1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 #include <linux/mutex.h>
20
21 #ifdef CONFIG_KEXEC_HANDOVER
22 #include <linux/libfdt.h>
23 #include <linux/kexec_handover.h>
24 #endif /* CONFIG_KEXEC_HANDOVER */
25
26 #include <asm/sections.h>
27 #include <linux/io.h>
28
29 #include "internal.h"
30
31 #define INIT_MEMBLOCK_REGIONS 128
32 #define INIT_PHYSMEM_REGIONS 4
33
34 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
35 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
36 #endif
37
38 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
39 #define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
40 #endif
41
42 /**
43 * DOC: memblock overview
44 *
45 * Memblock is a method of managing memory regions during the early
46 * boot period when the usual kernel memory allocators are not up and
47 * running.
48 *
49 * Memblock views the system memory as collections of contiguous
50 * regions. There are several types of these collections:
51 *
52 * * ``memory`` - describes the physical memory available to the
53 * kernel; this may differ from the actual physical memory installed
54 * in the system, for instance when the memory is restricted with
55 * ``mem=`` command line parameter
56 * * ``reserved`` - describes the regions that were allocated
57 * * ``physmem`` - describes the actual physical memory available during
58 * boot regardless of the possible restrictions and memory hot(un)plug;
59 * the ``physmem`` type is only available on some architectures.
60 *
61 * Each region is represented by struct memblock_region that
62 * defines the region extents, its attributes and NUMA node id on NUMA
63 * systems. Every memory type is described by the struct memblock_type
64 * which contains an array of memory regions along with
65 * the allocator metadata. The "memory" and "reserved" types are nicely
66 * wrapped with struct memblock. This structure is statically
67 * initialized at build time. The region arrays are initially sized to
68 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
69 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
70 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
71 * The memblock_allow_resize() enables automatic resizing of the region
72 * arrays during addition of new regions. This feature should be used
73 * with care so that memory allocated for the region array will not
74 * overlap with areas that should be reserved, for example initrd.
75 *
76 * The early architecture setup should tell memblock what the physical
77 * memory layout is by using memblock_add() or memblock_add_node()
78 * functions. The first function does not assign the region to a NUMA
79 * node and it is appropriate for UMA systems. Yet, it is possible to
80 * use it on NUMA systems as well and assign the region to a NUMA node
81 * later in the setup process using memblock_set_node(). The
82 * memblock_add_node() performs such an assignment directly.
83 *
84 * Once memblock is setup the memory can be allocated using one of the
85 * API variants:
86 *
87 * * memblock_phys_alloc*() - these functions return the **physical**
88 * address of the allocated memory
89 * * memblock_alloc*() - these functions return the **virtual** address
90 * of the allocated memory.
91 *
92 * Note, that both API variants use implicit assumptions about allowed
93 * memory ranges and the fallback methods. Consult the documentation
94 * of memblock_alloc_internal() and memblock_alloc_range_nid()
95 * functions for more elaborate description.
96 *
97 * As the system boot progresses, the architecture specific mem_init()
98 * function frees all the memory to the buddy page allocator.
99 *
100 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
101 * memblock data structures (except "physmem") will be discarded after the
102 * system initialization completes.
103 */
104
105 #ifndef CONFIG_NUMA
106 struct pglist_data __refdata contig_page_data;
107 EXPORT_SYMBOL(contig_page_data);
108 #endif
109
110 unsigned long max_low_pfn;
111 unsigned long min_low_pfn;
112 unsigned long max_pfn;
113 unsigned long long max_possible_pfn;
114
115 #ifdef CONFIG_MEMBLOCK_KHO_SCRATCH
116 /* When set to true, only allocate from MEMBLOCK_KHO_SCRATCH ranges */
117 static bool kho_scratch_only;
118 #else
119 #define kho_scratch_only false
120 #endif
121
122 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
123 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
124 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
125 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
126 #endif
127
128 struct memblock memblock __initdata_memblock = {
129 .memory.regions = memblock_memory_init_regions,
130 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
131 .memory.name = "memory",
132
133 .reserved.regions = memblock_reserved_init_regions,
134 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
135 .reserved.name = "reserved",
136
137 .bottom_up = false,
138 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
139 };
140
141 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
142 struct memblock_type physmem = {
143 .regions = memblock_physmem_init_regions,
144 .max = INIT_PHYSMEM_REGIONS,
145 .name = "physmem",
146 };
147 #endif
148
149 /*
150 * keep a pointer to &memblock.memory in the text section to use it in
151 * __next_mem_range() and its helpers.
