xref: /linux/mm/memfd.c (revision ef24e0aa078fa4965c6e925209780a32b325c0d8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * memfd_create system call and file sealing support
4  *
5  * Code was originally included in shmem.c, and broken out to facilitate
6  * use by hugetlbfs as well as tmpfs.
7  */
8 
9 #include <linux/fs.h>
10 #include <linux/vfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/file.h>
13 #include <linux/mm.h>
14 #include <linux/sched/signal.h>
15 #include <linux/khugepaged.h>
16 #include <linux/syscalls.h>
17 #include <linux/hugetlb.h>
18 #include <linux/shmem_fs.h>
19 #include <linux/memfd.h>
20 #include <linux/pid_namespace.h>
21 #include <uapi/linux/memfd.h>
22 #include "swap.h"
23 
24 /*
25  * We need a tag: a new tag would expand every xa_node by 8 bytes,
26  * so reuse a tag which we firmly believe is never set or cleared on tmpfs
27  * or hugetlbfs because they are memory only filesystems.
28  */
29 #define MEMFD_TAG_PINNED        PAGECACHE_TAG_TOWRITE
30 #define LAST_SCAN               4       /* about 150ms max */
31 
32 static bool memfd_folio_has_extra_refs(struct folio *folio)
33 {
34 	return folio_ref_count(folio) != folio_expected_ref_count(folio);
35 }
36 
37 static void memfd_tag_pins(struct xa_state *xas)
38 {
39 	struct folio *folio;
40 	int latency = 0;
41 
42 	lru_add_drain();
43 
44 	xas_lock_irq(xas);
45 	xas_for_each(xas, folio, ULONG_MAX) {
46 		if (!xa_is_value(folio) && memfd_folio_has_extra_refs(folio))
47 			xas_set_mark(xas, MEMFD_TAG_PINNED);
48 
49 		if (++latency < XA_CHECK_SCHED)
50 			continue;
51 		latency = 0;
52 
53 		xas_pause(xas);
54 		xas_unlock_irq(xas);
55 		cond_resched();
56 		xas_lock_irq(xas);
57 	}
58 	xas_unlock_irq(xas);
59 }
60 
61 /*
62  * This is a helper function used by memfd_pin_user_pages() in GUP (gup.c).
63  * It is mainly called to allocate a folio in a memfd when the caller
64  * (memfd_pin_folios()) cannot find a folio in the page cache at a given
65  * index in the mapping.
66  */
67 struct folio *memfd_alloc_folio(struct file *memfd, pgoff_t idx)
68 {
69 #ifdef CONFIG_HUGETLB_PAGE
70 	struct folio *folio;
71 	gfp_t gfp_mask;
72 
73 	if (is_file_hugepages(memfd)) {
74 		/*
75 		 * The folio would most likely be accessed by a DMA driver,
76 		 * therefore, we have zone memory constraints where we can
77 		 * alloc from. Also, the folio will be pinned for an indefinite
78 		 * amount of time, so it is not expected to be migrated away.
79 		 */
80 		struct inode *inode = file_inode(memfd);
81 		struct hstate *h = hstate_file(memfd);
82 		int err = -ENOMEM;
83 		long nr_resv;
84 
85 		gfp_mask = htlb_alloc_mask(h);
86 		gfp_mask &= ~(__GFP_HIGHMEM | __GFP_MOVABLE);
87 		idx >>= huge_page_order(h);
88 
89 		nr_resv = hugetlb_reserve_pages(inode, idx, idx + 1, NULL, 0);
90 		if (nr_resv < 0)
91 			return ERR_PTR(nr_resv);
92 
93 		folio = alloc_hugetlb_folio_reserve(h,
94 						    numa_node_id(),
95 						    NULL,
96 						    gfp_mask);
97 		if (folio) {
98 			u32 hash;
99 
100 			/*
101 			 * Zero the folio to prevent information leaks to userspace.
102 			 * Use folio_zero_user() which is optimized for huge/gigantic
103 			 * pages. Pass 0 as addr_hint since this is not a faulting path
104 			 *  and we don't have a user virtual address yet.
105 			 */
106 			folio_zero_user(folio, 0);
107 
108 			/*
109 			 * Mark the folio uptodate before adding to page cache,
110 			 * as required by filemap.c and other hugetlb paths.
111 			 */
112 			__folio_mark_uptodate(folio);
113 
114 			/*
115 			 * Serialize hugepage allocation and instantiation to prevent
116 			 * races with concurrent allocations, as required by all other
117 			 * callers of hugetlb_add_to_page_cache().
