xref: /linux/drivers/base/memory.c (revision 00c010e130e58301db2ea0cec1eadc931e1cb8cf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory subsystem support
4  *
5  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
6  *            Dave Hansen <haveblue@us.ibm.com>
7  *
8  * This file provides the necessary infrastructure to represent
9  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
10  * All arch-independent code that assumes MEMORY_HOTPLUG requires
11  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/topology.h>
17 #include <linux/capability.h>
18 #include <linux/device.h>
19 #include <linux/memory.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/stat.h>
23 #include <linux/slab.h>
24 #include <linux/xarray.h>
25 
26 #include <linux/atomic.h>
27 #include <linux/uaccess.h>
28 
29 #define MEMORY_CLASS_NAME	"memory"
30 
31 static const char *const online_type_to_str[] = {
32 	[MMOP_OFFLINE] = "offline",
33 	[MMOP_ONLINE] = "online",
34 	[MMOP_ONLINE_KERNEL] = "online_kernel",
35 	[MMOP_ONLINE_MOVABLE] = "online_movable",
36 };
37 
mhp_online_type_from_str(const char * str)38 int mhp_online_type_from_str(const char *str)
39 {
40 	int i;
41 
42 	for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) {
43 		if (sysfs_streq(str, online_type_to_str[i]))
44 			return i;
45 	}
46 	return -EINVAL;
47 }
48 
49 #define to_memory_block(dev) container_of(dev, struct memory_block, dev)
50 
51 static int sections_per_block;
52 
memory_block_id(unsigned long section_nr)53 static inline unsigned long memory_block_id(unsigned long section_nr)
54 {
55 	return section_nr / sections_per_block;
56 }
57 
pfn_to_block_id(unsigned long pfn)58 static inline unsigned long pfn_to_block_id(unsigned long pfn)
59 {
60 	return memory_block_id(pfn_to_section_nr(pfn));
61 }
62 
phys_to_block_id(unsigned long phys)63 static inline unsigned long phys_to_block_id(unsigned long phys)
64 {
65 	return pfn_to_block_id(PFN_DOWN(phys));
66 }
67 
68 static int memory_subsys_online(struct device *dev);
69 static int memory_subsys_offline(struct device *dev);
70 
71 static const struct bus_type memory_subsys = {
72 	.name = MEMORY_CLASS_NAME,
73 	.dev_name = MEMORY_CLASS_NAME,
74 	.online = memory_subsys_online,
75 	.offline = memory_subsys_offline,
76 };
77 
78 /*
79  * Memory blocks are cached in a local radix tree to avoid
80  * a costly linear search for the corresponding device on
81  * the subsystem bus.
82  */
83 static DEFINE_XARRAY(memory_blocks);
84 
85 /*
86  * Memory groups, indexed by memory group id (mgid).
87  */
88 static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC);
89 #define MEMORY_GROUP_MARK_DYNAMIC	XA_MARK_1
90 
91 static BLOCKING_NOTIFIER_HEAD(memory_chain);
92 
register_memory_notifier(struct notifier_block * nb)93 int register_memory_notifier(struct notifier_block *nb)
94 {
95 	return blocking_notifier_chain_register(&memory_chain, nb);
96 }
97 EXPORT_SYMBOL(register_memory_notifier);
98 
unregister_memory_notifier(struct notifier_block * nb)99 void unregister_memory_notifier(struct notifier_block *nb)
100 {
101 	blocking_notifier_chain_unregister(&memory_chain, nb);
102 }
103 EXPORT_SYMBOL(unregister_memory_notifier);
104 
memory_block_release(struct device * dev)105 static void memory_block_release(struct device *dev)
106 {
107 	struct memory_block *mem = to_memory_block(dev);
108 	/* Verify that the altmap is freed */
109 	WARN_ON(mem->altmap);
110 	kfree(mem);
111 }
112 
113 
114 /* Max block size to be set by memory_block_advise_max_size */
115 static unsigned long memory_block_advised_size;
116 static bool memory_block_advised_size_queried;
117 
118 /**
119  * memory_block_advise_max_size() - advise memory hotplug on the max suggested
120  *				    block size, usually for alignment.
121  * @size: suggestion for maximum block size. must be aligned on power of 2.
122  *
123  * Early boot software (pre-allocator init) may advise archs on the max block
124  * size. This value can only decrease after initialization, as the intent is
125  * to identify the largest supported alignment for all sources.
126  *
127  * Use of this value is arch-defined, as is min/max block size.
128  *
129  * Return: 0 on success
130  *	   -EINVAL if size is 0 or not pow2 aligned
131  *	   -EBUSY if value has already been probed
132  */
memory_block_advise_max_size(unsigned long size)133 int __init memory_block_advise_max_size(unsigned long size)
134 {
135 	if (!size || !is_power_of_2(size))
136 		return -EINVAL;
137 
138 	if (memory_block_advised_size_queried)
139 		return -EBUSY;
140 
141 	if (memory_block_advised_size)
142 		memory_block_advised_size = min(memory_block_advised_size, size);
143 	else
144 		memory_block_advised_size = size;
145 
146 	return 0;
147 }
148 
149 /**
150  * memory_block_advised_max_size() - query advised max hotplug block size.
151  *
152  * After the first call, the value can never change. Callers looking for the
153  * actual block size should use memory_block_size_bytes. This interface is
154  * intended for use by arch-init when initializing the hotplug block size.
155  *
156  * Return: advised size in bytes, or 0 if never set.
