xref: /linux/include/linux/highmem.h (revision 8d846b723e5723d98d859df9feeab89c2c889fb2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HIGHMEM_H
3 #define _LINUX_HIGHMEM_H
4 
5 #include <linux/fs.h>
6 #include <linux/kernel.h>
7 #include <linux/bug.h>
8 #include <linux/cacheflush.h>
9 #include <linux/kmsan.h>
10 #include <linux/mm.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 
14 #include "highmem-internal.h"
15 
16 /**
17  * kmap - Map a page for long term usage
18  * @page:	Pointer to the page to be mapped
19  *
20  * Returns: The virtual address of the mapping
21  *
22  * Can only be invoked from preemptible task context because on 32bit
23  * systems with CONFIG_HIGHMEM enabled this function might sleep.
24  *
25  * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area
26  * this returns the virtual address of the direct kernel mapping.
27  *
28  * The returned virtual address is globally visible and valid up to the
29  * point where it is unmapped via kunmap(). The pointer can be handed to
30  * other contexts.
31  *
32  * For highmem pages on 32bit systems this can be slow as the mapping space
33  * is limited and protected by a global lock. In case that there is no
34  * mapping slot available the function blocks until a slot is released via
35  * kunmap().
36  */
37 static inline void *kmap(struct page *page);
38 
39 /**
40  * kunmap - Unmap the virtual address mapped by kmap()
41  * @page:	Pointer to the page which was mapped by kmap()
42  *
43  * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of
44  * pages in the low memory area.
45  */
46 static inline void kunmap(const struct page *page);
47 
48 /**
49  * kmap_to_page - Get the page for a kmap'ed address
50  * @addr:	The address to look up
51  *
52  * Returns: The page which is mapped to @addr.
53  */
54 static inline struct page *kmap_to_page(void *addr);
55 
56 /**
57  * kmap_flush_unused - Flush all unused kmap mappings in order to
58  *		       remove stray mappings
59  */
60 static inline void kmap_flush_unused(void);
61 
62 /**
63  * kmap_local_page - Map a page for temporary usage
64  * @page: Pointer to the page to be mapped
65  *
66  * Returns: The virtual address of the mapping
67  *
68  * Can be invoked from any context, including interrupts.
69  *
70  * Requires careful handling when nesting multiple mappings because the map
71  * management is stack based. The unmap has to be in the reverse order of
72  * the map operation:
73  *
74  * addr1 = kmap_local_page(page1);
75  * addr2 = kmap_local_page(page2);
76  * ...
77  * kunmap_local(addr2);
78  * kunmap_local(addr1);
79  *
80  * Unmapping addr1 before addr2 is invalid and causes malfunction.
81  *
82  * Contrary to kmap() mappings the mapping is only valid in the context of
83  * the caller and cannot be handed to other contexts.
84  *
85  * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
86  * virtual address of the direct mapping. Only real highmem pages are
87  * temporarily mapped.
88  *
89  * While kmap_local_page() is significantly faster than kmap() for the highmem
90  * case it comes with restrictions about the pointer validity.
91  *
92  * On HIGHMEM enabled systems mapping a highmem page has the side effect of
93  * disabling migration in order to keep the virtual address stable across
94  * preemption. No caller of kmap_local_page() can rely on this side effect.
95  */
96 static inline void *kmap_local_page(const struct page *page);
97 
98 /**
99  * kmap_local_folio - Map a page in this folio for temporary usage
100  * @folio: The folio containing the page.
101  * @offset: The byte offset within the folio which identifies the page.
102  *
103  * Requires careful handling when nesting multiple mappings because the map
104  * management is stack based. The unmap has to be in the reverse order of
105  * the map operation::
106  *
107  *   addr1 = kmap_local_folio(folio1, offset1);
108  *   addr2 = kmap_local_folio(folio2, offset2);
109  *   ...
110  *   kunmap_local(addr2);
111  *   kunmap_local(addr1);
112  *
113  * Unmapping addr1 before addr2 is invalid and causes malfunction.