118 			 */
119 			hash = hugetlb_fault_mutex_hash(memfd->f_mapping, idx);
120 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
121 
122 			err = hugetlb_add_to_page_cache(folio,
123 							memfd->f_mapping,
124 							idx);
125 
126 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
127 
128 			if (err) {
129 				folio_put(folio);
130 				goto err_unresv;
131 			}
132 
133 			hugetlb_set_folio_subpool(folio, subpool_inode(inode));
134 			folio_unlock(folio);
135 			return folio;
136 		}
137 err_unresv:
138 		if (nr_resv > 0)
139 			hugetlb_unreserve_pages(inode, idx, idx + 1, 0);
140 		return ERR_PTR(err);
141 	}
142 #endif
143 	return shmem_read_folio(memfd->f_mapping, idx);
144 }
145 
146 /*
147  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
148  * via get_user_pages(), drivers might have some pending I/O without any active
149  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all folios
150  * and see whether it has an elevated ref-count. If so, we tag them and wait for
151  * them to be dropped.
152  * The caller must guarantee that no new user will acquire writable references
153  * to those folios to avoid races.
154  */
155 static int memfd_wait_for_pins(struct address_space *mapping)
156 {
157 	XA_STATE(xas, &mapping->i_pages, 0);
158 	struct folio *folio;
159 	int error, scan;
160 
161 	memfd_tag_pins(&xas);
162 
163 	error = 0;
164 	for (scan = 0; scan <= LAST_SCAN; scan++) {
165 		int latency = 0;
166 
167 		if (!xas_marked(&xas, MEMFD_TAG_PINNED))
168 			break;
169 
170 		if (!scan)
171 			lru_add_drain_all();
172 		else if (schedule_timeout_killable((HZ << scan) / 200))
173 			scan = LAST_SCAN;
174 
175 		xas_set(&xas, 0);
176 		xas_lock_irq(&xas);
177 		xas_for_each_marked(&xas, folio, ULONG_MAX, MEMFD_TAG_PINNED) {
178 			bool clear = true;
179 
180 			if (!xa_is_value(folio) &&
181 			    memfd_folio_has_extra_refs(folio)) {
182 				/*
183 				 * On the last scan, we clean up all those tags
184 				 * we inserted; but make a note that we still
185 				 * found folios pinned.
186 				 */
187 				if (scan == LAST_SCAN)
188 					error = -EBUSY;
189 				else
190 					clear = false;
191 			}
192 			if (clear)
193 				xas_clear_mark(&xas, MEMFD_TAG_PINNED);
194 
195 			if (++latency < XA_CHECK_SCHED)
196 				continue;
197 			latency = 0;
198 
199 			xas_pause(&xas);
200 			xas_unlock_irq(&xas);
201 			cond_resched();
202 			xas_lock_irq(&xas);
203 		}
204 		xas_unlock_irq(&xas);
205 	}
206 
207 	return error;
208 }
209 
210 static unsigned int *memfd_file_seals_ptr(struct file *file)
211 {
212 	if (shmem_file(file))
213 		return &SHMEM_I(file_inode(file))->seals;
214 
215 #ifdef CONFIG_HUGETLBFS
216 	if (is_file_hugepages(file))
217 		return &HUGETLBFS_I(file_inode(file))->seals;
218 #endif
219 
220 	return NULL;
221 }
222 
223 #define F_ALL_SEALS (F_SEAL_SEAL | \
224 		     F_SEAL_EXEC | \
225 		     F_SEAL_SHRINK | \
226 		     F_SEAL_GROW | \
227 		     F_SEAL_WRITE | \
228 		     F_SEAL_FUTURE_WRITE)
229 
230 static int memfd_add_seals(struct file *file, unsigned int seals)
231 {
232 	struct inode *inode = file_inode(file);
233 	unsigned int *file_seals;
234 	int error;
235 
236 	/*
237 	 * SEALING
238 	 * Sealing allows multiple parties to share a tmpfs or hugetlbfs file
239 	 * but restrict access to a specific subset of file operations. Seals
240 	 * can only be added, but never removed. This way, mutually untrusted
241 	 * parties can share common memory regions with a well-defined policy.
242 	 * A malicious peer can thus never perform unwanted operations on a
243 	 * shared object.
244 	 *
245 	 * Seals are only supported on special tmpfs or hugetlbfs files and
246 	 * always affect the whole underlying inode. Once a seal is set, it
247 	 * may prevent some kinds of access to the file. Currently, the
248 	 * following seals are defined:
249 	 *   SEAL_SEAL: Prevent further seals from being set on this file
250 	 *   SEAL_SHRINK: Prevent the file from shrinking
251 	 *   SEAL_GROW: Prevent the file from growing
252 	 *   SEAL_WRITE: Prevent write access to the file
253 	 *   SEAL_EXEC: Prevent modification of the exec bits in the file mode
254 	 *
255 	 * As we don't require any trust relationship between two parties, we
256 	 * must prevent seals from being removed. Therefore, sealing a file
257 	 * only adds a given set of seals to the file, it never touches
258 	 * existing seals. Furthermore, the "setting seals"-operation can be
259 	 * sealed itself, which basically prevents any further seal from being
260 	 * added.
