1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/cgroup-defs.h>
29 #include <linux/page_counter.h>
30 #include <linux/memcontrol.h>
31 #include <linux/cgroup.h>
32 #include <linux/cpuset.h>
33 #include <linux/sched/mm.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/hugetlb.h>
36 #include <linux/pagemap.h>
37 #include <linux/pagevec.h>
38 #include <linux/vm_event_item.h>
39 #include <linux/smp.h>
40 #include <linux/page-flags.h>
41 #include <linux/backing-dev.h>
42 #include <linux/bit_spinlock.h>
43 #include <linux/rcupdate.h>
44 #include <linux/limits.h>
45 #include <linux/export.h>
46 #include <linux/list.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swapops.h>
51 #include <linux/spinlock.h>
52 #include <linux/fs.h>
53 #include <linux/seq_file.h>
54 #include <linux/parser.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/resume_user_mode.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include <linux/sched/isolation.h>
66 #include <linux/kmemleak.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "memcontrol-v1.h"
72
73 #include <linux/uaccess.h>
74
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/memcg.h>
77 #undef CREATE_TRACE_POINTS
78
79 #include <trace/events/vmscan.h>
80
81 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
82 EXPORT_SYMBOL(memory_cgrp_subsys);
83
84 struct mem_cgroup *root_mem_cgroup __read_mostly;
85
86 /* Active memory cgroup to use from an interrupt context */
87 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
88 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
89
90 /* Socket memory accounting disabled? */
91 static bool cgroup_memory_nosocket __ro_after_init;
92
93 /* Kernel memory accounting disabled? */
94 static bool cgroup_memory_nokmem __ro_after_init;
95
96 /* BPF memory accounting disabled? */
97 static bool cgroup_memory_nobpf __ro_after_init;
98
99 static struct kmem_cache *memcg_cachep;
100 static struct kmem_cache *memcg_pn_cachep;
101
102 #ifdef CONFIG_CGROUP_WRITEBACK
103 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
104 #endif
105
task_is_dying(void)106 static inline bool task_is_dying(void)
107 {
108 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
109 (current->flags & PF_EXITING);
110 }
111
112 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)113 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
114 {
115 if (!memcg)
116 memcg = root_mem_cgroup;
117 return &memcg->vmpressure;
118 }
119
vmpressure_to_memcg(struct vmpressure * vmpr)120 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
121 {
122 return container_of(vmpr, struct mem_cgroup, vmpressure);
123 }
124
125 #define SEQ_BUF_SIZE SZ_4K
126 #define CURRENT_OBJCG_UPDATE_BIT 0
127 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
128
129 static DEFINE_SPINLOCK(objcg_lock);
130
mem_cgroup_kmem_disabled(void)131 bool mem_cgroup_kmem_disabled(void)
132 {
133 return cgroup_memory_nokmem;
134 }
135
136 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
137
obj_cgroup_release(struct percpu_ref * ref)138 static void obj_cgroup_release(struct percpu_ref *ref)
139 {
140 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
141 unsigned int nr_bytes;
142 unsigned int nr_pages;
143 unsigned long flags;
144
145 /*
146 * At this point all allocated objects are freed, and
147 * objcg->nr_charged_bytes can't have an arbitrary byte value.
148 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
149 *
150 * The following sequence can lead to it:
151 * 1) CPU0: objcg == stock->cached_objcg
152 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
153 * PAGE_SIZE bytes are charged
154 * 3) CPU1: a process from another memcg is allocating something,
155 * the stock if flushed,
156 * objcg->nr_charged_bytes = PAGE_SIZE - 92
157 * 5) CPU0: we do release this object,
158 * 92 bytes are added to stock->nr_bytes
159 * 6) CPU0: stock is flushed,
160 * 92 bytes are added to objcg->nr_charged_bytes
161 *
162 * In the result, nr_charged_bytes == PAGE_SIZE.
163 * This page will be uncharged in obj_cgroup_release().
164 */
165 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
166 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
167 nr_pages = nr_bytes >> PAGE_SHIFT;
168
169 if (nr_pages) {
170 struct mem_cgroup *memcg;
171
172 memcg = get_mem_cgroup_from_objcg(objcg);
173 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
174 memcg1_account_kmem(memcg, -nr_pages);
175 if (!mem_cgroup_is_root(memcg))
176 memcg_uncharge(memcg, nr_pages);
177 mem_cgroup_put(memcg);
178 }
179
180 spin_lock_irqsave(&objcg_lock, flags);
181 list_del(&objcg->list);
182 spin_unlock_irqrestore(&objcg_lock, flags);
183
184 percpu_ref_exit(ref);
185 kfree_rcu(objcg, rcu);
186 }
187
obj_cgroup_alloc(void)188 static struct obj_cgroup *obj_cgroup_alloc(void)
189 {
190 struct obj_cgroup *objcg;
191 int ret;
192
193 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
194 if (!objcg)
195 return NULL;
196
197 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
198 GFP_KERNEL);
199 if (ret) {
200 kfree(objcg);
201 return NULL;
202 }
203 INIT_LIST_HEAD(&objcg->list);
204 return objcg;
205 }
206
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)207 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
208 struct mem_cgroup *parent)
209 {
210 struct obj_cgroup *objcg, *iter;
211
212 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
213
214 spin_lock_irq(&objcg_lock);
215
216 /* 1) Ready to reparent active objcg. */
217 list_add(&objcg->list, &memcg->objcg_list);
218 /* 2) Reparent active objcg and already reparented objcgs to parent. */
219 list_for_each_entry(iter, &memcg->objcg_list, list)
220 WRITE_ONCE(iter->memcg, parent);
221 /* 3) Move already reparented objcgs to the parent's list */
222 list_splice(&memcg->objcg_list, &parent->objcg_list);
223
224 spin_unlock_irq(&objcg_lock);
225
226 percpu_ref_kill(&objcg->refcnt);
227 }
228
229 /*
230 * A lot of the calls to the cache allocation functions are expected to be
231 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
232 * conditional to this static branch, we'll have to allow modules that does
233 * kmem_cache_alloc and the such to see this symbol as well
234 */
235 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
236 EXPORT_SYMBOL(memcg_kmem_online_key);
237
238 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
239 EXPORT_SYMBOL(memcg_bpf_enabled_key);
240
241 /**
242 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
243 * @folio: folio of interest
244 *
245 * If memcg is bound to the default hierarchy, css of the memcg associated
246 * with @folio is returned. The returned css remains associated with @folio
247 * until it is released.
248 *
249 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
250 * is returned.
251 */
mem_cgroup_css_from_folio(struct folio * folio)252 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
253 {
254 struct mem_cgroup *memcg = folio_memcg(folio);
255
256 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
257 memcg = root_mem_cgroup;
258
259 return &memcg->css;
260 }
261
262 /**
263 * page_cgroup_ino - return inode number of the memcg a page is charged to
264 * @page: the page
265 *
266 * Look up the closest online ancestor of the memory cgroup @page is charged to
267 * and return its inode number or 0 if @page is not charged to any cgroup. It
268 * is safe to call this function without holding a reference to @page.
269 *
270 * Note, this function is inherently racy, because there is nothing to prevent
271 * the cgroup inode from getting torn down and potentially reallocated a moment
272 * after page_cgroup_ino() returns, so it only should be used by callers that
273 * do not care (such as procfs interfaces).
274 */
page_cgroup_ino(struct page * page)275 ino_t page_cgroup_ino(struct page *page)
276 {
277 struct mem_cgroup *memcg;
278 unsigned long ino = 0;
279
280 rcu_read_lock();
281 /* page_folio() is racy here, but the entire function is racy anyway */
282 memcg = folio_memcg_check(page_folio(page));
283
284 while (memcg && !(memcg->css.flags & CSS_ONLINE))
285 memcg = parent_mem_cgroup(memcg);
286 if (memcg)
287 ino = cgroup_ino(memcg->css.cgroup);
288 rcu_read_unlock();
289 return ino;
290 }
291
292 /* Subset of node_stat_item for memcg stats */
293 static const unsigned int memcg_node_stat_items[] = {
294 NR_INACTIVE_ANON,
295 NR_ACTIVE_ANON,
296 NR_INACTIVE_FILE,
297 NR_ACTIVE_FILE,
298 NR_UNEVICTABLE,
299 NR_SLAB_RECLAIMABLE_B,
300 NR_SLAB_UNRECLAIMABLE_B,
301 WORKINGSET_REFAULT_ANON,
302 WORKINGSET_REFAULT_FILE,
303 WORKINGSET_ACTIVATE_ANON,
304 WORKINGSET_ACTIVATE_FILE,
305 WORKINGSET_RESTORE_ANON,
306 WORKINGSET_RESTORE_FILE,
307 WORKINGSET_NODERECLAIM,
308 NR_ANON_MAPPED,
309 NR_FILE_MAPPED,
310 NR_FILE_PAGES,
311 NR_FILE_DIRTY,
312 NR_WRITEBACK,
313 NR_SHMEM,
314 NR_SHMEM_THPS,
315 NR_FILE_THPS,
316 NR_ANON_THPS,
317 NR_KERNEL_STACK_KB,
318 NR_PAGETABLE,
319 NR_SECONDARY_PAGETABLE,
320 #ifdef CONFIG_SWAP
321 NR_SWAPCACHE,
322 #endif
323 #ifdef CONFIG_NUMA_BALANCING
324 PGPROMOTE_SUCCESS,
325 #endif
326 PGDEMOTE_KSWAPD,
327 PGDEMOTE_DIRECT,
328 PGDEMOTE_KHUGEPAGED,
329 PGDEMOTE_PROACTIVE,
330 #ifdef CONFIG_HUGETLB_PAGE
331 NR_HUGETLB,
332 #endif
333 };
334
335 static const unsigned int memcg_stat_items[] = {
336 MEMCG_SWAP,
337 MEMCG_SOCK,
338 MEMCG_PERCPU_B,
339 MEMCG_VMALLOC,
340 MEMCG_KMEM,
341 MEMCG_ZSWAP_B,
342 MEMCG_ZSWAPPED,
343 };
344
345 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
346 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
347 ARRAY_SIZE(memcg_stat_items))
348 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
349 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
350
init_memcg_stats(void)351 static void init_memcg_stats(void)
352 {
353 u8 i, j = 0;
354
355 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
356
357 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
358
359 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
360 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
361
362 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
363 mem_cgroup_stats_index[memcg_stat_items[i]] = j;
364 }
365
memcg_stats_index(int idx)366 static inline int memcg_stats_index(int idx)
367 {
368 return mem_cgroup_stats_index[idx];
369 }
370
371 struct lruvec_stats_percpu {
372 /* Local (CPU and cgroup) state */
373 long state[NR_MEMCG_NODE_STAT_ITEMS];
374
375 /* Delta calculation for lockless upward propagation */
376 long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
377 };
378
379 struct lruvec_stats {
380 /* Aggregated (CPU and subtree) state */
381 long state[NR_MEMCG_NODE_STAT_ITEMS];
382
383 /* Non-hierarchical (CPU aggregated) state */
384 long state_local[NR_MEMCG_NODE_STAT_ITEMS];
385
386 /* Pending child counts during tree propagation */
387 long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
388 };
389
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)390 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
391 {
392 struct mem_cgroup_per_node *pn;
393 long x;
394 int i;
395
396 if (mem_cgroup_disabled())
397 return node_page_state(lruvec_pgdat(lruvec), idx);
398
399 i = memcg_stats_index(idx);
400 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
401 return 0;
402
403 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
404 x = READ_ONCE(pn->lruvec_stats->state[i]);
405 #ifdef CONFIG_SMP
406 if (x < 0)
407 x = 0;
408 #endif
409 return x;
410 }
411
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)412 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
413 enum node_stat_item idx)
414 {
415 struct mem_cgroup_per_node *pn;
416 long x;
417 int i;
418
419 if (mem_cgroup_disabled())
420 return node_page_state(lruvec_pgdat(lruvec), idx);
421
422 i = memcg_stats_index(idx);
423 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
424 return 0;
425
426 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
427 x = READ_ONCE(pn->lruvec_stats->state_local[i]);
428 #ifdef CONFIG_SMP
429 if (x < 0)
430 x = 0;
431 #endif
432 return x;
433 }
434
435 /* Subset of vm_event_item to report for memcg event stats */
436 static const unsigned int memcg_vm_event_stat[] = {
437 #ifdef CONFIG_MEMCG_V1
438 PGPGIN,
439 PGPGOUT,
440 #endif
441 PSWPIN,
442 PSWPOUT,
443 PGSCAN_KSWAPD,
444 PGSCAN_DIRECT,
445 PGSCAN_KHUGEPAGED,
446 PGSCAN_PROACTIVE,
447 PGSTEAL_KSWAPD,
448 PGSTEAL_DIRECT,
449 PGSTEAL_KHUGEPAGED,
450 PGSTEAL_PROACTIVE,
451 PGFAULT,
452 PGMAJFAULT,
453 PGREFILL,
454 PGACTIVATE,
455 PGDEACTIVATE,
456 PGLAZYFREE,
457 PGLAZYFREED,
458 #ifdef CONFIG_SWAP
459 SWPIN_ZERO,
460 SWPOUT_ZERO,
461 #endif
462 #ifdef CONFIG_ZSWAP
463 ZSWPIN,
464 ZSWPOUT,
465 ZSWPWB,
466 #endif
467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
468 THP_FAULT_ALLOC,
469 THP_COLLAPSE_ALLOC,
470 THP_SWPOUT,
471 THP_SWPOUT_FALLBACK,
472 #endif
473 #ifdef CONFIG_NUMA_BALANCING
474 NUMA_PAGE_MIGRATE,
475 NUMA_PTE_UPDATES,
476 NUMA_HINT_FAULTS,
477 NUMA_TASK_MIGRATE,
478 NUMA_TASK_SWAP,
479 #endif
480 };
481
482 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
483 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
484
init_memcg_events(void)485 static void init_memcg_events(void)
486 {
487 u8 i;
488
489 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
490
491 memset(mem_cgroup_events_index, U8_MAX,
492 sizeof(mem_cgroup_events_index));
493
494 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
495 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
496 }
497
memcg_events_index(enum vm_event_item idx)498 static inline int memcg_events_index(enum vm_event_item idx)
499 {
500 return mem_cgroup_events_index[idx];
501 }
502
503 struct memcg_vmstats_percpu {
504 /* Stats updates since the last flush */
505 unsigned int stats_updates;
506
507 /* Cached pointers for fast iteration in memcg_rstat_updated() */
508 struct memcg_vmstats_percpu __percpu *parent_pcpu;
509 struct memcg_vmstats *vmstats;
510
511 /* The above should fit a single cacheline for memcg_rstat_updated() */
512
513 /* Local (CPU and cgroup) page state & events */
514 long state[MEMCG_VMSTAT_SIZE];
515 unsigned long events[NR_MEMCG_EVENTS];
516
517 /* Delta calculation for lockless upward propagation */
518 long state_prev[MEMCG_VMSTAT_SIZE];
519 unsigned long events_prev[NR_MEMCG_EVENTS];
520 } ____cacheline_aligned;
521
522 struct memcg_vmstats {
523 /* Aggregated (CPU and subtree) page state & events */
524 long state[MEMCG_VMSTAT_SIZE];
525 unsigned long events[NR_MEMCG_EVENTS];
526
527 /* Non-hierarchical (CPU aggregated) page state & events */
528 long state_local[MEMCG_VMSTAT_SIZE];
529 unsigned long events_local[NR_MEMCG_EVENTS];
530
531 /* Pending child counts during tree propagation */
532 long state_pending[MEMCG_VMSTAT_SIZE];
533 unsigned long events_pending[NR_MEMCG_EVENTS];
534
535 /* Stats updates since the last flush */
536 atomic_t stats_updates;
537 };
538
539 /*
540 * memcg and lruvec stats flushing
541 *
542 * Many codepaths leading to stats update or read are performance sensitive and
543 * adding stats flushing in such codepaths is not desirable. So, to optimize the
544 * flushing the kernel does:
545 *
546 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
547 * rstat update tree grow unbounded.
548 *
549 * 2) Flush the stats synchronously on reader side only when there are more than
550 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
551 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
552 * only for 2 seconds due to (1).
553 */
554 static void flush_memcg_stats_dwork(struct work_struct *w);
555 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
556 static u64 flush_last_time;
557
558 #define FLUSH_TIME (2UL*HZ)
559
memcg_vmstats_needs_flush(struct memcg_vmstats * vmstats)560 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
561 {
562 return atomic_read(&vmstats->stats_updates) >
563 MEMCG_CHARGE_BATCH * num_online_cpus();
564 }
565
memcg_rstat_updated(struct mem_cgroup * memcg,int val,int cpu)566 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val,
567 int cpu)
568 {
569 struct memcg_vmstats_percpu __percpu *statc_pcpu;
570 struct memcg_vmstats_percpu *statc;
571 unsigned int stats_updates;
572
573 if (!val)
574 return;
575
576 /* TODO: add to cgroup update tree once it is nmi-safe. */
577 if (!in_nmi())
578 css_rstat_updated(&memcg->css, cpu);
579 statc_pcpu = memcg->vmstats_percpu;
580 for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) {
581 statc = this_cpu_ptr(statc_pcpu);
582 /*
583 * If @memcg is already flushable then all its ancestors are
584 * flushable as well and also there is no need to increase
585 * stats_updates.
586 */
587 if (memcg_vmstats_needs_flush(statc->vmstats))
588 break;
589
590 stats_updates = this_cpu_add_return(statc_pcpu->stats_updates,
591 abs(val));
592 if (stats_updates < MEMCG_CHARGE_BATCH)
593 continue;
594
595 stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0);
596 atomic_add(stats_updates, &statc->vmstats->stats_updates);
597 }
598 }
599
__mem_cgroup_flush_stats(struct mem_cgroup * memcg,bool force)600 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
601 {
602 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
603
604 trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates),
605 force, needs_flush);
606
607 if (!force && !needs_flush)
608 return;
609
610 if (mem_cgroup_is_root(memcg))
611 WRITE_ONCE(flush_last_time, jiffies_64);
612
613 css_rstat_flush(&memcg->css);
614 }
615
616 /*
617 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
618 * @memcg: root of the subtree to flush
619 *
620 * Flushing is serialized by the underlying global rstat lock. There is also a
621 * minimum amount of work to be done even if there are no stat updates to flush.
622 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
623 * avoids unnecessary work and contention on the underlying lock.
624 */
mem_cgroup_flush_stats(struct mem_cgroup * memcg)625 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
626 {
627 if (mem_cgroup_disabled())
628 return;
629
630 if (!memcg)
631 memcg = root_mem_cgroup;
632
633 __mem_cgroup_flush_stats(memcg, false);
634 }
635
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)636 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
637 {
638 /* Only flush if the periodic flusher is one full cycle late */
639 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
640 mem_cgroup_flush_stats(memcg);
641 }
642
flush_memcg_stats_dwork(struct work_struct * w)643 static void flush_memcg_stats_dwork(struct work_struct *w)
644 {
645 /*
646 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
647 * in latency-sensitive paths is as cheap as possible.
648 */
649 __mem_cgroup_flush_stats(root_mem_cgroup, true);
650 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
651 }
652
memcg_page_state(struct mem_cgroup * memcg,int idx)653 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
654 {
655 long x;
656 int i = memcg_stats_index(idx);
657
658 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
659 return 0;
660
661 x = READ_ONCE(memcg->vmstats->state[i]);
662 #ifdef CONFIG_SMP
663 if (x < 0)
664 x = 0;
665 #endif
666 return x;
667 }
668
669 static int memcg_page_state_unit(int item);
670
671 /*
672 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
673 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
674 */
memcg_state_val_in_pages(int idx,int val)675 static int memcg_state_val_in_pages(int idx, int val)
676 {
677 int unit = memcg_page_state_unit(idx);
678
679 if (!val || unit == PAGE_SIZE)
680 return val;
681 else
682 return max(val * unit / PAGE_SIZE, 1UL);
683 }
684
685 /**
686 * mod_memcg_state - update cgroup memory statistics
687 * @memcg: the memory cgroup
688 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689 * @val: delta to add to the counter, can be negative
690 */
mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int val)691 void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
692 int val)
693 {
694 int i = memcg_stats_index(idx);
695 int cpu;
696
697 if (mem_cgroup_disabled())
698 return;
699
700 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
701 return;
702
703 cpu = get_cpu();
704
705 this_cpu_add(memcg->vmstats_percpu->state[i], val);
706 val = memcg_state_val_in_pages(idx, val);
707 memcg_rstat_updated(memcg, val, cpu);
708 trace_mod_memcg_state(memcg, idx, val);
709
710 put_cpu();
711 }
712
713 #ifdef CONFIG_MEMCG_V1
714 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)715 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
716 {
717 long x;
718 int i = memcg_stats_index(idx);
719
720 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
721 return 0;
722
723 x = READ_ONCE(memcg->vmstats->state_local[i]);
724 #ifdef CONFIG_SMP
725 if (x < 0)
726 x = 0;
727 #endif
728 return x;
729 }
730 #endif
731
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)732 static void mod_memcg_lruvec_state(struct lruvec *lruvec,
733 enum node_stat_item idx,
734 int val)
735 {
736 struct mem_cgroup_per_node *pn;
737 struct mem_cgroup *memcg;
738 int i = memcg_stats_index(idx);
739 int cpu;
740
741 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
742 return;
743
744 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
745 memcg = pn->memcg;
746
747 cpu = get_cpu();
748
749 /* Update memcg */
750 this_cpu_add(memcg->vmstats_percpu->state[i], val);
751
752 /* Update lruvec */
753 this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
754
755 val = memcg_state_val_in_pages(idx, val);
756 memcg_rstat_updated(memcg, val, cpu);
757 trace_mod_memcg_lruvec_state(memcg, idx, val);
758
759 put_cpu();
760 }
761
762 /**
763 * __mod_lruvec_state - update lruvec memory statistics
764 * @lruvec: the lruvec
765 * @idx: the stat item
766 * @val: delta to add to the counter, can be negative
767 *
768 * The lruvec is the intersection of the NUMA node and a cgroup. This
769 * function updates the all three counters that are affected by a
770 * change of state at this level: per-node, per-cgroup, per-lruvec.