114  *
115  * Contrary to kmap() mappings the mapping is only valid in the context of
116  * the caller and cannot be handed to other contexts.
117  *
118  * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
119  * virtual address of the direct mapping. Only real highmem pages are
120  * temporarily mapped.
121  *
122  * While it is significantly faster than kmap() for the highmem case it
123  * comes with restrictions about the pointer validity.
124  *
125  * On HIGHMEM enabled systems mapping a highmem page has the side effect of
126  * disabling migration in order to keep the virtual address stable across
127  * preemption. No caller of kmap_local_folio() can rely on this side effect.
128  *
129  * Context: Can be invoked from any context.
130  * Return: The virtual address of @offset.
131  */
132 static inline void *kmap_local_folio(const struct folio *folio, size_t offset);
133 
134 /**
135  * kmap_atomic - Atomically map a page for temporary usage - Deprecated!
136  * @page:	Pointer to the page to be mapped
137  *
138  * Returns: The virtual address of the mapping
139  *
140  * In fact a wrapper around kmap_local_page() which also disables pagefaults
141  * and, depending on PREEMPT_RT configuration, also CPU migration and
142  * preemption. Therefore users should not count on the latter two side effects.
143  *
144  * Mappings should always be released by kunmap_atomic().
145  *
146  * Do not use in new code. Use kmap_local_page() instead.
147  *
148  * It is used in atomic context when code wants to access the contents of a
149  * page that might be allocated from high memory (see __GFP_HIGHMEM), for
150  * example a page in the pagecache.  The API has two functions, and they
151  * can be used in a manner similar to the following::
152  *
153  *   // Find the page of interest.
154  *   struct page *page = find_get_page(mapping, offset);
155  *
156  *   // Gain access to the contents of that page.
157  *   void *vaddr = kmap_atomic(page);
158  *
159  *   // Do something to the contents of that page.
160  *   memset(vaddr, 0, PAGE_SIZE);
161  *
162  *   // Unmap that page.
163  *   kunmap_atomic(vaddr);
164  *
165  * Note that the kunmap_atomic() call takes the result of the kmap_atomic()
166  * call, not the argument.
167  *
168  * If you need to map two pages because you want to copy from one page to
169  * another you need to keep the kmap_atomic calls strictly nested, like:
170  *
171  * vaddr1 = kmap_atomic(page1);
172  * vaddr2 = kmap_atomic(page2);
173  *
174  * memcpy(vaddr1, vaddr2, PAGE_SIZE);
175  *
176  * kunmap_atomic(vaddr2);
177  * kunmap_atomic(vaddr1);
178  */
179 static inline void *kmap_atomic(const struct page *page);
180 
181 /* Highmem related interfaces for management code */
182 static inline unsigned long nr_free_highpages(void);
183 static inline unsigned long totalhigh_pages(void);
184 
185 #ifndef ARCH_HAS_FLUSH_ANON_PAGE
186 static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
187 {
188 }
189 #endif
190 
191 #ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
192 static inline void flush_kernel_vmap_range(void *vaddr, int size)
193 {
194 }
195 static inline void invalidate_kernel_vmap_range(void *vaddr, int size)
196 {
197 }
198 #endif
199 
200 #ifndef clear_user_highpage
201 #ifndef clear_user_page
202 /**
203  * clear_user_page() - clear a page to be mapped to user space
204  * @addr: the address of the page
205  * @vaddr: the address of the user mapping
206  * @page: the page
207  *
208  * We condition the definition of clear_user_page() on the architecture
209  * not having a custom clear_user_highpage(). That's because if there
210  * is some special flushing needed for clear_user_highpage() then it
211  * is likely that clear_user_page() also needs some magic. And, since
212  * our only caller is the generic clear_user_highpage(), not defining
213  * is not much of a loss.