157  */
memory_block_advised_max_size(void)158 unsigned long memory_block_advised_max_size(void)
159 {
160 	memory_block_advised_size_queried = true;
161 	return memory_block_advised_size;
162 }
163 
memory_block_size_bytes(void)164 unsigned long __weak memory_block_size_bytes(void)
165 {
166 	return MIN_MEMORY_BLOCK_SIZE;
167 }
168 EXPORT_SYMBOL_GPL(memory_block_size_bytes);
169 
170 /* Show the memory block ID, relative to the memory block size */
phys_index_show(struct device * dev,struct device_attribute * attr,char * buf)171 static ssize_t phys_index_show(struct device *dev,
172 			       struct device_attribute *attr, char *buf)
173 {
174 	struct memory_block *mem = to_memory_block(dev);
175 
176 	return sysfs_emit(buf, "%08lx\n", memory_block_id(mem->start_section_nr));
177 }
178 
179 /*
180  * Legacy interface that we cannot remove. Always indicate "removable"
181  * with CONFIG_MEMORY_HOTREMOVE - bad heuristic.
182  */
removable_show(struct device * dev,struct device_attribute * attr,char * buf)183 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
184 			      char *buf)
185 {
186 	return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE));
187 }
188 
189 /*
190  * online, offline, going offline, etc.
191  */
state_show(struct device * dev,struct device_attribute * attr,char * buf)192 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
193 			  char *buf)
194 {
195 	struct memory_block *mem = to_memory_block(dev);
196 	const char *output;
197 
198 	/*
199 	 * We can probably put these states in a nice little array
200 	 * so that they're not open-coded
201 	 */
202 	switch (mem->state) {
203 	case MEM_ONLINE:
204 		output = "online";
205 		break;
206 	case MEM_OFFLINE:
207 		output = "offline";
208 		break;
209 	case MEM_GOING_OFFLINE:
210 		output = "going-offline";
211 		break;
212 	default:
213 		WARN_ON(1);
214 		return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state);
215 	}
216 
217 	return sysfs_emit(buf, "%s\n", output);
218 }
219 
memory_notify(unsigned long val,void * v)220 int memory_notify(unsigned long val, void *v)
221 {
222 	return blocking_notifier_call_chain(&memory_chain, val, v);
223 }
224 
225 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
226 static unsigned long memblk_nr_poison(struct memory_block *mem);
227 #else
memblk_nr_poison(struct memory_block * mem)228 static inline unsigned long memblk_nr_poison(struct memory_block *mem)
229 {
230 	return 0;
231 }
232 #endif
233 
234 /*
235  * Must acquire mem_hotplug_lock in write mode.
236  */
memory_block_online(struct memory_block * mem)237 static int memory_block_online(struct memory_block *mem)
238 {
239 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
240 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
241 	unsigned long nr_vmemmap_pages = 0;
242 	struct memory_notify arg;
243 	struct zone *zone;
244 	int ret;
245 
246 	if (memblk_nr_poison(mem))
247 		return -EHWPOISON;
248 
249 	zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group,
250 				  start_pfn, nr_pages);
251 
252 	/*
253 	 * Although vmemmap pages have a different lifecycle than the pages
254 	 * they describe (they remain until the memory is unplugged), doing
255 	 * their initialization and accounting at memory onlining/offlining
256 	 * stage helps to keep accounting easier to follow - e.g vmemmaps
257 	 * belong to the same zone as the memory they backed.
258 	 */
259 	if (mem->altmap)
260 		nr_vmemmap_pages = mem->altmap->free;
261 
262 	arg.altmap_start_pfn = start_pfn;
263 	arg.altmap_nr_pages = nr_vmemmap_pages;
264 	arg.start_pfn = start_pfn + nr_vmemmap_pages;
265 	arg.nr_pages = nr_pages - nr_vmemmap_pages;
266 	mem_hotplug_begin();
267 	ret = memory_notify(MEM_PREPARE_ONLINE, &arg);
268 	ret = notifier_to_errno(ret);
269 	if (ret)
270 		goto out_notifier;
271 
272 	if (nr_vmemmap_pages) {
273 		ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages,
274 						zone, mem->altmap->inaccessible);
275 		if (ret)
276 			goto out;
277 	}
278 
279 	ret = online_pages(start_pfn + nr_vmemmap_pages,
280 			   nr_pages - nr_vmemmap_pages, zone, mem->group);
281 	if (ret) {
282 		if (nr_vmemmap_pages)
283 			mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
284 		goto out;
285 	}
286 
287 	/*
288 	 * Account once onlining succeeded. If the zone was unpopulated, it is
289 	 * now already properly populated.
290 	 */
291 	if (nr_vmemmap_pages)
292 		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
293 					  nr_vmemmap_pages);
294 
295 	mem->zone = zone;
296 	mem_hotplug_done();
297 	return ret;
298 out:
299 	memory_notify(MEM_FINISH_OFFLINE, &arg);
300 out_notifier:
301 	mem_hotplug_done();
302 	return ret;
303 }
304 
305 /*
306  * Must acquire mem_hotplug_lock in write mode.
307  */
memory_block_offline(struct memory_block * mem)308 static int memory_block_offline(struct memory_block *mem)
309 {
310 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
311 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
312 	unsigned long nr_vmemmap_pages = 0;
313 	struct memory_notify arg;
314 	int ret;
315 
316 	if (!mem->zone)
317 		return -EINVAL;
318 
319 	/*
320 	 * Unaccount before offlining, such that unpopulated zone and kthreads
321 	 * can properly be torn down in offline_pages().