771 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)772 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
773 int val)
774 {
775 /* Update node */
776 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
777
778 /* Update memcg and lruvec */
779 if (!mem_cgroup_disabled())
780 mod_memcg_lruvec_state(lruvec, idx, val);
781 }
782
__lruvec_stat_mod_folio(struct folio * folio,enum node_stat_item idx,int val)783 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
784 int val)
785 {
786 struct mem_cgroup *memcg;
787 pg_data_t *pgdat = folio_pgdat(folio);
788 struct lruvec *lruvec;
789
790 rcu_read_lock();
791 memcg = folio_memcg(folio);
792 /* Untracked pages have no memcg, no lruvec. Update only the node */
793 if (!memcg) {
794 rcu_read_unlock();
795 __mod_node_page_state(pgdat, idx, val);
796 return;
797 }
798
799 lruvec = mem_cgroup_lruvec(memcg, pgdat);
800 __mod_lruvec_state(lruvec, idx, val);
801 rcu_read_unlock();
802 }
803 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
804
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)805 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
806 {
807 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
808 struct mem_cgroup *memcg;
809 struct lruvec *lruvec;
810
811 rcu_read_lock();
812 memcg = mem_cgroup_from_slab_obj(p);
813
814 /*
815 * Untracked pages have no memcg, no lruvec. Update only the
816 * node. If we reparent the slab objects to the root memcg,
817 * when we free the slab object, we need to update the per-memcg
818 * vmstats to keep it correct for the root memcg.
819 */
820 if (!memcg) {
821 __mod_node_page_state(pgdat, idx, val);
822 } else {
823 lruvec = mem_cgroup_lruvec(memcg, pgdat);
824 __mod_lruvec_state(lruvec, idx, val);
825 }
826 rcu_read_unlock();
827 }
828
829 /**
830 * count_memcg_events - account VM events in a cgroup
831 * @memcg: the memory cgroup
832 * @idx: the event item
833 * @count: the number of events that occurred
834 */
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)835 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
836 unsigned long count)
837 {
838 int i = memcg_events_index(idx);
839 int cpu;
840
841 if (mem_cgroup_disabled())
842 return;
843
844 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
845 return;
846
847 cpu = get_cpu();
848
849 this_cpu_add(memcg->vmstats_percpu->events[i], count);
850 memcg_rstat_updated(memcg, count, cpu);
851 trace_count_memcg_events(memcg, idx, count);
852
853 put_cpu();
854 }
855
memcg_events(struct mem_cgroup * memcg,int event)856 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
857 {
858 int i = memcg_events_index(event);
859
860 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
861 return 0;
862
863 return READ_ONCE(memcg->vmstats->events[i]);
864 }
865
866 #ifdef CONFIG_MEMCG_V1
memcg_events_local(struct mem_cgroup * memcg,int event)867 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
868 {
869 int i = memcg_events_index(event);
870
871 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
872 return 0;
873
874 return READ_ONCE(memcg->vmstats->events_local[i]);
875 }
876 #endif
877
mem_cgroup_from_task(struct task_struct * p)878 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
879 {
880 /*
881 * mm_update_next_owner() may clear mm->owner to NULL
882 * if it races with swapoff, page migration, etc.
883 * So this can be called with p == NULL.
884 */
885 if (unlikely(!p))
886 return NULL;
887
888 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
889 }
890 EXPORT_SYMBOL(mem_cgroup_from_task);
891
active_memcg(void)892 static __always_inline struct mem_cgroup *active_memcg(void)
893 {
894 if (!in_task())
895 return this_cpu_read(int_active_memcg);
896 else
897 return current->active_memcg;
898 }
899
900 /**
901 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
902 * @mm: mm from which memcg should be extracted. It can be NULL.
903 *
904 * Obtain a reference on mm->memcg and returns it if successful. If mm
905 * is NULL, then the memcg is chosen as follows:
906 * 1) The active memcg, if set.
907 * 2) current->mm->memcg, if available
908 * 3) root memcg
909 * If mem_cgroup is disabled, NULL is returned.
910 */
get_mem_cgroup_from_mm(struct mm_struct * mm)911 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
912 {
913 struct mem_cgroup *memcg;
914
915 if (mem_cgroup_disabled())
916 return NULL;
917
918 /*
919 * Page cache insertions can happen without an
920 * actual mm context, e.g. during disk probing
921 * on boot, loopback IO, acct() writes etc.
922 *
923 * No need to css_get on root memcg as the reference
924 * counting is disabled on the root level in the
925 * cgroup core. See CSS_NO_REF.
926 */
927 if (unlikely(!mm)) {
928 memcg = active_memcg();
929 if (unlikely(memcg)) {
930 /* remote memcg must hold a ref */
931 css_get(&memcg->css);
932 return memcg;
933 }
934 mm = current->mm;
935 if (unlikely(!mm))
936 return root_mem_cgroup;
937 }
938
939 rcu_read_lock();
940 do {
941 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
942 if (unlikely(!memcg))
943 memcg = root_mem_cgroup;
944 } while (!css_tryget(&memcg->css));
945 rcu_read_unlock();
946 return memcg;
947 }
948 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
949
950 /**
951 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
952 */
get_mem_cgroup_from_current(void)953 struct mem_cgroup *get_mem_cgroup_from_current(void)
954 {
955 struct mem_cgroup *memcg;
956
957 if (mem_cgroup_disabled())
958 return NULL;
959
960 again:
961 rcu_read_lock();
962 memcg = mem_cgroup_from_task(current);
963 if (!css_tryget(&memcg->css)) {
964 rcu_read_unlock();
965 goto again;
966 }
967 rcu_read_unlock();
968 return memcg;
969 }
970
971 /**
972 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
973 * @folio: folio from which memcg should be extracted.
974 */
get_mem_cgroup_from_folio(struct folio * folio)975 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
976 {
977 struct mem_cgroup *memcg = folio_memcg(folio);
978
979 if (mem_cgroup_disabled())
980 return NULL;
981
982 rcu_read_lock();
983 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
984 memcg = root_mem_cgroup;
985 rcu_read_unlock();
986 return memcg;
987 }
988
989 /**
990 * mem_cgroup_iter - iterate over memory cgroup hierarchy
991 * @root: hierarchy root
992 * @prev: previously returned memcg, NULL on first invocation
993 * @reclaim: cookie for shared reclaim walks, NULL for full walks
994 *
995 * Returns references to children of the hierarchy below @root, or
996 * @root itself, or %NULL after a full round-trip.
997 *
998 * Caller must pass the return value in @prev on subsequent
999 * invocations for reference counting, or use mem_cgroup_iter_break()
1000 * to cancel a hierarchy walk before the round-trip is complete.
1001 *
1002 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1003 * in the hierarchy among all concurrent reclaimers operating on the
1004 * same node.
1005 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1006 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1007 struct mem_cgroup *prev,
1008 struct mem_cgroup_reclaim_cookie *reclaim)
1009 {
1010 struct mem_cgroup_reclaim_iter *iter;
1011 struct cgroup_subsys_state *css;
1012 struct mem_cgroup *pos;
1013 struct mem_cgroup *next;
1014
1015 if (mem_cgroup_disabled())
1016 return NULL;
1017
1018 if (!root)
1019 root = root_mem_cgroup;
1020
1021 rcu_read_lock();
1022 restart:
1023 next = NULL;
1024
1025 if (reclaim) {
1026 int gen;
1027 int nid = reclaim->pgdat->node_id;
1028
1029 iter = &root->nodeinfo[nid]->iter;
1030 gen = atomic_read(&iter->generation);
1031
1032 /*
1033 * On start, join the current reclaim iteration cycle.
1034 * Exit when a concurrent walker completes it.
1035 */
1036 if (!prev)
1037 reclaim->generation = gen;
1038 else if (reclaim->generation != gen)
1039 goto out_unlock;
1040
1041 pos = READ_ONCE(iter->position);
1042 } else
1043 pos = prev;
1044
1045 css = pos ? &pos->css : NULL;
1046
1047 while ((css = css_next_descendant_pre(css, &root->css))) {
1048 /*
1049 * Verify the css and acquire a reference. The root
1050 * is provided by the caller, so we know it's alive
1051 * and kicking, and don't take an extra reference.
1052 */
1053 if (css == &root->css || css_tryget(css))
1054 break;
1055 }
1056
1057 next = mem_cgroup_from_css(css);
1058
1059 if (reclaim) {
1060 /*
1061 * The position could have already been updated by a competing
1062 * thread, so check that the value hasn't changed since we read
1063 * it to avoid reclaiming from the same cgroup twice.
1064 */
1065 if (cmpxchg(&iter->position, pos, next) != pos) {
1066 if (css && css != &root->css)
1067 css_put(css);
1068 goto restart;
1069 }
1070
1071 if (!next) {
1072 atomic_inc(&iter->generation);
1073
1074 /*
1075 * Reclaimers share the hierarchy walk, and a
1076 * new one might jump in right at the end of
1077 * the hierarchy - make sure they see at least
1078 * one group and restart from the beginning.
1079 */
1080 if (!prev)
1081 goto restart;
1082 }
1083 }
1084
1085 out_unlock:
1086 rcu_read_unlock();
1087 if (prev && prev != root)
1088 css_put(&prev->css);
1089
1090 return next;
1091 }
1092
1093 /**
1094 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1095 * @root: hierarchy root
1096 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1097 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1098 void mem_cgroup_iter_break(struct mem_cgroup *root,
1099 struct mem_cgroup *prev)
1100 {
1101 if (!root)
1102 root = root_mem_cgroup;
1103 if (prev && prev != root)
1104 css_put(&prev->css);
1105 }
1106
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1107 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1108 struct mem_cgroup *dead_memcg)
1109 {
1110 struct mem_cgroup_reclaim_iter *iter;
1111 struct mem_cgroup_per_node *mz;
1112 int nid;
1113
1114 for_each_node(nid) {
1115 mz = from->nodeinfo[nid];
1116 iter = &mz->iter;
1117 cmpxchg(&iter->position, dead_memcg, NULL);
1118 }
1119 }
1120
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1121 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1122 {
1123 struct mem_cgroup *memcg = dead_memcg;
1124 struct mem_cgroup *last;
1125
1126 do {
1127 __invalidate_reclaim_iterators(memcg, dead_memcg);
1128 last = memcg;
1129 } while ((memcg = parent_mem_cgroup(memcg)));
1130
1131 /*
1132 * When cgroup1 non-hierarchy mode is used,
1133 * parent_mem_cgroup() does not walk all the way up to the
1134 * cgroup root (root_mem_cgroup). So we have to handle
1135 * dead_memcg from cgroup root separately.
1136 */
1137 if (!mem_cgroup_is_root(last))
1138 __invalidate_reclaim_iterators(root_mem_cgroup,
1139 dead_memcg);
1140 }
1141
1142 /**
1143 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1144 * @memcg: hierarchy root
1145 * @fn: function to call for each task
1146 * @arg: argument passed to @fn
1147 *
1148 * This function iterates over tasks attached to @memcg or to any of its
1149 * descendants and calls @fn for each task. If @fn returns a non-zero
1150 * value, the function breaks the iteration loop. Otherwise, it will iterate
1151 * over all tasks and return 0.
1152 *
1153 * This function must not be called for the root memory cgroup.
1154 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1155 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1156 int (*fn)(struct task_struct *, void *), void *arg)
1157 {
1158 struct mem_cgroup *iter;
1159 int ret = 0;
1160
1161 BUG_ON(mem_cgroup_is_root(memcg));
1162
1163 for_each_mem_cgroup_tree(iter, memcg) {
1164 struct css_task_iter it;
1165 struct task_struct *task;
1166
1167 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1168 while (!ret && (task = css_task_iter_next(&it))) {
1169 ret = fn(task, arg);
1170 /* Avoid potential softlockup warning */
1171 cond_resched();
1172 }
1173 css_task_iter_end(&it);
1174 if (ret) {
1175 mem_cgroup_iter_break(memcg, iter);
1176 break;
1177 }
1178 }
1179 }
1180
1181 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1182 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1183 {
1184 struct mem_cgroup *memcg;
1185
1186 if (mem_cgroup_disabled())
1187 return;
1188
1189 memcg = folio_memcg(folio);
1190
1191 if (!memcg)
1192 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1193 else
1194 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1195 }
1196 #endif
1197
1198 /**
1199 * folio_lruvec_lock - Lock the lruvec for a folio.
1200 * @folio: Pointer to the folio.
1201 *
1202 * These functions are safe to use under any of the following conditions:
1203 * - folio locked
1204 * - folio_test_lru false
1205 * - folio frozen (refcount of 0)
1206 *
1207 * Return: The lruvec this folio is on with its lock held.
1208 */
folio_lruvec_lock(struct folio * folio)1209 struct lruvec *folio_lruvec_lock(struct folio *folio)
1210 {
1211 struct lruvec *lruvec = folio_lruvec(folio);
1212
1213 spin_lock(&lruvec->lru_lock);
1214 lruvec_memcg_debug(lruvec, folio);
1215
1216 return lruvec;
1217 }
1218
1219 /**
1220 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1221 * @folio: Pointer to the folio.
1222 *
1223 * These functions are safe to use under any of the following conditions:
1224 * - folio locked
1225 * - folio_test_lru false
1226 * - folio frozen (refcount of 0)
1227 *
1228 * Return: The lruvec this folio is on with its lock held and interrupts
1229 * disabled.
1230 */
folio_lruvec_lock_irq(struct folio * folio)1231 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1232 {
1233 struct lruvec *lruvec = folio_lruvec(folio);
1234
1235 spin_lock_irq(&lruvec->lru_lock);
1236 lruvec_memcg_debug(lruvec, folio);
1237
1238 return lruvec;
1239 }
1240
1241 /**
1242 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1243 * @folio: Pointer to the folio.
1244 * @flags: Pointer to irqsave flags.
1245 *
1246 * These functions are safe to use under any of the following conditions:
1247 * - folio locked
1248 * - folio_test_lru false
1249 * - folio frozen (refcount of 0)
1250 *
1251 * Return: The lruvec this folio is on with its lock held and interrupts
1252 * disabled.
1253 */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1254 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1255 unsigned long *flags)
1256 {
1257 struct lruvec *lruvec = folio_lruvec(folio);
1258
1259 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1260 lruvec_memcg_debug(lruvec, folio);
1261
1262 return lruvec;
1263 }
1264
1265 /**
1266 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1267 * @lruvec: mem_cgroup per zone lru vector
1268 * @lru: index of lru list the page is sitting on
1269 * @zid: zone id of the accounted pages
1270 * @nr_pages: positive when adding or negative when removing
1271 *
1272 * This function must be called under lru_lock, just before a page is added
1273 * to or just after a page is removed from an lru list.
1274 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1275 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1276 int zid, int nr_pages)
1277 {
1278 struct mem_cgroup_per_node *mz;
1279 unsigned long *lru_size;
1280 long size;
1281
1282 if (mem_cgroup_disabled())
1283 return;
1284
1285 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1286 lru_size = &mz->lru_zone_size[zid][lru];
1287
1288 if (nr_pages < 0)
1289 *lru_size += nr_pages;
1290
1291 size = *lru_size;
1292 if (WARN_ONCE(size < 0,
1293 "%s(%p, %d, %d): lru_size %ld\n",
1294 __func__, lruvec, lru, nr_pages, size)) {
1295 VM_BUG_ON(1);
1296 *lru_size = 0;
1297 }
1298
1299 if (nr_pages > 0)
1300 *lru_size += nr_pages;
1301 }
1302
1303 /**
1304 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1305 * @memcg: the memory cgroup
1306 *
1307 * Returns the maximum amount of memory @mem can be charged with, in
1308 * pages.
1309 */
mem_cgroup_margin(struct mem_cgroup * memcg)1310 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1311 {
1312 unsigned long margin = 0;
1313 unsigned long count;
1314 unsigned long limit;
1315
1316 count = page_counter_read(&memcg->memory);
1317 limit = READ_ONCE(memcg->memory.max);
1318 if (count < limit)
1319 margin = limit - count;
1320
1321 if (do_memsw_account()) {
1322 count = page_counter_read(&memcg->memsw);
1323 limit = READ_ONCE(memcg->memsw.max);
1324 if (count < limit)
1325 margin = min(margin, limit - count);
1326 else
1327 margin = 0;
1328 }
1329
1330 return margin;
1331 }
1332
1333 struct memory_stat {
1334 const char *name;
1335 unsigned int idx;
1336 };
1337
1338 static const struct memory_stat memory_stats[] = {
1339 { "anon", NR_ANON_MAPPED },
1340 { "file", NR_FILE_PAGES },
1341 { "kernel", MEMCG_KMEM },
1342 { "kernel_stack", NR_KERNEL_STACK_KB },
1343 { "pagetables", NR_PAGETABLE },
1344 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1345 { "percpu", MEMCG_PERCPU_B },
1346 { "sock", MEMCG_SOCK },
1347 { "vmalloc", MEMCG_VMALLOC },
1348 { "shmem", NR_SHMEM },
1349 #ifdef CONFIG_ZSWAP
1350 { "zswap", MEMCG_ZSWAP_B },
1351 { "zswapped", MEMCG_ZSWAPPED },
1352 #endif
1353 { "file_mapped", NR_FILE_MAPPED },
1354 { "file_dirty", NR_FILE_DIRTY },
1355 { "file_writeback", NR_WRITEBACK },
1356 #ifdef CONFIG_SWAP
1357 { "swapcached", NR_SWAPCACHE },
1358 #endif
1359 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1360 { "anon_thp", NR_ANON_THPS },
1361 { "file_thp", NR_FILE_THPS },
1362 { "shmem_thp", NR_SHMEM_THPS },
1363 #endif
1364 { "inactive_anon", NR_INACTIVE_ANON },
1365 { "active_anon", NR_ACTIVE_ANON },
1366 { "inactive_file", NR_INACTIVE_FILE },
1367 { "active_file", NR_ACTIVE_FILE },
1368 { "unevictable", NR_UNEVICTABLE },
1369 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1370 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1371 #ifdef CONFIG_HUGETLB_PAGE
1372 { "hugetlb", NR_HUGETLB },
1373 #endif
1374
1375 /* The memory events */
1376 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1377 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1378 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1379 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1380 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1381 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1382 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1383
1384 { "pgdemote_kswapd", PGDEMOTE_KSWAPD },
1385 { "pgdemote_direct", PGDEMOTE_DIRECT },
1386 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED },
1387 { "pgdemote_proactive", PGDEMOTE_PROACTIVE },
1388 #ifdef CONFIG_NUMA_BALANCING
1389 { "pgpromote_success", PGPROMOTE_SUCCESS },
1390 #endif
1391 };
1392
1393 /* The actual unit of the state item, not the same as the output unit */
memcg_page_state_unit(int item)1394 static int memcg_page_state_unit(int item)
1395 {
1396 switch (item) {
1397 case MEMCG_PERCPU_B:
1398 case MEMCG_ZSWAP_B:
1399 case NR_SLAB_RECLAIMABLE_B:
1400 case NR_SLAB_UNRECLAIMABLE_B:
1401 return 1;
1402 case NR_KERNEL_STACK_KB:
1403 return SZ_1K;
1404 default:
1405 return PAGE_SIZE;
1406 }
1407 }
1408
1409 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_output_unit(int item)1410 static int memcg_page_state_output_unit(int item)
1411 {
1412 /*
1413 * Workingset state is actually in pages, but we export it to userspace
1414 * as a scalar count of events, so special case it here.
1415 *
1416 * Demotion and promotion activities are exported in pages, consistent
1417 * with their global counterparts.
1418 */
1419 switch (item) {
1420 case WORKINGSET_REFAULT_ANON:
1421 case WORKINGSET_REFAULT_FILE:
1422 case WORKINGSET_ACTIVATE_ANON:
1423 case WORKINGSET_ACTIVATE_FILE:
1424 case WORKINGSET_RESTORE_ANON:
1425 case WORKINGSET_RESTORE_FILE:
1426 case WORKINGSET_NODERECLAIM:
1427 case PGDEMOTE_KSWAPD:
1428 case PGDEMOTE_DIRECT:
1429 case PGDEMOTE_KHUGEPAGED:
1430 case PGDEMOTE_PROACTIVE:
1431 #ifdef CONFIG_NUMA_BALANCING
1432 case PGPROMOTE_SUCCESS:
1433 #endif
1434 return 1;
1435 default:
1436 return memcg_page_state_unit(item);
1437 }
1438 }
1439
memcg_page_state_output(struct mem_cgroup * memcg,int item)1440 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1441 {
1442 return memcg_page_state(memcg, item) *
1443 memcg_page_state_output_unit(item);
1444 }
1445
1446 #ifdef CONFIG_MEMCG_V1
memcg_page_state_local_output(struct mem_cgroup * memcg,int item)1447 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1448 {
1449 return memcg_page_state_local(memcg, item) *
1450 memcg_page_state_output_unit(item);
1451 }
1452 #endif
1453
1454 #ifdef CONFIG_HUGETLB_PAGE
memcg_accounts_hugetlb(void)1455 static bool memcg_accounts_hugetlb(void)
1456 {
1457 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1458 }
1459 #else /* CONFIG_HUGETLB_PAGE */
memcg_accounts_hugetlb(void)1460 static bool memcg_accounts_hugetlb(void)
1461 {
1462 return false;
1463 }
1464 #endif /* CONFIG_HUGETLB_PAGE */
1465
memcg_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1466 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1467 {
1468 int i;
1469
1470 /*
1471 * Provide statistics on the state of the memory subsystem as
1472 * well as cumulative event counters that show past behavior.
