xref: /linux/mm/memcontrol.c (revision 3349e275067f94ffb4141989aed9cbae7409429b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/cgroup-defs.h>
29 #include <linux/page_counter.h>
30 #include <linux/memcontrol.h>
31 #include <linux/cgroup.h>
32 #include <linux/cpuset.h>
33 #include <linux/sched/mm.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/hugetlb.h>
36 #include <linux/pagemap.h>
37 #include <linux/pagevec.h>
38 #include <linux/vm_event_item.h>
39 #include <linux/smp.h>
40 #include <linux/page-flags.h>
41 #include <linux/backing-dev.h>
42 #include <linux/bit_spinlock.h>
43 #include <linux/rcupdate.h>
44 #include <linux/limits.h>
45 #include <linux/export.h>
46 #include <linux/list.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swapops.h>
51 #include <linux/spinlock.h>
52 #include <linux/fs.h>
53 #include <linux/seq_file.h>
54 #include <linux/parser.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/resume_user_mode.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include <linux/sched/isolation.h>
66 #include <linux/kmemleak.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "memcontrol-v1.h"
72 
73 #include <linux/uaccess.h>
74 
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/memcg.h>
77 #undef CREATE_TRACE_POINTS
78 
79 #include <trace/events/vmscan.h>
80 
81 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
82 EXPORT_SYMBOL(memory_cgrp_subsys);
83 
84 struct mem_cgroup *root_mem_cgroup __read_mostly;
85 
86 /* Active memory cgroup to use from an interrupt context */
87 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
88 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
89 
90 /* Socket memory accounting disabled? */
91 static bool cgroup_memory_nosocket __ro_after_init;
92 
93 /* Kernel memory accounting disabled? */
94 static bool cgroup_memory_nokmem __ro_after_init;
95 
96 /* BPF memory accounting disabled? */
97 static bool cgroup_memory_nobpf __ro_after_init;
98 
99 static struct kmem_cache *memcg_cachep;
100 static struct kmem_cache *memcg_pn_cachep;
101 
102 #ifdef CONFIG_CGROUP_WRITEBACK
103 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
104 #endif
105 
task_is_dying(void)106 static inline bool task_is_dying(void)
107 {
108 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
109 		(current->flags & PF_EXITING);
110 }
111 
112 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)113 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
114 {
115 	if (!memcg)
116 		memcg = root_mem_cgroup;
117 	return &memcg->vmpressure;
118 }
119 
vmpressure_to_memcg(struct vmpressure * vmpr)120 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
121 {
122 	return container_of(vmpr, struct mem_cgroup, vmpressure);
123 }
124 
125 #define SEQ_BUF_SIZE SZ_4K
126 #define CURRENT_OBJCG_UPDATE_BIT 0
127 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
128 
129 static DEFINE_SPINLOCK(objcg_lock);
130 
mem_cgroup_kmem_disabled(void)131 bool mem_cgroup_kmem_disabled(void)
132 {
133 	return cgroup_memory_nokmem;
134 }
135 
136 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
137 
obj_cgroup_release(struct percpu_ref * ref)138 static void obj_cgroup_release(struct percpu_ref *ref)
139 {
140 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
141 	unsigned int nr_bytes;
142 	unsigned int nr_pages;
143 	unsigned long flags;
144 
145 	/*
146 	 * At this point all allocated objects are freed, and
147 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
148 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
149 	 *
150 	 * The following sequence can lead to it:
151 	 * 1) CPU0: objcg == stock->cached_objcg
152 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
153 	 *          PAGE_SIZE bytes are charged
154 	 * 3) CPU1: a process from another memcg is allocating something,
155 	 *          the stock if flushed,
156 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
157 	 * 5) CPU0: we do release this object,
158 	 *          92 bytes are added to stock->nr_bytes
159 	 * 6) CPU0: stock is flushed,
160 	 *          92 bytes are added to objcg->nr_charged_bytes
161 	 *
162 	 * In the result, nr_charged_bytes == PAGE_SIZE.
163 	 * This page will be uncharged in obj_cgroup_release().
164 	 */
165 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
166 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
167 	nr_pages = nr_bytes >> PAGE_SHIFT;
168 
169 	if (nr_pages) {
170 		struct mem_cgroup *memcg;
171 
172 		memcg = get_mem_cgroup_from_objcg(objcg);
173 		mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
174 		memcg1_account_kmem(memcg, -nr_pages);
175 		if (!mem_cgroup_is_root(memcg))
176 			memcg_uncharge(memcg, nr_pages);
177 		mem_cgroup_put(memcg);
178 	}
179 
180 	spin_lock_irqsave(&objcg_lock, flags);
181 	list_del(&objcg->list);
182 	spin_unlock_irqrestore(&objcg_lock, flags);
183 
184 	percpu_ref_exit(ref);
185 	kfree_rcu(objcg, rcu);
186 }
187 
obj_cgroup_alloc(void)188 static struct obj_cgroup *obj_cgroup_alloc(void)
189 {
190 	struct obj_cgroup *objcg;
191 	int ret;
192 
193 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
194 	if (!objcg)
195 		return NULL;
196 
197 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
198 			      GFP_KERNEL);
199 	if (ret) {
200 		kfree(objcg);
201 		return NULL;
202 	}
203 	INIT_LIST_HEAD(&objcg->list);
204 	return objcg;
205 }
206 
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)207 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
208 				  struct mem_cgroup *parent)
209 {
210 	struct obj_cgroup *objcg, *iter;
211 
212 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
213 
214 	spin_lock_irq(&objcg_lock);
215 
216 	/* 1) Ready to reparent active objcg. */
217 	list_add(&objcg->list, &memcg->objcg_list);
218 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
219 	list_for_each_entry(iter, &memcg->objcg_list, list)
220 		WRITE_ONCE(iter->memcg, parent);
221 	/* 3) Move already reparented objcgs to the parent's list */
222 	list_splice(&memcg->objcg_list, &parent->objcg_list);
223 
224 	spin_unlock_irq(&objcg_lock);
225 
226 	percpu_ref_kill(&objcg->refcnt);
227 }
228 
229 /*
230  * A lot of the calls to the cache allocation functions are expected to be
231  * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
232  * conditional to this static branch, we'll have to allow modules that does
233  * kmem_cache_alloc and the such to see this symbol as well
234  */
235 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
236 EXPORT_SYMBOL(memcg_kmem_online_key);
237 
238 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
239 EXPORT_SYMBOL(memcg_bpf_enabled_key);
240 
241 /**
242  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
243  * @folio: folio of interest
244  *
245  * If memcg is bound to the default hierarchy, css of the memcg associated
246  * with @folio is returned.  The returned css remains associated with @folio
247  * until it is released.
248  *
249  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
250  * is returned.
251  */
mem_cgroup_css_from_folio(struct folio * folio)252 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
253 {
254 	struct mem_cgroup *memcg = folio_memcg(folio);
255 
256 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
257 		memcg = root_mem_cgroup;
258 
259 	return &memcg->css;
260 }
261 
262 /**
263  * page_cgroup_ino - return inode number of the memcg a page is charged to
264  * @page: the page
265  *
266  * Look up the closest online ancestor of the memory cgroup @page is charged to
267  * and return its inode number or 0 if @page is not charged to any cgroup. It
268  * is safe to call this function without holding a reference to @page.
269  *
270  * Note, this function is inherently racy, because there is nothing to prevent
271  * the cgroup inode from getting torn down and potentially reallocated a moment
272  * after page_cgroup_ino() returns, so it only should be used by callers that
273  * do not care (such as procfs interfaces).
274  */
page_cgroup_ino(struct page * page)275 ino_t page_cgroup_ino(struct page *page)
276 {
277 	struct mem_cgroup *memcg;
278 	unsigned long ino = 0;
279 
280 	rcu_read_lock();
281 	/* page_folio() is racy here, but the entire function is racy anyway */
282 	memcg = folio_memcg_check(page_folio(page));
283 
284 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
285 		memcg = parent_mem_cgroup(memcg);
286 	if (memcg)
287 		ino = cgroup_ino(memcg->css.cgroup);
288 	rcu_read_unlock();
289 	return ino;
290 }
291 
292 /* Subset of node_stat_item for memcg stats */
293 static const unsigned int memcg_node_stat_items[] = {
294 	NR_INACTIVE_ANON,
295 	NR_ACTIVE_ANON,
296 	NR_INACTIVE_FILE,
297 	NR_ACTIVE_FILE,
298 	NR_UNEVICTABLE,
299 	NR_SLAB_RECLAIMABLE_B,
300 	NR_SLAB_UNRECLAIMABLE_B,
301 	WORKINGSET_REFAULT_ANON,
302 	WORKINGSET_REFAULT_FILE,
303 	WORKINGSET_ACTIVATE_ANON,
304 	WORKINGSET_ACTIVATE_FILE,
305 	WORKINGSET_RESTORE_ANON,
306 	WORKINGSET_RESTORE_FILE,
307 	WORKINGSET_NODERECLAIM,
308 	NR_ANON_MAPPED,
309 	NR_FILE_MAPPED,
310 	NR_FILE_PAGES,
311 	NR_FILE_DIRTY,
312 	NR_WRITEBACK,
313 	NR_SHMEM,
314 	NR_SHMEM_THPS,
315 	NR_FILE_THPS,
316 	NR_ANON_THPS,
317 	NR_KERNEL_STACK_KB,
318 	NR_PAGETABLE,
319 	NR_SECONDARY_PAGETABLE,
320 #ifdef CONFIG_SWAP
321 	NR_SWAPCACHE,
322 #endif
323 #ifdef CONFIG_NUMA_BALANCING
324 	PGPROMOTE_SUCCESS,
325 #endif
326 	PGDEMOTE_KSWAPD,
327 	PGDEMOTE_DIRECT,
328 	PGDEMOTE_KHUGEPAGED,
329 	PGDEMOTE_PROACTIVE,
330 #ifdef CONFIG_HUGETLB_PAGE
331 	NR_HUGETLB,
332 #endif
333 };
334 
335 static const unsigned int memcg_stat_items[] = {
336 	MEMCG_SWAP,
337 	MEMCG_SOCK,
338 	MEMCG_PERCPU_B,
339 	MEMCG_VMALLOC,
340 	MEMCG_KMEM,
341 	MEMCG_ZSWAP_B,
342 	MEMCG_ZSWAPPED,
343 };
344 
345 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
346 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
347 			   ARRAY_SIZE(memcg_stat_items))
348 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
349 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
350 
init_memcg_stats(void)351 static void init_memcg_stats(void)
352 {
353 	u8 i, j = 0;
354 
355 	BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
356 
357 	memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
358 
359 	for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
360 		mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
361 
362 	for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
363 		mem_cgroup_stats_index[memcg_stat_items[i]] = j;
364 }
365 
memcg_stats_index(int idx)366 static inline int memcg_stats_index(int idx)
367 {
368 	return mem_cgroup_stats_index[idx];
369 }
370 
371 struct lruvec_stats_percpu {
372 	/* Local (CPU and cgroup) state */
373 	long state[NR_MEMCG_NODE_STAT_ITEMS];
374 
375 	/* Delta calculation for lockless upward propagation */
376 	long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
377 };
378 
379 struct lruvec_stats {
380 	/* Aggregated (CPU and subtree) state */
381 	long state[NR_MEMCG_NODE_STAT_ITEMS];
382 
383 	/* Non-hierarchical (CPU aggregated) state */
384 	long state_local[NR_MEMCG_NODE_STAT_ITEMS];
385 
386 	/* Pending child counts during tree propagation */
387 	long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
388 };
389 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)390 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
391 {
392 	struct mem_cgroup_per_node *pn;
393 	long x;
394 	int i;
395 
396 	if (mem_cgroup_disabled())
397 		return node_page_state(lruvec_pgdat(lruvec), idx);
398 
399 	i = memcg_stats_index(idx);
400 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
401 		return 0;
402 
403 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
404 	x = READ_ONCE(pn->lruvec_stats->state[i]);
405 #ifdef CONFIG_SMP
406 	if (x < 0)
407 		x = 0;
408 #endif
409 	return x;
410 }
411 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)412 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
413 				      enum node_stat_item idx)
414 {
415 	struct mem_cgroup_per_node *pn;
416 	long x;
417 	int i;
418 
419 	if (mem_cgroup_disabled())
420 		return node_page_state(lruvec_pgdat(lruvec), idx);
421 
422 	i = memcg_stats_index(idx);
423 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
424 		return 0;
425 
426 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
427 	x = READ_ONCE(pn->lruvec_stats->state_local[i]);
428 #ifdef CONFIG_SMP
429 	if (x < 0)
430 		x = 0;
431 #endif
432 	return x;
433 }
434 
435 /* Subset of vm_event_item to report for memcg event stats */
436 static const unsigned int memcg_vm_event_stat[] = {
437 #ifdef CONFIG_MEMCG_V1
438 	PGPGIN,
439 	PGPGOUT,
440 #endif
441 	PSWPIN,
442 	PSWPOUT,
443 	PGSCAN_KSWAPD,
444 	PGSCAN_DIRECT,
445 	PGSCAN_KHUGEPAGED,
446 	PGSCAN_PROACTIVE,
447 	PGSTEAL_KSWAPD,
448 	PGSTEAL_DIRECT,
449 	PGSTEAL_KHUGEPAGED,
450 	PGSTEAL_PROACTIVE,
451 	PGFAULT,
452 	PGMAJFAULT,
453 	PGREFILL,
454 	PGACTIVATE,
455 	PGDEACTIVATE,
456 	PGLAZYFREE,
457 	PGLAZYFREED,
458 #ifdef CONFIG_SWAP
459 	SWPIN_ZERO,
460 	SWPOUT_ZERO,
461 #endif
462 #ifdef CONFIG_ZSWAP
463 	ZSWPIN,
464 	ZSWPOUT,
465 	ZSWPWB,
466 #endif
467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
468 	THP_FAULT_ALLOC,
469 	THP_COLLAPSE_ALLOC,
470 	THP_SWPOUT,
471 	THP_SWPOUT_FALLBACK,
472 #endif
473 #ifdef CONFIG_NUMA_BALANCING
474 	NUMA_PAGE_MIGRATE,
475 	NUMA_PTE_UPDATES,
476 	NUMA_HINT_FAULTS,
477 	NUMA_TASK_MIGRATE,
478 	NUMA_TASK_SWAP,
479 #endif
480 };
481 
482 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
483 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
484 
init_memcg_events(void)485 static void init_memcg_events(void)
486 {
487 	u8 i;
488 
489 	BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
490 
491 	memset(mem_cgroup_events_index, U8_MAX,
492 	       sizeof(mem_cgroup_events_index));
493 
494 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
495 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
496 }
497 
memcg_events_index(enum vm_event_item idx)498 static inline int memcg_events_index(enum vm_event_item idx)
499 {
500 	return mem_cgroup_events_index[idx];
501 }
502 
503 struct memcg_vmstats_percpu {
504 	/* Stats updates since the last flush */
505 	unsigned int			stats_updates;
506 
507 	/* Cached pointers for fast iteration in memcg_rstat_updated() */
508 	struct memcg_vmstats_percpu __percpu	*parent_pcpu;
509 	struct memcg_vmstats			*vmstats;
510 
511 	/* The above should fit a single cacheline for memcg_rstat_updated() */
512 
513 	/* Local (CPU and cgroup) page state & events */
514 	long			state[MEMCG_VMSTAT_SIZE];
515 	unsigned long		events[NR_MEMCG_EVENTS];
516 
517 	/* Delta calculation for lockless upward propagation */
518 	long			state_prev[MEMCG_VMSTAT_SIZE];
519 	unsigned long		events_prev[NR_MEMCG_EVENTS];
520 } ____cacheline_aligned;
521 
522 struct memcg_vmstats {
523 	/* Aggregated (CPU and subtree) page state & events */
524 	long			state[MEMCG_VMSTAT_SIZE];
525 	unsigned long		events[NR_MEMCG_EVENTS];
526 
527 	/* Non-hierarchical (CPU aggregated) page state & events */
528 	long			state_local[MEMCG_VMSTAT_SIZE];
529 	unsigned long		events_local[NR_MEMCG_EVENTS];
530 
531 	/* Pending child counts during tree propagation */
532 	long			state_pending[MEMCG_VMSTAT_SIZE];
533 	unsigned long		events_pending[NR_MEMCG_EVENTS];
534 
535 	/* Stats updates since the last flush */
536 	atomic_t		stats_updates;
537 };
538 
539 /*
540  * memcg and lruvec stats flushing
541  *
542  * Many codepaths leading to stats update or read are performance sensitive and
543  * adding stats flushing in such codepaths is not desirable. So, to optimize the
544  * flushing the kernel does:
545  *
546  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
547  *    rstat update tree grow unbounded.
548  *
549  * 2) Flush the stats synchronously on reader side only when there are more than
550  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
551  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
552  *    only for 2 seconds due to (1).
553  */
554 static void flush_memcg_stats_dwork(struct work_struct *w);
555 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
556 static u64 flush_last_time;
557 
558 #define FLUSH_TIME (2UL*HZ)
559 
memcg_vmstats_needs_flush(struct memcg_vmstats * vmstats)560 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
561 {
562 	return atomic_read(&vmstats->stats_updates) >
563 		MEMCG_CHARGE_BATCH * num_online_cpus();
564 }
565 
memcg_rstat_updated(struct mem_cgroup * memcg,int val,int cpu)566 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val,
567 				       int cpu)
568 {
569 	struct memcg_vmstats_percpu __percpu *statc_pcpu;
570 	struct memcg_vmstats_percpu *statc;
571 	unsigned int stats_updates;
572 
573 	if (!val)
574 		return;
575 
576 	/* TODO: add to cgroup update tree once it is nmi-safe. */
577 	if (!in_nmi())
578 		css_rstat_updated(&memcg->css, cpu);
579 	statc_pcpu = memcg->vmstats_percpu;
580 	for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) {
581 		statc = this_cpu_ptr(statc_pcpu);
582 		/*
583 		 * If @memcg is already flushable then all its ancestors are
584 		 * flushable as well and also there is no need to increase
585 		 * stats_updates.
586 		 */
587 		if (memcg_vmstats_needs_flush(statc->vmstats))
588 			break;
589 
590 		stats_updates = this_cpu_add_return(statc_pcpu->stats_updates,
591 						    abs(val));
592 		if (stats_updates < MEMCG_CHARGE_BATCH)
593 			continue;
594 
595 		stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0);
596 		atomic_add(stats_updates, &statc->vmstats->stats_updates);
597 	}
598 }
599 
__mem_cgroup_flush_stats(struct mem_cgroup * memcg,bool force)600 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
601 {
602 	bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
603 
604 	trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates),
605 		force, needs_flush);
606 
607 	if (!force && !needs_flush)
608 		return;
609 
610 	if (mem_cgroup_is_root(memcg))
611 		WRITE_ONCE(flush_last_time, jiffies_64);
612 
613 	css_rstat_flush(&memcg->css);
614 }
615 
616 /*
617  * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
618  * @memcg: root of the subtree to flush
619  *
620  * Flushing is serialized by the underlying global rstat lock. There is also a
621  * minimum amount of work to be done even if there are no stat updates to flush.
622  * Hence, we only flush the stats if the updates delta exceeds a threshold. This
623  * avoids unnecessary work and contention on the underlying lock.
624  */
mem_cgroup_flush_stats(struct mem_cgroup * memcg)625 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
626 {
627 	if (mem_cgroup_disabled())
628 		return;
629 
630 	if (!memcg)
631 		memcg = root_mem_cgroup;
632 
633 	__mem_cgroup_flush_stats(memcg, false);
634 }
635 
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)636 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
637 {
638 	/* Only flush if the periodic flusher is one full cycle late */
639 	if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
640 		mem_cgroup_flush_stats(memcg);
641 }
642 
flush_memcg_stats_dwork(struct work_struct * w)643 static void flush_memcg_stats_dwork(struct work_struct *w)
644 {
645 	/*
646 	 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
647 	 * in latency-sensitive paths is as cheap as possible.
648 	 */
649 	__mem_cgroup_flush_stats(root_mem_cgroup, true);
650 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
651 }
652 
memcg_page_state(struct mem_cgroup * memcg,int idx)653 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
654 {
655 	long x;
656 	int i = memcg_stats_index(idx);
657 
658 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
659 		return 0;
660 
661 	x = READ_ONCE(memcg->vmstats->state[i]);
662 #ifdef CONFIG_SMP
663 	if (x < 0)
664 		x = 0;
665 #endif
666 	return x;
667 }
668 
669 static int memcg_page_state_unit(int item);
670 
671 /*
672  * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
673  * up non-zero sub-page updates to 1 page as zero page updates are ignored.
674  */
memcg_state_val_in_pages(int idx,int val)675 static int memcg_state_val_in_pages(int idx, int val)
676 {
677 	int unit = memcg_page_state_unit(idx);
678 
679 	if (!val || unit == PAGE_SIZE)
680 		return val;
681 	else
682 		return max(val * unit / PAGE_SIZE, 1UL);
683 }
684 
685 /**
686  * mod_memcg_state - update cgroup memory statistics
687  * @memcg: the memory cgroup
688  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689  * @val: delta to add to the counter, can be negative
690  */
mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int val)691 void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
692 		       int val)
693 {
694 	int i = memcg_stats_index(idx);
695 	int cpu;
696 
697 	if (mem_cgroup_disabled())
698 		return;
699 
700 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
701 		return;
702 
703 	cpu = get_cpu();
704 
705 	this_cpu_add(memcg->vmstats_percpu->state[i], val);
706 	val = memcg_state_val_in_pages(idx, val);
707 	memcg_rstat_updated(memcg, val, cpu);
708 	trace_mod_memcg_state(memcg, idx, val);
709 
710 	put_cpu();
711 }
712 
713 #ifdef CONFIG_MEMCG_V1
714 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)715 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
716 {
717 	long x;
718 	int i = memcg_stats_index(idx);
719 
720 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
721 		return 0;
722 
723 	x = READ_ONCE(memcg->vmstats->state_local[i]);
724 #ifdef CONFIG_SMP
725 	if (x < 0)
726 		x = 0;
727 #endif
728 	return x;
729 }
730 #endif
731 
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)732 static void mod_memcg_lruvec_state(struct lruvec *lruvec,
733 				     enum node_stat_item idx,
734 				     int val)
735 {
736 	struct mem_cgroup_per_node *pn;
737 	struct mem_cgroup *memcg;
738 	int i = memcg_stats_index(idx);
739 	int cpu;
740 
741 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
742 		return;
743 
744 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
745 	memcg = pn->memcg;
746 
747 	cpu = get_cpu();
748 
749 	/* Update memcg */
750 	this_cpu_add(memcg->vmstats_percpu->state[i], val);
751 
752 	/* Update lruvec */
753 	this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
754 
755 	val = memcg_state_val_in_pages(idx, val);
756 	memcg_rstat_updated(memcg, val, cpu);
757 	trace_mod_memcg_lruvec_state(memcg, idx, val);
758 
759 	put_cpu();
760 }
761 
762 /**
763  * __mod_lruvec_state - update lruvec memory statistics
764  * @lruvec: the lruvec
765  * @idx: the stat item
766  * @val: delta to add to the counter, can be negative
767  *
768  * The lruvec is the intersection of the NUMA node and a cgroup. This
769  * function updates the all three counters that are affected by a
770  * change of state at this level: per-node, per-cgroup, per-lruvec.