214  */
215 static inline void clear_user_page(void *addr, unsigned long vaddr, struct page *page)
216 {
217 	clear_page(addr);
218 }
219 #endif
220 
221 /**
222  * clear_user_pages() - clear a page range to be mapped to user space
223  * @addr: start address
224  * @vaddr: start address of the user mapping
225  * @page: start page
226  * @npages: number of pages
227  *
228  * Assumes that the region (@addr, +@npages) has been validated
229  * already so this does no exception handling.
230  *
231  * If the architecture provides a clear_user_page(), use that;
232  * otherwise, we can safely use clear_pages().
233  */
234 static inline void clear_user_pages(void *addr, unsigned long vaddr,
235 		struct page *page, unsigned int npages)
236 {
237 
238 #ifdef clear_user_page
239 	do {
240 		clear_user_page(addr, vaddr, page);
241 		addr += PAGE_SIZE;
242 		vaddr += PAGE_SIZE;
243 		page++;
244 	} while (--npages);
245 #else
246 	/*
247 	 * Prefer clear_pages() to allow for architectural optimizations
248 	 * when operating on contiguous page ranges.
249 	 */
250 	clear_pages(addr, npages);
251 #endif
252 }
253 
254 /**
255  * clear_user_highpage() - clear a page to be mapped to user space
256  * @page: start page
257  * @vaddr: start address of the user mapping
258  *
259  * With !CONFIG_HIGHMEM this (and the copy_user_highpage() below) will
260  * be plain clear_user_page() (and copy_user_page()).
261  */
262 static inline void clear_user_highpage(struct page *page, unsigned long vaddr)
263 {
264 	void *addr = kmap_local_page(page);
265 	clear_user_page(addr, vaddr, page);
266 	kunmap_local(addr);
267 }
268 #endif /* clear_user_highpage */
269 
270 /**
271  * clear_user_highpages() - clear a page range to be mapped to user space
272  * @page: start page
273  * @vaddr: start address of the user mapping
274  * @npages: number of pages
275  *
276  * Assumes that all the pages in the region (@page, +@npages) are valid
277  * so this does no exception handling.
278  */
279 static inline void clear_user_highpages(struct page *page, unsigned long vaddr,
280 					unsigned int npages)
281 {
282 
283 #if defined(clear_user_highpage) || defined(CONFIG_HIGHMEM)
284 	/*
285 	 * An architecture defined clear_user_highpage() implies special
286 	 * handling is needed.
287 	 *
288 	 * So we use that or, the generic variant if CONFIG_HIGHMEM is
289 	 * enabled.
290 	 */
291 	do {
292 		clear_user_highpage(page, vaddr);
293 		vaddr += PAGE_SIZE;
294 		page++;
295 	} while (--npages);
296 #else
297 
298 	/*
299 	 * Prefer clear_user_pages() to allow for architectural optimizations
300 	 * when operating on contiguous page ranges.
301 	 */
302 	clear_user_pages(page_address(page), vaddr, page, npages);
303 #endif
304 }
305 
306 #ifndef vma_alloc_zeroed_movable_folio
307 /**
308  * vma_alloc_zeroed_movable_folio - Allocate a zeroed page for a VMA.
309  * @vma: The VMA the page is to be allocated for.
310  * @vaddr: The virtual address the page will be inserted into.
311  *
312  * This function will allocate a page suitable for inserting into this
313  * VMA at this virtual address.  It may be allocated from highmem or
314  * the movable zone.  An architecture may provide its own implementation.
315  *
316  * Return: A folio containing one allocated and zeroed page or NULL if
317  * we are out of memory.
