  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1682  * @victim: task to be killed by the OOM killer
1683  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1684  *
1685  * Returns a pointer to a memory cgroup, which has to be cleaned up
1686  * by killing all belonging OOM-killable tasks.
1687  *
1688  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1689  */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1690 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1691 					    struct mem_cgroup *oom_domain)
1692 {
1693 	struct mem_cgroup *oom_group = NULL;
1694 	struct mem_cgroup *memcg;
1695 
1696 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1697 		return NULL;
1698 
1699 	if (!oom_domain)
1700 		oom_domain = root_mem_cgroup;
1701 
1702 	rcu_read_lock();
1703 
1704 	memcg = mem_cgroup_from_task(victim);
1705 	if (mem_cgroup_is_root(memcg))
1706 		goto out;
1707 
1708 	/*
1709 	 * If the victim task has been asynchronously moved to a different
1710 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1711 	 * In this case it's better to ignore memory.group.oom.
1712 	 */
1713 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1714 		goto out;
1715 
1716 	/*
1717 	 * Traverse the memory cgroup hierarchy from the victim task's
1718 	 * cgroup up to the OOMing cgroup (or root) to find the
1719 	 * highest-level memory cgroup with oom.group set.
1720 	 */
1721 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1722 		if (READ_ONCE(memcg->oom_group))
1723 			oom_group = memcg;
1724 
1725 		if (memcg == oom_domain)
1726 			break;
1727 	}
1728 
1729 	if (oom_group)
1730 		css_get(&oom_group->css);
1731 out:
1732 	rcu_read_unlock();
1733 
1734 	return oom_group;
1735 }
1736 
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1737 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1738 {
1739 	pr_info("Tasks in ");
1740 	pr_cont_cgroup_path(memcg->css.cgroup);
1741 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1742 }
1743 
1744 /*
1745  * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their
1746  * nr_pages in a single cacheline. This may change in future.
1747  */
1748 #define NR_MEMCG_STOCK 7
1749 #define FLUSHING_CACHED_CHARGE	0
1750 struct memcg_stock_pcp {
1751 	local_trylock_t lock;
1752 	uint8_t nr_pages[NR_MEMCG_STOCK];
1753 	struct mem_cgroup *cached[NR_MEMCG_STOCK];
1754 
1755 	struct work_struct work;
1756 	unsigned long flags;
1757 };
1758 
1759 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = {
1760 	.lock = INIT_LOCAL_TRYLOCK(lock),
1761 };
1762 
1763 struct obj_stock_pcp {
1764 	local_trylock_t lock;
1765 	unsigned int nr_bytes;
1766 	struct obj_cgroup *cached_objcg;
1767 	struct pglist_data *cached_pgdat;
1768 	int nr_slab_reclaimable_b;
1769 	int nr_slab_unreclaimable_b;
1770 
1771 	struct work_struct work;
1772 	unsigned long flags;
1773 };
1774 
1775 static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = {
1776 	.lock = INIT_LOCAL_TRYLOCK(lock),
1777 };
1778 
1779 static DEFINE_MUTEX(percpu_charge_mutex);
1780 
1781 static void drain_obj_stock(struct obj_stock_pcp *stock);
1782 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
1783 				     struct mem_cgroup *root_memcg);
1784 
1785 /**
1786  * consume_stock: Try to consume stocked charge on this cpu.
1787  * @memcg: memcg to consume from.
1788  * @nr_pages: how many pages to charge.
1789  *
1790  * Consume the cached charge if enough nr_pages are present otherwise return
1791  * failure. Also return failure for charge request larger than
1792  * MEMCG_CHARGE_BATCH or if the local lock is already taken.
1793  *
1794  * returns true if successful, false otherwise.
1795  */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1796 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1797 {
1798 	struct memcg_stock_pcp *stock;
1799 	uint8_t stock_pages;
1800 	bool ret = false;
1801 	int i;
1802 
1803 	if (nr_pages > MEMCG_CHARGE_BATCH ||
1804 	    !local_trylock(&memcg_stock.lock))
1805 		return ret;
1806 
1807 	stock = this_cpu_ptr(&memcg_stock);
1808 
1809 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1810 		if (memcg != READ_ONCE(stock->cached[i]))
1811 			continue;
1812 
1813 		stock_pages = READ_ONCE(stock->nr_pages[i]);
1814 		if (stock_pages >= nr_pages) {
1815 			WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages);
1816 			ret = true;
1817 		}
1818 		break;
1819 	}
1820 
1821 	local_unlock(&memcg_stock.lock);
1822 
1823 	return ret;
1824 }
1825 
memcg_uncharge(struct mem_cgroup * memcg,unsigned int nr_pages)1826 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
1827 {
1828 	page_counter_uncharge(&memcg->memory, nr_pages);
1829 	if (do_memsw_account())
1830 		page_counter_uncharge(&memcg->memsw, nr_pages);
1831 }
1832 
1833 /*
1834  * Returns stocks cached in percpu and reset cached information.
1835  */
drain_stock(struct memcg_stock_pcp * stock,int i)1836 static void drain_stock(struct memcg_stock_pcp *stock, int i)
1837 {
1838 	struct mem_cgroup *old = READ_ONCE(stock->cached[i]);
1839 	uint8_t stock_pages;
1840 
1841 	if (!old)
1842 		return;
1843 
1844 	stock_pages = READ_ONCE(stock->nr_pages[i]);
1845 	if (stock_pages) {
1846 		memcg_uncharge(old, stock_pages);
1847 		WRITE_ONCE(stock->nr_pages[i], 0);
1848 	}
1849 
1850 	css_put(&old->css);
1851 	WRITE_ONCE(stock->cached[i], NULL);
1852 }
1853 
drain_stock_fully(struct memcg_stock_pcp * stock)1854 static void drain_stock_fully(struct memcg_stock_pcp *stock)
1855 {
1856 	int i;
1857 
1858 	for (i = 0; i < NR_MEMCG_STOCK; ++i)
1859 		drain_stock(stock, i);
1860 }
1861 
drain_local_memcg_stock(struct work_struct * dummy)1862 static void drain_local_memcg_stock(struct work_struct *dummy)
1863 {
1864 	struct memcg_stock_pcp *stock;
1865 
1866 	if (WARN_ONCE(!in_task(), "drain in non-task context"))
1867 		return;
1868 
1869 	local_lock(&memcg_stock.lock);
1870 
1871 	stock = this_cpu_ptr(&memcg_stock);
1872 	drain_stock_fully(stock);
1873 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1874 
1875 	local_unlock(&memcg_stock.lock);
1876 }
1877 
drain_local_obj_stock(struct work_struct * dummy)1878 static void drain_local_obj_stock(struct work_struct *dummy)
1879 {
1880 	struct obj_stock_pcp *stock;
1881 
1882 	if (WARN_ONCE(!in_task(), "drain in non-task context"))
1883 		return;
1884 
1885 	local_lock(&obj_stock.lock);
1886 
1887 	stock = this_cpu_ptr(&obj_stock);
1888 	drain_obj_stock(stock);
1889 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1890 
1891 	local_unlock(&obj_stock.lock);
1892 }
1893 
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1894 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1895 {
1896 	struct memcg_stock_pcp *stock;
1897 	struct mem_cgroup *cached;
1898 	uint8_t stock_pages;
1899 	bool success = false;
1900 	int empty_slot = -1;
1901 	int i;
1902 
1903 	/*
1904 	 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we
1905 	 * decide to increase it more than 127 then we will need more careful
1906 	 * handling of nr_pages[] in struct memcg_stock_pcp.
1907 	 */
1908 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX);
1909 
1910 	VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg));
1911 
1912 	if (nr_pages > MEMCG_CHARGE_BATCH ||
1913 	    !local_trylock(&memcg_stock.lock)) {
1914 		/*
1915 		 * In case of larger than batch refill or unlikely failure to
1916 		 * lock the percpu memcg_stock.lock, uncharge memcg directly.
1917 		 */
1918 		memcg_uncharge(memcg, nr_pages);
1919 		return;
1920 	}
1921 
1922 	stock = this_cpu_ptr(&memcg_stock);
1923 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1924 		cached = READ_ONCE(stock->cached[i]);
1925 		if (!cached && empty_slot == -1)
1926 			empty_slot = i;
1927 		if (memcg == READ_ONCE(stock->cached[i])) {
1928 			stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages;
1929 			WRITE_ONCE(stock->nr_pages[i], stock_pages);
1930 			if (stock_pages > MEMCG_CHARGE_BATCH)
1931 				drain_stock(stock, i);
1932 			success = true;
1933 			break;
1934 		}
1935 	}
1936 
1937 	if (!success) {
1938 		i = empty_slot;
1939 		if (i == -1) {
1940 			i = get_random_u32_below(NR_MEMCG_STOCK);
1941 			drain_stock(stock, i);
1942 		}
1943 		css_get(&memcg->css);
1944 		WRITE_ONCE(stock->cached[i], memcg);
1945 		WRITE_ONCE(stock->nr_pages[i], nr_pages);
1946 	}
1947 
1948 	local_unlock(&memcg_stock.lock);
1949 }
1950 
is_memcg_drain_needed(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)1951 static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock,
1952 				  struct mem_cgroup *root_memcg)
1953 {
1954 	struct mem_cgroup *memcg;
1955 	bool flush = false;
1956 	int i;
1957 
1958 	rcu_read_lock();
1959 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1960 		memcg = READ_ONCE(stock->cached[i]);
1961 		if (!memcg)
1962 			continue;
1963 
1964 		if (READ_ONCE(stock->nr_pages[i]) &&
1965 		    mem_cgroup_is_descendant(memcg, root_memcg)) {
1966 			flush = true;
1967 			break;
1968 		}
1969 	}
1970 	rcu_read_unlock();
1971 	return flush;
1972 }
1973 
1974 /*
1975  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1976  * of the hierarchy under it.
1977  */
drain_all_stock(struct mem_cgroup * root_memcg)1978 void drain_all_stock(struct mem_cgroup *root_memcg)
1979 {
1980 	int cpu, curcpu;
1981 
1982 	/* If someone's already draining, avoid adding running more workers. */
1983 	if (!mutex_trylock(&percpu_charge_mutex))
1984 		return;
1985 	/*
1986 	 * Notify other cpus that system-wide "drain" is running
1987 	 * We do not care about races with the cpu hotplug because cpu down
1988 	 * as well as workers from this path always operate on the local
1989 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1990 	 */
1991 	migrate_disable();
1992 	curcpu = smp_processor_id();
1993 	for_each_online_cpu(cpu) {
1994 		struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu);
1995 		struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu);
1996 
1997 		if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) &&
1998 		    is_memcg_drain_needed(memcg_st, root_memcg) &&
1999 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2000 				      &memcg_st->flags)) {
2001 			if (cpu == curcpu)
2002 				drain_local_memcg_stock(&memcg_st->work);
2003 			else if (!cpu_is_isolated(cpu))
2004 				schedule_work_on(cpu, &memcg_st->work);
2005 		}
2006 
2007 		if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) &&
2008 		    obj_stock_flush_required(obj_st, root_memcg) &&
2009 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2010 				      &obj_st->flags)) {
2011 			if (cpu == curcpu)
2012 				drain_local_obj_stock(&obj_st->work);
2013 			else if (!cpu_is_isolated(cpu))
2014 				schedule_work_on(cpu, &obj_st->work);
2015 		}
2016 	}
2017 	migrate_enable();
2018 	mutex_unlock(&percpu_charge_mutex);
2019 }
2020 
memcg_hotplug_cpu_dead(unsigned int cpu)2021 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2022 {
2023 	/* no need for the local lock */
2024 	drain_obj_stock(&per_cpu(obj_stock, cpu));
2025 	drain_stock_fully(&per_cpu(memcg_stock, cpu));
2026 
2027 	return 0;
2028 }
2029 
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2030 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2031 				  unsigned int nr_pages,
2032 				  gfp_t gfp_mask)
2033 {
2034 	unsigned long nr_reclaimed = 0;
2035 
2036 	do {
2037 		unsigned long pflags;
2038 
2039 		if (page_counter_read(&memcg->memory) <=
2040 		    READ_ONCE(memcg->memory.high))
2041 			continue;
2042 
2043 		memcg_memory_event(memcg, MEMCG_HIGH);
2044 
2045 		psi_memstall_enter(&pflags);
2046 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2047 							gfp_mask,
2048 							MEMCG_RECLAIM_MAY_SWAP,
2049 							NULL);
2050 		psi_memstall_leave(&pflags);
2051 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2052 		 !mem_cgroup_is_root(memcg));
2053 
2054 	return nr_reclaimed;
2055 }
2056 
high_work_func(struct work_struct * work)2057 static void high_work_func(struct work_struct *work)
2058 {
2059 	struct mem_cgroup *memcg;
2060 
2061 	memcg = container_of(work, struct mem_cgroup, high_work);
2062 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2063 }
2064 
2065 /*
2066  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2067  * enough to still cause a significant slowdown in most cases, while still
2068  * allowing diagnostics and tracing to proceed without becoming stuck.
2069  */
2070 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2071 
2072 /*
2073  * When calculating the delay, we use these either side of the exponentiation to
2074  * maintain precision and scale to a reasonable number of jiffies (see the table
2075  * below.
2076  *
2077  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2078  *   overage ratio to a delay.
2079  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2080  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2081  *   to produce a reasonable delay curve.
2082  *
2083  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2084  * reasonable delay curve compared to precision-adjusted overage, not
2085  * penalising heavily at first, but still making sure that growth beyond the
2086  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2087  * example, with a high of 100 megabytes:
2088  *
2089  *  +-------+------------------------+
2090  *  | usage | time to allocate in ms |
2091  *  +-------+------------------------+
2092  *  | 100M  |                      0 |
2093  *  | 101M  |                      6 |
2094  *  | 102M  |                     25 |
2095  *  | 103M  |                     57 |
2096  *  | 104M  |                    102 |
2097  *  | 105M  |                    159 |
2098  *  | 106M  |                    230 |
2099  *  | 107M  |                    313 |
2100  *  | 108M  |                    409 |
2101  *  | 109M  |                    518 |
2102  *  | 110M  |                    639 |
2103  *  | 111M  |                    774 |
2104  *  | 112M  |                    921 |
2105  *  | 113M  |                   1081 |
2106  *  | 114M  |                   1254 |
2107  *  | 115M  |                   1439 |
2108  *  | 116M  |                   1638 |
2109  *  | 117M  |                   1849 |
2110  *  | 118M  |                   2000 |
2111  *  | 119M  |                   2000 |
2112  *  | 120M  |                   2000 |
2113  *  +-------+------------------------+
2114  */
2115  #define MEMCG_DELAY_PRECISION_SHIFT 20
2116  #define MEMCG_DELAY_SCALING_SHIFT 14
2117 
calculate_overage(unsigned long usage,unsigned long high)2118 static u64 calculate_overage(unsigned long usage, unsigned long high)
2119 {
2120 	u64 overage;
2121 
2122 	if (usage <= high)
2123 		return 0;
2124 
2125 	/*
2126 	 * Prevent division by 0 in overage calculation by acting as if
2127 	 * it was a threshold of 1 page
2128 	 */
2129 	high = max(high, 1UL);
2130 
2131 	overage = usage - high;
2132 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2133 	return div64_u64(overage, high);
2134 }
2135 
mem_find_max_overage(struct mem_cgroup * memcg)2136 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2137 {
2138 	u64 overage, max_overage = 0;
2139 
2140 	do {
2141 		overage = calculate_overage(page_counter_read(&memcg->memory),
2142 					    READ_ONCE(memcg->memory.high));
2143 		max_overage = max(overage, max_overage);
2144 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2145 		 !mem_cgroup_is_root(memcg));
2146 
2147 	return max_overage;
2148 }
2149 
swap_find_max_overage(struct mem_cgroup * memcg)2150 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2151 {
2152 	u64 overage, max_overage = 0;
2153 
2154 	do {
2155 		overage = calculate_overage(page_counter_read(&memcg->swap),
2156 					    READ_ONCE(memcg->swap.high));
2157 		if (overage)
2158 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2159 		max_overage = max(overage, max_overage);
2160 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2161 		 !mem_cgroup_is_root(memcg));
2162 
2163 	return max_overage;
2164 }
2165 
2166 /*
2167  * Get the number of jiffies that we should penalise a mischievous cgroup which
2168  * is exceeding its memory.high by checking both it and its ancestors.