771  */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)772 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
773 			int val)
774 {
775 	/* Update node */
776 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
777 
778 	/* Update memcg and lruvec */
779 	if (!mem_cgroup_disabled())
780 		mod_memcg_lruvec_state(lruvec, idx, val);
781 }
782 
__lruvec_stat_mod_folio(struct folio * folio,enum node_stat_item idx,int val)783 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
784 			     int val)
785 {
786 	struct mem_cgroup *memcg;
787 	pg_data_t *pgdat = folio_pgdat(folio);
788 	struct lruvec *lruvec;
789 
790 	rcu_read_lock();
791 	memcg = folio_memcg(folio);
792 	/* Untracked pages have no memcg, no lruvec. Update only the node */
793 	if (!memcg) {
794 		rcu_read_unlock();
795 		__mod_node_page_state(pgdat, idx, val);
796 		return;
797 	}
798 
799 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
800 	__mod_lruvec_state(lruvec, idx, val);
801 	rcu_read_unlock();
802 }
803 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
804 
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)805 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
806 {
807 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
808 	struct mem_cgroup *memcg;
809 	struct lruvec *lruvec;
810 
811 	rcu_read_lock();
812 	memcg = mem_cgroup_from_slab_obj(p);
813 
814 	/*
815 	 * Untracked pages have no memcg, no lruvec. Update only the
816 	 * node. If we reparent the slab objects to the root memcg,
817 	 * when we free the slab object, we need to update the per-memcg
818 	 * vmstats to keep it correct for the root memcg.
819 	 */
820 	if (!memcg) {
821 		__mod_node_page_state(pgdat, idx, val);
822 	} else {
823 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
824 		__mod_lruvec_state(lruvec, idx, val);
825 	}
826 	rcu_read_unlock();
827 }
828 
829 /**
830  * count_memcg_events - account VM events in a cgroup
831  * @memcg: the memory cgroup
832  * @idx: the event item
833  * @count: the number of events that occurred
834  */
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)835 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
836 			  unsigned long count)
837 {
838 	int i = memcg_events_index(idx);
839 	int cpu;
840 
841 	if (mem_cgroup_disabled())
842 		return;
843 
844 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
845 		return;
846 
847 	cpu = get_cpu();
848 
849 	this_cpu_add(memcg->vmstats_percpu->events[i], count);
850 	memcg_rstat_updated(memcg, count, cpu);
851 	trace_count_memcg_events(memcg, idx, count);
852 
853 	put_cpu();
854 }
855 
memcg_events(struct mem_cgroup * memcg,int event)856 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
857 {
858 	int i = memcg_events_index(event);
859 
860 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
861 		return 0;
862 
863 	return READ_ONCE(memcg->vmstats->events[i]);
864 }
865 
866 #ifdef CONFIG_MEMCG_V1
memcg_events_local(struct mem_cgroup * memcg,int event)867 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
868 {
869 	int i = memcg_events_index(event);
870 
871 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
872 		return 0;
873 
874 	return READ_ONCE(memcg->vmstats->events_local[i]);
875 }
876 #endif
877 
mem_cgroup_from_task(struct task_struct * p)878 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
879 {
880 	/*
881 	 * mm_update_next_owner() may clear mm->owner to NULL
882 	 * if it races with swapoff, page migration, etc.
883 	 * So this can be called with p == NULL.
884 	 */
885 	if (unlikely(!p))
886 		return NULL;
887 
888 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
889 }
890 EXPORT_SYMBOL(mem_cgroup_from_task);
891 
active_memcg(void)892 static __always_inline struct mem_cgroup *active_memcg(void)
893 {
894 	if (!in_task())
895 		return this_cpu_read(int_active_memcg);
896 	else
897 		return current->active_memcg;
898 }
899 
900 /**
901  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
902  * @mm: mm from which memcg should be extracted. It can be NULL.
903  *
904  * Obtain a reference on mm->memcg and returns it if successful. If mm
905  * is NULL, then the memcg is chosen as follows:
906  * 1) The active memcg, if set.
907  * 2) current->mm->memcg, if available
908  * 3) root memcg
909  * If mem_cgroup is disabled, NULL is returned.
910  */
get_mem_cgroup_from_mm(struct mm_struct * mm)911 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
912 {
913 	struct mem_cgroup *memcg;
914 
915 	if (mem_cgroup_disabled())
916 		return NULL;
917 
918 	/*
919 	 * Page cache insertions can happen without an
920 	 * actual mm context, e.g. during disk probing
921 	 * on boot, loopback IO, acct() writes etc.
922 	 *
923 	 * No need to css_get on root memcg as the reference
924 	 * counting is disabled on the root level in the
925 	 * cgroup core. See CSS_NO_REF.
926 	 */
927 	if (unlikely(!mm)) {
928 		memcg = active_memcg();
929 		if (unlikely(memcg)) {
930 			/* remote memcg must hold a ref */
931 			css_get(&memcg->css);
932 			return memcg;
933 		}
934 		mm = current->mm;
935 		if (unlikely(!mm))
936 			return root_mem_cgroup;
937 	}
938 
939 	rcu_read_lock();
940 	do {
941 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
942 		if (unlikely(!memcg))
943 			memcg = root_mem_cgroup;
944 	} while (!css_tryget(&memcg->css));
945 	rcu_read_unlock();
946 	return memcg;
947 }
948 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
949 
950 /**
951  * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
952  */
get_mem_cgroup_from_current(void)953 struct mem_cgroup *get_mem_cgroup_from_current(void)
954 {
955 	struct mem_cgroup *memcg;
956 
957 	if (mem_cgroup_disabled())
958 		return NULL;
959 
960 again:
961 	rcu_read_lock();
962 	memcg = mem_cgroup_from_task(current);
963 	if (!css_tryget(&memcg->css)) {
964 		rcu_read_unlock();
965 		goto again;
966 	}
967 	rcu_read_unlock();
968 	return memcg;
969 }
970 
971 /**
972  * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
973  * @folio: folio from which memcg should be extracted.
974  */
get_mem_cgroup_from_folio(struct folio * folio)975 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
976 {
977 	struct mem_cgroup *memcg = folio_memcg(folio);
978 
979 	if (mem_cgroup_disabled())
980 		return NULL;
981 
982 	rcu_read_lock();
983 	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
984 		memcg = root_mem_cgroup;
985 	rcu_read_unlock();
986 	return memcg;
987 }
988 
989 /**
990  * mem_cgroup_iter - iterate over memory cgroup hierarchy
991  * @root: hierarchy root
992  * @prev: previously returned memcg, NULL on first invocation
993  * @reclaim: cookie for shared reclaim walks, NULL for full walks
994  *
995  * Returns references to children of the hierarchy below @root, or
996  * @root itself, or %NULL after a full round-trip.
997  *
998  * Caller must pass the return value in @prev on subsequent
999  * invocations for reference counting, or use mem_cgroup_iter_break()
1000  * to cancel a hierarchy walk before the round-trip is complete.
1001  *
1002  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1003  * in the hierarchy among all concurrent reclaimers operating on the
1004  * same node.
1005  */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1006 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1007 				   struct mem_cgroup *prev,
1008 				   struct mem_cgroup_reclaim_cookie *reclaim)
1009 {
1010 	struct mem_cgroup_reclaim_iter *iter;
1011 	struct cgroup_subsys_state *css;
1012 	struct mem_cgroup *pos;
1013 	struct mem_cgroup *next;
1014 
1015 	if (mem_cgroup_disabled())
1016 		return NULL;
1017 
1018 	if (!root)
1019 		root = root_mem_cgroup;
1020 
1021 	rcu_read_lock();
1022 restart:
1023 	next = NULL;
1024 
1025 	if (reclaim) {
1026 		int gen;
1027 		int nid = reclaim->pgdat->node_id;
1028 
1029 		iter = &root->nodeinfo[nid]->iter;
1030 		gen = atomic_read(&iter->generation);
1031 
1032 		/*
1033 		 * On start, join the current reclaim iteration cycle.
1034 		 * Exit when a concurrent walker completes it.
1035 		 */
1036 		if (!prev)
1037 			reclaim->generation = gen;
1038 		else if (reclaim->generation != gen)
1039 			goto out_unlock;
1040 
1041 		pos = READ_ONCE(iter->position);
1042 	} else
1043 		pos = prev;
1044 
1045 	css = pos ? &pos->css : NULL;
1046 
1047 	while ((css = css_next_descendant_pre(css, &root->css))) {
1048 		/*
1049 		 * Verify the css and acquire a reference.  The root
1050 		 * is provided by the caller, so we know it's alive
1051 		 * and kicking, and don't take an extra reference.
1052 		 */
1053 		if (css == &root->css || css_tryget(css))
1054 			break;
1055 	}
1056 
1057 	next = mem_cgroup_from_css(css);
1058 
1059 	if (reclaim) {
1060 		/*
1061 		 * The position could have already been updated by a competing
1062 		 * thread, so check that the value hasn't changed since we read
1063 		 * it to avoid reclaiming from the same cgroup twice.
1064 		 */
1065 		if (cmpxchg(&iter->position, pos, next) != pos) {
1066 			if (css && css != &root->css)
1067 				css_put(css);
1068 			goto restart;
1069 		}
1070 
1071 		if (!next) {
1072 			atomic_inc(&iter->generation);
1073 
1074 			/*
1075 			 * Reclaimers share the hierarchy walk, and a
1076 			 * new one might jump in right at the end of
1077 			 * the hierarchy - make sure they see at least
1078 			 * one group and restart from the beginning.
1079 			 */
1080 			if (!prev)
1081 				goto restart;
1082 		}
1083 	}
1084 
1085 out_unlock:
1086 	rcu_read_unlock();
1087 	if (prev && prev != root)
1088 		css_put(&prev->css);
1089 
1090 	return next;
1091 }
1092 
1093 /**
1094  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1095  * @root: hierarchy root
1096  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1097  */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1098 void mem_cgroup_iter_break(struct mem_cgroup *root,
1099 			   struct mem_cgroup *prev)
1100 {
1101 	if (!root)
1102 		root = root_mem_cgroup;
1103 	if (prev && prev != root)
1104 		css_put(&prev->css);
1105 }
1106 
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1107 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1108 					struct mem_cgroup *dead_memcg)
1109 {
1110 	struct mem_cgroup_reclaim_iter *iter;
1111 	struct mem_cgroup_per_node *mz;
1112 	int nid;
1113 
1114 	for_each_node(nid) {
1115 		mz = from->nodeinfo[nid];
1116 		iter = &mz->iter;
1117 		cmpxchg(&iter->position, dead_memcg, NULL);
1118 	}
1119 }
1120 
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1121 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1122 {
1123 	struct mem_cgroup *memcg = dead_memcg;
1124 	struct mem_cgroup *last;
1125 
1126 	do {
1127 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1128 		last = memcg;
1129 	} while ((memcg = parent_mem_cgroup(memcg)));
1130 
1131 	/*
1132 	 * When cgroup1 non-hierarchy mode is used,
1133 	 * parent_mem_cgroup() does not walk all the way up to the
1134 	 * cgroup root (root_mem_cgroup). So we have to handle
1135 	 * dead_memcg from cgroup root separately.
1136 	 */
1137 	if (!mem_cgroup_is_root(last))
1138 		__invalidate_reclaim_iterators(root_mem_cgroup,
1139 						dead_memcg);
1140 }
1141 
1142 /**
1143  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1144  * @memcg: hierarchy root
1145  * @fn: function to call for each task
1146  * @arg: argument passed to @fn
1147  *
1148  * This function iterates over tasks attached to @memcg or to any of its
1149  * descendants and calls @fn for each task. If @fn returns a non-zero
1150  * value, the function breaks the iteration loop. Otherwise, it will iterate
1151  * over all tasks and return 0.
1152  *
1153  * This function must not be called for the root memory cgroup.
1154  */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1155 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1156 			   int (*fn)(struct task_struct *, void *), void *arg)
1157 {
1158 	struct mem_cgroup *iter;
1159 	int ret = 0;
1160 
1161 	BUG_ON(mem_cgroup_is_root(memcg));
1162 
1163 	for_each_mem_cgroup_tree(iter, memcg) {
1164 		struct css_task_iter it;
1165 		struct task_struct *task;
1166 
1167 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1168 		while (!ret && (task = css_task_iter_next(&it))) {
1169 			ret = fn(task, arg);
1170 			/* Avoid potential softlockup warning */
1171 			cond_resched();
1172 		}
1173 		css_task_iter_end(&it);
1174 		if (ret) {
1175 			mem_cgroup_iter_break(memcg, iter);
1176 			break;
1177 		}
1178 	}
1179 }
1180 
1181 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1182 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1183 {
1184 	struct mem_cgroup *memcg;
1185 
1186 	if (mem_cgroup_disabled())
1187 		return;
1188 
1189 	memcg = folio_memcg(folio);
1190 
1191 	if (!memcg)
1192 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1193 	else
1194 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1195 }
1196 #endif
1197 
1198 /**
1199  * folio_lruvec_lock - Lock the lruvec for a folio.
1200  * @folio: Pointer to the folio.
1201  *
1202  * These functions are safe to use under any of the following conditions:
1203  * - folio locked
1204  * - folio_test_lru false
1205  * - folio frozen (refcount of 0)
1206  *
1207  * Return: The lruvec this folio is on with its lock held.
1208  */
folio_lruvec_lock(struct folio * folio)1209 struct lruvec *folio_lruvec_lock(struct folio *folio)
1210 {
1211 	struct lruvec *lruvec = folio_lruvec(folio);
1212 
1213 	spin_lock(&lruvec->lru_lock);
1214 	lruvec_memcg_debug(lruvec, folio);
1215 
1216 	return lruvec;
1217 }
1218 
1219 /**
1220  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1221  * @folio: Pointer to the folio.
1222  *
1223  * These functions are safe to use under any of the following conditions:
1224  * - folio locked
1225  * - folio_test_lru false
1226  * - folio frozen (refcount of 0)
1227  *
1228  * Return: The lruvec this folio is on with its lock held and interrupts
1229  * disabled.
1230  */
folio_lruvec_lock_irq(struct folio * folio)1231 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1232 {
1233 	struct lruvec *lruvec = folio_lruvec(folio);
1234 
1235 	spin_lock_irq(&lruvec->lru_lock);
1236 	lruvec_memcg_debug(lruvec, folio);
1237 
1238 	return lruvec;
1239 }
1240 
1241 /**
1242  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1243  * @folio: Pointer to the folio.
1244  * @flags: Pointer to irqsave flags.
1245  *
1246  * These functions are safe to use under any of the following conditions:
1247  * - folio locked
1248  * - folio_test_lru false
1249  * - folio frozen (refcount of 0)
1250  *
1251  * Return: The lruvec this folio is on with its lock held and interrupts
1252  * disabled.
1253  */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1254 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1255 		unsigned long *flags)
1256 {
1257 	struct lruvec *lruvec = folio_lruvec(folio);
1258 
1259 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1260 	lruvec_memcg_debug(lruvec, folio);
1261 
1262 	return lruvec;
1263 }
1264 
1265 /**
1266  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1267  * @lruvec: mem_cgroup per zone lru vector
1268  * @lru: index of lru list the page is sitting on
1269  * @zid: zone id of the accounted pages
1270  * @nr_pages: positive when adding or negative when removing
1271  *
1272  * This function must be called under lru_lock, just before a page is added
1273  * to or just after a page is removed from an lru list.
1274  */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1275 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1276 				int zid, int nr_pages)
1277 {
1278 	struct mem_cgroup_per_node *mz;
1279 	unsigned long *lru_size;
1280 	long size;
1281 
1282 	if (mem_cgroup_disabled())
1283 		return;
1284 
1285 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1286 	lru_size = &mz->lru_zone_size[zid][lru];
1287 
1288 	if (nr_pages < 0)
1289 		*lru_size += nr_pages;
1290 
1291 	size = *lru_size;
1292 	if (WARN_ONCE(size < 0,
1293 		"%s(%p, %d, %d): lru_size %ld\n",
1294 		__func__, lruvec, lru, nr_pages, size)) {
1295 		VM_BUG_ON(1);
1296 		*lru_size = 0;
1297 	}
1298 
1299 	if (nr_pages > 0)
1300 		*lru_size += nr_pages;
1301 }
1302 
1303 /**
1304  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1305  * @memcg: the memory cgroup
1306  *
1307  * Returns the maximum amount of memory @mem can be charged with, in
1308  * pages.
1309  */
mem_cgroup_margin(struct mem_cgroup * memcg)1310 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1311 {
1312 	unsigned long margin = 0;
1313 	unsigned long count;
1314 	unsigned long limit;
1315 
1316 	count = page_counter_read(&memcg->memory);
1317 	limit = READ_ONCE(memcg->memory.max);
1318 	if (count < limit)
1319 		margin = limit - count;
1320 
1321 	if (do_memsw_account()) {
1322 		count = page_counter_read(&memcg->memsw);
1323 		limit = READ_ONCE(memcg->memsw.max);
1324 		if (count < limit)
1325 			margin = min(margin, limit - count);
1326 		else
1327 			margin = 0;
1328 	}
1329 
1330 	return margin;
1331 }
1332 
1333 struct memory_stat {
1334 	const char *name;
1335 	unsigned int idx;
1336 };
1337 
1338 static const struct memory_stat memory_stats[] = {
1339 	{ "anon",			NR_ANON_MAPPED			},
1340 	{ "file",			NR_FILE_PAGES			},
1341 	{ "kernel",			MEMCG_KMEM			},
1342 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1343 	{ "pagetables",			NR_PAGETABLE			},
1344 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1345 	{ "percpu",			MEMCG_PERCPU_B			},
1346 	{ "sock",			MEMCG_SOCK			},
1347 	{ "vmalloc",			MEMCG_VMALLOC			},
1348 	{ "shmem",			NR_SHMEM			},
1349 #ifdef CONFIG_ZSWAP
1350 	{ "zswap",			MEMCG_ZSWAP_B			},
1351 	{ "zswapped",			MEMCG_ZSWAPPED			},
1352 #endif
1353 	{ "file_mapped",		NR_FILE_MAPPED			},
1354 	{ "file_dirty",			NR_FILE_DIRTY			},
1355 	{ "file_writeback",		NR_WRITEBACK			},
1356 #ifdef CONFIG_SWAP
1357 	{ "swapcached",			NR_SWAPCACHE			},
1358 #endif
1359 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1360 	{ "anon_thp",			NR_ANON_THPS			},
1361 	{ "file_thp",			NR_FILE_THPS			},
1362 	{ "shmem_thp",			NR_SHMEM_THPS			},
1363 #endif
1364 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1365 	{ "active_anon",		NR_ACTIVE_ANON			},
1366 	{ "inactive_file",		NR_INACTIVE_FILE		},
1367 	{ "active_file",		NR_ACTIVE_FILE			},
1368 	{ "unevictable",		NR_UNEVICTABLE			},
1369 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1370 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1371 #ifdef CONFIG_HUGETLB_PAGE
1372 	{ "hugetlb",			NR_HUGETLB			},
1373 #endif
1374 
1375 	/* The memory events */
1376 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1377 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1378 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1379 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1380 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1381 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1382 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1383 
1384 	{ "pgdemote_kswapd",		PGDEMOTE_KSWAPD		},
1385 	{ "pgdemote_direct",		PGDEMOTE_DIRECT		},
1386 	{ "pgdemote_khugepaged",	PGDEMOTE_KHUGEPAGED	},
1387 	{ "pgdemote_proactive",		PGDEMOTE_PROACTIVE	},
1388 #ifdef CONFIG_NUMA_BALANCING
1389 	{ "pgpromote_success",		PGPROMOTE_SUCCESS	},
1390 #endif
1391 };
1392 
1393 /* The actual unit of the state item, not the same as the output unit */
memcg_page_state_unit(int item)1394 static int memcg_page_state_unit(int item)
1395 {
1396 	switch (item) {
1397 	case MEMCG_PERCPU_B:
1398 	case MEMCG_ZSWAP_B:
1399 	case NR_SLAB_RECLAIMABLE_B:
1400 	case NR_SLAB_UNRECLAIMABLE_B:
1401 		return 1;
1402 	case NR_KERNEL_STACK_KB:
1403 		return SZ_1K;
1404 	default:
1405 		return PAGE_SIZE;
1406 	}
1407 }
1408 
1409 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_output_unit(int item)1410 static int memcg_page_state_output_unit(int item)
1411 {
1412 	/*
1413 	 * Workingset state is actually in pages, but we export it to userspace
1414 	 * as a scalar count of events, so special case it here.
1415 	 *
1416 	 * Demotion and promotion activities are exported in pages, consistent
1417 	 * with their global counterparts.
1418 	 */
1419 	switch (item) {
1420 	case WORKINGSET_REFAULT_ANON:
1421 	case WORKINGSET_REFAULT_FILE:
1422 	case WORKINGSET_ACTIVATE_ANON:
1423 	case WORKINGSET_ACTIVATE_FILE:
1424 	case WORKINGSET_RESTORE_ANON:
1425 	case WORKINGSET_RESTORE_FILE:
1426 	case WORKINGSET_NODERECLAIM:
1427 	case PGDEMOTE_KSWAPD:
1428 	case PGDEMOTE_DIRECT:
1429 	case PGDEMOTE_KHUGEPAGED:
1430 	case PGDEMOTE_PROACTIVE:
1431 #ifdef CONFIG_NUMA_BALANCING
1432 	case PGPROMOTE_SUCCESS:
1433 #endif
1434 		return 1;
1435 	default:
1436 		return memcg_page_state_unit(item);
1437 	}
1438 }
1439 
memcg_page_state_output(struct mem_cgroup * memcg,int item)1440 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1441 {
1442 	return memcg_page_state(memcg, item) *
1443 		memcg_page_state_output_unit(item);
1444 }
1445 
1446 #ifdef CONFIG_MEMCG_V1
memcg_page_state_local_output(struct mem_cgroup * memcg,int item)1447 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1448 {
1449 	return memcg_page_state_local(memcg, item) *
1450 		memcg_page_state_output_unit(item);
1451 }
1452 #endif
1453 
1454 #ifdef CONFIG_HUGETLB_PAGE
memcg_accounts_hugetlb(void)1455 static bool memcg_accounts_hugetlb(void)
1456 {
1457 	return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1458 }
1459 #else /* CONFIG_HUGETLB_PAGE */
memcg_accounts_hugetlb(void)1460 static bool memcg_accounts_hugetlb(void)
1461 {
1462 	return false;
1463 }
1464 #endif /* CONFIG_HUGETLB_PAGE */
1465 
memcg_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1466 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1467 {
1468 	int i;
1469 
1470 	/*
1471 	 * Provide statistics on the state of the memory subsystem as
1472 	 * well as cumulative event counters that show past behavior.