322 	 */
323 	if (mem->altmap)
324 		nr_vmemmap_pages = mem->altmap->free;
325 
326 	mem_hotplug_begin();
327 	if (nr_vmemmap_pages)
328 		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
329 					  -nr_vmemmap_pages);
330 
331 	ret = offline_pages(start_pfn + nr_vmemmap_pages,
332 			    nr_pages - nr_vmemmap_pages, mem->zone, mem->group);
333 	if (ret) {
334 		/* offline_pages() failed. Account back. */
335 		if (nr_vmemmap_pages)
336 			adjust_present_page_count(pfn_to_page(start_pfn),
337 						  mem->group, nr_vmemmap_pages);
338 		goto out;
339 	}
340 
341 	if (nr_vmemmap_pages)
342 		mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
343 
344 	mem->zone = NULL;
345 	arg.altmap_start_pfn = start_pfn;
346 	arg.altmap_nr_pages = nr_vmemmap_pages;
347 	arg.start_pfn = start_pfn + nr_vmemmap_pages;
348 	arg.nr_pages = nr_pages - nr_vmemmap_pages;
349 	memory_notify(MEM_FINISH_OFFLINE, &arg);
350 out:
351 	mem_hotplug_done();
352 	return ret;
353 }
354 
355 /*
356  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
357  * OK to have direct references to sparsemem variables in here.
358  */
359 static int
memory_block_action(struct memory_block * mem,unsigned long action)360 memory_block_action(struct memory_block *mem, unsigned long action)
361 {
362 	int ret;
363 
364 	switch (action) {
365 	case MEM_ONLINE:
366 		ret = memory_block_online(mem);
367 		break;
368 	case MEM_OFFLINE:
369 		ret = memory_block_offline(mem);
370 		break;
371 	default:
372 		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
373 		     "%ld\n", __func__, mem->start_section_nr, action, action);
374 		ret = -EINVAL;
375 	}
376 
377 	return ret;
378 }
379 
memory_block_change_state(struct memory_block * mem,unsigned long to_state,unsigned long from_state_req)380 static int memory_block_change_state(struct memory_block *mem,
381 		unsigned long to_state, unsigned long from_state_req)
382 {
383 	int ret = 0;
384 
385 	if (mem->state != from_state_req)
386 		return -EINVAL;
387 
388 	if (to_state == MEM_OFFLINE)
389 		mem->state = MEM_GOING_OFFLINE;
390 
391 	ret = memory_block_action(mem, to_state);
392 	mem->state = ret ? from_state_req : to_state;
393 
394 	return ret;
395 }
396 
397 /* The device lock serializes operations on memory_subsys_[online|offline] */
memory_subsys_online(struct device * dev)398 static int memory_subsys_online(struct device *dev)
399 {
400 	struct memory_block *mem = to_memory_block(dev);
401 	int ret;
402 
403 	if (mem->state == MEM_ONLINE)
404 		return 0;
405 
406 	/*
407 	 * When called via device_online() without configuring the online_type,
408 	 * we want to default to MMOP_ONLINE.
409 	 */
410 	if (mem->online_type == MMOP_OFFLINE)
411 		mem->online_type = MMOP_ONLINE;
412 
413 	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
414 	mem->online_type = MMOP_OFFLINE;
415 
416 	return ret;
417 }
418 
memory_subsys_offline(struct device * dev)419 static int memory_subsys_offline(struct device *dev)
420 {
421 	struct memory_block *mem = to_memory_block(dev);
422 
423 	if (mem->state == MEM_OFFLINE)
424 		return 0;
425 
426 	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
427 }
428 
state_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)429 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
430 			   const char *buf, size_t count)
431 {
432 	const int online_type = mhp_online_type_from_str(buf);
433 	struct memory_block *mem = to_memory_block(dev);
434 	int ret;
435 
436 	if (online_type < 0)
437 		return -EINVAL;
438 
439 	ret = lock_device_hotplug_sysfs();
440 	if (ret)
441 		return ret;
442 
443 	switch (online_type) {
444 	case MMOP_ONLINE_KERNEL:
445 	case MMOP_ONLINE_MOVABLE:
446 	case MMOP_ONLINE:
447 		/* mem->online_type is protected by device_hotplug_lock */
448 		mem->online_type = online_type;
449 		ret = device_online(&mem->dev);
450 		break;
451 	case MMOP_OFFLINE:
452 		ret = device_offline(&mem->dev);
453 		break;
454 	default:
455 		ret = -EINVAL; /* should never happen */
456 	}
457 
458 	unlock_device_hotplug();
459 
460 	if (ret < 0)
461 		return ret;
462 	if (ret)
463 		return -EINVAL;
464 
465 	return count;
466 }
467 
468 /*
469  * Legacy interface that we cannot remove: s390x exposes the storage increment
470  * covered by a memory block, allowing for identifying which memory blocks
471  * comprise a storage increment. Since a memory block spans complete
472  * storage increments nowadays, this interface is basically unused. Other
473  * archs never exposed != 0.
474  */
phys_device_show(struct device * dev,struct device_attribute * attr,char * buf)475 static ssize_t phys_device_show(struct device *dev,
476 				struct device_attribute *attr, char *buf)
477 {
478 	struct memory_block *mem = to_memory_block(dev);
479 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
480 
481 	return sysfs_emit(buf, "%d\n",
482 			  arch_get_memory_phys_device(start_pfn));
483 }
484 
485 #ifdef CONFIG_MEMORY_HOTREMOVE
print_allowed_zone(char * buf,int len,int nid,struct memory_group * group,unsigned long start_pfn,unsigned long nr_pages,int online_type,struct zone * default_zone)486 static int print_allowed_zone(char *buf, int len, int nid,
487 			      struct memory_group *group,
488 			      unsigned long start_pfn, unsigned long nr_pages,
489 			      int online_type, struct zone *default_zone)
490 {
491 	struct zone *zone;
492 
493 	zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages);
494 	if (zone == default_zone)
495 		return 0;
496 
497 	return sysfs_emit_at(buf, len, " %s", zone->name);
498 }
499 
valid_zones_show(struct device * dev,struct device_attribute * attr,char * buf)500 static ssize_t valid_zones_show(struct device *dev,
501 				struct device_attribute *attr, char *buf)
502 {
503 	struct memory_block *mem = to_memory_block(dev);
504 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
505 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
506 	struct memory_group *group = mem->group;
507 	struct zone *default_zone;
508 	int nid = mem->nid;
509 	int len;
510 
511 	/*
512 	 * Check the existing zone. Make sure that we do that only on the
513 	 * online nodes otherwise the page_zone is not reliable
514 	 */
515 	if (mem->state == MEM_ONLINE) {
516 		/*
517 		 * If !mem->zone, the memory block spans multiple zones and
518 		 * cannot get offlined.
