1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 #include <linux/memcontrol.h>
4 #include <linux/swap.h>
5 #include <linux/mm_inline.h>
6 #include <linux/pagewalk.h>
7 #include <linux/backing-dev.h>
8 #include <linux/swap_cgroup.h>
9 #include <linux/eventfd.h>
10 #include <linux/poll.h>
11 #include <linux/sort.h>
12 #include <linux/file.h>
13 #include <linux/seq_buf.h>
14
15 #include "internal.h"
16 #include "swap.h"
17 #include "memcontrol-v1.h"
18
19 /*
20 * Cgroups above their limits are maintained in a RB-Tree, independent of
21 * their hierarchy representation
22 */
23
24 struct mem_cgroup_tree_per_node {
25 struct rb_root rb_root;
26 struct rb_node *rb_rightmost;
27 spinlock_t lock;
28 };
29
30 struct mem_cgroup_tree {
31 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
32 };
33
34 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
35
36 /*
37 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
38 * limit reclaim to prevent infinite loops, if they ever occur.
39 */
40 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
41 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
42
43 /* Stuffs for move charges at task migration. */
44 /*
45 * Types of charges to be moved.
46 */
47 #define MOVE_ANON 0x1ULL
48 #define MOVE_FILE 0x2ULL
49 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
50
51 /* "mc" and its members are protected by cgroup_mutex */
52 static struct move_charge_struct {
53 spinlock_t lock; /* for from, to */
54 struct mm_struct *mm;
55 struct mem_cgroup *from;
56 struct mem_cgroup *to;
57 unsigned long flags;
58 unsigned long precharge;
59 unsigned long moved_charge;
60 unsigned long moved_swap;
61 struct task_struct *moving_task; /* a task moving charges */
62 wait_queue_head_t waitq; /* a waitq for other context */
63 } mc = {
64 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
65 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
66 };
67
68 /* for OOM */
69 struct mem_cgroup_eventfd_list {
70 struct list_head list;
71 struct eventfd_ctx *eventfd;
72 };
73
74 /*
75 * cgroup_event represents events which userspace want to receive.
76 */
77 struct mem_cgroup_event {
78 /*
79 * memcg which the event belongs to.
80 */
81 struct mem_cgroup *memcg;
82 /*
83 * eventfd to signal userspace about the event.
84 */
85 struct eventfd_ctx *eventfd;
86 /*
87 * Each of these stored in a list by the cgroup.
88 */
89 struct list_head list;
90 /*
91 * register_event() callback will be used to add new userspace
92 * waiter for changes related to this event. Use eventfd_signal()
93 * on eventfd to send notification to userspace.
94 */
95 int (*register_event)(struct mem_cgroup *memcg,
96 struct eventfd_ctx *eventfd, const char *args);
97 /*
98 * unregister_event() callback will be called when userspace closes
99 * the eventfd or on cgroup removing. This callback must be set,
100 * if you want provide notification functionality.
101 */
102 void (*unregister_event)(struct mem_cgroup *memcg,
103 struct eventfd_ctx *eventfd);
104 /*
105 * All fields below needed to unregister event when
106 * userspace closes eventfd.
107 */
108 poll_table pt;
109 wait_queue_head_t *wqh;
110 wait_queue_entry_t wait;
111 struct work_struct remove;
112 };
113
114 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
115 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
116 #define MEMFILE_ATTR(val) ((val) & 0xffff)
117
118 enum {
119 RES_USAGE,
120 RES_LIMIT,
121 RES_MAX_USAGE,
122 RES_FAILCNT,
123 RES_SOFT_LIMIT,
124 };
125
126 #ifdef CONFIG_LOCKDEP
127 static struct lockdep_map memcg_oom_lock_dep_map = {
128 .name = "memcg_oom_lock",
129 };
130 #endif
131
132 DEFINE_SPINLOCK(memcg_oom_lock);
133
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)134 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
135 struct mem_cgroup_tree_per_node *mctz,
136 unsigned long new_usage_in_excess)
137 {
138 struct rb_node **p = &mctz->rb_root.rb_node;
139 struct rb_node *parent = NULL;
140 struct mem_cgroup_per_node *mz_node;
141 bool rightmost = true;
142
143 if (mz->on_tree)
144 return;
145
146 mz->usage_in_excess = new_usage_in_excess;
147 if (!mz->usage_in_excess)
148 return;
149 while (*p) {
150 parent = *p;
151 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
152 tree_node);
153 if (mz->usage_in_excess < mz_node->usage_in_excess) {
154 p = &(*p)->rb_left;
155 rightmost = false;
156 } else {
157 p = &(*p)->rb_right;
158 }
159 }
160
161 if (rightmost)
162 mctz->rb_rightmost = &mz->tree_node;
163
164 rb_link_node(&mz->tree_node, parent, p);
165 rb_insert_color(&mz->tree_node, &mctz->rb_root);
166 mz->on_tree = true;
167 }
168
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)169 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
170 struct mem_cgroup_tree_per_node *mctz)
171 {
172 if (!mz->on_tree)
173 return;
174
175 if (&mz->tree_node == mctz->rb_rightmost)
176 mctz->rb_rightmost = rb_prev(&mz->tree_node);
177
178 rb_erase(&mz->tree_node, &mctz->rb_root);
179 mz->on_tree = false;
180 }
181
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)182 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
183 struct mem_cgroup_tree_per_node *mctz)
184 {
185 unsigned long flags;
186
187 spin_lock_irqsave(&mctz->lock, flags);
188 __mem_cgroup_remove_exceeded(mz, mctz);
189 spin_unlock_irqrestore(&mctz->lock, flags);
190 }
191
soft_limit_excess(struct mem_cgroup * memcg)192 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
193 {
194 unsigned long nr_pages = page_counter_read(&memcg->memory);
195 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
196 unsigned long excess = 0;
197
198 if (nr_pages > soft_limit)
199 excess = nr_pages - soft_limit;
200
201 return excess;
202 }
203
memcg1_update_tree(struct mem_cgroup * memcg,int nid)204 static void memcg1_update_tree(struct mem_cgroup *memcg, int nid)
205 {
206 unsigned long excess;
207 struct mem_cgroup_per_node *mz;
208 struct mem_cgroup_tree_per_node *mctz;
209
210 if (lru_gen_enabled()) {
211 if (soft_limit_excess(memcg))
212 lru_gen_soft_reclaim(memcg, nid);
213 return;
214 }
215
216 mctz = soft_limit_tree.rb_tree_per_node[nid];
217 if (!mctz)
218 return;
219 /*
220 * Necessary to update all ancestors when hierarchy is used.
221 * because their event counter is not touched.
222 */
223 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
224 mz = memcg->nodeinfo[nid];
225 excess = soft_limit_excess(memcg);
226 /*
227 * We have to update the tree if mz is on RB-tree or
228 * mem is over its softlimit.
229 */
230 if (excess || mz->on_tree) {
231 unsigned long flags;
232
233 spin_lock_irqsave(&mctz->lock, flags);
234 /* if on-tree, remove it */
235 if (mz->on_tree)
236 __mem_cgroup_remove_exceeded(mz, mctz);
237 /*
238 * Insert again. mz->usage_in_excess will be updated.
239 * If excess is 0, no tree ops.
240 */
241 __mem_cgroup_insert_exceeded(mz, mctz, excess);
242 spin_unlock_irqrestore(&mctz->lock, flags);
243 }
244 }
245 }
246
memcg1_remove_from_trees(struct mem_cgroup * memcg)247 void memcg1_remove_from_trees(struct mem_cgroup *memcg)
248 {
249 struct mem_cgroup_tree_per_node *mctz;
250 struct mem_cgroup_per_node *mz;
251 int nid;
252
253 for_each_node(nid) {
254 mz = memcg->nodeinfo[nid];
255 mctz = soft_limit_tree.rb_tree_per_node[nid];
256 if (mctz)
257 mem_cgroup_remove_exceeded(mz, mctz);
258 }
259 }
260
261 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)262 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
263 {
264 struct mem_cgroup_per_node *mz;
265
266 retry:
267 mz = NULL;
268 if (!mctz->rb_rightmost)
269 goto done; /* Nothing to reclaim from */
270
271 mz = rb_entry(mctz->rb_rightmost,
272 struct mem_cgroup_per_node, tree_node);
273 /*
274 * Remove the node now but someone else can add it back,
275 * we will to add it back at the end of reclaim to its correct
276 * position in the tree.
277 */
278 __mem_cgroup_remove_exceeded(mz, mctz);
279 if (!soft_limit_excess(mz->memcg) ||
280 !css_tryget(&mz->memcg->css))
281 goto retry;
282 done:
283 return mz;
284 }
285
286 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)287 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
288 {
289 struct mem_cgroup_per_node *mz;
290
291 spin_lock_irq(&mctz->lock);
292 mz = __mem_cgroup_largest_soft_limit_node(mctz);
293 spin_unlock_irq(&mctz->lock);
294 return mz;
295 }
296
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)297 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
298 pg_data_t *pgdat,
299 gfp_t gfp_mask,
300 unsigned long *total_scanned)
301 {
302 struct mem_cgroup *victim = NULL;
303 int total = 0;
304 int loop = 0;
305 unsigned long excess;
306 unsigned long nr_scanned;
307 struct mem_cgroup_reclaim_cookie reclaim = {
308 .pgdat = pgdat,
309 };
310
311 excess = soft_limit_excess(root_memcg);
312
313 while (1) {
314 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
315 if (!victim) {
316 loop++;
317 if (loop >= 2) {
318 /*
319 * If we have not been able to reclaim
320 * anything, it might because there are
321 * no reclaimable pages under this hierarchy
322 */
323 if (!total)
324 break;
325 /*
326 * We want to do more targeted reclaim.
327 * excess >> 2 is not to excessive so as to
328 * reclaim too much, nor too less that we keep
329 * coming back to reclaim from this cgroup
330 */
331 if (total >= (excess >> 2) ||
332 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
333 break;
334 }
335 continue;
336 }
337 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
338 pgdat, &nr_scanned);
339 *total_scanned += nr_scanned;
340 if (!soft_limit_excess(root_memcg))
341 break;
342 }
343 mem_cgroup_iter_break(root_memcg, victim);
344 return total;
345 }
346
memcg1_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)347 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
348 gfp_t gfp_mask,
349 unsigned long *total_scanned)
350 {
351 unsigned long nr_reclaimed = 0;
352 struct mem_cgroup_per_node *mz, *next_mz = NULL;
353 unsigned long reclaimed;
354 int loop = 0;
355 struct mem_cgroup_tree_per_node *mctz;
356 unsigned long excess;
357
358 if (lru_gen_enabled())
359 return 0;
360
361 if (order > 0)
362 return 0;
363
364 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
365
366 /*
367 * Do not even bother to check the largest node if the root
368 * is empty. Do it lockless to prevent lock bouncing. Races
369 * are acceptable as soft limit is best effort anyway.
370 */
371 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
372 return 0;
373
374 /*
375 * This loop can run a while, specially if mem_cgroup's continuously
376 * keep exceeding their soft limit and putting the system under
377 * pressure
378 */
379 do {
380 if (next_mz)
381 mz = next_mz;
382 else
383 mz = mem_cgroup_largest_soft_limit_node(mctz);
384 if (!mz)
385 break;
386
387 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
388 gfp_mask, total_scanned);
389 nr_reclaimed += reclaimed;
390 spin_lock_irq(&mctz->lock);
391
392 /*
393 * If we failed to reclaim anything from this memory cgroup
394 * it is time to move on to the next cgroup
395 */
396 next_mz = NULL;
397 if (!reclaimed)
398 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
399
400 excess = soft_limit_excess(mz->memcg);
401 /*
402 * One school of thought says that we should not add
403 * back the node to the tree if reclaim returns 0.
404 * But our reclaim could return 0, simply because due
405 * to priority we are exposing a smaller subset of
406 * memory to reclaim from. Consider this as a longer
407 * term TODO.