2169  */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2170 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2171 					  unsigned int nr_pages,
2172 					  u64 max_overage)
2173 {
2174 	unsigned long penalty_jiffies;
2175 
2176 	if (!max_overage)
2177 		return 0;
2178 
2179 	/*
2180 	 * We use overage compared to memory.high to calculate the number of
2181 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2182 	 * fairly lenient on small overages, and increasingly harsh when the
2183 	 * memcg in question makes it clear that it has no intention of stopping
2184 	 * its crazy behaviour, so we exponentially increase the delay based on
2185 	 * overage amount.
2186 	 */
2187 	penalty_jiffies = max_overage * max_overage * HZ;
2188 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2189 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2190 
2191 	/*
2192 	 * Factor in the task's own contribution to the overage, such that four
2193 	 * N-sized allocations are throttled approximately the same as one
2194 	 * 4N-sized allocation.
2195 	 *
2196 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2197 	 * larger the current charge patch is than that.
2198 	 */
2199 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2200 }
2201 
2202 /*
2203  * Reclaims memory over the high limit. Called directly from
2204  * try_charge() (context permitting), as well as from the userland
2205  * return path where reclaim is always able to block.
2206  */
__mem_cgroup_handle_over_high(gfp_t gfp_mask)2207 void __mem_cgroup_handle_over_high(gfp_t gfp_mask)
2208 {
2209 	unsigned long penalty_jiffies;
2210 	unsigned long pflags;
2211 	unsigned long nr_reclaimed;
2212 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2213 	int nr_retries = MAX_RECLAIM_RETRIES;
2214 	struct mem_cgroup *memcg;
2215 	bool in_retry = false;
2216 
2217 	memcg = get_mem_cgroup_from_mm(current->mm);
2218 	current->memcg_nr_pages_over_high = 0;
2219 
2220 retry_reclaim:
2221 	/*
2222 	 * Bail if the task is already exiting. Unlike memory.max,
2223 	 * memory.high enforcement isn't as strict, and there is no
2224 	 * OOM killer involved, which means the excess could already
2225 	 * be much bigger (and still growing) than it could for
2226 	 * memory.max; the dying task could get stuck in fruitless
2227 	 * reclaim for a long time, which isn't desirable.
2228 	 */
2229 	if (task_is_dying())
2230 		goto out;
2231 
2232 	/*
2233 	 * The allocating task should reclaim at least the batch size, but for
2234 	 * subsequent retries we only want to do what's necessary to prevent oom
2235 	 * or breaching resource isolation.
2236 	 *
2237 	 * This is distinct from memory.max or page allocator behaviour because
2238 	 * memory.high is currently batched, whereas memory.max and the page
2239 	 * allocator run every time an allocation is made.
2240 	 */
2241 	nr_reclaimed = reclaim_high(memcg,
2242 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2243 				    gfp_mask);
2244 
2245 	/*
2246 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2247 	 * allocators proactively to slow down excessive growth.
2248 	 */
2249 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2250 					       mem_find_max_overage(memcg));
2251 
2252 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2253 						swap_find_max_overage(memcg));
2254 
2255 	/*
2256 	 * Clamp the max delay per usermode return so as to still keep the
2257 	 * application moving forwards and also permit diagnostics, albeit
2258 	 * extremely slowly.
2259 	 */
2260 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2261 
2262 	/*
2263 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2264 	 * that it's not even worth doing, in an attempt to be nice to those who
2265 	 * go only a small amount over their memory.high value and maybe haven't
2266 	 * been aggressively reclaimed enough yet.
2267 	 */
2268 	if (penalty_jiffies <= HZ / 100)
2269 		goto out;
2270 
2271 	/*
2272 	 * If reclaim is making forward progress but we're still over
2273 	 * memory.high, we want to encourage that rather than doing allocator
2274 	 * throttling.
2275 	 */
2276 	if (nr_reclaimed || nr_retries--) {
2277 		in_retry = true;
2278 		goto retry_reclaim;
2279 	}
2280 
2281 	/*
2282 	 * Reclaim didn't manage to push usage below the limit, slow
2283 	 * this allocating task down.
2284 	 *
2285 	 * If we exit early, we're guaranteed to die (since
2286 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2287 	 * need to account for any ill-begotten jiffies to pay them off later.
2288 	 */
2289 	psi_memstall_enter(&pflags);
2290 	schedule_timeout_killable(penalty_jiffies);
2291 	psi_memstall_leave(&pflags);
2292 
2293 out:
2294 	css_put(&memcg->css);
2295 }
2296 
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2297 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2298 			    unsigned int nr_pages)
2299 {
2300 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2301 	int nr_retries = MAX_RECLAIM_RETRIES;
2302 	struct mem_cgroup *mem_over_limit;
2303 	struct page_counter *counter;
2304 	unsigned long nr_reclaimed;
2305 	bool passed_oom = false;
2306 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2307 	bool drained = false;
2308 	bool raised_max_event = false;
2309 	unsigned long pflags;
2310 
2311 retry:
2312 	if (consume_stock(memcg, nr_pages))
2313 		return 0;
2314 
2315 	if (!gfpflags_allow_spinning(gfp_mask))
2316 		/* Avoid the refill and flush of the older stock */
2317 		batch = nr_pages;
2318 
2319 	if (!do_memsw_account() ||
2320 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2321 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2322 			goto done_restock;
2323 		if (do_memsw_account())
2324 			page_counter_uncharge(&memcg->memsw, batch);
2325 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2326 	} else {
2327 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2328 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2329 	}
2330 
2331 	if (batch > nr_pages) {
2332 		batch = nr_pages;
2333 		goto retry;
2334 	}
2335 
2336 	/*
2337 	 * Prevent unbounded recursion when reclaim operations need to
2338 	 * allocate memory. This might exceed the limits temporarily,
2339 	 * but we prefer facilitating memory reclaim and getting back
2340 	 * under the limit over triggering OOM kills in these cases.
2341 	 */
2342 	if (unlikely(current->flags & PF_MEMALLOC))
2343 		goto force;
2344 
2345 	if (unlikely(task_in_memcg_oom(current)))
2346 		goto nomem;
2347 
2348 	if (!gfpflags_allow_blocking(gfp_mask))
2349 		goto nomem;
2350 
2351 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2352 	raised_max_event = true;
2353 
2354 	psi_memstall_enter(&pflags);
2355 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2356 						    gfp_mask, reclaim_options, NULL);
2357 	psi_memstall_leave(&pflags);
2358 
2359 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2360 		goto retry;
2361 
2362 	if (!drained) {
2363 		drain_all_stock(mem_over_limit);
2364 		drained = true;
2365 		goto retry;
2366 	}
2367 
2368 	if (gfp_mask & __GFP_NORETRY)
2369 		goto nomem;
2370 	/*
2371 	 * Even though the limit is exceeded at this point, reclaim
2372 	 * may have been able to free some pages.  Retry the charge
2373 	 * before killing the task.
2374 	 *
2375 	 * Only for regular pages, though: huge pages are rather
2376 	 * unlikely to succeed so close to the limit, and we fall back
2377 	 * to regular pages anyway in case of failure.
2378 	 */
2379 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2380 		goto retry;
2381 
2382 	if (nr_retries--)
2383 		goto retry;
2384 
2385 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2386 		goto nomem;
2387 
2388 	/* Avoid endless loop for tasks bypassed by the oom killer */
2389 	if (passed_oom && task_is_dying())
2390 		goto nomem;
2391 
2392 	/*
2393 	 * keep retrying as long as the memcg oom killer is able to make
2394 	 * a forward progress or bypass the charge if the oom killer
2395 	 * couldn't make any progress.
2396 	 */
2397 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2398 			   get_order(nr_pages * PAGE_SIZE))) {
2399 		passed_oom = true;
2400 		nr_retries = MAX_RECLAIM_RETRIES;
2401 		goto retry;
2402 	}
2403 nomem:
2404 	/*
2405 	 * Memcg doesn't have a dedicated reserve for atomic
2406 	 * allocations. But like the global atomic pool, we need to
2407 	 * put the burden of reclaim on regular allocation requests
2408 	 * and let these go through as privileged allocations.
2409 	 */
2410 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2411 		return -ENOMEM;
2412 force:
2413 	/*
2414 	 * If the allocation has to be enforced, don't forget to raise
2415 	 * a MEMCG_MAX event.
2416 	 */
2417 	if (!raised_max_event)
2418 		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2419 
2420 	/*
2421 	 * The allocation either can't fail or will lead to more memory
2422 	 * being freed very soon.  Allow memory usage go over the limit
2423 	 * temporarily by force charging it.
2424 	 */
2425 	page_counter_charge(&memcg->memory, nr_pages);
2426 	if (do_memsw_account())
2427 		page_counter_charge(&memcg->memsw, nr_pages);
2428 
2429 	return 0;
2430 
2431 done_restock:
2432 	if (batch > nr_pages)
2433 		refill_stock(memcg, batch - nr_pages);
2434 
2435 	/*
2436 	 * If the hierarchy is above the normal consumption range, schedule
2437 	 * reclaim on returning to userland.  We can perform reclaim here
2438 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2439 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2440 	 * not recorded as it most likely matches current's and won't
2441 	 * change in the meantime.  As high limit is checked again before
2442 	 * reclaim, the cost of mismatch is negligible.
2443 	 */
2444 	do {
2445 		bool mem_high, swap_high;
2446 
2447 		mem_high = page_counter_read(&memcg->memory) >
2448 			READ_ONCE(memcg->memory.high);
2449 		swap_high = page_counter_read(&memcg->swap) >
2450 			READ_ONCE(memcg->swap.high);
2451 
2452 		/* Don't bother a random interrupted task */
2453 		if (!in_task()) {
2454 			if (mem_high) {
2455 				schedule_work(&memcg->high_work);
2456 				break;
2457 			}
2458 			continue;
2459 		}
2460 
2461 		if (mem_high || swap_high) {
2462 			/*
2463 			 * The allocating tasks in this cgroup will need to do
2464 			 * reclaim or be throttled to prevent further growth
2465 			 * of the memory or swap footprints.
2466 			 *
2467 			 * Target some best-effort fairness between the tasks,
2468 			 * and distribute reclaim work and delay penalties
2469 			 * based on how much each task is actually allocating.
2470 			 */
2471 			current->memcg_nr_pages_over_high += batch;
2472 			set_notify_resume(current);
2473 			break;
2474 		}
2475 	} while ((memcg = parent_mem_cgroup(memcg)));
2476 
2477 	/*
2478 	 * Reclaim is set up above to be called from the userland
2479 	 * return path. But also attempt synchronous reclaim to avoid
2480 	 * excessive overrun while the task is still inside the
2481 	 * kernel. If this is successful, the return path will see it
2482 	 * when it rechecks the overage and simply bail out.
2483 	 */
2484 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2485 	    !(current->flags & PF_MEMALLOC) &&
2486 	    gfpflags_allow_blocking(gfp_mask))
2487 		__mem_cgroup_handle_over_high(gfp_mask);
2488 	return 0;
2489 }
2490 
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2491 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2492 			     unsigned int nr_pages)
2493 {
2494 	if (mem_cgroup_is_root(memcg))
2495 		return 0;
2496 
2497 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2498 }
2499 
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2500 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2501 {
2502 	VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2503 	/*
2504 	 * Any of the following ensures page's memcg stability:
2505 	 *
2506 	 * - the page lock
2507 	 * - LRU isolation
2508 	 * - exclusive reference
2509 	 */
2510 	folio->memcg_data = (unsigned long)memcg;
2511 }
2512 
2513 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
account_slab_nmi_safe(struct mem_cgroup * memcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2514 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2515 					 struct pglist_data *pgdat,
2516 					 enum node_stat_item idx, int nr)
2517 {
2518 	struct lruvec *lruvec;
2519 
2520 	if (likely(!in_nmi())) {
2521 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
2522 		mod_memcg_lruvec_state(lruvec, idx, nr);
2523 	} else {
2524 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id];
2525 
2526 		/* preemption is disabled in_nmi(). */
2527 		css_rstat_updated(&memcg->css, smp_processor_id());
2528 		if (idx == NR_SLAB_RECLAIMABLE_B)
2529 			atomic_add(nr, &pn->slab_reclaimable);
2530 		else
2531 			atomic_add(nr, &pn->slab_unreclaimable);
2532 	}
2533 }
2534 #else
account_slab_nmi_safe(struct mem_cgroup * memcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2535 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2536 					 struct pglist_data *pgdat,
2537 					 enum node_stat_item idx, int nr)
2538 {
2539 	struct lruvec *lruvec;
2540 
2541 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2542 	mod_memcg_lruvec_state(lruvec, idx, nr);
2543 }
2544 #endif
2545 
mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2546 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2547 				       struct pglist_data *pgdat,
2548 				       enum node_stat_item idx, int nr)
2549 {
2550 	struct mem_cgroup *memcg;
2551 
2552 	rcu_read_lock();
2553 	memcg = obj_cgroup_memcg(objcg);
2554 	account_slab_nmi_safe(memcg, pgdat, idx, nr);
2555 	rcu_read_unlock();
2556 }
2557 
2558 static __always_inline
mem_cgroup_from_obj_folio(struct folio * folio,void * p)2559 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2560 {
2561 	/*
2562 	 * Slab objects are accounted individually, not per-page.
2563 	 * Memcg membership data for each individual object is saved in
2564 	 * slab->obj_exts.
2565 	 */
2566 	if (folio_test_slab(folio)) {
2567 		struct slabobj_ext *obj_exts;
2568 		struct slab *slab;
2569 		unsigned int off;
2570 
2571 		slab = folio_slab(folio);
2572 		obj_exts = slab_obj_exts(slab);
2573 		if (!obj_exts)
2574 			return NULL;
2575 
2576 		off = obj_to_index(slab->slab_cache, slab, p);
2577 		if (obj_exts[off].objcg)
2578 			return obj_cgroup_memcg(obj_exts[off].objcg);
2579 
2580 		return NULL;
2581 	}
2582 
2583 	/*
2584 	 * folio_memcg_check() is used here, because in theory we can encounter
2585 	 * a folio where the slab flag has been cleared already, but
2586 	 * slab->obj_exts has not been freed yet
2587 	 * folio_memcg_check() will guarantee that a proper memory
2588 	 * cgroup pointer or NULL will be returned.
2589 	 */
2590 	return folio_memcg_check(folio);
2591 }
2592 
2593 /*
2594  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2595  * It is not suitable for objects allocated using vmalloc().
2596  *
2597  * A passed kernel object must be a slab object or a generic kernel page.
2598  *
2599  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2600  * cgroup_mutex, etc.
2601  */
mem_cgroup_from_slab_obj(void * p)2602 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2603 {
2604 	if (mem_cgroup_disabled())
2605 		return NULL;
2606 
2607 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2608 }
2609 
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)2610 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2611 {
2612 	struct obj_cgroup *objcg = NULL;
2613 
2614 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2615 		objcg = rcu_dereference(memcg->objcg);
2616 		if (likely(objcg && obj_cgroup_tryget(objcg)))
2617 			break;
2618 		objcg = NULL;
2619 	}
2620 	return objcg;
2621 }
2622 
current_objcg_update(void)2623 static struct obj_cgroup *current_objcg_update(void)
2624 {
2625 	struct mem_cgroup *memcg;
2626 	struct obj_cgroup *old, *objcg = NULL;
2627 
2628 	do {
2629 		/* Atomically drop the update bit. */
2630 		old = xchg(&current->objcg, NULL);
2631 		if (old) {
2632 			old = (struct obj_cgroup *)
2633 				((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2634 			obj_cgroup_put(old);
2635 
2636 			old = NULL;
2637 		}
2638 
2639 		/* If new objcg is NULL, no reason for the second atomic update. */
2640 		if (!current->mm || (current->flags & PF_KTHREAD))
2641 			return NULL;
2642 
2643 		/*
2644 		 * Release the objcg pointer from the previous iteration,
2645 		 * if try_cmpxcg() below fails.