519 		 */
520 		return sysfs_emit(buf, "%s\n",
521 				  mem->zone ? mem->zone->name : "none");
522 	}
523 
524 	default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group,
525 					  start_pfn, nr_pages);
526 
527 	len = sysfs_emit(buf, "%s", default_zone->name);
528 	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
529 				  MMOP_ONLINE_KERNEL, default_zone);
530 	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
531 				  MMOP_ONLINE_MOVABLE, default_zone);
532 	len += sysfs_emit_at(buf, len, "\n");
533 	return len;
534 }
535 static DEVICE_ATTR_RO(valid_zones);
536 #endif
537 
538 static DEVICE_ATTR_RO(phys_index);
539 static DEVICE_ATTR_RW(state);
540 static DEVICE_ATTR_RO(phys_device);
541 static DEVICE_ATTR_RO(removable);
542 
543 /*
544  * Show the memory block size (shared by all memory blocks).
545  */
block_size_bytes_show(struct device * dev,struct device_attribute * attr,char * buf)546 static ssize_t block_size_bytes_show(struct device *dev,
547 				     struct device_attribute *attr, char *buf)
548 {
549 	return sysfs_emit(buf, "%lx\n", memory_block_size_bytes());
550 }
551 
552 static DEVICE_ATTR_RO(block_size_bytes);
553 
554 /*
555  * Memory auto online policy.
556  */
557 
auto_online_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)558 static ssize_t auto_online_blocks_show(struct device *dev,
559 				       struct device_attribute *attr, char *buf)
560 {
561 	return sysfs_emit(buf, "%s\n",
562 			  online_type_to_str[mhp_get_default_online_type()]);
563 }
564 
auto_online_blocks_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)565 static ssize_t auto_online_blocks_store(struct device *dev,
566 					struct device_attribute *attr,
567 					const char *buf, size_t count)
568 {
569 	const int online_type = mhp_online_type_from_str(buf);
570 
571 	if (online_type < 0)
572 		return -EINVAL;
573 
574 	mhp_set_default_online_type(online_type);
575 	return count;
576 }
577 
578 static DEVICE_ATTR_RW(auto_online_blocks);
579 
580 #ifdef CONFIG_CRASH_HOTPLUG
581 #include <linux/kexec.h>
crash_hotplug_show(struct device * dev,struct device_attribute * attr,char * buf)582 static ssize_t crash_hotplug_show(struct device *dev,
583 				       struct device_attribute *attr, char *buf)
584 {
585 	return sysfs_emit(buf, "%d\n", crash_check_hotplug_support());
586 }
587 static DEVICE_ATTR_RO(crash_hotplug);
588 #endif
589 
590 /*
591  * Some architectures will have custom drivers to do this, and
592  * will not need to do it from userspace.  The fake hot-add code
593  * as well as ppc64 will do all of their discovery in userspace
594  * and will require this interface.
595  */
596 #ifdef CONFIG_ARCH_MEMORY_PROBE
probe_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)597 static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
598 			   const char *buf, size_t count)
599 {
600 	u64 phys_addr;
601 	int nid, ret;
602 	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
603 
604 	ret = kstrtoull(buf, 0, &phys_addr);
605 	if (ret)
606 		return ret;
607 
608 	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
609 		return -EINVAL;
610 
611 	ret = lock_device_hotplug_sysfs();
612 	if (ret)
613 		return ret;
614 
615 	nid = memory_add_physaddr_to_nid(phys_addr);
616 	ret = __add_memory(nid, phys_addr,
617 			   MIN_MEMORY_BLOCK_SIZE * sections_per_block,
618 			   MHP_NONE);
619 
620 	if (ret)
621 		goto out;
622 
623 	ret = count;
624 out:
625 	unlock_device_hotplug();
626 	return ret;
627 }
628 
629 static DEVICE_ATTR_WO(probe);
630 #endif
631 
632 #ifdef CONFIG_MEMORY_FAILURE
633 /*
634  * Support for offlining pages of memory
635  */
636 
637 /* Soft offline a page */
soft_offline_page_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)638 static ssize_t soft_offline_page_store(struct device *dev,
639 				       struct device_attribute *attr,
640 				       const char *buf, size_t count)
641 {
642 	int ret;
643 	u64 pfn;
644 	if (!capable(CAP_SYS_ADMIN))
645 		return -EPERM;
646 	if (kstrtoull(buf, 0, &pfn) < 0)
647 		return -EINVAL;
648 	pfn >>= PAGE_SHIFT;
649 	ret = soft_offline_page(pfn, 0);
650 	return ret == 0 ? count : ret;
651 }
652 
653 /* Forcibly offline a page, including killing processes. */
hard_offline_page_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)654 static ssize_t hard_offline_page_store(struct device *dev,
655 				       struct device_attribute *attr,
656 				       const char *buf, size_t count)
657 {
658 	int ret;
659 	u64 pfn;
660 	if (!capable(CAP_SYS_ADMIN))
661 		return -EPERM;
662 	if (kstrtoull(buf, 0, &pfn) < 0)
663 		return -EINVAL;
664 	pfn >>= PAGE_SHIFT;
665 	ret = memory_failure(pfn, MF_SW_SIMULATED);
666 	if (ret == -EOPNOTSUPP)
667 		ret = 0;
668 	return ret ? ret : count;
669 }
670 
671 static DEVICE_ATTR_WO(soft_offline_page);
672 static DEVICE_ATTR_WO(hard_offline_page);
673 #endif
674 
675 /* See phys_device_show(). */
arch_get_memory_phys_device(unsigned long start_pfn)676 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
677 {
678 	return 0;
679 }
680 
681 /*
682  * A reference for the returned memory block device is acquired.