408 */
409 /* If excess == 0, no tree ops */
410 __mem_cgroup_insert_exceeded(mz, mctz, excess);
411 spin_unlock_irq(&mctz->lock);
412 css_put(&mz->memcg->css);
413 loop++;
414 /*
415 * Could not reclaim anything and there are no more
416 * mem cgroups to try or we seem to be looping without
417 * reclaiming anything.
418 */
419 if (!nr_reclaimed &&
420 (next_mz == NULL ||
421 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
422 break;
423 } while (!nr_reclaimed);
424 if (next_mz)
425 css_put(&next_mz->memcg->css);
426 return nr_reclaimed;
427 }
428
429 /*
430 * A routine for checking "mem" is under move_account() or not.
431 *
432 * Checking a cgroup is mc.from or mc.to or under hierarchy of
433 * moving cgroups. This is for waiting at high-memory pressure
434 * caused by "move".
435 */
mem_cgroup_under_move(struct mem_cgroup * memcg)436 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
437 {
438 struct mem_cgroup *from;
439 struct mem_cgroup *to;
440 bool ret = false;
441 /*
442 * Unlike task_move routines, we access mc.to, mc.from not under
443 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
444 */
445 spin_lock(&mc.lock);
446 from = mc.from;
447 to = mc.to;
448 if (!from)
449 goto unlock;
450
451 ret = mem_cgroup_is_descendant(from, memcg) ||
452 mem_cgroup_is_descendant(to, memcg);
453 unlock:
454 spin_unlock(&mc.lock);
455 return ret;
456 }
457
memcg1_wait_acct_move(struct mem_cgroup * memcg)458 bool memcg1_wait_acct_move(struct mem_cgroup *memcg)
459 {
460 if (mc.moving_task && current != mc.moving_task) {
461 if (mem_cgroup_under_move(memcg)) {
462 DEFINE_WAIT(wait);
463 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
464 /* moving charge context might have finished. */
465 if (mc.moving_task)
466 schedule();
467 finish_wait(&mc.waitq, &wait);
468 return true;
469 }
470 }
471 return false;
472 }
473
474 /**
475 * folio_memcg_lock - Bind a folio to its memcg.
476 * @folio: The folio.
477 *
478 * This function prevents unlocked LRU folios from being moved to
479 * another cgroup.
480 *
481 * It ensures lifetime of the bound memcg. The caller is responsible
482 * for the lifetime of the folio.
483 */
folio_memcg_lock(struct folio * folio)484 void folio_memcg_lock(struct folio *folio)
485 {
486 struct mem_cgroup *memcg;
487 unsigned long flags;
488
489 /*
490 * The RCU lock is held throughout the transaction. The fast
491 * path can get away without acquiring the memcg->move_lock
492 * because page moving starts with an RCU grace period.
493 */
494 rcu_read_lock();
495
496 if (mem_cgroup_disabled())
497 return;
498 again:
499 memcg = folio_memcg(folio);
500 if (unlikely(!memcg))
501 return;
502
503 #ifdef CONFIG_PROVE_LOCKING
504 local_irq_save(flags);
505 might_lock(&memcg->move_lock);
506 local_irq_restore(flags);
507 #endif
508
509 if (atomic_read(&memcg->moving_account) <= 0)
510 return;
511
512 spin_lock_irqsave(&memcg->move_lock, flags);
513 if (memcg != folio_memcg(folio)) {
514 spin_unlock_irqrestore(&memcg->move_lock, flags);
515 goto again;
516 }
517
518 /*
519 * When charge migration first begins, we can have multiple
520 * critical sections holding the fast-path RCU lock and one
521 * holding the slowpath move_lock. Track the task who has the
522 * move_lock for folio_memcg_unlock().
523 */
524 memcg->move_lock_task = current;
525 memcg->move_lock_flags = flags;
526 }
527
__folio_memcg_unlock(struct mem_cgroup * memcg)528 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
529 {
530 if (memcg && memcg->move_lock_task == current) {
531 unsigned long flags = memcg->move_lock_flags;
532
533 memcg->move_lock_task = NULL;
534 memcg->move_lock_flags = 0;
535
536 spin_unlock_irqrestore(&memcg->move_lock, flags);
537 }
538
539 rcu_read_unlock();
540 }
541
542 /**
543 * folio_memcg_unlock - Release the binding between a folio and its memcg.
544 * @folio: The folio.
545 *
546 * This releases the binding created by folio_memcg_lock(). This does
547 * not change the accounting of this folio to its memcg, but it does
548 * permit others to change it.
549 */
folio_memcg_unlock(struct folio * folio)550 void folio_memcg_unlock(struct folio *folio)
551 {
552 __folio_memcg_unlock(folio_memcg(folio));
553 }
554
555 #ifdef CONFIG_SWAP
556 /**
557 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
558 * @entry: swap entry to be moved
559 * @from: mem_cgroup which the entry is moved from
560 * @to: mem_cgroup which the entry is moved to
561 *
562 * It succeeds only when the swap_cgroup's record for this entry is the same
563 * as the mem_cgroup's id of @from.
564 *
565 * Returns 0 on success, -EINVAL on failure.
566 *
567 * The caller must have charged to @to, IOW, called page_counter_charge() about
568 * both res and memsw, and called css_get().
569 */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)570 static int mem_cgroup_move_swap_account(swp_entry_t entry,
571 struct mem_cgroup *from, struct mem_cgroup *to)
572 {
573 unsigned short old_id, new_id;
574
575 old_id = mem_cgroup_id(from);
576 new_id = mem_cgroup_id(to);
577
578 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
579 mod_memcg_state(from, MEMCG_SWAP, -1);
580 mod_memcg_state(to, MEMCG_SWAP, 1);
581 return 0;
582 }
583 return -EINVAL;
584 }
585 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)586 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
587 struct mem_cgroup *from, struct mem_cgroup *to)
588 {
589 return -EINVAL;
590 }
591 #endif
592
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)593 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
594 struct cftype *cft)
595 {
596 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
597 }
598
599 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)600 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
601 struct cftype *cft, u64 val)
602 {
603 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
604
605 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
606 "Please report your usecase to linux-mm@kvack.org if you "
607 "depend on this functionality.\n");
608
609 if (val & ~MOVE_MASK)
610 return -EINVAL;
611
612 /*
613 * No kind of locking is needed in here, because ->can_attach() will
614 * check this value once in the beginning of the process, and then carry
615 * on with stale data. This means that changes to this value will only
616 * affect task migrations starting after the change.
617 */
618 memcg->move_charge_at_immigrate = val;
619 return 0;
620 }
621 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)622 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
623 struct cftype *cft, u64 val)
624 {
625 return -ENOSYS;
626 }
627 #endif
628
629 #ifdef CONFIG_MMU
630 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)631 static int mem_cgroup_do_precharge(unsigned long count)
632 {
633 int ret;
634
635 /* Try a single bulk charge without reclaim first, kswapd may wake */
636 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
637 if (!ret) {
638 mc.precharge += count;
639 return ret;
640 }
641
642 /* Try charges one by one with reclaim, but do not retry */
643 while (count--) {
644 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
645 if (ret)
646 return ret;
647 mc.precharge++;
648 cond_resched();
649 }
650 return 0;
651 }
652
653 union mc_target {
654 struct folio *folio;
655 swp_entry_t ent;
656 };
657
658 enum mc_target_type {
659 MC_TARGET_NONE = 0,
660 MC_TARGET_PAGE,
661 MC_TARGET_SWAP,
662 MC_TARGET_DEVICE,
663 };
664
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)665 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
666 unsigned long addr, pte_t ptent)
667 {
668 struct page *page = vm_normal_page(vma, addr, ptent);
669
670 if (!page)
671 return NULL;
672 if (PageAnon(page)) {
673 if (!(mc.flags & MOVE_ANON))
674 return NULL;
675 } else {
676 if (!(mc.flags & MOVE_FILE))
677 return NULL;
678 }
679 get_page(page);
680
681 return page;
682 }
683
684 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)685 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
686 pte_t ptent, swp_entry_t *entry)
687 {
688 struct page *page = NULL;
689 swp_entry_t ent = pte_to_swp_entry(ptent);
690
691 if (!(mc.flags & MOVE_ANON))
692 return NULL;
693
694 /*
695 * Handle device private pages that are not accessible by the CPU, but
696 * stored as special swap entries in the page table.
697 */
698 if (is_device_private_entry(ent)) {
699 page = pfn_swap_entry_to_page(ent);
700 if (!get_page_unless_zero(page))
701 return NULL;
702 return page;
703 }
704
705 if (non_swap_entry(ent))
706 return NULL;
707
708 /*
709 * Because swap_cache_get_folio() updates some statistics counter,
710 * we call find_get_page() with swapper_space directly.
711 */
712 page = find_get_page(swap_address_space(ent), swap_cache_index(ent));
713 entry->val = ent.val;
714
715 return page;
716 }
717 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)718 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
719 pte_t ptent, swp_entry_t *entry)
720 {
721 return NULL;
722 }
723 #endif
724
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)725 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
726 unsigned long addr, pte_t ptent)
727 {
728 unsigned long index;
729 struct folio *folio;
730
731 if (!vma->vm_file) /* anonymous vma */
732 return NULL;
733 if (!(mc.flags & MOVE_FILE))
734 return NULL;
735
736 /* folio is moved even if it's not RSS of this task(page-faulted). */
737 /* shmem/tmpfs may report page out on swap: account for that too. */
738 index = linear_page_index(vma, addr);
739 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
740 if (IS_ERR(folio))
741 return NULL;
742 return folio_file_page(folio, index);
743 }
744
745 static void memcg1_check_events(struct mem_cgroup *memcg, int nid);
746 static void memcg1_charge_statistics(struct mem_cgroup *memcg, int nr_pages);
747
748 /**
749 * mem_cgroup_move_account - move account of the folio
750 * @folio: The folio.
751 * @compound: charge the page as compound or small page
752 * @from: mem_cgroup which the folio is moved from.
753 * @to: mem_cgroup which the folio is moved to. @from != @to.
754 *
755 * The folio must be locked and not on the LRU.
756 *
757 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
758 * from old cgroup.
759 */
mem_cgroup_move_account(struct folio * folio,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)760 static int mem_cgroup_move_account(struct folio *folio,
761 bool compound,
762 struct mem_cgroup *from,
763 struct mem_cgroup *to)
764 {
765 struct lruvec *from_vec, *to_vec;
766 struct pglist_data *pgdat;
767 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
768 int nid, ret;
769
770 VM_BUG_ON(from == to);
771 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
772 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
773 VM_BUG_ON(compound && !folio_test_large(folio));
774
775 ret = -EINVAL;
776 if (folio_memcg(folio) != from)
777 goto out;
778
779 pgdat = folio_pgdat(folio);
780 from_vec = mem_cgroup_lruvec(from, pgdat);
781 to_vec = mem_cgroup_lruvec(to, pgdat);
782
783 folio_memcg_lock(folio);
784
785 if (folio_test_anon(folio)) {
786 if (folio_mapped(folio)) {
787 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
788 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
789 if (folio_test_pmd_mappable(folio)) {
790 __mod_lruvec_state(from_vec, NR_ANON_THPS,
791 -nr_pages);
792 __mod_lruvec_state(to_vec, NR_ANON_THPS,
793 nr_pages);
794 }
795 }
796 } else {
797 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
798 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
799
800 if (folio_test_swapbacked(folio)) {
801 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
802 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
803 }
804
805 if (folio_mapped(folio)) {
806 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
807 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
808 }
809
810 if (folio_test_dirty(folio)) {
811 struct address_space *mapping = folio_mapping(folio);
812
813 if (mapping_can_writeback(mapping)) {
814 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
815 -nr_pages);
816 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
817 nr_pages);
818 }
819 }
820 }
821
822 #ifdef CONFIG_SWAP
823 if (folio_test_swapcache(folio)) {
824 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
825 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
826 }
827 #endif
828 if (folio_test_writeback(folio)) {
829 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
830 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
831 }
832
833 /*
834 * All state has been migrated, let's switch to the new memcg.