261 	 *
262 	 * Semantics of sealing are only defined on volatile files. Only
263 	 * anonymous tmpfs and hugetlbfs files support sealing. More
264 	 * importantly, seals are never written to disk. Therefore, there's
265 	 * no plan to support it on other file types.
266 	 */
267 
268 	if (!(file->f_mode & FMODE_WRITE))
269 		return -EPERM;
270 	if (seals & ~(unsigned int)F_ALL_SEALS)
271 		return -EINVAL;
272 
273 	inode_lock(inode);
274 
275 	file_seals = memfd_file_seals_ptr(file);
276 	if (!file_seals) {
277 		error = -EINVAL;
278 		goto unlock;
279 	}
280 
281 	if (*file_seals & F_SEAL_SEAL) {
282 		error = -EPERM;
283 		goto unlock;
284 	}
285 
286 	if ((seals & F_SEAL_WRITE) && !(*file_seals & F_SEAL_WRITE)) {
287 		error = mapping_deny_writable(file->f_mapping);
288 		if (error)
289 			goto unlock;
290 
291 		error = memfd_wait_for_pins(file->f_mapping);
292 		if (error) {
293 			mapping_allow_writable(file->f_mapping);
294 			goto unlock;
295 		}
296 	}
297 
298 	/*
299 	 * SEAL_EXEC implies SEAL_WRITE, making W^X from the start.
300 	 */
301 	if (seals & F_SEAL_EXEC && inode->i_mode & 0111)
302 		seals |= F_SEAL_SHRINK|F_SEAL_GROW|F_SEAL_WRITE|F_SEAL_FUTURE_WRITE;
303 
304 	*file_seals |= seals;
305 	error = 0;
306 
307 unlock:
308 	inode_unlock(inode);
309 	return error;
310 }
311 
312 static int memfd_get_seals(struct file *file)
313 {
314 	unsigned int *seals = memfd_file_seals_ptr(file);
315 
316 	return seals ? *seals : -EINVAL;
317 }
318 
319 long memfd_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
320 {
321 	long error;
322 
323 	switch (cmd) {
324 	case F_ADD_SEALS:
325 		error = memfd_add_seals(file, arg);
326 		break;
327 	case F_GET_SEALS:
328 		error = memfd_get_seals(file);
329 		break;
330 	default:
331 		error = -EINVAL;
332 		break;
333 	}
334 
335 	return error;
336 }
337 
338 #define MFD_NAME_PREFIX "memfd:"
339 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
340 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
341 
342 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB | MFD_NOEXEC_SEAL | MFD_EXEC)
343 
344 static int check_sysctl_memfd_noexec(unsigned int *flags)
345 {
346 #ifdef CONFIG_SYSCTL
347 	struct pid_namespace *ns = task_active_pid_ns(current);
348 	int sysctl = pidns_memfd_noexec_scope(ns);
349 
350 	if (!(*flags & (MFD_EXEC | MFD_NOEXEC_SEAL))) {
351 		if (sysctl >= MEMFD_NOEXEC_SCOPE_NOEXEC_SEAL)
352 			*flags |= MFD_NOEXEC_SEAL;
353 		else
354 			*flags |= MFD_EXEC;
355 	}
356 
357 	if (!(*flags & MFD_NOEXEC_SEAL) && sysctl >= MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED) {
358 		pr_err_ratelimited(
359 			"%s[%d]: memfd_create() requires MFD_NOEXEC_SEAL with vm.memfd_noexec=%d\n",
360 			current->comm, task_pid_nr(current), sysctl);
361 		return -EACCES;
362 	}
363 #endif
364 	return 0;
365 }
366 
367 static inline bool is_write_sealed(unsigned int seals)
368 {
369 	return seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE);
370 }
371 
372 static int check_write_seal(vm_flags_t *vm_flags_ptr)
373 {
374 	vm_flags_t vm_flags = *vm_flags_ptr;
375 	vm_flags_t mask = vm_flags & (VM_SHARED | VM_WRITE);
376 
377 	/* If a private mapping then writability is irrelevant. */
378 	if (!(mask & VM_SHARED))
379 		return 0;
380 
381 	/*
382 	 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
383 	 * write seals are active.
384 	 */
385 	if (mask & VM_WRITE)
386 		return -EPERM;
387 
388 	/*
389 	 * This is a read-only mapping, disallow mprotect() from making a
390 	 * write-sealed mapping writable in future.