1473 	 *
1474 	 * This list is ordered following a combination of these gradients:
1475 	 * 1) generic big picture -> specifics and details
1476 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1477 	 *
1478 	 * Current memory state:
1479 	 */
1480 	mem_cgroup_flush_stats(memcg);
1481 
1482 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1483 		u64 size;
1484 
1485 #ifdef CONFIG_HUGETLB_PAGE
1486 		if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1487 			!memcg_accounts_hugetlb())
1488 			continue;
1489 #endif
1490 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1491 		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1492 
1493 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1494 			size += memcg_page_state_output(memcg,
1495 							NR_SLAB_RECLAIMABLE_B);
1496 			seq_buf_printf(s, "slab %llu\n", size);
1497 		}
1498 	}
1499 
1500 	/* Accumulated memory events */
1501 	seq_buf_printf(s, "pgscan %lu\n",
1502 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1503 		       memcg_events(memcg, PGSCAN_DIRECT) +
1504 		       memcg_events(memcg, PGSCAN_PROACTIVE) +
1505 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1506 	seq_buf_printf(s, "pgsteal %lu\n",
1507 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1508 		       memcg_events(memcg, PGSTEAL_DIRECT) +
1509 		       memcg_events(memcg, PGSTEAL_PROACTIVE) +
1510 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1511 
1512 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1513 #ifdef CONFIG_MEMCG_V1
1514 		if (memcg_vm_event_stat[i] == PGPGIN ||
1515 		    memcg_vm_event_stat[i] == PGPGOUT)
1516 			continue;
1517 #endif
1518 		seq_buf_printf(s, "%s %lu\n",
1519 			       vm_event_name(memcg_vm_event_stat[i]),
1520 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1521 	}
1522 }
1523 
memory_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1524 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1525 {
1526 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1527 		memcg_stat_format(memcg, s);
1528 	else
1529 		memcg1_stat_format(memcg, s);
1530 	if (seq_buf_has_overflowed(s))
1531 		pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1532 }
1533 
1534 /**
1535  * mem_cgroup_print_oom_context: Print OOM information relevant to
1536  * memory controller.
1537  * @memcg: The memory cgroup that went over limit
1538  * @p: Task that is going to be killed
1539  *
1540  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1541  * enabled
1542  */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1543 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1544 {
1545 	rcu_read_lock();
1546 
1547 	if (memcg) {
1548 		pr_cont(",oom_memcg=");
1549 		pr_cont_cgroup_path(memcg->css.cgroup);
1550 	} else
1551 		pr_cont(",global_oom");
1552 	if (p) {
1553 		pr_cont(",task_memcg=");
1554 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1555 	}
1556 	rcu_read_unlock();
1557 }
1558 
1559 /**
1560  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1561  * memory controller.
1562  * @memcg: The memory cgroup that went over limit
1563  */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1564 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1565 {
1566 	/* Use static buffer, for the caller is holding oom_lock. */
1567 	static char buf[SEQ_BUF_SIZE];
1568 	struct seq_buf s;
1569 	unsigned long memory_failcnt;
1570 
1571 	lockdep_assert_held(&oom_lock);
1572 
1573 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1574 		memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]);
1575 	else
1576 		memory_failcnt = memcg->memory.failcnt;
1577 
1578 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1579 		K((u64)page_counter_read(&memcg->memory)),
1580 		K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt);
1581 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1582 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1583 			K((u64)page_counter_read(&memcg->swap)),
1584 			K((u64)READ_ONCE(memcg->swap.max)),
1585 			atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
1586 #ifdef CONFIG_MEMCG_V1
1587 	else {
1588 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1589 			K((u64)page_counter_read(&memcg->memsw)),
1590 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1591 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1592 			K((u64)page_counter_read(&memcg->kmem)),
1593 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1594 	}
1595 #endif
1596 
1597 	pr_info("Memory cgroup stats for ");
1598 	pr_cont_cgroup_path(memcg->css.cgroup);
1599 	pr_cont(":");
1600 	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1601 	memory_stat_format(memcg, &s);
1602 	seq_buf_do_printk(&s, KERN_INFO);
1603 }
1604 
1605 /*
1606  * Return the memory (and swap, if configured) limit for a memcg.
1607  */
mem_cgroup_get_max(struct mem_cgroup * memcg)1608 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1609 {
1610 	unsigned long max = READ_ONCE(memcg->memory.max);
1611 
1612 	if (do_memsw_account()) {
1613 		if (mem_cgroup_swappiness(memcg)) {
1614 			/* Calculate swap excess capacity from memsw limit */
1615 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1616 
1617 			max += min(swap, (unsigned long)total_swap_pages);
1618 		}
1619 	} else {
1620 		if (mem_cgroup_swappiness(memcg))
1621 			max += min(READ_ONCE(memcg->swap.max),
1622 				   (unsigned long)total_swap_pages);
1623 	}
1624 	return max;
1625 }
1626 
mem_cgroup_size(struct mem_cgroup * memcg)1627 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1628 {
1629 	return page_counter_read(&memcg->memory);
1630 }
1631 
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1632 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1633 				     int order)
1634 {
1635 	struct oom_control oc = {
1636 		.zonelist = NULL,
1637 		.nodemask = NULL,
1638 		.memcg = memcg,
1639 		.gfp_mask = gfp_mask,
1640 		.order = order,
1641 	};
1642 	bool ret = true;
1643 
1644 	if (mutex_lock_killable(&oom_lock))
1645 		return true;
1646 
1647 	if (mem_cgroup_margin(memcg) >= (1 << order))
1648 		goto unlock;
1649 
1650 	/*
1651 	 * A few threads which were not waiting at mutex_lock_killable() can
1652 	 * fail to bail out. Therefore, check again after holding oom_lock.
1653 	 */
1654 	ret = out_of_memory(&oc);
1655 
1656 unlock:
1657 	mutex_unlock(&oom_lock);
1658 	return ret;
1659 }
1660 
1661 /*
1662  * Returns true if successfully killed one or more processes. Though in some
1663  * corner cases it can return true even without killing any process.
1664  */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1665 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1666 {
1667 	bool locked, ret;
1668 
1669 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1670 		return false;
1671 
1672 	memcg_memory_event(memcg, MEMCG_OOM);
1673 
1674 	if (!memcg1_oom_prepare(memcg, &locked))
1675 		return false;
1676 
1677 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1678 
1679 	memcg1_oom_finish(memcg, locked);
1680 
1681 	return ret;
1682 }
1683 
1684 /**
1685  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1686  * @victim: task to be killed by the OOM killer
1687  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1688  *
1689  * Returns a pointer to a memory cgroup, which has to be cleaned up
1690  * by killing all belonging OOM-killable tasks.
1691  *
1692  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1693  */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1694 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1695 					    struct mem_cgroup *oom_domain)
1696 {
1697 	struct mem_cgroup *oom_group = NULL;
1698 	struct mem_cgroup *memcg;
1699 
1700 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1701 		return NULL;
1702 
1703 	if (!oom_domain)
1704 		oom_domain = root_mem_cgroup;
1705 
1706 	rcu_read_lock();
1707 
1708 	memcg = mem_cgroup_from_task(victim);
1709 	if (mem_cgroup_is_root(memcg))
1710 		goto out;
1711 
1712 	/*
1713 	 * If the victim task has been asynchronously moved to a different
1714 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1715 	 * In this case it's better to ignore memory.group.oom.
1716 	 */
1717 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1718 		goto out;
1719 
1720 	/*
1721 	 * Traverse the memory cgroup hierarchy from the victim task's
1722 	 * cgroup up to the OOMing cgroup (or root) to find the
1723 	 * highest-level memory cgroup with oom.group set.
1724 	 */
1725 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1726 		if (READ_ONCE(memcg->oom_group))
1727 			oom_group = memcg;
1728 
1729 		if (memcg == oom_domain)
1730 			break;
1731 	}
1732 
1733 	if (oom_group)
1734 		css_get(&oom_group->css);
1735 out:
1736 	rcu_read_unlock();
1737 
1738 	return oom_group;
1739 }
1740 
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1741 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1742 {
1743 	pr_info("Tasks in ");
1744 	pr_cont_cgroup_path(memcg->css.cgroup);
1745 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1746 }
1747 
1748 /*
1749  * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their
1750  * nr_pages in a single cacheline. This may change in future.
1751  */
1752 #define NR_MEMCG_STOCK 7
1753 #define FLUSHING_CACHED_CHARGE	0
1754 struct memcg_stock_pcp {
1755 	local_trylock_t lock;
1756 	uint8_t nr_pages[NR_MEMCG_STOCK];
1757 	struct mem_cgroup *cached[NR_MEMCG_STOCK];
1758 
1759 	struct work_struct work;
1760 	unsigned long flags;
1761 };
1762 
1763 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = {
1764 	.lock = INIT_LOCAL_TRYLOCK(lock),
1765 };
1766 
1767 struct obj_stock_pcp {
1768 	local_trylock_t lock;
1769 	unsigned int nr_bytes;
1770 	struct obj_cgroup *cached_objcg;
1771 	struct pglist_data *cached_pgdat;
1772 	int nr_slab_reclaimable_b;
1773 	int nr_slab_unreclaimable_b;
1774 
1775 	struct work_struct work;
1776 	unsigned long flags;
1777 };
1778 
1779 static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = {
1780 	.lock = INIT_LOCAL_TRYLOCK(lock),
1781 };
1782 
1783 static DEFINE_MUTEX(percpu_charge_mutex);
1784 
1785 static void drain_obj_stock(struct obj_stock_pcp *stock);
1786 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
1787 				     struct mem_cgroup *root_memcg);
1788 
1789 /**
1790  * consume_stock: Try to consume stocked charge on this cpu.
1791  * @memcg: memcg to consume from.
1792  * @nr_pages: how many pages to charge.
1793  *
1794  * Consume the cached charge if enough nr_pages are present otherwise return
1795  * failure. Also return failure for charge request larger than
1796  * MEMCG_CHARGE_BATCH or if the local lock is already taken.
1797  *
1798  * returns true if successful, false otherwise.
1799  */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1800 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1801 {
1802 	struct memcg_stock_pcp *stock;
1803 	uint8_t stock_pages;
1804 	bool ret = false;
1805 	int i;
1806 
1807 	if (nr_pages > MEMCG_CHARGE_BATCH ||
1808 	    !local_trylock(&memcg_stock.lock))
1809 		return ret;
1810 
1811 	stock = this_cpu_ptr(&memcg_stock);
1812 
1813 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1814 		if (memcg != READ_ONCE(stock->cached[i]))
1815 			continue;
1816 
1817 		stock_pages = READ_ONCE(stock->nr_pages[i]);
1818 		if (stock_pages >= nr_pages) {
1819 			WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages);
1820 			ret = true;
1821 		}
1822 		break;
1823 	}
1824 
1825 	local_unlock(&memcg_stock.lock);
1826 
1827 	return ret;
1828 }
1829 
memcg_uncharge(struct mem_cgroup * memcg,unsigned int nr_pages)1830 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
1831 {
1832 	page_counter_uncharge(&memcg->memory, nr_pages);
1833 	if (do_memsw_account())
1834 		page_counter_uncharge(&memcg->memsw, nr_pages);
1835 }
1836 
1837 /*
1838  * Returns stocks cached in percpu and reset cached information.
1839  */
drain_stock(struct memcg_stock_pcp * stock,int i)1840 static void drain_stock(struct memcg_stock_pcp *stock, int i)
1841 {
1842 	struct mem_cgroup *old = READ_ONCE(stock->cached[i]);
1843 	uint8_t stock_pages;
1844 
1845 	if (!old)
1846 		return;
1847 
1848 	stock_pages = READ_ONCE(stock->nr_pages[i]);
1849 	if (stock_pages) {
1850 		memcg_uncharge(old, stock_pages);
1851 		WRITE_ONCE(stock->nr_pages[i], 0);
1852 	}
1853 
1854 	css_put(&old->css);
1855 	WRITE_ONCE(stock->cached[i], NULL);
1856 }
1857 
drain_stock_fully(struct memcg_stock_pcp * stock)1858 static void drain_stock_fully(struct memcg_stock_pcp *stock)
1859 {
1860 	int i;
1861 
1862 	for (i = 0; i < NR_MEMCG_STOCK; ++i)
1863 		drain_stock(stock, i);
1864 }
1865 
drain_local_memcg_stock(struct work_struct * dummy)1866 static void drain_local_memcg_stock(struct work_struct *dummy)
1867 {
1868 	struct memcg_stock_pcp *stock;
1869 
1870 	if (WARN_ONCE(!in_task(), "drain in non-task context"))
1871 		return;
1872 
1873 	local_lock(&memcg_stock.lock);
1874 
1875 	stock = this_cpu_ptr(&memcg_stock);
1876 	drain_stock_fully(stock);
1877 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1878 
1879 	local_unlock(&memcg_stock.lock);
1880 }
1881 
drain_local_obj_stock(struct work_struct * dummy)1882 static void drain_local_obj_stock(struct work_struct *dummy)
1883 {
1884 	struct obj_stock_pcp *stock;
1885 
1886 	if (WARN_ONCE(!in_task(), "drain in non-task context"))
1887 		return;
1888 
1889 	local_lock(&obj_stock.lock);
1890 
1891 	stock = this_cpu_ptr(&obj_stock);
1892 	drain_obj_stock(stock);
1893 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1894 
1895 	local_unlock(&obj_stock.lock);
1896 }
1897 
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1898 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1899 {
1900 	struct memcg_stock_pcp *stock;
1901 	struct mem_cgroup *cached;
1902 	uint8_t stock_pages;
1903 	bool success = false;
1904 	int empty_slot = -1;
1905 	int i;
1906 
1907 	/*
1908 	 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we
1909 	 * decide to increase it more than 127 then we will need more careful
1910 	 * handling of nr_pages[] in struct memcg_stock_pcp.
1911 	 */
1912 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX);
1913 
1914 	VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg));
1915 
1916 	if (nr_pages > MEMCG_CHARGE_BATCH ||
1917 	    !local_trylock(&memcg_stock.lock)) {
1918 		/*
1919 		 * In case of larger than batch refill or unlikely failure to
1920 		 * lock the percpu memcg_stock.lock, uncharge memcg directly.
1921 		 */
1922 		memcg_uncharge(memcg, nr_pages);
1923 		return;
1924 	}
1925 
1926 	stock = this_cpu_ptr(&memcg_stock);
1927 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1928 		cached = READ_ONCE(stock->cached[i]);
1929 		if (!cached && empty_slot == -1)
1930 			empty_slot = i;
1931 		if (memcg == READ_ONCE(stock->cached[i])) {
1932 			stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages;
1933 			WRITE_ONCE(stock->nr_pages[i], stock_pages);
1934 			if (stock_pages > MEMCG_CHARGE_BATCH)
1935 				drain_stock(stock, i);
1936 			success = true;
1937 			break;
1938 		}
1939 	}
1940 
1941 	if (!success) {
1942 		i = empty_slot;
1943 		if (i == -1) {
1944 			i = get_random_u32_below(NR_MEMCG_STOCK);
1945 			drain_stock(stock, i);
1946 		}
1947 		css_get(&memcg->css);
1948 		WRITE_ONCE(stock->cached[i], memcg);
1949 		WRITE_ONCE(stock->nr_pages[i], nr_pages);
1950 	}
1951 
1952 	local_unlock(&memcg_stock.lock);
1953 }
1954 
is_memcg_drain_needed(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)1955 static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock,
1956 				  struct mem_cgroup *root_memcg)
1957 {
1958 	struct mem_cgroup *memcg;
1959 	bool flush = false;
1960 	int i;
1961 
1962 	rcu_read_lock();
1963 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1964 		memcg = READ_ONCE(stock->cached[i]);
1965 		if (!memcg)
1966 			continue;
1967 
1968 		if (READ_ONCE(stock->nr_pages[i]) &&
1969 		    mem_cgroup_is_descendant(memcg, root_memcg)) {
1970 			flush = true;
1971 			break;
1972 		}
1973 	}
1974 	rcu_read_unlock();
1975 	return flush;
1976 }
1977 
1978 /*
1979  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1980  * of the hierarchy under it.
1981  */
drain_all_stock(struct mem_cgroup * root_memcg)1982 void drain_all_stock(struct mem_cgroup *root_memcg)
1983 {
1984 	int cpu, curcpu;
1985 
1986 	/* If someone's already draining, avoid adding running more workers. */
1987 	if (!mutex_trylock(&percpu_charge_mutex))
1988 		return;
1989 	/*
1990 	 * Notify other cpus that system-wide "drain" is running
1991 	 * We do not care about races with the cpu hotplug because cpu down
1992 	 * as well as workers from this path always operate on the local
1993 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1994 	 */
1995 	migrate_disable();
1996 	curcpu = smp_processor_id();
1997 	for_each_online_cpu(cpu) {
1998 		struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu);
1999 		struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu);
2000 
2001 		if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) &&
2002 		    is_memcg_drain_needed(memcg_st, root_memcg) &&
2003 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2004 				      &memcg_st->flags)) {
2005 			if (cpu == curcpu)
2006 				drain_local_memcg_stock(&memcg_st->work);
2007 			else if (!cpu_is_isolated(cpu))
2008 				schedule_work_on(cpu, &memcg_st->work);
2009 		}
2010 
2011 		if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) &&
2012 		    obj_stock_flush_required(obj_st, root_memcg) &&
2013 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2014 				      &obj_st->flags)) {
2015 			if (cpu == curcpu)
2016 				drain_local_obj_stock(&obj_st->work);
2017 			else if (!cpu_is_isolated(cpu))
2018 				schedule_work_on(cpu, &obj_st->work);
2019 		}
2020 	}
2021 	migrate_enable();
2022 	mutex_unlock(&percpu_charge_mutex);
2023 }
2024 
memcg_hotplug_cpu_dead(unsigned int cpu)2025 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2026 {
2027 	/* no need for the local lock */
2028 	drain_obj_stock(&per_cpu(obj_stock, cpu));
2029 	drain_stock_fully(&per_cpu(memcg_stock, cpu));
2030 
2031 	return 0;
2032 }
2033 
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2034 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2035 				  unsigned int nr_pages,
2036 				  gfp_t gfp_mask)
2037 {
2038 	unsigned long nr_reclaimed = 0;
2039 
2040 	do {
2041 		unsigned long pflags;
2042 
2043 		if (page_counter_read(&memcg->memory) <=
2044 		    READ_ONCE(memcg->memory.high))
2045 			continue;
2046 
2047 		memcg_memory_event(memcg, MEMCG_HIGH);
2048 
2049 		psi_memstall_enter(&pflags);
2050 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2051 							gfp_mask,
2052 							MEMCG_RECLAIM_MAY_SWAP,
2053 							NULL);
2054 		psi_memstall_leave(&pflags);
2055 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2056 		 !mem_cgroup_is_root(memcg));
2057 
2058 	return nr_reclaimed;
2059 }
2060 
high_work_func(struct work_struct * work)2061 static void high_work_func(struct work_struct *work)
2062 {
2063 	struct mem_cgroup *memcg;
2064 
2065 	memcg = container_of(work, struct mem_cgroup, high_work);
2066 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2067 }
2068 
2069 /*
2070  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2071  * enough to still cause a significant slowdown in most cases, while still
2072  * allowing diagnostics and tracing to proceed without becoming stuck.
2073  */
2074 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2075 
2076 /*
2077  * When calculating the delay, we use these either side of the exponentiation to
2078  * maintain precision and scale to a reasonable number of jiffies (see the table
2079  * below.
2080  *
2081  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2082  *   overage ratio to a delay.
2083  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2084  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2085  *   to produce a reasonable delay curve.
2086  *
2087  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2088  * reasonable delay curve compared to precision-adjusted overage, not
2089  * penalising heavily at first, but still making sure that growth beyond the
2090  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2091  * example, with a high of 100 megabytes:
2092  *
2093  *  +-------+------------------------+
2094  *  | usage | time to allocate in ms |
2095  *  +-------+------------------------+
2096  *  | 100M  |                      0 |
2097  *  | 101M  |                      6 |
2098  *  | 102M  |                     25 |
2099  *  | 103M  |                     57 |
2100  *  | 104M  |                    102 |
2101  *  | 105M  |                    159 |
2102  *  | 106M  |                    230 |
2103  *  | 107M  |                    313 |
2104  *  | 108M  |                    409 |
2105  *  | 109M  |                    518 |
2106  *  | 110M  |                    639 |
2107  *  | 111M  |                    774 |
2108  *  | 112M  |                    921 |
2109  *  | 113M  |                   1081 |
2110  *  | 114M  |                   1254 |
2111  *  | 115M  |                   1439 |
2112  *  | 116M  |                   1638 |
2113  *  | 117M  |                   1849 |
2114  *  | 118M  |                   2000 |
2115  *  | 119M  |                   2000 |
2116  *  | 120M  |                   2000 |
2117  *  +-------+------------------------+
2118  */
2119  #define MEMCG_DELAY_PRECISION_SHIFT 20
2120  #define MEMCG_DELAY_SCALING_SHIFT 14
2121 
calculate_overage(unsigned long usage,unsigned long high)2122 static u64 calculate_overage(unsigned long usage, unsigned long high)
2123 {
2124 	u64 overage;
2125 
2126 	if (usage <= high)
2127 		return 0;
2128 
2129 	/*
2130 	 * Prevent division by 0 in overage calculation by acting as if
2131 	 * it was a threshold of 1 page
2132 	 */
2133 	high = max(high, 1UL);
2134 
2135 	overage = usage - high;
2136 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2137 	return div64_u64(overage, high);
2138 }
2139 
mem_find_max_overage(struct mem_cgroup * memcg)2140 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2141 {
2142 	u64 overage, max_overage = 0;
2143 
2144 	do {
2145 		overage = calculate_overage(page_counter_read(&memcg->memory),
2146 					    READ_ONCE(memcg->memory.high));
2147 		max_overage = max(overage, max_overage);
2148 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2149 		 !mem_cgroup_is_root(memcg));
2150 
2151 	return max_overage;
2152 }
2153 
swap_find_max_overage(struct mem_cgroup * memcg)2154 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2155 {
2156 	u64 overage, max_overage = 0;
2157 
2158 	do {
2159 		overage = calculate_overage(page_counter_read(&memcg->swap),
2160 					    READ_ONCE(memcg->swap.high));
2161 		if (overage)
2162 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2163 		max_overage = max(overage, max_overage);
2164 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2165 		 !mem_cgroup_is_root(memcg));
2166 
2167 	return max_overage;
2168 }
2169 
2170 /*
2171  * Get the number of jiffies that we should penalise a mischievous cgroup which
2172  * is exceeding its memory.high by checking both it and its ancestors.