835 *
836 * It is safe to change page's memcg here because the page
837 * is referenced, charged, isolated, and locked: we can't race
838 * with (un)charging, migration, LRU putback, or anything else
839 * that would rely on a stable page's memory cgroup.
840 *
841 * Note that folio_memcg_lock is a memcg lock, not a page lock,
842 * to save space. As soon as we switch page's memory cgroup to a
843 * new memcg that isn't locked, the above state can change
844 * concurrently again. Make sure we're truly done with it.
845 */
846 smp_mb();
847
848 css_get(&to->css);
849 css_put(&from->css);
850
851 folio->memcg_data = (unsigned long)to;
852
853 __folio_memcg_unlock(from);
854
855 ret = 0;
856 nid = folio_nid(folio);
857
858 local_irq_disable();
859 memcg1_charge_statistics(to, nr_pages);
860 memcg1_check_events(to, nid);
861 memcg1_charge_statistics(from, -nr_pages);
862 memcg1_check_events(from, nid);
863 local_irq_enable();
864 out:
865 return ret;
866 }
867
868 /**
869 * get_mctgt_type - get target type of moving charge
870 * @vma: the vma the pte to be checked belongs
871 * @addr: the address corresponding to the pte to be checked
872 * @ptent: the pte to be checked
873 * @target: the pointer the target page or swap ent will be stored(can be NULL)
874 *
875 * Context: Called with pte lock held.
876 * Return:
877 * * MC_TARGET_NONE - If the pte is not a target for move charge.
878 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
879 * move charge. If @target is not NULL, the folio is stored in target->folio
880 * with extra refcnt taken (Caller should release it).
881 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
882 * target for charge migration. If @target is not NULL, the entry is
883 * stored in target->ent.
884 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
885 * thus not on the lru. For now such page is charged like a regular page
886 * would be as it is just special memory taking the place of a regular page.
887 * See Documentations/vm/hmm.txt and include/linux/hmm.h
888 */
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)889 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
890 unsigned long addr, pte_t ptent, union mc_target *target)
891 {
892 struct page *page = NULL;
893 struct folio *folio;
894 enum mc_target_type ret = MC_TARGET_NONE;
895 swp_entry_t ent = { .val = 0 };
896
897 if (pte_present(ptent))
898 page = mc_handle_present_pte(vma, addr, ptent);
899 else if (pte_none_mostly(ptent))
900 /*
901 * PTE markers should be treated as a none pte here, separated
902 * from other swap handling below.
903 */
904 page = mc_handle_file_pte(vma, addr, ptent);
905 else if (is_swap_pte(ptent))
906 page = mc_handle_swap_pte(vma, ptent, &ent);
907
908 if (page)
909 folio = page_folio(page);
910 if (target && page) {
911 if (!folio_trylock(folio)) {
912 folio_put(folio);
913 return ret;
914 }
915 /*
916 * page_mapped() must be stable during the move. This
917 * pte is locked, so if it's present, the page cannot
918 * become unmapped. If it isn't, we have only partial
919 * control over the mapped state: the page lock will
920 * prevent new faults against pagecache and swapcache,
921 * so an unmapped page cannot become mapped. However,
922 * if the page is already mapped elsewhere, it can
923 * unmap, and there is nothing we can do about it.
924 * Alas, skip moving the page in this case.
925 */
926 if (!pte_present(ptent) && page_mapped(page)) {
927 folio_unlock(folio);
928 folio_put(folio);
929 return ret;
930 }
931 }
932
933 if (!page && !ent.val)
934 return ret;
935 if (page) {
936 /*
937 * Do only loose check w/o serialization.
938 * mem_cgroup_move_account() checks the page is valid or
939 * not under LRU exclusion.
940 */
941 if (folio_memcg(folio) == mc.from) {
942 ret = MC_TARGET_PAGE;
943 if (folio_is_device_private(folio) ||
944 folio_is_device_coherent(folio))
945 ret = MC_TARGET_DEVICE;
946 if (target)
947 target->folio = folio;
948 }
949 if (!ret || !target) {
950 if (target)
951 folio_unlock(folio);
952 folio_put(folio);
953 }
954 }
955 /*
956 * There is a swap entry and a page doesn't exist or isn't charged.
957 * But we cannot move a tail-page in a THP.
958 */
959 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
960 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
961 ret = MC_TARGET_SWAP;
962 if (target)
963 target->ent = ent;
964 }
965 return ret;
966 }
967
968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
969 /*
970 * We don't consider PMD mapped swapping or file mapped pages because THP does
971 * not support them for now.
972 * Caller should make sure that pmd_trans_huge(pmd) is true.
973 */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)974 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
975 unsigned long addr, pmd_t pmd, union mc_target *target)
976 {
977 struct page *page = NULL;
978 struct folio *folio;
979 enum mc_target_type ret = MC_TARGET_NONE;
980
981 if (unlikely(is_swap_pmd(pmd))) {
982 VM_BUG_ON(thp_migration_supported() &&
983 !is_pmd_migration_entry(pmd));
984 return ret;
985 }
986 page = pmd_page(pmd);
987 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
988 folio = page_folio(page);
989 if (!(mc.flags & MOVE_ANON))
990 return ret;
991 if (folio_memcg(folio) == mc.from) {
992 ret = MC_TARGET_PAGE;
993 if (target) {
994 folio_get(folio);
995 if (!folio_trylock(folio)) {
996 folio_put(folio);
997 return MC_TARGET_NONE;
998 }
999 target->folio = folio;
1000 }
1001 }
1002 return ret;
1003 }
1004 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)1005 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
1006 unsigned long addr, pmd_t pmd, union mc_target *target)
1007 {
1008 return MC_TARGET_NONE;
1009 }
1010 #endif
1011
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1012 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
1013 unsigned long addr, unsigned long end,
1014 struct mm_walk *walk)
1015 {
1016 struct vm_area_struct *vma = walk->vma;
1017 pte_t *pte;
1018 spinlock_t *ptl;
1019
1020 ptl = pmd_trans_huge_lock(pmd, vma);
1021 if (ptl) {
1022 /*
1023 * Note their can not be MC_TARGET_DEVICE for now as we do not
1024 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
1025 * this might change.
1026 */
1027 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
1028 mc.precharge += HPAGE_PMD_NR;
1029 spin_unlock(ptl);
1030 return 0;
1031 }
1032
1033 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1034 if (!pte)
1035 return 0;
1036 for (; addr != end; pte++, addr += PAGE_SIZE)
1037 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
1038 mc.precharge++; /* increment precharge temporarily */
1039 pte_unmap_unlock(pte - 1, ptl);
1040 cond_resched();
1041
1042 return 0;
1043 }
1044
1045 static const struct mm_walk_ops precharge_walk_ops = {
1046 .pmd_entry = mem_cgroup_count_precharge_pte_range,
1047 .walk_lock = PGWALK_RDLOCK,
1048 };
1049
mem_cgroup_count_precharge(struct mm_struct * mm)1050 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
1051 {
1052 unsigned long precharge;
1053
1054 mmap_read_lock(mm);
1055 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
1056 mmap_read_unlock(mm);
1057
1058 precharge = mc.precharge;
1059 mc.precharge = 0;
1060
1061 return precharge;
1062 }
1063
mem_cgroup_precharge_mc(struct mm_struct * mm)1064 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
1065 {
1066 unsigned long precharge = mem_cgroup_count_precharge(mm);
1067
1068 VM_BUG_ON(mc.moving_task);
1069 mc.moving_task = current;
1070 return mem_cgroup_do_precharge(precharge);
1071 }
1072
1073 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)1074 static void __mem_cgroup_clear_mc(void)
1075 {
1076 struct mem_cgroup *from = mc.from;
1077 struct mem_cgroup *to = mc.to;
1078
1079 /* we must uncharge all the leftover precharges from mc.to */
1080 if (mc.precharge) {
1081 mem_cgroup_cancel_charge(mc.to, mc.precharge);
1082 mc.precharge = 0;
1083 }
1084 /*
1085 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
1086 * we must uncharge here.
1087 */
1088 if (mc.moved_charge) {
1089 mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
1090 mc.moved_charge = 0;
1091 }
1092 /* we must fixup refcnts and charges */
1093 if (mc.moved_swap) {
1094 /* uncharge swap account from the old cgroup */
1095 if (!mem_cgroup_is_root(mc.from))
1096 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
1097
1098 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
1099
1100 /*
1101 * we charged both to->memory and to->memsw, so we
1102 * should uncharge to->memory.
1103 */
1104 if (!mem_cgroup_is_root(mc.to))
1105 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
1106
1107 mc.moved_swap = 0;
1108 }
1109 memcg1_oom_recover(from);
1110 memcg1_oom_recover(to);
1111 wake_up_all(&mc.waitq);
1112 }
1113
mem_cgroup_clear_mc(void)1114 static void mem_cgroup_clear_mc(void)
1115 {
1116 struct mm_struct *mm = mc.mm;
1117
1118 /*
1119 * we must clear moving_task before waking up waiters at the end of
1120 * task migration.
1121 */
1122 mc.moving_task = NULL;
1123 __mem_cgroup_clear_mc();
1124 spin_lock(&mc.lock);
1125 mc.from = NULL;
1126 mc.to = NULL;
1127 mc.mm = NULL;
1128 spin_unlock(&mc.lock);
1129
1130 mmput(mm);
1131 }
1132
memcg1_can_attach(struct cgroup_taskset * tset)1133 int memcg1_can_attach(struct cgroup_taskset *tset)
1134 {
1135 struct cgroup_subsys_state *css;
1136 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
1137 struct mem_cgroup *from;
1138 struct task_struct *leader, *p;
1139 struct mm_struct *mm;
1140 unsigned long move_flags;
1141 int ret = 0;
1142
1143 /* charge immigration isn't supported on the default hierarchy */
1144 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1145 return 0;
1146
1147 /*
1148 * Multi-process migrations only happen on the default hierarchy
1149 * where charge immigration is not used. Perform charge
1150 * immigration if @tset contains a leader and whine if there are
1151 * multiple.
1152 */
1153 p = NULL;
1154 cgroup_taskset_for_each_leader(leader, css, tset) {
1155 WARN_ON_ONCE(p);
1156 p = leader;
1157 memcg = mem_cgroup_from_css(css);
1158 }
1159 if (!p)
1160 return 0;
1161
1162 /*
1163 * We are now committed to this value whatever it is. Changes in this
1164 * tunable will only affect upcoming migrations, not the current one.
1165 * So we need to save it, and keep it going.