2646 		 */
2647 		if (unlikely(objcg)) {
2648 			obj_cgroup_put(objcg);
2649 			objcg = NULL;
2650 		}
2651 
2652 		/*
2653 		 * Obtain the new objcg pointer. The current task can be
2654 		 * asynchronously moved to another memcg and the previous
2655 		 * memcg can be offlined. So let's get the memcg pointer
2656 		 * and try get a reference to objcg under a rcu read lock.
2657 		 */
2658 
2659 		rcu_read_lock();
2660 		memcg = mem_cgroup_from_task(current);
2661 		objcg = __get_obj_cgroup_from_memcg(memcg);
2662 		rcu_read_unlock();
2663 
2664 		/*
2665 		 * Try set up a new objcg pointer atomically. If it
2666 		 * fails, it means the update flag was set concurrently, so
2667 		 * the whole procedure should be repeated.
2668 		 */
2669 	} while (!try_cmpxchg(&current->objcg, &old, objcg));
2670 
2671 	return objcg;
2672 }
2673 
current_obj_cgroup(void)2674 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2675 {
2676 	struct mem_cgroup *memcg;
2677 	struct obj_cgroup *objcg;
2678 
2679 	if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi())
2680 		return NULL;
2681 
2682 	if (in_task()) {
2683 		memcg = current->active_memcg;
2684 		if (unlikely(memcg))
2685 			goto from_memcg;
2686 
2687 		objcg = READ_ONCE(current->objcg);
2688 		if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2689 			objcg = current_objcg_update();
2690 		/*
2691 		 * Objcg reference is kept by the task, so it's safe
2692 		 * to use the objcg by the current task.
2693 		 */
2694 		return objcg;
2695 	}
2696 
2697 	memcg = this_cpu_read(int_active_memcg);
2698 	if (unlikely(memcg))
2699 		goto from_memcg;
2700 
2701 	return NULL;
2702 
2703 from_memcg:
2704 	objcg = NULL;
2705 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2706 		/*
2707 		 * Memcg pointer is protected by scope (see set_active_memcg())
2708 		 * and is pinning the corresponding objcg, so objcg can't go
2709 		 * away and can be used within the scope without any additional
2710 		 * protection.
2711 		 */
2712 		objcg = rcu_dereference_check(memcg->objcg, 1);
2713 		if (likely(objcg))
2714 			break;
2715 	}
2716 
2717 	return objcg;
2718 }
2719 
get_obj_cgroup_from_folio(struct folio * folio)2720 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2721 {
2722 	struct obj_cgroup *objcg;
2723 
2724 	if (!memcg_kmem_online())
2725 		return NULL;
2726 
2727 	if (folio_memcg_kmem(folio)) {
2728 		objcg = __folio_objcg(folio);
2729 		obj_cgroup_get(objcg);
2730 	} else {
2731 		struct mem_cgroup *memcg;
2732 
2733 		rcu_read_lock();
2734 		memcg = __folio_memcg(folio);
2735 		if (memcg)
2736 			objcg = __get_obj_cgroup_from_memcg(memcg);
2737 		else
2738 			objcg = NULL;
2739 		rcu_read_unlock();
2740 	}
2741 	return objcg;
2742 }
2743 
2744 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
account_kmem_nmi_safe(struct mem_cgroup * memcg,int val)2745 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2746 {
2747 	if (likely(!in_nmi())) {
2748 		mod_memcg_state(memcg, MEMCG_KMEM, val);
2749 	} else {
2750 		/* preemption is disabled in_nmi(). */
2751 		css_rstat_updated(&memcg->css, smp_processor_id());
2752 		atomic_add(val, &memcg->kmem_stat);
2753 	}
2754 }
2755 #else
account_kmem_nmi_safe(struct mem_cgroup * memcg,int val)2756 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2757 {
2758 	mod_memcg_state(memcg, MEMCG_KMEM, val);
2759 }
2760 #endif
2761 
2762 /*
2763  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2764  * @objcg: object cgroup to uncharge
2765  * @nr_pages: number of pages to uncharge
2766  */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)2767 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2768 				      unsigned int nr_pages)
2769 {
2770 	struct mem_cgroup *memcg;
2771 
2772 	memcg = get_mem_cgroup_from_objcg(objcg);
2773 
2774 	account_kmem_nmi_safe(memcg, -nr_pages);
2775 	memcg1_account_kmem(memcg, -nr_pages);
2776 	if (!mem_cgroup_is_root(memcg))
2777 		refill_stock(memcg, nr_pages);
2778 
2779 	css_put(&memcg->css);
2780 }
2781 
2782 /*
2783  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2784  * @objcg: object cgroup to charge
2785  * @gfp: reclaim mode
2786  * @nr_pages: number of pages to charge
2787  *
2788  * Returns 0 on success, an error code on failure.
2789  */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)2790 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2791 				   unsigned int nr_pages)
2792 {
2793 	struct mem_cgroup *memcg;
2794 	int ret;
2795 
2796 	memcg = get_mem_cgroup_from_objcg(objcg);
2797 
2798 	ret = try_charge_memcg(memcg, gfp, nr_pages);
2799 	if (ret)
2800 		goto out;
2801 
2802 	account_kmem_nmi_safe(memcg, nr_pages);
2803 	memcg1_account_kmem(memcg, nr_pages);
2804 out:
2805 	css_put(&memcg->css);
2806 
2807 	return ret;
2808 }
2809 
page_objcg(const struct page * page)2810 static struct obj_cgroup *page_objcg(const struct page *page)
2811 {
2812 	unsigned long memcg_data = page->memcg_data;
2813 
2814 	if (mem_cgroup_disabled() || !memcg_data)
2815 		return NULL;
2816 
2817 	VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM,
2818 			page);
2819 	return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM);
2820 }
2821 
page_set_objcg(struct page * page,const struct obj_cgroup * objcg)2822 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg)
2823 {
2824 	page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM;
2825 }
2826 
2827 /**
2828  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2829  * @page: page to charge
2830  * @gfp: reclaim mode
2831  * @order: allocation order
2832  *
2833  * Returns 0 on success, an error code on failure.
2834  */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)2835 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2836 {
2837 	struct obj_cgroup *objcg;
2838 	int ret = 0;
2839 
2840 	objcg = current_obj_cgroup();
2841 	if (objcg) {
2842 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2843 		if (!ret) {
2844 			obj_cgroup_get(objcg);
2845 			page_set_objcg(page, objcg);
2846 			return 0;
2847 		}
2848 	}
2849 	return ret;
2850 }
2851 
2852 /**
2853  * __memcg_kmem_uncharge_page: uncharge a kmem page
2854  * @page: page to uncharge
2855  * @order: allocation order
2856  */
__memcg_kmem_uncharge_page(struct page * page,int order)2857 void __memcg_kmem_uncharge_page(struct page *page, int order)
2858 {
2859 	struct obj_cgroup *objcg = page_objcg(page);
2860 	unsigned int nr_pages = 1 << order;
2861 
2862 	if (!objcg)
2863 		return;
2864 
2865 	obj_cgroup_uncharge_pages(objcg, nr_pages);
2866 	page->memcg_data = 0;
2867 	obj_cgroup_put(objcg);
2868 }
2869 
__account_obj_stock(struct obj_cgroup * objcg,struct obj_stock_pcp * stock,int nr,struct pglist_data * pgdat,enum node_stat_item idx)2870 static void __account_obj_stock(struct obj_cgroup *objcg,
2871 				struct obj_stock_pcp *stock, int nr,
2872 				struct pglist_data *pgdat, enum node_stat_item idx)
2873 {
2874 	int *bytes;
2875 
2876 	/*
2877 	 * Save vmstat data in stock and skip vmstat array update unless
2878 	 * accumulating over a page of vmstat data or when pgdat changes.
2879 	 */
2880 	if (stock->cached_pgdat != pgdat) {
2881 		/* Flush the existing cached vmstat data */
2882 		struct pglist_data *oldpg = stock->cached_pgdat;
2883 
2884 		if (stock->nr_slab_reclaimable_b) {
2885 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2886 					  stock->nr_slab_reclaimable_b);
2887 			stock->nr_slab_reclaimable_b = 0;
2888 		}
2889 		if (stock->nr_slab_unreclaimable_b) {
2890 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2891 					  stock->nr_slab_unreclaimable_b);
2892 			stock->nr_slab_unreclaimable_b = 0;
2893 		}
2894 		stock->cached_pgdat = pgdat;
2895 	}
2896 
2897 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2898 					       : &stock->nr_slab_unreclaimable_b;
2899 	/*
2900 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2901 	 * cached locally at least once before pushing it out.
2902 	 */
2903 	if (!*bytes) {
2904 		*bytes = nr;
2905 		nr = 0;
2906 	} else {
2907 		*bytes += nr;
2908 		if (abs(*bytes) > PAGE_SIZE) {
2909 			nr = *bytes;
2910 			*bytes = 0;
2911 		} else {
2912 			nr = 0;
2913 		}
2914 	}
2915 	if (nr)
2916 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
2917 }
2918 
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,struct pglist_data * pgdat,enum node_stat_item idx)2919 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2920 			      struct pglist_data *pgdat, enum node_stat_item idx)
2921 {
2922 	struct obj_stock_pcp *stock;
2923 	bool ret = false;
2924 
2925 	if (!local_trylock(&obj_stock.lock))
2926 		return ret;
2927 
2928 	stock = this_cpu_ptr(&obj_stock);
2929 	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2930 		stock->nr_bytes -= nr_bytes;
2931 		ret = true;
2932 
2933 		if (pgdat)
2934 			__account_obj_stock(objcg, stock, nr_bytes, pgdat, idx);
2935 	}
2936 
2937 	local_unlock(&obj_stock.lock);
2938 
2939 	return ret;
2940 }
2941 
drain_obj_stock(struct obj_stock_pcp * stock)2942 static void drain_obj_stock(struct obj_stock_pcp *stock)
2943 {
2944 	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2945 
2946 	if (!old)
2947 		return;
2948 
2949 	if (stock->nr_bytes) {
2950 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2951 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2952 
2953 		if (nr_pages) {
2954 			struct mem_cgroup *memcg;
2955 
2956 			memcg = get_mem_cgroup_from_objcg(old);
2957 
2958 			mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2959 			memcg1_account_kmem(memcg, -nr_pages);
2960 			if (!mem_cgroup_is_root(memcg))
2961 				memcg_uncharge(memcg, nr_pages);
2962 
2963 			css_put(&memcg->css);
2964 		}
2965 
2966 		/*
2967 		 * The leftover is flushed to the centralized per-memcg value.
2968 		 * On the next attempt to refill obj stock it will be moved
2969 		 * to a per-cpu stock (probably, on an other CPU), see
2970 		 * refill_obj_stock().
2971 		 *
2972 		 * How often it's flushed is a trade-off between the memory
2973 		 * limit enforcement accuracy and potential CPU contention,
2974 		 * so it might be changed in the future.
2975 		 */
2976 		atomic_add(nr_bytes, &old->nr_charged_bytes);
2977 		stock->nr_bytes = 0;
2978 	}
2979 
2980 	/*
2981 	 * Flush the vmstat data in current stock
2982 	 */
2983 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2984 		if (stock->nr_slab_reclaimable_b) {
2985 			mod_objcg_mlstate(old, stock->cached_pgdat,
2986 					  NR_SLAB_RECLAIMABLE_B,
2987 					  stock->nr_slab_reclaimable_b);
2988 			stock->nr_slab_reclaimable_b = 0;
2989 		}
2990 		if (stock->nr_slab_unreclaimable_b) {
2991 			mod_objcg_mlstate(old, stock->cached_pgdat,
2992 					  NR_SLAB_UNRECLAIMABLE_B,
2993 					  stock->nr_slab_unreclaimable_b);
2994 			stock->nr_slab_unreclaimable_b = 0;
2995 		}
2996 		stock->cached_pgdat = NULL;
2997 	}
2998 
2999 	WRITE_ONCE(stock->cached_objcg, NULL);
3000 	obj_cgroup_put(old);
3001 }
3002 
obj_stock_flush_required(struct obj_stock_pcp * stock,struct mem_cgroup * root_memcg)3003 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
3004 				     struct mem_cgroup *root_memcg)
3005 {
3006 	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3007 	struct mem_cgroup *memcg;
3008 	bool flush = false;
3009 
3010 	rcu_read_lock();
3011 	if (objcg) {
3012 		memcg = obj_cgroup_memcg(objcg);
3013 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3014 			flush = true;
3015 	}
3016 	rcu_read_unlock();
3017 
3018 	return flush;
3019 }
3020 
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge,int nr_acct,struct pglist_data * pgdat,enum node_stat_item idx)3021 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3022 		bool allow_uncharge, int nr_acct, struct pglist_data *pgdat,
3023 		enum node_stat_item idx)
3024 {
3025 	struct obj_stock_pcp *stock;
3026 	unsigned int nr_pages = 0;
3027 
3028 	if (!local_trylock(&obj_stock.lock)) {
3029 		if (pgdat)
3030 			mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes);
3031 		nr_pages = nr_bytes >> PAGE_SHIFT;
3032 		nr_bytes = nr_bytes & (PAGE_SIZE - 1);
3033 		atomic_add(nr_bytes, &objcg->nr_charged_bytes);
3034 		goto out;
3035 	}
3036 
3037 	stock = this_cpu_ptr(&obj_stock);
3038 	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3039 		drain_obj_stock(stock);
3040 		obj_cgroup_get(objcg);
3041 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3042 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3043 		WRITE_ONCE(stock->cached_objcg, objcg);
3044 
3045 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3046 	}
3047 	stock->nr_bytes += nr_bytes;
3048 
3049 	if (pgdat)
3050 		__account_obj_stock(objcg, stock, nr_acct, pgdat, idx);
3051 
3052 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3053 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3054 		stock->nr_bytes &= (PAGE_SIZE - 1);
3055 	}
3056 
3057 	local_unlock(&obj_stock.lock);
3058 out:
3059 	if (nr_pages)
3060 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3061 }
3062 
obj_cgroup_charge_account(struct obj_cgroup * objcg,gfp_t gfp,size_t size,struct pglist_data * pgdat,enum node_stat_item idx)3063 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size,
3064 				     struct pglist_data *pgdat, enum node_stat_item idx)
3065 {
3066 	unsigned int nr_pages, nr_bytes;
3067 	int ret;
3068 
3069 	if (likely(consume_obj_stock(objcg, size, pgdat, idx)))
3070 		return 0;
3071 
3072 	/*
3073 	 * In theory, objcg->nr_charged_bytes can have enough
3074 	 * pre-charged bytes to satisfy the allocation. However,
3075 	 * flushing objcg->nr_charged_bytes requires two atomic
3076 	 * operations, and objcg->nr_charged_bytes can't be big.
3077 	 * The shared objcg->nr_charged_bytes can also become a
3078 	 * performance bottleneck if all tasks of the same memcg are
3079 	 * trying to update it. So it's better to ignore it and try
3080 	 * grab some new pages. The stock's nr_bytes will be flushed to
3081 	 * objcg->nr_charged_bytes later on when objcg changes.
3082 	 *
3083 	 * The stock's nr_bytes may contain enough pre-charged bytes
3084 	 * to allow one less page from being charged, but we can't rely
3085 	 * on the pre-charged bytes not being changed outside of
3086 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3087 	 * pre-charged bytes as well when charging pages. To avoid a
3088 	 * page uncharge right after a page charge, we set the
3089 	 * allow_uncharge flag to false when calling refill_obj_stock()
3090 	 * to temporarily allow the pre-charged bytes to exceed the page
3091 	 * size limit. The maximum reachable value of the pre-charged
3092 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3093 	 * race.