683  *
684  * Called under device_hotplug_lock.
685  */
find_memory_block_by_id(unsigned long block_id)686 static struct memory_block *find_memory_block_by_id(unsigned long block_id)
687 {
688 	struct memory_block *mem;
689 
690 	mem = xa_load(&memory_blocks, block_id);
691 	if (mem)
692 		get_device(&mem->dev);
693 	return mem;
694 }
695 
696 /*
697  * Called under device_hotplug_lock.
698  */
find_memory_block(unsigned long section_nr)699 struct memory_block *find_memory_block(unsigned long section_nr)
700 {
701 	unsigned long block_id = memory_block_id(section_nr);
702 
703 	return find_memory_block_by_id(block_id);
704 }
705 
706 static struct attribute *memory_memblk_attrs[] = {
707 	&dev_attr_phys_index.attr,
708 	&dev_attr_state.attr,
709 	&dev_attr_phys_device.attr,
710 	&dev_attr_removable.attr,
711 #ifdef CONFIG_MEMORY_HOTREMOVE
712 	&dev_attr_valid_zones.attr,
713 #endif
714 	NULL
715 };
716 
717 static const struct attribute_group memory_memblk_attr_group = {
718 	.attrs = memory_memblk_attrs,
719 };
720 
721 static const struct attribute_group *memory_memblk_attr_groups[] = {
722 	&memory_memblk_attr_group,
723 	NULL,
724 };
725 
__add_memory_block(struct memory_block * memory)726 static int __add_memory_block(struct memory_block *memory)
727 {
728 	int ret;
729 
730 	memory->dev.bus = &memory_subsys;
731 	memory->dev.id = memory->start_section_nr / sections_per_block;
732 	memory->dev.release = memory_block_release;
733 	memory->dev.groups = memory_memblk_attr_groups;
734 	memory->dev.offline = memory->state == MEM_OFFLINE;
735 
736 	ret = device_register(&memory->dev);
737 	if (ret) {
738 		put_device(&memory->dev);
739 		return ret;
740 	}
741 	ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory,
742 			      GFP_KERNEL));
743 	if (ret)
744 		device_unregister(&memory->dev);
745 
746 	return ret;
747 }
748 
early_node_zone_for_memory_block(struct memory_block * mem,int nid)749 static struct zone *early_node_zone_for_memory_block(struct memory_block *mem,
750 						     int nid)
751 {
752 	const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
753 	const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
754 	struct zone *zone, *matching_zone = NULL;
755 	pg_data_t *pgdat = NODE_DATA(nid);
756 	int i;
757 
758 	/*
759 	 * This logic only works for early memory, when the applicable zones
760 	 * already span the memory block. We don't expect overlapping zones on
761 	 * a single node for early memory. So if we're told that some PFNs
762 	 * of a node fall into this memory block, we can assume that all node
763 	 * zones that intersect with the memory block are actually applicable.
764 	 * No need to look at the memmap.
765 	 */
766 	for (i = 0; i < MAX_NR_ZONES; i++) {
767 		zone = pgdat->node_zones + i;
768 		if (!populated_zone(zone))
769 			continue;
770 		if (!zone_intersects(zone, start_pfn, nr_pages))
771 			continue;
772 		if (!matching_zone) {
773 			matching_zone = zone;
774 			continue;
775 		}
776 		/* Spans multiple zones ... */
777 		matching_zone = NULL;
778 		break;
779 	}
780 	return matching_zone;
781 }
782 
783 #ifdef CONFIG_NUMA
784 /**
785  * memory_block_add_nid() - Indicate that system RAM falling into this memory
786  *			    block device (partially) belongs to the given node.
787  * @mem: The memory block device.
788  * @nid: The node id.
789  * @context: The memory initialization context.
790  *
791  * Indicate that system RAM falling into this memory block (partially) belongs
792  * to the given node. If the context indicates ("early") that we are adding the
793  * node during node device subsystem initialization, this will also properly
794  * set/adjust mem->zone based on the zone ranges of the given node.
795  */
memory_block_add_nid(struct memory_block * mem,int nid,enum meminit_context context)796 void memory_block_add_nid(struct memory_block *mem, int nid,
797 			  enum meminit_context context)
798 {
799 	if (context == MEMINIT_EARLY && mem->nid != nid) {
800 		/*
801 		 * For early memory we have to determine the zone when setting
802 		 * the node id and handle multiple nodes spanning a single
803 		 * memory block by indicate via zone == NULL that we're not
804 		 * dealing with a single zone. So if we're setting the node id
805 		 * the first time, determine if there is a single zone. If we're
806 		 * setting the node id a second time to a different node,
807 		 * invalidate the single detected zone.
808 		 */
809 		if (mem->nid == NUMA_NO_NODE)
810 			mem->zone = early_node_zone_for_memory_block(mem, nid);
811 		else
812 			mem->zone = NULL;
813 	}
814 
815 	/*
816 	 * If this memory block spans multiple nodes, we only indicate
817 	 * the last processed node. If we span multiple nodes (not applicable
818 	 * to hotplugged memory), zone == NULL will prohibit memory offlining
819 	 * and consequently unplug.