1473 *
1474 * This list is ordered following a combination of these gradients:
1475 * 1) generic big picture -> specifics and details
1476 * 2) reflecting userspace activity -> reflecting kernel heuristics
1477 *
1478 * Current memory state:
1479 */
1480 mem_cgroup_flush_stats(memcg);
1481
1482 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1483 u64 size;
1484
1485 #ifdef CONFIG_HUGETLB_PAGE
1486 if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1487 !memcg_accounts_hugetlb())
1488 continue;
1489 #endif
1490 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1491 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1492
1493 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1494 size += memcg_page_state_output(memcg,
1495 NR_SLAB_RECLAIMABLE_B);
1496 seq_buf_printf(s, "slab %llu\n", size);
1497 }
1498 }
1499
1500 /* Accumulated memory events */
1501 seq_buf_printf(s, "pgscan %lu\n",
1502 memcg_events(memcg, PGSCAN_KSWAPD) +
1503 memcg_events(memcg, PGSCAN_DIRECT) +
1504 memcg_events(memcg, PGSCAN_PROACTIVE) +
1505 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1506 seq_buf_printf(s, "pgsteal %lu\n",
1507 memcg_events(memcg, PGSTEAL_KSWAPD) +
1508 memcg_events(memcg, PGSTEAL_DIRECT) +
1509 memcg_events(memcg, PGSTEAL_PROACTIVE) +
1510 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1511
1512 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1513 #ifdef CONFIG_MEMCG_V1
1514 if (memcg_vm_event_stat[i] == PGPGIN ||
1515 memcg_vm_event_stat[i] == PGPGOUT)
1516 continue;
1517 #endif
1518 seq_buf_printf(s, "%s %lu\n",
1519 vm_event_name(memcg_vm_event_stat[i]),
1520 memcg_events(memcg, memcg_vm_event_stat[i]));
1521 }
1522 }
1523
memory_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1524 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1525 {
1526 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1527 memcg_stat_format(memcg, s);
1528 else
1529 memcg1_stat_format(memcg, s);
1530 if (seq_buf_has_overflowed(s))
1531 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1532 }
1533
1534 /**
1535 * mem_cgroup_print_oom_context: Print OOM information relevant to
1536 * memory controller.
1537 * @memcg: The memory cgroup that went over limit
1538 * @p: Task that is going to be killed
1539 *
1540 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1541 * enabled
1542 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1543 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1544 {
1545 rcu_read_lock();
1546
1547 if (memcg) {
1548 pr_cont(",oom_memcg=");
1549 pr_cont_cgroup_path(memcg->css.cgroup);
1550 } else
1551 pr_cont(",global_oom");
1552 if (p) {
1553 pr_cont(",task_memcg=");
1554 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1555 }
1556 rcu_read_unlock();
1557 }
1558
1559 /**
1560 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1561 * memory controller.
1562 * @memcg: The memory cgroup that went over limit
1563 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1564 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1565 {
1566 /* Use static buffer, for the caller is holding oom_lock. */
1567 static char buf[SEQ_BUF_SIZE];
1568 struct seq_buf s;
1569 unsigned long memory_failcnt;
1570
1571 lockdep_assert_held(&oom_lock);
1572
1573 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1574 memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]);
1575 else
1576 memory_failcnt = memcg->memory.failcnt;
1577
1578 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1579 K((u64)page_counter_read(&memcg->memory)),
1580 K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt);
1581 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1582 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1583 K((u64)page_counter_read(&memcg->swap)),
1584 K((u64)READ_ONCE(memcg->swap.max)),
1585 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
1586 #ifdef CONFIG_MEMCG_V1
1587 else {
1588 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1589 K((u64)page_counter_read(&memcg->memsw)),
1590 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1591 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1592 K((u64)page_counter_read(&memcg->kmem)),
1593 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1594 }
1595 #endif
1596
1597 pr_info("Memory cgroup stats for ");
1598 pr_cont_cgroup_path(memcg->css.cgroup);
1599 pr_cont(":");
1600 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1601 memory_stat_format(memcg, &s);
1602 seq_buf_do_printk(&s, KERN_INFO);
1603 }
1604
1605 /*
1606 * Return the memory (and swap, if configured) limit for a memcg.
1607 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1608 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1609 {
1610 unsigned long max = READ_ONCE(memcg->memory.max);
1611
1612 if (do_memsw_account()) {
1613 if (mem_cgroup_swappiness(memcg)) {
1614 /* Calculate swap excess capacity from memsw limit */
1615 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1616
1617 max += min(swap, (unsigned long)total_swap_pages);
1618 }
1619 } else {
1620 if (mem_cgroup_swappiness(memcg))
1621 max += min(READ_ONCE(memcg->swap.max),
1622 (unsigned long)total_swap_pages);
1623 }
1624 return max;
1625 }
1626
mem_cgroup_size(struct mem_cgroup * memcg)1627 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1628 {
1629 return page_counter_read(&memcg->memory);
1630 }
1631
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1632 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1633 int order)
1634 {
1635 struct oom_control oc = {
1636 .zonelist = NULL,
1637 .nodemask = NULL,
1638 .memcg = memcg,
1639 .gfp_mask = gfp_mask,
1640 .order = order,
1641 };
1642 bool ret = true;
1643
1644 if (mutex_lock_killable(&oom_lock))
1645 return true;
1646
1647 if (mem_cgroup_margin(memcg) >= (1 << order))
1648 goto unlock;
1649
1650 /*
1651 * A few threads which were not waiting at mutex_lock_killable() can
1652 * fail to bail out. Therefore, check again after holding oom_lock.
1653 */
1654 ret = out_of_memory(&oc);
1655
1656 unlock:
1657 mutex_unlock(&oom_lock);
1658 return ret;
1659 }
1660
1661 /*
1662 * Returns true if successfully killed one or more processes. Though in some
1663 * corner cases it can return true even without killing any process.
1664 */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1665 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1666 {
1667 bool locked, ret;
1668
1669 if (order > PAGE_ALLOC_COSTLY_ORDER)
1670 return false;
1671
1672 memcg_memory_event(memcg, MEMCG_OOM);
1673
1674 if (!memcg1_oom_prepare(memcg, &locked))
1675 return false;
1676
1677 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1678
1679 memcg1_oom_finish(memcg, locked);
1680
1681 return ret;
1682 }
1683
1684 /**
1685 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1686 * @victim: task to be killed by the OOM killer
1687 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1688 *
1689 * Returns a pointer to a memory cgroup, which has to be cleaned up
1690 * by killing all belonging OOM-killable tasks.
1691 *
1692 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1693 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1694 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1695 struct mem_cgroup *oom_domain)
1696 {
1697 struct mem_cgroup *oom_group = NULL;
1698 struct mem_cgroup *memcg;
1699
1700 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1701 return NULL;
1702
1703 if (!oom_domain)
1704 oom_domain = root_mem_cgroup;
1705
1706 rcu_read_lock();
1707
1708 memcg = mem_cgroup_from_task(victim);
1709 if (mem_cgroup_is_root(memcg))
1710 goto out;
1711
1712 /*
1713 * If the victim task has been asynchronously moved to a different
1714 * memory cgroup, we might end up killing tasks outside oom_domain.
1715 * In this case it's better to ignore memory.group.oom.
1716 */
1717 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1718 goto out;
1719
1720 /*
1721 * Traverse the memory cgroup hierarchy from the victim task's
1722 * cgroup up to the OOMing cgroup (or root) to find the
1723 * highest-level memory cgroup with oom.group set.
1724 */
1725 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1726 if (READ_ONCE(memcg->oom_group))
1727 oom_group = memcg;
1728
1729 if (memcg == oom_domain)
1730 break;
1731 }
1732
1733 if (oom_group)
1734 css_get(&oom_group->css);
1735 out:
1736 rcu_read_unlock();
1737
1738 return oom_group;
1739 }
1740
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1741 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1742 {
1743 pr_info("Tasks in ");
1744 pr_cont_cgroup_path(memcg->css.cgroup);
1745 pr_cont(" are going to be killed due to memory.oom.group set\n");
1746 }
1747
1748 /*
1749 * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their
1750 * nr_pages in a single cacheline. This may change in future.
1751 */
1752 #define NR_MEMCG_STOCK 7
1753 #define FLUSHING_CACHED_CHARGE 0
1754 struct memcg_stock_pcp {
1755 local_trylock_t lock;
1756 uint8_t nr_pages[NR_MEMCG_STOCK];
1757 struct mem_cgroup *cached[NR_MEMCG_STOCK];
1758
1759 struct work_struct work;
1760 unsigned long flags;
1761 };
1762
1763 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = {
1764 .lock = INIT_LOCAL_TRYLOCK(lock),
1765 };
1766
1767 struct obj_stock_pcp {
1768 local_trylock_t lock;
1769 unsigned int nr_bytes;
1770 struct obj_cgroup *cached_objcg;
1771 struct pglist_data *cached_pgdat;
1772 int nr_slab_reclaimable_b;
1773 int nr_slab_unreclaimable_b;
1774
1775 struct work_struct work;
1776 unsigned long flags;
1777 };
1778
1779 static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = {
1780 .lock = INIT_LOCAL_TRYLOCK(lock),
1781 };
1782
1783 static DEFINE_MUTEX(percpu_charge_mutex);
1784
1785 static void drain_obj_stock(struct obj_stock_pcp *stock);
1786 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
1787 struct mem_cgroup *root_memcg);
1788
1789 /**
1790 * consume_stock: Try to consume stocked charge on this cpu.
1791 * @memcg: memcg to consume from.
1792 * @nr_pages: how many pages to charge.
1793 *
1794 * Consume the cached charge if enough nr_pages are present otherwise return
1795 * failure. Also return failure for charge request larger than
1796 * MEMCG_CHARGE_BATCH or if the local lock is already taken.
1797 *
1798 * returns true if successful, false otherwise.
1799 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1800 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1801 {
1802 struct memcg_stock_pcp *stock;
1803 uint8_t stock_pages;
1804 bool ret = false;
1805 int i;
1806
1807 if (nr_pages > MEMCG_CHARGE_BATCH ||
1808 !local_trylock(&memcg_stock.lock))
1809 return ret;
1810
1811 stock = this_cpu_ptr(&memcg_stock);
1812
1813 for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1814 if (memcg != READ_ONCE(stock->cached[i]))
1815 continue;
1816
1817 stock_pages = READ_ONCE(stock->nr_pages[i]);
1818 if (stock_pages >= nr_pages) {
1819 WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages);
1820 ret = true;
1821 }
1822 break;
1823 }
1824
1825 local_unlock(&memcg_stock.lock);
1826
1827 return ret;
1828 }
1829
memcg_uncharge(struct mem_cgroup * memcg,unsigned int nr_pages)1830 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
1831 {
1832 page_counter_uncharge(&memcg->memory, nr_pages);
1833 if (do_memsw_account())
1834 page_counter_uncharge(&memcg->memsw, nr_pages);
1835 }
1836
1837 /*
1838 * Returns stocks cached in percpu and reset cached information.
1839 */
drain_stock(struct memcg_stock_pcp * stock,int i)1840 static void drain_stock(struct memcg_stock_pcp *stock, int i)
1841 {
1842 struct mem_cgroup *old = READ_ONCE(stock->cached[i]);
1843 uint8_t stock_pages;
1844
1845 if (!old)
1846 return;
1847
1848 stock_pages = READ_ONCE(stock->nr_pages[i]);
1849 if (stock_pages) {
1850 memcg_uncharge(old, stock_pages);
1851 WRITE_ONCE(stock->nr_pages[i], 0);
1852 }
1853
1854 css_put(&old->css);
1855 WRITE_ONCE(stock->cached[i], NULL);
1856 }
1857
drain_stock_fully(struct memcg_stock_pcp * stock)1858 static void drain_stock_fully(struct memcg_stock_pcp *stock)
1859 {
1860 int i;
1861
1862 for (i = 0; i < NR_MEMCG_STOCK; ++i)
1863 drain_stock(stock, i);
1864 }
1865
drain_local_memcg_stock(struct work_struct * dummy)1866 static void drain_local_memcg_stock(struct work_struct *dummy)
1867 {
1868 struct memcg_stock_pcp *stock;
1869
1870 if (WARN_ONCE(!in_task(), "drain in non-task context"))
1871 return;
1872
1873 local_lock(&memcg_stock.lock);
1874
1875 stock = this_cpu_ptr(&memcg_stock);
1876 drain_stock_fully(stock);
1877 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1878
1879 local_unlock(&memcg_stock.lock);
1880 }
1881
drain_local_obj_stock(struct work_struct * dummy)1882 static void drain_local_obj_stock(struct work_struct *dummy)
1883 {
1884 struct obj_stock_pcp *stock;
1885
1886 if (WARN_ONCE(!in_task(), "drain in non-task context"))
1887 return;
1888
1889 local_lock(&obj_stock.lock);
1890
1891 stock = this_cpu_ptr(&obj_stock);
1892 drain_obj_stock(stock);
1893 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1894
1895 local_unlock(&obj_stock.lock);
1896 }
1897
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1898 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1899 {
1900 struct memcg_stock_pcp *stock;
1901 struct mem_cgroup *cached;
1902 uint8_t stock_pages;
1903 bool success = false;
1904 int empty_slot = -1;
1905 int i;
1906
1907 /*
1908 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we
1909 * decide to increase it more than 127 then we will need more careful
1910 * handling of nr_pages[] in struct memcg_stock_pcp.
1911 */
1912 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX);
1913
1914 VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg));
1915
1916 if (nr_pages > MEMCG_CHARGE_BATCH ||
1917 !local_trylock(&memcg_stock.lock)) {
1918 /*
1919 * In case of larger than batch refill or unlikely failure to
1920 * lock the percpu memcg_stock.lock, uncharge memcg directly.
1921 */
1922 memcg_uncharge(memcg, nr_pages);
1923 return;
1924 }
1925
1926 stock = this_cpu_ptr(&memcg_stock);
1927 for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1928 cached = READ_ONCE(stock->cached[i]);
1929 if (!cached && empty_slot == -1)
1930 empty_slot = i;
1931 if (memcg == READ_ONCE(stock->cached[i])) {
1932 stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages;
1933 WRITE_ONCE(stock->nr_pages[i], stock_pages);
1934 if (stock_pages > MEMCG_CHARGE_BATCH)
1935 drain_stock(stock, i);
1936 success = true;
1937 break;
1938 }
1939 }
1940
1941 if (!success) {
1942 i = empty_slot;
1943 if (i == -1) {
1944 i = get_random_u32_below(NR_MEMCG_STOCK);
1945 drain_stock(stock, i);
1946 }
1947 css_get(&memcg->css);
1948 WRITE_ONCE(stock->cached[i], memcg);
1949 WRITE_ONCE(stock->nr_pages[i], nr_pages);
1950 }
1951
1952 local_unlock(&memcg_stock.lock);
1953 }
1954
is_memcg_drain_needed(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)1955 static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock,
1956 struct mem_cgroup *root_memcg)
1957 {
1958 struct mem_cgroup *memcg;
1959 bool flush = false;
1960 int i;
1961
1962 rcu_read_lock();
1963 for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1964 memcg = READ_ONCE(stock->cached[i]);
1965 if (!memcg)
1966 continue;
1967
1968 if (READ_ONCE(stock->nr_pages[i]) &&
1969 mem_cgroup_is_descendant(memcg, root_memcg)) {
1970 flush = true;
1971 break;
1972 }
1973 }
1974 rcu_read_unlock();
1975 return flush;
1976 }
1977
1978 /*
1979 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1980 * of the hierarchy under it.
1981 */
drain_all_stock(struct mem_cgroup * root_memcg)1982 void drain_all_stock(struct mem_cgroup *root_memcg)
1983 {
1984 int cpu, curcpu;
1985
1986 /* If someone's already draining, avoid adding running more workers. */
1987 if (!mutex_trylock(&percpu_charge_mutex))
1988 return;
1989 /*
1990 * Notify other cpus that system-wide "drain" is running
1991 * We do not care about races with the cpu hotplug because cpu down
1992 * as well as workers from this path always operate on the local
1993 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1994 */
1995 migrate_disable();
1996 curcpu = smp_processor_id();
1997 for_each_online_cpu(cpu) {
1998 struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu);
1999 struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu);
2000
2001 if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) &&
2002 is_memcg_drain_needed(memcg_st, root_memcg) &&
2003 !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2004 &memcg_st->flags)) {
2005 if (cpu == curcpu)
2006 drain_local_memcg_stock(&memcg_st->work);
2007 else if (!cpu_is_isolated(cpu))
2008 schedule_work_on(cpu, &memcg_st->work);
2009 }
2010
2011 if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) &&
2012 obj_stock_flush_required(obj_st, root_memcg) &&
2013 !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2014 &obj_st->flags)) {
2015 if (cpu == curcpu)
2016 drain_local_obj_stock(&obj_st->work);
2017 else if (!cpu_is_isolated(cpu))
2018 schedule_work_on(cpu, &obj_st->work);
2019 }
2020 }
2021 migrate_enable();
2022 mutex_unlock(&percpu_charge_mutex);
2023 }
2024
memcg_hotplug_cpu_dead(unsigned int cpu)2025 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2026 {
2027 /* no need for the local lock */
2028 drain_obj_stock(&per_cpu(obj_stock, cpu));
2029 drain_stock_fully(&per_cpu(memcg_stock, cpu));
2030
2031 return 0;
2032 }
2033
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2034 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2035 unsigned int nr_pages,
2036 gfp_t gfp_mask)
2037 {
2038 unsigned long nr_reclaimed = 0;
2039
2040 do {
2041 unsigned long pflags;
2042
2043 if (page_counter_read(&memcg->memory) <=
2044 READ_ONCE(memcg->memory.high))
2045 continue;
2046
2047 memcg_memory_event(memcg, MEMCG_HIGH);
2048
2049 psi_memstall_enter(&pflags);
2050 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2051 gfp_mask,
2052 MEMCG_RECLAIM_MAY_SWAP,
2053 NULL);
2054 psi_memstall_leave(&pflags);
2055 } while ((memcg = parent_mem_cgroup(memcg)) &&
2056 !mem_cgroup_is_root(memcg));
2057
2058 return nr_reclaimed;
2059 }
2060
high_work_func(struct work_struct * work)2061 static void high_work_func(struct work_struct *work)
2062 {
2063 struct mem_cgroup *memcg;
2064
2065 memcg = container_of(work, struct mem_cgroup, high_work);
2066 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2067 }
2068
2069 /*
2070 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2071 * enough to still cause a significant slowdown in most cases, while still
2072 * allowing diagnostics and tracing to proceed without becoming stuck.
2073 */
2074 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2075
2076 /*
2077 * When calculating the delay, we use these either side of the exponentiation to
2078 * maintain precision and scale to a reasonable number of jiffies (see the table
2079 * below.
2080 *
2081 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2082 * overage ratio to a delay.
2083 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2084 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2085 * to produce a reasonable delay curve.
2086 *
2087 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2088 * reasonable delay curve compared to precision-adjusted overage, not
2089 * penalising heavily at first, but still making sure that growth beyond the
2090 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2091 * example, with a high of 100 megabytes:
2092 *
2093 * +-------+------------------------+
2094 * | usage | time to allocate in ms |
2095 * +-------+------------------------+
2096 * | 100M | 0 |
2097 * | 101M | 6 |
2098 * | 102M | 25 |
2099 * | 103M | 57 |
2100 * | 104M | 102 |
2101 * | 105M | 159 |
2102 * | 106M | 230 |
2103 * | 107M | 313 |
2104 * | 108M | 409 |
2105 * | 109M | 518 |
2106 * | 110M | 639 |
2107 * | 111M | 774 |
2108 * | 112M | 921 |
2109 * | 113M | 1081 |
2110 * | 114M | 1254 |
2111 * | 115M | 1439 |
2112 * | 116M | 1638 |
2113 * | 117M | 1849 |
2114 * | 118M | 2000 |
2115 * | 119M | 2000 |
2116 * | 120M | 2000 |
2117 * +-------+------------------------+
2118 */
2119 #define MEMCG_DELAY_PRECISION_SHIFT 20
2120 #define MEMCG_DELAY_SCALING_SHIFT 14
2121
calculate_overage(unsigned long usage,unsigned long high)2122 static u64 calculate_overage(unsigned long usage, unsigned long high)
2123 {
2124 u64 overage;
2125
2126 if (usage <= high)
2127 return 0;
2128
2129 /*
2130 * Prevent division by 0 in overage calculation by acting as if
2131 * it was a threshold of 1 page
2132 */
2133 high = max(high, 1UL);
2134
2135 overage = usage - high;
2136 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2137 return div64_u64(overage, high);
2138 }
2139
mem_find_max_overage(struct mem_cgroup * memcg)2140 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2141 {
2142 u64 overage, max_overage = 0;
2143
2144 do {
2145 overage = calculate_overage(page_counter_read(&memcg->memory),
2146 READ_ONCE(memcg->memory.high));
2147 max_overage = max(overage, max_overage);
2148 } while ((memcg = parent_mem_cgroup(memcg)) &&
2149 !mem_cgroup_is_root(memcg));
2150
2151 return max_overage;
2152 }
2153
swap_find_max_overage(struct mem_cgroup * memcg)2154 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2155 {
2156 u64 overage, max_overage = 0;
2157
2158 do {
2159 overage = calculate_overage(page_counter_read(&memcg->swap),
2160 READ_ONCE(memcg->swap.high));
2161 if (overage)
2162 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2163 max_overage = max(overage, max_overage);
2164 } while ((memcg = parent_mem_cgroup(memcg)) &&
2165 !mem_cgroup_is_root(memcg));
2166
2167 return max_overage;
2168 }
2169
2170 /*
2171 * Get the number of jiffies that we should penalise a mischievous cgroup which
2172 * is exceeding its memory.high by checking both it and its ancestors.