3094 	 */
3095 	nr_pages = size >> PAGE_SHIFT;
3096 	nr_bytes = size & (PAGE_SIZE - 1);
3097 
3098 	if (nr_bytes)
3099 		nr_pages += 1;
3100 
3101 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3102 	if (!ret && (nr_bytes || pgdat))
3103 		refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0,
3104 					 false, size, pgdat, idx);
3105 
3106 	return ret;
3107 }
3108 
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3109 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3110 {
3111 	return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0);
3112 }
3113 
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3114 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3115 {
3116 	refill_obj_stock(objcg, size, true, 0, NULL, 0);
3117 }
3118 
obj_full_size(struct kmem_cache * s)3119 static inline size_t obj_full_size(struct kmem_cache *s)
3120 {
3121 	/*
3122 	 * For each accounted object there is an extra space which is used
3123 	 * to store obj_cgroup membership. Charge it too.
3124 	 */
3125 	return s->size + sizeof(struct obj_cgroup *);
3126 }
3127 
__memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)3128 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3129 				  gfp_t flags, size_t size, void **p)
3130 {
3131 	struct obj_cgroup *objcg;
3132 	struct slab *slab;
3133 	unsigned long off;
3134 	size_t i;
3135 
3136 	/*
3137 	 * The obtained objcg pointer is safe to use within the current scope,
3138 	 * defined by current task or set_active_memcg() pair.
3139 	 * obj_cgroup_get() is used to get a permanent reference.
3140 	 */
3141 	objcg = current_obj_cgroup();
3142 	if (!objcg)
3143 		return true;
3144 
3145 	/*
3146 	 * slab_alloc_node() avoids the NULL check, so we might be called with a
3147 	 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
3148 	 * the whole requested size.
3149 	 * return success as there's nothing to free back
3150 	 */
3151 	if (unlikely(*p == NULL))
3152 		return true;
3153 
3154 	flags &= gfp_allowed_mask;
3155 
3156 	if (lru) {
3157 		int ret;
3158 		struct mem_cgroup *memcg;
3159 
3160 		memcg = get_mem_cgroup_from_objcg(objcg);
3161 		ret = memcg_list_lru_alloc(memcg, lru, flags);
3162 		css_put(&memcg->css);
3163 
3164 		if (ret)
3165 			return false;
3166 	}
3167 
3168 	for (i = 0; i < size; i++) {
3169 		slab = virt_to_slab(p[i]);
3170 
3171 		if (!slab_obj_exts(slab) &&
3172 		    alloc_slab_obj_exts(slab, s, flags, false)) {
3173 			continue;
3174 		}
3175 
3176 		/*
3177 		 * if we fail and size is 1, memcg_alloc_abort_single() will
3178 		 * just free the object, which is ok as we have not assigned
3179 		 * objcg to its obj_ext yet
3180 		 *
3181 		 * for larger sizes, kmem_cache_free_bulk() will uncharge
3182 		 * any objects that were already charged and obj_ext assigned
3183 		 *
3184 		 * TODO: we could batch this until slab_pgdat(slab) changes
3185 		 * between iterations, with a more complicated undo
3186 		 */
3187 		if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s),
3188 					slab_pgdat(slab), cache_vmstat_idx(s)))
3189 			return false;
3190 
3191 		off = obj_to_index(s, slab, p[i]);
3192 		obj_cgroup_get(objcg);
3193 		slab_obj_exts(slab)[off].objcg = objcg;
3194 	}
3195 
3196 	return true;
3197 }
3198 
__memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects,struct slabobj_ext * obj_exts)3199 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3200 			    void **p, int objects, struct slabobj_ext *obj_exts)
3201 {
3202 	size_t obj_size = obj_full_size(s);
3203 
3204 	for (int i = 0; i < objects; i++) {
3205 		struct obj_cgroup *objcg;
3206 		unsigned int off;
3207 
3208 		off = obj_to_index(s, slab, p[i]);
3209 		objcg = obj_exts[off].objcg;
3210 		if (!objcg)
3211 			continue;
3212 
3213 		obj_exts[off].objcg = NULL;
3214 		refill_obj_stock(objcg, obj_size, true, -obj_size,
3215 				 slab_pgdat(slab), cache_vmstat_idx(s));
3216 		obj_cgroup_put(objcg);
3217 	}
3218 }
3219 
3220 /*
3221  * The objcg is only set on the first page, so transfer it to all the
3222  * other pages.
3223  */
split_page_memcg(struct page * page,unsigned order)3224 void split_page_memcg(struct page *page, unsigned order)
3225 {
3226 	struct obj_cgroup *objcg = page_objcg(page);
3227 	unsigned int i, nr = 1 << order;
3228 
3229 	if (!objcg)
3230 		return;
3231 
3232 	for (i = 1; i < nr; i++)
3233 		page_set_objcg(&page[i], objcg);
3234 
3235 	obj_cgroup_get_many(objcg, nr - 1);
3236 }
3237 
folio_split_memcg_refs(struct folio * folio,unsigned old_order,unsigned new_order)3238 void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
3239 		unsigned new_order)
3240 {
3241 	unsigned new_refs;
3242 
3243 	if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3244 		return;
3245 
3246 	new_refs = (1 << (old_order - new_order)) - 1;
3247 	css_get_many(&__folio_memcg(folio)->css, new_refs);
3248 }
3249 
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3250 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3251 {
3252 	unsigned long val;
3253 
3254 	if (mem_cgroup_is_root(memcg)) {
3255 		/*
3256 		 * Approximate root's usage from global state. This isn't
3257 		 * perfect, but the root usage was always an approximation.
3258 		 */
3259 		val = global_node_page_state(NR_FILE_PAGES) +
3260 			global_node_page_state(NR_ANON_MAPPED);
3261 		if (swap)
3262 			val += total_swap_pages - get_nr_swap_pages();
3263 	} else {
3264 		if (!swap)
3265 			val = page_counter_read(&memcg->memory);
3266 		else
3267 			val = page_counter_read(&memcg->memsw);
3268 	}
3269 	return val;
3270 }
3271 
memcg_online_kmem(struct mem_cgroup * memcg)3272 static int memcg_online_kmem(struct mem_cgroup *memcg)
3273 {
3274 	struct obj_cgroup *objcg;
3275 
3276 	if (mem_cgroup_kmem_disabled())
3277 		return 0;
3278 
3279 	if (unlikely(mem_cgroup_is_root(memcg)))
3280 		return 0;
3281 
3282 	objcg = obj_cgroup_alloc();
3283 	if (!objcg)
3284 		return -ENOMEM;
3285 
3286 	objcg->memcg = memcg;
3287 	rcu_assign_pointer(memcg->objcg, objcg);
3288 	obj_cgroup_get(objcg);
3289 	memcg->orig_objcg = objcg;
3290 
3291 	static_branch_enable(&memcg_kmem_online_key);
3292 
3293 	memcg->kmemcg_id = memcg->id.id;
3294 
3295 	return 0;
3296 }
3297 
memcg_offline_kmem(struct mem_cgroup * memcg)3298 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3299 {
3300 	struct mem_cgroup *parent;
3301 
3302 	if (mem_cgroup_kmem_disabled())
3303 		return;
3304 
3305 	if (unlikely(mem_cgroup_is_root(memcg)))
3306 		return;
3307 
3308 	parent = parent_mem_cgroup(memcg);
3309 	if (!parent)
3310 		parent = root_mem_cgroup;
3311 
3312 	memcg_reparent_list_lrus(memcg, parent);
3313 
3314 	/*
3315 	 * Objcg's reparenting must be after list_lru's, make sure list_lru
3316 	 * helpers won't use parent's list_lru until child is drained.
3317 	 */
3318 	memcg_reparent_objcgs(memcg, parent);
3319 }
3320 
3321 #ifdef CONFIG_CGROUP_WRITEBACK
3322 
3323 #include <trace/events/writeback.h>
3324 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3325 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3326 {
3327 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3328 }
3329 
memcg_wb_domain_exit(struct mem_cgroup * memcg)3330 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3331 {
3332 	wb_domain_exit(&memcg->cgwb_domain);
3333 }
3334 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3335 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3336 {
3337 	wb_domain_size_changed(&memcg->cgwb_domain);
3338 }
3339 
mem_cgroup_wb_domain(struct bdi_writeback * wb)3340 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3341 {
3342 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3343 
3344 	if (!memcg->css.parent)
3345 		return NULL;
3346 
3347 	return &memcg->cgwb_domain;
3348 }
3349 
3350 /**
3351  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3352  * @wb: bdi_writeback in question
3353  * @pfilepages: out parameter for number of file pages
3354  * @pheadroom: out parameter for number of allocatable pages according to memcg
3355  * @pdirty: out parameter for number of dirty pages
3356  * @pwriteback: out parameter for number of pages under writeback
3357  *
3358  * Determine the numbers of file, headroom, dirty, and writeback pages in
3359  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3360  * is a bit more involved.
3361  *
3362  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3363  * headroom is calculated as the lowest headroom of itself and the
3364  * ancestors.  Note that this doesn't consider the actual amount of
3365  * available memory in the system.  The caller should further cap
3366  * *@pheadroom accordingly.
3367  */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3368 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3369 			 unsigned long *pheadroom, unsigned long *pdirty,
3370 			 unsigned long *pwriteback)
3371 {
3372 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3373 	struct mem_cgroup *parent;
3374 
3375 	mem_cgroup_flush_stats_ratelimited(memcg);
3376 
3377 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3378 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3379 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3380 			memcg_page_state(memcg, NR_ACTIVE_FILE);
3381 
3382 	*pheadroom = PAGE_COUNTER_MAX;
3383 	while ((parent = parent_mem_cgroup(memcg))) {
3384 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3385 					    READ_ONCE(memcg->memory.high));
3386 		unsigned long used = page_counter_read(&memcg->memory);
3387 
3388 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3389 		memcg = parent;
3390 	}
3391 }
3392 
3393 /*
3394  * Foreign dirty flushing
3395  *
3396  * There's an inherent mismatch between memcg and writeback.  The former
3397  * tracks ownership per-page while the latter per-inode.  This was a
3398  * deliberate design decision because honoring per-page ownership in the
3399  * writeback path is complicated, may lead to higher CPU and IO overheads
3400  * and deemed unnecessary given that write-sharing an inode across
3401  * different cgroups isn't a common use-case.
3402  *
3403  * Combined with inode majority-writer ownership switching, this works well
3404  * enough in most cases but there are some pathological cases.  For
3405  * example, let's say there are two cgroups A and B which keep writing to
3406  * different but confined parts of the same inode.  B owns the inode and
3407  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
3408  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3409  * triggering background writeback.  A will be slowed down without a way to
3410  * make writeback of the dirty pages happen.
3411  *
3412  * Conditions like the above can lead to a cgroup getting repeatedly and
3413  * severely throttled after making some progress after each
3414  * dirty_expire_interval while the underlying IO device is almost
3415  * completely idle.
3416  *
3417  * Solving this problem completely requires matching the ownership tracking
3418  * granularities between memcg and writeback in either direction.  However,
3419  * the more egregious behaviors can be avoided by simply remembering the
3420  * most recent foreign dirtying events and initiating remote flushes on
3421  * them when local writeback isn't enough to keep the memory clean enough.
3422  *
3423  * The following two functions implement such mechanism.  When a foreign
3424  * page - a page whose memcg and writeback ownerships don't match - is
3425  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3426  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
3427  * decides that the memcg needs to sleep due to high dirty ratio, it calls
3428  * mem_cgroup_flush_foreign() which queues writeback on the recorded
3429  * foreign bdi_writebacks which haven't expired.  Both the numbers of
3430  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3431  * limited to MEMCG_CGWB_FRN_CNT.
3432  *
3433  * The mechanism only remembers IDs and doesn't hold any object references.
3434  * As being wrong occasionally doesn't matter, updates and accesses to the
3435  * records are lockless and racy.
3436  */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)3437 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3438 					     struct bdi_writeback *wb)
3439 {
3440 	struct mem_cgroup *memcg = folio_memcg(folio);
3441 	struct memcg_cgwb_frn *frn;
3442 	u64 now = get_jiffies_64();
3443 	u64 oldest_at = now;
3444 	int oldest = -1;
3445 	int i;
3446 
3447 	trace_track_foreign_dirty(folio, wb);
3448 
3449 	/*
3450 	 * Pick the slot to use.  If there is already a slot for @wb, keep
3451 	 * using it.  If not replace the oldest one which isn't being
3452 	 * written out.
3453 	 */
3454 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3455 		frn = &memcg->cgwb_frn[i];
3456 		if (frn->bdi_id == wb->bdi->id &&
3457 		    frn->memcg_id == wb->memcg_css->id)
3458 			break;
3459 		if (time_before64(frn->at, oldest_at) &&
3460 		    atomic_read(&frn->done.cnt) == 1) {
3461 			oldest = i;
3462 			oldest_at = frn->at;
3463 		}
3464 	}
3465 
3466 	if (i < MEMCG_CGWB_FRN_CNT) {
3467 		/*
3468 		 * Re-using an existing one.  Update timestamp lazily to
3469 		 * avoid making the cacheline hot.  We want them to be
3470 		 * reasonably up-to-date and significantly shorter than
3471 		 * dirty_expire_interval as that's what expires the record.
3472 		 * Use the shorter of 1s and dirty_expire_interval / 8.
3473 		 */
3474 		unsigned long update_intv =
3475 			min_t(unsigned long, HZ,
3476 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3477 
3478 		if (time_before64(frn->at, now - update_intv))
3479 			frn->at = now;
3480 	} else if (oldest >= 0) {
3481 		/* replace the oldest free one */
3482 		frn = &memcg->cgwb_frn[oldest];
3483 		frn->bdi_id = wb->bdi->id;
3484 		frn->memcg_id = wb->memcg_css->id;
3485 		frn->at = now;
3486 	}
3487 }
3488 
3489 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)3490 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3491 {
3492 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3493 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3494 	u64 now = jiffies_64;
3495 	int i;
3496 
3497 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3498 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3499 
3500 		/*
3501 		 * If the record is older than dirty_expire_interval,
3502 		 * writeback on it has already started.  No need to kick it
3503 		 * off again.  Also, don't start a new one if there's
3504 		 * already one in flight.
3505 		 */
3506 		if (time_after64(frn->at, now - intv) &&
3507 		    atomic_read(&frn->done.cnt) == 1) {
3508 			frn->at = 0;
3509 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3510 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3511 					       WB_REASON_FOREIGN_FLUSH,
3512 					       &frn->done);
3513 		}
3514 	}
3515 }
3516 
3517 #else	/* CONFIG_CGROUP_WRITEBACK */
3518 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3519 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3520 {
3521 	return 0;
3522 }
3523 
memcg_wb_domain_exit(struct mem_cgroup * memcg)3524 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3525 {
3526 }
3527 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3528 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3529 {
3530 }
3531 
3532 #endif	/* CONFIG_CGROUP_WRITEBACK */
3533 
3534 /*
3535  * Private memory cgroup IDR
3536  *
3537  * Swap-out records and page cache shadow entries need to store memcg
3538  * references in constrained space, so we maintain an ID space that is
3539  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3540  * memory-controlled cgroups to 64k.
3541  *
3542  * However, there usually are many references to the offline CSS after
3543  * the cgroup has been destroyed, such as page cache or reclaimable
3544  * slab objects, that don't need to hang on to the ID. We want to keep
3545  * those dead CSS from occupying IDs, or we might quickly exhaust the
3546  * relatively small ID space and prevent the creation of new cgroups
3547  * even when there are much fewer than 64k cgroups - possibly none.
3548  *
3549  * Maintain a private 16-bit ID space for memcg, and allow the ID to
3550  * be freed and recycled when it's no longer needed, which is usually
3551  * when the CSS is offlined.
3552  *
3553  * The only exception to that are records of swapped out tmpfs/shmem
3554  * pages that need to be attributed to live ancestors on swapin. But
3555  * those references are manageable from userspace.