152 * For architectures that do not keep memblock data after init, this
153 * pointer will be reset to NULL at memblock_discard()
154 */
155 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
156
157 #define for_each_memblock_type(i, memblock_type, rgn) \
158 for (i = 0, rgn = &memblock_type->regions[0]; \
159 i < memblock_type->cnt; \
160 i++, rgn = &memblock_type->regions[i])
161
162 #define memblock_dbg(fmt, ...) \
163 do { \
164 if (memblock_debug) \
165 pr_info(fmt, ##__VA_ARGS__); \
166 } while (0)
167
168 static int memblock_debug __initdata_memblock;
169 static bool system_has_some_mirror __initdata_memblock;
170 static int memblock_can_resize __initdata_memblock;
171 static int memblock_memory_in_slab __initdata_memblock;
172 static int memblock_reserved_in_slab __initdata_memblock;
173
memblock_has_mirror(void)174 bool __init_memblock memblock_has_mirror(void)
175 {
176 return system_has_some_mirror;
177 }
178
choose_memblock_flags(void)179 static enum memblock_flags __init_memblock choose_memblock_flags(void)
180 {
181 /* skip non-scratch memory for kho early boot allocations */
182 if (kho_scratch_only)
183 return MEMBLOCK_KHO_SCRATCH;
184
185 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
186 }
187
188 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)189 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
190 {
191 return *size = min(*size, PHYS_ADDR_MAX - base);
192 }
193
194 /*
195 * Address comparison utilities
196 */
197 unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)198 memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
199 phys_addr_t size2)
200 {
201 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
202 }
203
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)204 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
205 phys_addr_t base, phys_addr_t size)
206 {
207 unsigned long i;
208
209 memblock_cap_size(base, &size);
210
211 for (i = 0; i < type->cnt; i++)
212 if (memblock_addrs_overlap(base, size, type->regions[i].base,
213 type->regions[i].size))
214 return true;
215 return false;
216 }
217
218 /**
219 * __memblock_find_range_bottom_up - find free area utility in bottom-up
220 * @start: start of candidate range
221 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
222 * %MEMBLOCK_ALLOC_ACCESSIBLE
223 * @size: size of free area to find
224 * @align: alignment of free area to find
225 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
226 * @flags: pick from blocks based on memory attributes
227 *
228 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
229 *
230 * Return:
231 * Found address on success, 0 on failure.
232 */
233 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)234 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
235 phys_addr_t size, phys_addr_t align, int nid,
236 enum memblock_flags flags)
237 {
238 phys_addr_t this_start, this_end, cand;
239 u64 i;
240
241 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
242 this_start = clamp(this_start, start, end);
243 this_end = clamp(this_end, start, end);
244
245 cand = round_up(this_start, align);
246 if (cand < this_end && this_end - cand >= size)
247 return cand;
248 }
249
250 return 0;
251 }
252
253 /**
254 * __memblock_find_range_top_down - find free area utility, in top-down
255 * @start: start of candidate range
256 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
257 * %MEMBLOCK_ALLOC_ACCESSIBLE
258 * @size: size of free area to find
259 * @align: alignment of free area to find
260 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
261 * @flags: pick from blocks based on memory attributes
262 *
263 * Utility called from memblock_find_in_range_node(), find free area top-down.
264 *
265 * Return:
266 * Found address on success, 0 on failure.
267 */
268 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)269 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
270 phys_addr_t size, phys_addr_t align, int nid,
271 enum memblock_flags flags)
272 {
273 phys_addr_t this_start, this_end, cand;
274 u64 i;
275
276 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
277 NULL) {
278 this_start = clamp(this_start, start, end);
279 this_end = clamp(this_end, start, end);
280
281 if (this_end < size)
282 continue;
283
284 cand = round_down(this_end - size, align);
285 if (cand >= this_start)
286 return cand;
287 }
288
289 return 0;
290 }
291
292 /**
293 * memblock_find_in_range_node - find free area in given range and node
294 * @size: size of free area to find
295 * @align: alignment of free area to find
296 * @start: start of candidate range
297 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
298 * %MEMBLOCK_ALLOC_ACCESSIBLE
299 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
300 * @flags: pick from blocks based on memory attributes
301 *
302 * Find @size free area aligned to @align in the specified range and node.
303 *
304 * Return:
305 * Found address on success, 0 on failure.
306 */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)307 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
308 phys_addr_t align, phys_addr_t start,
309 phys_addr_t end, int nid,
310 enum memblock_flags flags)
311 {
312 /* pump up @end */
313 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
314 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
315 end = memblock.current_limit;
316
317 /* avoid allocating the first page */
318 start = max_t(phys_addr_t, start, PAGE_SIZE);
319 end = max(start, end);
320
321 if (memblock_bottom_up())
322 return __memblock_find_range_bottom_up(start, end, size, align,
323 nid, flags);
324 else
325 return __memblock_find_range_top_down(start, end, size, align,
326 nid, flags);
327 }
328
329 /**
330 * memblock_find_in_range - find free area in given range
331 * @start: start of candidate range
332 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
333 * %MEMBLOCK_ALLOC_ACCESSIBLE
334 * @size: size of free area to find
335 * @align: alignment of free area to find
336 *
337 * Find @size free area aligned to @align in the specified range.