1166 */
1167 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
1168 if (!move_flags)
1169 return 0;
1170
1171 from = mem_cgroup_from_task(p);
1172
1173 VM_BUG_ON(from == memcg);
1174
1175 mm = get_task_mm(p);
1176 if (!mm)
1177 return 0;
1178 /* We move charges only when we move a owner of the mm */
1179 if (mm->owner == p) {
1180 VM_BUG_ON(mc.from);
1181 VM_BUG_ON(mc.to);
1182 VM_BUG_ON(mc.precharge);
1183 VM_BUG_ON(mc.moved_charge);
1184 VM_BUG_ON(mc.moved_swap);
1185
1186 spin_lock(&mc.lock);
1187 mc.mm = mm;
1188 mc.from = from;
1189 mc.to = memcg;
1190 mc.flags = move_flags;
1191 spin_unlock(&mc.lock);
1192 /* We set mc.moving_task later */
1193
1194 ret = mem_cgroup_precharge_mc(mm);
1195 if (ret)
1196 mem_cgroup_clear_mc();
1197 } else {
1198 mmput(mm);
1199 }
1200 return ret;
1201 }
1202
memcg1_cancel_attach(struct cgroup_taskset * tset)1203 void memcg1_cancel_attach(struct cgroup_taskset *tset)
1204 {
1205 if (mc.to)
1206 mem_cgroup_clear_mc();
1207 }
1208
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1209 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
1210 unsigned long addr, unsigned long end,
1211 struct mm_walk *walk)
1212 {
1213 int ret = 0;
1214 struct vm_area_struct *vma = walk->vma;
1215 pte_t *pte;
1216 spinlock_t *ptl;
1217 enum mc_target_type target_type;
1218 union mc_target target;
1219 struct folio *folio;
1220
1221 ptl = pmd_trans_huge_lock(pmd, vma);
1222 if (ptl) {
1223 if (mc.precharge < HPAGE_PMD_NR) {
1224 spin_unlock(ptl);
1225 return 0;
1226 }
1227 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
1228 if (target_type == MC_TARGET_PAGE) {
1229 folio = target.folio;
1230 if (folio_isolate_lru(folio)) {
1231 if (!mem_cgroup_move_account(folio, true,
1232 mc.from, mc.to)) {
1233 mc.precharge -= HPAGE_PMD_NR;
1234 mc.moved_charge += HPAGE_PMD_NR;
1235 }
1236 folio_putback_lru(folio);
1237 }
1238 folio_unlock(folio);
1239 folio_put(folio);
1240 } else if (target_type == MC_TARGET_DEVICE) {
1241 folio = target.folio;
1242 if (!mem_cgroup_move_account(folio, true,
1243 mc.from, mc.to)) {
1244 mc.precharge -= HPAGE_PMD_NR;
1245 mc.moved_charge += HPAGE_PMD_NR;
1246 }
1247 folio_unlock(folio);
1248 folio_put(folio);
1249 }
1250 spin_unlock(ptl);
1251 return 0;
1252 }
1253
1254 retry:
1255 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1256 if (!pte)
1257 return 0;
1258 for (; addr != end; addr += PAGE_SIZE) {
1259 pte_t ptent = ptep_get(pte++);
1260 bool device = false;
1261 swp_entry_t ent;
1262
1263 if (!mc.precharge)
1264 break;
1265
1266 switch (get_mctgt_type(vma, addr, ptent, &target)) {
1267 case MC_TARGET_DEVICE:
1268 device = true;
1269 fallthrough;
1270 case MC_TARGET_PAGE:
1271 folio = target.folio;
1272 /*
1273 * We can have a part of the split pmd here. Moving it
1274 * can be done but it would be too convoluted so simply
1275 * ignore such a partial THP and keep it in original
1276 * memcg. There should be somebody mapping the head.
1277 */
1278 if (folio_test_large(folio))
1279 goto put;
1280 if (!device && !folio_isolate_lru(folio))
1281 goto put;
1282 if (!mem_cgroup_move_account(folio, false,
1283 mc.from, mc.to)) {
1284 mc.precharge--;
1285 /* we uncharge from mc.from later. */
1286 mc.moved_charge++;
1287 }
1288 if (!device)
1289 folio_putback_lru(folio);
1290 put: /* get_mctgt_type() gets & locks the page */
1291 folio_unlock(folio);
1292 folio_put(folio);
1293 break;
1294 case MC_TARGET_SWAP:
1295 ent = target.ent;
1296 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
1297 mc.precharge--;
1298 mem_cgroup_id_get_many(mc.to, 1);
1299 /* we fixup other refcnts and charges later. */
1300 mc.moved_swap++;
1301 }
1302 break;
1303 default:
1304 break;
1305 }
1306 }
1307 pte_unmap_unlock(pte - 1, ptl);
1308 cond_resched();
1309
1310 if (addr != end) {
1311 /*
1312 * We have consumed all precharges we got in can_attach().
1313 * We try charge one by one, but don't do any additional
1314 * charges to mc.to if we have failed in charge once in attach()
1315 * phase.
1316 */
1317 ret = mem_cgroup_do_precharge(1);
1318 if (!ret)
1319 goto retry;
1320 }
1321
1322 return ret;
1323 }
1324
1325 static const struct mm_walk_ops charge_walk_ops = {
1326 .pmd_entry = mem_cgroup_move_charge_pte_range,
1327 .walk_lock = PGWALK_RDLOCK,
1328 };
1329
mem_cgroup_move_charge(void)1330 static void mem_cgroup_move_charge(void)
1331 {
1332 lru_add_drain_all();
1333 /*
1334 * Signal folio_memcg_lock() to take the memcg's move_lock
1335 * while we're moving its pages to another memcg. Then wait
1336 * for already started RCU-only updates to finish.
1337 */
1338 atomic_inc(&mc.from->moving_account);
1339 synchronize_rcu();
1340 retry:
1341 if (unlikely(!mmap_read_trylock(mc.mm))) {
1342 /*
1343 * Someone who are holding the mmap_lock might be waiting in
1344 * waitq. So we cancel all extra charges, wake up all waiters,
1345 * and retry. Because we cancel precharges, we might not be able
1346 * to move enough charges, but moving charge is a best-effort
1347 * feature anyway, so it wouldn't be a big problem.
1348 */
1349 __mem_cgroup_clear_mc();
1350 cond_resched();
1351 goto retry;
1352 }
1353 /*
1354 * When we have consumed all precharges and failed in doing
1355 * additional charge, the page walk just aborts.
1356 */
1357 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
1358 mmap_read_unlock(mc.mm);
1359 atomic_dec(&mc.from->moving_account);
1360 }
1361
memcg1_move_task(void)1362 void memcg1_move_task(void)
1363 {
1364 if (mc.to) {
1365 mem_cgroup_move_charge();
1366 mem_cgroup_clear_mc();
1367 }
1368 }
1369
1370 #else /* !CONFIG_MMU */
memcg1_can_attach(struct cgroup_taskset * tset)1371 int memcg1_can_attach(struct cgroup_taskset *tset)
1372 {
1373 return 0;
1374 }
memcg1_cancel_attach(struct cgroup_taskset * tset)1375 void memcg1_cancel_attach(struct cgroup_taskset *tset)
1376 {
1377 }
memcg1_move_task(void)1378 void memcg1_move_task(void)
1379 {
1380 }
1381 #endif
1382
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)1383 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
1384 {
1385 struct mem_cgroup_threshold_ary *t;
1386 unsigned long usage;
1387 int i;
1388
1389 rcu_read_lock();
1390 if (!swap)
1391 t = rcu_dereference(memcg->thresholds.primary);
1392 else
1393 t = rcu_dereference(memcg->memsw_thresholds.primary);
1394
1395 if (!t)
1396 goto unlock;
1397
1398 usage = mem_cgroup_usage(memcg, swap);
1399
1400 /*
1401 * current_threshold points to threshold just below or equal to usage.
1402 * If it's not true, a threshold was crossed after last
1403 * call of __mem_cgroup_threshold().
1404 */
1405 i = t->current_threshold;
1406
1407 /*
1408 * Iterate backward over array of thresholds starting from
1409 * current_threshold and check if a threshold is crossed.
1410 * If none of thresholds below usage is crossed, we read
1411 * only one element of the array here.
1412 */
1413 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
1414 eventfd_signal(t->entries[i].eventfd);
1415
1416 /* i = current_threshold + 1 */
1417 i++;
1418
1419 /*
1420 * Iterate forward over array of thresholds starting from
1421 * current_threshold+1 and check if a threshold is crossed.
1422 * If none of thresholds above usage is crossed, we read
1423 * only one element of the array here.
1424 */
1425 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
1426 eventfd_signal(t->entries[i].eventfd);
1427
1428 /* Update current_threshold */
1429 t->current_threshold = i - 1;
1430 unlock:
1431 rcu_read_unlock();
1432 }
1433
mem_cgroup_threshold(struct mem_cgroup * memcg)1434 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
1435 {
1436 while (memcg) {
1437 __mem_cgroup_threshold(memcg, false);
1438 if (do_memsw_account())
1439 __mem_cgroup_threshold(memcg, true);
1440
1441 memcg = parent_mem_cgroup(memcg);
1442 }
1443 }
1444
1445 /* Cgroup1: threshold notifications & softlimit tree updates */
1446 struct memcg1_events_percpu {
1447 unsigned long nr_page_events;
1448 unsigned long targets[MEM_CGROUP_NTARGETS];
1449 };
1450
memcg1_charge_statistics(struct mem_cgroup * memcg,int nr_pages)1451 static void memcg1_charge_statistics(struct mem_cgroup *memcg, int nr_pages)
1452 {
1453 /* pagein of a big page is an event. So, ignore page size */
1454 if (nr_pages > 0)
1455 __count_memcg_events(memcg, PGPGIN, 1);
1456 else {
1457 __count_memcg_events(memcg, PGPGOUT, 1);
1458 nr_pages = -nr_pages; /* for event */
1459 }
1460
1461 __this_cpu_add(memcg->events_percpu->nr_page_events, nr_pages);
1462 }
1463
1464 #define THRESHOLDS_EVENTS_TARGET 128
1465 #define SOFTLIMIT_EVENTS_TARGET 1024
1466
memcg1_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)1467 static bool memcg1_event_ratelimit(struct mem_cgroup *memcg,
1468 enum mem_cgroup_events_target target)
1469 {
1470 unsigned long val, next;
1471
1472 val = __this_cpu_read(memcg->events_percpu->nr_page_events);
1473 next = __this_cpu_read(memcg->events_percpu->targets[target]);
1474 /* from time_after() in jiffies.h */
1475 if ((long)(next - val) < 0) {
1476 switch (target) {
1477 case MEM_CGROUP_TARGET_THRESH:
1478 next = val + THRESHOLDS_EVENTS_TARGET;
1479 break;
1480 case MEM_CGROUP_TARGET_SOFTLIMIT:
1481 next = val + SOFTLIMIT_EVENTS_TARGET;
1482 break;
1483 default:
1484 break;
1485 }
1486 __this_cpu_write(memcg->events_percpu->targets[target], next);
1487 return true;
1488 }
1489 return false;
1490 }
1491
1492 /*
1493 * Check events in order.
1494 *
1495 */
memcg1_check_events(struct mem_cgroup * memcg,int nid)1496 static void memcg1_check_events(struct mem_cgroup *memcg, int nid)
1497 {
1498 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1499 return;
1500
1501 /* threshold event is triggered in finer grain than soft limit */
1502 if (unlikely(memcg1_event_ratelimit(memcg,
1503 MEM_CGROUP_TARGET_THRESH))) {
1504 bool do_softlimit;
1505
1506 do_softlimit = memcg1_event_ratelimit(memcg,
1507 MEM_CGROUP_TARGET_SOFTLIMIT);
1508 mem_cgroup_threshold(memcg);
1509 if (unlikely(do_softlimit))
1510 memcg1_update_tree(memcg, nid);
1511 }
1512 }
1513
memcg1_commit_charge(struct folio * folio,struct mem_cgroup * memcg)1514 void memcg1_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
1515 {
1516 unsigned long flags;
1517
1518 local_irq_save(flags);
1519 memcg1_charge_statistics(memcg, folio_nr_pages(folio));
1520 memcg1_check_events(memcg, folio_nid(folio));
1521 local_irq_restore(flags);
1522 }
1523
memcg1_swapout(struct folio * folio,struct mem_cgroup * memcg)1524 void memcg1_swapout(struct folio *folio, struct mem_cgroup *memcg)
1525 {
1526 /*
1527 * Interrupts should be disabled here because the caller holds the
1528 * i_pages lock which is taken with interrupts-off. It is
1529 * important here to have the interrupts disabled because it is the
1530 * only synchronisation we have for updating the per-CPU variables.