3556  */
3557 
3558 #define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3559 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3560 
mem_cgroup_id_remove(struct mem_cgroup * memcg)3561 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3562 {
3563 	if (memcg->id.id > 0) {
3564 		xa_erase(&mem_cgroup_ids, memcg->id.id);
3565 		memcg->id.id = 0;
3566 	}
3567 }
3568 
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)3569 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3570 					   unsigned int n)
3571 {
3572 	refcount_add(n, &memcg->id.ref);
3573 }
3574 
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)3575 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3576 {
3577 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
3578 		mem_cgroup_id_remove(memcg);
3579 
3580 		/* Memcg ID pins CSS */
3581 		css_put(&memcg->css);
3582 	}
3583 }
3584 
mem_cgroup_id_put(struct mem_cgroup * memcg)3585 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3586 {
3587 	mem_cgroup_id_put_many(memcg, 1);
3588 }
3589 
mem_cgroup_id_get_online(struct mem_cgroup * memcg)3590 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
3591 {
3592 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
3593 		/*
3594 		 * The root cgroup cannot be destroyed, so it's refcount must
3595 		 * always be >= 1.
3596 		 */
3597 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
3598 			VM_BUG_ON(1);
3599 			break;
3600 		}
3601 		memcg = parent_mem_cgroup(memcg);
3602 		if (!memcg)
3603 			memcg = root_mem_cgroup;
3604 	}
3605 	return memcg;
3606 }
3607 
3608 /**
3609  * mem_cgroup_from_id - look up a memcg from a memcg id
3610  * @id: the memcg id to look up
3611  *
3612  * Caller must hold rcu_read_lock().
3613  */
mem_cgroup_from_id(unsigned short id)3614 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3615 {
3616 	WARN_ON_ONCE(!rcu_read_lock_held());
3617 	return xa_load(&mem_cgroup_ids, id);
3618 }
3619 
3620 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)3621 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3622 {
3623 	struct cgroup *cgrp;
3624 	struct cgroup_subsys_state *css;
3625 	struct mem_cgroup *memcg;
3626 
3627 	cgrp = cgroup_get_from_id(ino);
3628 	if (IS_ERR(cgrp))
3629 		return ERR_CAST(cgrp);
3630 
3631 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3632 	if (css)
3633 		memcg = container_of(css, struct mem_cgroup, css);
3634 	else
3635 		memcg = ERR_PTR(-ENOENT);
3636 
3637 	cgroup_put(cgrp);
3638 
3639 	return memcg;
3640 }
3641 #endif
3642 
free_mem_cgroup_per_node_info(struct mem_cgroup_per_node * pn)3643 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn)
3644 {
3645 	if (!pn)
3646 		return;
3647 
3648 	free_percpu(pn->lruvec_stats_percpu);
3649 	kfree(pn->lruvec_stats);
3650 	kfree(pn);
3651 }
3652 
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)3653 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3654 {
3655 	struct mem_cgroup_per_node *pn;
3656 
3657 	pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO,
3658 				   node);
3659 	if (!pn)
3660 		return false;
3661 
3662 	pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3663 					GFP_KERNEL_ACCOUNT, node);
3664 	if (!pn->lruvec_stats)
3665 		goto fail;
3666 
3667 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3668 						   GFP_KERNEL_ACCOUNT);
3669 	if (!pn->lruvec_stats_percpu)
3670 		goto fail;
3671 
3672 	lruvec_init(&pn->lruvec);
3673 	pn->memcg = memcg;
3674 
3675 	memcg->nodeinfo[node] = pn;
3676 	return true;
3677 fail:
3678 	free_mem_cgroup_per_node_info(pn);
3679 	return false;
3680 }
3681 
__mem_cgroup_free(struct mem_cgroup * memcg)3682 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3683 {
3684 	int node;
3685 
3686 	obj_cgroup_put(memcg->orig_objcg);
3687 
3688 	for_each_node(node)
3689 		free_mem_cgroup_per_node_info(memcg->nodeinfo[node]);
3690 	memcg1_free_events(memcg);
3691 	kfree(memcg->vmstats);
3692 	free_percpu(memcg->vmstats_percpu);
3693 	kfree(memcg);
3694 }
3695 
mem_cgroup_free(struct mem_cgroup * memcg)3696 static void mem_cgroup_free(struct mem_cgroup *memcg)
3697 {
3698 	lru_gen_exit_memcg(memcg);
3699 	memcg_wb_domain_exit(memcg);
3700 	__mem_cgroup_free(memcg);
3701 }
3702 
mem_cgroup_alloc(struct mem_cgroup * parent)3703 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3704 {
3705 	struct memcg_vmstats_percpu *statc;
3706 	struct memcg_vmstats_percpu __percpu *pstatc_pcpu;
3707 	struct mem_cgroup *memcg;
3708 	int node, cpu;
3709 	int __maybe_unused i;
3710 	long error;
3711 
3712 	memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL);
3713 	if (!memcg)
3714 		return ERR_PTR(-ENOMEM);
3715 
3716 	error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3717 			 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3718 	if (error)
3719 		goto fail;
3720 	error = -ENOMEM;
3721 
3722 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3723 				 GFP_KERNEL_ACCOUNT);
3724 	if (!memcg->vmstats)
3725 		goto fail;
3726 
3727 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3728 						 GFP_KERNEL_ACCOUNT);
3729 	if (!memcg->vmstats_percpu)
3730 		goto fail;
3731 
3732 	if (!memcg1_alloc_events(memcg))
3733 		goto fail;
3734 
3735 	for_each_possible_cpu(cpu) {
3736 		if (parent)
3737 			pstatc_pcpu = parent->vmstats_percpu;
3738 		statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3739 		statc->parent_pcpu = parent ? pstatc_pcpu : NULL;
3740 		statc->vmstats = memcg->vmstats;
3741 	}
3742 
3743 	for_each_node(node)
3744 		if (!alloc_mem_cgroup_per_node_info(memcg, node))
3745 			goto fail;
3746 
3747 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3748 		goto fail;
3749 
3750 	INIT_WORK(&memcg->high_work, high_work_func);
3751 	vmpressure_init(&memcg->vmpressure);
3752 	INIT_LIST_HEAD(&memcg->memory_peaks);
3753 	INIT_LIST_HEAD(&memcg->swap_peaks);
3754 	spin_lock_init(&memcg->peaks_lock);
3755 	memcg->socket_pressure = get_jiffies_64();
3756 #if BITS_PER_LONG < 64
3757 	seqlock_init(&memcg->socket_pressure_seqlock);
3758 #endif
3759 	memcg1_memcg_init(memcg);
3760 	memcg->kmemcg_id = -1;
3761 	INIT_LIST_HEAD(&memcg->objcg_list);
3762 #ifdef CONFIG_CGROUP_WRITEBACK
3763 	INIT_LIST_HEAD(&memcg->cgwb_list);
3764 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3765 		memcg->cgwb_frn[i].done =
3766 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3767 #endif
3768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3769 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3770 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3771 	memcg->deferred_split_queue.split_queue_len = 0;
3772 #endif
3773 	lru_gen_init_memcg(memcg);
3774 	return memcg;
3775 fail:
3776 	mem_cgroup_id_remove(memcg);
3777 	__mem_cgroup_free(memcg);
3778 	return ERR_PTR(error);
3779 }
3780 
3781 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)3782 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3783 {
3784 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3785 	struct mem_cgroup *memcg, *old_memcg;
3786 	bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys);
3787 
3788 	old_memcg = set_active_memcg(parent);
3789 	memcg = mem_cgroup_alloc(parent);
3790 	set_active_memcg(old_memcg);
3791 	if (IS_ERR(memcg))
3792 		return ERR_CAST(memcg);
3793 
3794 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3795 	memcg1_soft_limit_reset(memcg);
3796 #ifdef CONFIG_ZSWAP
3797 	memcg->zswap_max = PAGE_COUNTER_MAX;
3798 	WRITE_ONCE(memcg->zswap_writeback, true);
3799 #endif
3800 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3801 	if (parent) {
3802 		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3803 
3804 		page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl);
3805 		page_counter_init(&memcg->swap, &parent->swap, false);
3806 #ifdef CONFIG_MEMCG_V1
3807 		memcg->memory.track_failcnt = !memcg_on_dfl;
3808 		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3809 		page_counter_init(&memcg->kmem, &parent->kmem, false);
3810 		page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3811 #endif
3812 	} else {
3813 		init_memcg_stats();
3814 		init_memcg_events();
3815 		page_counter_init(&memcg->memory, NULL, true);
3816 		page_counter_init(&memcg->swap, NULL, false);
3817 #ifdef CONFIG_MEMCG_V1
3818 		page_counter_init(&memcg->kmem, NULL, false);
3819 		page_counter_init(&memcg->tcpmem, NULL, false);
3820 #endif
3821 		root_mem_cgroup = memcg;
3822 		return &memcg->css;
3823 	}
3824 
3825 	if (memcg_on_dfl && !cgroup_memory_nosocket)
3826 		static_branch_inc(&memcg_sockets_enabled_key);
3827 
3828 	if (!cgroup_memory_nobpf)
3829 		static_branch_inc(&memcg_bpf_enabled_key);
3830 
3831 	return &memcg->css;
3832 }
3833 
mem_cgroup_css_online(struct cgroup_subsys_state * css)3834 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3835 {
3836 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3837 
3838 	if (memcg_online_kmem(memcg))
3839 		goto remove_id;
3840 
3841 	/*
3842 	 * A memcg must be visible for expand_shrinker_info()
3843 	 * by the time the maps are allocated. So, we allocate maps
3844 	 * here, when for_each_mem_cgroup() can't skip it.
3845 	 */
3846 	if (alloc_shrinker_info(memcg))
3847 		goto offline_kmem;
3848 
3849 	if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3850 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3851 				   FLUSH_TIME);
3852 	lru_gen_online_memcg(memcg);
3853 
3854 	/* Online state pins memcg ID, memcg ID pins CSS */
3855 	refcount_set(&memcg->id.ref, 1);
3856 	css_get(css);
3857 
3858 	/*
3859 	 * Ensure mem_cgroup_from_id() works once we're fully online.
3860 	 *
3861 	 * We could do this earlier and require callers to filter with
3862 	 * css_tryget_online(). But right now there are no users that
3863 	 * need earlier access, and the workingset code relies on the
3864 	 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3865 	 * publish it here at the end of onlining. This matches the
3866 	 * regular ID destruction during offlining.
3867 	 */
3868 	xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3869 
3870 	return 0;
3871 offline_kmem:
3872 	memcg_offline_kmem(memcg);
3873 remove_id:
3874 	mem_cgroup_id_remove(memcg);
3875 	return -ENOMEM;
3876 }
3877 
mem_cgroup_css_offline(struct cgroup_subsys_state * css)3878 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3879 {
3880 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3881 
3882 	memcg1_css_offline(memcg);
3883 
3884 	page_counter_set_min(&memcg->memory, 0);
3885 	page_counter_set_low(&memcg->memory, 0);
3886 
3887 	zswap_memcg_offline_cleanup(memcg);
3888 
3889 	memcg_offline_kmem(memcg);
3890 	reparent_shrinker_deferred(memcg);
3891 	wb_memcg_offline(memcg);
3892 	lru_gen_offline_memcg(memcg);
3893 
3894 	drain_all_stock(memcg);
3895 
3896 	mem_cgroup_id_put(memcg);
3897 }
3898 
mem_cgroup_css_released(struct cgroup_subsys_state * css)3899 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3900 {
3901 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3902 
3903 	invalidate_reclaim_iterators(memcg);
3904 	lru_gen_release_memcg(memcg);
3905 }
3906 
mem_cgroup_css_free(struct cgroup_subsys_state * css)3907 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3908 {
3909 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3910 	int __maybe_unused i;
3911 
3912 #ifdef CONFIG_CGROUP_WRITEBACK
3913 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3914 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3915 #endif
3916 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3917 		static_branch_dec(&memcg_sockets_enabled_key);
3918 
3919 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3920 		static_branch_dec(&memcg_sockets_enabled_key);
3921 
3922 	if (!cgroup_memory_nobpf)
3923 		static_branch_dec(&memcg_bpf_enabled_key);
3924 
3925 	vmpressure_cleanup(&memcg->vmpressure);
3926 	cancel_work_sync(&memcg->high_work);
3927 	memcg1_remove_from_trees(memcg);
3928 	free_shrinker_info(memcg);
3929 	mem_cgroup_free(memcg);
3930 }
3931 
3932 /**
3933  * mem_cgroup_css_reset - reset the states of a mem_cgroup
3934  * @css: the target css
3935  *
3936  * Reset the states of the mem_cgroup associated with @css.  This is
3937  * invoked when the userland requests disabling on the default hierarchy
3938  * but the memcg is pinned through dependency.  The memcg should stop
3939  * applying policies and should revert to the vanilla state as it may be
3940  * made visible again.
3941  *
3942  * The current implementation only resets the essential configurations.
3943  * This needs to be expanded to cover all the visible parts.
3944  */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)3945 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3946 {
3947 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3948 
3949 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3950 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3951 #ifdef CONFIG_MEMCG_V1
3952 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3953 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3954 #endif
3955 	page_counter_set_min(&memcg->memory, 0);
3956 	page_counter_set_low(&memcg->memory, 0);
3957 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3958 	memcg1_soft_limit_reset(memcg);
3959 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3960 	memcg_wb_domain_size_changed(memcg);
3961 }
3962 
3963 struct aggregate_control {
3964 	/* pointer to the aggregated (CPU and subtree aggregated) counters */
3965 	long *aggregate;
3966 	/* pointer to the non-hierarchichal (CPU aggregated) counters */
3967 	long *local;
3968 	/* pointer to the pending child counters during tree propagation */
3969 	long *pending;
3970 	/* pointer to the parent's pending counters, could be NULL */
3971 	long *ppending;
3972 	/* pointer to the percpu counters to be aggregated */
3973 	long *cstat;
3974 	/* pointer to the percpu counters of the last aggregation*/
3975 	long *cstat_prev;
3976 	/* size of the above counters */
3977 	int size;
3978 };
3979 
mem_cgroup_stat_aggregate(struct aggregate_control * ac)3980 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
3981 {
3982 	int i;
3983 	long delta, delta_cpu, v;
3984 
3985 	for (i = 0; i < ac->size; i++) {
3986 		/*
3987 		 * Collect the aggregated propagation counts of groups
3988 		 * below us. We're in a per-cpu loop here and this is
3989 		 * a global counter, so the first cycle will get them.