338 *
339 * Return:
340 * Found address on success, 0 on failure.
341 */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)342 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
343 phys_addr_t end, phys_addr_t size,
344 phys_addr_t align)
345 {
346 phys_addr_t ret;
347 enum memblock_flags flags = choose_memblock_flags();
348
349 again:
350 ret = memblock_find_in_range_node(size, align, start, end,
351 NUMA_NO_NODE, flags);
352
353 if (!ret && (flags & MEMBLOCK_MIRROR)) {
354 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
355 &size);
356 flags &= ~MEMBLOCK_MIRROR;
357 goto again;
358 }
359
360 return ret;
361 }
362
memblock_remove_region(struct memblock_type * type,unsigned long r)363 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
364 {
365 type->total_size -= type->regions[r].size;
366 memmove(&type->regions[r], &type->regions[r + 1],
367 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
368 type->cnt--;
369
370 /* Special case for empty arrays */
371 if (type->cnt == 0) {
372 WARN_ON(type->total_size != 0);
373 type->regions[0].base = 0;
374 type->regions[0].size = 0;
375 type->regions[0].flags = 0;
376 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
377 }
378 }
379
380 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
381 /**
382 * memblock_discard - discard memory and reserved arrays if they were allocated
383 */
memblock_discard(void)384 void __init memblock_discard(void)
385 {
386 phys_addr_t addr, size;
387
388 if (memblock.reserved.regions != memblock_reserved_init_regions) {
389 addr = __pa(memblock.reserved.regions);
390 size = PAGE_ALIGN(sizeof(struct memblock_region) *
391 memblock.reserved.max);
392 if (memblock_reserved_in_slab)
393 kfree(memblock.reserved.regions);
394 else
395 memblock_free_late(addr, size);
396 }
397
398 if (memblock.memory.regions != memblock_memory_init_regions) {
399 addr = __pa(memblock.memory.regions);
400 size = PAGE_ALIGN(sizeof(struct memblock_region) *
401 memblock.memory.max);
402 if (memblock_memory_in_slab)
403 kfree(memblock.memory.regions);
404 else
405 memblock_free_late(addr, size);
406 }
407
408 memblock_memory = NULL;
409 }
410 #endif
411
412 /**
413 * memblock_double_array - double the size of the memblock regions array
414 * @type: memblock type of the regions array being doubled
415 * @new_area_start: starting address of memory range to avoid overlap with
416 * @new_area_size: size of memory range to avoid overlap with
417 *
418 * Double the size of the @type regions array. If memblock is being used to
419 * allocate memory for a new reserved regions array and there is a previously
420 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
421 * waiting to be reserved, ensure the memory used by the new array does
422 * not overlap.
423 *
424 * Return:
425 * 0 on success, -1 on failure.
426 */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)427 static int __init_memblock memblock_double_array(struct memblock_type *type,
428 phys_addr_t new_area_start,
429 phys_addr_t new_area_size)
430 {
431 struct memblock_region *new_array, *old_array;
432 phys_addr_t old_alloc_size, new_alloc_size;
433 phys_addr_t old_size, new_size, addr, new_end;
434 int use_slab = slab_is_available();
435 int *in_slab;
436
437 /* We don't allow resizing until we know about the reserved regions
438 * of memory that aren't suitable for allocation
439 */
440 if (!memblock_can_resize)
441 panic("memblock: cannot resize %s array\n", type->name);
442
443 /* Calculate new doubled size */
444 old_size = type->max * sizeof(struct memblock_region);
445 new_size = old_size << 1;
446 /*
447 * We need to allocated new one align to PAGE_SIZE,
448 * so we can free them completely later.
449 */
450 old_alloc_size = PAGE_ALIGN(old_size);
451 new_alloc_size = PAGE_ALIGN(new_size);
452
453 /* Retrieve the slab flag */
454 if (type == &memblock.memory)
455 in_slab = &memblock_memory_in_slab;
456 else
457 in_slab = &memblock_reserved_in_slab;
458
459 /* Try to find some space for it */
460 if (use_slab) {
461 new_array = kmalloc(new_size, GFP_KERNEL);
462 addr = new_array ? __pa(new_array) : 0;
463 } else {
464 /* only exclude range when trying to double reserved.regions */
465 if (type != &memblock.reserved)
466 new_area_start = new_area_size = 0;
467
468 addr = memblock_find_in_range(new_area_start + new_area_size,
469 memblock.current_limit,
470 new_alloc_size, PAGE_SIZE);
471 if (!addr && new_area_size)
472 addr = memblock_find_in_range(0,
473 min(new_area_start, memblock.current_limit),
474 new_alloc_size, PAGE_SIZE);
475
476 if (addr) {
477 /* The memory may not have been accepted, yet. */
478 accept_memory(addr, new_alloc_size);
479
480 new_array = __va(addr);
481 } else {
482 new_array = NULL;
483 }
484 }
485 if (!addr) {
486 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
487 type->name, type->max, type->max * 2);
488 return -1;
489 }
490
491 new_end = addr + new_size - 1;
492 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
493 type->name, type->max * 2, &addr, &new_end);
494
495 /*
496 * Found space, we now need to move the array over before we add the
497 * reserved region since it may be our reserved array itself that is
498 * full.