820 	 */
821 	mem->nid = nid;
822 }
823 #endif
824 
add_memory_block(unsigned long block_id,unsigned long state,struct vmem_altmap * altmap,struct memory_group * group)825 static int add_memory_block(unsigned long block_id, unsigned long state,
826 			    struct vmem_altmap *altmap,
827 			    struct memory_group *group)
828 {
829 	struct memory_block *mem;
830 	int ret = 0;
831 
832 	mem = find_memory_block_by_id(block_id);
833 	if (mem) {
834 		put_device(&mem->dev);
835 		return -EEXIST;
836 	}
837 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
838 	if (!mem)
839 		return -ENOMEM;
840 
841 	mem->start_section_nr = block_id * sections_per_block;
842 	mem->state = state;
843 	mem->nid = NUMA_NO_NODE;
844 	mem->altmap = altmap;
845 	INIT_LIST_HEAD(&mem->group_next);
846 
847 #ifndef CONFIG_NUMA
848 	if (state == MEM_ONLINE)
849 		/*
850 		 * MEM_ONLINE at this point implies early memory. With NUMA,
851 		 * we'll determine the zone when setting the node id via
852 		 * memory_block_add_nid(). Memory hotplug updated the zone
853 		 * manually when memory onlining/offlining succeeds.
854 		 */
855 		mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE);
856 #endif /* CONFIG_NUMA */
857 
858 	ret = __add_memory_block(mem);
859 	if (ret)
860 		return ret;
861 
862 	if (group) {
863 		mem->group = group;
864 		list_add(&mem->group_next, &group->memory_blocks);
865 	}
866 
867 	return 0;
868 }
869 
add_hotplug_memory_block(unsigned long block_id,struct vmem_altmap * altmap,struct memory_group * group)870 static int add_hotplug_memory_block(unsigned long block_id,
871 				    struct vmem_altmap *altmap,
872 				    struct memory_group *group)
873 {
874 	return add_memory_block(block_id, MEM_OFFLINE, altmap, group);
875 }
876 
remove_memory_block(struct memory_block * memory)877 static void remove_memory_block(struct memory_block *memory)
878 {
879 	if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
880 		return;
881 
882 	WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL);
883 
884 	if (memory->group) {
885 		list_del(&memory->group_next);
886 		memory->group = NULL;
887 	}
888 
889 	/* drop the ref. we got via find_memory_block() */
890 	put_device(&memory->dev);
891 	device_unregister(&memory->dev);
892 }
893 
894 /*
895  * Create memory block devices for the given memory area. Start and size
896  * have to be aligned to memory block granularity. Memory block devices
897  * will be initialized as offline.
898  *
899  * Called under device_hotplug_lock.
900  */
create_memory_block_devices(unsigned long start,unsigned long size,struct vmem_altmap * altmap,struct memory_group * group)901 int create_memory_block_devices(unsigned long start, unsigned long size,
902 				struct vmem_altmap *altmap,
903 				struct memory_group *group)
904 {
905 	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
906 	unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
907 	struct memory_block *mem;
908 	unsigned long block_id;
909 	int ret = 0;
910 
911 	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
912 			 !IS_ALIGNED(size, memory_block_size_bytes())))
913 		return -EINVAL;
914 
915 	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
916 		ret = add_hotplug_memory_block(block_id, altmap, group);
917 		if (ret)
918 			break;
919 	}
920 	if (ret) {
921 		end_block_id = block_id;
922 		for (block_id = start_block_id; block_id != end_block_id;
923 		     block_id++) {
924 			mem = find_memory_block_by_id(block_id);
925 			if (WARN_ON_ONCE(!mem))
926 				continue;
927 			remove_memory_block(mem);
928 		}
929 	}
930 	return ret;
931 }
932 
933 /*
934  * Remove memory block devices for the given memory area. Start and size
935  * have to be aligned to memory block granularity. Memory block devices
936  * have to be offline.
937  *
938  * Called under device_hotplug_lock.
939  */
remove_memory_block_devices(unsigned long start,unsigned long size)940 void remove_memory_block_devices(unsigned long start, unsigned long size)
941 {
942 	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
943 	const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
944 	struct memory_block *mem;
945 	unsigned long block_id;
946 
947 	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
948 			 !IS_ALIGNED(size, memory_block_size_bytes())))
949 		return;
950 
951 	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
952 		mem = find_memory_block_by_id(block_id);
953 		if (WARN_ON_ONCE(!mem))
954 			continue;
955 		num_poisoned_pages_sub(-1UL, memblk_nr_poison(mem));
956 		unregister_memory_block_under_nodes(mem);
957 		remove_memory_block(mem);
958 	}
959 }
960 
961 static struct attribute *memory_root_attrs[] = {
962 #ifdef CONFIG_ARCH_MEMORY_PROBE
963 	&dev_attr_probe.attr,
964 #endif
965 
966 #ifdef CONFIG_MEMORY_FAILURE
967 	&dev_attr_soft_offline_page.attr,
968 	&dev_attr_hard_offline_page.attr,
969 #endif
970 
971 	&dev_attr_block_size_bytes.attr,
972 	&dev_attr_auto_online_blocks.attr,
973 #ifdef CONFIG_CRASH_HOTPLUG
974 	&dev_attr_crash_hotplug.attr,
975 #endif
976 	NULL
977 };
978 
979 static const struct attribute_group memory_root_attr_group = {
980 	.attrs = memory_root_attrs,
981 };
982 
983 static const struct attribute_group *memory_root_attr_groups[] = {
984 	&memory_root_attr_group,
985 	NULL,
986 };
987 
988 /*
989  * Initialize the sysfs support for memory devices. At the time this function
990  * is called, we cannot have concurrent creation/deletion of memory block
991  * devices, the device_hotplug_lock is not needed.