3990 		 */
3991 		delta = ac->pending[i];
3992 		if (delta)
3993 			ac->pending[i] = 0;
3994 
3995 		/* Add CPU changes on this level since the last flush */
3996 		delta_cpu = 0;
3997 		v = READ_ONCE(ac->cstat[i]);
3998 		if (v != ac->cstat_prev[i]) {
3999 			delta_cpu = v - ac->cstat_prev[i];
4000 			delta += delta_cpu;
4001 			ac->cstat_prev[i] = v;
4002 		}
4003 
4004 		/* Aggregate counts on this level and propagate upwards */
4005 		if (delta_cpu)
4006 			ac->local[i] += delta_cpu;
4007 
4008 		if (delta) {
4009 			ac->aggregate[i] += delta;
4010 			if (ac->ppending)
4011 				ac->ppending[i] += delta;
4012 		}
4013 	}
4014 }
4015 
4016 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
flush_nmi_stats(struct mem_cgroup * memcg,struct mem_cgroup * parent,int cpu)4017 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4018 			    int cpu)
4019 {
4020 	int nid;
4021 
4022 	if (atomic_read(&memcg->kmem_stat)) {
4023 		int kmem = atomic_xchg(&memcg->kmem_stat, 0);
4024 		int index = memcg_stats_index(MEMCG_KMEM);
4025 
4026 		memcg->vmstats->state[index] += kmem;
4027 		if (parent)
4028 			parent->vmstats->state_pending[index] += kmem;
4029 	}
4030 
4031 	for_each_node_state(nid, N_MEMORY) {
4032 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4033 		struct lruvec_stats *lstats = pn->lruvec_stats;
4034 		struct lruvec_stats *plstats = NULL;
4035 
4036 		if (parent)
4037 			plstats = parent->nodeinfo[nid]->lruvec_stats;
4038 
4039 		if (atomic_read(&pn->slab_reclaimable)) {
4040 			int slab = atomic_xchg(&pn->slab_reclaimable, 0);
4041 			int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B);
4042 
4043 			lstats->state[index] += slab;
4044 			if (plstats)
4045 				plstats->state_pending[index] += slab;
4046 		}
4047 		if (atomic_read(&pn->slab_unreclaimable)) {
4048 			int slab = atomic_xchg(&pn->slab_unreclaimable, 0);
4049 			int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B);
4050 
4051 			lstats->state[index] += slab;
4052 			if (plstats)
4053 				plstats->state_pending[index] += slab;
4054 		}
4055 	}
4056 }
4057 #else
flush_nmi_stats(struct mem_cgroup * memcg,struct mem_cgroup * parent,int cpu)4058 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4059 			    int cpu)
4060 {}
4061 #endif
4062 
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)4063 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
4064 {
4065 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4066 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4067 	struct memcg_vmstats_percpu *statc;
4068 	struct aggregate_control ac;
4069 	int nid;
4070 
4071 	flush_nmi_stats(memcg, parent, cpu);
4072 
4073 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
4074 
4075 	ac = (struct aggregate_control) {
4076 		.aggregate = memcg->vmstats->state,
4077 		.local = memcg->vmstats->state_local,
4078 		.pending = memcg->vmstats->state_pending,
4079 		.ppending = parent ? parent->vmstats->state_pending : NULL,
4080 		.cstat = statc->state,
4081 		.cstat_prev = statc->state_prev,
4082 		.size = MEMCG_VMSTAT_SIZE,
4083 	};
4084 	mem_cgroup_stat_aggregate(&ac);
4085 
4086 	ac = (struct aggregate_control) {
4087 		.aggregate = memcg->vmstats->events,
4088 		.local = memcg->vmstats->events_local,
4089 		.pending = memcg->vmstats->events_pending,
4090 		.ppending = parent ? parent->vmstats->events_pending : NULL,
4091 		.cstat = statc->events,
4092 		.cstat_prev = statc->events_prev,
4093 		.size = NR_MEMCG_EVENTS,
4094 	};
4095 	mem_cgroup_stat_aggregate(&ac);
4096 
4097 	for_each_node_state(nid, N_MEMORY) {
4098 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4099 		struct lruvec_stats *lstats = pn->lruvec_stats;
4100 		struct lruvec_stats *plstats = NULL;
4101 		struct lruvec_stats_percpu *lstatc;
4102 
4103 		if (parent)
4104 			plstats = parent->nodeinfo[nid]->lruvec_stats;
4105 
4106 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
4107 
4108 		ac = (struct aggregate_control) {
4109 			.aggregate = lstats->state,
4110 			.local = lstats->state_local,
4111 			.pending = lstats->state_pending,
4112 			.ppending = plstats ? plstats->state_pending : NULL,
4113 			.cstat = lstatc->state,
4114 			.cstat_prev = lstatc->state_prev,
4115 			.size = NR_MEMCG_NODE_STAT_ITEMS,
4116 		};
4117 		mem_cgroup_stat_aggregate(&ac);
4118 
4119 	}
4120 	WRITE_ONCE(statc->stats_updates, 0);
4121 	/* We are in a per-cpu loop here, only do the atomic write once */
4122 	if (atomic_read(&memcg->vmstats->stats_updates))
4123 		atomic_set(&memcg->vmstats->stats_updates, 0);
4124 }
4125 
mem_cgroup_fork(struct task_struct * task)4126 static void mem_cgroup_fork(struct task_struct *task)
4127 {
4128 	/*
4129 	 * Set the update flag to cause task->objcg to be initialized lazily
4130 	 * on the first allocation. It can be done without any synchronization
4131 	 * because it's always performed on the current task, so does
4132 	 * current_objcg_update().
4133 	 */
4134 	task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
4135 }
4136 
mem_cgroup_exit(struct task_struct * task)4137 static void mem_cgroup_exit(struct task_struct *task)
4138 {
4139 	struct obj_cgroup *objcg = task->objcg;
4140 
4141 	objcg = (struct obj_cgroup *)
4142 		((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
4143 	obj_cgroup_put(objcg);
4144 
4145 	/*
4146 	 * Some kernel allocations can happen after this point,
4147 	 * but let's ignore them. It can be done without any synchronization
4148 	 * because it's always performed on the current task, so does
4149 	 * current_objcg_update().
4150 	 */
4151 	task->objcg = NULL;
4152 }
4153 
4154 #ifdef CONFIG_LRU_GEN
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)4155 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
4156 {
4157 	struct task_struct *task;
4158 	struct cgroup_subsys_state *css;
4159 
4160 	/* find the first leader if there is any */
4161 	cgroup_taskset_for_each_leader(task, css, tset)
4162 		break;
4163 
4164 	if (!task)
4165 		return;
4166 
4167 	task_lock(task);
4168 	if (task->mm && READ_ONCE(task->mm->owner) == task)
4169 		lru_gen_migrate_mm(task->mm);
4170 	task_unlock(task);
4171 }
4172 #else
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)4173 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
4174 #endif /* CONFIG_LRU_GEN */
4175 
mem_cgroup_kmem_attach(struct cgroup_taskset * tset)4176 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
4177 {
4178 	struct task_struct *task;
4179 	struct cgroup_subsys_state *css;
4180 
4181 	cgroup_taskset_for_each(task, css, tset) {
4182 		/* atomically set the update bit */
4183 		set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
4184 	}
4185 }
4186 
mem_cgroup_attach(struct cgroup_taskset * tset)4187 static void mem_cgroup_attach(struct cgroup_taskset *tset)
4188 {
4189 	mem_cgroup_lru_gen_attach(tset);
4190 	mem_cgroup_kmem_attach(tset);
4191 }
4192 
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)4193 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
4194 {
4195 	if (value == PAGE_COUNTER_MAX)
4196 		seq_puts(m, "max\n");
4197 	else
4198 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
4199 
4200 	return 0;
4201 }
4202 
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)4203 static u64 memory_current_read(struct cgroup_subsys_state *css,
4204 			       struct cftype *cft)
4205 {
4206 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4207 
4208 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4209 }
4210 
4211 #define OFP_PEAK_UNSET (((-1UL)))
4212 
peak_show(struct seq_file * sf,void * v,struct page_counter * pc)4213 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
4214 {
4215 	struct cgroup_of_peak *ofp = of_peak(sf->private);
4216 	u64 fd_peak = READ_ONCE(ofp->value), peak;
4217 
4218 	/* User wants global or local peak? */
4219 	if (fd_peak == OFP_PEAK_UNSET)
4220 		peak = pc->watermark;
4221 	else
4222 		peak = max(fd_peak, READ_ONCE(pc->local_watermark));
4223 
4224 	seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
4225 	return 0;
4226 }
4227 
memory_peak_show(struct seq_file * sf,void * v)4228 static int memory_peak_show(struct seq_file *sf, void *v)
4229 {
4230 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4231 
4232 	return peak_show(sf, v, &memcg->memory);
4233 }
4234 
peak_open(struct kernfs_open_file * of)4235 static int peak_open(struct kernfs_open_file *of)
4236 {
4237 	struct cgroup_of_peak *ofp = of_peak(of);
4238 
4239 	ofp->value = OFP_PEAK_UNSET;
4240 	return 0;
4241 }
4242 
peak_release(struct kernfs_open_file * of)4243 static void peak_release(struct kernfs_open_file *of)
4244 {
4245 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4246 	struct cgroup_of_peak *ofp = of_peak(of);
4247 
4248 	if (ofp->value == OFP_PEAK_UNSET) {
4249 		/* fast path (no writes on this fd) */
4250 		return;
4251 	}
4252 	spin_lock(&memcg->peaks_lock);
4253 	list_del(&ofp->list);
4254 	spin_unlock(&memcg->peaks_lock);
4255 }
4256 
peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,struct page_counter * pc,struct list_head * watchers)4257 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
4258 			  loff_t off, struct page_counter *pc,
4259 			  struct list_head *watchers)
4260 {
4261 	unsigned long usage;
4262 	struct cgroup_of_peak *peer_ctx;
4263 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4264 	struct cgroup_of_peak *ofp = of_peak(of);
4265 
4266 	spin_lock(&memcg->peaks_lock);
4267 
4268 	usage = page_counter_read(pc);
4269 	WRITE_ONCE(pc->local_watermark, usage);
4270 
4271 	list_for_each_entry(peer_ctx, watchers, list)
4272 		if (usage > peer_ctx->value)
4273 			WRITE_ONCE(peer_ctx->value, usage);
4274 
4275 	/* initial write, register watcher */
4276 	if (ofp->value == OFP_PEAK_UNSET)
4277 		list_add(&ofp->list, watchers);
4278 
4279 	WRITE_ONCE(ofp->value, usage);
4280 	spin_unlock(&memcg->peaks_lock);
4281 
4282 	return nbytes;
4283 }
4284 
memory_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4285 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4286 				 size_t nbytes, loff_t off)
4287 {
4288 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4289 
4290 	return peak_write(of, buf, nbytes, off, &memcg->memory,
4291 			  &memcg->memory_peaks);
4292 }
4293 
4294 #undef OFP_PEAK_UNSET
4295 
memory_min_show(struct seq_file * m,void * v)4296 static int memory_min_show(struct seq_file *m, void *v)
4297 {
4298 	return seq_puts_memcg_tunable(m,
4299 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4300 }
4301 
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4302 static ssize_t memory_min_write(struct kernfs_open_file *of,
4303 				char *buf, size_t nbytes, loff_t off)
4304 {
4305 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4306 	unsigned long min;
4307 	int err;
4308 
4309 	buf = strstrip(buf);
4310 	err = page_counter_memparse(buf, "max", &min);
4311 	if (err)
4312 		return err;
4313 
4314 	page_counter_set_min(&memcg->memory, min);
4315 
4316 	return nbytes;
4317 }
4318 
memory_low_show(struct seq_file * m,void * v)4319 static int memory_low_show(struct seq_file *m, void *v)
4320 {
4321 	return seq_puts_memcg_tunable(m,
4322 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4323 }
4324 
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4325 static ssize_t memory_low_write(struct kernfs_open_file *of,
4326 				char *buf, size_t nbytes, loff_t off)
4327 {
4328 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4329 	unsigned long low;
4330 	int err;
4331 
4332 	buf = strstrip(buf);
4333 	err = page_counter_memparse(buf, "max", &low);
4334 	if (err)
4335 		return err;
4336 
4337 	page_counter_set_low(&memcg->memory, low);
4338 
4339 	return nbytes;
4340 }
4341 
memory_high_show(struct seq_file * m,void * v)4342 static int memory_high_show(struct seq_file *m, void *v)
4343 {
4344 	return seq_puts_memcg_tunable(m,
4345 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4346 }
4347 
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4348 static ssize_t memory_high_write(struct kernfs_open_file *of,
4349 				 char *buf, size_t nbytes, loff_t off)
4350 {
4351 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4352 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4353 	bool drained = false;
4354 	unsigned long high;
4355 	int err;
4356 
4357 	buf = strstrip(buf);
4358 	err = page_counter_memparse(buf, "max", &high);
4359 	if (err)
4360 		return err;
4361 
4362 	page_counter_set_high(&memcg->memory, high);
4363 
4364 	if (of->file->f_flags & O_NONBLOCK)
4365 		goto out;
4366 
4367 	for (;;) {
4368 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4369 		unsigned long reclaimed;
4370 
4371 		if (nr_pages <= high)
4372 			break;
4373 
4374 		if (signal_pending(current))
4375 			break;
4376 
4377 		if (!drained) {
4378 			drain_all_stock(memcg);
4379 			drained = true;
4380 			continue;
4381 		}
4382 
4383 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4384 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4385 
4386 		if (!reclaimed && !nr_retries--)
4387 			break;
4388 	}
4389 out:
4390 	memcg_wb_domain_size_changed(memcg);
4391 	return nbytes;
4392 }
4393 
memory_max_show(struct seq_file * m,void * v)4394 static int memory_max_show(struct seq_file *m, void *v)
4395 {
4396 	return seq_puts_memcg_tunable(m,
4397 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4398 }
4399 
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4400 static ssize_t memory_max_write(struct kernfs_open_file *of,
4401 				char *buf, size_t nbytes, loff_t off)
4402 {
4403 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4404 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4405 	bool drained = false;
4406 	unsigned long max;
4407 	int err;
4408 
4409 	buf = strstrip(buf);
4410 	err = page_counter_memparse(buf, "max", &max);
4411 	if (err)
4412 		return err;
4413 
4414 	xchg(&memcg->memory.max, max);
4415 
4416 	if (of->file->f_flags & O_NONBLOCK)
4417 		goto out;
4418 
4419 	for (;;) {
4420 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4421 
4422 		if (nr_pages <= max)
4423 			break;
4424 
4425 		if (signal_pending(current))
4426 			break;
4427 
4428 		if (!drained) {
4429 			drain_all_stock(memcg);
4430 			drained = true;
4431 			continue;
4432 		}
4433 
4434 		if (nr_reclaims) {
4435 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4436 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4437 				nr_reclaims--;
4438 			continue;
4439 		}
4440 
4441 		memcg_memory_event(memcg, MEMCG_OOM);
4442 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4443 			break;
4444 		cond_resched();
4445 	}
4446 out:
4447 	memcg_wb_domain_size_changed(memcg);
4448 	return nbytes;
4449 }
4450 
4451 /*
4452  * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4453  * if any new events become available.