2173  */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2174 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2175 					  unsigned int nr_pages,
2176 					  u64 max_overage)
2177 {
2178 	unsigned long penalty_jiffies;
2179 
2180 	if (!max_overage)
2181 		return 0;
2182 
2183 	/*
2184 	 * We use overage compared to memory.high to calculate the number of
2185 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2186 	 * fairly lenient on small overages, and increasingly harsh when the
2187 	 * memcg in question makes it clear that it has no intention of stopping
2188 	 * its crazy behaviour, so we exponentially increase the delay based on
2189 	 * overage amount.
2190 	 */
2191 	penalty_jiffies = max_overage * max_overage * HZ;
2192 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2193 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2194 
2195 	/*
2196 	 * Factor in the task's own contribution to the overage, such that four
2197 	 * N-sized allocations are throttled approximately the same as one
2198 	 * 4N-sized allocation.
2199 	 *
2200 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2201 	 * larger the current charge patch is than that.
2202 	 */
2203 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2204 }
2205 
2206 /*
2207  * Reclaims memory over the high limit. Called directly from
2208  * try_charge() (context permitting), as well as from the userland
2209  * return path where reclaim is always able to block.
2210  */
mem_cgroup_handle_over_high(gfp_t gfp_mask)2211 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2212 {
2213 	unsigned long penalty_jiffies;
2214 	unsigned long pflags;
2215 	unsigned long nr_reclaimed;
2216 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2217 	int nr_retries = MAX_RECLAIM_RETRIES;
2218 	struct mem_cgroup *memcg;
2219 	bool in_retry = false;
2220 
2221 	if (likely(!nr_pages))
2222 		return;
2223 
2224 	memcg = get_mem_cgroup_from_mm(current->mm);
2225 	current->memcg_nr_pages_over_high = 0;
2226 
2227 retry_reclaim:
2228 	/*
2229 	 * Bail if the task is already exiting. Unlike memory.max,
2230 	 * memory.high enforcement isn't as strict, and there is no
2231 	 * OOM killer involved, which means the excess could already
2232 	 * be much bigger (and still growing) than it could for
2233 	 * memory.max; the dying task could get stuck in fruitless
2234 	 * reclaim for a long time, which isn't desirable.
2235 	 */
2236 	if (task_is_dying())
2237 		goto out;
2238 
2239 	/*
2240 	 * The allocating task should reclaim at least the batch size, but for
2241 	 * subsequent retries we only want to do what's necessary to prevent oom
2242 	 * or breaching resource isolation.
2243 	 *
2244 	 * This is distinct from memory.max or page allocator behaviour because
2245 	 * memory.high is currently batched, whereas memory.max and the page
2246 	 * allocator run every time an allocation is made.
2247 	 */
2248 	nr_reclaimed = reclaim_high(memcg,
2249 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2250 				    gfp_mask);
2251 
2252 	/*
2253 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2254 	 * allocators proactively to slow down excessive growth.
2255 	 */
2256 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2257 					       mem_find_max_overage(memcg));
2258 
2259 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2260 						swap_find_max_overage(memcg));
2261 
2262 	/*
2263 	 * Clamp the max delay per usermode return so as to still keep the
2264 	 * application moving forwards and also permit diagnostics, albeit
2265 	 * extremely slowly.
2266 	 */
2267 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2268 
2269 	/*
2270 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2271 	 * that it's not even worth doing, in an attempt to be nice to those who
2272 	 * go only a small amount over their memory.high value and maybe haven't
2273 	 * been aggressively reclaimed enough yet.
2274 	 */
2275 	if (penalty_jiffies <= HZ / 100)
2276 		goto out;
2277 
2278 	/*
2279 	 * If reclaim is making forward progress but we're still over
2280 	 * memory.high, we want to encourage that rather than doing allocator
2281 	 * throttling.
2282 	 */
2283 	if (nr_reclaimed || nr_retries--) {
2284 		in_retry = true;
2285 		goto retry_reclaim;
2286 	}
2287 
2288 	/*
2289 	 * Reclaim didn't manage to push usage below the limit, slow
2290 	 * this allocating task down.
2291 	 *
2292 	 * If we exit early, we're guaranteed to die (since
2293 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2294 	 * need to account for any ill-begotten jiffies to pay them off later.
2295 	 */
2296 	psi_memstall_enter(&pflags);
2297 	schedule_timeout_killable(penalty_jiffies);
2298 	psi_memstall_leave(&pflags);
2299 
2300 out:
2301 	css_put(&memcg->css);
2302 }
2303 
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2304 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2305 			    unsigned int nr_pages)
2306 {
2307 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2308 	int nr_retries = MAX_RECLAIM_RETRIES;
2309 	struct mem_cgroup *mem_over_limit;
2310 	struct page_counter *counter;
2311 	unsigned long nr_reclaimed;
2312 	bool passed_oom = false;
2313 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2314 	bool drained = false;
2315 	bool raised_max_event = false;
2316 	unsigned long pflags;
2317 
2318 retry:
2319 	if (consume_stock(memcg, nr_pages))
2320 		return 0;
2321 
2322 	if (!gfpflags_allow_spinning(gfp_mask))
2323 		/* Avoid the refill and flush of the older stock */
2324 		batch = nr_pages;
2325 
2326 	if (!do_memsw_account() ||
2327 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2328 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2329 			goto done_restock;
2330 		if (do_memsw_account())
2331 			page_counter_uncharge(&memcg->memsw, batch);
2332 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2333 	} else {
2334 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2335 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2336 	}
2337 
2338 	if (batch > nr_pages) {
2339 		batch = nr_pages;
2340 		goto retry;
2341 	}
2342 
2343 	/*
2344 	 * Prevent unbounded recursion when reclaim operations need to
2345 	 * allocate memory. This might exceed the limits temporarily,
2346 	 * but we prefer facilitating memory reclaim and getting back
2347 	 * under the limit over triggering OOM kills in these cases.
2348 	 */
2349 	if (unlikely(current->flags & PF_MEMALLOC))
2350 		goto force;
2351 
2352 	if (unlikely(task_in_memcg_oom(current)))
2353 		goto nomem;
2354 
2355 	if (!gfpflags_allow_blocking(gfp_mask))
2356 		goto nomem;
2357 
2358 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2359 	raised_max_event = true;
2360 
2361 	psi_memstall_enter(&pflags);
2362 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2363 						    gfp_mask, reclaim_options, NULL);
2364 	psi_memstall_leave(&pflags);
2365 
2366 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2367 		goto retry;
2368 
2369 	if (!drained) {
2370 		drain_all_stock(mem_over_limit);
2371 		drained = true;
2372 		goto retry;
2373 	}
2374 
2375 	if (gfp_mask & __GFP_NORETRY)
2376 		goto nomem;
2377 	/*
2378 	 * Even though the limit is exceeded at this point, reclaim
2379 	 * may have been able to free some pages.  Retry the charge
2380 	 * before killing the task.
2381 	 *
2382 	 * Only for regular pages, though: huge pages are rather
2383 	 * unlikely to succeed so close to the limit, and we fall back
2384 	 * to regular pages anyway in case of failure.
2385 	 */
2386 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2387 		goto retry;
2388 
2389 	if (nr_retries--)
2390 		goto retry;
2391 
2392 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2393 		goto nomem;
2394 
2395 	/* Avoid endless loop for tasks bypassed by the oom killer */
2396 	if (passed_oom && task_is_dying())
2397 		goto nomem;
2398 
2399 	/*
2400 	 * keep retrying as long as the memcg oom killer is able to make
2401 	 * a forward progress or bypass the charge if the oom killer
2402 	 * couldn't make any progress.
2403 	 */
2404 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2405 			   get_order(nr_pages * PAGE_SIZE))) {
2406 		passed_oom = true;
2407 		nr_retries = MAX_RECLAIM_RETRIES;
2408 		goto retry;
2409 	}
2410 nomem:
2411 	/*
2412 	 * Memcg doesn't have a dedicated reserve for atomic
2413 	 * allocations. But like the global atomic pool, we need to
2414 	 * put the burden of reclaim on regular allocation requests
2415 	 * and let these go through as privileged allocations.
2416 	 */
2417 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2418 		return -ENOMEM;
2419 force:
2420 	/*
2421 	 * If the allocation has to be enforced, don't forget to raise
2422 	 * a MEMCG_MAX event.
2423 	 */
2424 	if (!raised_max_event)
2425 		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2426 
2427 	/*
2428 	 * The allocation either can't fail or will lead to more memory
2429 	 * being freed very soon.  Allow memory usage go over the limit
2430 	 * temporarily by force charging it.
2431 	 */
2432 	page_counter_charge(&memcg->memory, nr_pages);
2433 	if (do_memsw_account())
2434 		page_counter_charge(&memcg->memsw, nr_pages);
2435 
2436 	return 0;
2437 
2438 done_restock:
2439 	if (batch > nr_pages)
2440 		refill_stock(memcg, batch - nr_pages);
2441 
2442 	/*
2443 	 * If the hierarchy is above the normal consumption range, schedule
2444 	 * reclaim on returning to userland.  We can perform reclaim here
2445 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2446 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2447 	 * not recorded as it most likely matches current's and won't
2448 	 * change in the meantime.  As high limit is checked again before
2449 	 * reclaim, the cost of mismatch is negligible.
2450 	 */
2451 	do {
2452 		bool mem_high, swap_high;
2453 
2454 		mem_high = page_counter_read(&memcg->memory) >
2455 			READ_ONCE(memcg->memory.high);
2456 		swap_high = page_counter_read(&memcg->swap) >
2457 			READ_ONCE(memcg->swap.high);
2458 
2459 		/* Don't bother a random interrupted task */
2460 		if (!in_task()) {
2461 			if (mem_high) {
2462 				schedule_work(&memcg->high_work);
2463 				break;
2464 			}
2465 			continue;
2466 		}
2467 
2468 		if (mem_high || swap_high) {
2469 			/*
2470 			 * The allocating tasks in this cgroup will need to do
2471 			 * reclaim or be throttled to prevent further growth
2472 			 * of the memory or swap footprints.
2473 			 *
2474 			 * Target some best-effort fairness between the tasks,
2475 			 * and distribute reclaim work and delay penalties
2476 			 * based on how much each task is actually allocating.
2477 			 */
2478 			current->memcg_nr_pages_over_high += batch;
2479 			set_notify_resume(current);
2480 			break;
2481 		}
2482 	} while ((memcg = parent_mem_cgroup(memcg)));
2483 
2484 	/*
2485 	 * Reclaim is set up above to be called from the userland
2486 	 * return path. But also attempt synchronous reclaim to avoid
2487 	 * excessive overrun while the task is still inside the
2488 	 * kernel. If this is successful, the return path will see it
2489 	 * when it rechecks the overage and simply bail out.
2490 	 */
2491 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2492 	    !(current->flags & PF_MEMALLOC) &&
2493 	    gfpflags_allow_blocking(gfp_mask))
2494 		mem_cgroup_handle_over_high(gfp_mask);
2495 	return 0;
2496 }
2497 
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2498 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2499 			     unsigned int nr_pages)
2500 {
2501 	if (mem_cgroup_is_root(memcg))
2502 		return 0;
2503 
2504 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2505 }
2506 
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2507 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2508 {
2509 	VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2510 	/*
2511 	 * Any of the following ensures page's memcg stability:
2512 	 *
2513 	 * - the page lock
2514 	 * - LRU isolation
2515 	 * - exclusive reference
2516 	 */
2517 	folio->memcg_data = (unsigned long)memcg;
2518 }
2519 
2520 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
account_slab_nmi_safe(struct mem_cgroup * memcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2521 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2522 					 struct pglist_data *pgdat,
2523 					 enum node_stat_item idx, int nr)
2524 {
2525 	struct lruvec *lruvec;
2526 
2527 	if (likely(!in_nmi())) {
2528 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
2529 		mod_memcg_lruvec_state(lruvec, idx, nr);
2530 	} else {
2531 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id];
2532 
2533 		/* TODO: add to cgroup update tree once it is nmi-safe. */
2534 		if (idx == NR_SLAB_RECLAIMABLE_B)
2535 			atomic_add(nr, &pn->slab_reclaimable);
2536 		else
2537 			atomic_add(nr, &pn->slab_unreclaimable);
2538 	}
2539 }
2540 #else
account_slab_nmi_safe(struct mem_cgroup * memcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2541 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2542 					 struct pglist_data *pgdat,
2543 					 enum node_stat_item idx, int nr)
2544 {
2545 	struct lruvec *lruvec;
2546 
2547 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2548 	mod_memcg_lruvec_state(lruvec, idx, nr);
2549 }
2550 #endif
2551 
mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2552 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2553 				       struct pglist_data *pgdat,
2554 				       enum node_stat_item idx, int nr)
2555 {
2556 	struct mem_cgroup *memcg;
2557 
2558 	rcu_read_lock();
2559 	memcg = obj_cgroup_memcg(objcg);
2560 	account_slab_nmi_safe(memcg, pgdat, idx, nr);
2561 	rcu_read_unlock();
2562 }
2563 
2564 static __always_inline
mem_cgroup_from_obj_folio(struct folio * folio,void * p)2565 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2566 {
2567 	/*
2568 	 * Slab objects are accounted individually, not per-page.
2569 	 * Memcg membership data for each individual object is saved in
2570 	 * slab->obj_exts.
2571 	 */
2572 	if (folio_test_slab(folio)) {
2573 		struct slabobj_ext *obj_exts;
2574 		struct slab *slab;
2575 		unsigned int off;
2576 
2577 		slab = folio_slab(folio);
2578 		obj_exts = slab_obj_exts(slab);
2579 		if (!obj_exts)
2580 			return NULL;
2581 
2582 		off = obj_to_index(slab->slab_cache, slab, p);
2583 		if (obj_exts[off].objcg)
2584 			return obj_cgroup_memcg(obj_exts[off].objcg);
2585 
2586 		return NULL;
2587 	}
2588 
2589 	/*
2590 	 * folio_memcg_check() is used here, because in theory we can encounter
2591 	 * a folio where the slab flag has been cleared already, but
2592 	 * slab->obj_exts has not been freed yet
2593 	 * folio_memcg_check() will guarantee that a proper memory
2594 	 * cgroup pointer or NULL will be returned.
2595 	 */
2596 	return folio_memcg_check(folio);
2597 }
2598 
2599 /*
2600  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2601  * It is not suitable for objects allocated using vmalloc().
2602  *
2603  * A passed kernel object must be a slab object or a generic kernel page.
2604  *
2605  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2606  * cgroup_mutex, etc.
2607  */
mem_cgroup_from_slab_obj(void * p)2608 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2609 {
2610 	if (mem_cgroup_disabled())
2611 		return NULL;
2612 
2613 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2614 }
2615 
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)2616 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2617 {
2618 	struct obj_cgroup *objcg = NULL;
2619 
2620 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2621 		objcg = rcu_dereference(memcg->objcg);
2622 		if (likely(objcg && obj_cgroup_tryget(objcg)))
2623 			break;
2624 		objcg = NULL;
2625 	}
2626 	return objcg;
2627 }
2628 
current_objcg_update(void)2629 static struct obj_cgroup *current_objcg_update(void)
2630 {
2631 	struct mem_cgroup *memcg;
2632 	struct obj_cgroup *old, *objcg = NULL;
2633 
2634 	do {
2635 		/* Atomically drop the update bit. */
2636 		old = xchg(&current->objcg, NULL);
2637 		if (old) {
2638 			old = (struct obj_cgroup *)
2639 				((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2640 			obj_cgroup_put(old);
2641 
2642 			old = NULL;
2643 		}
2644 
2645 		/* If new objcg is NULL, no reason for the second atomic update. */
2646 		if (!current->mm || (current->flags & PF_KTHREAD))
2647 			return NULL;
2648 
2649 		/*
2650 		 * Release the objcg pointer from the previous iteration,
2651 		 * if try_cmpxcg() below fails.
2652 		 */
2653 		if (unlikely(objcg)) {
2654 			obj_cgroup_put(objcg);
2655 			objcg = NULL;
2656 		}
2657 
2658 		/*
2659 		 * Obtain the new objcg pointer. The current task can be
2660 		 * asynchronously moved to another memcg and the previous
2661 		 * memcg can be offlined. So let's get the memcg pointer
2662 		 * and try get a reference to objcg under a rcu read lock.
2663 		 */
2664 
2665 		rcu_read_lock();
2666 		memcg = mem_cgroup_from_task(current);
2667 		objcg = __get_obj_cgroup_from_memcg(memcg);
2668 		rcu_read_unlock();
2669 
2670 		/*
2671 		 * Try set up a new objcg pointer atomically. If it
2672 		 * fails, it means the update flag was set concurrently, so
2673 		 * the whole procedure should be repeated.
2674 		 */
2675 	} while (!try_cmpxchg(&current->objcg, &old, objcg));
2676 
2677 	return objcg;
2678 }
2679 
current_obj_cgroup(void)2680 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2681 {
2682 	struct mem_cgroup *memcg;
2683 	struct obj_cgroup *objcg;
2684 
2685 	if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi())
2686 		return NULL;
2687 
2688 	if (in_task()) {
2689 		memcg = current->active_memcg;
2690 		if (unlikely(memcg))
2691 			goto from_memcg;
2692 
2693 		objcg = READ_ONCE(current->objcg);
2694 		if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2695 			objcg = current_objcg_update();
2696 		/*
2697 		 * Objcg reference is kept by the task, so it's safe
2698 		 * to use the objcg by the current task.
2699 		 */
2700 		return objcg;
2701 	}
2702 
2703 	memcg = this_cpu_read(int_active_memcg);
2704 	if (unlikely(memcg))
2705 		goto from_memcg;
2706 
2707 	return NULL;
2708 
2709 from_memcg:
2710 	objcg = NULL;
2711 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2712 		/*
2713 		 * Memcg pointer is protected by scope (see set_active_memcg())
2714 		 * and is pinning the corresponding objcg, so objcg can't go
2715 		 * away and can be used within the scope without any additional
2716 		 * protection.
2717 		 */
2718 		objcg = rcu_dereference_check(memcg->objcg, 1);
2719 		if (likely(objcg))
2720 			break;
2721 	}
2722 
2723 	return objcg;
2724 }
2725 
get_obj_cgroup_from_folio(struct folio * folio)2726 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2727 {
2728 	struct obj_cgroup *objcg;
2729 
2730 	if (!memcg_kmem_online())
2731 		return NULL;
2732 
2733 	if (folio_memcg_kmem(folio)) {
2734 		objcg = __folio_objcg(folio);
2735 		obj_cgroup_get(objcg);
2736 	} else {
2737 		struct mem_cgroup *memcg;
2738 
2739 		rcu_read_lock();
2740 		memcg = __folio_memcg(folio);
2741 		if (memcg)
2742 			objcg = __get_obj_cgroup_from_memcg(memcg);
2743 		else
2744 			objcg = NULL;
2745 		rcu_read_unlock();
2746 	}
2747 	return objcg;
2748 }
2749 
2750 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
account_kmem_nmi_safe(struct mem_cgroup * memcg,int val)2751 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2752 {
2753 	if (likely(!in_nmi())) {
2754 		mod_memcg_state(memcg, MEMCG_KMEM, val);
2755 	} else {
2756 		/* TODO: add to cgroup update tree once it is nmi-safe. */
2757 		atomic_add(val, &memcg->kmem_stat);
2758 	}
2759 }
2760 #else
account_kmem_nmi_safe(struct mem_cgroup * memcg,int val)2761 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2762 {
2763 	mod_memcg_state(memcg, MEMCG_KMEM, val);
2764 }
2765 #endif
2766 
2767 /*
2768  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2769  * @objcg: object cgroup to uncharge
2770  * @nr_pages: number of pages to uncharge
2771  */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)2772 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2773 				      unsigned int nr_pages)
2774 {
2775 	struct mem_cgroup *memcg;
2776 
2777 	memcg = get_mem_cgroup_from_objcg(objcg);
2778 
2779 	account_kmem_nmi_safe(memcg, -nr_pages);
2780 	memcg1_account_kmem(memcg, -nr_pages);
2781 	if (!mem_cgroup_is_root(memcg))
2782 		refill_stock(memcg, nr_pages);
2783 
2784 	css_put(&memcg->css);
2785 }
2786 
2787 /*
2788  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2789  * @objcg: object cgroup to charge
2790  * @gfp: reclaim mode
2791  * @nr_pages: number of pages to charge
2792  *
2793  * Returns 0 on success, an error code on failure.
2794  */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)2795 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2796 				   unsigned int nr_pages)
2797 {
2798 	struct mem_cgroup *memcg;
2799 	int ret;
2800 
2801 	memcg = get_mem_cgroup_from_objcg(objcg);
2802 
2803 	ret = try_charge_memcg(memcg, gfp, nr_pages);
2804 	if (ret)
2805 		goto out;
2806 
2807 	account_kmem_nmi_safe(memcg, nr_pages);
2808 	memcg1_account_kmem(memcg, nr_pages);
2809 out:
2810 	css_put(&memcg->css);
2811 
2812 	return ret;
2813 }
2814 
page_objcg(const struct page * page)2815 static struct obj_cgroup *page_objcg(const struct page *page)
2816 {
2817 	unsigned long memcg_data = page->memcg_data;
2818 
2819 	if (mem_cgroup_disabled() || !memcg_data)
2820 		return NULL;
2821 
2822 	VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM,
2823 			page);
2824 	return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM);
2825 }
2826 
page_set_objcg(struct page * page,const struct obj_cgroup * objcg)2827 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg)
2828 {
2829 	page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM;
2830 }
2831 
2832 /**
2833  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2834  * @page: page to charge
2835  * @gfp: reclaim mode
2836  * @order: allocation order
2837  *
2838  * Returns 0 on success, an error code on failure.