499 */
500 memcpy(new_array, type->regions, old_size);
501 memset(new_array + type->max, 0, old_size);
502 old_array = type->regions;
503 type->regions = new_array;
504 type->max <<= 1;
505
506 /* Free old array. We needn't free it if the array is the static one */
507 if (*in_slab)
508 kfree(old_array);
509 else if (old_array != memblock_memory_init_regions &&
510 old_array != memblock_reserved_init_regions)
511 memblock_free(old_array, old_alloc_size);
512
513 /*
514 * Reserve the new array if that comes from the memblock. Otherwise, we
515 * needn't do it
516 */
517 if (!use_slab)
518 BUG_ON(memblock_reserve_kern(addr, new_alloc_size));
519
520 /* Update slab flag */
521 *in_slab = use_slab;
522
523 return 0;
524 }
525
526 /**
527 * memblock_merge_regions - merge neighboring compatible regions
528 * @type: memblock type to scan
529 * @start_rgn: start scanning from (@start_rgn - 1)
530 * @end_rgn: end scanning at (@end_rgn - 1)
531 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
532 */
memblock_merge_regions(struct memblock_type * type,unsigned long start_rgn,unsigned long end_rgn)533 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
534 unsigned long start_rgn,
535 unsigned long end_rgn)
536 {
537 int i = 0;
538 if (start_rgn)
539 i = start_rgn - 1;
540 end_rgn = min(end_rgn, type->cnt - 1);
541 while (i < end_rgn) {
542 struct memblock_region *this = &type->regions[i];
543 struct memblock_region *next = &type->regions[i + 1];
544
545 if (this->base + this->size != next->base ||
546 memblock_get_region_node(this) !=
547 memblock_get_region_node(next) ||
548 this->flags != next->flags) {
549 BUG_ON(this->base + this->size > next->base);
550 i++;
551 continue;
552 }
553
554 this->size += next->size;
555 /* move forward from next + 1, index of which is i + 2 */
556 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
557 type->cnt--;
558 end_rgn--;
559 }
560 }
561
562 /**
563 * memblock_insert_region - insert new memblock region
564 * @type: memblock type to insert into
565 * @idx: index for the insertion point
566 * @base: base address of the new region
567 * @size: size of the new region
568 * @nid: node id of the new region
569 * @flags: flags of the new region
570 *
571 * Insert new memblock region [@base, @base + @size) into @type at @idx.
572 * @type must already have extra room to accommodate the new region.
573 */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)574 static void __init_memblock memblock_insert_region(struct memblock_type *type,
575 int idx, phys_addr_t base,
576 phys_addr_t size,
577 int nid,
578 enum memblock_flags flags)
579 {
580 struct memblock_region *rgn = &type->regions[idx];
581
582 BUG_ON(type->cnt >= type->max);
583 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
584 rgn->base = base;
585 rgn->size = size;
586 rgn->flags = flags;
587 memblock_set_region_node(rgn, nid);
588 type->cnt++;
589 type->total_size += size;
590 }
591
592 /**
593 * memblock_add_range - add new memblock region
594 * @type: memblock type to add new region into
595 * @base: base address of the new region
596 * @size: size of the new region
597 * @nid: nid of the new region
598 * @flags: flags of the new region
599 *
600 * Add new memblock region [@base, @base + @size) into @type. The new region
601 * is allowed to overlap with existing ones - overlaps don't affect already
602 * existing regions. @type is guaranteed to be minimal (all neighbouring
603 * compatible regions are merged) after the addition.
604 *
605 * Return:
606 * 0 on success, -errno on failure.
607 */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)608 static int __init_memblock memblock_add_range(struct memblock_type *type,
609 phys_addr_t base, phys_addr_t size,
610 int nid, enum memblock_flags flags)
611 {
612 bool insert = false;
613 phys_addr_t obase = base;
614 phys_addr_t end = base + memblock_cap_size(base, &size);
615 int idx, nr_new, start_rgn = -1, end_rgn;
616 struct memblock_region *rgn;
617
618 if (!size)
619 return 0;
620
621 /* special case for empty array */
622 if (type->regions[0].size == 0) {
623 WARN_ON(type->cnt != 0 || type->total_size);
624 type->regions[0].base = base;
625 type->regions[0].size = size;
626 type->regions[0].flags = flags;
627 memblock_set_region_node(&type->regions[0], nid);
628 type->total_size = size;
629 type->cnt = 1;
630 return 0;
631 }
632
633 /*
634 * The worst case is when new range overlaps all existing regions,
635 * then we'll need type->cnt + 1 empty regions in @type. So if
636 * type->cnt * 2 + 1 is less than or equal to type->max, we know
637 * that there is enough empty regions in @type, and we can insert
638 * regions directly.