2173 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2174 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2175 unsigned int nr_pages,
2176 u64 max_overage)
2177 {
2178 unsigned long penalty_jiffies;
2179
2180 if (!max_overage)
2181 return 0;
2182
2183 /*
2184 * We use overage compared to memory.high to calculate the number of
2185 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2186 * fairly lenient on small overages, and increasingly harsh when the
2187 * memcg in question makes it clear that it has no intention of stopping
2188 * its crazy behaviour, so we exponentially increase the delay based on
2189 * overage amount.
2190 */
2191 penalty_jiffies = max_overage * max_overage * HZ;
2192 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2193 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2194
2195 /*
2196 * Factor in the task's own contribution to the overage, such that four
2197 * N-sized allocations are throttled approximately the same as one
2198 * 4N-sized allocation.
2199 *
2200 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2201 * larger the current charge patch is than that.
2202 */
2203 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2204 }
2205
2206 /*
2207 * Reclaims memory over the high limit. Called directly from
2208 * try_charge() (context permitting), as well as from the userland
2209 * return path where reclaim is always able to block.
2210 */
mem_cgroup_handle_over_high(gfp_t gfp_mask)2211 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2212 {
2213 unsigned long penalty_jiffies;
2214 unsigned long pflags;
2215 unsigned long nr_reclaimed;
2216 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2217 int nr_retries = MAX_RECLAIM_RETRIES;
2218 struct mem_cgroup *memcg;
2219 bool in_retry = false;
2220
2221 if (likely(!nr_pages))
2222 return;
2223
2224 memcg = get_mem_cgroup_from_mm(current->mm);
2225 current->memcg_nr_pages_over_high = 0;
2226
2227 retry_reclaim:
2228 /*
2229 * Bail if the task is already exiting. Unlike memory.max,
2230 * memory.high enforcement isn't as strict, and there is no
2231 * OOM killer involved, which means the excess could already
2232 * be much bigger (and still growing) than it could for
2233 * memory.max; the dying task could get stuck in fruitless
2234 * reclaim for a long time, which isn't desirable.
2235 */
2236 if (task_is_dying())
2237 goto out;
2238
2239 /*
2240 * The allocating task should reclaim at least the batch size, but for
2241 * subsequent retries we only want to do what's necessary to prevent oom
2242 * or breaching resource isolation.
2243 *
2244 * This is distinct from memory.max or page allocator behaviour because
2245 * memory.high is currently batched, whereas memory.max and the page
2246 * allocator run every time an allocation is made.
2247 */
2248 nr_reclaimed = reclaim_high(memcg,
2249 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2250 gfp_mask);
2251
2252 /*
2253 * memory.high is breached and reclaim is unable to keep up. Throttle
2254 * allocators proactively to slow down excessive growth.
2255 */
2256 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2257 mem_find_max_overage(memcg));
2258
2259 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2260 swap_find_max_overage(memcg));
2261
2262 /*
2263 * Clamp the max delay per usermode return so as to still keep the
2264 * application moving forwards and also permit diagnostics, albeit
2265 * extremely slowly.
2266 */
2267 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2268
2269 /*
2270 * Don't sleep if the amount of jiffies this memcg owes us is so low
2271 * that it's not even worth doing, in an attempt to be nice to those who
2272 * go only a small amount over their memory.high value and maybe haven't
2273 * been aggressively reclaimed enough yet.
2274 */
2275 if (penalty_jiffies <= HZ / 100)
2276 goto out;
2277
2278 /*
2279 * If reclaim is making forward progress but we're still over
2280 * memory.high, we want to encourage that rather than doing allocator
2281 * throttling.
2282 */
2283 if (nr_reclaimed || nr_retries--) {
2284 in_retry = true;
2285 goto retry_reclaim;
2286 }
2287
2288 /*
2289 * Reclaim didn't manage to push usage below the limit, slow
2290 * this allocating task down.
2291 *
2292 * If we exit early, we're guaranteed to die (since
2293 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2294 * need to account for any ill-begotten jiffies to pay them off later.
2295 */
2296 psi_memstall_enter(&pflags);
2297 schedule_timeout_killable(penalty_jiffies);
2298 psi_memstall_leave(&pflags);
2299
2300 out:
2301 css_put(&memcg->css);
2302 }
2303
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2304 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2305 unsigned int nr_pages)
2306 {
2307 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2308 int nr_retries = MAX_RECLAIM_RETRIES;
2309 struct mem_cgroup *mem_over_limit;
2310 struct page_counter *counter;
2311 unsigned long nr_reclaimed;
2312 bool passed_oom = false;
2313 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2314 bool drained = false;
2315 bool raised_max_event = false;
2316 unsigned long pflags;
2317
2318 retry:
2319 if (consume_stock(memcg, nr_pages))
2320 return 0;
2321
2322 if (!gfpflags_allow_spinning(gfp_mask))
2323 /* Avoid the refill and flush of the older stock */
2324 batch = nr_pages;
2325
2326 if (!do_memsw_account() ||
2327 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2328 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2329 goto done_restock;
2330 if (do_memsw_account())
2331 page_counter_uncharge(&memcg->memsw, batch);
2332 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2333 } else {
2334 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2335 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2336 }
2337
2338 if (batch > nr_pages) {
2339 batch = nr_pages;
2340 goto retry;
2341 }
2342
2343 /*
2344 * Prevent unbounded recursion when reclaim operations need to
2345 * allocate memory. This might exceed the limits temporarily,
2346 * but we prefer facilitating memory reclaim and getting back
2347 * under the limit over triggering OOM kills in these cases.
2348 */
2349 if (unlikely(current->flags & PF_MEMALLOC))
2350 goto force;
2351
2352 if (unlikely(task_in_memcg_oom(current)))
2353 goto nomem;
2354
2355 if (!gfpflags_allow_blocking(gfp_mask))
2356 goto nomem;
2357
2358 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2359 raised_max_event = true;
2360
2361 psi_memstall_enter(&pflags);
2362 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2363 gfp_mask, reclaim_options, NULL);
2364 psi_memstall_leave(&pflags);
2365
2366 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2367 goto retry;
2368
2369 if (!drained) {
2370 drain_all_stock(mem_over_limit);
2371 drained = true;
2372 goto retry;
2373 }
2374
2375 if (gfp_mask & __GFP_NORETRY)
2376 goto nomem;
2377 /*
2378 * Even though the limit is exceeded at this point, reclaim
2379 * may have been able to free some pages. Retry the charge
2380 * before killing the task.
2381 *
2382 * Only for regular pages, though: huge pages are rather
2383 * unlikely to succeed so close to the limit, and we fall back
2384 * to regular pages anyway in case of failure.
2385 */
2386 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2387 goto retry;
2388
2389 if (nr_retries--)
2390 goto retry;
2391
2392 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2393 goto nomem;
2394
2395 /* Avoid endless loop for tasks bypassed by the oom killer */
2396 if (passed_oom && task_is_dying())
2397 goto nomem;
2398
2399 /*
2400 * keep retrying as long as the memcg oom killer is able to make
2401 * a forward progress or bypass the charge if the oom killer
2402 * couldn't make any progress.
2403 */
2404 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2405 get_order(nr_pages * PAGE_SIZE))) {
2406 passed_oom = true;
2407 nr_retries = MAX_RECLAIM_RETRIES;
2408 goto retry;
2409 }
2410 nomem:
2411 /*
2412 * Memcg doesn't have a dedicated reserve for atomic
2413 * allocations. But like the global atomic pool, we need to
2414 * put the burden of reclaim on regular allocation requests
2415 * and let these go through as privileged allocations.
2416 */
2417 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2418 return -ENOMEM;
2419 force:
2420 /*
2421 * If the allocation has to be enforced, don't forget to raise
2422 * a MEMCG_MAX event.
2423 */
2424 if (!raised_max_event)
2425 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2426
2427 /*
2428 * The allocation either can't fail or will lead to more memory
2429 * being freed very soon. Allow memory usage go over the limit
2430 * temporarily by force charging it.
2431 */
2432 page_counter_charge(&memcg->memory, nr_pages);
2433 if (do_memsw_account())
2434 page_counter_charge(&memcg->memsw, nr_pages);
2435
2436 return 0;
2437
2438 done_restock:
2439 if (batch > nr_pages)
2440 refill_stock(memcg, batch - nr_pages);
2441
2442 /*
2443 * If the hierarchy is above the normal consumption range, schedule
2444 * reclaim on returning to userland. We can perform reclaim here
2445 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2446 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2447 * not recorded as it most likely matches current's and won't
2448 * change in the meantime. As high limit is checked again before
2449 * reclaim, the cost of mismatch is negligible.
2450 */
2451 do {
2452 bool mem_high, swap_high;
2453
2454 mem_high = page_counter_read(&memcg->memory) >
2455 READ_ONCE(memcg->memory.high);
2456 swap_high = page_counter_read(&memcg->swap) >
2457 READ_ONCE(memcg->swap.high);
2458
2459 /* Don't bother a random interrupted task */
2460 if (!in_task()) {
2461 if (mem_high) {
2462 schedule_work(&memcg->high_work);
2463 break;
2464 }
2465 continue;
2466 }
2467
2468 if (mem_high || swap_high) {
2469 /*
2470 * The allocating tasks in this cgroup will need to do
2471 * reclaim or be throttled to prevent further growth
2472 * of the memory or swap footprints.
2473 *
2474 * Target some best-effort fairness between the tasks,
2475 * and distribute reclaim work and delay penalties
2476 * based on how much each task is actually allocating.
2477 */
2478 current->memcg_nr_pages_over_high += batch;
2479 set_notify_resume(current);
2480 break;
2481 }
2482 } while ((memcg = parent_mem_cgroup(memcg)));
2483
2484 /*
2485 * Reclaim is set up above to be called from the userland
2486 * return path. But also attempt synchronous reclaim to avoid
2487 * excessive overrun while the task is still inside the
2488 * kernel. If this is successful, the return path will see it
2489 * when it rechecks the overage and simply bail out.
2490 */
2491 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2492 !(current->flags & PF_MEMALLOC) &&
2493 gfpflags_allow_blocking(gfp_mask))
2494 mem_cgroup_handle_over_high(gfp_mask);
2495 return 0;
2496 }
2497
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2498 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2499 unsigned int nr_pages)
2500 {
2501 if (mem_cgroup_is_root(memcg))
2502 return 0;
2503
2504 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2505 }
2506
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2507 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2508 {
2509 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2510 /*
2511 * Any of the following ensures page's memcg stability:
2512 *
2513 * - the page lock
2514 * - LRU isolation
2515 * - exclusive reference
2516 */
2517 folio->memcg_data = (unsigned long)memcg;
2518 }
2519
2520 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
account_slab_nmi_safe(struct mem_cgroup * memcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2521 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2522 struct pglist_data *pgdat,
2523 enum node_stat_item idx, int nr)
2524 {
2525 struct lruvec *lruvec;
2526
2527 if (likely(!in_nmi())) {
2528 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2529 mod_memcg_lruvec_state(lruvec, idx, nr);
2530 } else {
2531 struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id];
2532
2533 /* TODO: add to cgroup update tree once it is nmi-safe. */
2534 if (idx == NR_SLAB_RECLAIMABLE_B)
2535 atomic_add(nr, &pn->slab_reclaimable);
2536 else
2537 atomic_add(nr, &pn->slab_unreclaimable);
2538 }
2539 }
2540 #else
account_slab_nmi_safe(struct mem_cgroup * memcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2541 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2542 struct pglist_data *pgdat,
2543 enum node_stat_item idx, int nr)
2544 {
2545 struct lruvec *lruvec;
2546
2547 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2548 mod_memcg_lruvec_state(lruvec, idx, nr);
2549 }
2550 #endif
2551
mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2552 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2553 struct pglist_data *pgdat,
2554 enum node_stat_item idx, int nr)
2555 {
2556 struct mem_cgroup *memcg;
2557
2558 rcu_read_lock();
2559 memcg = obj_cgroup_memcg(objcg);
2560 account_slab_nmi_safe(memcg, pgdat, idx, nr);
2561 rcu_read_unlock();
2562 }
2563
2564 static __always_inline
mem_cgroup_from_obj_folio(struct folio * folio,void * p)2565 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2566 {
2567 /*
2568 * Slab objects are accounted individually, not per-page.
2569 * Memcg membership data for each individual object is saved in
2570 * slab->obj_exts.
2571 */
2572 if (folio_test_slab(folio)) {
2573 struct slabobj_ext *obj_exts;
2574 struct slab *slab;
2575 unsigned int off;
2576
2577 slab = folio_slab(folio);
2578 obj_exts = slab_obj_exts(slab);
2579 if (!obj_exts)
2580 return NULL;
2581
2582 off = obj_to_index(slab->slab_cache, slab, p);
2583 if (obj_exts[off].objcg)
2584 return obj_cgroup_memcg(obj_exts[off].objcg);
2585
2586 return NULL;
2587 }
2588
2589 /*
2590 * folio_memcg_check() is used here, because in theory we can encounter
2591 * a folio where the slab flag has been cleared already, but
2592 * slab->obj_exts has not been freed yet
2593 * folio_memcg_check() will guarantee that a proper memory
2594 * cgroup pointer or NULL will be returned.
2595 */
2596 return folio_memcg_check(folio);
2597 }
2598
2599 /*
2600 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2601 * It is not suitable for objects allocated using vmalloc().
2602 *
2603 * A passed kernel object must be a slab object or a generic kernel page.
2604 *
2605 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2606 * cgroup_mutex, etc.
2607 */
mem_cgroup_from_slab_obj(void * p)2608 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2609 {
2610 if (mem_cgroup_disabled())
2611 return NULL;
2612
2613 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2614 }
2615
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)2616 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2617 {
2618 struct obj_cgroup *objcg = NULL;
2619
2620 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2621 objcg = rcu_dereference(memcg->objcg);
2622 if (likely(objcg && obj_cgroup_tryget(objcg)))
2623 break;
2624 objcg = NULL;
2625 }
2626 return objcg;
2627 }
2628
current_objcg_update(void)2629 static struct obj_cgroup *current_objcg_update(void)
2630 {
2631 struct mem_cgroup *memcg;
2632 struct obj_cgroup *old, *objcg = NULL;
2633
2634 do {
2635 /* Atomically drop the update bit. */
2636 old = xchg(¤t->objcg, NULL);
2637 if (old) {
2638 old = (struct obj_cgroup *)
2639 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2640 obj_cgroup_put(old);
2641
2642 old = NULL;
2643 }
2644
2645 /* If new objcg is NULL, no reason for the second atomic update. */
2646 if (!current->mm || (current->flags & PF_KTHREAD))
2647 return NULL;
2648
2649 /*
2650 * Release the objcg pointer from the previous iteration,
2651 * if try_cmpxcg() below fails.
2652 */
2653 if (unlikely(objcg)) {
2654 obj_cgroup_put(objcg);
2655 objcg = NULL;
2656 }
2657
2658 /*
2659 * Obtain the new objcg pointer. The current task can be
2660 * asynchronously moved to another memcg and the previous
2661 * memcg can be offlined. So let's get the memcg pointer
2662 * and try get a reference to objcg under a rcu read lock.
2663 */
2664
2665 rcu_read_lock();
2666 memcg = mem_cgroup_from_task(current);
2667 objcg = __get_obj_cgroup_from_memcg(memcg);
2668 rcu_read_unlock();
2669
2670 /*
2671 * Try set up a new objcg pointer atomically. If it
2672 * fails, it means the update flag was set concurrently, so
2673 * the whole procedure should be repeated.
2674 */
2675 } while (!try_cmpxchg(¤t->objcg, &old, objcg));
2676
2677 return objcg;
2678 }
2679
current_obj_cgroup(void)2680 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2681 {
2682 struct mem_cgroup *memcg;
2683 struct obj_cgroup *objcg;
2684
2685 if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi())
2686 return NULL;
2687
2688 if (in_task()) {
2689 memcg = current->active_memcg;
2690 if (unlikely(memcg))
2691 goto from_memcg;
2692
2693 objcg = READ_ONCE(current->objcg);
2694 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2695 objcg = current_objcg_update();
2696 /*
2697 * Objcg reference is kept by the task, so it's safe
2698 * to use the objcg by the current task.
2699 */
2700 return objcg;
2701 }
2702
2703 memcg = this_cpu_read(int_active_memcg);
2704 if (unlikely(memcg))
2705 goto from_memcg;
2706
2707 return NULL;
2708
2709 from_memcg:
2710 objcg = NULL;
2711 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2712 /*
2713 * Memcg pointer is protected by scope (see set_active_memcg())
2714 * and is pinning the corresponding objcg, so objcg can't go
2715 * away and can be used within the scope without any additional
2716 * protection.
2717 */
2718 objcg = rcu_dereference_check(memcg->objcg, 1);
2719 if (likely(objcg))
2720 break;
2721 }
2722
2723 return objcg;
2724 }
2725
get_obj_cgroup_from_folio(struct folio * folio)2726 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2727 {
2728 struct obj_cgroup *objcg;
2729
2730 if (!memcg_kmem_online())
2731 return NULL;
2732
2733 if (folio_memcg_kmem(folio)) {
2734 objcg = __folio_objcg(folio);
2735 obj_cgroup_get(objcg);
2736 } else {
2737 struct mem_cgroup *memcg;
2738
2739 rcu_read_lock();
2740 memcg = __folio_memcg(folio);
2741 if (memcg)
2742 objcg = __get_obj_cgroup_from_memcg(memcg);
2743 else
2744 objcg = NULL;
2745 rcu_read_unlock();
2746 }
2747 return objcg;
2748 }
2749
2750 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
account_kmem_nmi_safe(struct mem_cgroup * memcg,int val)2751 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2752 {
2753 if (likely(!in_nmi())) {
2754 mod_memcg_state(memcg, MEMCG_KMEM, val);
2755 } else {
2756 /* TODO: add to cgroup update tree once it is nmi-safe. */
2757 atomic_add(val, &memcg->kmem_stat);
2758 }
2759 }
2760 #else
account_kmem_nmi_safe(struct mem_cgroup * memcg,int val)2761 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2762 {
2763 mod_memcg_state(memcg, MEMCG_KMEM, val);
2764 }
2765 #endif
2766
2767 /*
2768 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2769 * @objcg: object cgroup to uncharge
2770 * @nr_pages: number of pages to uncharge
2771 */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)2772 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2773 unsigned int nr_pages)
2774 {
2775 struct mem_cgroup *memcg;
2776
2777 memcg = get_mem_cgroup_from_objcg(objcg);
2778
2779 account_kmem_nmi_safe(memcg, -nr_pages);
2780 memcg1_account_kmem(memcg, -nr_pages);
2781 if (!mem_cgroup_is_root(memcg))
2782 refill_stock(memcg, nr_pages);
2783
2784 css_put(&memcg->css);
2785 }
2786
2787 /*
2788 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2789 * @objcg: object cgroup to charge
2790 * @gfp: reclaim mode
2791 * @nr_pages: number of pages to charge
2792 *
2793 * Returns 0 on success, an error code on failure.
2794 */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)2795 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2796 unsigned int nr_pages)
2797 {
2798 struct mem_cgroup *memcg;
2799 int ret;
2800
2801 memcg = get_mem_cgroup_from_objcg(objcg);
2802
2803 ret = try_charge_memcg(memcg, gfp, nr_pages);
2804 if (ret)
2805 goto out;
2806
2807 account_kmem_nmi_safe(memcg, nr_pages);
2808 memcg1_account_kmem(memcg, nr_pages);
2809 out:
2810 css_put(&memcg->css);
2811
2812 return ret;
2813 }
2814
page_objcg(const struct page * page)2815 static struct obj_cgroup *page_objcg(const struct page *page)
2816 {
2817 unsigned long memcg_data = page->memcg_data;
2818
2819 if (mem_cgroup_disabled() || !memcg_data)
2820 return NULL;
2821
2822 VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM,
2823 page);
2824 return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM);
2825 }
2826
page_set_objcg(struct page * page,const struct obj_cgroup * objcg)2827 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg)
2828 {
2829 page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM;
2830 }
2831
2832 /**
2833 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2834 * @page: page to charge
2835 * @gfp: reclaim mode
2836 * @order: allocation order
2837 *
2838 * Returns 0 on success, an error code on failure.