992  */
memory_dev_init(void)993 void __init memory_dev_init(void)
994 {
995 	int ret;
996 	unsigned long block_sz, block_id, nr;
997 
998 	/* Validate the configured memory block size */
999 	block_sz = memory_block_size_bytes();
1000 	if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
1001 		panic("Memory block size not suitable: 0x%lx\n", block_sz);
1002 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
1003 
1004 	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
1005 	if (ret)
1006 		panic("%s() failed to register subsystem: %d\n", __func__, ret);
1007 
1008 	/*
1009 	 * Create entries for memory sections that were found during boot
1010 	 * and have been initialized. Use @block_id to track the last
1011 	 * handled block and initialize it to an invalid value (ULONG_MAX)
1012 	 * to bypass the block ID matching check for the first present
1013 	 * block so that it can be covered.
1014 	 */
1015 	block_id = ULONG_MAX;
1016 	for_each_present_section_nr(0, nr) {
1017 		if (block_id != ULONG_MAX && memory_block_id(nr) == block_id)
1018 			continue;
1019 
1020 		block_id = memory_block_id(nr);
1021 		ret = add_memory_block(block_id, MEM_ONLINE, NULL, NULL);
1022 		if (ret) {
1023 			panic("%s() failed to add memory block: %d\n",
1024 			      __func__, ret);
1025 		}
1026 	}
1027 }
1028 
1029 /**
1030  * walk_memory_blocks - walk through all present memory blocks overlapped
1031  *			by the range [start, start + size)
1032  *
1033  * @start: start address of the memory range
1034  * @size: size of the memory range
1035  * @arg: argument passed to func
1036  * @func: callback for each memory section walked
1037  *
1038  * This function walks through all present memory blocks overlapped by the
1039  * range [start, start + size), calling func on each memory block.
1040  *
1041  * In case func() returns an error, walking is aborted and the error is
1042  * returned.
1043  *
1044  * Called under device_hotplug_lock.
1045  */
walk_memory_blocks(unsigned long start,unsigned long size,void * arg,walk_memory_blocks_func_t func)1046 int walk_memory_blocks(unsigned long start, unsigned long size,
1047 		       void *arg, walk_memory_blocks_func_t func)
1048 {
1049 	const unsigned long start_block_id = phys_to_block_id(start);
1050 	const unsigned long end_block_id = phys_to_block_id(start + size - 1);
1051 	struct memory_block *mem;
1052 	unsigned long block_id;
1053 	int ret = 0;
1054 
1055 	if (!size)
1056 		return 0;
1057 
1058 	for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
1059 		mem = find_memory_block_by_id(block_id);
1060 		if (!mem)
1061 			continue;
1062 
1063 		ret = func(mem, arg);
1064 		put_device(&mem->dev);
1065 		if (ret)
1066 			break;
1067 	}
1068 	return ret;
1069 }
1070 
1071 struct for_each_memory_block_cb_data {
1072 	walk_memory_blocks_func_t func;
1073 	void *arg;
1074 };
1075 
for_each_memory_block_cb(struct device * dev,void * data)1076 static int for_each_memory_block_cb(struct device *dev, void *data)
1077 {
1078 	struct memory_block *mem = to_memory_block(dev);
1079 	struct for_each_memory_block_cb_data *cb_data = data;
1080 
1081 	return cb_data->func(mem, cb_data->arg);
1082 }
1083 
1084 /**
1085  * for_each_memory_block - walk through all present memory blocks
1086  *
1087  * @arg: argument passed to func
1088  * @func: callback for each memory block walked
1089  *
1090  * This function walks through all present memory blocks, calling func on
1091  * each memory block.
1092  *
1093  * In case func() returns an error, walking is aborted and the error is
1094  * returned.
1095  */
for_each_memory_block(void * arg,walk_memory_blocks_func_t func)1096 int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
1097 {
1098 	struct for_each_memory_block_cb_data cb_data = {
1099 		.func = func,
1100 		.arg = arg,
1101 	};
1102 
1103 	return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
1104 				for_each_memory_block_cb);
1105 }
1106 
1107 /*
1108  * This is an internal helper to unify allocation and initialization of
1109  * memory groups. Note that the passed memory group will be copied to a
1110  * dynamically allocated memory group. After this call, the passed
1111  * memory group should no longer be used.
1112  */
memory_group_register(struct memory_group group)1113 static int memory_group_register(struct memory_group group)
1114 {
1115 	struct memory_group *new_group;
1116 	uint32_t mgid;
1117 	int ret;
1118 
1119 	if (!node_possible(group.nid))
1120 		return -EINVAL;
1121 
1122 	new_group = kzalloc(sizeof(group), GFP_KERNEL);
1123 	if (!new_group)
1124 		return -ENOMEM;
1125 	*new_group = group;
1126 	INIT_LIST_HEAD(&new_group->memory_blocks);
1127 
1128 	ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b,
1129 		       GFP_KERNEL);
1130 	if (ret) {
1131 		kfree(new_group);
1132 		return ret;
1133 	} else if (group.is_dynamic) {
1134 		xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC);
1135 	}
1136 	return mgid;
1137 }
1138 
1139 /**
1140  * memory_group_register_static() - Register a static memory group.
1141  * @nid: The node id.
1142  * @max_pages: The maximum number of pages we'll have in this static memory
1143  *	       group.
1144  *
1145  * Register a new static memory group and return the memory group id.
1146  * All memory in the group belongs to a single unit, such as a DIMM. All
1147  * memory belonging to a static memory group is added in one go to be removed
1148  * in one go -- it's static.