639 */
640 if (type->cnt * 2 + 1 <= type->max)
641 insert = true;
642
643 repeat:
644 /*
645 * The following is executed twice. Once with %false @insert and
646 * then with %true. The first counts the number of regions needed
647 * to accommodate the new area. The second actually inserts them.
648 */
649 base = obase;
650 nr_new = 0;
651
652 for_each_memblock_type(idx, type, rgn) {
653 phys_addr_t rbase = rgn->base;
654 phys_addr_t rend = rbase + rgn->size;
655
656 if (rbase >= end)
657 break;
658 if (rend <= base)
659 continue;
660 /*
661 * @rgn overlaps. If it separates the lower part of new
662 * area, insert that portion.
663 */
664 if (rbase > base) {
665 #ifdef CONFIG_NUMA
666 WARN_ON(nid != memblock_get_region_node(rgn));
667 #endif
668 WARN_ON(flags != MEMBLOCK_NONE && flags != rgn->flags);
669 nr_new++;
670 if (insert) {
671 if (start_rgn == -1)
672 start_rgn = idx;
673 end_rgn = idx + 1;
674 memblock_insert_region(type, idx++, base,
675 rbase - base, nid,
676 flags);
677 }
678 }
679 /* area below @rend is dealt with, forget about it */
680 base = min(rend, end);
681 }
682
683 /* insert the remaining portion */
684 if (base < end) {
685 nr_new++;
686 if (insert) {
687 if (start_rgn == -1)
688 start_rgn = idx;
689 end_rgn = idx + 1;
690 memblock_insert_region(type, idx, base, end - base,
691 nid, flags);
692 }
693 }
694
695 if (!nr_new)
696 return 0;
697
698 /*
699 * If this was the first round, resize array and repeat for actual
700 * insertions; otherwise, merge and return.
701 */
702 if (!insert) {
703 while (type->cnt + nr_new > type->max)
704 if (memblock_double_array(type, obase, size) < 0)
705 return -ENOMEM;
706 insert = true;
707 goto repeat;
708 } else {
709 memblock_merge_regions(type, start_rgn, end_rgn);
710 return 0;
711 }
712 }
713
714 /**
715 * memblock_add_node - add new memblock region within a NUMA node
716 * @base: base address of the new region
717 * @size: size of the new region
718 * @nid: nid of the new region
719 * @flags: flags of the new region
720 *
721 * Add new memblock region [@base, @base + @size) to the "memory"
722 * type. See memblock_add_range() description for mode details
723 *
724 * Return:
725 * 0 on success, -errno on failure.
726 */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)727 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
728 int nid, enum memblock_flags flags)
729 {
730 phys_addr_t end = base + size - 1;
731
732 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
733 &base, &end, nid, flags, (void *)_RET_IP_);
734
735 return memblock_add_range(&memblock.memory, base, size, nid, flags);
736 }
737
738 /**
739 * memblock_add - add new memblock region
740 * @base: base address of the new region
741 * @size: size of the new region
742 *
743 * Add new memblock region [@base, @base + @size) to the "memory"
744 * type. See memblock_add_range() description for mode details
745 *
746 * Return:
747 * 0 on success, -errno on failure.
748 */
memblock_add(phys_addr_t base,phys_addr_t size)749 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
750 {
751 phys_addr_t end = base + size - 1;
752
753 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
754 &base, &end, (void *)_RET_IP_);
755
756 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
757 }
758
759 /**
760 * memblock_validate_numa_coverage - check if amount of memory with
761 * no node ID assigned is less than a threshold
762 * @threshold_bytes: maximal memory size that can have unassigned node
763 * ID (in bytes).
764 *
765 * A buggy firmware may report memory that does not belong to any node.
766 * Check if amount of such memory is below @threshold_bytes.
767 *
768 * Return: true on success, false on failure.
769 */
memblock_validate_numa_coverage(unsigned long threshold_bytes)770 bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
771 {
772 unsigned long nr_pages = 0;
773 unsigned long start_pfn, end_pfn, mem_size_mb;
774 int nid, i;
775
776 /* calculate lose page */
777 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
778 if (!numa_valid_node(nid))
779 nr_pages += end_pfn - start_pfn;
780 }
781
782 if ((nr_pages << PAGE_SHIFT) > threshold_bytes) {
783 mem_size_mb = memblock_phys_mem_size() / SZ_1M;
784 pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
785 (nr_pages << PAGE_SHIFT) / SZ_1M, mem_size_mb);
786 return false;
787 }
788
789 return true;
790 }
791
792
793 /**
794 * memblock_isolate_range - isolate given range into disjoint memblocks
795 * @type: memblock type to isolate range for
796 * @base: base of range to isolate
797 * @size: size of range to isolate
798 * @start_rgn: out parameter for the start of isolated region
799 * @end_rgn: out parameter for the end of isolated region
800 *
801 * Walk @type and ensure that regions don't cross the boundaries defined by
802 * [@base, @base + @size). Crossing regions are split at the boundaries,
803 * which may create at most two more regions. The index of the first
804 * region inside the range is returned in *@start_rgn and the index of the
805 * first region after the range is returned in *@end_rgn.