2839 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)2840 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2841 {
2842 struct obj_cgroup *objcg;
2843 int ret = 0;
2844
2845 objcg = current_obj_cgroup();
2846 if (objcg) {
2847 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2848 if (!ret) {
2849 obj_cgroup_get(objcg);
2850 page_set_objcg(page, objcg);
2851 return 0;
2852 }
2853 }
2854 return ret;
2855 }
2856
2857 /**
2858 * __memcg_kmem_uncharge_page: uncharge a kmem page
2859 * @page: page to uncharge
2860 * @order: allocation order
2861 */
__memcg_kmem_uncharge_page(struct page * page,int order)2862 void __memcg_kmem_uncharge_page(struct page *page, int order)
2863 {
2864 struct obj_cgroup *objcg = page_objcg(page);
2865 unsigned int nr_pages = 1 << order;
2866
2867 if (!objcg)
2868 return;
2869
2870 obj_cgroup_uncharge_pages(objcg, nr_pages);
2871 page->memcg_data = 0;
2872 obj_cgroup_put(objcg);
2873 }
2874
__account_obj_stock(struct obj_cgroup * objcg,struct obj_stock_pcp * stock,int nr,struct pglist_data * pgdat,enum node_stat_item idx)2875 static void __account_obj_stock(struct obj_cgroup *objcg,
2876 struct obj_stock_pcp *stock, int nr,
2877 struct pglist_data *pgdat, enum node_stat_item idx)
2878 {
2879 int *bytes;
2880
2881 /*
2882 * Save vmstat data in stock and skip vmstat array update unless
2883 * accumulating over a page of vmstat data or when pgdat changes.
2884 */
2885 if (stock->cached_pgdat != pgdat) {
2886 /* Flush the existing cached vmstat data */
2887 struct pglist_data *oldpg = stock->cached_pgdat;
2888
2889 if (stock->nr_slab_reclaimable_b) {
2890 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2891 stock->nr_slab_reclaimable_b);
2892 stock->nr_slab_reclaimable_b = 0;
2893 }
2894 if (stock->nr_slab_unreclaimable_b) {
2895 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2896 stock->nr_slab_unreclaimable_b);
2897 stock->nr_slab_unreclaimable_b = 0;
2898 }
2899 stock->cached_pgdat = pgdat;
2900 }
2901
2902 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2903 : &stock->nr_slab_unreclaimable_b;
2904 /*
2905 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2906 * cached locally at least once before pushing it out.
2907 */
2908 if (!*bytes) {
2909 *bytes = nr;
2910 nr = 0;
2911 } else {
2912 *bytes += nr;
2913 if (abs(*bytes) > PAGE_SIZE) {
2914 nr = *bytes;
2915 *bytes = 0;
2916 } else {
2917 nr = 0;
2918 }
2919 }
2920 if (nr)
2921 mod_objcg_mlstate(objcg, pgdat, idx, nr);
2922 }
2923
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,struct pglist_data * pgdat,enum node_stat_item idx)2924 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2925 struct pglist_data *pgdat, enum node_stat_item idx)
2926 {
2927 struct obj_stock_pcp *stock;
2928 bool ret = false;
2929
2930 if (!local_trylock(&obj_stock.lock))
2931 return ret;
2932
2933 stock = this_cpu_ptr(&obj_stock);
2934 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2935 stock->nr_bytes -= nr_bytes;
2936 ret = true;
2937
2938 if (pgdat)
2939 __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx);
2940 }
2941
2942 local_unlock(&obj_stock.lock);
2943
2944 return ret;
2945 }
2946
drain_obj_stock(struct obj_stock_pcp * stock)2947 static void drain_obj_stock(struct obj_stock_pcp *stock)
2948 {
2949 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2950
2951 if (!old)
2952 return;
2953
2954 if (stock->nr_bytes) {
2955 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2956 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2957
2958 if (nr_pages) {
2959 struct mem_cgroup *memcg;
2960
2961 memcg = get_mem_cgroup_from_objcg(old);
2962
2963 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2964 memcg1_account_kmem(memcg, -nr_pages);
2965 if (!mem_cgroup_is_root(memcg))
2966 memcg_uncharge(memcg, nr_pages);
2967
2968 css_put(&memcg->css);
2969 }
2970
2971 /*
2972 * The leftover is flushed to the centralized per-memcg value.
2973 * On the next attempt to refill obj stock it will be moved
2974 * to a per-cpu stock (probably, on an other CPU), see
2975 * refill_obj_stock().
2976 *
2977 * How often it's flushed is a trade-off between the memory
2978 * limit enforcement accuracy and potential CPU contention,
2979 * so it might be changed in the future.
2980 */
2981 atomic_add(nr_bytes, &old->nr_charged_bytes);
2982 stock->nr_bytes = 0;
2983 }
2984
2985 /*
2986 * Flush the vmstat data in current stock
2987 */
2988 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2989 if (stock->nr_slab_reclaimable_b) {
2990 mod_objcg_mlstate(old, stock->cached_pgdat,
2991 NR_SLAB_RECLAIMABLE_B,
2992 stock->nr_slab_reclaimable_b);
2993 stock->nr_slab_reclaimable_b = 0;
2994 }
2995 if (stock->nr_slab_unreclaimable_b) {
2996 mod_objcg_mlstate(old, stock->cached_pgdat,
2997 NR_SLAB_UNRECLAIMABLE_B,
2998 stock->nr_slab_unreclaimable_b);
2999 stock->nr_slab_unreclaimable_b = 0;
3000 }
3001 stock->cached_pgdat = NULL;
3002 }
3003
3004 WRITE_ONCE(stock->cached_objcg, NULL);
3005 obj_cgroup_put(old);
3006 }
3007
obj_stock_flush_required(struct obj_stock_pcp * stock,struct mem_cgroup * root_memcg)3008 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
3009 struct mem_cgroup *root_memcg)
3010 {
3011 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3012 struct mem_cgroup *memcg;
3013 bool flush = false;
3014
3015 rcu_read_lock();
3016 if (objcg) {
3017 memcg = obj_cgroup_memcg(objcg);
3018 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3019 flush = true;
3020 }
3021 rcu_read_unlock();
3022
3023 return flush;
3024 }
3025
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge,int nr_acct,struct pglist_data * pgdat,enum node_stat_item idx)3026 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3027 bool allow_uncharge, int nr_acct, struct pglist_data *pgdat,
3028 enum node_stat_item idx)
3029 {
3030 struct obj_stock_pcp *stock;
3031 unsigned int nr_pages = 0;
3032
3033 if (!local_trylock(&obj_stock.lock)) {
3034 if (pgdat)
3035 mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes);
3036 nr_pages = nr_bytes >> PAGE_SHIFT;
3037 nr_bytes = nr_bytes & (PAGE_SIZE - 1);
3038 atomic_add(nr_bytes, &objcg->nr_charged_bytes);
3039 goto out;
3040 }
3041
3042 stock = this_cpu_ptr(&obj_stock);
3043 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3044 drain_obj_stock(stock);
3045 obj_cgroup_get(objcg);
3046 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3047 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3048 WRITE_ONCE(stock->cached_objcg, objcg);
3049
3050 allow_uncharge = true; /* Allow uncharge when objcg changes */
3051 }
3052 stock->nr_bytes += nr_bytes;
3053
3054 if (pgdat)
3055 __account_obj_stock(objcg, stock, nr_acct, pgdat, idx);
3056
3057 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3058 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3059 stock->nr_bytes &= (PAGE_SIZE - 1);
3060 }
3061
3062 local_unlock(&obj_stock.lock);
3063 out:
3064 if (nr_pages)
3065 obj_cgroup_uncharge_pages(objcg, nr_pages);
3066 }
3067
obj_cgroup_charge_account(struct obj_cgroup * objcg,gfp_t gfp,size_t size,struct pglist_data * pgdat,enum node_stat_item idx)3068 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size,
3069 struct pglist_data *pgdat, enum node_stat_item idx)
3070 {
3071 unsigned int nr_pages, nr_bytes;
3072 int ret;
3073
3074 if (likely(consume_obj_stock(objcg, size, pgdat, idx)))
3075 return 0;
3076
3077 /*
3078 * In theory, objcg->nr_charged_bytes can have enough
3079 * pre-charged bytes to satisfy the allocation. However,
3080 * flushing objcg->nr_charged_bytes requires two atomic
3081 * operations, and objcg->nr_charged_bytes can't be big.
3082 * The shared objcg->nr_charged_bytes can also become a
3083 * performance bottleneck if all tasks of the same memcg are
3084 * trying to update it. So it's better to ignore it and try
3085 * grab some new pages. The stock's nr_bytes will be flushed to
3086 * objcg->nr_charged_bytes later on when objcg changes.
3087 *
3088 * The stock's nr_bytes may contain enough pre-charged bytes
3089 * to allow one less page from being charged, but we can't rely
3090 * on the pre-charged bytes not being changed outside of
3091 * consume_obj_stock() or refill_obj_stock(). So ignore those
3092 * pre-charged bytes as well when charging pages. To avoid a
3093 * page uncharge right after a page charge, we set the
3094 * allow_uncharge flag to false when calling refill_obj_stock()
3095 * to temporarily allow the pre-charged bytes to exceed the page
3096 * size limit. The maximum reachable value of the pre-charged
3097 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3098 * race.
3099 */
3100 nr_pages = size >> PAGE_SHIFT;
3101 nr_bytes = size & (PAGE_SIZE - 1);
3102
3103 if (nr_bytes)
3104 nr_pages += 1;
3105
3106 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3107 if (!ret && (nr_bytes || pgdat))
3108 refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0,
3109 false, size, pgdat, idx);
3110
3111 return ret;
3112 }
3113
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3114 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3115 {
3116 return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0);
3117 }
3118
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3119 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3120 {
3121 refill_obj_stock(objcg, size, true, 0, NULL, 0);
3122 }
3123
obj_full_size(struct kmem_cache * s)3124 static inline size_t obj_full_size(struct kmem_cache *s)
3125 {
3126 /*
3127 * For each accounted object there is an extra space which is used
3128 * to store obj_cgroup membership. Charge it too.
3129 */
3130 return s->size + sizeof(struct obj_cgroup *);
3131 }
3132
__memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)3133 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3134 gfp_t flags, size_t size, void **p)
3135 {
3136 struct obj_cgroup *objcg;
3137 struct slab *slab;
3138 unsigned long off;
3139 size_t i;
3140
3141 /*
3142 * The obtained objcg pointer is safe to use within the current scope,
3143 * defined by current task or set_active_memcg() pair.
3144 * obj_cgroup_get() is used to get a permanent reference.
3145 */
3146 objcg = current_obj_cgroup();
3147 if (!objcg)
3148 return true;
3149
3150 /*
3151 * slab_alloc_node() avoids the NULL check, so we might be called with a
3152 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
3153 * the whole requested size.
3154 * return success as there's nothing to free back
3155 */
3156 if (unlikely(*p == NULL))
3157 return true;
3158
3159 flags &= gfp_allowed_mask;
3160
3161 if (lru) {
3162 int ret;
3163 struct mem_cgroup *memcg;
3164
3165 memcg = get_mem_cgroup_from_objcg(objcg);
3166 ret = memcg_list_lru_alloc(memcg, lru, flags);
3167 css_put(&memcg->css);
3168
3169 if (ret)
3170 return false;
3171 }
3172
3173 for (i = 0; i < size; i++) {
3174 slab = virt_to_slab(p[i]);
3175
3176 if (!slab_obj_exts(slab) &&
3177 alloc_slab_obj_exts(slab, s, flags, false)) {
3178 continue;
3179 }
3180
3181 /*
3182 * if we fail and size is 1, memcg_alloc_abort_single() will
3183 * just free the object, which is ok as we have not assigned
3184 * objcg to its obj_ext yet
3185 *
3186 * for larger sizes, kmem_cache_free_bulk() will uncharge
3187 * any objects that were already charged and obj_ext assigned
3188 *
3189 * TODO: we could batch this until slab_pgdat(slab) changes
3190 * between iterations, with a more complicated undo
3191 */
3192 if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s),
3193 slab_pgdat(slab), cache_vmstat_idx(s)))
3194 return false;
3195
3196 off = obj_to_index(s, slab, p[i]);
3197 obj_cgroup_get(objcg);
3198 slab_obj_exts(slab)[off].objcg = objcg;
3199 }
3200
3201 return true;
3202 }
3203
__memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects,struct slabobj_ext * obj_exts)3204 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3205 void **p, int objects, struct slabobj_ext *obj_exts)
3206 {
3207 size_t obj_size = obj_full_size(s);
3208
3209 for (int i = 0; i < objects; i++) {
3210 struct obj_cgroup *objcg;
3211 unsigned int off;
3212
3213 off = obj_to_index(s, slab, p[i]);
3214 objcg = obj_exts[off].objcg;
3215 if (!objcg)
3216 continue;
3217
3218 obj_exts[off].objcg = NULL;
3219 refill_obj_stock(objcg, obj_size, true, -obj_size,
3220 slab_pgdat(slab), cache_vmstat_idx(s));
3221 obj_cgroup_put(objcg);
3222 }
3223 }
3224
3225 /*
3226 * The objcg is only set on the first page, so transfer it to all the
3227 * other pages.
3228 */
split_page_memcg(struct page * page,unsigned order)3229 void split_page_memcg(struct page *page, unsigned order)
3230 {
3231 struct obj_cgroup *objcg = page_objcg(page);
3232 unsigned int i, nr = 1 << order;
3233
3234 if (!objcg)
3235 return;
3236
3237 for (i = 1; i < nr; i++)
3238 page_set_objcg(&page[i], objcg);
3239
3240 obj_cgroup_get_many(objcg, nr - 1);
3241 }
3242
folio_split_memcg_refs(struct folio * folio,unsigned old_order,unsigned new_order)3243 void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
3244 unsigned new_order)
3245 {
3246 unsigned new_refs;
3247
3248 if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3249 return;
3250
3251 new_refs = (1 << (old_order - new_order)) - 1;
3252 css_get_many(&__folio_memcg(folio)->css, new_refs);
3253 }
3254
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3255 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3256 {
3257 unsigned long val;
3258
3259 if (mem_cgroup_is_root(memcg)) {
3260 /*
3261 * Approximate root's usage from global state. This isn't
3262 * perfect, but the root usage was always an approximation.
3263 */
3264 val = global_node_page_state(NR_FILE_PAGES) +
3265 global_node_page_state(NR_ANON_MAPPED);
3266 if (swap)
3267 val += total_swap_pages - get_nr_swap_pages();
3268 } else {
3269 if (!swap)
3270 val = page_counter_read(&memcg->memory);
3271 else
3272 val = page_counter_read(&memcg->memsw);
3273 }
3274 return val;
3275 }
3276
memcg_online_kmem(struct mem_cgroup * memcg)3277 static int memcg_online_kmem(struct mem_cgroup *memcg)
3278 {
3279 struct obj_cgroup *objcg;
3280
3281 if (mem_cgroup_kmem_disabled())
3282 return 0;
3283
3284 if (unlikely(mem_cgroup_is_root(memcg)))
3285 return 0;
3286
3287 objcg = obj_cgroup_alloc();
3288 if (!objcg)
3289 return -ENOMEM;
3290
3291 objcg->memcg = memcg;
3292 rcu_assign_pointer(memcg->objcg, objcg);
3293 obj_cgroup_get(objcg);
3294 memcg->orig_objcg = objcg;
3295
3296 static_branch_enable(&memcg_kmem_online_key);
3297
3298 memcg->kmemcg_id = memcg->id.id;
3299
3300 return 0;
3301 }
3302
memcg_offline_kmem(struct mem_cgroup * memcg)3303 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3304 {
3305 struct mem_cgroup *parent;
3306
3307 if (mem_cgroup_kmem_disabled())
3308 return;
3309
3310 if (unlikely(mem_cgroup_is_root(memcg)))
3311 return;
3312
3313 parent = parent_mem_cgroup(memcg);
3314 if (!parent)
3315 parent = root_mem_cgroup;
3316
3317 memcg_reparent_list_lrus(memcg, parent);
3318
3319 /*
3320 * Objcg's reparenting must be after list_lru's, make sure list_lru
3321 * helpers won't use parent's list_lru until child is drained.
3322 */
3323 memcg_reparent_objcgs(memcg, parent);
3324 }
3325
3326 #ifdef CONFIG_CGROUP_WRITEBACK
3327
3328 #include <trace/events/writeback.h>
3329
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3330 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3331 {
3332 return wb_domain_init(&memcg->cgwb_domain, gfp);
3333 }
3334
memcg_wb_domain_exit(struct mem_cgroup * memcg)3335 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3336 {
3337 wb_domain_exit(&memcg->cgwb_domain);
3338 }
3339
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3340 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3341 {
3342 wb_domain_size_changed(&memcg->cgwb_domain);
3343 }
3344
mem_cgroup_wb_domain(struct bdi_writeback * wb)3345 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3346 {
3347 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3348
3349 if (!memcg->css.parent)
3350 return NULL;
3351
3352 return &memcg->cgwb_domain;
3353 }
3354
3355 /**
3356 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3357 * @wb: bdi_writeback in question
3358 * @pfilepages: out parameter for number of file pages
3359 * @pheadroom: out parameter for number of allocatable pages according to memcg
3360 * @pdirty: out parameter for number of dirty pages
3361 * @pwriteback: out parameter for number of pages under writeback
3362 *
3363 * Determine the numbers of file, headroom, dirty, and writeback pages in
3364 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3365 * is a bit more involved.
3366 *
3367 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3368 * headroom is calculated as the lowest headroom of itself and the
3369 * ancestors. Note that this doesn't consider the actual amount of
3370 * available memory in the system. The caller should further cap
3371 * *@pheadroom accordingly.
3372 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3373 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3374 unsigned long *pheadroom, unsigned long *pdirty,
3375 unsigned long *pwriteback)
3376 {
3377 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3378 struct mem_cgroup *parent;
3379
3380 mem_cgroup_flush_stats_ratelimited(memcg);
3381
3382 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3383 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3384 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3385 memcg_page_state(memcg, NR_ACTIVE_FILE);
3386
3387 *pheadroom = PAGE_COUNTER_MAX;
3388 while ((parent = parent_mem_cgroup(memcg))) {
3389 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3390 READ_ONCE(memcg->memory.high));
3391 unsigned long used = page_counter_read(&memcg->memory);
3392
3393 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3394 memcg = parent;
3395 }
3396 }
3397
3398 /*
3399 * Foreign dirty flushing
3400 *
3401 * There's an inherent mismatch between memcg and writeback. The former
3402 * tracks ownership per-page while the latter per-inode. This was a
3403 * deliberate design decision because honoring per-page ownership in the
3404 * writeback path is complicated, may lead to higher CPU and IO overheads
3405 * and deemed unnecessary given that write-sharing an inode across
3406 * different cgroups isn't a common use-case.
3407 *
3408 * Combined with inode majority-writer ownership switching, this works well
3409 * enough in most cases but there are some pathological cases. For
3410 * example, let's say there are two cgroups A and B which keep writing to
3411 * different but confined parts of the same inode. B owns the inode and
3412 * A's memory is limited far below B's. A's dirty ratio can rise enough to
3413 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3414 * triggering background writeback. A will be slowed down without a way to
3415 * make writeback of the dirty pages happen.
3416 *
3417 * Conditions like the above can lead to a cgroup getting repeatedly and
3418 * severely throttled after making some progress after each
3419 * dirty_expire_interval while the underlying IO device is almost
3420 * completely idle.
3421 *
3422 * Solving this problem completely requires matching the ownership tracking
3423 * granularities between memcg and writeback in either direction. However,
3424 * the more egregious behaviors can be avoided by simply remembering the
3425 * most recent foreign dirtying events and initiating remote flushes on
3426 * them when local writeback isn't enough to keep the memory clean enough.
3427 *
3428 * The following two functions implement such mechanism. When a foreign
3429 * page - a page whose memcg and writeback ownerships don't match - is
3430 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3431 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
3432 * decides that the memcg needs to sleep due to high dirty ratio, it calls
3433 * mem_cgroup_flush_foreign() which queues writeback on the recorded
3434 * foreign bdi_writebacks which haven't expired. Both the numbers of
3435 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3436 * limited to MEMCG_CGWB_FRN_CNT.
3437 *
3438 * The mechanism only remembers IDs and doesn't hold any object references.
3439 * As being wrong occasionally doesn't matter, updates and accesses to the
3440 * records are lockless and racy.
3441 */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)3442 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3443 struct bdi_writeback *wb)
3444 {
3445 struct mem_cgroup *memcg = folio_memcg(folio);
3446 struct memcg_cgwb_frn *frn;
3447 u64 now = get_jiffies_64();
3448 u64 oldest_at = now;
3449 int oldest = -1;
3450 int i;
3451
3452 trace_track_foreign_dirty(folio, wb);
3453
3454 /*
3455 * Pick the slot to use. If there is already a slot for @wb, keep
3456 * using it. If not replace the oldest one which isn't being
3457 * written out.
3458 */
3459 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3460 frn = &memcg->cgwb_frn[i];
3461 if (frn->bdi_id == wb->bdi->id &&
3462 frn->memcg_id == wb->memcg_css->id)
3463 break;
3464 if (time_before64(frn->at, oldest_at) &&
3465 atomic_read(&frn->done.cnt) == 1) {
3466 oldest = i;
3467 oldest_at = frn->at;
3468 }
3469 }
3470
3471 if (i < MEMCG_CGWB_FRN_CNT) {
3472 /*
3473 * Re-using an existing one. Update timestamp lazily to
3474 * avoid making the cacheline hot. We want them to be
3475 * reasonably up-to-date and significantly shorter than
3476 * dirty_expire_interval as that's what expires the record.
3477 * Use the shorter of 1s and dirty_expire_interval / 8.
3478 */
3479 unsigned long update_intv =
3480 min_t(unsigned long, HZ,
3481 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3482
3483 if (time_before64(frn->at, now - update_intv))
3484 frn->at = now;
3485 } else if (oldest >= 0) {
3486 /* replace the oldest free one */
3487 frn = &memcg->cgwb_frn[oldest];
3488 frn->bdi_id = wb->bdi->id;
3489 frn->memcg_id = wb->memcg_css->id;
3490 frn->at = now;
3491 }
3492 }
3493
3494 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)3495 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3496 {
3497 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3498 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3499 u64 now = jiffies_64;
3500 int i;
3501
3502 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3503 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3504
3505 /*
3506 * If the record is older than dirty_expire_interval,
3507 * writeback on it has already started. No need to kick it
3508 * off again. Also, don't start a new one if there's
3509 * already one in flight.