2839  */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)2840 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2841 {
2842 	struct obj_cgroup *objcg;
2843 	int ret = 0;
2844 
2845 	objcg = current_obj_cgroup();
2846 	if (objcg) {
2847 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2848 		if (!ret) {
2849 			obj_cgroup_get(objcg);
2850 			page_set_objcg(page, objcg);
2851 			return 0;
2852 		}
2853 	}
2854 	return ret;
2855 }
2856 
2857 /**
2858  * __memcg_kmem_uncharge_page: uncharge a kmem page
2859  * @page: page to uncharge
2860  * @order: allocation order
2861  */
__memcg_kmem_uncharge_page(struct page * page,int order)2862 void __memcg_kmem_uncharge_page(struct page *page, int order)
2863 {
2864 	struct obj_cgroup *objcg = page_objcg(page);
2865 	unsigned int nr_pages = 1 << order;
2866 
2867 	if (!objcg)
2868 		return;
2869 
2870 	obj_cgroup_uncharge_pages(objcg, nr_pages);
2871 	page->memcg_data = 0;
2872 	obj_cgroup_put(objcg);
2873 }
2874 
__account_obj_stock(struct obj_cgroup * objcg,struct obj_stock_pcp * stock,int nr,struct pglist_data * pgdat,enum node_stat_item idx)2875 static void __account_obj_stock(struct obj_cgroup *objcg,
2876 				struct obj_stock_pcp *stock, int nr,
2877 				struct pglist_data *pgdat, enum node_stat_item idx)
2878 {
2879 	int *bytes;
2880 
2881 	/*
2882 	 * Save vmstat data in stock and skip vmstat array update unless
2883 	 * accumulating over a page of vmstat data or when pgdat changes.
2884 	 */
2885 	if (stock->cached_pgdat != pgdat) {
2886 		/* Flush the existing cached vmstat data */
2887 		struct pglist_data *oldpg = stock->cached_pgdat;
2888 
2889 		if (stock->nr_slab_reclaimable_b) {
2890 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2891 					  stock->nr_slab_reclaimable_b);
2892 			stock->nr_slab_reclaimable_b = 0;
2893 		}
2894 		if (stock->nr_slab_unreclaimable_b) {
2895 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2896 					  stock->nr_slab_unreclaimable_b);
2897 			stock->nr_slab_unreclaimable_b = 0;
2898 		}
2899 		stock->cached_pgdat = pgdat;
2900 	}
2901 
2902 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2903 					       : &stock->nr_slab_unreclaimable_b;
2904 	/*
2905 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2906 	 * cached locally at least once before pushing it out.
2907 	 */
2908 	if (!*bytes) {
2909 		*bytes = nr;
2910 		nr = 0;
2911 	} else {
2912 		*bytes += nr;
2913 		if (abs(*bytes) > PAGE_SIZE) {
2914 			nr = *bytes;
2915 			*bytes = 0;
2916 		} else {
2917 			nr = 0;
2918 		}
2919 	}
2920 	if (nr)
2921 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
2922 }
2923 
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,struct pglist_data * pgdat,enum node_stat_item idx)2924 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2925 			      struct pglist_data *pgdat, enum node_stat_item idx)
2926 {
2927 	struct obj_stock_pcp *stock;
2928 	bool ret = false;
2929 
2930 	if (!local_trylock(&obj_stock.lock))
2931 		return ret;
2932 
2933 	stock = this_cpu_ptr(&obj_stock);
2934 	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2935 		stock->nr_bytes -= nr_bytes;
2936 		ret = true;
2937 
2938 		if (pgdat)
2939 			__account_obj_stock(objcg, stock, nr_bytes, pgdat, idx);
2940 	}
2941 
2942 	local_unlock(&obj_stock.lock);
2943 
2944 	return ret;
2945 }
2946 
drain_obj_stock(struct obj_stock_pcp * stock)2947 static void drain_obj_stock(struct obj_stock_pcp *stock)
2948 {
2949 	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2950 
2951 	if (!old)
2952 		return;
2953 
2954 	if (stock->nr_bytes) {
2955 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2956 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2957 
2958 		if (nr_pages) {
2959 			struct mem_cgroup *memcg;
2960 
2961 			memcg = get_mem_cgroup_from_objcg(old);
2962 
2963 			mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2964 			memcg1_account_kmem(memcg, -nr_pages);
2965 			if (!mem_cgroup_is_root(memcg))
2966 				memcg_uncharge(memcg, nr_pages);
2967 
2968 			css_put(&memcg->css);
2969 		}
2970 
2971 		/*
2972 		 * The leftover is flushed to the centralized per-memcg value.
2973 		 * On the next attempt to refill obj stock it will be moved
2974 		 * to a per-cpu stock (probably, on an other CPU), see
2975 		 * refill_obj_stock().
2976 		 *
2977 		 * How often it's flushed is a trade-off between the memory
2978 		 * limit enforcement accuracy and potential CPU contention,
2979 		 * so it might be changed in the future.
2980 		 */
2981 		atomic_add(nr_bytes, &old->nr_charged_bytes);
2982 		stock->nr_bytes = 0;
2983 	}
2984 
2985 	/*
2986 	 * Flush the vmstat data in current stock
2987 	 */
2988 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2989 		if (stock->nr_slab_reclaimable_b) {
2990 			mod_objcg_mlstate(old, stock->cached_pgdat,
2991 					  NR_SLAB_RECLAIMABLE_B,
2992 					  stock->nr_slab_reclaimable_b);
2993 			stock->nr_slab_reclaimable_b = 0;
2994 		}
2995 		if (stock->nr_slab_unreclaimable_b) {
2996 			mod_objcg_mlstate(old, stock->cached_pgdat,
2997 					  NR_SLAB_UNRECLAIMABLE_B,
2998 					  stock->nr_slab_unreclaimable_b);
2999 			stock->nr_slab_unreclaimable_b = 0;
3000 		}
3001 		stock->cached_pgdat = NULL;
3002 	}
3003 
3004 	WRITE_ONCE(stock->cached_objcg, NULL);
3005 	obj_cgroup_put(old);
3006 }
3007 
obj_stock_flush_required(struct obj_stock_pcp * stock,struct mem_cgroup * root_memcg)3008 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
3009 				     struct mem_cgroup *root_memcg)
3010 {
3011 	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3012 	struct mem_cgroup *memcg;
3013 	bool flush = false;
3014 
3015 	rcu_read_lock();
3016 	if (objcg) {
3017 		memcg = obj_cgroup_memcg(objcg);
3018 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3019 			flush = true;
3020 	}
3021 	rcu_read_unlock();
3022 
3023 	return flush;
3024 }
3025 
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge,int nr_acct,struct pglist_data * pgdat,enum node_stat_item idx)3026 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3027 		bool allow_uncharge, int nr_acct, struct pglist_data *pgdat,
3028 		enum node_stat_item idx)
3029 {
3030 	struct obj_stock_pcp *stock;
3031 	unsigned int nr_pages = 0;
3032 
3033 	if (!local_trylock(&obj_stock.lock)) {
3034 		if (pgdat)
3035 			mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes);
3036 		nr_pages = nr_bytes >> PAGE_SHIFT;
3037 		nr_bytes = nr_bytes & (PAGE_SIZE - 1);
3038 		atomic_add(nr_bytes, &objcg->nr_charged_bytes);
3039 		goto out;
3040 	}
3041 
3042 	stock = this_cpu_ptr(&obj_stock);
3043 	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3044 		drain_obj_stock(stock);
3045 		obj_cgroup_get(objcg);
3046 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3047 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3048 		WRITE_ONCE(stock->cached_objcg, objcg);
3049 
3050 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3051 	}
3052 	stock->nr_bytes += nr_bytes;
3053 
3054 	if (pgdat)
3055 		__account_obj_stock(objcg, stock, nr_acct, pgdat, idx);
3056 
3057 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3058 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3059 		stock->nr_bytes &= (PAGE_SIZE - 1);
3060 	}
3061 
3062 	local_unlock(&obj_stock.lock);
3063 out:
3064 	if (nr_pages)
3065 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3066 }
3067 
obj_cgroup_charge_account(struct obj_cgroup * objcg,gfp_t gfp,size_t size,struct pglist_data * pgdat,enum node_stat_item idx)3068 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size,
3069 				     struct pglist_data *pgdat, enum node_stat_item idx)
3070 {
3071 	unsigned int nr_pages, nr_bytes;
3072 	int ret;
3073 
3074 	if (likely(consume_obj_stock(objcg, size, pgdat, idx)))
3075 		return 0;
3076 
3077 	/*
3078 	 * In theory, objcg->nr_charged_bytes can have enough
3079 	 * pre-charged bytes to satisfy the allocation. However,
3080 	 * flushing objcg->nr_charged_bytes requires two atomic
3081 	 * operations, and objcg->nr_charged_bytes can't be big.
3082 	 * The shared objcg->nr_charged_bytes can also become a
3083 	 * performance bottleneck if all tasks of the same memcg are
3084 	 * trying to update it. So it's better to ignore it and try
3085 	 * grab some new pages. The stock's nr_bytes will be flushed to
3086 	 * objcg->nr_charged_bytes later on when objcg changes.
3087 	 *
3088 	 * The stock's nr_bytes may contain enough pre-charged bytes
3089 	 * to allow one less page from being charged, but we can't rely
3090 	 * on the pre-charged bytes not being changed outside of
3091 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3092 	 * pre-charged bytes as well when charging pages. To avoid a
3093 	 * page uncharge right after a page charge, we set the
3094 	 * allow_uncharge flag to false when calling refill_obj_stock()
3095 	 * to temporarily allow the pre-charged bytes to exceed the page
3096 	 * size limit. The maximum reachable value of the pre-charged
3097 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3098 	 * race.
3099 	 */
3100 	nr_pages = size >> PAGE_SHIFT;
3101 	nr_bytes = size & (PAGE_SIZE - 1);
3102 
3103 	if (nr_bytes)
3104 		nr_pages += 1;
3105 
3106 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3107 	if (!ret && (nr_bytes || pgdat))
3108 		refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0,
3109 					 false, size, pgdat, idx);
3110 
3111 	return ret;
3112 }
3113 
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3114 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3115 {
3116 	return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0);
3117 }
3118 
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3119 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3120 {
3121 	refill_obj_stock(objcg, size, true, 0, NULL, 0);
3122 }
3123 
obj_full_size(struct kmem_cache * s)3124 static inline size_t obj_full_size(struct kmem_cache *s)
3125 {
3126 	/*
3127 	 * For each accounted object there is an extra space which is used
3128 	 * to store obj_cgroup membership. Charge it too.
3129 	 */
3130 	return s->size + sizeof(struct obj_cgroup *);
3131 }
3132 
__memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)3133 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3134 				  gfp_t flags, size_t size, void **p)
3135 {
3136 	struct obj_cgroup *objcg;
3137 	struct slab *slab;
3138 	unsigned long off;
3139 	size_t i;
3140 
3141 	/*
3142 	 * The obtained objcg pointer is safe to use within the current scope,
3143 	 * defined by current task or set_active_memcg() pair.
3144 	 * obj_cgroup_get() is used to get a permanent reference.
3145 	 */
3146 	objcg = current_obj_cgroup();
3147 	if (!objcg)
3148 		return true;
3149 
3150 	/*
3151 	 * slab_alloc_node() avoids the NULL check, so we might be called with a
3152 	 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
3153 	 * the whole requested size.
3154 	 * return success as there's nothing to free back
3155 	 */
3156 	if (unlikely(*p == NULL))
3157 		return true;
3158 
3159 	flags &= gfp_allowed_mask;
3160 
3161 	if (lru) {
3162 		int ret;
3163 		struct mem_cgroup *memcg;
3164 
3165 		memcg = get_mem_cgroup_from_objcg(objcg);
3166 		ret = memcg_list_lru_alloc(memcg, lru, flags);
3167 		css_put(&memcg->css);
3168 
3169 		if (ret)
3170 			return false;
3171 	}
3172 
3173 	for (i = 0; i < size; i++) {
3174 		slab = virt_to_slab(p[i]);
3175 
3176 		if (!slab_obj_exts(slab) &&
3177 		    alloc_slab_obj_exts(slab, s, flags, false)) {
3178 			continue;
3179 		}
3180 
3181 		/*
3182 		 * if we fail and size is 1, memcg_alloc_abort_single() will
3183 		 * just free the object, which is ok as we have not assigned
3184 		 * objcg to its obj_ext yet
3185 		 *
3186 		 * for larger sizes, kmem_cache_free_bulk() will uncharge
3187 		 * any objects that were already charged and obj_ext assigned
3188 		 *
3189 		 * TODO: we could batch this until slab_pgdat(slab) changes
3190 		 * between iterations, with a more complicated undo
3191 		 */
3192 		if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s),
3193 					slab_pgdat(slab), cache_vmstat_idx(s)))
3194 			return false;
3195 
3196 		off = obj_to_index(s, slab, p[i]);
3197 		obj_cgroup_get(objcg);
3198 		slab_obj_exts(slab)[off].objcg = objcg;
3199 	}
3200 
3201 	return true;
3202 }
3203 
__memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects,struct slabobj_ext * obj_exts)3204 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3205 			    void **p, int objects, struct slabobj_ext *obj_exts)
3206 {
3207 	size_t obj_size = obj_full_size(s);
3208 
3209 	for (int i = 0; i < objects; i++) {
3210 		struct obj_cgroup *objcg;
3211 		unsigned int off;
3212 
3213 		off = obj_to_index(s, slab, p[i]);
3214 		objcg = obj_exts[off].objcg;
3215 		if (!objcg)
3216 			continue;
3217 
3218 		obj_exts[off].objcg = NULL;
3219 		refill_obj_stock(objcg, obj_size, true, -obj_size,
3220 				 slab_pgdat(slab), cache_vmstat_idx(s));
3221 		obj_cgroup_put(objcg);
3222 	}
3223 }
3224 
3225 /*
3226  * The objcg is only set on the first page, so transfer it to all the
3227  * other pages.
3228  */
split_page_memcg(struct page * page,unsigned order)3229 void split_page_memcg(struct page *page, unsigned order)
3230 {
3231 	struct obj_cgroup *objcg = page_objcg(page);
3232 	unsigned int i, nr = 1 << order;
3233 
3234 	if (!objcg)
3235 		return;
3236 
3237 	for (i = 1; i < nr; i++)
3238 		page_set_objcg(&page[i], objcg);
3239 
3240 	obj_cgroup_get_many(objcg, nr - 1);
3241 }
3242 
folio_split_memcg_refs(struct folio * folio,unsigned old_order,unsigned new_order)3243 void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
3244 		unsigned new_order)
3245 {
3246 	unsigned new_refs;
3247 
3248 	if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3249 		return;
3250 
3251 	new_refs = (1 << (old_order - new_order)) - 1;
3252 	css_get_many(&__folio_memcg(folio)->css, new_refs);
3253 }
3254 
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3255 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3256 {
3257 	unsigned long val;
3258 
3259 	if (mem_cgroup_is_root(memcg)) {
3260 		/*
3261 		 * Approximate root's usage from global state. This isn't
3262 		 * perfect, but the root usage was always an approximation.
3263 		 */
3264 		val = global_node_page_state(NR_FILE_PAGES) +
3265 			global_node_page_state(NR_ANON_MAPPED);
3266 		if (swap)
3267 			val += total_swap_pages - get_nr_swap_pages();
3268 	} else {
3269 		if (!swap)
3270 			val = page_counter_read(&memcg->memory);
3271 		else
3272 			val = page_counter_read(&memcg->memsw);
3273 	}
3274 	return val;
3275 }
3276 
memcg_online_kmem(struct mem_cgroup * memcg)3277 static int memcg_online_kmem(struct mem_cgroup *memcg)
3278 {
3279 	struct obj_cgroup *objcg;
3280 
3281 	if (mem_cgroup_kmem_disabled())
3282 		return 0;
3283 
3284 	if (unlikely(mem_cgroup_is_root(memcg)))
3285 		return 0;
3286 
3287 	objcg = obj_cgroup_alloc();
3288 	if (!objcg)
3289 		return -ENOMEM;
3290 
3291 	objcg->memcg = memcg;
3292 	rcu_assign_pointer(memcg->objcg, objcg);
3293 	obj_cgroup_get(objcg);
3294 	memcg->orig_objcg = objcg;
3295 
3296 	static_branch_enable(&memcg_kmem_online_key);
3297 
3298 	memcg->kmemcg_id = memcg->id.id;
3299 
3300 	return 0;
3301 }
3302 
memcg_offline_kmem(struct mem_cgroup * memcg)3303 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3304 {
3305 	struct mem_cgroup *parent;
3306 
3307 	if (mem_cgroup_kmem_disabled())
3308 		return;
3309 
3310 	if (unlikely(mem_cgroup_is_root(memcg)))
3311 		return;
3312 
3313 	parent = parent_mem_cgroup(memcg);
3314 	if (!parent)
3315 		parent = root_mem_cgroup;
3316 
3317 	memcg_reparent_list_lrus(memcg, parent);
3318 
3319 	/*
3320 	 * Objcg's reparenting must be after list_lru's, make sure list_lru
3321 	 * helpers won't use parent's list_lru until child is drained.
3322 	 */
3323 	memcg_reparent_objcgs(memcg, parent);
3324 }
3325 
3326 #ifdef CONFIG_CGROUP_WRITEBACK
3327 
3328 #include <trace/events/writeback.h>
3329 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3330 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3331 {
3332 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3333 }
3334 
memcg_wb_domain_exit(struct mem_cgroup * memcg)3335 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3336 {
3337 	wb_domain_exit(&memcg->cgwb_domain);
3338 }
3339 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3340 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3341 {
3342 	wb_domain_size_changed(&memcg->cgwb_domain);
3343 }
3344 
mem_cgroup_wb_domain(struct bdi_writeback * wb)3345 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3346 {
3347 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3348 
3349 	if (!memcg->css.parent)
3350 		return NULL;
3351 
3352 	return &memcg->cgwb_domain;
3353 }
3354 
3355 /**
3356  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3357  * @wb: bdi_writeback in question
3358  * @pfilepages: out parameter for number of file pages
3359  * @pheadroom: out parameter for number of allocatable pages according to memcg
3360  * @pdirty: out parameter for number of dirty pages
3361  * @pwriteback: out parameter for number of pages under writeback
3362  *
3363  * Determine the numbers of file, headroom, dirty, and writeback pages in
3364  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3365  * is a bit more involved.
3366  *
3367  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3368  * headroom is calculated as the lowest headroom of itself and the
3369  * ancestors.  Note that this doesn't consider the actual amount of
3370  * available memory in the system.  The caller should further cap
3371  * *@pheadroom accordingly.
3372  */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3373 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3374 			 unsigned long *pheadroom, unsigned long *pdirty,
3375 			 unsigned long *pwriteback)
3376 {
3377 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3378 	struct mem_cgroup *parent;
3379 
3380 	mem_cgroup_flush_stats_ratelimited(memcg);
3381 
3382 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3383 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3384 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3385 			memcg_page_state(memcg, NR_ACTIVE_FILE);
3386 
3387 	*pheadroom = PAGE_COUNTER_MAX;
3388 	while ((parent = parent_mem_cgroup(memcg))) {
3389 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3390 					    READ_ONCE(memcg->memory.high));
3391 		unsigned long used = page_counter_read(&memcg->memory);
3392 
3393 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3394 		memcg = parent;
3395 	}
3396 }
3397 
3398 /*
3399  * Foreign dirty flushing
3400  *
3401  * There's an inherent mismatch between memcg and writeback.  The former
3402  * tracks ownership per-page while the latter per-inode.  This was a
3403  * deliberate design decision because honoring per-page ownership in the
3404  * writeback path is complicated, may lead to higher CPU and IO overheads
3405  * and deemed unnecessary given that write-sharing an inode across
3406  * different cgroups isn't a common use-case.
3407  *
3408  * Combined with inode majority-writer ownership switching, this works well
3409  * enough in most cases but there are some pathological cases.  For
3410  * example, let's say there are two cgroups A and B which keep writing to
3411  * different but confined parts of the same inode.  B owns the inode and
3412  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
3413  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3414  * triggering background writeback.  A will be slowed down without a way to
3415  * make writeback of the dirty pages happen.
3416  *
3417  * Conditions like the above can lead to a cgroup getting repeatedly and
3418  * severely throttled after making some progress after each
3419  * dirty_expire_interval while the underlying IO device is almost
3420  * completely idle.
3421  *
3422  * Solving this problem completely requires matching the ownership tracking
3423  * granularities between memcg and writeback in either direction.  However,
3424  * the more egregious behaviors can be avoided by simply remembering the
3425  * most recent foreign dirtying events and initiating remote flushes on
3426  * them when local writeback isn't enough to keep the memory clean enough.
3427  *
3428  * The following two functions implement such mechanism.  When a foreign
3429  * page - a page whose memcg and writeback ownerships don't match - is
3430  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3431  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
3432  * decides that the memcg needs to sleep due to high dirty ratio, it calls
3433  * mem_cgroup_flush_foreign() which queues writeback on the recorded
3434  * foreign bdi_writebacks which haven't expired.  Both the numbers of
3435  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3436  * limited to MEMCG_CGWB_FRN_CNT.
3437  *
3438  * The mechanism only remembers IDs and doesn't hold any object references.
3439  * As being wrong occasionally doesn't matter, updates and accesses to the
3440  * records are lockless and racy.
3441  */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)3442 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3443 					     struct bdi_writeback *wb)
3444 {
3445 	struct mem_cgroup *memcg = folio_memcg(folio);
3446 	struct memcg_cgwb_frn *frn;
3447 	u64 now = get_jiffies_64();
3448 	u64 oldest_at = now;
3449 	int oldest = -1;
3450 	int i;
3451 
3452 	trace_track_foreign_dirty(folio, wb);
3453 
3454 	/*
3455 	 * Pick the slot to use.  If there is already a slot for @wb, keep
3456 	 * using it.  If not replace the oldest one which isn't being
3457 	 * written out.
3458 	 */
3459 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3460 		frn = &memcg->cgwb_frn[i];
3461 		if (frn->bdi_id == wb->bdi->id &&
3462 		    frn->memcg_id == wb->memcg_css->id)
3463 			break;
3464 		if (time_before64(frn->at, oldest_at) &&
3465 		    atomic_read(&frn->done.cnt) == 1) {
3466 			oldest = i;
3467 			oldest_at = frn->at;
3468 		}
3469 	}
3470 
3471 	if (i < MEMCG_CGWB_FRN_CNT) {
3472 		/*
3473 		 * Re-using an existing one.  Update timestamp lazily to
3474 		 * avoid making the cacheline hot.  We want them to be
3475 		 * reasonably up-to-date and significantly shorter than
3476 		 * dirty_expire_interval as that's what expires the record.
3477 		 * Use the shorter of 1s and dirty_expire_interval / 8.