1149  *
1150  * Returns an error if out of memory, if the node id is invalid, if no new
1151  * memory groups can be registered, or if max_pages is invalid (0). Otherwise,
1152  * returns the new memory group id.
1153  */
memory_group_register_static(int nid,unsigned long max_pages)1154 int memory_group_register_static(int nid, unsigned long max_pages)
1155 {
1156 	struct memory_group group = {
1157 		.nid = nid,
1158 		.s = {
1159 			.max_pages = max_pages,
1160 		},
1161 	};
1162 
1163 	if (!max_pages)
1164 		return -EINVAL;
1165 	return memory_group_register(group);
1166 }
1167 EXPORT_SYMBOL_GPL(memory_group_register_static);
1168 
1169 /**
1170  * memory_group_register_dynamic() - Register a dynamic memory group.
1171  * @nid: The node id.
1172  * @unit_pages: Unit in pages in which is memory added/removed in this dynamic
1173  *		memory group.
1174  *
1175  * Register a new dynamic memory group and return the memory group id.
1176  * Memory within a dynamic memory group is added/removed dynamically
1177  * in unit_pages.
1178  *
1179  * Returns an error if out of memory, if the node id is invalid, if no new
1180  * memory groups can be registered, or if unit_pages is invalid (0, not a
1181  * power of two, smaller than a single memory block). Otherwise, returns the
1182  * new memory group id.
1183  */
memory_group_register_dynamic(int nid,unsigned long unit_pages)1184 int memory_group_register_dynamic(int nid, unsigned long unit_pages)
1185 {
1186 	struct memory_group group = {
1187 		.nid = nid,
1188 		.is_dynamic = true,
1189 		.d = {
1190 			.unit_pages = unit_pages,
1191 		},
1192 	};
1193 
1194 	if (!unit_pages || !is_power_of_2(unit_pages) ||
1195 	    unit_pages < PHYS_PFN(memory_block_size_bytes()))
1196 		return -EINVAL;
1197 	return memory_group_register(group);
1198 }
1199 EXPORT_SYMBOL_GPL(memory_group_register_dynamic);
1200 
1201 /**
1202  * memory_group_unregister() - Unregister a memory group.
1203  * @mgid: the memory group id
1204  *
1205  * Unregister a memory group. If any memory block still belongs to this
1206  * memory group, unregistering will fail.
1207  *
1208  * Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some
1209  * memory blocks still belong to this memory group and returns 0 if
1210  * unregistering succeeded.
1211  */
memory_group_unregister(int mgid)1212 int memory_group_unregister(int mgid)
1213 {
1214 	struct memory_group *group;
1215 
1216 	if (mgid < 0)
1217 		return -EINVAL;
1218 
1219 	group = xa_load(&memory_groups, mgid);
1220 	if (!group)
1221 		return -EINVAL;
1222 	if (!list_empty(&group->memory_blocks))
1223 		return -EBUSY;
1224 	xa_erase(&memory_groups, mgid);
1225 	kfree(group);
1226 	return 0;
1227 }
1228 EXPORT_SYMBOL_GPL(memory_group_unregister);
1229 
1230 /*
1231  * This is an internal helper only to be used in core memory hotplug code to
1232  * lookup a memory group. We don't care about locking, as we don't expect a
1233  * memory group to get unregistered while adding memory to it -- because
1234  * the group and the memory is managed by the same driver.
1235  */
memory_group_find_by_id(int mgid)1236 struct memory_group *memory_group_find_by_id(int mgid)
1237 {
1238 	return xa_load(&memory_groups, mgid);
1239 }
1240 
1241 /*
1242  * This is an internal helper only to be used in core memory hotplug code to
1243  * walk all dynamic memory groups excluding a given memory group, either
1244  * belonging to a specific node, or belonging to any node.
1245  */
walk_dynamic_memory_groups(int nid,walk_memory_groups_func_t func,struct memory_group * excluded,void * arg)1246 int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func,
1247 			       struct memory_group *excluded, void *arg)
1248 {
1249 	struct memory_group *group;
1250 	unsigned long index;
1251 	int ret = 0;
1252 
1253 	xa_for_each_marked(&memory_groups, index, group,
1254 			   MEMORY_GROUP_MARK_DYNAMIC) {
1255 		if (group == excluded)
1256 			continue;
1257 #ifdef CONFIG_NUMA
1258 		if (nid != NUMA_NO_NODE && group->nid != nid)
1259 			continue;
1260 #endif /* CONFIG_NUMA */
1261 		ret = func(group, arg);
1262 		if (ret)
1263 			break;
1264 	}
1265 	return ret;
1266 }
1267 
1268 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
memblk_nr_poison_inc(unsigned long pfn)1269 void memblk_nr_poison_inc(unsigned long pfn)
1270 {
1271 	const unsigned long block_id = pfn_to_block_id(pfn);
1272 	struct memory_block *mem = find_memory_block_by_id(block_id);
1273 
1274 	if (mem)
1275 		atomic_long_inc(&mem->nr_hwpoison);
1276 }
1277 
memblk_nr_poison_sub(unsigned long pfn,long i)1278 void memblk_nr_poison_sub(unsigned long pfn, long i)
1279 {
1280 	const unsigned long block_id = pfn_to_block_id(pfn);
1281 	struct memory_block *mem = find_memory_block_by_id(block_id);
1282 
1283 	if (mem)
1284 		atomic_long_sub(i, &mem->nr_hwpoison);
1285 }
1286 
memblk_nr_poison(struct memory_block * mem)1287 static unsigned long memblk_nr_poison(struct memory_block *mem)
1288 {
1289 	return atomic_long_read(&mem->nr_hwpoison);
1290 }
1291 #endif
1292