318  */
319 static inline
320 struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
321 				   unsigned long vaddr)
322 {
323 	struct folio *folio;
324 
325 	folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vaddr);
326 	if (folio && user_alloc_needs_zeroing())
327 		clear_user_highpage(&folio->page, vaddr);
328 
329 	return folio;
330 }
331 #endif
332 
333 static inline void clear_highpage(struct page *page)
334 {
335 	void *kaddr = kmap_local_page(page);
336 	clear_page(kaddr);
337 	kunmap_local(kaddr);
338 }
339 
340 static inline void clear_highpage_kasan_tagged(struct page *page)
341 {
342 	void *kaddr = kmap_local_page(page);
343 
344 	clear_page(kasan_reset_tag(kaddr));
345 	kunmap_local(kaddr);
346 }
347 
348 #ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGES
349 
350 /* Return false to let people know we did not initialize the pages */
351 static inline bool tag_clear_highpages(struct page *page, int numpages)
352 {
353 	return false;
354 }
355 
356 #endif
357 
358 /*
359  * If we pass in a base or tail page, we can zero up to PAGE_SIZE.
360  * If we pass in a head page, we can zero up to the size of the compound page.
361  */
362 #ifdef CONFIG_HIGHMEM
363 void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
364 		unsigned start2, unsigned end2);
365 #else
366 static inline void zero_user_segments(struct page *page,
367 		unsigned start1, unsigned end1,
368 		unsigned start2, unsigned end2)
369 {
370 	void *kaddr = kmap_local_page(page);
371 	unsigned int i;
372 
373 	BUG_ON(end1 > page_size(page) || end2 > page_size(page));
374 
375 	if (end1 > start1)
376 		memset(kaddr + start1, 0, end1 - start1);
377 
378 	if (end2 > start2)
379 		memset(kaddr + start2, 0, end2 - start2);
380 
381 	kunmap_local(kaddr);
382 	for (i = 0; i < compound_nr(page); i++)
383 		flush_dcache_page(page + i);
384 }
385 #endif
386 
387 static inline void zero_user_segment(struct page *page,
388 	unsigned start, unsigned end)
389 {
390 	zero_user_segments(page, start, end, 0, 0);
391 }
392 
393 #ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE
394 
395 static inline void copy_user_highpage(struct page *to, struct page *from,
396 	unsigned long vaddr, struct vm_area_struct *vma)
397 {
398 	char *vfrom, *vto;
399 
400 	vfrom = kmap_local_page(from);
401 	vto = kmap_local_page(to);
402 	copy_user_page(vto, vfrom, vaddr, to);
403 	kmsan_unpoison_memory(page_address(to), PAGE_SIZE);
404 	kunmap_local(vto);
405 	kunmap_local(vfrom);
406 }
407 
408 #endif
409 
410 #ifndef __HAVE_ARCH_COPY_HIGHPAGE
411 
412 static inline void copy_highpage(struct page *to, struct page *from)
413 {
414 	char *vfrom, *vto;
415 
416 	vfrom = kmap_local_page(from);
417 	vto = kmap_local_page(to);
418 	copy_page(vto, vfrom);
419 	kmsan_copy_page_meta(to, from);
420 	kunmap_local(vto);
421 	kunmap_local(vfrom);
422 }
423 
424 #endif
425 
426 #ifdef copy_mc_to_kernel
427 /*
428  * If architecture supports machine check exception handling, define the
429  * #MC versions of copy_user_highpage and copy_highpage. They copy a memory
430  * page with #MC in source page (@from) handled, and return the number
431  * of bytes not copied if there was a #MC, otherwise 0 for success.