3478 		 */
3479 		unsigned long update_intv =
3480 			min_t(unsigned long, HZ,
3481 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3482 
3483 		if (time_before64(frn->at, now - update_intv))
3484 			frn->at = now;
3485 	} else if (oldest >= 0) {
3486 		/* replace the oldest free one */
3487 		frn = &memcg->cgwb_frn[oldest];
3488 		frn->bdi_id = wb->bdi->id;
3489 		frn->memcg_id = wb->memcg_css->id;
3490 		frn->at = now;
3491 	}
3492 }
3493 
3494 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)3495 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3496 {
3497 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3498 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3499 	u64 now = jiffies_64;
3500 	int i;
3501 
3502 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3503 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3504 
3505 		/*
3506 		 * If the record is older than dirty_expire_interval,
3507 		 * writeback on it has already started.  No need to kick it
3508 		 * off again.  Also, don't start a new one if there's
3509 		 * already one in flight.
3510 		 */
3511 		if (time_after64(frn->at, now - intv) &&
3512 		    atomic_read(&frn->done.cnt) == 1) {
3513 			frn->at = 0;
3514 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3515 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3516 					       WB_REASON_FOREIGN_FLUSH,
3517 					       &frn->done);
3518 		}
3519 	}
3520 }
3521 
3522 #else	/* CONFIG_CGROUP_WRITEBACK */
3523 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3524 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3525 {
3526 	return 0;
3527 }
3528 
memcg_wb_domain_exit(struct mem_cgroup * memcg)3529 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3530 {
3531 }
3532 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3533 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3534 {
3535 }
3536 
3537 #endif	/* CONFIG_CGROUP_WRITEBACK */
3538 
3539 /*
3540  * Private memory cgroup IDR
3541  *
3542  * Swap-out records and page cache shadow entries need to store memcg
3543  * references in constrained space, so we maintain an ID space that is
3544  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3545  * memory-controlled cgroups to 64k.
3546  *
3547  * However, there usually are many references to the offline CSS after
3548  * the cgroup has been destroyed, such as page cache or reclaimable
3549  * slab objects, that don't need to hang on to the ID. We want to keep
3550  * those dead CSS from occupying IDs, or we might quickly exhaust the
3551  * relatively small ID space and prevent the creation of new cgroups
3552  * even when there are much fewer than 64k cgroups - possibly none.
3553  *
3554  * Maintain a private 16-bit ID space for memcg, and allow the ID to
3555  * be freed and recycled when it's no longer needed, which is usually
3556  * when the CSS is offlined.
3557  *
3558  * The only exception to that are records of swapped out tmpfs/shmem
3559  * pages that need to be attributed to live ancestors on swapin. But
3560  * those references are manageable from userspace.
3561  */
3562 
3563 #define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3564 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3565 
mem_cgroup_id_remove(struct mem_cgroup * memcg)3566 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3567 {
3568 	if (memcg->id.id > 0) {
3569 		xa_erase(&mem_cgroup_ids, memcg->id.id);
3570 		memcg->id.id = 0;
3571 	}
3572 }
3573 
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)3574 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3575 					   unsigned int n)
3576 {
3577 	refcount_add(n, &memcg->id.ref);
3578 }
3579 
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)3580 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3581 {
3582 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
3583 		mem_cgroup_id_remove(memcg);
3584 
3585 		/* Memcg ID pins CSS */
3586 		css_put(&memcg->css);
3587 	}
3588 }
3589 
mem_cgroup_id_put(struct mem_cgroup * memcg)3590 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3591 {
3592 	mem_cgroup_id_put_many(memcg, 1);
3593 }
3594 
mem_cgroup_id_get_online(struct mem_cgroup * memcg)3595 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
3596 {
3597 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
3598 		/*
3599 		 * The root cgroup cannot be destroyed, so it's refcount must
3600 		 * always be >= 1.
3601 		 */
3602 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
3603 			VM_BUG_ON(1);
3604 			break;
3605 		}
3606 		memcg = parent_mem_cgroup(memcg);
3607 		if (!memcg)
3608 			memcg = root_mem_cgroup;
3609 	}
3610 	return memcg;
3611 }
3612 
3613 /**
3614  * mem_cgroup_from_id - look up a memcg from a memcg id
3615  * @id: the memcg id to look up
3616  *
3617  * Caller must hold rcu_read_lock().
3618  */
mem_cgroup_from_id(unsigned short id)3619 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3620 {
3621 	WARN_ON_ONCE(!rcu_read_lock_held());
3622 	return xa_load(&mem_cgroup_ids, id);
3623 }
3624 
3625 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)3626 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3627 {
3628 	struct cgroup *cgrp;
3629 	struct cgroup_subsys_state *css;
3630 	struct mem_cgroup *memcg;
3631 
3632 	cgrp = cgroup_get_from_id(ino);
3633 	if (IS_ERR(cgrp))
3634 		return ERR_CAST(cgrp);
3635 
3636 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3637 	if (css)
3638 		memcg = container_of(css, struct mem_cgroup, css);
3639 	else
3640 		memcg = ERR_PTR(-ENOENT);
3641 
3642 	cgroup_put(cgrp);
3643 
3644 	return memcg;
3645 }
3646 #endif
3647 
free_mem_cgroup_per_node_info(struct mem_cgroup_per_node * pn)3648 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn)
3649 {
3650 	if (!pn)
3651 		return;
3652 
3653 	free_percpu(pn->lruvec_stats_percpu);
3654 	kfree(pn->lruvec_stats);
3655 	kfree(pn);
3656 }
3657 
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)3658 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3659 {
3660 	struct mem_cgroup_per_node *pn;
3661 
3662 	pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO,
3663 				   node);
3664 	if (!pn)
3665 		return false;
3666 
3667 	pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3668 					GFP_KERNEL_ACCOUNT, node);
3669 	if (!pn->lruvec_stats)
3670 		goto fail;
3671 
3672 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3673 						   GFP_KERNEL_ACCOUNT);
3674 	if (!pn->lruvec_stats_percpu)
3675 		goto fail;
3676 
3677 	lruvec_init(&pn->lruvec);
3678 	pn->memcg = memcg;
3679 
3680 	memcg->nodeinfo[node] = pn;
3681 	return true;
3682 fail:
3683 	free_mem_cgroup_per_node_info(pn);
3684 	return false;
3685 }
3686 
__mem_cgroup_free(struct mem_cgroup * memcg)3687 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3688 {
3689 	int node;
3690 
3691 	obj_cgroup_put(memcg->orig_objcg);
3692 
3693 	for_each_node(node)
3694 		free_mem_cgroup_per_node_info(memcg->nodeinfo[node]);
3695 	memcg1_free_events(memcg);
3696 	kfree(memcg->vmstats);
3697 	free_percpu(memcg->vmstats_percpu);
3698 	kfree(memcg);
3699 }
3700 
mem_cgroup_free(struct mem_cgroup * memcg)3701 static void mem_cgroup_free(struct mem_cgroup *memcg)
3702 {
3703 	lru_gen_exit_memcg(memcg);
3704 	memcg_wb_domain_exit(memcg);
3705 	__mem_cgroup_free(memcg);
3706 }
3707 
mem_cgroup_alloc(struct mem_cgroup * parent)3708 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3709 {
3710 	struct memcg_vmstats_percpu *statc;
3711 	struct memcg_vmstats_percpu __percpu *pstatc_pcpu;
3712 	struct mem_cgroup *memcg;
3713 	int node, cpu;
3714 	int __maybe_unused i;
3715 	long error;
3716 
3717 	memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL);
3718 	if (!memcg)
3719 		return ERR_PTR(-ENOMEM);
3720 
3721 	error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3722 			 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3723 	if (error)
3724 		goto fail;
3725 	error = -ENOMEM;
3726 
3727 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3728 				 GFP_KERNEL_ACCOUNT);
3729 	if (!memcg->vmstats)
3730 		goto fail;
3731 
3732 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3733 						 GFP_KERNEL_ACCOUNT);
3734 	if (!memcg->vmstats_percpu)
3735 		goto fail;
3736 
3737 	if (!memcg1_alloc_events(memcg))
3738 		goto fail;
3739 
3740 	for_each_possible_cpu(cpu) {
3741 		if (parent)
3742 			pstatc_pcpu = parent->vmstats_percpu;
3743 		statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3744 		statc->parent_pcpu = parent ? pstatc_pcpu : NULL;
3745 		statc->vmstats = memcg->vmstats;
3746 	}
3747 
3748 	for_each_node(node)
3749 		if (!alloc_mem_cgroup_per_node_info(memcg, node))
3750 			goto fail;
3751 
3752 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3753 		goto fail;
3754 
3755 	INIT_WORK(&memcg->high_work, high_work_func);
3756 	vmpressure_init(&memcg->vmpressure);
3757 	INIT_LIST_HEAD(&memcg->memory_peaks);
3758 	INIT_LIST_HEAD(&memcg->swap_peaks);
3759 	spin_lock_init(&memcg->peaks_lock);
3760 	memcg->socket_pressure = jiffies;
3761 	memcg1_memcg_init(memcg);
3762 	memcg->kmemcg_id = -1;
3763 	INIT_LIST_HEAD(&memcg->objcg_list);
3764 #ifdef CONFIG_CGROUP_WRITEBACK
3765 	INIT_LIST_HEAD(&memcg->cgwb_list);
3766 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3767 		memcg->cgwb_frn[i].done =
3768 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3769 #endif
3770 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3771 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3772 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3773 	memcg->deferred_split_queue.split_queue_len = 0;
3774 #endif
3775 	lru_gen_init_memcg(memcg);
3776 	return memcg;
3777 fail:
3778 	mem_cgroup_id_remove(memcg);
3779 	__mem_cgroup_free(memcg);
3780 	return ERR_PTR(error);
3781 }
3782 
3783 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)3784 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3785 {
3786 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3787 	struct mem_cgroup *memcg, *old_memcg;
3788 	bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys);
3789 
3790 	old_memcg = set_active_memcg(parent);
3791 	memcg = mem_cgroup_alloc(parent);
3792 	set_active_memcg(old_memcg);
3793 	if (IS_ERR(memcg))
3794 		return ERR_CAST(memcg);
3795 
3796 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3797 	memcg1_soft_limit_reset(memcg);
3798 #ifdef CONFIG_ZSWAP
3799 	memcg->zswap_max = PAGE_COUNTER_MAX;
3800 	WRITE_ONCE(memcg->zswap_writeback, true);
3801 #endif
3802 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3803 	if (parent) {
3804 		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3805 
3806 		page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl);
3807 		page_counter_init(&memcg->swap, &parent->swap, false);
3808 #ifdef CONFIG_MEMCG_V1
3809 		memcg->memory.track_failcnt = !memcg_on_dfl;
3810 		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3811 		page_counter_init(&memcg->kmem, &parent->kmem, false);
3812 		page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3813 #endif
3814 	} else {
3815 		init_memcg_stats();
3816 		init_memcg_events();
3817 		page_counter_init(&memcg->memory, NULL, true);
3818 		page_counter_init(&memcg->swap, NULL, false);
3819 #ifdef CONFIG_MEMCG_V1
3820 		page_counter_init(&memcg->kmem, NULL, false);
3821 		page_counter_init(&memcg->tcpmem, NULL, false);
3822 #endif
3823 		root_mem_cgroup = memcg;
3824 		return &memcg->css;
3825 	}
3826 
3827 	if (memcg_on_dfl && !cgroup_memory_nosocket)
3828 		static_branch_inc(&memcg_sockets_enabled_key);
3829 
3830 	if (!cgroup_memory_nobpf)
3831 		static_branch_inc(&memcg_bpf_enabled_key);
3832 
3833 	return &memcg->css;
3834 }
3835 
mem_cgroup_css_online(struct cgroup_subsys_state * css)3836 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3837 {
3838 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3839 
3840 	if (memcg_online_kmem(memcg))
3841 		goto remove_id;
3842 
3843 	/*
3844 	 * A memcg must be visible for expand_shrinker_info()
3845 	 * by the time the maps are allocated. So, we allocate maps
3846 	 * here, when for_each_mem_cgroup() can't skip it.
3847 	 */
3848 	if (alloc_shrinker_info(memcg))
3849 		goto offline_kmem;
3850 
3851 	if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3852 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3853 				   FLUSH_TIME);
3854 	lru_gen_online_memcg(memcg);
3855 
3856 	/* Online state pins memcg ID, memcg ID pins CSS */
3857 	refcount_set(&memcg->id.ref, 1);
3858 	css_get(css);
3859 
3860 	/*
3861 	 * Ensure mem_cgroup_from_id() works once we're fully online.
3862 	 *
3863 	 * We could do this earlier and require callers to filter with
3864 	 * css_tryget_online(). But right now there are no users that
3865 	 * need earlier access, and the workingset code relies on the
3866 	 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3867 	 * publish it here at the end of onlining. This matches the
3868 	 * regular ID destruction during offlining.
3869 	 */
3870 	xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3871 
3872 	return 0;
3873 offline_kmem:
3874 	memcg_offline_kmem(memcg);
3875 remove_id:
3876 	mem_cgroup_id_remove(memcg);
3877 	return -ENOMEM;
3878 }
3879 
mem_cgroup_css_offline(struct cgroup_subsys_state * css)3880 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3881 {
3882 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3883 
3884 	memcg1_css_offline(memcg);
3885 
3886 	page_counter_set_min(&memcg->memory, 0);
3887 	page_counter_set_low(&memcg->memory, 0);
3888 
3889 	zswap_memcg_offline_cleanup(memcg);
3890 
3891 	memcg_offline_kmem(memcg);
3892 	reparent_shrinker_deferred(memcg);
3893 	wb_memcg_offline(memcg);
3894 	lru_gen_offline_memcg(memcg);
3895 
3896 	drain_all_stock(memcg);
3897 
3898 	mem_cgroup_id_put(memcg);
3899 }
3900 
mem_cgroup_css_released(struct cgroup_subsys_state * css)3901 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3902 {
3903 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3904 
3905 	invalidate_reclaim_iterators(memcg);
3906 	lru_gen_release_memcg(memcg);
3907 }
3908 
mem_cgroup_css_free(struct cgroup_subsys_state * css)3909 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3910 {
3911 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3912 	int __maybe_unused i;
3913 
3914 #ifdef CONFIG_CGROUP_WRITEBACK
3915 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3916 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3917 #endif
3918 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3919 		static_branch_dec(&memcg_sockets_enabled_key);
3920 
3921 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3922 		static_branch_dec(&memcg_sockets_enabled_key);
3923 
3924 	if (!cgroup_memory_nobpf)
3925 		static_branch_dec(&memcg_bpf_enabled_key);
3926 
3927 	vmpressure_cleanup(&memcg->vmpressure);
3928 	cancel_work_sync(&memcg->high_work);
3929 	memcg1_remove_from_trees(memcg);
3930 	free_shrinker_info(memcg);
3931 	mem_cgroup_free(memcg);
3932 }
3933 
3934 /**
3935  * mem_cgroup_css_reset - reset the states of a mem_cgroup
3936  * @css: the target css
3937  *
3938  * Reset the states of the mem_cgroup associated with @css.  This is
3939  * invoked when the userland requests disabling on the default hierarchy
3940  * but the memcg is pinned through dependency.  The memcg should stop
3941  * applying policies and should revert to the vanilla state as it may be
3942  * made visible again.
3943  *
3944  * The current implementation only resets the essential configurations.
3945  * This needs to be expanded to cover all the visible parts.
3946  */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)3947 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3948 {
3949 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3950 
3951 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3952 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3953 #ifdef CONFIG_MEMCG_V1
3954 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3955 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3956 #endif
3957 	page_counter_set_min(&memcg->memory, 0);
3958 	page_counter_set_low(&memcg->memory, 0);
3959 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3960 	memcg1_soft_limit_reset(memcg);
3961 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3962 	memcg_wb_domain_size_changed(memcg);
3963 }
3964 
3965 struct aggregate_control {
3966 	/* pointer to the aggregated (CPU and subtree aggregated) counters */
3967 	long *aggregate;
3968 	/* pointer to the non-hierarchichal (CPU aggregated) counters */
3969 	long *local;
3970 	/* pointer to the pending child counters during tree propagation */
3971 	long *pending;
3972 	/* pointer to the parent's pending counters, could be NULL */
3973 	long *ppending;
3974 	/* pointer to the percpu counters to be aggregated */
3975 	long *cstat;
3976 	/* pointer to the percpu counters of the last aggregation*/
3977 	long *cstat_prev;
3978 	/* size of the above counters */
3979 	int size;
3980 };
3981 
mem_cgroup_stat_aggregate(struct aggregate_control * ac)3982 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
3983 {
3984 	int i;
3985 	long delta, delta_cpu, v;
3986 
3987 	for (i = 0; i < ac->size; i++) {
3988 		/*
3989 		 * Collect the aggregated propagation counts of groups
3990 		 * below us. We're in a per-cpu loop here and this is
3991 		 * a global counter, so the first cycle will get them.
3992 		 */
3993 		delta = ac->pending[i];
3994 		if (delta)
3995 			ac->pending[i] = 0;
3996 
3997 		/* Add CPU changes on this level since the last flush */
3998 		delta_cpu = 0;
3999 		v = READ_ONCE(ac->cstat[i]);
4000 		if (v != ac->cstat_prev[i]) {
4001 			delta_cpu = v - ac->cstat_prev[i];
4002 			delta += delta_cpu;
4003 			ac->cstat_prev[i] = v;
4004 		}
4005 
4006 		/* Aggregate counts on this level and propagate upwards */
4007 		if (delta_cpu)
4008 			ac->local[i] += delta_cpu;
4009 
4010 		if (delta) {
4011 			ac->aggregate[i] += delta;
4012 			if (ac->ppending)
4013 				ac->ppending[i] += delta;
4014 		}
4015 	}
4016 }
4017 
4018 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
flush_nmi_stats(struct mem_cgroup * memcg,struct mem_cgroup * parent,int cpu)4019 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4020 			    int cpu)
4021 {
4022 	int nid;
4023 
4024 	if (atomic_read(&memcg->kmem_stat)) {
4025 		int kmem = atomic_xchg(&memcg->kmem_stat, 0);
4026 		int index = memcg_stats_index(MEMCG_KMEM);
4027 
4028 		memcg->vmstats->state[index] += kmem;
4029 		if (parent)
4030 			parent->vmstats->state_pending[index] += kmem;
4031 	}
4032 
4033 	for_each_node_state(nid, N_MEMORY) {
4034 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4035 		struct lruvec_stats *lstats = pn->lruvec_stats;
4036 		struct lruvec_stats *plstats = NULL;
4037 
4038 		if (parent)
4039 			plstats = parent->nodeinfo[nid]->lruvec_stats;
4040 
4041 		if (atomic_read(&pn->slab_reclaimable)) {
4042 			int slab = atomic_xchg(&pn->slab_reclaimable, 0);
4043 			int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B);
4044 
4045 			lstats->state[index] += slab;
4046 			if (plstats)
4047 				plstats->state_pending[index] += slab;
4048 		}
4049 		if (atomic_read(&pn->slab_unreclaimable)) {
4050 			int slab = atomic_xchg(&pn->slab_unreclaimable, 0);
4051 			int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B);
4052 
4053 			lstats->state[index] += slab;
4054 			if (plstats)
4055 				plstats->state_pending[index] += slab;
4056 		}
4057 	}
4058 }
4059 #else
flush_nmi_stats(struct mem_cgroup * memcg,struct mem_cgroup * parent,int cpu)4060 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4061 			    int cpu)
4062 {}
4063 #endif
4064 
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)4065 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
4066 {
4067 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4068 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4069 	struct memcg_vmstats_percpu *statc;
4070 	struct aggregate_control ac;
4071 	int nid;
4072 
4073 	flush_nmi_stats(memcg, parent, cpu);
4074 
4075 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
4076 
4077 	ac = (struct aggregate_control) {
4078 		.aggregate = memcg->vmstats->state,
4079 		.local = memcg->vmstats->state_local,
4080 		.pending = memcg->vmstats->state_pending,
4081 		.ppending = parent ? parent->vmstats->state_pending : NULL,
4082 		.cstat = statc->state,
4083 		.cstat_prev = statc->state_prev,
4084 		.size = MEMCG_VMSTAT_SIZE,
4085 	};
4086 	mem_cgroup_stat_aggregate(&ac);
4087 
4088 	ac = (struct aggregate_control) {
4089 		.aggregate = memcg->vmstats->events,
4090 		.local = memcg->vmstats->events_local,
4091 		.pending = memcg->vmstats->events_pending,
4092 		.ppending = parent ? parent->vmstats->events_pending : NULL,
4093 		.cstat = statc->events,
4094 		.cstat_prev = statc->events_prev,
4095 		.size = NR_MEMCG_EVENTS,
4096 	};
4097 	mem_cgroup_stat_aggregate(&ac);
4098 
4099 	for_each_node_state(nid, N_MEMORY) {
4100 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4101 		struct lruvec_stats *lstats = pn->lruvec_stats;
4102 		struct lruvec_stats *plstats = NULL;
4103 		struct lruvec_stats_percpu *lstatc;
4104 
4105 		if (parent)
4106 			plstats = parent->nodeinfo[nid]->lruvec_stats;
4107 
4108 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
4109 
4110 		ac = (struct aggregate_control) {
4111 			.aggregate = lstats->state,
4112 			.local = lstats->state_local,
4113 			.pending = lstats->state_pending,
4114 			.ppending = plstats ? plstats->state_pending : NULL,
4115 			.cstat = lstatc->state,
4116 			.cstat_prev = lstatc->state_prev,
4117 			.size = NR_MEMCG_NODE_STAT_ITEMS,
4118 		};
4119 		mem_cgroup_stat_aggregate(&ac);
4120 
4121 	}
4122 	WRITE_ONCE(statc->stats_updates, 0);
4123 	/* We are in a per-cpu loop here, only do the atomic write once */
4124 	if (atomic_read(&memcg->vmstats->stats_updates))
4125 		atomic_set(&memcg->vmstats->stats_updates, 0);
4126 }
4127 
mem_cgroup_fork(struct task_struct * task)4128 static void mem_cgroup_fork(struct task_struct *task)
4129 {
4130 	/*
4131 	 * Set the update flag to cause task->objcg to be initialized lazily
4132 	 * on the first allocation. It can be done without any synchronization
4133 	 * because it's always performed on the current task, so does
4134 	 * current_objcg_update().
4135 	 */
4136 	task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
4137 }
4138 
mem_cgroup_exit(struct task_struct * task)4139 static void mem_cgroup_exit(struct task_struct *task)
4140 {
4141 	struct obj_cgroup *objcg = task->objcg;
4142 
4143 	objcg = (struct obj_cgroup *)
4144 		((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
4145 	obj_cgroup_put(objcg);
4146 
4147 	/*
4148 	 * Some kernel allocations can happen after this point,
4149 	 * but let's ignore them. It can be done without any synchronization
4150 	 * because it's always performed on the current task, so does
4151 	 * current_objcg_update().