806 *
807 * Return:
808 * 0 on success, -errno on failure.
809 */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)810 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
811 phys_addr_t base, phys_addr_t size,
812 int *start_rgn, int *end_rgn)
813 {
814 phys_addr_t end = base + memblock_cap_size(base, &size);
815 int idx;
816 struct memblock_region *rgn;
817
818 *start_rgn = *end_rgn = 0;
819
820 if (!size)
821 return 0;
822
823 /* we'll create at most two more regions */
824 while (type->cnt + 2 > type->max)
825 if (memblock_double_array(type, base, size) < 0)
826 return -ENOMEM;
827
828 for_each_memblock_type(idx, type, rgn) {
829 phys_addr_t rbase = rgn->base;
830 phys_addr_t rend = rbase + rgn->size;
831
832 if (rbase >= end)
833 break;
834 if (rend <= base)
835 continue;
836
837 if (rbase < base) {
838 /*
839 * @rgn intersects from below. Split and continue
840 * to process the next region - the new top half.
841 */
842 rgn->base = base;
843 rgn->size -= base - rbase;
844 type->total_size -= base - rbase;
845 memblock_insert_region(type, idx, rbase, base - rbase,
846 memblock_get_region_node(rgn),
847 rgn->flags);
848 } else if (rend > end) {
849 /*
850 * @rgn intersects from above. Split and redo the
851 * current region - the new bottom half.
852 */
853 rgn->base = end;
854 rgn->size -= end - rbase;
855 type->total_size -= end - rbase;
856 memblock_insert_region(type, idx--, rbase, end - rbase,
857 memblock_get_region_node(rgn),
858 rgn->flags);
859 } else {
860 /* @rgn is fully contained, record it */
861 if (!*end_rgn)
862 *start_rgn = idx;
863 *end_rgn = idx + 1;
864 }
865 }
866
867 return 0;
868 }
869
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)870 static int __init_memblock memblock_remove_range(struct memblock_type *type,
871 phys_addr_t base, phys_addr_t size)
872 {
873 int start_rgn, end_rgn;
874 int i, ret;
875
876 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
877 if (ret)
878 return ret;
879
880 for (i = end_rgn - 1; i >= start_rgn; i--)
881 memblock_remove_region(type, i);
882 return 0;
883 }
884
memblock_remove(phys_addr_t base,phys_addr_t size)885 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
886 {
887 phys_addr_t end = base + size - 1;
888
889 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
890 &base, &end, (void *)_RET_IP_);
891
892 return memblock_remove_range(&memblock.memory, base, size);
893 }
894
895 /**
896 * memblock_free - free boot memory allocation
897 * @ptr: starting address of the boot memory allocation
898 * @size: size of the boot memory block in bytes
899 *
900 * Free boot memory block previously allocated by memblock_alloc_xx() API.
901 * The freeing memory will not be released to the buddy allocator.
902 */
memblock_free(void * ptr,size_t size)903 void __init_memblock memblock_free(void *ptr, size_t size)
904 {
905 if (ptr)
906 memblock_phys_free(__pa(ptr), size);
907 }
908
909 /**
910 * memblock_phys_free - free boot memory block
911 * @base: phys starting address of the boot memory block
912 * @size: size of the boot memory block in bytes
913 *
914 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
915 * The freeing memory will not be released to the buddy allocator.
916 */
memblock_phys_free(phys_addr_t base,phys_addr_t size)917 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
918 {
919 phys_addr_t end = base + size - 1;
920
921 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
922 &base, &end, (void *)_RET_IP_);
923
924 kmemleak_free_part_phys(base, size);
925 return memblock_remove_range(&memblock.reserved, base, size);
926 }
927
__memblock_reserve(phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)928 int __init_memblock __memblock_reserve(phys_addr_t base, phys_addr_t size,
929 int nid, enum memblock_flags flags)
930 {
931 phys_addr_t end = base + size - 1;
932
933 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
934 &base, &end, nid, flags, (void *)_RET_IP_);
935
936 return memblock_add_range(&memblock.reserved, base, size, nid, flags);
937 }
938
939 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)940 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
941 {
942 phys_addr_t end = base + size - 1;
943
944 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
945 &base, &end, (void *)_RET_IP_);
946
947 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
948 }
949 #endif
950
951 #ifdef CONFIG_MEMBLOCK_KHO_SCRATCH
memblock_set_kho_scratch_only(void)952 __init void memblock_set_kho_scratch_only(void)
953 {
954 kho_scratch_only = true;
955 }
956
memblock_clear_kho_scratch_only(void)957 __init void memblock_clear_kho_scratch_only(void)
958 {
959 kho_scratch_only = false;
960 }
961
memmap_init_kho_scratch_pages(void)962 __init void memmap_init_kho_scratch_pages(void)
963 {
964 phys_addr_t start, end;
965 unsigned long pfn;
966 int nid;
967 u64 i;
968
969 if (!IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT))
970 return;
971
972 /*
973 * Initialize struct pages for free scratch memory.