4454  */
__memory_events_show(struct seq_file * m,atomic_long_t * events)4455 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4456 {
4457 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4458 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4459 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4460 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4461 	seq_printf(m, "oom_kill %lu\n",
4462 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
4463 	seq_printf(m, "oom_group_kill %lu\n",
4464 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4465 }
4466 
memory_events_show(struct seq_file * m,void * v)4467 static int memory_events_show(struct seq_file *m, void *v)
4468 {
4469 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4470 
4471 	__memory_events_show(m, memcg->memory_events);
4472 	return 0;
4473 }
4474 
memory_events_local_show(struct seq_file * m,void * v)4475 static int memory_events_local_show(struct seq_file *m, void *v)
4476 {
4477 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4478 
4479 	__memory_events_show(m, memcg->memory_events_local);
4480 	return 0;
4481 }
4482 
memory_stat_show(struct seq_file * m,void * v)4483 int memory_stat_show(struct seq_file *m, void *v)
4484 {
4485 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4486 	char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4487 	struct seq_buf s;
4488 
4489 	if (!buf)
4490 		return -ENOMEM;
4491 	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4492 	memory_stat_format(memcg, &s);
4493 	seq_puts(m, buf);
4494 	kfree(buf);
4495 	return 0;
4496 }
4497 
4498 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)4499 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4500 						     int item)
4501 {
4502 	return lruvec_page_state(lruvec, item) *
4503 		memcg_page_state_output_unit(item);
4504 }
4505 
memory_numa_stat_show(struct seq_file * m,void * v)4506 static int memory_numa_stat_show(struct seq_file *m, void *v)
4507 {
4508 	int i;
4509 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4510 
4511 	mem_cgroup_flush_stats(memcg);
4512 
4513 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4514 		int nid;
4515 
4516 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4517 			continue;
4518 
4519 		seq_printf(m, "%s", memory_stats[i].name);
4520 		for_each_node_state(nid, N_MEMORY) {
4521 			u64 size;
4522 			struct lruvec *lruvec;
4523 
4524 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4525 			size = lruvec_page_state_output(lruvec,
4526 							memory_stats[i].idx);
4527 			seq_printf(m, " N%d=%llu", nid, size);
4528 		}
4529 		seq_putc(m, '\n');
4530 	}
4531 
4532 	return 0;
4533 }
4534 #endif
4535 
memory_oom_group_show(struct seq_file * m,void * v)4536 static int memory_oom_group_show(struct seq_file *m, void *v)
4537 {
4538 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4539 
4540 	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4541 
4542 	return 0;
4543 }
4544 
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4545 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4546 				      char *buf, size_t nbytes, loff_t off)
4547 {
4548 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4549 	int ret, oom_group;
4550 
4551 	buf = strstrip(buf);
4552 	if (!buf)
4553 		return -EINVAL;
4554 
4555 	ret = kstrtoint(buf, 0, &oom_group);
4556 	if (ret)
4557 		return ret;
4558 
4559 	if (oom_group != 0 && oom_group != 1)
4560 		return -EINVAL;
4561 
4562 	WRITE_ONCE(memcg->oom_group, oom_group);
4563 
4564 	return nbytes;
4565 }
4566 
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4567 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4568 			      size_t nbytes, loff_t off)
4569 {
4570 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4571 	int ret;
4572 
4573 	ret = user_proactive_reclaim(buf, memcg, NULL);
4574 	if (ret)
4575 		return ret;
4576 
4577 	return nbytes;
4578 }
4579 
4580 static struct cftype memory_files[] = {
4581 	{
4582 		.name = "current",
4583 		.flags = CFTYPE_NOT_ON_ROOT,
4584 		.read_u64 = memory_current_read,
4585 	},
4586 	{
4587 		.name = "peak",
4588 		.flags = CFTYPE_NOT_ON_ROOT,
4589 		.open = peak_open,
4590 		.release = peak_release,
4591 		.seq_show = memory_peak_show,
4592 		.write = memory_peak_write,
4593 	},
4594 	{
4595 		.name = "min",
4596 		.flags = CFTYPE_NOT_ON_ROOT,
4597 		.seq_show = memory_min_show,
4598 		.write = memory_min_write,
4599 	},
4600 	{
4601 		.name = "low",
4602 		.flags = CFTYPE_NOT_ON_ROOT,
4603 		.seq_show = memory_low_show,
4604 		.write = memory_low_write,
4605 	},
4606 	{
4607 		.name = "high",
4608 		.flags = CFTYPE_NOT_ON_ROOT,
4609 		.seq_show = memory_high_show,
4610 		.write = memory_high_write,
4611 	},
4612 	{
4613 		.name = "max",
4614 		.flags = CFTYPE_NOT_ON_ROOT,
4615 		.seq_show = memory_max_show,
4616 		.write = memory_max_write,
4617 	},
4618 	{
4619 		.name = "events",
4620 		.flags = CFTYPE_NOT_ON_ROOT,
4621 		.file_offset = offsetof(struct mem_cgroup, events_file),
4622 		.seq_show = memory_events_show,
4623 	},
4624 	{
4625 		.name = "events.local",
4626 		.flags = CFTYPE_NOT_ON_ROOT,
4627 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
4628 		.seq_show = memory_events_local_show,
4629 	},
4630 	{
4631 		.name = "stat",
4632 		.seq_show = memory_stat_show,
4633 	},
4634 #ifdef CONFIG_NUMA
4635 	{
4636 		.name = "numa_stat",
4637 		.seq_show = memory_numa_stat_show,
4638 	},
4639 #endif
4640 	{
4641 		.name = "oom.group",
4642 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4643 		.seq_show = memory_oom_group_show,
4644 		.write = memory_oom_group_write,
4645 	},
4646 	{
4647 		.name = "reclaim",
4648 		.flags = CFTYPE_NS_DELEGATABLE,
4649 		.write = memory_reclaim,
4650 	},
4651 	{ }	/* terminate */
4652 };
4653 
4654 struct cgroup_subsys memory_cgrp_subsys = {
4655 	.css_alloc = mem_cgroup_css_alloc,
4656 	.css_online = mem_cgroup_css_online,
4657 	.css_offline = mem_cgroup_css_offline,
4658 	.css_released = mem_cgroup_css_released,
4659 	.css_free = mem_cgroup_css_free,
4660 	.css_reset = mem_cgroup_css_reset,
4661 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
4662 	.attach = mem_cgroup_attach,
4663 	.fork = mem_cgroup_fork,
4664 	.exit = mem_cgroup_exit,
4665 	.dfl_cftypes = memory_files,
4666 #ifdef CONFIG_MEMCG_V1
4667 	.legacy_cftypes = mem_cgroup_legacy_files,
4668 #endif
4669 	.early_init = 0,
4670 };
4671 
4672 /**
4673  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4674  * @root: the top ancestor of the sub-tree being checked
4675  * @memcg: the memory cgroup to check
4676  *
4677  * WARNING: This function is not stateless! It can only be used as part
4678  *          of a top-down tree iteration, not for isolated queries.
4679  */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)4680 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4681 				     struct mem_cgroup *memcg)
4682 {
4683 	bool recursive_protection =
4684 		cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4685 
4686 	if (mem_cgroup_disabled())
4687 		return;
4688 
4689 	if (!root)
4690 		root = root_mem_cgroup;
4691 
4692 	page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4693 }
4694 
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)4695 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4696 			gfp_t gfp)
4697 {
4698 	int ret;
4699 
4700 	ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4701 	if (ret)
4702 		goto out;
4703 
4704 	css_get(&memcg->css);
4705 	commit_charge(folio, memcg);
4706 	memcg1_commit_charge(folio, memcg);
4707 out:
4708 	return ret;
4709 }
4710 
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)4711 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4712 {
4713 	struct mem_cgroup *memcg;
4714 	int ret;
4715 
4716 	memcg = get_mem_cgroup_from_mm(mm);
4717 	ret = charge_memcg(folio, memcg, gfp);
4718 	css_put(&memcg->css);
4719 
4720 	return ret;
4721 }
4722 
4723 /**
4724  * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio
4725  * @folio: folio being charged
4726  * @gfp: reclaim mode
4727  *
4728  * This function is called when allocating a huge page folio, after the page has
4729  * already been obtained and charged to the appropriate hugetlb cgroup
4730  * controller (if it is enabled).
4731  *
4732  * Returns ENOMEM if the memcg is already full.
4733  * Returns 0 if either the charge was successful, or if we skip the charging.
4734  */
mem_cgroup_charge_hugetlb(struct folio * folio,gfp_t gfp)4735 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp)
4736 {
4737 	struct mem_cgroup *memcg = get_mem_cgroup_from_current();
4738 	int ret = 0;
4739 
4740 	/*
4741 	 * Even memcg does not account for hugetlb, we still want to update
4742 	 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip
4743 	 * charging the memcg.
4744 	 */
4745 	if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() ||
4746 		!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
4747 		goto out;
4748 
4749 	if (charge_memcg(folio, memcg, gfp))
4750 		ret = -ENOMEM;
4751 
4752 out:
4753 	mem_cgroup_put(memcg);
4754 	return ret;
4755 }
4756 
4757 /**
4758  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4759  * @folio: folio to charge.
4760  * @mm: mm context of the victim
4761  * @gfp: reclaim mode
4762  * @entry: swap entry for which the folio is allocated
4763  *
4764  * This function charges a folio allocated for swapin. Please call this before
4765  * adding the folio to the swapcache.
4766  *
4767  * Returns 0 on success. Otherwise, an error code is returned.
4768  */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)4769 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4770 				  gfp_t gfp, swp_entry_t entry)
4771 {
4772 	struct mem_cgroup *memcg;
4773 	unsigned short id;
4774 	int ret;
4775 
4776 	if (mem_cgroup_disabled())
4777 		return 0;
4778 
4779 	id = lookup_swap_cgroup_id(entry);
4780 	rcu_read_lock();
4781 	memcg = mem_cgroup_from_id(id);
4782 	if (!memcg || !css_tryget_online(&memcg->css))
4783 		memcg = get_mem_cgroup_from_mm(mm);
4784 	rcu_read_unlock();
4785 
4786 	ret = charge_memcg(folio, memcg, gfp);
4787 
4788 	css_put(&memcg->css);
4789 	return ret;
4790 }
4791 
4792 struct uncharge_gather {
4793 	struct mem_cgroup *memcg;
4794 	unsigned long nr_memory;
4795 	unsigned long pgpgout;
4796 	unsigned long nr_kmem;
4797 	int nid;
4798 };
4799 
uncharge_gather_clear(struct uncharge_gather * ug)4800 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4801 {
4802 	memset(ug, 0, sizeof(*ug));
4803 }
4804 
uncharge_batch(const struct uncharge_gather * ug)4805 static void uncharge_batch(const struct uncharge_gather *ug)
4806 {
4807 	if (ug->nr_memory) {
4808 		memcg_uncharge(ug->memcg, ug->nr_memory);
4809 		if (ug->nr_kmem) {
4810 			mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4811 			memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4812 		}
4813 		memcg1_oom_recover(ug->memcg);
4814 	}
4815 
4816 	memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4817 
4818 	/* drop reference from uncharge_folio */
4819 	css_put(&ug->memcg->css);
4820 }
4821 
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)4822 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4823 {
4824 	long nr_pages;
4825 	struct mem_cgroup *memcg;
4826 	struct obj_cgroup *objcg;
4827 
4828 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4829 
4830 	/*
4831 	 * Nobody should be changing or seriously looking at
4832 	 * folio memcg or objcg at this point, we have fully
4833 	 * exclusive access to the folio.
4834 	 */
4835 	if (folio_memcg_kmem(folio)) {
4836 		objcg = __folio_objcg(folio);
4837 		/*
4838 		 * This get matches the put at the end of the function and
4839 		 * kmem pages do not hold memcg references anymore.
4840 		 */
4841 		memcg = get_mem_cgroup_from_objcg(objcg);
4842 	} else {
4843 		memcg = __folio_memcg(folio);
4844 	}
4845 
4846 	if (!memcg)
4847 		return;
4848 
4849 	if (ug->memcg != memcg) {
4850 		if (ug->memcg) {
4851 			uncharge_batch(ug);
4852 			uncharge_gather_clear(ug);
4853 		}
4854 		ug->memcg = memcg;
4855 		ug->nid = folio_nid(folio);
4856 
4857 		/* pairs with css_put in uncharge_batch */
4858 		css_get(&memcg->css);
4859 	}
4860 
4861 	nr_pages = folio_nr_pages(folio);
4862 
4863 	if (folio_memcg_kmem(folio)) {
4864 		ug->nr_memory += nr_pages;
4865 		ug->nr_kmem += nr_pages;
4866 
4867 		folio->memcg_data = 0;
4868 		obj_cgroup_put(objcg);
4869 	} else {
4870 		/* LRU pages aren't accounted at the root level */
4871 		if (!mem_cgroup_is_root(memcg))
4872 			ug->nr_memory += nr_pages;
4873 		ug->pgpgout++;
4874 
4875 		WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4876 		folio->memcg_data = 0;
4877 	}
4878 
4879 	css_put(&memcg->css);
4880 }
4881 
__mem_cgroup_uncharge(struct folio * folio)4882 void __mem_cgroup_uncharge(struct folio *folio)
4883 {
4884 	struct uncharge_gather ug;
4885 
4886 	/* Don't touch folio->lru of any random page, pre-check: */
4887 	if (!folio_memcg_charged(folio))
4888 		return;
4889 
4890 	uncharge_gather_clear(&ug);
4891 	uncharge_folio(folio, &ug);
4892 	uncharge_batch(&ug);
4893 }
4894 
__mem_cgroup_uncharge_folios(struct folio_batch * folios)4895 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4896 {
4897 	struct uncharge_gather ug;
4898 	unsigned int i;
4899 
4900 	uncharge_gather_clear(&ug);
4901 	for (i = 0; i < folios->nr; i++)
4902 		uncharge_folio(folios->folios[i], &ug);
4903 	if (ug.memcg)
4904 		uncharge_batch(&ug);
4905 }
4906 
4907 /**
4908  * mem_cgroup_replace_folio - Charge a folio's replacement.
4909  * @old: Currently circulating folio.
4910  * @new: Replacement folio.
4911  *
4912  * Charge @new as a replacement folio for @old. @old will
4913  * be uncharged upon free.
4914  *
4915  * Both folios must be locked, @new->mapping must be set up.
4916  */
mem_cgroup_replace_folio(struct folio * old,struct folio * new)4917 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4918 {
4919 	struct mem_cgroup *memcg;
4920 	long nr_pages = folio_nr_pages(new);
4921 
4922 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4923 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4924 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4925 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4926 
4927 	if (mem_cgroup_disabled())
4928 		return;
4929 
4930 	/* Page cache replacement: new folio already charged? */
4931 	if (folio_memcg_charged(new))
4932 		return;
4933 
4934 	memcg = folio_memcg(old);
4935 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4936 	if (!memcg)
4937 		return;
4938 
4939 	/* Force-charge the new page. The old one will be freed soon */
4940 	if (!mem_cgroup_is_root(memcg)) {
4941 		page_counter_charge(&memcg->memory, nr_pages);
4942 		if (do_memsw_account())
4943 			page_counter_charge(&memcg->memsw, nr_pages);
4944 	}
4945 
4946 	css_get(&memcg->css);
4947 	commit_charge(new, memcg);
4948 	memcg1_commit_charge(new, memcg);
4949 }
4950 
4951 /**
4952  * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4953  * @old: Currently circulating folio.
4954  * @new: Replacement folio.
4955  *
4956  * Transfer the memcg data from the old folio to the new folio for migration.
4957  * The old folio's data info will be cleared. Note that the memory counters
4958  * will remain unchanged throughout the process.
4959  *
4960  * Both folios must be locked, @new->mapping must be set up.
4961  */
mem_cgroup_migrate(struct folio * old,struct folio * new)4962 void mem_cgroup_migrate(struct folio *old, struct folio *new)
4963 {
4964 	struct mem_cgroup *memcg;
4965 
4966 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4967 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4968 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4969 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4970 	VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4971 
4972 	if (mem_cgroup_disabled())
4973 		return;
4974 
4975 	memcg = folio_memcg(old);
4976 	/*
4977 	 * Note that it is normal to see !memcg for a hugetlb folio.
4978 	 * For e.g, itt could have been allocated when memory_hugetlb_accounting
4979 	 * was not selected.
4980 	 */
4981 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4982 	if (!memcg)
4983 		return;
4984 
4985 	/* Transfer the charge and the css ref */
4986 	commit_charge(new, memcg);
4987 
4988 	/* Warning should never happen, so don't worry about refcount non-0 */
4989 	WARN_ON_ONCE(folio_unqueue_deferred_split(old));
4990 	old->memcg_data = 0;
4991 }
4992 
4993 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4994 EXPORT_SYMBOL(memcg_sockets_enabled_key);
4995 
mem_cgroup_sk_alloc(struct sock * sk)4996 void mem_cgroup_sk_alloc(struct sock *sk)
4997 {
4998 	struct mem_cgroup *memcg;
4999 
5000 	if (!mem_cgroup_sockets_enabled)
5001 		return;
5002 
5003 	/* Do not associate the sock with unrelated interrupted task's memcg. */
5004 	if (!in_task())
5005 		return;
5006 
5007 	rcu_read_lock();
5008 	memcg = mem_cgroup_from_task(current);
5009 	if (mem_cgroup_is_root(memcg))
5010 		goto out;
5011 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
5012 		goto out;
5013 	if (css_tryget(&memcg->css))
5014 		sk->sk_memcg = memcg;
5015 out:
5016 	rcu_read_unlock();
5017 }
5018 
mem_cgroup_sk_free(struct sock * sk)5019 void mem_cgroup_sk_free(struct sock *sk)
5020 {
5021 	struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5022 
5023 	if (memcg)
5024 		css_put(&memcg->css);
5025 }
5026 
mem_cgroup_sk_inherit(const struct sock * sk,struct sock * newsk)5027 void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk)
5028 {
5029 	struct mem_cgroup *memcg;
5030 
5031 	if (sk->sk_memcg == newsk->sk_memcg)
5032 		return;
5033 
5034 	mem_cgroup_sk_free(newsk);
5035 
5036 	memcg = mem_cgroup_from_sk(sk);
5037 	if (memcg)
5038 		css_get(&memcg->css);
5039 
5040 	newsk->sk_memcg = sk->sk_memcg;
5041 }
5042 
5043 /**
5044  * mem_cgroup_sk_charge - charge socket memory
5045  * @sk: socket in memcg to charge
5046  * @nr_pages: number of pages to charge
5047  * @gfp_mask: reclaim mode
5048  *
5049  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5050  * @memcg's configured limit, %false if it doesn't.