1531 */
1532 preempt_disable_nested();
1533 VM_WARN_ON_IRQS_ENABLED();
1534 memcg1_charge_statistics(memcg, -folio_nr_pages(folio));
1535 preempt_enable_nested();
1536 memcg1_check_events(memcg, folio_nid(folio));
1537 }
1538
memcg1_uncharge_batch(struct mem_cgroup * memcg,unsigned long pgpgout,unsigned long nr_memory,int nid)1539 void memcg1_uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
1540 unsigned long nr_memory, int nid)
1541 {
1542 unsigned long flags;
1543
1544 local_irq_save(flags);
1545 __count_memcg_events(memcg, PGPGOUT, pgpgout);
1546 __this_cpu_add(memcg->events_percpu->nr_page_events, nr_memory);
1547 memcg1_check_events(memcg, nid);
1548 local_irq_restore(flags);
1549 }
1550
compare_thresholds(const void * a,const void * b)1551 static int compare_thresholds(const void *a, const void *b)
1552 {
1553 const struct mem_cgroup_threshold *_a = a;
1554 const struct mem_cgroup_threshold *_b = b;
1555
1556 if (_a->threshold > _b->threshold)
1557 return 1;
1558
1559 if (_a->threshold < _b->threshold)
1560 return -1;
1561
1562 return 0;
1563 }
1564
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)1565 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
1566 {
1567 struct mem_cgroup_eventfd_list *ev;
1568
1569 spin_lock(&memcg_oom_lock);
1570
1571 list_for_each_entry(ev, &memcg->oom_notify, list)
1572 eventfd_signal(ev->eventfd);
1573
1574 spin_unlock(&memcg_oom_lock);
1575 return 0;
1576 }
1577
mem_cgroup_oom_notify(struct mem_cgroup * memcg)1578 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
1579 {
1580 struct mem_cgroup *iter;
1581
1582 for_each_mem_cgroup_tree(iter, memcg)
1583 mem_cgroup_oom_notify_cb(iter);
1584 }
1585
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)1586 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
1587 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
1588 {
1589 struct mem_cgroup_thresholds *thresholds;
1590 struct mem_cgroup_threshold_ary *new;
1591 unsigned long threshold;
1592 unsigned long usage;
1593 int i, size, ret;
1594
1595 ret = page_counter_memparse(args, "-1", &threshold);
1596 if (ret)
1597 return ret;
1598
1599 mutex_lock(&memcg->thresholds_lock);
1600
1601 if (type == _MEM) {
1602 thresholds = &memcg->thresholds;
1603 usage = mem_cgroup_usage(memcg, false);
1604 } else if (type == _MEMSWAP) {
1605 thresholds = &memcg->memsw_thresholds;
1606 usage = mem_cgroup_usage(memcg, true);
1607 } else
1608 BUG();
1609
1610 /* Check if a threshold crossed before adding a new one */
1611 if (thresholds->primary)
1612 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
1613
1614 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
1615
1616 /* Allocate memory for new array of thresholds */
1617 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
1618 if (!new) {
1619 ret = -ENOMEM;
1620 goto unlock;
1621 }
1622 new->size = size;
1623
1624 /* Copy thresholds (if any) to new array */
1625 if (thresholds->primary)
1626 memcpy(new->entries, thresholds->primary->entries,
1627 flex_array_size(new, entries, size - 1));
1628
1629 /* Add new threshold */
1630 new->entries[size - 1].eventfd = eventfd;
1631 new->entries[size - 1].threshold = threshold;
1632
1633 /* Sort thresholds. Registering of new threshold isn't time-critical */
1634 sort(new->entries, size, sizeof(*new->entries),
1635 compare_thresholds, NULL);
1636
1637 /* Find current threshold */
1638 new->current_threshold = -1;
1639 for (i = 0; i < size; i++) {
1640 if (new->entries[i].threshold <= usage) {
1641 /*
1642 * new->current_threshold will not be used until
1643 * rcu_assign_pointer(), so it's safe to increment
1644 * it here.
1645 */
1646 ++new->current_threshold;
1647 } else
1648 break;
1649 }
1650
1651 /* Free old spare buffer and save old primary buffer as spare */
1652 kfree(thresholds->spare);
1653 thresholds->spare = thresholds->primary;
1654
1655 rcu_assign_pointer(thresholds->primary, new);
1656
1657 /* To be sure that nobody uses thresholds */
1658 synchronize_rcu();
1659
1660 unlock:
1661 mutex_unlock(&memcg->thresholds_lock);
1662
1663 return ret;
1664 }
1665
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)1666 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
1667 struct eventfd_ctx *eventfd, const char *args)
1668 {
1669 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
1670 }
1671
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)1672 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
1673 struct eventfd_ctx *eventfd, const char *args)
1674 {
1675 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
1676 }
1677
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)1678 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
1679 struct eventfd_ctx *eventfd, enum res_type type)
1680 {
1681 struct mem_cgroup_thresholds *thresholds;
1682 struct mem_cgroup_threshold_ary *new;
1683 unsigned long usage;
1684 int i, j, size, entries;
1685
1686 mutex_lock(&memcg->thresholds_lock);
1687
1688 if (type == _MEM) {
1689 thresholds = &memcg->thresholds;
1690 usage = mem_cgroup_usage(memcg, false);
1691 } else if (type == _MEMSWAP) {
1692 thresholds = &memcg->memsw_thresholds;
1693 usage = mem_cgroup_usage(memcg, true);
1694 } else
1695 BUG();
1696
1697 if (!thresholds->primary)
1698 goto unlock;
1699
1700 /* Check if a threshold crossed before removing */
1701 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
1702
1703 /* Calculate new number of threshold */
1704 size = entries = 0;
1705 for (i = 0; i < thresholds->primary->size; i++) {
1706 if (thresholds->primary->entries[i].eventfd != eventfd)
1707 size++;
1708 else
1709 entries++;
1710 }
1711
1712 new = thresholds->spare;
1713
1714 /* If no items related to eventfd have been cleared, nothing to do */
1715 if (!entries)
1716 goto unlock;
1717
1718 /* Set thresholds array to NULL if we don't have thresholds */
1719 if (!size) {
1720 kfree(new);
1721 new = NULL;
1722 goto swap_buffers;
1723 }
1724
1725 new->size = size;
1726
1727 /* Copy thresholds and find current threshold */
1728 new->current_threshold = -1;
1729 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
1730 if (thresholds->primary->entries[i].eventfd == eventfd)
1731 continue;
1732
1733 new->entries[j] = thresholds->primary->entries[i];
1734 if (new->entries[j].threshold <= usage) {
1735 /*
1736 * new->current_threshold will not be used
1737 * until rcu_assign_pointer(), so it's safe to increment
1738 * it here.
1739 */
1740 ++new->current_threshold;
1741 }
1742 j++;
1743 }
1744
1745 swap_buffers:
1746 /* Swap primary and spare array */
1747 thresholds->spare = thresholds->primary;
1748
1749 rcu_assign_pointer(thresholds->primary, new);
1750
1751 /* To be sure that nobody uses thresholds */
1752 synchronize_rcu();
1753
1754 /* If all events are unregistered, free the spare array */
1755 if (!new) {
1756 kfree(thresholds->spare);
1757 thresholds->spare = NULL;
1758 }
1759 unlock:
1760 mutex_unlock(&memcg->thresholds_lock);
1761 }
1762
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)1763 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
1764 struct eventfd_ctx *eventfd)
1765 {
1766 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
1767 }
1768
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)1769 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
1770 struct eventfd_ctx *eventfd)
1771 {
1772 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
1773 }
1774
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)1775 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
1776 struct eventfd_ctx *eventfd, const char *args)
1777 {
1778 struct mem_cgroup_eventfd_list *event;
1779
1780 event = kmalloc(sizeof(*event), GFP_KERNEL);
1781 if (!event)
1782 return -ENOMEM;
1783
1784 spin_lock(&memcg_oom_lock);
1785
1786 event->eventfd = eventfd;
1787 list_add(&event->list, &memcg->oom_notify);
1788
1789 /* already in OOM ? */
1790 if (memcg->under_oom)
1791 eventfd_signal(eventfd);
1792 spin_unlock(&memcg_oom_lock);
1793
1794 return 0;
1795 }
1796
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)1797 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
1798 struct eventfd_ctx *eventfd)
1799 {
1800 struct mem_cgroup_eventfd_list *ev, *tmp;
1801
1802 spin_lock(&memcg_oom_lock);
1803
1804 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
1805 if (ev->eventfd == eventfd) {
1806 list_del(&ev->list);
1807 kfree(ev);
1808 }
1809 }
1810
1811 spin_unlock(&memcg_oom_lock);
1812 }
1813
1814 /*
1815 * DO NOT USE IN NEW FILES.
1816 *
1817 * "cgroup.event_control" implementation.
1818 *
1819 * This is way over-engineered. It tries to support fully configurable
1820 * events for each user. Such level of flexibility is completely
1821 * unnecessary especially in the light of the planned unified hierarchy.
1822 *
1823 * Please deprecate this and replace with something simpler if at all
1824 * possible.
1825 */
1826
1827 /*
1828 * Unregister event and free resources.
1829 *
1830 * Gets called from workqueue.
1831 */
memcg_event_remove(struct work_struct * work)1832 static void memcg_event_remove(struct work_struct *work)
1833 {
1834 struct mem_cgroup_event *event =
1835 container_of(work, struct mem_cgroup_event, remove);
1836 struct mem_cgroup *memcg = event->memcg;
1837
1838 remove_wait_queue(event->wqh, &event->wait);
1839
1840 event->unregister_event(memcg, event->eventfd);
1841
1842 /* Notify userspace the event is going away. */
1843 eventfd_signal(event->eventfd);
1844
1845 eventfd_ctx_put(event->eventfd);
1846 kfree(event);
1847 css_put(&memcg->css);
1848 }
1849
1850 /*
1851 * Gets called on EPOLLHUP on eventfd when user closes it.
1852 *
1853 * Called with wqh->lock held and interrupts disabled.
1854 */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1855 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
1856 int sync, void *key)
1857 {
1858 struct mem_cgroup_event *event =
1859 container_of(wait, struct mem_cgroup_event, wait);
1860 struct mem_cgroup *memcg = event->memcg;
1861 __poll_t flags = key_to_poll(key);
1862
1863 if (flags & EPOLLHUP) {
1864 /*
1865 * If the event has been detached at cgroup removal, we
1866 * can simply return knowing the other side will cleanup
1867 * for us.
1868 *
1869 * We can't race against event freeing since the other
1870 * side will require wqh->lock via remove_wait_queue(),
1871 * which we hold.
1872 */
1873 spin_lock(&memcg->event_list_lock);
1874 if (!list_empty(&event->list)) {
1875 list_del_init(&event->list);
1876 /*
1877 * We are in atomic context, but cgroup_event_remove()
1878 * may sleep, so we have to call it in workqueue.
1879 */
1880 schedule_work(&event->remove);
1881 }
1882 spin_unlock(&memcg->event_list_lock);
1883 }
1884
1885 return 0;
1886 }
1887
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)1888 static void memcg_event_ptable_queue_proc(struct file *file,
1889 wait_queue_head_t *wqh, poll_table *pt)
1890 {
1891 struct mem_cgroup_event *event =
1892 container_of(pt, struct mem_cgroup_event, pt);
1893
1894 event->wqh = wqh;
1895 add_wait_queue(wqh, &event->wait);
1896 }
1897
1898 /*
1899 * DO NOT USE IN NEW FILES.
1900 *
1901 * Parse input and register new cgroup event handler.
1902 *
1903 * Input must be in format '<event_fd> <control_fd> <args>'.
1904 * Interpretation of args is defined by control file implementation.