3510 */
3511 if (time_after64(frn->at, now - intv) &&
3512 atomic_read(&frn->done.cnt) == 1) {
3513 frn->at = 0;
3514 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3515 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3516 WB_REASON_FOREIGN_FLUSH,
3517 &frn->done);
3518 }
3519 }
3520 }
3521
3522 #else /* CONFIG_CGROUP_WRITEBACK */
3523
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3524 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3525 {
3526 return 0;
3527 }
3528
memcg_wb_domain_exit(struct mem_cgroup * memcg)3529 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3530 {
3531 }
3532
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3533 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3534 {
3535 }
3536
3537 #endif /* CONFIG_CGROUP_WRITEBACK */
3538
3539 /*
3540 * Private memory cgroup IDR
3541 *
3542 * Swap-out records and page cache shadow entries need to store memcg
3543 * references in constrained space, so we maintain an ID space that is
3544 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3545 * memory-controlled cgroups to 64k.
3546 *
3547 * However, there usually are many references to the offline CSS after
3548 * the cgroup has been destroyed, such as page cache or reclaimable
3549 * slab objects, that don't need to hang on to the ID. We want to keep
3550 * those dead CSS from occupying IDs, or we might quickly exhaust the
3551 * relatively small ID space and prevent the creation of new cgroups
3552 * even when there are much fewer than 64k cgroups - possibly none.
3553 *
3554 * Maintain a private 16-bit ID space for memcg, and allow the ID to
3555 * be freed and recycled when it's no longer needed, which is usually
3556 * when the CSS is offlined.
3557 *
3558 * The only exception to that are records of swapped out tmpfs/shmem
3559 * pages that need to be attributed to live ancestors on swapin. But
3560 * those references are manageable from userspace.
3561 */
3562
3563 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3564 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3565
mem_cgroup_id_remove(struct mem_cgroup * memcg)3566 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3567 {
3568 if (memcg->id.id > 0) {
3569 xa_erase(&mem_cgroup_ids, memcg->id.id);
3570 memcg->id.id = 0;
3571 }
3572 }
3573
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)3574 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3575 unsigned int n)
3576 {
3577 refcount_add(n, &memcg->id.ref);
3578 }
3579
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)3580 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3581 {
3582 if (refcount_sub_and_test(n, &memcg->id.ref)) {
3583 mem_cgroup_id_remove(memcg);
3584
3585 /* Memcg ID pins CSS */
3586 css_put(&memcg->css);
3587 }
3588 }
3589
mem_cgroup_id_put(struct mem_cgroup * memcg)3590 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3591 {
3592 mem_cgroup_id_put_many(memcg, 1);
3593 }
3594
mem_cgroup_id_get_online(struct mem_cgroup * memcg)3595 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
3596 {
3597 while (!refcount_inc_not_zero(&memcg->id.ref)) {
3598 /*
3599 * The root cgroup cannot be destroyed, so it's refcount must
3600 * always be >= 1.
3601 */
3602 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
3603 VM_BUG_ON(1);
3604 break;
3605 }
3606 memcg = parent_mem_cgroup(memcg);
3607 if (!memcg)
3608 memcg = root_mem_cgroup;
3609 }
3610 return memcg;
3611 }
3612
3613 /**
3614 * mem_cgroup_from_id - look up a memcg from a memcg id
3615 * @id: the memcg id to look up
3616 *
3617 * Caller must hold rcu_read_lock().
3618 */
mem_cgroup_from_id(unsigned short id)3619 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3620 {
3621 WARN_ON_ONCE(!rcu_read_lock_held());
3622 return xa_load(&mem_cgroup_ids, id);
3623 }
3624
3625 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)3626 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3627 {
3628 struct cgroup *cgrp;
3629 struct cgroup_subsys_state *css;
3630 struct mem_cgroup *memcg;
3631
3632 cgrp = cgroup_get_from_id(ino);
3633 if (IS_ERR(cgrp))
3634 return ERR_CAST(cgrp);
3635
3636 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3637 if (css)
3638 memcg = container_of(css, struct mem_cgroup, css);
3639 else
3640 memcg = ERR_PTR(-ENOENT);
3641
3642 cgroup_put(cgrp);
3643
3644 return memcg;
3645 }
3646 #endif
3647
free_mem_cgroup_per_node_info(struct mem_cgroup_per_node * pn)3648 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn)
3649 {
3650 if (!pn)
3651 return;
3652
3653 free_percpu(pn->lruvec_stats_percpu);
3654 kfree(pn->lruvec_stats);
3655 kfree(pn);
3656 }
3657
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)3658 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3659 {
3660 struct mem_cgroup_per_node *pn;
3661
3662 pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO,
3663 node);
3664 if (!pn)
3665 return false;
3666
3667 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3668 GFP_KERNEL_ACCOUNT, node);
3669 if (!pn->lruvec_stats)
3670 goto fail;
3671
3672 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3673 GFP_KERNEL_ACCOUNT);
3674 if (!pn->lruvec_stats_percpu)
3675 goto fail;
3676
3677 lruvec_init(&pn->lruvec);
3678 pn->memcg = memcg;
3679
3680 memcg->nodeinfo[node] = pn;
3681 return true;
3682 fail:
3683 free_mem_cgroup_per_node_info(pn);
3684 return false;
3685 }
3686
__mem_cgroup_free(struct mem_cgroup * memcg)3687 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3688 {
3689 int node;
3690
3691 obj_cgroup_put(memcg->orig_objcg);
3692
3693 for_each_node(node)
3694 free_mem_cgroup_per_node_info(memcg->nodeinfo[node]);
3695 memcg1_free_events(memcg);
3696 kfree(memcg->vmstats);
3697 free_percpu(memcg->vmstats_percpu);
3698 kfree(memcg);
3699 }
3700
mem_cgroup_free(struct mem_cgroup * memcg)3701 static void mem_cgroup_free(struct mem_cgroup *memcg)
3702 {
3703 lru_gen_exit_memcg(memcg);
3704 memcg_wb_domain_exit(memcg);
3705 __mem_cgroup_free(memcg);
3706 }
3707
mem_cgroup_alloc(struct mem_cgroup * parent)3708 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3709 {
3710 struct memcg_vmstats_percpu *statc;
3711 struct memcg_vmstats_percpu __percpu *pstatc_pcpu;
3712 struct mem_cgroup *memcg;
3713 int node, cpu;
3714 int __maybe_unused i;
3715 long error;
3716
3717 memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL);
3718 if (!memcg)
3719 return ERR_PTR(-ENOMEM);
3720
3721 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3722 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3723 if (error)
3724 goto fail;
3725 error = -ENOMEM;
3726
3727 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3728 GFP_KERNEL_ACCOUNT);
3729 if (!memcg->vmstats)
3730 goto fail;
3731
3732 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3733 GFP_KERNEL_ACCOUNT);
3734 if (!memcg->vmstats_percpu)
3735 goto fail;
3736
3737 if (!memcg1_alloc_events(memcg))
3738 goto fail;
3739
3740 for_each_possible_cpu(cpu) {
3741 if (parent)
3742 pstatc_pcpu = parent->vmstats_percpu;
3743 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3744 statc->parent_pcpu = parent ? pstatc_pcpu : NULL;
3745 statc->vmstats = memcg->vmstats;
3746 }
3747
3748 for_each_node(node)
3749 if (!alloc_mem_cgroup_per_node_info(memcg, node))
3750 goto fail;
3751
3752 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3753 goto fail;
3754
3755 INIT_WORK(&memcg->high_work, high_work_func);
3756 vmpressure_init(&memcg->vmpressure);
3757 INIT_LIST_HEAD(&memcg->memory_peaks);
3758 INIT_LIST_HEAD(&memcg->swap_peaks);
3759 spin_lock_init(&memcg->peaks_lock);
3760 memcg->socket_pressure = jiffies;
3761 memcg1_memcg_init(memcg);
3762 memcg->kmemcg_id = -1;
3763 INIT_LIST_HEAD(&memcg->objcg_list);
3764 #ifdef CONFIG_CGROUP_WRITEBACK
3765 INIT_LIST_HEAD(&memcg->cgwb_list);
3766 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3767 memcg->cgwb_frn[i].done =
3768 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3769 #endif
3770 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3771 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3772 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3773 memcg->deferred_split_queue.split_queue_len = 0;
3774 #endif
3775 lru_gen_init_memcg(memcg);
3776 return memcg;
3777 fail:
3778 mem_cgroup_id_remove(memcg);
3779 __mem_cgroup_free(memcg);
3780 return ERR_PTR(error);
3781 }
3782
3783 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)3784 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3785 {
3786 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3787 struct mem_cgroup *memcg, *old_memcg;
3788 bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys);
3789
3790 old_memcg = set_active_memcg(parent);
3791 memcg = mem_cgroup_alloc(parent);
3792 set_active_memcg(old_memcg);
3793 if (IS_ERR(memcg))
3794 return ERR_CAST(memcg);
3795
3796 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3797 memcg1_soft_limit_reset(memcg);
3798 #ifdef CONFIG_ZSWAP
3799 memcg->zswap_max = PAGE_COUNTER_MAX;
3800 WRITE_ONCE(memcg->zswap_writeback, true);
3801 #endif
3802 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3803 if (parent) {
3804 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3805
3806 page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl);
3807 page_counter_init(&memcg->swap, &parent->swap, false);
3808 #ifdef CONFIG_MEMCG_V1
3809 memcg->memory.track_failcnt = !memcg_on_dfl;
3810 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3811 page_counter_init(&memcg->kmem, &parent->kmem, false);
3812 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3813 #endif
3814 } else {
3815 init_memcg_stats();
3816 init_memcg_events();
3817 page_counter_init(&memcg->memory, NULL, true);
3818 page_counter_init(&memcg->swap, NULL, false);
3819 #ifdef CONFIG_MEMCG_V1
3820 page_counter_init(&memcg->kmem, NULL, false);
3821 page_counter_init(&memcg->tcpmem, NULL, false);
3822 #endif
3823 root_mem_cgroup = memcg;
3824 return &memcg->css;
3825 }
3826
3827 if (memcg_on_dfl && !cgroup_memory_nosocket)
3828 static_branch_inc(&memcg_sockets_enabled_key);
3829
3830 if (!cgroup_memory_nobpf)
3831 static_branch_inc(&memcg_bpf_enabled_key);
3832
3833 return &memcg->css;
3834 }
3835
mem_cgroup_css_online(struct cgroup_subsys_state * css)3836 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3837 {
3838 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3839
3840 if (memcg_online_kmem(memcg))
3841 goto remove_id;
3842
3843 /*
3844 * A memcg must be visible for expand_shrinker_info()
3845 * by the time the maps are allocated. So, we allocate maps
3846 * here, when for_each_mem_cgroup() can't skip it.
3847 */
3848 if (alloc_shrinker_info(memcg))
3849 goto offline_kmem;
3850
3851 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3852 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3853 FLUSH_TIME);
3854 lru_gen_online_memcg(memcg);
3855
3856 /* Online state pins memcg ID, memcg ID pins CSS */
3857 refcount_set(&memcg->id.ref, 1);
3858 css_get(css);
3859
3860 /*
3861 * Ensure mem_cgroup_from_id() works once we're fully online.
3862 *
3863 * We could do this earlier and require callers to filter with
3864 * css_tryget_online(). But right now there are no users that
3865 * need earlier access, and the workingset code relies on the
3866 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3867 * publish it here at the end of onlining. This matches the
3868 * regular ID destruction during offlining.
3869 */
3870 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3871
3872 return 0;
3873 offline_kmem:
3874 memcg_offline_kmem(memcg);
3875 remove_id:
3876 mem_cgroup_id_remove(memcg);
3877 return -ENOMEM;
3878 }
3879
mem_cgroup_css_offline(struct cgroup_subsys_state * css)3880 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3881 {
3882 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3883
3884 memcg1_css_offline(memcg);
3885
3886 page_counter_set_min(&memcg->memory, 0);
3887 page_counter_set_low(&memcg->memory, 0);
3888
3889 zswap_memcg_offline_cleanup(memcg);
3890
3891 memcg_offline_kmem(memcg);
3892 reparent_shrinker_deferred(memcg);
3893 wb_memcg_offline(memcg);
3894 lru_gen_offline_memcg(memcg);
3895
3896 drain_all_stock(memcg);
3897
3898 mem_cgroup_id_put(memcg);
3899 }
3900
mem_cgroup_css_released(struct cgroup_subsys_state * css)3901 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3902 {
3903 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3904
3905 invalidate_reclaim_iterators(memcg);
3906 lru_gen_release_memcg(memcg);
3907 }
3908
mem_cgroup_css_free(struct cgroup_subsys_state * css)3909 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3910 {
3911 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3912 int __maybe_unused i;
3913
3914 #ifdef CONFIG_CGROUP_WRITEBACK
3915 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3916 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3917 #endif
3918 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3919 static_branch_dec(&memcg_sockets_enabled_key);
3920
3921 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3922 static_branch_dec(&memcg_sockets_enabled_key);
3923
3924 if (!cgroup_memory_nobpf)
3925 static_branch_dec(&memcg_bpf_enabled_key);
3926
3927 vmpressure_cleanup(&memcg->vmpressure);
3928 cancel_work_sync(&memcg->high_work);
3929 memcg1_remove_from_trees(memcg);
3930 free_shrinker_info(memcg);
3931 mem_cgroup_free(memcg);
3932 }
3933
3934 /**
3935 * mem_cgroup_css_reset - reset the states of a mem_cgroup
3936 * @css: the target css
3937 *
3938 * Reset the states of the mem_cgroup associated with @css. This is
3939 * invoked when the userland requests disabling on the default hierarchy
3940 * but the memcg is pinned through dependency. The memcg should stop
3941 * applying policies and should revert to the vanilla state as it may be
3942 * made visible again.
3943 *
3944 * The current implementation only resets the essential configurations.
3945 * This needs to be expanded to cover all the visible parts.
3946 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)3947 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3948 {
3949 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3950
3951 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3952 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3953 #ifdef CONFIG_MEMCG_V1
3954 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3955 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3956 #endif
3957 page_counter_set_min(&memcg->memory, 0);
3958 page_counter_set_low(&memcg->memory, 0);
3959 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3960 memcg1_soft_limit_reset(memcg);
3961 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3962 memcg_wb_domain_size_changed(memcg);
3963 }
3964
3965 struct aggregate_control {
3966 /* pointer to the aggregated (CPU and subtree aggregated) counters */
3967 long *aggregate;
3968 /* pointer to the non-hierarchichal (CPU aggregated) counters */
3969 long *local;
3970 /* pointer to the pending child counters during tree propagation */
3971 long *pending;
3972 /* pointer to the parent's pending counters, could be NULL */
3973 long *ppending;
3974 /* pointer to the percpu counters to be aggregated */
3975 long *cstat;
3976 /* pointer to the percpu counters of the last aggregation*/
3977 long *cstat_prev;
3978 /* size of the above counters */
3979 int size;
3980 };
3981
mem_cgroup_stat_aggregate(struct aggregate_control * ac)3982 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
3983 {
3984 int i;
3985 long delta, delta_cpu, v;
3986
3987 for (i = 0; i < ac->size; i++) {
3988 /*
3989 * Collect the aggregated propagation counts of groups
3990 * below us. We're in a per-cpu loop here and this is
3991 * a global counter, so the first cycle will get them.
3992 */
3993 delta = ac->pending[i];
3994 if (delta)
3995 ac->pending[i] = 0;
3996
3997 /* Add CPU changes on this level since the last flush */
3998 delta_cpu = 0;
3999 v = READ_ONCE(ac->cstat[i]);
4000 if (v != ac->cstat_prev[i]) {
4001 delta_cpu = v - ac->cstat_prev[i];
4002 delta += delta_cpu;
4003 ac->cstat_prev[i] = v;
4004 }
4005
4006 /* Aggregate counts on this level and propagate upwards */
4007 if (delta_cpu)
4008 ac->local[i] += delta_cpu;
4009
4010 if (delta) {
4011 ac->aggregate[i] += delta;
4012 if (ac->ppending)
4013 ac->ppending[i] += delta;
4014 }
4015 }
4016 }
4017
4018 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
flush_nmi_stats(struct mem_cgroup * memcg,struct mem_cgroup * parent,int cpu)4019 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4020 int cpu)
4021 {
4022 int nid;
4023
4024 if (atomic_read(&memcg->kmem_stat)) {
4025 int kmem = atomic_xchg(&memcg->kmem_stat, 0);
4026 int index = memcg_stats_index(MEMCG_KMEM);
4027
4028 memcg->vmstats->state[index] += kmem;
4029 if (parent)
4030 parent->vmstats->state_pending[index] += kmem;
4031 }
4032
4033 for_each_node_state(nid, N_MEMORY) {
4034 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4035 struct lruvec_stats *lstats = pn->lruvec_stats;
4036 struct lruvec_stats *plstats = NULL;
4037
4038 if (parent)
4039 plstats = parent->nodeinfo[nid]->lruvec_stats;
4040
4041 if (atomic_read(&pn->slab_reclaimable)) {
4042 int slab = atomic_xchg(&pn->slab_reclaimable, 0);
4043 int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B);
4044
4045 lstats->state[index] += slab;
4046 if (plstats)
4047 plstats->state_pending[index] += slab;
4048 }
4049 if (atomic_read(&pn->slab_unreclaimable)) {
4050 int slab = atomic_xchg(&pn->slab_unreclaimable, 0);
4051 int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B);
4052
4053 lstats->state[index] += slab;
4054 if (plstats)
4055 plstats->state_pending[index] += slab;
4056 }
4057 }
4058 }
4059 #else
flush_nmi_stats(struct mem_cgroup * memcg,struct mem_cgroup * parent,int cpu)4060 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4061 int cpu)
4062 {}
4063 #endif
4064
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)4065 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
4066 {
4067 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4068 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4069 struct memcg_vmstats_percpu *statc;
4070 struct aggregate_control ac;
4071 int nid;
4072
4073 flush_nmi_stats(memcg, parent, cpu);
4074
4075 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
4076
4077 ac = (struct aggregate_control) {
4078 .aggregate = memcg->vmstats->state,
4079 .local = memcg->vmstats->state_local,
4080 .pending = memcg->vmstats->state_pending,
4081 .ppending = parent ? parent->vmstats->state_pending : NULL,
4082 .cstat = statc->state,
4083 .cstat_prev = statc->state_prev,
4084 .size = MEMCG_VMSTAT_SIZE,
4085 };
4086 mem_cgroup_stat_aggregate(&ac);
4087
4088 ac = (struct aggregate_control) {
4089 .aggregate = memcg->vmstats->events,
4090 .local = memcg->vmstats->events_local,
4091 .pending = memcg->vmstats->events_pending,
4092 .ppending = parent ? parent->vmstats->events_pending : NULL,
4093 .cstat = statc->events,
4094 .cstat_prev = statc->events_prev,
4095 .size = NR_MEMCG_EVENTS,
4096 };
4097 mem_cgroup_stat_aggregate(&ac);
4098
4099 for_each_node_state(nid, N_MEMORY) {
4100 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4101 struct lruvec_stats *lstats = pn->lruvec_stats;
4102 struct lruvec_stats *plstats = NULL;
4103 struct lruvec_stats_percpu *lstatc;
4104
4105 if (parent)
4106 plstats = parent->nodeinfo[nid]->lruvec_stats;
4107
4108 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
4109
4110 ac = (struct aggregate_control) {
4111 .aggregate = lstats->state,
4112 .local = lstats->state_local,
4113 .pending = lstats->state_pending,
4114 .ppending = plstats ? plstats->state_pending : NULL,
4115 .cstat = lstatc->state,
4116 .cstat_prev = lstatc->state_prev,
4117 .size = NR_MEMCG_NODE_STAT_ITEMS,
4118 };
4119 mem_cgroup_stat_aggregate(&ac);
4120
4121 }
4122 WRITE_ONCE(statc->stats_updates, 0);
4123 /* We are in a per-cpu loop here, only do the atomic write once */
4124 if (atomic_read(&memcg->vmstats->stats_updates))
4125 atomic_set(&memcg->vmstats->stats_updates, 0);
4126 }
4127
mem_cgroup_fork(struct task_struct * task)4128 static void mem_cgroup_fork(struct task_struct *task)
4129 {
4130 /*
4131 * Set the update flag to cause task->objcg to be initialized lazily
4132 * on the first allocation. It can be done without any synchronization
4133 * because it's always performed on the current task, so does
4134 * current_objcg_update().
4135 */
4136 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
4137 }
4138
mem_cgroup_exit(struct task_struct * task)4139 static void mem_cgroup_exit(struct task_struct *task)
4140 {
4141 struct obj_cgroup *objcg = task->objcg;
4142
4143 objcg = (struct obj_cgroup *)
4144 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
4145 obj_cgroup_put(objcg);
4146
4147 /*
4148 * Some kernel allocations can happen after this point,
4149 * but let's ignore them. It can be done without any synchronization
4150 * because it's always performed on the current task, so does
4151 * current_objcg_update().