432  */
433 static inline int copy_mc_user_highpage(struct page *to, struct page *from,
434 					unsigned long vaddr, struct vm_area_struct *vma)
435 {
436 	unsigned long ret;
437 	char *vfrom, *vto;
438 
439 	vfrom = kmap_local_page(from);
440 	vto = kmap_local_page(to);
441 	ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE);
442 	if (!ret)
443 		kmsan_unpoison_memory(page_address(to), PAGE_SIZE);
444 	kunmap_local(vto);
445 	kunmap_local(vfrom);
446 
447 	if (ret)
448 		memory_failure_queue(page_to_pfn(from), 0);
449 
450 	return ret;
451 }
452 
453 static inline int copy_mc_highpage(struct page *to, struct page *from)
454 {
455 	unsigned long ret;
456 	char *vfrom, *vto;
457 
458 	vfrom = kmap_local_page(from);
459 	vto = kmap_local_page(to);
460 	ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE);
461 	if (!ret)
462 		kmsan_copy_page_meta(to, from);
463 	kunmap_local(vto);
464 	kunmap_local(vfrom);
465 
466 	if (ret)
467 		memory_failure_queue(page_to_pfn(from), 0);
468 
469 	return ret;
470 }
471 #else
472 static inline int copy_mc_user_highpage(struct page *to, struct page *from,
473 					unsigned long vaddr, struct vm_area_struct *vma)
474 {
475 	copy_user_highpage(to, from, vaddr, vma);
476 	return 0;
477 }
478 
479 static inline int copy_mc_highpage(struct page *to, struct page *from)
480 {
481 	copy_highpage(to, from);
482 	return 0;
483 }
484 #endif
485 
486 static inline void memcpy_page(struct page *dst_page, size_t dst_off,
487 			       struct page *src_page, size_t src_off,
488 			       size_t len)
489 {
490 	char *dst = kmap_local_page(dst_page);
491 	char *src = kmap_local_page(src_page);
492 
493 	VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
494 	memcpy(dst + dst_off, src + src_off, len);
495 	kunmap_local(src);
496 	kunmap_local(dst);
497 }
498 
499 static inline void memcpy_folio(struct folio *dst_folio, size_t dst_off,
500 		struct folio *src_folio, size_t src_off, size_t len)
501 {
502 	VM_BUG_ON(dst_off + len > folio_size(dst_folio));
503 	VM_BUG_ON(src_off + len > folio_size(src_folio));
504 
505 	do {
506 		char *dst = kmap_local_folio(dst_folio, dst_off);
507 		const char *src = kmap_local_folio(src_folio, src_off);
508 		size_t chunk = len;
509 
510 		if (folio_test_highmem(dst_folio) &&
511 		    chunk > PAGE_SIZE - offset_in_page(dst_off))
512 			chunk = PAGE_SIZE - offset_in_page(dst_off);
513 		if (folio_test_highmem(src_folio) &&
514 		    chunk > PAGE_SIZE - offset_in_page(src_off))
515 			chunk = PAGE_SIZE - offset_in_page(src_off);
516 		memcpy(dst, src, chunk);
517 		kunmap_local(src);
518 		kunmap_local(dst);
519 
520 		dst_off += chunk;
521 		src_off += chunk;
522 		len -= chunk;
523 	} while (len > 0);
524 }
525 
526 static inline void memset_page(struct page *page, size_t offset, int val,
527 			       size_t len)
528 {
529 	char *addr = kmap_local_page(page);
530 
531 	VM_BUG_ON(offset + len > PAGE_SIZE);
532 	memset(addr + offset, val, len);
533 	kunmap_local(addr);
534 }
535 
536 static inline void memcpy_from_page(char *to, struct page *page,
537 				    size_t offset, size_t len)
538 {
539 	char *from = kmap_local_page(page);
540 
541 	VM_BUG_ON(offset + len > PAGE_SIZE);
542 	memcpy(to, from + offset, len);
543 	kunmap_local(from);
544 }
545 
546 static inline void memcpy_to_page(struct page *page, size_t offset,
547 				  const char *from, size_t len)
548 {
549 	char *to = kmap_local_page(page);
550 
551 	VM_BUG_ON(offset + len > PAGE_SIZE);
552 	memcpy(to + offset, from, len);
553 	flush_dcache_page(page);
554 	kunmap_local(to);
555 }
556 
557 static inline void memzero_page(struct page *page, size_t offset, size_t len)
558 {
559 	char *addr = kmap_local_page(page);
560 
561 	VM_BUG_ON(offset + len > PAGE_SIZE);
562 	memset(addr + offset, 0, len);
563 	flush_dcache_page(page);
564 	kunmap_local(addr);
565 }
566 
567 /**
568  * memcpy_from_folio - Copy a range of bytes from a folio.