1905 */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1906 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
1907 char *buf, size_t nbytes, loff_t off)
1908 {
1909 struct cgroup_subsys_state *css = of_css(of);
1910 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1911 struct mem_cgroup_event *event;
1912 struct cgroup_subsys_state *cfile_css;
1913 unsigned int efd, cfd;
1914 struct fd efile;
1915 struct fd cfile;
1916 struct dentry *cdentry;
1917 const char *name;
1918 char *endp;
1919 int ret;
1920
1921 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1922 return -EOPNOTSUPP;
1923
1924 buf = strstrip(buf);
1925
1926 efd = simple_strtoul(buf, &endp, 10);
1927 if (*endp != ' ')
1928 return -EINVAL;
1929 buf = endp + 1;
1930
1931 cfd = simple_strtoul(buf, &endp, 10);
1932 if (*endp == '\0')
1933 buf = endp;
1934 else if (*endp == ' ')
1935 buf = endp + 1;
1936 else
1937 return -EINVAL;
1938
1939 event = kzalloc(sizeof(*event), GFP_KERNEL);
1940 if (!event)
1941 return -ENOMEM;
1942
1943 event->memcg = memcg;
1944 INIT_LIST_HEAD(&event->list);
1945 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
1946 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
1947 INIT_WORK(&event->remove, memcg_event_remove);
1948
1949 efile = fdget(efd);
1950 if (!fd_file(efile)) {
1951 ret = -EBADF;
1952 goto out_kfree;
1953 }
1954
1955 event->eventfd = eventfd_ctx_fileget(fd_file(efile));
1956 if (IS_ERR(event->eventfd)) {
1957 ret = PTR_ERR(event->eventfd);
1958 goto out_put_efile;
1959 }
1960
1961 cfile = fdget(cfd);
1962 if (!fd_file(cfile)) {
1963 ret = -EBADF;
1964 goto out_put_eventfd;
1965 }
1966
1967 /* the process need read permission on control file */
1968 /* AV: shouldn't we check that it's been opened for read instead? */
1969 ret = file_permission(fd_file(cfile), MAY_READ);
1970 if (ret < 0)
1971 goto out_put_cfile;
1972
1973 /*
1974 * The control file must be a regular cgroup1 file. As a regular cgroup
1975 * file can't be renamed, it's safe to access its name afterwards.
1976 */
1977 cdentry = fd_file(cfile)->f_path.dentry;
1978 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
1979 ret = -EINVAL;
1980 goto out_put_cfile;
1981 }
1982
1983 /*
1984 * Determine the event callbacks and set them in @event. This used
1985 * to be done via struct cftype but cgroup core no longer knows
1986 * about these events. The following is crude but the whole thing
1987 * is for compatibility anyway.
1988 *
1989 * DO NOT ADD NEW FILES.
1990 */
1991 name = cdentry->d_name.name;
1992
1993 if (!strcmp(name, "memory.usage_in_bytes")) {
1994 event->register_event = mem_cgroup_usage_register_event;
1995 event->unregister_event = mem_cgroup_usage_unregister_event;
1996 } else if (!strcmp(name, "memory.oom_control")) {
1997 pr_warn_once("oom_control is deprecated and will be removed. "
1998 "Please report your usecase to linux-mm-@kvack.org"
1999 " if you depend on this functionality. \n");
2000 event->register_event = mem_cgroup_oom_register_event;
2001 event->unregister_event = mem_cgroup_oom_unregister_event;
2002 } else if (!strcmp(name, "memory.pressure_level")) {
2003 pr_warn_once("pressure_level is deprecated and will be removed. "
2004 "Please report your usecase to linux-mm-@kvack.org "
2005 "if you depend on this functionality. \n");
2006 event->register_event = vmpressure_register_event;
2007 event->unregister_event = vmpressure_unregister_event;
2008 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
2009 event->register_event = memsw_cgroup_usage_register_event;
2010 event->unregister_event = memsw_cgroup_usage_unregister_event;
2011 } else {
2012 ret = -EINVAL;
2013 goto out_put_cfile;
2014 }
2015
2016 /*
2017 * Verify @cfile should belong to @css. Also, remaining events are
2018 * automatically removed on cgroup destruction but the removal is
2019 * asynchronous, so take an extra ref on @css.
2020 */
2021 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
2022 &memory_cgrp_subsys);
2023 ret = -EINVAL;
2024 if (IS_ERR(cfile_css))
2025 goto out_put_cfile;
2026 if (cfile_css != css) {
2027 css_put(cfile_css);
2028 goto out_put_cfile;
2029 }
2030
2031 ret = event->register_event(memcg, event->eventfd, buf);
2032 if (ret)
2033 goto out_put_css;
2034
2035 vfs_poll(fd_file(efile), &event->pt);
2036
2037 spin_lock_irq(&memcg->event_list_lock);
2038 list_add(&event->list, &memcg->event_list);
2039 spin_unlock_irq(&memcg->event_list_lock);
2040
2041 fdput(cfile);
2042 fdput(efile);
2043
2044 return nbytes;
2045
2046 out_put_css:
2047 css_put(css);
2048 out_put_cfile:
2049 fdput(cfile);
2050 out_put_eventfd:
2051 eventfd_ctx_put(event->eventfd);
2052 out_put_efile:
2053 fdput(efile);
2054 out_kfree:
2055 kfree(event);
2056
2057 return ret;
2058 }
2059
memcg1_memcg_init(struct mem_cgroup * memcg)2060 void memcg1_memcg_init(struct mem_cgroup *memcg)
2061 {
2062 INIT_LIST_HEAD(&memcg->oom_notify);
2063 mutex_init(&memcg->thresholds_lock);
2064 spin_lock_init(&memcg->move_lock);
2065 INIT_LIST_HEAD(&memcg->event_list);
2066 spin_lock_init(&memcg->event_list_lock);
2067 }
2068
memcg1_css_offline(struct mem_cgroup * memcg)2069 void memcg1_css_offline(struct mem_cgroup *memcg)
2070 {
2071 struct mem_cgroup_event *event, *tmp;
2072
2073 /*
2074 * Unregister events and notify userspace.
2075 * Notify userspace about cgroup removing only after rmdir of cgroup
2076 * directory to avoid race between userspace and kernelspace.
2077 */
2078 spin_lock_irq(&memcg->event_list_lock);
2079 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
2080 list_del_init(&event->list);
2081 schedule_work(&event->remove);
2082 }
2083 spin_unlock_irq(&memcg->event_list_lock);
2084 }
2085
2086 /*
2087 * Check OOM-Killer is already running under our hierarchy.
2088 * If someone is running, return false.
2089 */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)2090 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2091 {
2092 struct mem_cgroup *iter, *failed = NULL;
2093
2094 spin_lock(&memcg_oom_lock);
2095
2096 for_each_mem_cgroup_tree(iter, memcg) {
2097 if (iter->oom_lock) {
2098 /*
2099 * this subtree of our hierarchy is already locked
2100 * so we cannot give a lock.
2101 */
2102 failed = iter;
2103 mem_cgroup_iter_break(memcg, iter);
2104 break;
2105 } else
2106 iter->oom_lock = true;
2107 }
2108
2109 if (failed) {
2110 /*
2111 * OK, we failed to lock the whole subtree so we have
2112 * to clean up what we set up to the failing subtree
2113 */
2114 for_each_mem_cgroup_tree(iter, memcg) {
2115 if (iter == failed) {
2116 mem_cgroup_iter_break(memcg, iter);
2117 break;
2118 }
2119 iter->oom_lock = false;
2120 }
2121 } else
2122 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2123
2124 spin_unlock(&memcg_oom_lock);
2125
2126 return !failed;
2127 }
2128
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)2129 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2130 {
2131 struct mem_cgroup *iter;
2132
2133 spin_lock(&memcg_oom_lock);
2134 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
2135 for_each_mem_cgroup_tree(iter, memcg)
2136 iter->oom_lock = false;
2137 spin_unlock(&memcg_oom_lock);
2138 }
2139
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)2140 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2141 {
2142 struct mem_cgroup *iter;
2143
2144 spin_lock(&memcg_oom_lock);
2145 for_each_mem_cgroup_tree(iter, memcg)
2146 iter->under_oom++;
2147 spin_unlock(&memcg_oom_lock);
2148 }
2149
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)2150 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2151 {
2152 struct mem_cgroup *iter;
2153
2154 /*
2155 * Be careful about under_oom underflows because a child memcg
2156 * could have been added after mem_cgroup_mark_under_oom.
2157 */
2158 spin_lock(&memcg_oom_lock);
2159 for_each_mem_cgroup_tree(iter, memcg)
2160 if (iter->under_oom > 0)
2161 iter->under_oom--;
2162 spin_unlock(&memcg_oom_lock);
2163 }
2164
2165 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2166
2167 struct oom_wait_info {
2168 struct mem_cgroup *memcg;
2169 wait_queue_entry_t wait;
2170 };
2171
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)2172 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
2173 unsigned mode, int sync, void *arg)
2174 {
2175 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2176 struct mem_cgroup *oom_wait_memcg;
2177 struct oom_wait_info *oom_wait_info;
2178
2179 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2180 oom_wait_memcg = oom_wait_info->memcg;
2181
2182 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
2183 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
2184 return 0;
2185 return autoremove_wake_function(wait, mode, sync, arg);
2186 }
2187
memcg1_oom_recover(struct mem_cgroup * memcg)2188 void memcg1_oom_recover(struct mem_cgroup *memcg)
2189 {
2190 /*
2191 * For the following lockless ->under_oom test, the only required
2192 * guarantee is that it must see the state asserted by an OOM when
2193 * this function is called as a result of userland actions
2194 * triggered by the notification of the OOM. This is trivially
2195 * achieved by invoking mem_cgroup_mark_under_oom() before
2196 * triggering notification.
2197 */
2198 if (memcg && memcg->under_oom)
2199 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2200 }
2201
2202 /**
2203 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2204 * @handle: actually kill/wait or just clean up the OOM state
2205 *
2206 * This has to be called at the end of a page fault if the memcg OOM
2207 * handler was enabled.
2208 *
2209 * Memcg supports userspace OOM handling where failed allocations must
2210 * sleep on a waitqueue until the userspace task resolves the
2211 * situation. Sleeping directly in the charge context with all kinds
2212 * of locks held is not a good idea, instead we remember an OOM state
2213 * in the task and mem_cgroup_oom_synchronize() has to be called at
2214 * the end of the page fault to complete the OOM handling.
2215 *
2216 * Returns %true if an ongoing memcg OOM situation was detected and
2217 * completed, %false otherwise.
2218 */
mem_cgroup_oom_synchronize(bool handle)2219 bool mem_cgroup_oom_synchronize(bool handle)
2220 {
2221 struct mem_cgroup *memcg = current->memcg_in_oom;
2222 struct oom_wait_info owait;
2223 bool locked;
2224
2225 /* OOM is global, do not handle */
2226 if (!memcg)
2227 return false;
2228
2229 if (!handle)
2230 goto cleanup;
2231
2232 owait.memcg = memcg;
2233 owait.wait.flags = 0;
2234 owait.wait.func = memcg_oom_wake_function;
2235 owait.wait.private = current;
2236 INIT_LIST_HEAD(&owait.wait.entry);
2237
2238 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2239 mem_cgroup_mark_under_oom(memcg);
2240
2241 locked = mem_cgroup_oom_trylock(memcg);
2242
2243 if (locked)
2244 mem_cgroup_oom_notify(memcg);
2245
2246 schedule();
2247 mem_cgroup_unmark_under_oom(memcg);
2248 finish_wait(&memcg_oom_waitq, &owait.wait);
2249
2250 if (locked)
2251 mem_cgroup_oom_unlock(memcg);
2252 cleanup:
2253 current->memcg_in_oom = NULL;
2254 css_put(&memcg->css);
2255 return true;
2256 }
2257
2258
memcg1_oom_prepare(struct mem_cgroup * memcg,bool * locked)2259 bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked)
2260 {
2261 /*
2262 * We are in the middle of the charge context here, so we
2263 * don't want to block when potentially sitting on a callstack
2264 * that holds all kinds of filesystem and mm locks.
2265 *
2266 * cgroup1 allows disabling the OOM killer and waiting for outside
2267 * handling until the charge can succeed; remember the context and put
2268 * the task to sleep at the end of the page fault when all locks are
2269 * released.