5051  */
mem_cgroup_sk_charge(const struct sock * sk,unsigned int nr_pages,gfp_t gfp_mask)5052 bool mem_cgroup_sk_charge(const struct sock *sk, unsigned int nr_pages,
5053 			  gfp_t gfp_mask)
5054 {
5055 	struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5056 
5057 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5058 		return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
5059 
5060 	if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) {
5061 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5062 		return true;
5063 	}
5064 
5065 	return false;
5066 }
5067 
5068 /**
5069  * mem_cgroup_sk_uncharge - uncharge socket memory
5070  * @sk: socket in memcg to uncharge
5071  * @nr_pages: number of pages to uncharge
5072  */
mem_cgroup_sk_uncharge(const struct sock * sk,unsigned int nr_pages)5073 void mem_cgroup_sk_uncharge(const struct sock *sk, unsigned int nr_pages)
5074 {
5075 	struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5076 
5077 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5078 		memcg1_uncharge_skmem(memcg, nr_pages);
5079 		return;
5080 	}
5081 
5082 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5083 
5084 	refill_stock(memcg, nr_pages);
5085 }
5086 
cgroup_memory(char * s)5087 static int __init cgroup_memory(char *s)
5088 {
5089 	char *token;
5090 
5091 	while ((token = strsep(&s, ",")) != NULL) {
5092 		if (!*token)
5093 			continue;
5094 		if (!strcmp(token, "nosocket"))
5095 			cgroup_memory_nosocket = true;
5096 		if (!strcmp(token, "nokmem"))
5097 			cgroup_memory_nokmem = true;
5098 		if (!strcmp(token, "nobpf"))
5099 			cgroup_memory_nobpf = true;
5100 	}
5101 	return 1;
5102 }
5103 __setup("cgroup.memory=", cgroup_memory);
5104 
5105 /*
5106  * Memory controller init before cgroup_init() initialize root_mem_cgroup.
5107  *
5108  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5109  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5110  * basically everything that doesn't depend on a specific mem_cgroup structure
5111  * should be initialized from here.
5112  */
mem_cgroup_init(void)5113 int __init mem_cgroup_init(void)
5114 {
5115 	unsigned int memcg_size;
5116 	int cpu;
5117 
5118 	/*
5119 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
5120 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
5121 	 * to work fine, we should make sure that the overfill threshold can't
5122 	 * exceed S32_MAX / PAGE_SIZE.
5123 	 */
5124 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
5125 
5126 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5127 				  memcg_hotplug_cpu_dead);
5128 
5129 	for_each_possible_cpu(cpu) {
5130 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5131 			  drain_local_memcg_stock);
5132 		INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work,
5133 			  drain_local_obj_stock);
5134 	}
5135 
5136 	memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids);
5137 	memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0,
5138 					 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
5139 
5140 	memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node,
5141 				     SLAB_PANIC | SLAB_HWCACHE_ALIGN);
5142 
5143 	return 0;
5144 }
5145 
5146 #ifdef CONFIG_SWAP
5147 /**
5148  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5149  * @folio: folio being added to swap
5150  * @entry: swap entry to charge
5151  *
5152  * Try to charge @folio's memcg for the swap space at @entry.
5153  *
5154  * Returns 0 on success, -ENOMEM on failure.
5155  */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)5156 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5157 {
5158 	unsigned int nr_pages = folio_nr_pages(folio);
5159 	struct page_counter *counter;
5160 	struct mem_cgroup *memcg;
5161 
5162 	if (do_memsw_account())
5163 		return 0;
5164 
5165 	memcg = folio_memcg(folio);
5166 
5167 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5168 	if (!memcg)
5169 		return 0;
5170 
5171 	if (!entry.val) {
5172 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5173 		return 0;
5174 	}
5175 
5176 	memcg = mem_cgroup_id_get_online(memcg);
5177 
5178 	if (!mem_cgroup_is_root(memcg) &&
5179 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5180 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5181 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5182 		mem_cgroup_id_put(memcg);
5183 		return -ENOMEM;
5184 	}
5185 
5186 	/* Get references for the tail pages, too */
5187 	if (nr_pages > 1)
5188 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
5189 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5190 
5191 	swap_cgroup_record(folio, mem_cgroup_id(memcg), entry);
5192 
5193 	return 0;
5194 }
5195 
5196 /**
5197  * __mem_cgroup_uncharge_swap - uncharge swap space
5198  * @entry: swap entry to uncharge
5199  * @nr_pages: the amount of swap space to uncharge
5200  */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)5201 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5202 {
5203 	struct mem_cgroup *memcg;
5204 	unsigned short id;
5205 
5206 	id = swap_cgroup_clear(entry, nr_pages);
5207 	rcu_read_lock();
5208 	memcg = mem_cgroup_from_id(id);
5209 	if (memcg) {
5210 		if (!mem_cgroup_is_root(memcg)) {
5211 			if (do_memsw_account())
5212 				page_counter_uncharge(&memcg->memsw, nr_pages);
5213 			else
5214 				page_counter_uncharge(&memcg->swap, nr_pages);
5215 		}
5216 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5217 		mem_cgroup_id_put_many(memcg, nr_pages);
5218 	}
5219 	rcu_read_unlock();
5220 }
5221 
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)5222 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5223 {
5224 	long nr_swap_pages = get_nr_swap_pages();
5225 
5226 	if (mem_cgroup_disabled() || do_memsw_account())
5227 		return nr_swap_pages;
5228 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5229 		nr_swap_pages = min_t(long, nr_swap_pages,
5230 				      READ_ONCE(memcg->swap.max) -
5231 				      page_counter_read(&memcg->swap));
5232 	return nr_swap_pages;
5233 }
5234 
mem_cgroup_swap_full(struct folio * folio)5235 bool mem_cgroup_swap_full(struct folio *folio)
5236 {
5237 	struct mem_cgroup *memcg;
5238 
5239 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5240 
5241 	if (vm_swap_full())
5242 		return true;
5243 	if (do_memsw_account())
5244 		return false;
5245 
5246 	memcg = folio_memcg(folio);
5247 	if (!memcg)
5248 		return false;
5249 
5250 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5251 		unsigned long usage = page_counter_read(&memcg->swap);
5252 
5253 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5254 		    usage * 2 >= READ_ONCE(memcg->swap.max))
5255 			return true;
5256 	}
5257 
5258 	return false;
5259 }
5260 
setup_swap_account(char * s)5261 static int __init setup_swap_account(char *s)
5262 {
5263 	bool res;
5264 
5265 	if (!kstrtobool(s, &res) && !res)
5266 		pr_warn_once("The swapaccount=0 commandline option is deprecated "
5267 			     "in favor of configuring swap control via cgroupfs. "
5268 			     "Please report your usecase to linux-mm@kvack.org if you "
5269 			     "depend on this functionality.\n");
5270 	return 1;
5271 }
5272 __setup("swapaccount=", setup_swap_account);
5273 
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5274 static u64 swap_current_read(struct cgroup_subsys_state *css,
5275 			     struct cftype *cft)
5276 {
5277 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5278 
5279 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5280 }
5281 
swap_peak_show(struct seq_file * sf,void * v)5282 static int swap_peak_show(struct seq_file *sf, void *v)
5283 {
5284 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5285 
5286 	return peak_show(sf, v, &memcg->swap);
5287 }
5288 
swap_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5289 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5290 			       size_t nbytes, loff_t off)
5291 {
5292 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5293 
5294 	return peak_write(of, buf, nbytes, off, &memcg->swap,
5295 			  &memcg->swap_peaks);
5296 }
5297 
swap_high_show(struct seq_file * m,void * v)5298 static int swap_high_show(struct seq_file *m, void *v)
5299 {
5300 	return seq_puts_memcg_tunable(m,
5301 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5302 }
5303 
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5304 static ssize_t swap_high_write(struct kernfs_open_file *of,
5305 			       char *buf, size_t nbytes, loff_t off)
5306 {
5307 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5308 	unsigned long high;
5309 	int err;
5310 
5311 	buf = strstrip(buf);
5312 	err = page_counter_memparse(buf, "max", &high);
5313 	if (err)
5314 		return err;
5315 
5316 	page_counter_set_high(&memcg->swap, high);
5317 
5318 	return nbytes;
5319 }
5320 
swap_max_show(struct seq_file * m,void * v)5321 static int swap_max_show(struct seq_file *m, void *v)
5322 {
5323 	return seq_puts_memcg_tunable(m,
5324 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5325 }
5326 
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5327 static ssize_t swap_max_write(struct kernfs_open_file *of,
5328 			      char *buf, size_t nbytes, loff_t off)
5329 {
5330 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5331 	unsigned long max;
5332 	int err;
5333 
5334 	buf = strstrip(buf);
5335 	err = page_counter_memparse(buf, "max", &max);
5336 	if (err)
5337 		return err;
5338 
5339 	xchg(&memcg->swap.max, max);
5340 
5341 	return nbytes;
5342 }
5343 
swap_events_show(struct seq_file * m,void * v)5344 static int swap_events_show(struct seq_file *m, void *v)
5345 {
5346 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5347 
5348 	seq_printf(m, "high %lu\n",
5349 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5350 	seq_printf(m, "max %lu\n",
5351 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5352 	seq_printf(m, "fail %lu\n",
5353 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5354 
5355 	return 0;
5356 }
5357 
5358 static struct cftype swap_files[] = {
5359 	{
5360 		.name = "swap.current",
5361 		.flags = CFTYPE_NOT_ON_ROOT,
5362 		.read_u64 = swap_current_read,
5363 	},
5364 	{
5365 		.name = "swap.high",
5366 		.flags = CFTYPE_NOT_ON_ROOT,
5367 		.seq_show = swap_high_show,
5368 		.write = swap_high_write,
5369 	},
5370 	{
5371 		.name = "swap.max",
5372 		.flags = CFTYPE_NOT_ON_ROOT,
5373 		.seq_show = swap_max_show,
5374 		.write = swap_max_write,
5375 	},
5376 	{
5377 		.name = "swap.peak",
5378 		.flags = CFTYPE_NOT_ON_ROOT,
5379 		.open = peak_open,
5380 		.release = peak_release,
5381 		.seq_show = swap_peak_show,
5382 		.write = swap_peak_write,
5383 	},
5384 	{
5385 		.name = "swap.events",
5386 		.flags = CFTYPE_NOT_ON_ROOT,
5387 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
5388 		.seq_show = swap_events_show,
5389 	},
5390 	{ }	/* terminate */
5391 };
5392 
5393 #ifdef CONFIG_ZSWAP
5394 /**
5395  * obj_cgroup_may_zswap - check if this cgroup can zswap
5396  * @objcg: the object cgroup
5397  *
5398  * Check if the hierarchical zswap limit has been reached.
5399  *
5400  * This doesn't check for specific headroom, and it is not atomic
5401  * either. But with zswap, the size of the allocation is only known
5402  * once compression has occurred, and this optimistic pre-check avoids
5403  * spending cycles on compression when there is already no room left
5404  * or zswap is disabled altogether somewhere in the hierarchy.
5405  */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)5406 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5407 {
5408 	struct mem_cgroup *memcg, *original_memcg;
5409 	bool ret = true;
5410 
5411 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5412 		return true;
5413 
5414 	original_memcg = get_mem_cgroup_from_objcg(objcg);
5415 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5416 	     memcg = parent_mem_cgroup(memcg)) {
5417 		unsigned long max = READ_ONCE(memcg->zswap_max);
5418 		unsigned long pages;
5419 
5420 		if (max == PAGE_COUNTER_MAX)
5421 			continue;
5422 		if (max == 0) {
5423 			ret = false;
5424 			break;
5425 		}
5426 
5427 		/* Force flush to get accurate stats for charging */
5428 		__mem_cgroup_flush_stats(memcg, true);
5429 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5430 		if (pages < max)
5431 			continue;
5432 		ret = false;
5433 		break;
5434 	}
5435 	mem_cgroup_put(original_memcg);
5436 	return ret;
5437 }
5438 
5439 /**
5440  * obj_cgroup_charge_zswap - charge compression backend memory
5441  * @objcg: the object cgroup
5442  * @size: size of compressed object
5443  *
5444  * This forces the charge after obj_cgroup_may_zswap() allowed
5445  * compression and storage in zwap for this cgroup to go ahead.
5446  */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)5447 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5448 {
5449 	struct mem_cgroup *memcg;
5450 
5451 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5452 		return;
5453 
5454 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5455 
5456 	/* PF_MEMALLOC context, charging must succeed */
5457 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5458 		VM_WARN_ON_ONCE(1);
5459 
5460 	rcu_read_lock();
5461 	memcg = obj_cgroup_memcg(objcg);
5462 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5463 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5464 	rcu_read_unlock();
5465 }
5466 
5467 /**
5468  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5469  * @objcg: the object cgroup
5470  * @size: size of compressed object
5471  *
5472  * Uncharges zswap memory on page in.
5473  */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)5474 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5475 {
5476 	struct mem_cgroup *memcg;
5477 
5478 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5479 		return;
5480 
5481 	obj_cgroup_uncharge(objcg, size);
5482 
5483 	rcu_read_lock();
5484 	memcg = obj_cgroup_memcg(objcg);
5485 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5486 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5487 	rcu_read_unlock();
5488 }
5489 
mem_cgroup_zswap_writeback_enabled(struct mem_cgroup * memcg)5490 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5491 {
5492 	/* if zswap is disabled, do not block pages going to the swapping device */
5493 	if (!zswap_is_enabled())
5494 		return true;
5495 
5496 	for (; memcg; memcg = parent_mem_cgroup(memcg))
5497 		if (!READ_ONCE(memcg->zswap_writeback))
5498 			return false;
5499 
5500 	return true;
5501 }
5502 
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5503 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5504 			      struct cftype *cft)
5505 {
5506 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5507 
5508 	mem_cgroup_flush_stats(memcg);
5509 	return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5510 }
5511 
zswap_max_show(struct seq_file * m,void * v)5512 static int zswap_max_show(struct seq_file *m, void *v)
5513 {
5514 	return seq_puts_memcg_tunable(m,
5515 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5516 }
5517 
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5518 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5519 			       char *buf, size_t nbytes, loff_t off)
5520 {
5521 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5522 	unsigned long max;
5523 	int err;
5524 
5525 	buf = strstrip(buf);
5526 	err = page_counter_memparse(buf, "max", &max);
5527 	if (err)
5528 		return err;
5529 
5530 	xchg(&memcg->zswap_max, max);
5531 
5532 	return nbytes;
5533 }
5534 
zswap_writeback_show(struct seq_file * m,void * v)5535 static int zswap_writeback_show(struct seq_file *m, void *v)
5536 {
5537 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5538 
5539 	seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5540 	return 0;
5541 }
5542 
zswap_writeback_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5543 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5544 				char *buf, size_t nbytes, loff_t off)
5545 {
5546 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5547 	int zswap_writeback;
5548 	ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5549 
5550 	if (parse_ret)
5551 		return parse_ret;
5552 
5553 	if (zswap_writeback != 0 && zswap_writeback != 1)
5554 		return -EINVAL;
5555 
5556 	WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5557 	return nbytes;
5558 }
5559 
5560 static struct cftype zswap_files[] = {
5561 	{
5562 		.name = "zswap.current",
5563 		.flags = CFTYPE_NOT_ON_ROOT,
5564 		.read_u64 = zswap_current_read,
5565 	},
5566 	{
5567 		.name = "zswap.max",
5568 		.flags = CFTYPE_NOT_ON_ROOT,
5569 		.seq_show = zswap_max_show,
5570 		.write = zswap_max_write,
5571 	},
5572 	{
5573 		.name = "zswap.writeback",
5574 		.seq_show = zswap_writeback_show,
5575 		.write = zswap_writeback_write,
5576 	},
5577 	{ }	/* terminate */
5578 };
5579 #endif /* CONFIG_ZSWAP */
5580 
mem_cgroup_swap_init(void)5581 static int __init mem_cgroup_swap_init(void)
5582 {
5583 	if (mem_cgroup_disabled())
5584 		return 0;
5585 
5586 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5587 #ifdef CONFIG_MEMCG_V1
5588 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5589 #endif
5590 #ifdef CONFIG_ZSWAP
5591 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5592 #endif
5593 	return 0;
5594 }
5595 subsys_initcall(mem_cgroup_swap_init);
5596 
5597 #endif /* CONFIG_SWAP */
5598 
mem_cgroup_node_allowed(struct mem_cgroup * memcg,int nid)5599 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
5600 {
5601 	return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true;
5602 }
5603