4152 	 */
4153 	task->objcg = NULL;
4154 }
4155 
4156 #ifdef CONFIG_LRU_GEN
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)4157 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
4158 {
4159 	struct task_struct *task;
4160 	struct cgroup_subsys_state *css;
4161 
4162 	/* find the first leader if there is any */
4163 	cgroup_taskset_for_each_leader(task, css, tset)
4164 		break;
4165 
4166 	if (!task)
4167 		return;
4168 
4169 	task_lock(task);
4170 	if (task->mm && READ_ONCE(task->mm->owner) == task)
4171 		lru_gen_migrate_mm(task->mm);
4172 	task_unlock(task);
4173 }
4174 #else
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)4175 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
4176 #endif /* CONFIG_LRU_GEN */
4177 
mem_cgroup_kmem_attach(struct cgroup_taskset * tset)4178 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
4179 {
4180 	struct task_struct *task;
4181 	struct cgroup_subsys_state *css;
4182 
4183 	cgroup_taskset_for_each(task, css, tset) {
4184 		/* atomically set the update bit */
4185 		set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
4186 	}
4187 }
4188 
mem_cgroup_attach(struct cgroup_taskset * tset)4189 static void mem_cgroup_attach(struct cgroup_taskset *tset)
4190 {
4191 	mem_cgroup_lru_gen_attach(tset);
4192 	mem_cgroup_kmem_attach(tset);
4193 }
4194 
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)4195 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
4196 {
4197 	if (value == PAGE_COUNTER_MAX)
4198 		seq_puts(m, "max\n");
4199 	else
4200 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
4201 
4202 	return 0;
4203 }
4204 
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)4205 static u64 memory_current_read(struct cgroup_subsys_state *css,
4206 			       struct cftype *cft)
4207 {
4208 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4209 
4210 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4211 }
4212 
4213 #define OFP_PEAK_UNSET (((-1UL)))
4214 
peak_show(struct seq_file * sf,void * v,struct page_counter * pc)4215 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
4216 {
4217 	struct cgroup_of_peak *ofp = of_peak(sf->private);
4218 	u64 fd_peak = READ_ONCE(ofp->value), peak;
4219 
4220 	/* User wants global or local peak? */
4221 	if (fd_peak == OFP_PEAK_UNSET)
4222 		peak = pc->watermark;
4223 	else
4224 		peak = max(fd_peak, READ_ONCE(pc->local_watermark));
4225 
4226 	seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
4227 	return 0;
4228 }
4229 
memory_peak_show(struct seq_file * sf,void * v)4230 static int memory_peak_show(struct seq_file *sf, void *v)
4231 {
4232 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4233 
4234 	return peak_show(sf, v, &memcg->memory);
4235 }
4236 
peak_open(struct kernfs_open_file * of)4237 static int peak_open(struct kernfs_open_file *of)
4238 {
4239 	struct cgroup_of_peak *ofp = of_peak(of);
4240 
4241 	ofp->value = OFP_PEAK_UNSET;
4242 	return 0;
4243 }
4244 
peak_release(struct kernfs_open_file * of)4245 static void peak_release(struct kernfs_open_file *of)
4246 {
4247 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4248 	struct cgroup_of_peak *ofp = of_peak(of);
4249 
4250 	if (ofp->value == OFP_PEAK_UNSET) {
4251 		/* fast path (no writes on this fd) */
4252 		return;
4253 	}
4254 	spin_lock(&memcg->peaks_lock);
4255 	list_del(&ofp->list);
4256 	spin_unlock(&memcg->peaks_lock);
4257 }
4258 
peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,struct page_counter * pc,struct list_head * watchers)4259 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
4260 			  loff_t off, struct page_counter *pc,
4261 			  struct list_head *watchers)
4262 {
4263 	unsigned long usage;
4264 	struct cgroup_of_peak *peer_ctx;
4265 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4266 	struct cgroup_of_peak *ofp = of_peak(of);
4267 
4268 	spin_lock(&memcg->peaks_lock);
4269 
4270 	usage = page_counter_read(pc);
4271 	WRITE_ONCE(pc->local_watermark, usage);
4272 
4273 	list_for_each_entry(peer_ctx, watchers, list)
4274 		if (usage > peer_ctx->value)
4275 			WRITE_ONCE(peer_ctx->value, usage);
4276 
4277 	/* initial write, register watcher */
4278 	if (ofp->value == OFP_PEAK_UNSET)
4279 		list_add(&ofp->list, watchers);
4280 
4281 	WRITE_ONCE(ofp->value, usage);
4282 	spin_unlock(&memcg->peaks_lock);
4283 
4284 	return nbytes;
4285 }
4286 
memory_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4287 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4288 				 size_t nbytes, loff_t off)
4289 {
4290 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4291 
4292 	return peak_write(of, buf, nbytes, off, &memcg->memory,
4293 			  &memcg->memory_peaks);
4294 }
4295 
4296 #undef OFP_PEAK_UNSET
4297 
memory_min_show(struct seq_file * m,void * v)4298 static int memory_min_show(struct seq_file *m, void *v)
4299 {
4300 	return seq_puts_memcg_tunable(m,
4301 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4302 }
4303 
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4304 static ssize_t memory_min_write(struct kernfs_open_file *of,
4305 				char *buf, size_t nbytes, loff_t off)
4306 {
4307 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4308 	unsigned long min;
4309 	int err;
4310 
4311 	buf = strstrip(buf);
4312 	err = page_counter_memparse(buf, "max", &min);
4313 	if (err)
4314 		return err;
4315 
4316 	page_counter_set_min(&memcg->memory, min);
4317 
4318 	return nbytes;
4319 }
4320 
memory_low_show(struct seq_file * m,void * v)4321 static int memory_low_show(struct seq_file *m, void *v)
4322 {
4323 	return seq_puts_memcg_tunable(m,
4324 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4325 }
4326 
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4327 static ssize_t memory_low_write(struct kernfs_open_file *of,
4328 				char *buf, size_t nbytes, loff_t off)
4329 {
4330 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4331 	unsigned long low;
4332 	int err;
4333 
4334 	buf = strstrip(buf);
4335 	err = page_counter_memparse(buf, "max", &low);
4336 	if (err)
4337 		return err;
4338 
4339 	page_counter_set_low(&memcg->memory, low);
4340 
4341 	return nbytes;
4342 }
4343 
memory_high_show(struct seq_file * m,void * v)4344 static int memory_high_show(struct seq_file *m, void *v)
4345 {
4346 	return seq_puts_memcg_tunable(m,
4347 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4348 }
4349 
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4350 static ssize_t memory_high_write(struct kernfs_open_file *of,
4351 				 char *buf, size_t nbytes, loff_t off)
4352 {
4353 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4354 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4355 	bool drained = false;
4356 	unsigned long high;
4357 	int err;
4358 
4359 	buf = strstrip(buf);
4360 	err = page_counter_memparse(buf, "max", &high);
4361 	if (err)
4362 		return err;
4363 
4364 	page_counter_set_high(&memcg->memory, high);
4365 
4366 	if (of->file->f_flags & O_NONBLOCK)
4367 		goto out;
4368 
4369 	for (;;) {
4370 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4371 		unsigned long reclaimed;
4372 
4373 		if (nr_pages <= high)
4374 			break;
4375 
4376 		if (signal_pending(current))
4377 			break;
4378 
4379 		if (!drained) {
4380 			drain_all_stock(memcg);
4381 			drained = true;
4382 			continue;
4383 		}
4384 
4385 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4386 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4387 
4388 		if (!reclaimed && !nr_retries--)
4389 			break;
4390 	}
4391 out:
4392 	memcg_wb_domain_size_changed(memcg);
4393 	return nbytes;
4394 }
4395 
memory_max_show(struct seq_file * m,void * v)4396 static int memory_max_show(struct seq_file *m, void *v)
4397 {
4398 	return seq_puts_memcg_tunable(m,
4399 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4400 }
4401 
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4402 static ssize_t memory_max_write(struct kernfs_open_file *of,
4403 				char *buf, size_t nbytes, loff_t off)
4404 {
4405 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4406 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4407 	bool drained = false;
4408 	unsigned long max;
4409 	int err;
4410 
4411 	buf = strstrip(buf);
4412 	err = page_counter_memparse(buf, "max", &max);
4413 	if (err)
4414 		return err;
4415 
4416 	xchg(&memcg->memory.max, max);
4417 
4418 	if (of->file->f_flags & O_NONBLOCK)
4419 		goto out;
4420 
4421 	for (;;) {
4422 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4423 
4424 		if (nr_pages <= max)
4425 			break;
4426 
4427 		if (signal_pending(current))
4428 			break;
4429 
4430 		if (!drained) {
4431 			drain_all_stock(memcg);
4432 			drained = true;
4433 			continue;
4434 		}
4435 
4436 		if (nr_reclaims) {
4437 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4438 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4439 				nr_reclaims--;
4440 			continue;
4441 		}
4442 
4443 		memcg_memory_event(memcg, MEMCG_OOM);
4444 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4445 			break;
4446 		cond_resched();
4447 	}
4448 out:
4449 	memcg_wb_domain_size_changed(memcg);
4450 	return nbytes;
4451 }
4452 
4453 /*
4454  * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4455  * if any new events become available.
4456  */
__memory_events_show(struct seq_file * m,atomic_long_t * events)4457 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4458 {
4459 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4460 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4461 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4462 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4463 	seq_printf(m, "oom_kill %lu\n",
4464 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
4465 	seq_printf(m, "oom_group_kill %lu\n",
4466 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4467 }
4468 
memory_events_show(struct seq_file * m,void * v)4469 static int memory_events_show(struct seq_file *m, void *v)
4470 {
4471 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4472 
4473 	__memory_events_show(m, memcg->memory_events);
4474 	return 0;
4475 }
4476 
memory_events_local_show(struct seq_file * m,void * v)4477 static int memory_events_local_show(struct seq_file *m, void *v)
4478 {
4479 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4480 
4481 	__memory_events_show(m, memcg->memory_events_local);
4482 	return 0;
4483 }
4484 
memory_stat_show(struct seq_file * m,void * v)4485 int memory_stat_show(struct seq_file *m, void *v)
4486 {
4487 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4488 	char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4489 	struct seq_buf s;
4490 
4491 	if (!buf)
4492 		return -ENOMEM;
4493 	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4494 	memory_stat_format(memcg, &s);
4495 	seq_puts(m, buf);
4496 	kfree(buf);
4497 	return 0;
4498 }
4499 
4500 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)4501 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4502 						     int item)
4503 {
4504 	return lruvec_page_state(lruvec, item) *
4505 		memcg_page_state_output_unit(item);
4506 }
4507 
memory_numa_stat_show(struct seq_file * m,void * v)4508 static int memory_numa_stat_show(struct seq_file *m, void *v)
4509 {
4510 	int i;
4511 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4512 
4513 	mem_cgroup_flush_stats(memcg);
4514 
4515 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4516 		int nid;
4517 
4518 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4519 			continue;
4520 
4521 		seq_printf(m, "%s", memory_stats[i].name);
4522 		for_each_node_state(nid, N_MEMORY) {
4523 			u64 size;
4524 			struct lruvec *lruvec;
4525 
4526 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4527 			size = lruvec_page_state_output(lruvec,
4528 							memory_stats[i].idx);
4529 			seq_printf(m, " N%d=%llu", nid, size);
4530 		}
4531 		seq_putc(m, '\n');
4532 	}
4533 
4534 	return 0;
4535 }
4536 #endif
4537 
memory_oom_group_show(struct seq_file * m,void * v)4538 static int memory_oom_group_show(struct seq_file *m, void *v)
4539 {
4540 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4541 
4542 	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4543 
4544 	return 0;
4545 }
4546 
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4547 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4548 				      char *buf, size_t nbytes, loff_t off)
4549 {
4550 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4551 	int ret, oom_group;
4552 
4553 	buf = strstrip(buf);
4554 	if (!buf)
4555 		return -EINVAL;
4556 
4557 	ret = kstrtoint(buf, 0, &oom_group);
4558 	if (ret)
4559 		return ret;
4560 
4561 	if (oom_group != 0 && oom_group != 1)
4562 		return -EINVAL;
4563 
4564 	WRITE_ONCE(memcg->oom_group, oom_group);
4565 
4566 	return nbytes;
4567 }
4568 
4569 enum {
4570 	MEMORY_RECLAIM_SWAPPINESS = 0,
4571 	MEMORY_RECLAIM_SWAPPINESS_MAX,
4572 	MEMORY_RECLAIM_NULL,
4573 };
4574 
4575 static const match_table_t tokens = {
4576 	{ MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
4577 	{ MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"},
4578 	{ MEMORY_RECLAIM_NULL, NULL },
4579 };
4580 
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4581 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4582 			      size_t nbytes, loff_t off)
4583 {
4584 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4585 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4586 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
4587 	int swappiness = -1;
4588 	unsigned int reclaim_options;
4589 	char *old_buf, *start;
4590 	substring_t args[MAX_OPT_ARGS];
4591 
4592 	buf = strstrip(buf);
4593 
4594 	old_buf = buf;
4595 	nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
4596 	if (buf == old_buf)
4597 		return -EINVAL;
4598 
4599 	buf = strstrip(buf);
4600 
4601 	while ((start = strsep(&buf, " ")) != NULL) {
4602 		if (!strlen(start))
4603 			continue;
4604 		switch (match_token(start, tokens, args)) {
4605 		case MEMORY_RECLAIM_SWAPPINESS:
4606 			if (match_int(&args[0], &swappiness))
4607 				return -EINVAL;
4608 			if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS)
4609 				return -EINVAL;
4610 			break;
4611 		case MEMORY_RECLAIM_SWAPPINESS_MAX:
4612 			swappiness = SWAPPINESS_ANON_ONLY;
4613 			break;
4614 		default:
4615 			return -EINVAL;
4616 		}
4617 	}
4618 
4619 	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
4620 	while (nr_reclaimed < nr_to_reclaim) {
4621 		/* Will converge on zero, but reclaim enforces a minimum */
4622 		unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
4623 		unsigned long reclaimed;
4624 
4625 		if (signal_pending(current))
4626 			return -EINTR;
4627 
4628 		/*
4629 		 * This is the final attempt, drain percpu lru caches in the
4630 		 * hope of introducing more evictable pages for
4631 		 * try_to_free_mem_cgroup_pages().
4632 		 */
4633 		if (!nr_retries)
4634 			lru_add_drain_all();
4635 
4636 		reclaimed = try_to_free_mem_cgroup_pages(memcg,
4637 					batch_size, GFP_KERNEL,
4638 					reclaim_options,
4639 					swappiness == -1 ? NULL : &swappiness);
4640 
4641 		if (!reclaimed && !nr_retries--)
4642 			return -EAGAIN;
4643 
4644 		nr_reclaimed += reclaimed;
4645 	}
4646 
4647 	return nbytes;
4648 }
4649 
4650 static struct cftype memory_files[] = {
4651 	{
4652 		.name = "current",
4653 		.flags = CFTYPE_NOT_ON_ROOT,
4654 		.read_u64 = memory_current_read,
4655 	},
4656 	{
4657 		.name = "peak",
4658 		.flags = CFTYPE_NOT_ON_ROOT,
4659 		.open = peak_open,
4660 		.release = peak_release,
4661 		.seq_show = memory_peak_show,
4662 		.write = memory_peak_write,
4663 	},
4664 	{
4665 		.name = "min",
4666 		.flags = CFTYPE_NOT_ON_ROOT,
4667 		.seq_show = memory_min_show,
4668 		.write = memory_min_write,
4669 	},
4670 	{
4671 		.name = "low",
4672 		.flags = CFTYPE_NOT_ON_ROOT,
4673 		.seq_show = memory_low_show,
4674 		.write = memory_low_write,
4675 	},
4676 	{
4677 		.name = "high",
4678 		.flags = CFTYPE_NOT_ON_ROOT,
4679 		.seq_show = memory_high_show,
4680 		.write = memory_high_write,
4681 	},
4682 	{
4683 		.name = "max",
4684 		.flags = CFTYPE_NOT_ON_ROOT,
4685 		.seq_show = memory_max_show,
4686 		.write = memory_max_write,
4687 	},
4688 	{
4689 		.name = "events",
4690 		.flags = CFTYPE_NOT_ON_ROOT,
4691 		.file_offset = offsetof(struct mem_cgroup, events_file),
4692 		.seq_show = memory_events_show,
4693 	},
4694 	{
4695 		.name = "events.local",
4696 		.flags = CFTYPE_NOT_ON_ROOT,
4697 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
4698 		.seq_show = memory_events_local_show,
4699 	},
4700 	{
4701 		.name = "stat",
4702 		.seq_show = memory_stat_show,
4703 	},
4704 #ifdef CONFIG_NUMA
4705 	{
4706 		.name = "numa_stat",
4707 		.seq_show = memory_numa_stat_show,
4708 	},
4709 #endif
4710 	{
4711 		.name = "oom.group",
4712 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4713 		.seq_show = memory_oom_group_show,
4714 		.write = memory_oom_group_write,
4715 	},
4716 	{
4717 		.name = "reclaim",
4718 		.flags = CFTYPE_NS_DELEGATABLE,
4719 		.write = memory_reclaim,
4720 	},
4721 	{ }	/* terminate */
4722 };
4723 
4724 struct cgroup_subsys memory_cgrp_subsys = {
4725 	.css_alloc = mem_cgroup_css_alloc,
4726 	.css_online = mem_cgroup_css_online,
4727 	.css_offline = mem_cgroup_css_offline,
4728 	.css_released = mem_cgroup_css_released,
4729 	.css_free = mem_cgroup_css_free,
4730 	.css_reset = mem_cgroup_css_reset,
4731 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
4732 	.attach = mem_cgroup_attach,
4733 	.fork = mem_cgroup_fork,
4734 	.exit = mem_cgroup_exit,
4735 	.dfl_cftypes = memory_files,
4736 #ifdef CONFIG_MEMCG_V1
4737 	.legacy_cftypes = mem_cgroup_legacy_files,
4738 #endif
4739 	.early_init = 0,
4740 };
4741 
4742 /**
4743  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4744  * @root: the top ancestor of the sub-tree being checked
4745  * @memcg: the memory cgroup to check
4746  *
4747  * WARNING: This function is not stateless! It can only be used as part
4748  *          of a top-down tree iteration, not for isolated queries.
4749  */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)4750 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4751 				     struct mem_cgroup *memcg)
4752 {
4753 	bool recursive_protection =
4754 		cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4755 
4756 	if (mem_cgroup_disabled())
4757 		return;
4758 
4759 	if (!root)
4760 		root = root_mem_cgroup;
4761 
4762 	page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4763 }
4764 
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)4765 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4766 			gfp_t gfp)
4767 {
4768 	int ret;
4769 
4770 	ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4771 	if (ret)
4772 		goto out;
4773 
4774 	css_get(&memcg->css);
4775 	commit_charge(folio, memcg);
4776 	memcg1_commit_charge(folio, memcg);
4777 out:
4778 	return ret;
4779 }
4780 
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)4781 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4782 {
4783 	struct mem_cgroup *memcg;
4784 	int ret;
4785 
4786 	memcg = get_mem_cgroup_from_mm(mm);
4787 	ret = charge_memcg(folio, memcg, gfp);
4788 	css_put(&memcg->css);
4789 
4790 	return ret;
4791 }
4792 
4793 /**
4794  * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio
4795  * @folio: folio being charged
4796  * @gfp: reclaim mode
4797  *
4798  * This function is called when allocating a huge page folio, after the page has
4799  * already been obtained and charged to the appropriate hugetlb cgroup
4800  * controller (if it is enabled).
4801  *
4802  * Returns ENOMEM if the memcg is already full.
4803  * Returns 0 if either the charge was successful, or if we skip the charging.
4804  */
mem_cgroup_charge_hugetlb(struct folio * folio,gfp_t gfp)4805 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp)
4806 {
4807 	struct mem_cgroup *memcg = get_mem_cgroup_from_current();
4808 	int ret = 0;
4809 
4810 	/*
4811 	 * Even memcg does not account for hugetlb, we still want to update
4812 	 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip
4813 	 * charging the memcg.
4814 	 */
4815 	if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() ||
4816 		!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
4817 		goto out;
4818 
4819 	if (charge_memcg(folio, memcg, gfp))
4820 		ret = -ENOMEM;
4821 
4822 out:
4823 	mem_cgroup_put(memcg);
4824 	return ret;
4825 }
4826 
4827 /**
4828  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4829  * @folio: folio to charge.
4830  * @mm: mm context of the victim
4831  * @gfp: reclaim mode
4832  * @entry: swap entry for which the folio is allocated
4833  *
4834  * This function charges a folio allocated for swapin. Please call this before
4835  * adding the folio to the swapcache.
4836  *
4837  * Returns 0 on success. Otherwise, an error code is returned.
4838  */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)4839 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4840 				  gfp_t gfp, swp_entry_t entry)
4841 {
4842 	struct mem_cgroup *memcg;
4843 	unsigned short id;
4844 	int ret;
4845 
4846 	if (mem_cgroup_disabled())
4847 		return 0;
4848 
4849 	id = lookup_swap_cgroup_id(entry);
4850 	rcu_read_lock();
4851 	memcg = mem_cgroup_from_id(id);
4852 	if (!memcg || !css_tryget_online(&memcg->css))
4853 		memcg = get_mem_cgroup_from_mm(mm);
4854 	rcu_read_unlock();
4855 
4856 	ret = charge_memcg(folio, memcg, gfp);
4857 
4858 	css_put(&memcg->css);
4859 	return ret;
4860 }
4861 
4862 struct uncharge_gather {
4863 	struct mem_cgroup *memcg;
4864 	unsigned long nr_memory;
4865 	unsigned long pgpgout;
4866 	unsigned long nr_kmem;
4867 	int nid;
4868 };
4869 
uncharge_gather_clear(struct uncharge_gather * ug)4870 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4871 {
4872 	memset(ug, 0, sizeof(*ug));
4873 }
4874 
uncharge_batch(const struct uncharge_gather * ug)4875 static void uncharge_batch(const struct uncharge_gather *ug)
4876 {
4877 	if (ug->nr_memory) {
4878 		memcg_uncharge(ug->memcg, ug->nr_memory);
4879 		if (ug->nr_kmem) {
4880 			mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4881 			memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4882 		}
4883 		memcg1_oom_recover(ug->memcg);
4884 	}
4885 
4886 	memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4887 
4888 	/* drop reference from uncharge_folio */
4889 	css_put(&ug->memcg->css);
4890 }
4891 
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)4892 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4893 {
4894 	long nr_pages;
4895 	struct mem_cgroup *memcg;
4896 	struct obj_cgroup *objcg;
4897 
4898 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4899 
4900 	/*
4901 	 * Nobody should be changing or seriously looking at
4902 	 * folio memcg or objcg at this point, we have fully
4903 	 * exclusive access to the folio.