2270 *
2271 * On the other hand, in-kernel OOM killer allows for an async victim
2272 * memory reclaim (oom_reaper) and that means that we are not solely
2273 * relying on the oom victim to make a forward progress and we can
2274 * invoke the oom killer here.
2275 *
2276 * Please note that mem_cgroup_out_of_memory might fail to find a
2277 * victim and then we have to bail out from the charge path.
2278 */
2279 if (READ_ONCE(memcg->oom_kill_disable)) {
2280 if (current->in_user_fault) {
2281 css_get(&memcg->css);
2282 current->memcg_in_oom = memcg;
2283 }
2284 return false;
2285 }
2286
2287 mem_cgroup_mark_under_oom(memcg);
2288
2289 *locked = mem_cgroup_oom_trylock(memcg);
2290
2291 if (*locked)
2292 mem_cgroup_oom_notify(memcg);
2293
2294 mem_cgroup_unmark_under_oom(memcg);
2295
2296 return true;
2297 }
2298
memcg1_oom_finish(struct mem_cgroup * memcg,bool locked)2299 void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked)
2300 {
2301 if (locked)
2302 mem_cgroup_oom_unlock(memcg);
2303 }
2304
2305 static DEFINE_MUTEX(memcg_max_mutex);
2306
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)2307 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2308 unsigned long max, bool memsw)
2309 {
2310 bool enlarge = false;
2311 bool drained = false;
2312 int ret;
2313 bool limits_invariant;
2314 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2315
2316 do {
2317 if (signal_pending(current)) {
2318 ret = -EINTR;
2319 break;
2320 }
2321
2322 mutex_lock(&memcg_max_mutex);
2323 /*
2324 * Make sure that the new limit (memsw or memory limit) doesn't
2325 * break our basic invariant rule memory.max <= memsw.max.
2326 */
2327 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
2328 max <= memcg->memsw.max;
2329 if (!limits_invariant) {
2330 mutex_unlock(&memcg_max_mutex);
2331 ret = -EINVAL;
2332 break;
2333 }
2334 if (max > counter->max)
2335 enlarge = true;
2336 ret = page_counter_set_max(counter, max);
2337 mutex_unlock(&memcg_max_mutex);
2338
2339 if (!ret)
2340 break;
2341
2342 if (!drained) {
2343 drain_all_stock(memcg);
2344 drained = true;
2345 continue;
2346 }
2347
2348 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
2349 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) {
2350 ret = -EBUSY;
2351 break;
2352 }
2353 } while (true);
2354
2355 if (!ret && enlarge)
2356 memcg1_oom_recover(memcg);
2357
2358 return ret;
2359 }
2360
2361 /*
2362 * Reclaims as many pages from the given memcg as possible.
2363 *
2364 * Caller is responsible for holding css reference for memcg.
2365 */
mem_cgroup_force_empty(struct mem_cgroup * memcg)2366 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2367 {
2368 int nr_retries = MAX_RECLAIM_RETRIES;
2369
2370 /* we call try-to-free pages for make this cgroup empty */
2371 lru_add_drain_all();
2372
2373 drain_all_stock(memcg);
2374
2375 /* try to free all pages in this cgroup */
2376 while (nr_retries && page_counter_read(&memcg->memory)) {
2377 if (signal_pending(current))
2378 return -EINTR;
2379
2380 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
2381 MEMCG_RECLAIM_MAY_SWAP, NULL))
2382 nr_retries--;
2383 }
2384
2385 return 0;
2386 }
2387
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2388 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2389 char *buf, size_t nbytes,
2390 loff_t off)
2391 {
2392 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2393
2394 if (mem_cgroup_is_root(memcg))
2395 return -EINVAL;
2396 return mem_cgroup_force_empty(memcg) ?: nbytes;
2397 }
2398
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)2399 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2400 struct cftype *cft)
2401 {
2402 return 1;
2403 }
2404
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2405 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2406 struct cftype *cft, u64 val)
2407 {
2408 if (val == 1)
2409 return 0;
2410
2411 pr_warn_once("Non-hierarchical mode is deprecated. "
2412 "Please report your usecase to linux-mm@kvack.org if you "
2413 "depend on this functionality.\n");
2414
2415 return -EINVAL;
2416 }
2417
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2418 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2419 struct cftype *cft)
2420 {
2421 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2422 struct page_counter *counter;
2423
2424 switch (MEMFILE_TYPE(cft->private)) {
2425 case _MEM:
2426 counter = &memcg->memory;
2427 break;
2428 case _MEMSWAP:
2429 counter = &memcg->memsw;
2430 break;
2431 case _KMEM:
2432 counter = &memcg->kmem;
2433 break;
2434 case _TCP:
2435 counter = &memcg->tcpmem;
2436 break;
2437 default:
2438 BUG();
2439 }
2440
2441 switch (MEMFILE_ATTR(cft->private)) {
2442 case RES_USAGE:
2443 if (counter == &memcg->memory)
2444 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2445 if (counter == &memcg->memsw)
2446 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2447 return (u64)page_counter_read(counter) * PAGE_SIZE;
2448 case RES_LIMIT:
2449 return (u64)counter->max * PAGE_SIZE;
2450 case RES_MAX_USAGE:
2451 return (u64)counter->watermark * PAGE_SIZE;
2452 case RES_FAILCNT:
2453 return counter->failcnt;
2454 case RES_SOFT_LIMIT:
2455 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
2456 default:
2457 BUG();
2458 }
2459 }
2460
2461 /*
2462 * This function doesn't do anything useful. Its only job is to provide a read
2463 * handler for a file so that cgroup_file_mode() will add read permissions.
2464 */
mem_cgroup_dummy_seq_show(__always_unused struct seq_file * m,__always_unused void * v)2465 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
2466 __always_unused void *v)
2467 {
2468 return -EINVAL;
2469 }
2470
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)2471 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
2472 {
2473 int ret;
2474
2475 mutex_lock(&memcg_max_mutex);
2476
2477 ret = page_counter_set_max(&memcg->tcpmem, max);
2478 if (ret)
2479 goto out;
2480
2481 if (!memcg->tcpmem_active) {
2482 /*
2483 * The active flag needs to be written after the static_key
2484 * update. This is what guarantees that the socket activation
2485 * function is the last one to run. See mem_cgroup_sk_alloc()
2486 * for details, and note that we don't mark any socket as
2487 * belonging to this memcg until that flag is up.
2488 *
2489 * We need to do this, because static_keys will span multiple
2490 * sites, but we can't control their order. If we mark a socket
2491 * as accounted, but the accounting functions are not patched in
2492 * yet, we'll lose accounting.
2493 *
2494 * We never race with the readers in mem_cgroup_sk_alloc(),
2495 * because when this value change, the code to process it is not
2496 * patched in yet.
2497 */
2498 static_branch_inc(&memcg_sockets_enabled_key);
2499 memcg->tcpmem_active = true;
2500 }
2501 out:
2502 mutex_unlock(&memcg_max_mutex);
2503 return ret;
2504 }
2505
2506 /*
2507 * The user of this function is...
2508 * RES_LIMIT.
2509 */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2510 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2511 char *buf, size_t nbytes, loff_t off)
2512 {
2513 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2514 unsigned long nr_pages;
2515 int ret;
2516
2517 buf = strstrip(buf);
2518 ret = page_counter_memparse(buf, "-1", &nr_pages);
2519 if (ret)
2520 return ret;
2521
2522 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2523 case RES_LIMIT:
2524 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2525 ret = -EINVAL;
2526 break;
2527 }
2528 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2529 case _MEM:
2530 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
2531 break;
2532 case _MEMSWAP:
2533 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
2534 break;
2535 case _KMEM:
2536 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
2537 "Writing any value to this file has no effect. "
2538 "Please report your usecase to linux-mm@kvack.org if you "
2539 "depend on this functionality.\n");
2540 ret = 0;
2541 break;
2542 case _TCP:
2543 pr_warn_once("kmem.tcp.limit_in_bytes is deprecated and will be removed. "
2544 "Please report your usecase to linux-mm@kvack.org if you "
2545 "depend on this functionality.\n");
2546 ret = memcg_update_tcp_max(memcg, nr_pages);
2547 break;
2548 }
2549 break;
2550 case RES_SOFT_LIMIT:
2551 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
2552 ret = -EOPNOTSUPP;
2553 } else {
2554 pr_warn_once("soft_limit_in_bytes is deprecated and will be removed. "
2555 "Please report your usecase to linux-mm@kvack.org if you "
2556 "depend on this functionality.\n");
2557 WRITE_ONCE(memcg->soft_limit, nr_pages);
2558 ret = 0;
2559 }
2560 break;
2561 }
2562 return ret ?: nbytes;
2563 }
2564
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2565 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2566 size_t nbytes, loff_t off)
2567 {
2568 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2569 struct page_counter *counter;
2570
2571 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2572 case _MEM:
2573 counter = &memcg->memory;
2574 break;
2575 case _MEMSWAP:
2576 counter = &memcg->memsw;
2577 break;
2578 case _KMEM:
2579 counter = &memcg->kmem;
2580 break;
2581 case _TCP:
2582 counter = &memcg->tcpmem;
2583 break;
2584 default:
2585 BUG();
2586 }
2587
2588 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2589 case RES_MAX_USAGE:
2590 page_counter_reset_watermark(counter);
2591 break;
2592 case RES_FAILCNT:
2593 counter->failcnt = 0;
2594 break;
2595 default:
2596 BUG();
2597 }
2598
2599 return nbytes;
2600 }
2601
2602 #ifdef CONFIG_NUMA
2603
2604 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
2605 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
2606 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
2607
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask,bool tree)2608 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
2609 int nid, unsigned int lru_mask, bool tree)
2610 {
2611 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
2612 unsigned long nr = 0;
2613 enum lru_list lru;
2614
2615 VM_BUG_ON((unsigned)nid >= nr_node_ids);
2616
2617 for_each_lru(lru) {
2618 if (!(BIT(lru) & lru_mask))
2619 continue;
2620 if (tree)
2621 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
2622 else
2623 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
2624 }
2625 return nr;
2626 }
2627
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask,bool tree)2628 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
2629 unsigned int lru_mask,
2630 bool tree)
2631 {
2632 unsigned long nr = 0;
2633 enum lru_list lru;
2634
2635 for_each_lru(lru) {
2636 if (!(BIT(lru) & lru_mask))
2637 continue;
2638 if (tree)
2639 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
2640 else
2641 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
2642 }
2643 return nr;
2644 }
2645
memcg_numa_stat_show(struct seq_file * m,void * v)2646 static int memcg_numa_stat_show(struct seq_file *m, void *v)
2647 {
2648 struct numa_stat {
2649 const char *name;
2650 unsigned int lru_mask;
2651 };
2652
2653 static const struct numa_stat stats[] = {
2654 { "total", LRU_ALL },
2655 { "file", LRU_ALL_FILE },
2656 { "anon", LRU_ALL_ANON },
2657 { "unevictable", BIT(LRU_UNEVICTABLE) },
2658 };
2659 const struct numa_stat *stat;
2660 int nid;
2661 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
2662
2663 mem_cgroup_flush_stats(memcg);
2664
2665 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
2666 seq_printf(m, "%s=%lu", stat->name,
2667 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
2668 false));
2669 for_each_node_state(nid, N_MEMORY)
2670 seq_printf(m, " N%d=%lu", nid,
2671 mem_cgroup_node_nr_lru_pages(memcg, nid,
2672 stat->lru_mask, false));
2673 seq_putc(m, '\n');
2674 }
2675
2676 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
2677