4152 */
4153 task->objcg = NULL;
4154 }
4155
4156 #ifdef CONFIG_LRU_GEN
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)4157 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
4158 {
4159 struct task_struct *task;
4160 struct cgroup_subsys_state *css;
4161
4162 /* find the first leader if there is any */
4163 cgroup_taskset_for_each_leader(task, css, tset)
4164 break;
4165
4166 if (!task)
4167 return;
4168
4169 task_lock(task);
4170 if (task->mm && READ_ONCE(task->mm->owner) == task)
4171 lru_gen_migrate_mm(task->mm);
4172 task_unlock(task);
4173 }
4174 #else
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)4175 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
4176 #endif /* CONFIG_LRU_GEN */
4177
mem_cgroup_kmem_attach(struct cgroup_taskset * tset)4178 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
4179 {
4180 struct task_struct *task;
4181 struct cgroup_subsys_state *css;
4182
4183 cgroup_taskset_for_each(task, css, tset) {
4184 /* atomically set the update bit */
4185 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
4186 }
4187 }
4188
mem_cgroup_attach(struct cgroup_taskset * tset)4189 static void mem_cgroup_attach(struct cgroup_taskset *tset)
4190 {
4191 mem_cgroup_lru_gen_attach(tset);
4192 mem_cgroup_kmem_attach(tset);
4193 }
4194
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)4195 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
4196 {
4197 if (value == PAGE_COUNTER_MAX)
4198 seq_puts(m, "max\n");
4199 else
4200 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
4201
4202 return 0;
4203 }
4204
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)4205 static u64 memory_current_read(struct cgroup_subsys_state *css,
4206 struct cftype *cft)
4207 {
4208 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4209
4210 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4211 }
4212
4213 #define OFP_PEAK_UNSET (((-1UL)))
4214
peak_show(struct seq_file * sf,void * v,struct page_counter * pc)4215 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
4216 {
4217 struct cgroup_of_peak *ofp = of_peak(sf->private);
4218 u64 fd_peak = READ_ONCE(ofp->value), peak;
4219
4220 /* User wants global or local peak? */
4221 if (fd_peak == OFP_PEAK_UNSET)
4222 peak = pc->watermark;
4223 else
4224 peak = max(fd_peak, READ_ONCE(pc->local_watermark));
4225
4226 seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
4227 return 0;
4228 }
4229
memory_peak_show(struct seq_file * sf,void * v)4230 static int memory_peak_show(struct seq_file *sf, void *v)
4231 {
4232 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4233
4234 return peak_show(sf, v, &memcg->memory);
4235 }
4236
peak_open(struct kernfs_open_file * of)4237 static int peak_open(struct kernfs_open_file *of)
4238 {
4239 struct cgroup_of_peak *ofp = of_peak(of);
4240
4241 ofp->value = OFP_PEAK_UNSET;
4242 return 0;
4243 }
4244
peak_release(struct kernfs_open_file * of)4245 static void peak_release(struct kernfs_open_file *of)
4246 {
4247 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4248 struct cgroup_of_peak *ofp = of_peak(of);
4249
4250 if (ofp->value == OFP_PEAK_UNSET) {
4251 /* fast path (no writes on this fd) */
4252 return;
4253 }
4254 spin_lock(&memcg->peaks_lock);
4255 list_del(&ofp->list);
4256 spin_unlock(&memcg->peaks_lock);
4257 }
4258
peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,struct page_counter * pc,struct list_head * watchers)4259 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
4260 loff_t off, struct page_counter *pc,
4261 struct list_head *watchers)
4262 {
4263 unsigned long usage;
4264 struct cgroup_of_peak *peer_ctx;
4265 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4266 struct cgroup_of_peak *ofp = of_peak(of);
4267
4268 spin_lock(&memcg->peaks_lock);
4269
4270 usage = page_counter_read(pc);
4271 WRITE_ONCE(pc->local_watermark, usage);
4272
4273 list_for_each_entry(peer_ctx, watchers, list)
4274 if (usage > peer_ctx->value)
4275 WRITE_ONCE(peer_ctx->value, usage);
4276
4277 /* initial write, register watcher */
4278 if (ofp->value == OFP_PEAK_UNSET)
4279 list_add(&ofp->list, watchers);
4280
4281 WRITE_ONCE(ofp->value, usage);
4282 spin_unlock(&memcg->peaks_lock);
4283
4284 return nbytes;
4285 }
4286
memory_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4287 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4288 size_t nbytes, loff_t off)
4289 {
4290 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4291
4292 return peak_write(of, buf, nbytes, off, &memcg->memory,
4293 &memcg->memory_peaks);
4294 }
4295
4296 #undef OFP_PEAK_UNSET
4297
memory_min_show(struct seq_file * m,void * v)4298 static int memory_min_show(struct seq_file *m, void *v)
4299 {
4300 return seq_puts_memcg_tunable(m,
4301 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4302 }
4303
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4304 static ssize_t memory_min_write(struct kernfs_open_file *of,
4305 char *buf, size_t nbytes, loff_t off)
4306 {
4307 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4308 unsigned long min;
4309 int err;
4310
4311 buf = strstrip(buf);
4312 err = page_counter_memparse(buf, "max", &min);
4313 if (err)
4314 return err;
4315
4316 page_counter_set_min(&memcg->memory, min);
4317
4318 return nbytes;
4319 }
4320
memory_low_show(struct seq_file * m,void * v)4321 static int memory_low_show(struct seq_file *m, void *v)
4322 {
4323 return seq_puts_memcg_tunable(m,
4324 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4325 }
4326
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4327 static ssize_t memory_low_write(struct kernfs_open_file *of,
4328 char *buf, size_t nbytes, loff_t off)
4329 {
4330 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4331 unsigned long low;
4332 int err;
4333
4334 buf = strstrip(buf);
4335 err = page_counter_memparse(buf, "max", &low);
4336 if (err)
4337 return err;
4338
4339 page_counter_set_low(&memcg->memory, low);
4340
4341 return nbytes;
4342 }
4343
memory_high_show(struct seq_file * m,void * v)4344 static int memory_high_show(struct seq_file *m, void *v)
4345 {
4346 return seq_puts_memcg_tunable(m,
4347 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4348 }
4349
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4350 static ssize_t memory_high_write(struct kernfs_open_file *of,
4351 char *buf, size_t nbytes, loff_t off)
4352 {
4353 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4354 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4355 bool drained = false;
4356 unsigned long high;
4357 int err;
4358
4359 buf = strstrip(buf);
4360 err = page_counter_memparse(buf, "max", &high);
4361 if (err)
4362 return err;
4363
4364 page_counter_set_high(&memcg->memory, high);
4365
4366 if (of->file->f_flags & O_NONBLOCK)
4367 goto out;
4368
4369 for (;;) {
4370 unsigned long nr_pages = page_counter_read(&memcg->memory);
4371 unsigned long reclaimed;
4372
4373 if (nr_pages <= high)
4374 break;
4375
4376 if (signal_pending(current))
4377 break;
4378
4379 if (!drained) {
4380 drain_all_stock(memcg);
4381 drained = true;
4382 continue;
4383 }
4384
4385 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4386 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4387
4388 if (!reclaimed && !nr_retries--)
4389 break;
4390 }
4391 out:
4392 memcg_wb_domain_size_changed(memcg);
4393 return nbytes;
4394 }
4395
memory_max_show(struct seq_file * m,void * v)4396 static int memory_max_show(struct seq_file *m, void *v)
4397 {
4398 return seq_puts_memcg_tunable(m,
4399 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4400 }
4401
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4402 static ssize_t memory_max_write(struct kernfs_open_file *of,
4403 char *buf, size_t nbytes, loff_t off)
4404 {
4405 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4406 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4407 bool drained = false;
4408 unsigned long max;
4409 int err;
4410
4411 buf = strstrip(buf);
4412 err = page_counter_memparse(buf, "max", &max);
4413 if (err)
4414 return err;
4415
4416 xchg(&memcg->memory.max, max);
4417
4418 if (of->file->f_flags & O_NONBLOCK)
4419 goto out;
4420
4421 for (;;) {
4422 unsigned long nr_pages = page_counter_read(&memcg->memory);
4423
4424 if (nr_pages <= max)
4425 break;
4426
4427 if (signal_pending(current))
4428 break;
4429
4430 if (!drained) {
4431 drain_all_stock(memcg);
4432 drained = true;
4433 continue;
4434 }
4435
4436 if (nr_reclaims) {
4437 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4438 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4439 nr_reclaims--;
4440 continue;
4441 }
4442
4443 memcg_memory_event(memcg, MEMCG_OOM);
4444 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4445 break;
4446 cond_resched();
4447 }
4448 out:
4449 memcg_wb_domain_size_changed(memcg);
4450 return nbytes;
4451 }
4452
4453 /*
4454 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4455 * if any new events become available.
4456 */
__memory_events_show(struct seq_file * m,atomic_long_t * events)4457 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4458 {
4459 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4460 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4461 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4462 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4463 seq_printf(m, "oom_kill %lu\n",
4464 atomic_long_read(&events[MEMCG_OOM_KILL]));
4465 seq_printf(m, "oom_group_kill %lu\n",
4466 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4467 }
4468
memory_events_show(struct seq_file * m,void * v)4469 static int memory_events_show(struct seq_file *m, void *v)
4470 {
4471 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4472
4473 __memory_events_show(m, memcg->memory_events);
4474 return 0;
4475 }
4476
memory_events_local_show(struct seq_file * m,void * v)4477 static int memory_events_local_show(struct seq_file *m, void *v)
4478 {
4479 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4480
4481 __memory_events_show(m, memcg->memory_events_local);
4482 return 0;
4483 }
4484
memory_stat_show(struct seq_file * m,void * v)4485 int memory_stat_show(struct seq_file *m, void *v)
4486 {
4487 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4488 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4489 struct seq_buf s;
4490
4491 if (!buf)
4492 return -ENOMEM;
4493 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4494 memory_stat_format(memcg, &s);
4495 seq_puts(m, buf);
4496 kfree(buf);
4497 return 0;
4498 }
4499
4500 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)4501 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4502 int item)
4503 {
4504 return lruvec_page_state(lruvec, item) *
4505 memcg_page_state_output_unit(item);
4506 }
4507
memory_numa_stat_show(struct seq_file * m,void * v)4508 static int memory_numa_stat_show(struct seq_file *m, void *v)
4509 {
4510 int i;
4511 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4512
4513 mem_cgroup_flush_stats(memcg);
4514
4515 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4516 int nid;
4517
4518 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4519 continue;
4520
4521 seq_printf(m, "%s", memory_stats[i].name);
4522 for_each_node_state(nid, N_MEMORY) {
4523 u64 size;
4524 struct lruvec *lruvec;
4525
4526 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4527 size = lruvec_page_state_output(lruvec,
4528 memory_stats[i].idx);
4529 seq_printf(m, " N%d=%llu", nid, size);
4530 }
4531 seq_putc(m, '\n');
4532 }
4533
4534 return 0;
4535 }
4536 #endif
4537
memory_oom_group_show(struct seq_file * m,void * v)4538 static int memory_oom_group_show(struct seq_file *m, void *v)
4539 {
4540 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4541
4542 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4543
4544 return 0;
4545 }
4546
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4547 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4548 char *buf, size_t nbytes, loff_t off)
4549 {
4550 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4551 int ret, oom_group;
4552
4553 buf = strstrip(buf);
4554 if (!buf)
4555 return -EINVAL;
4556
4557 ret = kstrtoint(buf, 0, &oom_group);
4558 if (ret)
4559 return ret;
4560
4561 if (oom_group != 0 && oom_group != 1)
4562 return -EINVAL;
4563
4564 WRITE_ONCE(memcg->oom_group, oom_group);
4565
4566 return nbytes;
4567 }
4568
4569 enum {
4570 MEMORY_RECLAIM_SWAPPINESS = 0,
4571 MEMORY_RECLAIM_SWAPPINESS_MAX,
4572 MEMORY_RECLAIM_NULL,
4573 };
4574
4575 static const match_table_t tokens = {
4576 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
4577 { MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"},
4578 { MEMORY_RECLAIM_NULL, NULL },
4579 };
4580
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4581 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4582 size_t nbytes, loff_t off)
4583 {
4584 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4585 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4586 unsigned long nr_to_reclaim, nr_reclaimed = 0;
4587 int swappiness = -1;
4588 unsigned int reclaim_options;
4589 char *old_buf, *start;
4590 substring_t args[MAX_OPT_ARGS];
4591
4592 buf = strstrip(buf);
4593
4594 old_buf = buf;
4595 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
4596 if (buf == old_buf)
4597 return -EINVAL;
4598
4599 buf = strstrip(buf);
4600
4601 while ((start = strsep(&buf, " ")) != NULL) {
4602 if (!strlen(start))
4603 continue;
4604 switch (match_token(start, tokens, args)) {
4605 case MEMORY_RECLAIM_SWAPPINESS:
4606 if (match_int(&args[0], &swappiness))
4607 return -EINVAL;
4608 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS)
4609 return -EINVAL;
4610 break;
4611 case MEMORY_RECLAIM_SWAPPINESS_MAX:
4612 swappiness = SWAPPINESS_ANON_ONLY;
4613 break;
4614 default:
4615 return -EINVAL;
4616 }
4617 }
4618
4619 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
4620 while (nr_reclaimed < nr_to_reclaim) {
4621 /* Will converge on zero, but reclaim enforces a minimum */
4622 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
4623 unsigned long reclaimed;
4624
4625 if (signal_pending(current))
4626 return -EINTR;
4627
4628 /*
4629 * This is the final attempt, drain percpu lru caches in the
4630 * hope of introducing more evictable pages for
4631 * try_to_free_mem_cgroup_pages().
4632 */
4633 if (!nr_retries)
4634 lru_add_drain_all();
4635
4636 reclaimed = try_to_free_mem_cgroup_pages(memcg,
4637 batch_size, GFP_KERNEL,
4638 reclaim_options,
4639 swappiness == -1 ? NULL : &swappiness);
4640
4641 if (!reclaimed && !nr_retries--)
4642 return -EAGAIN;
4643
4644 nr_reclaimed += reclaimed;
4645 }
4646
4647 return nbytes;
4648 }
4649
4650 static struct cftype memory_files[] = {
4651 {
4652 .name = "current",
4653 .flags = CFTYPE_NOT_ON_ROOT,
4654 .read_u64 = memory_current_read,
4655 },
4656 {
4657 .name = "peak",
4658 .flags = CFTYPE_NOT_ON_ROOT,
4659 .open = peak_open,
4660 .release = peak_release,
4661 .seq_show = memory_peak_show,
4662 .write = memory_peak_write,
4663 },
4664 {
4665 .name = "min",
4666 .flags = CFTYPE_NOT_ON_ROOT,
4667 .seq_show = memory_min_show,
4668 .write = memory_min_write,
4669 },
4670 {
4671 .name = "low",
4672 .flags = CFTYPE_NOT_ON_ROOT,
4673 .seq_show = memory_low_show,
4674 .write = memory_low_write,
4675 },
4676 {
4677 .name = "high",
4678 .flags = CFTYPE_NOT_ON_ROOT,
4679 .seq_show = memory_high_show,
4680 .write = memory_high_write,
4681 },
4682 {
4683 .name = "max",
4684 .flags = CFTYPE_NOT_ON_ROOT,
4685 .seq_show = memory_max_show,
4686 .write = memory_max_write,
4687 },
4688 {
4689 .name = "events",
4690 .flags = CFTYPE_NOT_ON_ROOT,
4691 .file_offset = offsetof(struct mem_cgroup, events_file),
4692 .seq_show = memory_events_show,
4693 },
4694 {
4695 .name = "events.local",
4696 .flags = CFTYPE_NOT_ON_ROOT,
4697 .file_offset = offsetof(struct mem_cgroup, events_local_file),
4698 .seq_show = memory_events_local_show,
4699 },
4700 {
4701 .name = "stat",
4702 .seq_show = memory_stat_show,
4703 },
4704 #ifdef CONFIG_NUMA
4705 {
4706 .name = "numa_stat",
4707 .seq_show = memory_numa_stat_show,
4708 },
4709 #endif
4710 {
4711 .name = "oom.group",
4712 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4713 .seq_show = memory_oom_group_show,
4714 .write = memory_oom_group_write,
4715 },
4716 {
4717 .name = "reclaim",
4718 .flags = CFTYPE_NS_DELEGATABLE,
4719 .write = memory_reclaim,
4720 },
4721 { } /* terminate */
4722 };
4723
4724 struct cgroup_subsys memory_cgrp_subsys = {
4725 .css_alloc = mem_cgroup_css_alloc,
4726 .css_online = mem_cgroup_css_online,
4727 .css_offline = mem_cgroup_css_offline,
4728 .css_released = mem_cgroup_css_released,
4729 .css_free = mem_cgroup_css_free,
4730 .css_reset = mem_cgroup_css_reset,
4731 .css_rstat_flush = mem_cgroup_css_rstat_flush,
4732 .attach = mem_cgroup_attach,
4733 .fork = mem_cgroup_fork,
4734 .exit = mem_cgroup_exit,
4735 .dfl_cftypes = memory_files,
4736 #ifdef CONFIG_MEMCG_V1
4737 .legacy_cftypes = mem_cgroup_legacy_files,
4738 #endif
4739 .early_init = 0,
4740 };
4741
4742 /**
4743 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4744 * @root: the top ancestor of the sub-tree being checked
4745 * @memcg: the memory cgroup to check
4746 *
4747 * WARNING: This function is not stateless! It can only be used as part
4748 * of a top-down tree iteration, not for isolated queries.
4749 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)4750 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4751 struct mem_cgroup *memcg)
4752 {
4753 bool recursive_protection =
4754 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4755
4756 if (mem_cgroup_disabled())
4757 return;
4758
4759 if (!root)
4760 root = root_mem_cgroup;
4761
4762 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4763 }
4764
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)4765 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4766 gfp_t gfp)
4767 {
4768 int ret;
4769
4770 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4771 if (ret)
4772 goto out;
4773
4774 css_get(&memcg->css);
4775 commit_charge(folio, memcg);
4776 memcg1_commit_charge(folio, memcg);
4777 out:
4778 return ret;
4779 }
4780
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)4781 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4782 {
4783 struct mem_cgroup *memcg;
4784 int ret;
4785
4786 memcg = get_mem_cgroup_from_mm(mm);
4787 ret = charge_memcg(folio, memcg, gfp);
4788 css_put(&memcg->css);
4789
4790 return ret;
4791 }
4792
4793 /**
4794 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio
4795 * @folio: folio being charged
4796 * @gfp: reclaim mode
4797 *
4798 * This function is called when allocating a huge page folio, after the page has
4799 * already been obtained and charged to the appropriate hugetlb cgroup
4800 * controller (if it is enabled).
4801 *
4802 * Returns ENOMEM if the memcg is already full.
4803 * Returns 0 if either the charge was successful, or if we skip the charging.
4804 */
mem_cgroup_charge_hugetlb(struct folio * folio,gfp_t gfp)4805 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp)
4806 {
4807 struct mem_cgroup *memcg = get_mem_cgroup_from_current();
4808 int ret = 0;
4809
4810 /*
4811 * Even memcg does not account for hugetlb, we still want to update
4812 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip
4813 * charging the memcg.
4814 */
4815 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() ||
4816 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
4817 goto out;
4818
4819 if (charge_memcg(folio, memcg, gfp))
4820 ret = -ENOMEM;
4821
4822 out:
4823 mem_cgroup_put(memcg);
4824 return ret;
4825 }
4826
4827 /**
4828 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4829 * @folio: folio to charge.
4830 * @mm: mm context of the victim
4831 * @gfp: reclaim mode
4832 * @entry: swap entry for which the folio is allocated
4833 *
4834 * This function charges a folio allocated for swapin. Please call this before
4835 * adding the folio to the swapcache.
4836 *
4837 * Returns 0 on success. Otherwise, an error code is returned.
4838 */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)4839 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4840 gfp_t gfp, swp_entry_t entry)
4841 {
4842 struct mem_cgroup *memcg;
4843 unsigned short id;
4844 int ret;
4845
4846 if (mem_cgroup_disabled())
4847 return 0;
4848
4849 id = lookup_swap_cgroup_id(entry);
4850 rcu_read_lock();
4851 memcg = mem_cgroup_from_id(id);
4852 if (!memcg || !css_tryget_online(&memcg->css))
4853 memcg = get_mem_cgroup_from_mm(mm);
4854 rcu_read_unlock();
4855
4856 ret = charge_memcg(folio, memcg, gfp);
4857
4858 css_put(&memcg->css);
4859 return ret;
4860 }
4861
4862 struct uncharge_gather {
4863 struct mem_cgroup *memcg;
4864 unsigned long nr_memory;
4865 unsigned long pgpgout;
4866 unsigned long nr_kmem;
4867 int nid;
4868 };
4869
uncharge_gather_clear(struct uncharge_gather * ug)4870 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4871 {
4872 memset(ug, 0, sizeof(*ug));
4873 }
4874
uncharge_batch(const struct uncharge_gather * ug)4875 static void uncharge_batch(const struct uncharge_gather *ug)
4876 {
4877 if (ug->nr_memory) {
4878 memcg_uncharge(ug->memcg, ug->nr_memory);
4879 if (ug->nr_kmem) {
4880 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4881 memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4882 }
4883 memcg1_oom_recover(ug->memcg);
4884 }
4885
4886 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4887
4888 /* drop reference from uncharge_folio */
4889 css_put(&ug->memcg->css);
4890 }
4891
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)4892 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4893 {
4894 long nr_pages;
4895 struct mem_cgroup *memcg;
4896 struct obj_cgroup *objcg;
4897
4898 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4899
4900 /*
4901 * Nobody should be changing or seriously looking at
4902 * folio memcg or objcg at this point, we have fully
4903 * exclusive access to the folio.