974 * The struct pages for reserved scratch memory will be set up in
975 * reserve_bootmem_region()
976 */
977 __for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE,
978 MEMBLOCK_KHO_SCRATCH, &start, &end, &nid) {
979 for (pfn = PFN_UP(start); pfn < PFN_DOWN(end); pfn++)
980 init_deferred_page(pfn, nid);
981 }
982 }
983 #endif
984
985 /**
986 * memblock_setclr_flag - set or clear flag for a memory region
987 * @type: memblock type to set/clear flag for
988 * @base: base address of the region
989 * @size: size of the region
990 * @set: set or clear the flag
991 * @flag: the flag to update
992 *
993 * This function isolates region [@base, @base + @size), and sets/clears flag
994 *
995 * Return: 0 on success, -errno on failure.
996 */
memblock_setclr_flag(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int set,int flag)997 static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
998 phys_addr_t base, phys_addr_t size, int set, int flag)
999 {
1000 int i, ret, start_rgn, end_rgn;
1001
1002 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1003 if (ret)
1004 return ret;
1005
1006 for (i = start_rgn; i < end_rgn; i++) {
1007 struct memblock_region *r = &type->regions[i];
1008
1009 if (set)
1010 r->flags |= flag;
1011 else
1012 r->flags &= ~flag;
1013 }
1014
1015 memblock_merge_regions(type, start_rgn, end_rgn);
1016 return 0;
1017 }
1018
1019 /**
1020 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
1021 * @base: the base phys addr of the region
1022 * @size: the size of the region
1023 *
1024 * Return: 0 on success, -errno on failure.
1025 */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)1026 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
1027 {
1028 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
1029 }
1030
1031 /**
1032 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
1033 * @base: the base phys addr of the region
1034 * @size: the size of the region
1035 *
1036 * Return: 0 on success, -errno on failure.
1037 */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)1038 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
1039 {
1040 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
1041 }
1042
1043 /**
1044 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
1045 * @base: the base phys addr of the region
1046 * @size: the size of the region
1047 *
1048 * Return: 0 on success, -errno on failure.
1049 */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)1050 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
1051 {
1052 if (!mirrored_kernelcore)
1053 return 0;
1054
1055 system_has_some_mirror = true;
1056
1057 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
1058 }
1059
1060 /**
1061 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1062 * @base: the base phys addr of the region
1063 * @size: the size of the region
1064 *
1065 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1066 * direct mapping of the physical memory. These regions will still be
1067 * covered by the memory map. The struct page representing NOMAP memory
1068 * frames in the memory map will be PageReserved()
1069 *
1070 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1071 * memblock, the caller must inform kmemleak to ignore that memory
1072 *
1073 * Return: 0 on success, -errno on failure.
1074 */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)1075 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1076 {
1077 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
1078 }
1079
1080 /**
1081 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1082 * @base: the base phys addr of the region
1083 * @size: the size of the region
1084 *
1085 * Return: 0 on success, -errno on failure.
1086 */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)1087 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1088 {
1089 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
1090 }
1091
1092 /**
1093 * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1094 * MEMBLOCK_RSRV_NOINIT
1095 *
1096 * @base: the base phys addr of the region
1097 * @size: the size of the region
1098 *
1099 * The struct pages for the reserved regions marked %MEMBLOCK_RSRV_NOINIT will
1100 * not be fully initialized to allow the caller optimize their initialization.
1101 *
1102 * When %CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled, setting this flag
1103 * completely bypasses the initialization of struct pages for such region.
1104 *
1105 * When %CONFIG_DEFERRED_STRUCT_PAGE_INIT is disabled, struct pages in this
1106 * region will be initialized with default values but won't be marked as
1107 * reserved.
1108 *
1109 * Return: 0 on success, -errno on failure.
1110 */
memblock_reserved_mark_noinit(phys_addr_t base,phys_addr_t size)1111 int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
1112 {
1113 return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1114 MEMBLOCK_RSRV_NOINIT);
1115 }
1116
1117 /**
1118 * memblock_mark_kho_scratch - Mark a memory region as MEMBLOCK_KHO_SCRATCH.