569  * @to: The memory to copy to.
570  * @folio: The folio to read from.
571  * @offset: The first byte in the folio to read.
572  * @len: The number of bytes to copy.
573  */
574 static inline void memcpy_from_folio(char *to, struct folio *folio,
575 		size_t offset, size_t len)
576 {
577 	VM_BUG_ON(offset + len > folio_size(folio));
578 
579 	do {
580 		const char *from = kmap_local_folio(folio, offset);
581 		size_t chunk = len;
582 
583 		if (folio_test_partial_kmap(folio) &&
584 		    chunk > PAGE_SIZE - offset_in_page(offset))
585 			chunk = PAGE_SIZE - offset_in_page(offset);
586 		memcpy(to, from, chunk);
587 		kunmap_local(from);
588 
589 		to += chunk;
590 		offset += chunk;
591 		len -= chunk;
592 	} while (len > 0);
593 }
594 
595 /**
596  * memcpy_to_folio - Copy a range of bytes to a folio.
597  * @folio: The folio to write to.
598  * @offset: The first byte in the folio to store to.
599  * @from: The memory to copy from.
600  * @len: The number of bytes to copy.
601  */
602 static inline void memcpy_to_folio(struct folio *folio, size_t offset,
603 		const char *from, size_t len)
604 {
605 	VM_BUG_ON(offset + len > folio_size(folio));
606 
607 	do {
608 		char *to = kmap_local_folio(folio, offset);
609 		size_t chunk = len;
610 
611 		if (folio_test_partial_kmap(folio) &&
612 		    chunk > PAGE_SIZE - offset_in_page(offset))
613 			chunk = PAGE_SIZE - offset_in_page(offset);
614 		memcpy(to, from, chunk);
615 		kunmap_local(to);
616 
617 		from += chunk;
618 		offset += chunk;
619 		len -= chunk;
620 	} while (len > 0);
621 
622 	flush_dcache_folio(folio);
623 }
624 
625 /**
626  * folio_zero_tail - Zero the tail of a folio.
627  * @folio: The folio to zero.
628  * @offset: The byte offset in the folio to start zeroing at.
629  * @kaddr: The address the folio is currently mapped to.
630  *
631  * If you have already used kmap_local_folio() to map a folio, written
632  * some data to it and now need to zero the end of the folio (and flush
633  * the dcache), you can use this function.  If you do not have the
634  * folio kmapped (eg the folio has been partially populated by DMA),
635  * use folio_zero_range() or folio_zero_segment() instead.
636  *
637  * Return: An address which can be passed to kunmap_local().
638  */
639 static inline __must_check void *folio_zero_tail(struct folio *folio,
640 		size_t offset, void *kaddr)
641 {
642 	size_t len = folio_size(folio) - offset;
643 
644 	if (folio_test_partial_kmap(folio)) {
645 		size_t max = PAGE_SIZE - offset_in_page(offset);
646 
647 		while (len > max) {
648 			memset(kaddr, 0, max);
649 			kunmap_local(kaddr);
650 			len -= max;
651 			offset += max;
652 			max = PAGE_SIZE;
653 			kaddr = kmap_local_folio(folio, offset);
654 		}
655 	}
656 
657 	memset(kaddr, 0, len);
658 	flush_dcache_folio(folio);
659 
660 	return kaddr;
661 }
662 
663 /**
664  * folio_fill_tail - Copy some data to a folio and pad with zeroes.
665  * @folio: The destination folio.
666  * @offset: The offset into @folio at which to start copying.
667  * @from: The data to copy.
668  * @len: How many bytes of data to copy.
669  *
670  * This function is most useful for filesystems which support inline data.
671  * When they want to copy data from the inode into the page cache, this
672  * function does everything for them.  It supports large folios even on
673  * HIGHMEM configurations.