4904 */
4905 if (folio_memcg_kmem(folio)) {
4906 objcg = __folio_objcg(folio);
4907 /*
4908 * This get matches the put at the end of the function and
4909 * kmem pages do not hold memcg references anymore.
4910 */
4911 memcg = get_mem_cgroup_from_objcg(objcg);
4912 } else {
4913 memcg = __folio_memcg(folio);
4914 }
4915
4916 if (!memcg)
4917 return;
4918
4919 if (ug->memcg != memcg) {
4920 if (ug->memcg) {
4921 uncharge_batch(ug);
4922 uncharge_gather_clear(ug);
4923 }
4924 ug->memcg = memcg;
4925 ug->nid = folio_nid(folio);
4926
4927 /* pairs with css_put in uncharge_batch */
4928 css_get(&memcg->css);
4929 }
4930
4931 nr_pages = folio_nr_pages(folio);
4932
4933 if (folio_memcg_kmem(folio)) {
4934 ug->nr_memory += nr_pages;
4935 ug->nr_kmem += nr_pages;
4936
4937 folio->memcg_data = 0;
4938 obj_cgroup_put(objcg);
4939 } else {
4940 /* LRU pages aren't accounted at the root level */
4941 if (!mem_cgroup_is_root(memcg))
4942 ug->nr_memory += nr_pages;
4943 ug->pgpgout++;
4944
4945 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4946 folio->memcg_data = 0;
4947 }
4948
4949 css_put(&memcg->css);
4950 }
4951
__mem_cgroup_uncharge(struct folio * folio)4952 void __mem_cgroup_uncharge(struct folio *folio)
4953 {
4954 struct uncharge_gather ug;
4955
4956 /* Don't touch folio->lru of any random page, pre-check: */
4957 if (!folio_memcg_charged(folio))
4958 return;
4959
4960 uncharge_gather_clear(&ug);
4961 uncharge_folio(folio, &ug);
4962 uncharge_batch(&ug);
4963 }
4964
__mem_cgroup_uncharge_folios(struct folio_batch * folios)4965 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4966 {
4967 struct uncharge_gather ug;
4968 unsigned int i;
4969
4970 uncharge_gather_clear(&ug);
4971 for (i = 0; i < folios->nr; i++)
4972 uncharge_folio(folios->folios[i], &ug);
4973 if (ug.memcg)
4974 uncharge_batch(&ug);
4975 }
4976
4977 /**
4978 * mem_cgroup_replace_folio - Charge a folio's replacement.
4979 * @old: Currently circulating folio.
4980 * @new: Replacement folio.
4981 *
4982 * Charge @new as a replacement folio for @old. @old will
4983 * be uncharged upon free.
4984 *
4985 * Both folios must be locked, @new->mapping must be set up.
4986 */
mem_cgroup_replace_folio(struct folio * old,struct folio * new)4987 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4988 {
4989 struct mem_cgroup *memcg;
4990 long nr_pages = folio_nr_pages(new);
4991
4992 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4993 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4994 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4995 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4996
4997 if (mem_cgroup_disabled())
4998 return;
4999
5000 /* Page cache replacement: new folio already charged? */
5001 if (folio_memcg_charged(new))
5002 return;
5003
5004 memcg = folio_memcg(old);
5005 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
5006 if (!memcg)
5007 return;
5008
5009 /* Force-charge the new page. The old one will be freed soon */
5010 if (!mem_cgroup_is_root(memcg)) {
5011 page_counter_charge(&memcg->memory, nr_pages);
5012 if (do_memsw_account())
5013 page_counter_charge(&memcg->memsw, nr_pages);
5014 }
5015
5016 css_get(&memcg->css);
5017 commit_charge(new, memcg);
5018 memcg1_commit_charge(new, memcg);
5019 }
5020
5021 /**
5022 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
5023 * @old: Currently circulating folio.
5024 * @new: Replacement folio.
5025 *
5026 * Transfer the memcg data from the old folio to the new folio for migration.
5027 * The old folio's data info will be cleared. Note that the memory counters
5028 * will remain unchanged throughout the process.
5029 *
5030 * Both folios must be locked, @new->mapping must be set up.
5031 */
mem_cgroup_migrate(struct folio * old,struct folio * new)5032 void mem_cgroup_migrate(struct folio *old, struct folio *new)
5033 {
5034 struct mem_cgroup *memcg;
5035
5036 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
5037 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
5038 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
5039 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
5040 VM_BUG_ON_FOLIO(folio_test_lru(old), old);
5041
5042 if (mem_cgroup_disabled())
5043 return;
5044
5045 memcg = folio_memcg(old);
5046 /*
5047 * Note that it is normal to see !memcg for a hugetlb folio.
5048 * For e.g, itt could have been allocated when memory_hugetlb_accounting
5049 * was not selected.
5050 */
5051 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
5052 if (!memcg)
5053 return;
5054
5055 /* Transfer the charge and the css ref */
5056 commit_charge(new, memcg);
5057
5058 /* Warning should never happen, so don't worry about refcount non-0 */
5059 WARN_ON_ONCE(folio_unqueue_deferred_split(old));
5060 old->memcg_data = 0;
5061 }
5062
5063 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5064 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5065
mem_cgroup_sk_alloc(struct sock * sk)5066 void mem_cgroup_sk_alloc(struct sock *sk)
5067 {
5068 struct mem_cgroup *memcg;
5069
5070 if (!mem_cgroup_sockets_enabled)
5071 return;
5072
5073 /* Do not associate the sock with unrelated interrupted task's memcg. */
5074 if (!in_task())
5075 return;
5076
5077 rcu_read_lock();
5078 memcg = mem_cgroup_from_task(current);
5079 if (mem_cgroup_is_root(memcg))
5080 goto out;
5081 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
5082 goto out;
5083 if (css_tryget(&memcg->css))
5084 sk->sk_memcg = memcg;
5085 out:
5086 rcu_read_unlock();
5087 }
5088
mem_cgroup_sk_free(struct sock * sk)5089 void mem_cgroup_sk_free(struct sock *sk)
5090 {
5091 if (sk->sk_memcg)
5092 css_put(&sk->sk_memcg->css);
5093 }
5094
5095 /**
5096 * mem_cgroup_charge_skmem - charge socket memory
5097 * @memcg: memcg to charge
5098 * @nr_pages: number of pages to charge
5099 * @gfp_mask: reclaim mode
5100 *
5101 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5102 * @memcg's configured limit, %false if it doesn't.
5103 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)5104 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
5105 gfp_t gfp_mask)
5106 {
5107 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5108 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
5109
5110 if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) {
5111 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5112 return true;
5113 }
5114
5115 return false;
5116 }
5117
5118 /**
5119 * mem_cgroup_uncharge_skmem - uncharge socket memory
5120 * @memcg: memcg to uncharge
5121 * @nr_pages: number of pages to uncharge
5122 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)5123 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5124 {
5125 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5126 memcg1_uncharge_skmem(memcg, nr_pages);
5127 return;
5128 }
5129
5130 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5131
5132 refill_stock(memcg, nr_pages);
5133 }
5134
cgroup_memory(char * s)5135 static int __init cgroup_memory(char *s)
5136 {
5137 char *token;
5138
5139 while ((token = strsep(&s, ",")) != NULL) {
5140 if (!*token)
5141 continue;
5142 if (!strcmp(token, "nosocket"))
5143 cgroup_memory_nosocket = true;
5144 if (!strcmp(token, "nokmem"))
5145 cgroup_memory_nokmem = true;
5146 if (!strcmp(token, "nobpf"))
5147 cgroup_memory_nobpf = true;
5148 }
5149 return 1;
5150 }
5151 __setup("cgroup.memory=", cgroup_memory);
5152
5153 /*
5154 * Memory controller init before cgroup_init() initialize root_mem_cgroup.
5155 *
5156 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5157 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5158 * basically everything that doesn't depend on a specific mem_cgroup structure
5159 * should be initialized from here.
5160 */
mem_cgroup_init(void)5161 int __init mem_cgroup_init(void)
5162 {
5163 unsigned int memcg_size;
5164 int cpu;
5165
5166 /*
5167 * Currently s32 type (can refer to struct batched_lruvec_stat) is
5168 * used for per-memcg-per-cpu caching of per-node statistics. In order
5169 * to work fine, we should make sure that the overfill threshold can't
5170 * exceed S32_MAX / PAGE_SIZE.
5171 */
5172 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
5173
5174 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5175 memcg_hotplug_cpu_dead);
5176
5177 for_each_possible_cpu(cpu) {
5178 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5179 drain_local_memcg_stock);
5180 INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work,
5181 drain_local_obj_stock);
5182 }
5183
5184 memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids);
5185 memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0,
5186 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
5187
5188 memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node,
5189 SLAB_PANIC | SLAB_HWCACHE_ALIGN);
5190
5191 return 0;
5192 }
5193
5194 #ifdef CONFIG_SWAP
5195 /**
5196 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5197 * @folio: folio being added to swap
5198 * @entry: swap entry to charge
5199 *
5200 * Try to charge @folio's memcg for the swap space at @entry.
5201 *
5202 * Returns 0 on success, -ENOMEM on failure.
5203 */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)5204 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5205 {
5206 unsigned int nr_pages = folio_nr_pages(folio);
5207 struct page_counter *counter;
5208 struct mem_cgroup *memcg;
5209
5210 if (do_memsw_account())
5211 return 0;
5212
5213 memcg = folio_memcg(folio);
5214
5215 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5216 if (!memcg)
5217 return 0;
5218
5219 if (!entry.val) {
5220 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5221 return 0;
5222 }
5223
5224 memcg = mem_cgroup_id_get_online(memcg);
5225
5226 if (!mem_cgroup_is_root(memcg) &&
5227 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5228 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5229 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5230 mem_cgroup_id_put(memcg);
5231 return -ENOMEM;
5232 }
5233
5234 /* Get references for the tail pages, too */
5235 if (nr_pages > 1)
5236 mem_cgroup_id_get_many(memcg, nr_pages - 1);
5237 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5238
5239 swap_cgroup_record(folio, mem_cgroup_id(memcg), entry);
5240
5241 return 0;
5242 }
5243
5244 /**
5245 * __mem_cgroup_uncharge_swap - uncharge swap space
5246 * @entry: swap entry to uncharge
5247 * @nr_pages: the amount of swap space to uncharge
5248 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)5249 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5250 {
5251 struct mem_cgroup *memcg;
5252 unsigned short id;
5253
5254 id = swap_cgroup_clear(entry, nr_pages);
5255 rcu_read_lock();
5256 memcg = mem_cgroup_from_id(id);
5257 if (memcg) {
5258 if (!mem_cgroup_is_root(memcg)) {
5259 if (do_memsw_account())
5260 page_counter_uncharge(&memcg->memsw, nr_pages);
5261 else
5262 page_counter_uncharge(&memcg->swap, nr_pages);
5263 }
5264 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5265 mem_cgroup_id_put_many(memcg, nr_pages);
5266 }
5267 rcu_read_unlock();
5268 }
5269
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)5270 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5271 {
5272 long nr_swap_pages = get_nr_swap_pages();
5273
5274 if (mem_cgroup_disabled() || do_memsw_account())
5275 return nr_swap_pages;
5276 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5277 nr_swap_pages = min_t(long, nr_swap_pages,
5278 READ_ONCE(memcg->swap.max) -
5279 page_counter_read(&memcg->swap));
5280 return nr_swap_pages;
5281 }
5282
mem_cgroup_swap_full(struct folio * folio)5283 bool mem_cgroup_swap_full(struct folio *folio)
5284 {
5285 struct mem_cgroup *memcg;
5286
5287 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5288
5289 if (vm_swap_full())
5290 return true;
5291 if (do_memsw_account())
5292 return false;
5293
5294 memcg = folio_memcg(folio);
5295 if (!memcg)
5296 return false;
5297
5298 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5299 unsigned long usage = page_counter_read(&memcg->swap);
5300
5301 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5302 usage * 2 >= READ_ONCE(memcg->swap.max))
5303 return true;
5304 }
5305
5306 return false;
5307 }
5308
setup_swap_account(char * s)5309 static int __init setup_swap_account(char *s)
5310 {
5311 bool res;
5312
5313 if (!kstrtobool(s, &res) && !res)
5314 pr_warn_once("The swapaccount=0 commandline option is deprecated "
5315 "in favor of configuring swap control via cgroupfs. "
5316 "Please report your usecase to linux-mm@kvack.org if you "
5317 "depend on this functionality.\n");
5318 return 1;
5319 }
5320 __setup("swapaccount=", setup_swap_account);
5321
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5322 static u64 swap_current_read(struct cgroup_subsys_state *css,
5323 struct cftype *cft)
5324 {
5325 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5326
5327 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5328 }
5329
swap_peak_show(struct seq_file * sf,void * v)5330 static int swap_peak_show(struct seq_file *sf, void *v)
5331 {
5332 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5333
5334 return peak_show(sf, v, &memcg->swap);
5335 }
5336
swap_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5337 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5338 size_t nbytes, loff_t off)
5339 {
5340 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5341
5342 return peak_write(of, buf, nbytes, off, &memcg->swap,
5343 &memcg->swap_peaks);
5344 }
5345
swap_high_show(struct seq_file * m,void * v)5346 static int swap_high_show(struct seq_file *m, void *v)
5347 {
5348 return seq_puts_memcg_tunable(m,
5349 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5350 }
5351
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5352 static ssize_t swap_high_write(struct kernfs_open_file *of,
5353 char *buf, size_t nbytes, loff_t off)
5354 {
5355 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5356 unsigned long high;
5357 int err;
5358
5359 buf = strstrip(buf);
5360 err = page_counter_memparse(buf, "max", &high);
5361 if (err)
5362 return err;
5363
5364 page_counter_set_high(&memcg->swap, high);
5365
5366 return nbytes;
5367 }
5368
swap_max_show(struct seq_file * m,void * v)5369 static int swap_max_show(struct seq_file *m, void *v)
5370 {
5371 return seq_puts_memcg_tunable(m,
5372 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5373 }
5374
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5375 static ssize_t swap_max_write(struct kernfs_open_file *of,
5376 char *buf, size_t nbytes, loff_t off)
5377 {
5378 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5379 unsigned long max;
5380 int err;
5381
5382 buf = strstrip(buf);
5383 err = page_counter_memparse(buf, "max", &max);
5384 if (err)
5385 return err;
5386
5387 xchg(&memcg->swap.max, max);
5388
5389 return nbytes;
5390 }
5391
swap_events_show(struct seq_file * m,void * v)5392 static int swap_events_show(struct seq_file *m, void *v)
5393 {
5394 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5395
5396 seq_printf(m, "high %lu\n",
5397 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5398 seq_printf(m, "max %lu\n",
5399 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5400 seq_printf(m, "fail %lu\n",
5401 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5402
5403 return 0;
5404 }
5405
5406 static struct cftype swap_files[] = {
5407 {
5408 .name = "swap.current",
5409 .flags = CFTYPE_NOT_ON_ROOT,
5410 .read_u64 = swap_current_read,
5411 },
5412 {
5413 .name = "swap.high",
5414 .flags = CFTYPE_NOT_ON_ROOT,
5415 .seq_show = swap_high_show,
5416 .write = swap_high_write,
5417 },
5418 {
5419 .name = "swap.max",
5420 .flags = CFTYPE_NOT_ON_ROOT,
5421 .seq_show = swap_max_show,
5422 .write = swap_max_write,
5423 },
5424 {
5425 .name = "swap.peak",
5426 .flags = CFTYPE_NOT_ON_ROOT,
5427 .open = peak_open,
5428 .release = peak_release,
5429 .seq_show = swap_peak_show,
5430 .write = swap_peak_write,
5431 },
5432 {
5433 .name = "swap.events",
5434 .flags = CFTYPE_NOT_ON_ROOT,
5435 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
5436 .seq_show = swap_events_show,
5437 },
5438 { } /* terminate */
5439 };
5440
5441 #ifdef CONFIG_ZSWAP
5442 /**
5443 * obj_cgroup_may_zswap - check if this cgroup can zswap
5444 * @objcg: the object cgroup
5445 *
5446 * Check if the hierarchical zswap limit has been reached.
5447 *
5448 * This doesn't check for specific headroom, and it is not atomic
5449 * either. But with zswap, the size of the allocation is only known
5450 * once compression has occurred, and this optimistic pre-check avoids
5451 * spending cycles on compression when there is already no room left
5452 * or zswap is disabled altogether somewhere in the hierarchy.
5453 */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)5454 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5455 {
5456 struct mem_cgroup *memcg, *original_memcg;
5457 bool ret = true;
5458
5459 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5460 return true;
5461
5462 original_memcg = get_mem_cgroup_from_objcg(objcg);
5463 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5464 memcg = parent_mem_cgroup(memcg)) {
5465 unsigned long max = READ_ONCE(memcg->zswap_max);
5466 unsigned long pages;
5467
5468 if (max == PAGE_COUNTER_MAX)
5469 continue;
5470 if (max == 0) {
5471 ret = false;
5472 break;
5473 }
5474
5475 /* Force flush to get accurate stats for charging */
5476 __mem_cgroup_flush_stats(memcg, true);
5477 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5478 if (pages < max)
5479 continue;
5480 ret = false;
5481 break;
5482 }
5483 mem_cgroup_put(original_memcg);
5484 return ret;
5485 }
5486
5487 /**
5488 * obj_cgroup_charge_zswap - charge compression backend memory
5489 * @objcg: the object cgroup
5490 * @size: size of compressed object
5491 *
5492 * This forces the charge after obj_cgroup_may_zswap() allowed
5493 * compression and storage in zwap for this cgroup to go ahead.
5494 */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)5495 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5496 {
5497 struct mem_cgroup *memcg;
5498
5499 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5500 return;
5501
5502 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5503
5504 /* PF_MEMALLOC context, charging must succeed */
5505 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5506 VM_WARN_ON_ONCE(1);
5507
5508 rcu_read_lock();
5509 memcg = obj_cgroup_memcg(objcg);
5510 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5511 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5512 rcu_read_unlock();
5513 }
5514
5515 /**
5516 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5517 * @objcg: the object cgroup
5518 * @size: size of compressed object
5519 *
5520 * Uncharges zswap memory on page in.
5521 */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)5522 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5523 {
5524 struct mem_cgroup *memcg;
5525
5526 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5527 return;
5528
5529 obj_cgroup_uncharge(objcg, size);
5530
5531 rcu_read_lock();
5532 memcg = obj_cgroup_memcg(objcg);
5533 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5534 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5535 rcu_read_unlock();
5536 }
5537
mem_cgroup_zswap_writeback_enabled(struct mem_cgroup * memcg)5538 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5539 {
5540 /* if zswap is disabled, do not block pages going to the swapping device */
5541 if (!zswap_is_enabled())
5542 return true;
5543
5544 for (; memcg; memcg = parent_mem_cgroup(memcg))
5545 if (!READ_ONCE(memcg->zswap_writeback))
5546 return false;
5547
5548 return true;
5549 }
5550
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5551 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5552 struct cftype *cft)
5553 {
5554 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5555
5556 mem_cgroup_flush_stats(memcg);
5557 return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5558 }
5559
zswap_max_show(struct seq_file * m,void * v)5560 static int zswap_max_show(struct seq_file *m, void *v)
5561 {
5562 return seq_puts_memcg_tunable(m,
5563 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5564 }
5565
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5566 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5567 char *buf, size_t nbytes, loff_t off)
5568 {
5569 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5570 unsigned long max;
5571 int err;
5572
5573 buf = strstrip(buf);
5574 err = page_counter_memparse(buf, "max", &max);
5575 if (err)
5576 return err;
5577
5578 xchg(&memcg->zswap_max, max);
5579
5580 return nbytes;
5581 }
5582
zswap_writeback_show(struct seq_file * m,void * v)5583 static int zswap_writeback_show(struct seq_file *m, void *v)
5584 {
5585 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5586
5587 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5588 return 0;
5589 }
5590
zswap_writeback_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5591 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5592 char *buf, size_t nbytes, loff_t off)
5593 {
5594 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5595 int zswap_writeback;
5596 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5597
5598 if (parse_ret)
5599 return parse_ret;
5600
5601 if (zswap_writeback != 0 && zswap_writeback != 1)
5602 return -EINVAL;
5603
5604 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5605 return nbytes;
5606 }
5607
5608 static struct cftype zswap_files[] = {
5609 {
5610 .name = "zswap.current",
5611 .flags = CFTYPE_NOT_ON_ROOT,
5612 .read_u64 = zswap_current_read,
5613 },
5614 {
5615 .name = "zswap.max",
5616 .flags = CFTYPE_NOT_ON_ROOT,
5617 .seq_show = zswap_max_show,
5618 .write = zswap_max_write,
5619 },
5620 {
5621 .name = "zswap.writeback",
5622 .seq_show = zswap_writeback_show,
5623 .write = zswap_writeback_write,
5624 },
5625 { } /* terminate */
5626 };
5627 #endif /* CONFIG_ZSWAP */
5628
mem_cgroup_swap_init(void)5629 static int __init mem_cgroup_swap_init(void)
5630 {
5631 if (mem_cgroup_disabled())
5632 return 0;
5633
5634 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5635 #ifdef CONFIG_MEMCG_V1
5636 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5637 #endif
5638 #ifdef CONFIG_ZSWAP
5639 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5640 #endif
5641 return 0;
5642 }
5643 subsys_initcall(mem_cgroup_swap_init);
5644
5645 #endif /* CONFIG_SWAP */
5646
mem_cgroup_node_allowed(struct mem_cgroup * memcg,int nid)5647 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
5648 {
5649 return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true;
5650 }
5651