2678 seq_printf(m, "hierarchical_%s=%lu", stat->name,
2679 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
2680 true));
2681 for_each_node_state(nid, N_MEMORY)
2682 seq_printf(m, " N%d=%lu", nid,
2683 mem_cgroup_node_nr_lru_pages(memcg, nid,
2684 stat->lru_mask, true));
2685 seq_putc(m, '\n');
2686 }
2687
2688 return 0;
2689 }
2690 #endif /* CONFIG_NUMA */
2691
2692 static const unsigned int memcg1_stats[] = {
2693 NR_FILE_PAGES,
2694 NR_ANON_MAPPED,
2695 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2696 NR_ANON_THPS,
2697 #endif
2698 NR_SHMEM,
2699 NR_FILE_MAPPED,
2700 NR_FILE_DIRTY,
2701 NR_WRITEBACK,
2702 WORKINGSET_REFAULT_ANON,
2703 WORKINGSET_REFAULT_FILE,
2704 #ifdef CONFIG_SWAP
2705 MEMCG_SWAP,
2706 NR_SWAPCACHE,
2707 #endif
2708 };
2709
2710 static const char *const memcg1_stat_names[] = {
2711 "cache",
2712 "rss",
2713 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2714 "rss_huge",
2715 #endif
2716 "shmem",
2717 "mapped_file",
2718 "dirty",
2719 "writeback",
2720 "workingset_refault_anon",
2721 "workingset_refault_file",
2722 #ifdef CONFIG_SWAP
2723 "swap",
2724 "swapcached",
2725 #endif
2726 };
2727
2728 /* Universal VM events cgroup1 shows, original sort order */
2729 static const unsigned int memcg1_events[] = {
2730 PGPGIN,
2731 PGPGOUT,
2732 PGFAULT,
2733 PGMAJFAULT,
2734 };
2735
memcg1_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)2736 void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
2737 {
2738 unsigned long memory, memsw;
2739 struct mem_cgroup *mi;
2740 unsigned int i;
2741
2742 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
2743
2744 mem_cgroup_flush_stats(memcg);
2745
2746 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
2747 unsigned long nr;
2748
2749 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
2750 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
2751 }
2752
2753 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
2754 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
2755 memcg_events_local(memcg, memcg1_events[i]));
2756
2757 for (i = 0; i < NR_LRU_LISTS; i++)
2758 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
2759 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
2760 PAGE_SIZE);
2761
2762 /* Hierarchical information */
2763 memory = memsw = PAGE_COUNTER_MAX;
2764 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
2765 memory = min(memory, READ_ONCE(mi->memory.max));
2766 memsw = min(memsw, READ_ONCE(mi->memsw.max));
2767 }
2768 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
2769 (u64)memory * PAGE_SIZE);
2770 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
2771 (u64)memsw * PAGE_SIZE);
2772
2773 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
2774 unsigned long nr;
2775
2776 nr = memcg_page_state_output(memcg, memcg1_stats[i]);
2777 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
2778 (u64)nr);
2779 }
2780
2781 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
2782 seq_buf_printf(s, "total_%s %llu\n",
2783 vm_event_name(memcg1_events[i]),
2784 (u64)memcg_events(memcg, memcg1_events[i]));
2785
2786 for (i = 0; i < NR_LRU_LISTS; i++)
2787 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
2788 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
2789 PAGE_SIZE);
2790
2791 #ifdef CONFIG_DEBUG_VM
2792 {
2793 pg_data_t *pgdat;
2794 struct mem_cgroup_per_node *mz;
2795 unsigned long anon_cost = 0;
2796 unsigned long file_cost = 0;
2797
2798 for_each_online_pgdat(pgdat) {
2799 mz = memcg->nodeinfo[pgdat->node_id];
2800
2801 anon_cost += mz->lruvec.anon_cost;
2802 file_cost += mz->lruvec.file_cost;
2803 }
2804 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
2805 seq_buf_printf(s, "file_cost %lu\n", file_cost);
2806 }
2807 #endif
2808 }
2809
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)2810 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
2811 struct cftype *cft)
2812 {
2813 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2814
2815 return mem_cgroup_swappiness(memcg);
2816 }
2817
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2818 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
2819 struct cftype *cft, u64 val)
2820 {
2821 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2822
2823 if (val > MAX_SWAPPINESS)
2824 return -EINVAL;
2825
2826 if (!mem_cgroup_is_root(memcg))
2827 WRITE_ONCE(memcg->swappiness, val);
2828 else
2829 WRITE_ONCE(vm_swappiness, val);
2830
2831 return 0;
2832 }
2833
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)2834 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
2835 {
2836 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
2837
2838 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
2839 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
2840 seq_printf(sf, "oom_kill %lu\n",
2841 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
2842 return 0;
2843 }
2844
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2845 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
2846 struct cftype *cft, u64 val)
2847 {
2848 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2849
2850 pr_warn_once("oom_control is deprecated and will be removed. "
2851 "Please report your usecase to linux-mm-@kvack.org if you "
2852 "depend on this functionality. \n");
2853
2854 /* cannot set to root cgroup and only 0 and 1 are allowed */
2855 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
2856 return -EINVAL;
2857
2858 WRITE_ONCE(memcg->oom_kill_disable, val);
2859 if (!val)
2860 memcg1_oom_recover(memcg);
2861
2862 return 0;
2863 }
2864
2865 #ifdef CONFIG_SLUB_DEBUG
mem_cgroup_slab_show(struct seq_file * m,void * p)2866 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
2867 {
2868 /*
2869 * Deprecated.
2870 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
2871 */
2872 return 0;
2873 }
2874 #endif
2875
2876 struct cftype mem_cgroup_legacy_files[] = {
2877 {
2878 .name = "usage_in_bytes",
2879 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2880 .read_u64 = mem_cgroup_read_u64,
2881 },
2882 {
2883 .name = "max_usage_in_bytes",
2884 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2885 .write = mem_cgroup_reset,
2886 .read_u64 = mem_cgroup_read_u64,
2887 },
2888 {
2889 .name = "limit_in_bytes",
2890 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2891 .write = mem_cgroup_write,
2892 .read_u64 = mem_cgroup_read_u64,
2893 },
2894 {
2895 .name = "soft_limit_in_bytes",
2896 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
2897 .write = mem_cgroup_write,
2898 .read_u64 = mem_cgroup_read_u64,
2899 },
2900 {
2901 .name = "failcnt",
2902 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2903 .write = mem_cgroup_reset,
2904 .read_u64 = mem_cgroup_read_u64,
2905 },
2906 {
2907 .name = "stat",
2908 .seq_show = memory_stat_show,
2909 },
2910 {
2911 .name = "force_empty",
2912 .write = mem_cgroup_force_empty_write,
2913 },
2914 {
2915 .name = "use_hierarchy",
2916 .write_u64 = mem_cgroup_hierarchy_write,
2917 .read_u64 = mem_cgroup_hierarchy_read,
2918 },
2919 {
2920 .name = "cgroup.event_control", /* XXX: for compat */
2921 .write = memcg_write_event_control,
2922 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
2923 },
2924 {
2925 .name = "swappiness",
2926 .read_u64 = mem_cgroup_swappiness_read,
2927 .write_u64 = mem_cgroup_swappiness_write,
2928 },
2929 {
2930 .name = "move_charge_at_immigrate",
2931 .read_u64 = mem_cgroup_move_charge_read,
2932 .write_u64 = mem_cgroup_move_charge_write,
2933 },
2934 {
2935 .name = "oom_control",
2936 .seq_show = mem_cgroup_oom_control_read,
2937 .write_u64 = mem_cgroup_oom_control_write,
2938 },
2939 {
2940 .name = "pressure_level",
2941 .seq_show = mem_cgroup_dummy_seq_show,
2942 },
2943 #ifdef CONFIG_NUMA
2944 {
2945 .name = "numa_stat",
2946 .seq_show = memcg_numa_stat_show,
2947 },
2948 #endif
2949 {
2950 .name = "kmem.limit_in_bytes",
2951 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
2952 .write = mem_cgroup_write,
2953 .read_u64 = mem_cgroup_read_u64,
2954 },
2955 {
2956 .name = "kmem.usage_in_bytes",
2957 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
2958 .read_u64 = mem_cgroup_read_u64,
2959 },
2960 {
2961 .name = "kmem.failcnt",
2962 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
2963 .write = mem_cgroup_reset,
2964 .read_u64 = mem_cgroup_read_u64,
2965 },
2966 {
2967 .name = "kmem.max_usage_in_bytes",
2968 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
2969 .write = mem_cgroup_reset,
2970 .read_u64 = mem_cgroup_read_u64,
2971 },
2972 #ifdef CONFIG_SLUB_DEBUG
2973 {
2974 .name = "kmem.slabinfo",
2975 .seq_show = mem_cgroup_slab_show,
2976 },
2977 #endif
2978 {
2979 .name = "kmem.tcp.limit_in_bytes",
2980 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
2981 .write = mem_cgroup_write,
2982 .read_u64 = mem_cgroup_read_u64,
2983 },
2984 {
2985 .name = "kmem.tcp.usage_in_bytes",
2986 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
2987 .read_u64 = mem_cgroup_read_u64,
2988 },
2989 {
2990 .name = "kmem.tcp.failcnt",
2991 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
2992 .write = mem_cgroup_reset,
2993 .read_u64 = mem_cgroup_read_u64,
2994 },
2995 {
2996 .name = "kmem.tcp.max_usage_in_bytes",
2997 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
2998 .write = mem_cgroup_reset,
2999 .read_u64 = mem_cgroup_read_u64,
3000 },
3001 { }, /* terminate */
3002 };
3003
3004 struct cftype memsw_files[] = {
3005 {
3006 .name = "memsw.usage_in_bytes",
3007 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3008 .read_u64 = mem_cgroup_read_u64,
3009 },
3010 {
3011 .name = "memsw.max_usage_in_bytes",
3012 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3013 .write = mem_cgroup_reset,
3014 .read_u64 = mem_cgroup_read_u64,
3015 },
3016 {
3017 .name = "memsw.limit_in_bytes",
3018 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3019 .write = mem_cgroup_write,
3020 .read_u64 = mem_cgroup_read_u64,
3021 },
3022 {
3023 .name = "memsw.failcnt",
3024 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3025 .write = mem_cgroup_reset,
3026 .read_u64 = mem_cgroup_read_u64,
3027 },
3028 { }, /* terminate */
3029 };
3030
memcg1_account_kmem(struct mem_cgroup * memcg,int nr_pages)3031 void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3032 {
3033 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3034 if (nr_pages > 0)
3035 page_counter_charge(&memcg->kmem, nr_pages);
3036 else
3037 page_counter_uncharge(&memcg->kmem, -nr_pages);
3038 }
3039 }
3040
memcg1_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)3041 bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
3042 gfp_t gfp_mask)
3043 {
3044 struct page_counter *fail;
3045
3046 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
3047 memcg->tcpmem_pressure = 0;
3048 return true;
3049 }
3050 memcg->tcpmem_pressure = 1;
3051 if (gfp_mask & __GFP_NOFAIL) {
3052 page_counter_charge(&memcg->tcpmem, nr_pages);
3053 return true;
3054 }
3055 return false;
3056 }
3057
memcg1_alloc_events(struct mem_cgroup * memcg)3058 bool memcg1_alloc_events(struct mem_cgroup *memcg)
3059 {
3060 memcg->events_percpu = alloc_percpu_gfp(struct memcg1_events_percpu,
3061 GFP_KERNEL_ACCOUNT);
3062 return !!memcg->events_percpu;
3063 }
3064
memcg1_free_events(struct mem_cgroup * memcg)3065 void memcg1_free_events(struct mem_cgroup *memcg)
3066 {
3067 if (memcg->events_percpu)
3068 free_percpu(memcg->events_percpu);
3069 }
3070
memcg1_init(void)3071 static int __init memcg1_init(void)
3072 {
3073 int node;
3074
3075 for_each_node(node) {
3076 struct mem_cgroup_tree_per_node *rtpn;
3077
3078 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
3079
3080 rtpn->rb_root = RB_ROOT;
3081 rtpn->rb_rightmost = NULL;
3082 spin_lock_init(&rtpn->lock);
3083 soft_limit_tree.rb_tree_per_node[node] = rtpn;
3084 }
3085
3086 return 0;
3087 }
3088 subsys_initcall(memcg1_init);
3089