391 	 */
392 	*vm_flags_ptr &= ~VM_MAYWRITE;
393 
394 	return 0;
395 }
396 
397 int memfd_check_seals_mmap(struct file *file, vm_flags_t *vm_flags_ptr)
398 {
399 	int err = 0;
400 	unsigned int *seals_ptr = memfd_file_seals_ptr(file);
401 	unsigned int seals = seals_ptr ? *seals_ptr : 0;
402 
403 	if (is_write_sealed(seals))
404 		err = check_write_seal(vm_flags_ptr);
405 
406 	return err;
407 }
408 
409 static int sanitize_flags(unsigned int *flags_ptr)
410 {
411 	unsigned int flags = *flags_ptr;
412 
413 	if (!(flags & MFD_HUGETLB)) {
414 		if (flags & ~MFD_ALL_FLAGS)
415 			return -EINVAL;
416 	} else {
417 		/* Allow huge page size encoding in flags. */
418 		if (flags & ~(MFD_ALL_FLAGS |
419 				(MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
420 			return -EINVAL;
421 	}
422 
423 	/* Invalid if both EXEC and NOEXEC_SEAL are set.*/
424 	if ((flags & MFD_EXEC) && (flags & MFD_NOEXEC_SEAL))
425 		return -EINVAL;
426 
427 	return check_sysctl_memfd_noexec(flags_ptr);
428 }
429 
430 static char *alloc_name(const char __user *uname)
431 {
432 	int error;
433 	char *name;
434 	long len;
435 
436 	name = kmalloc(NAME_MAX + 1, GFP_KERNEL);
437 	if (!name)
438 		return ERR_PTR(-ENOMEM);
439 
440 	memcpy(name, MFD_NAME_PREFIX, MFD_NAME_PREFIX_LEN);
441 	/* returned length does not include terminating zero */
442 	len = strncpy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, MFD_NAME_MAX_LEN + 1);
443 	if (len < 0) {
444 		error = -EFAULT;
445 		goto err_name;
446 	} else if (len > MFD_NAME_MAX_LEN) {
447 		error = -EINVAL;
448 		goto err_name;
449 	}
450 
451 	return name;
452 
453 err_name:
454 	kfree(name);
455 	return ERR_PTR(error);
456 }
457 
458 struct file *memfd_alloc_file(const char *name, unsigned int flags)
459 {
460 	unsigned int *file_seals;
461 	struct file *file;
462 	struct inode *inode;
463 	int err = 0;
464 
465 	if (flags & MFD_HUGETLB) {
466 		file = hugetlb_file_setup(name, 0, VM_NORESERVE,
467 					HUGETLB_ANONHUGE_INODE,
468 					(flags >> MFD_HUGE_SHIFT) &
469 					MFD_HUGE_MASK);
470 	} else {
471 		file = shmem_file_setup(name, 0, VM_NORESERVE);
472 	}
473 	if (IS_ERR(file))
474 		return file;
475 
476 	inode = file_inode(file);
477 	err = security_inode_init_security_anon(inode,
478 			&QSTR(MEMFD_ANON_NAME), NULL);
479 	if (err) {
480 		fput(file);
481 		file = ERR_PTR(err);
482 		return file;
483 	}
484 
485 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
486 	file->f_flags |= O_LARGEFILE;
487 
488 	if (flags & MFD_NOEXEC_SEAL) {
489 		inode->i_mode &= ~0111;
490 		file_seals = memfd_file_seals_ptr(file);
491 		if (file_seals) {
492 			*file_seals &= ~F_SEAL_SEAL;
493 			*file_seals |= F_SEAL_EXEC;
494 		}
495 	} else if (flags & MFD_ALLOW_SEALING) {
496 		/* MFD_EXEC and MFD_ALLOW_SEALING are set */
497 		file_seals = memfd_file_seals_ptr(file);
498 		if (file_seals)
499 			*file_seals &= ~F_SEAL_SEAL;
500 	}
501 
502 	return file;
503 }
504 
505 SYSCALL_DEFINE2(memfd_create,
506 		const char __user *, uname,
507 		unsigned int, flags)
508 {
509 	char *name __free(kfree) = NULL;
510 	unsigned int fd_flags;
511 	int error;
512 
513 	error = sanitize_flags(&flags);
514 	if (error < 0)
515 		return error;
516 
517 	name = alloc_name(uname);
518 	if (IS_ERR(name))
519 		return PTR_ERR(name);
520 
521 	fd_flags = (flags & MFD_CLOEXEC) ? O_CLOEXEC : 0;
522 	return FD_ADD(fd_flags, memfd_alloc_file(name, flags));
523 }
524