674  */
675 static inline void folio_fill_tail(struct folio *folio, size_t offset,
676 		const char *from, size_t len)
677 {
678 	char *to = kmap_local_folio(folio, offset);
679 
680 	VM_BUG_ON(offset + len > folio_size(folio));
681 
682 	if (folio_test_partial_kmap(folio)) {
683 		size_t max = PAGE_SIZE - offset_in_page(offset);
684 
685 		while (len > max) {
686 			memcpy(to, from, max);
687 			kunmap_local(to);
688 			len -= max;
689 			from += max;
690 			offset += max;
691 			max = PAGE_SIZE;
692 			to = kmap_local_folio(folio, offset);
693 		}
694 	}
695 
696 	memcpy(to, from, len);
697 	to = folio_zero_tail(folio, offset + len, to + len);
698 	kunmap_local(to);
699 }
700 
701 /**
702  * memcpy_from_file_folio - Copy some bytes from a file folio.
703  * @to: The destination buffer.
704  * @folio: The folio to copy from.
705  * @pos: The position in the file.
706  * @len: The maximum number of bytes to copy.
707  *
708  * Copy up to @len bytes from this folio.  This may be limited by PAGE_SIZE
709  * if the folio comes from HIGHMEM, and by the size of the folio.
710  *
711  * Return: The number of bytes copied from the folio.
712  */
713 static inline size_t memcpy_from_file_folio(char *to, struct folio *folio,
714 		loff_t pos, size_t len)
715 {
716 	size_t offset = offset_in_folio(folio, pos);
717 	char *from = kmap_local_folio(folio, offset);
718 
719 	if (folio_test_partial_kmap(folio)) {
720 		offset = offset_in_page(offset);
721 		len = min_t(size_t, len, PAGE_SIZE - offset);
722 	} else
723 		len = min(len, folio_size(folio) - offset);
724 
725 	memcpy(to, from, len);
726 	kunmap_local(from);
727 
728 	return len;
729 }
730 
731 /**
732  * folio_zero_segments() - Zero two byte ranges in a folio.
733  * @folio: The folio to write to.
734  * @start1: The first byte to zero.
735  * @xend1: One more than the last byte in the first range.
736  * @start2: The first byte to zero in the second range.
737  * @xend2: One more than the last byte in the second range.
738  */
739 static inline void folio_zero_segments(struct folio *folio,
740 		size_t start1, size_t xend1, size_t start2, size_t xend2)
741 {
742 	zero_user_segments(&folio->page, start1, xend1, start2, xend2);
743 }
744 
745 /**
746  * folio_zero_segment() - Zero a byte range in a folio.
747  * @folio: The folio to write to.
748  * @start: The first byte to zero.
749  * @xend: One more than the last byte to zero.
750  */
751 static inline void folio_zero_segment(struct folio *folio,
752 		size_t start, size_t xend)
753 {
754 	zero_user_segments(&folio->page, start, xend, 0, 0);
755 }
756 
757 /**
758  * folio_zero_range() - Zero a byte range in a folio.
759  * @folio: The folio to write to.
760  * @start: The first byte to zero.
761  * @length: The number of bytes to zero.
762  */
763 static inline void folio_zero_range(struct folio *folio,
764 		size_t start, size_t length)
765 {
766 	zero_user_segments(&folio->page, start, start + length, 0, 0);
767 }
768 
769 /**
770  * folio_release_kmap - Unmap a folio and drop a refcount.
771  * @folio: The folio to release.
772  * @addr: The address previously returned by a call to kmap_local_folio().
773  *
774  * It is common, eg in directory handling to kmap a folio.  This function
775  * unmaps the folio and drops the refcount that was being held to keep the
776  * folio alive while we accessed it.
777  */
778 static inline void folio_release_kmap(struct folio *folio, void *addr)
779 {
780 	kunmap_local(addr);
781 	folio_put(folio);
782 }
783 #endif /* _LINUX_HIGHMEM_H */
784