4904 	 */
4905 	if (folio_memcg_kmem(folio)) {
4906 		objcg = __folio_objcg(folio);
4907 		/*
4908 		 * This get matches the put at the end of the function and
4909 		 * kmem pages do not hold memcg references anymore.
4910 		 */
4911 		memcg = get_mem_cgroup_from_objcg(objcg);
4912 	} else {
4913 		memcg = __folio_memcg(folio);
4914 	}
4915 
4916 	if (!memcg)
4917 		return;
4918 
4919 	if (ug->memcg != memcg) {
4920 		if (ug->memcg) {
4921 			uncharge_batch(ug);
4922 			uncharge_gather_clear(ug);
4923 		}
4924 		ug->memcg = memcg;
4925 		ug->nid = folio_nid(folio);
4926 
4927 		/* pairs with css_put in uncharge_batch */
4928 		css_get(&memcg->css);
4929 	}
4930 
4931 	nr_pages = folio_nr_pages(folio);
4932 
4933 	if (folio_memcg_kmem(folio)) {
4934 		ug->nr_memory += nr_pages;
4935 		ug->nr_kmem += nr_pages;
4936 
4937 		folio->memcg_data = 0;
4938 		obj_cgroup_put(objcg);
4939 	} else {
4940 		/* LRU pages aren't accounted at the root level */
4941 		if (!mem_cgroup_is_root(memcg))
4942 			ug->nr_memory += nr_pages;
4943 		ug->pgpgout++;
4944 
4945 		WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4946 		folio->memcg_data = 0;
4947 	}
4948 
4949 	css_put(&memcg->css);
4950 }
4951 
__mem_cgroup_uncharge(struct folio * folio)4952 void __mem_cgroup_uncharge(struct folio *folio)
4953 {
4954 	struct uncharge_gather ug;
4955 
4956 	/* Don't touch folio->lru of any random page, pre-check: */
4957 	if (!folio_memcg_charged(folio))
4958 		return;
4959 
4960 	uncharge_gather_clear(&ug);
4961 	uncharge_folio(folio, &ug);
4962 	uncharge_batch(&ug);
4963 }
4964 
__mem_cgroup_uncharge_folios(struct folio_batch * folios)4965 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4966 {
4967 	struct uncharge_gather ug;
4968 	unsigned int i;
4969 
4970 	uncharge_gather_clear(&ug);
4971 	for (i = 0; i < folios->nr; i++)
4972 		uncharge_folio(folios->folios[i], &ug);
4973 	if (ug.memcg)
4974 		uncharge_batch(&ug);
4975 }
4976 
4977 /**
4978  * mem_cgroup_replace_folio - Charge a folio's replacement.
4979  * @old: Currently circulating folio.
4980  * @new: Replacement folio.
4981  *
4982  * Charge @new as a replacement folio for @old. @old will
4983  * be uncharged upon free.
4984  *
4985  * Both folios must be locked, @new->mapping must be set up.
4986  */
mem_cgroup_replace_folio(struct folio * old,struct folio * new)4987 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4988 {
4989 	struct mem_cgroup *memcg;
4990 	long nr_pages = folio_nr_pages(new);
4991 
4992 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4993 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4994 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4995 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4996 
4997 	if (mem_cgroup_disabled())
4998 		return;
4999 
5000 	/* Page cache replacement: new folio already charged? */
5001 	if (folio_memcg_charged(new))
5002 		return;
5003 
5004 	memcg = folio_memcg(old);
5005 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
5006 	if (!memcg)
5007 		return;
5008 
5009 	/* Force-charge the new page. The old one will be freed soon */
5010 	if (!mem_cgroup_is_root(memcg)) {
5011 		page_counter_charge(&memcg->memory, nr_pages);
5012 		if (do_memsw_account())
5013 			page_counter_charge(&memcg->memsw, nr_pages);
5014 	}
5015 
5016 	css_get(&memcg->css);
5017 	commit_charge(new, memcg);
5018 	memcg1_commit_charge(new, memcg);
5019 }
5020 
5021 /**
5022  * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
5023  * @old: Currently circulating folio.
5024  * @new: Replacement folio.
5025  *
5026  * Transfer the memcg data from the old folio to the new folio for migration.
5027  * The old folio's data info will be cleared. Note that the memory counters
5028  * will remain unchanged throughout the process.
5029  *
5030  * Both folios must be locked, @new->mapping must be set up.
5031  */
mem_cgroup_migrate(struct folio * old,struct folio * new)5032 void mem_cgroup_migrate(struct folio *old, struct folio *new)
5033 {
5034 	struct mem_cgroup *memcg;
5035 
5036 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
5037 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
5038 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
5039 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
5040 	VM_BUG_ON_FOLIO(folio_test_lru(old), old);
5041 
5042 	if (mem_cgroup_disabled())
5043 		return;
5044 
5045 	memcg = folio_memcg(old);
5046 	/*
5047 	 * Note that it is normal to see !memcg for a hugetlb folio.
5048 	 * For e.g, itt could have been allocated when memory_hugetlb_accounting
5049 	 * was not selected.
5050 	 */
5051 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
5052 	if (!memcg)
5053 		return;
5054 
5055 	/* Transfer the charge and the css ref */
5056 	commit_charge(new, memcg);
5057 
5058 	/* Warning should never happen, so don't worry about refcount non-0 */
5059 	WARN_ON_ONCE(folio_unqueue_deferred_split(old));
5060 	old->memcg_data = 0;
5061 }
5062 
5063 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5064 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5065 
mem_cgroup_sk_alloc(struct sock * sk)5066 void mem_cgroup_sk_alloc(struct sock *sk)
5067 {
5068 	struct mem_cgroup *memcg;
5069 
5070 	if (!mem_cgroup_sockets_enabled)
5071 		return;
5072 
5073 	/* Do not associate the sock with unrelated interrupted task's memcg. */
5074 	if (!in_task())
5075 		return;
5076 
5077 	rcu_read_lock();
5078 	memcg = mem_cgroup_from_task(current);
5079 	if (mem_cgroup_is_root(memcg))
5080 		goto out;
5081 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
5082 		goto out;
5083 	if (css_tryget(&memcg->css))
5084 		sk->sk_memcg = memcg;
5085 out:
5086 	rcu_read_unlock();
5087 }
5088 
mem_cgroup_sk_free(struct sock * sk)5089 void mem_cgroup_sk_free(struct sock *sk)
5090 {
5091 	if (sk->sk_memcg)
5092 		css_put(&sk->sk_memcg->css);
5093 }
5094 
5095 /**
5096  * mem_cgroup_charge_skmem - charge socket memory
5097  * @memcg: memcg to charge
5098  * @nr_pages: number of pages to charge
5099  * @gfp_mask: reclaim mode
5100  *
5101  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5102  * @memcg's configured limit, %false if it doesn't.
5103  */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)5104 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
5105 			     gfp_t gfp_mask)
5106 {
5107 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5108 		return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
5109 
5110 	if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) {
5111 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5112 		return true;
5113 	}
5114 
5115 	return false;
5116 }
5117 
5118 /**
5119  * mem_cgroup_uncharge_skmem - uncharge socket memory
5120  * @memcg: memcg to uncharge
5121  * @nr_pages: number of pages to uncharge
5122  */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)5123 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5124 {
5125 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5126 		memcg1_uncharge_skmem(memcg, nr_pages);
5127 		return;
5128 	}
5129 
5130 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5131 
5132 	refill_stock(memcg, nr_pages);
5133 }
5134 
cgroup_memory(char * s)5135 static int __init cgroup_memory(char *s)
5136 {
5137 	char *token;
5138 
5139 	while ((token = strsep(&s, ",")) != NULL) {
5140 		if (!*token)
5141 			continue;
5142 		if (!strcmp(token, "nosocket"))
5143 			cgroup_memory_nosocket = true;
5144 		if (!strcmp(token, "nokmem"))
5145 			cgroup_memory_nokmem = true;
5146 		if (!strcmp(token, "nobpf"))
5147 			cgroup_memory_nobpf = true;
5148 	}
5149 	return 1;
5150 }
5151 __setup("cgroup.memory=", cgroup_memory);
5152 
5153 /*
5154  * Memory controller init before cgroup_init() initialize root_mem_cgroup.
5155  *
5156  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5157  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5158  * basically everything that doesn't depend on a specific mem_cgroup structure
5159  * should be initialized from here.
5160  */
mem_cgroup_init(void)5161 int __init mem_cgroup_init(void)
5162 {
5163 	unsigned int memcg_size;
5164 	int cpu;
5165 
5166 	/*
5167 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
5168 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
5169 	 * to work fine, we should make sure that the overfill threshold can't
5170 	 * exceed S32_MAX / PAGE_SIZE.
5171 	 */
5172 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
5173 
5174 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5175 				  memcg_hotplug_cpu_dead);
5176 
5177 	for_each_possible_cpu(cpu) {
5178 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5179 			  drain_local_memcg_stock);
5180 		INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work,
5181 			  drain_local_obj_stock);
5182 	}
5183 
5184 	memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids);
5185 	memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0,
5186 					 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
5187 
5188 	memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node,
5189 				     SLAB_PANIC | SLAB_HWCACHE_ALIGN);
5190 
5191 	return 0;
5192 }
5193 
5194 #ifdef CONFIG_SWAP
5195 /**
5196  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5197  * @folio: folio being added to swap
5198  * @entry: swap entry to charge
5199  *
5200  * Try to charge @folio's memcg for the swap space at @entry.
5201  *
5202  * Returns 0 on success, -ENOMEM on failure.
5203  */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)5204 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5205 {
5206 	unsigned int nr_pages = folio_nr_pages(folio);
5207 	struct page_counter *counter;
5208 	struct mem_cgroup *memcg;
5209 
5210 	if (do_memsw_account())
5211 		return 0;
5212 
5213 	memcg = folio_memcg(folio);
5214 
5215 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5216 	if (!memcg)
5217 		return 0;
5218 
5219 	if (!entry.val) {
5220 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5221 		return 0;
5222 	}
5223 
5224 	memcg = mem_cgroup_id_get_online(memcg);
5225 
5226 	if (!mem_cgroup_is_root(memcg) &&
5227 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5228 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5229 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5230 		mem_cgroup_id_put(memcg);
5231 		return -ENOMEM;
5232 	}
5233 
5234 	/* Get references for the tail pages, too */
5235 	if (nr_pages > 1)
5236 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
5237 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5238 
5239 	swap_cgroup_record(folio, mem_cgroup_id(memcg), entry);
5240 
5241 	return 0;
5242 }
5243 
5244 /**
5245  * __mem_cgroup_uncharge_swap - uncharge swap space
5246  * @entry: swap entry to uncharge
5247  * @nr_pages: the amount of swap space to uncharge
5248  */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)5249 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5250 {
5251 	struct mem_cgroup *memcg;
5252 	unsigned short id;
5253 
5254 	id = swap_cgroup_clear(entry, nr_pages);
5255 	rcu_read_lock();
5256 	memcg = mem_cgroup_from_id(id);
5257 	if (memcg) {
5258 		if (!mem_cgroup_is_root(memcg)) {
5259 			if (do_memsw_account())
5260 				page_counter_uncharge(&memcg->memsw, nr_pages);
5261 			else
5262 				page_counter_uncharge(&memcg->swap, nr_pages);
5263 		}
5264 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5265 		mem_cgroup_id_put_many(memcg, nr_pages);
5266 	}
5267 	rcu_read_unlock();
5268 }
5269 
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)5270 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5271 {
5272 	long nr_swap_pages = get_nr_swap_pages();
5273 
5274 	if (mem_cgroup_disabled() || do_memsw_account())
5275 		return nr_swap_pages;
5276 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5277 		nr_swap_pages = min_t(long, nr_swap_pages,
5278 				      READ_ONCE(memcg->swap.max) -
5279 				      page_counter_read(&memcg->swap));
5280 	return nr_swap_pages;
5281 }
5282 
mem_cgroup_swap_full(struct folio * folio)5283 bool mem_cgroup_swap_full(struct folio *folio)
5284 {
5285 	struct mem_cgroup *memcg;
5286 
5287 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5288 
5289 	if (vm_swap_full())
5290 		return true;
5291 	if (do_memsw_account())
5292 		return false;
5293 
5294 	memcg = folio_memcg(folio);
5295 	if (!memcg)
5296 		return false;
5297 
5298 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5299 		unsigned long usage = page_counter_read(&memcg->swap);
5300 
5301 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5302 		    usage * 2 >= READ_ONCE(memcg->swap.max))
5303 			return true;
5304 	}
5305 
5306 	return false;
5307 }
5308 
setup_swap_account(char * s)5309 static int __init setup_swap_account(char *s)
5310 {
5311 	bool res;
5312 
5313 	if (!kstrtobool(s, &res) && !res)
5314 		pr_warn_once("The swapaccount=0 commandline option is deprecated "
5315 			     "in favor of configuring swap control via cgroupfs. "
5316 			     "Please report your usecase to linux-mm@kvack.org if you "
5317 			     "depend on this functionality.\n");
5318 	return 1;
5319 }
5320 __setup("swapaccount=", setup_swap_account);
5321 
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5322 static u64 swap_current_read(struct cgroup_subsys_state *css,
5323 			     struct cftype *cft)
5324 {
5325 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5326 
5327 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5328 }
5329 
swap_peak_show(struct seq_file * sf,void * v)5330 static int swap_peak_show(struct seq_file *sf, void *v)
5331 {
5332 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5333 
5334 	return peak_show(sf, v, &memcg->swap);
5335 }
5336 
swap_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5337 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5338 			       size_t nbytes, loff_t off)
5339 {
5340 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5341 
5342 	return peak_write(of, buf, nbytes, off, &memcg->swap,
5343 			  &memcg->swap_peaks);
5344 }
5345 
swap_high_show(struct seq_file * m,void * v)5346 static int swap_high_show(struct seq_file *m, void *v)
5347 {
5348 	return seq_puts_memcg_tunable(m,
5349 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5350 }
5351 
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5352 static ssize_t swap_high_write(struct kernfs_open_file *of,
5353 			       char *buf, size_t nbytes, loff_t off)
5354 {
5355 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5356 	unsigned long high;
5357 	int err;
5358 
5359 	buf = strstrip(buf);
5360 	err = page_counter_memparse(buf, "max", &high);
5361 	if (err)
5362 		return err;
5363 
5364 	page_counter_set_high(&memcg->swap, high);
5365 
5366 	return nbytes;
5367 }
5368 
swap_max_show(struct seq_file * m,void * v)5369 static int swap_max_show(struct seq_file *m, void *v)
5370 {
5371 	return seq_puts_memcg_tunable(m,
5372 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5373 }
5374 
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5375 static ssize_t swap_max_write(struct kernfs_open_file *of,
5376 			      char *buf, size_t nbytes, loff_t off)
5377 {
5378 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5379 	unsigned long max;
5380 	int err;
5381 
5382 	buf = strstrip(buf);
5383 	err = page_counter_memparse(buf, "max", &max);
5384 	if (err)
5385 		return err;
5386 
5387 	xchg(&memcg->swap.max, max);
5388 
5389 	return nbytes;
5390 }
5391 
swap_events_show(struct seq_file * m,void * v)5392 static int swap_events_show(struct seq_file *m, void *v)
5393 {
5394 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5395 
5396 	seq_printf(m, "high %lu\n",
5397 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5398 	seq_printf(m, "max %lu\n",
5399 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5400 	seq_printf(m, "fail %lu\n",
5401 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5402 
5403 	return 0;
5404 }
5405 
5406 static struct cftype swap_files[] = {
5407 	{
5408 		.name = "swap.current",
5409 		.flags = CFTYPE_NOT_ON_ROOT,
5410 		.read_u64 = swap_current_read,
5411 	},
5412 	{
5413 		.name = "swap.high",
5414 		.flags = CFTYPE_NOT_ON_ROOT,
5415 		.seq_show = swap_high_show,
5416 		.write = swap_high_write,
5417 	},
5418 	{
5419 		.name = "swap.max",
5420 		.flags = CFTYPE_NOT_ON_ROOT,
5421 		.seq_show = swap_max_show,
5422 		.write = swap_max_write,
5423 	},
5424 	{
5425 		.name = "swap.peak",
5426 		.flags = CFTYPE_NOT_ON_ROOT,
5427 		.open = peak_open,
5428 		.release = peak_release,
5429 		.seq_show = swap_peak_show,
5430 		.write = swap_peak_write,
5431 	},
5432 	{
5433 		.name = "swap.events",
5434 		.flags = CFTYPE_NOT_ON_ROOT,
5435 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
5436 		.seq_show = swap_events_show,
5437 	},
5438 	{ }	/* terminate */
5439 };
5440 
5441 #ifdef CONFIG_ZSWAP
5442 /**
5443  * obj_cgroup_may_zswap - check if this cgroup can zswap
5444  * @objcg: the object cgroup
5445  *
5446  * Check if the hierarchical zswap limit has been reached.
5447  *
5448  * This doesn't check for specific headroom, and it is not atomic
5449  * either. But with zswap, the size of the allocation is only known
5450  * once compression has occurred, and this optimistic pre-check avoids
5451  * spending cycles on compression when there is already no room left
5452  * or zswap is disabled altogether somewhere in the hierarchy.
5453  */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)5454 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5455 {
5456 	struct mem_cgroup *memcg, *original_memcg;
5457 	bool ret = true;
5458 
5459 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5460 		return true;
5461 
5462 	original_memcg = get_mem_cgroup_from_objcg(objcg);
5463 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5464 	     memcg = parent_mem_cgroup(memcg)) {
5465 		unsigned long max = READ_ONCE(memcg->zswap_max);
5466 		unsigned long pages;
5467 
5468 		if (max == PAGE_COUNTER_MAX)
5469 			continue;
5470 		if (max == 0) {
5471 			ret = false;
5472 			break;
5473 		}
5474 
5475 		/* Force flush to get accurate stats for charging */
5476 		__mem_cgroup_flush_stats(memcg, true);
5477 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5478 		if (pages < max)
5479 			continue;
5480 		ret = false;
5481 		break;
5482 	}
5483 	mem_cgroup_put(original_memcg);
5484 	return ret;
5485 }
5486 
5487 /**
5488  * obj_cgroup_charge_zswap - charge compression backend memory
5489  * @objcg: the object cgroup
5490  * @size: size of compressed object
5491  *
5492  * This forces the charge after obj_cgroup_may_zswap() allowed
5493  * compression and storage in zwap for this cgroup to go ahead.
5494  */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)5495 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5496 {
5497 	struct mem_cgroup *memcg;
5498 
5499 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5500 		return;
5501 
5502 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5503 
5504 	/* PF_MEMALLOC context, charging must succeed */
5505 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5506 		VM_WARN_ON_ONCE(1);
5507 
5508 	rcu_read_lock();
5509 	memcg = obj_cgroup_memcg(objcg);
5510 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5511 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5512 	rcu_read_unlock();
5513 }
5514 
5515 /**
5516  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5517  * @objcg: the object cgroup
5518  * @size: size of compressed object
5519  *
5520  * Uncharges zswap memory on page in.
5521  */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)5522 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5523 {
5524 	struct mem_cgroup *memcg;
5525 
5526 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5527 		return;
5528 
5529 	obj_cgroup_uncharge(objcg, size);
5530 
5531 	rcu_read_lock();
5532 	memcg = obj_cgroup_memcg(objcg);
5533 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5534 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5535 	rcu_read_unlock();
5536 }
5537 
mem_cgroup_zswap_writeback_enabled(struct mem_cgroup * memcg)5538 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5539 {
5540 	/* if zswap is disabled, do not block pages going to the swapping device */
5541 	if (!zswap_is_enabled())
5542 		return true;
5543 
5544 	for (; memcg; memcg = parent_mem_cgroup(memcg))
5545 		if (!READ_ONCE(memcg->zswap_writeback))
5546 			return false;
5547 
5548 	return true;
5549 }
5550 
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5551 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5552 			      struct cftype *cft)
5553 {
5554 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5555 
5556 	mem_cgroup_flush_stats(memcg);
5557 	return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5558 }
5559 
zswap_max_show(struct seq_file * m,void * v)5560 static int zswap_max_show(struct seq_file *m, void *v)
5561 {
5562 	return seq_puts_memcg_tunable(m,
5563 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5564 }
5565 
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5566 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5567 			       char *buf, size_t nbytes, loff_t off)
5568 {
5569 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5570 	unsigned long max;
5571 	int err;
5572 
5573 	buf = strstrip(buf);
5574 	err = page_counter_memparse(buf, "max", &max);
5575 	if (err)
5576 		return err;
5577 
5578 	xchg(&memcg->zswap_max, max);
5579 
5580 	return nbytes;
5581 }
5582 
zswap_writeback_show(struct seq_file * m,void * v)5583 static int zswap_writeback_show(struct seq_file *m, void *v)
5584 {
5585 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5586 
5587 	seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5588 	return 0;
5589 }
5590 
zswap_writeback_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5591 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5592 				char *buf, size_t nbytes, loff_t off)
5593 {
5594 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5595 	int zswap_writeback;
5596 	ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5597 
5598 	if (parse_ret)
5599 		return parse_ret;
5600 
5601 	if (zswap_writeback != 0 && zswap_writeback != 1)
5602 		return -EINVAL;
5603 
5604 	WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5605 	return nbytes;
5606 }
5607 
5608 static struct cftype zswap_files[] = {
5609 	{
5610 		.name = "zswap.current",
5611 		.flags = CFTYPE_NOT_ON_ROOT,
5612 		.read_u64 = zswap_current_read,
5613 	},
5614 	{
5615 		.name = "zswap.max",
5616 		.flags = CFTYPE_NOT_ON_ROOT,
5617 		.seq_show = zswap_max_show,
5618 		.write = zswap_max_write,
5619 	},
5620 	{
5621 		.name = "zswap.writeback",
5622 		.seq_show = zswap_writeback_show,
5623 		.write = zswap_writeback_write,
5624 	},
5625 	{ }	/* terminate */
5626 };
5627 #endif /* CONFIG_ZSWAP */
5628 
mem_cgroup_swap_init(void)5629 static int __init mem_cgroup_swap_init(void)
5630 {
5631 	if (mem_cgroup_disabled())
5632 		return 0;
5633 
5634 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5635 #ifdef CONFIG_MEMCG_V1
5636 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5637 #endif
5638 #ifdef CONFIG_ZSWAP
5639 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5640 #endif
5641 	return 0;
5642 }
5643 subsys_initcall(mem_cgroup_swap_init);
5644 
5645 #endif /* CONFIG_SWAP */
5646 
mem_cgroup_node_allowed(struct mem_cgroup * memcg,int nid)5647 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
5648 {
5649 	return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true;
5650 }
5651