1119 * @base: the base phys addr of the region
1120 * @size: the size of the region
1121 *
1122 * Only memory regions marked with %MEMBLOCK_KHO_SCRATCH will be considered
1123 * for allocations during early boot with kexec handover.
1124 *
1125 * Return: 0 on success, -errno on failure.
1126 */
memblock_mark_kho_scratch(phys_addr_t base,phys_addr_t size)1127 __init int memblock_mark_kho_scratch(phys_addr_t base, phys_addr_t size)
1128 {
1129 return memblock_setclr_flag(&memblock.memory, base, size, 1,
1130 MEMBLOCK_KHO_SCRATCH);
1131 }
1132
1133 /**
1134 * memblock_clear_kho_scratch - Clear MEMBLOCK_KHO_SCRATCH flag for a
1135 * specified region.
1136 * @base: the base phys addr of the region
1137 * @size: the size of the region
1138 *
1139 * Return: 0 on success, -errno on failure.
1140 */
memblock_clear_kho_scratch(phys_addr_t base,phys_addr_t size)1141 __init int memblock_clear_kho_scratch(phys_addr_t base, phys_addr_t size)
1142 {
1143 return memblock_setclr_flag(&memblock.memory, base, size, 0,
1144 MEMBLOCK_KHO_SCRATCH);
1145 }
1146
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)1147 static bool should_skip_region(struct memblock_type *type,
1148 struct memblock_region *m,
1149 int nid, int flags)
1150 {
1151 int m_nid = memblock_get_region_node(m);
1152
1153 /* we never skip regions when iterating memblock.reserved or physmem */
1154 if (type != memblock_memory)
1155 return false;
1156
1157 /* only memory regions are associated with nodes, check it */
1158 if (numa_valid_node(nid) && nid != m_nid)
1159 return true;
1160
1161 /* skip hotpluggable memory regions if needed */
1162 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1163 !(flags & MEMBLOCK_HOTPLUG))
1164 return true;
1165
1166 /* if we want mirror memory skip non-mirror memory regions */
1167 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1168 return true;
1169
1170 /* skip nomap memory unless we were asked for it explicitly */
1171 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1172 return true;
1173
1174 /* skip driver-managed memory unless we were asked for it explicitly */
1175 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1176 return true;
1177
1178 /*
1179 * In early alloc during kexec handover, we can only consider
1180 * MEMBLOCK_KHO_SCRATCH regions for the allocations
1181 */
1182 if ((flags & MEMBLOCK_KHO_SCRATCH) && !memblock_is_kho_scratch(m))
1183 return true;
1184
1185 return false;
1186 }
1187
1188 /**
1189 * __next_mem_range - next function for for_each_free_mem_range() etc.
1190 * @idx: pointer to u64 loop variable
1191 * @nid: node selector, %NUMA_NO_NODE for all nodes
1192 * @flags: pick from blocks based on memory attributes
1193 * @type_a: pointer to memblock_type from where the range is taken
1194 * @type_b: pointer to memblock_type which excludes memory from being taken
1195 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1196 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1197 * @out_nid: ptr to int for nid of the range, can be %NULL
1198 *
1199 * Find the first area from *@idx which matches @nid, fill the out
1200 * parameters, and update *@idx for the next iteration. The lower 32bit of
1201 * *@idx contains index into type_a and the upper 32bit indexes the
1202 * areas before each region in type_b. For example, if type_b regions
1203 * look like the following,
1204 *
1205 * 0:[0-16), 1:[32-48), 2:[128-130)
1206 *
1207 * The upper 32bit indexes the following regions.
1208 *
1209 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1210 *
1211 * As both region arrays are sorted, the function advances the two indices
1212 * in lockstep and returns each intersection.
1213 */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1214 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1215 struct memblock_type *type_a,
1216 struct memblock_type *type_b, phys_addr_t *out_start,
1217 phys_addr_t *out_end, int *out_nid)
1218 {
1219 int idx_a = *idx & 0xffffffff;
1220 int idx_b = *idx >> 32;
1221
1222 for (; idx_a < type_a->cnt; idx_a++) {
1223 struct memblock_region *m = &type_a->regions[idx_a];
1224
1225 phys_addr_t m_start = m->base;
1226 phys_addr_t m_end = m->base + m->size;
1227 int m_nid = memblock_get_region_node(m);
1228
1229 if (should_skip_region(type_a, m, nid, flags))
1230 continue;
1231
1232 if (!type_b) {
1233 if (out_start)
1234 *out_start = m_start;
1235 if (out_end)
1236 *out_end = m_end;
1237 if (out_nid)
1238 *out_nid = m_nid;
1239 idx_a++;
1240 *idx = (u32)idx_a | (u64)idx_b << 32;
1241 return;
1242 }
1243
1244 /* scan areas before each reservation */
1245 for (; idx_b < type_b->cnt + 1; idx_b++) {
1246 struct memblock_region *r;
1247 phys_addr_t r_start;
1248 phys_addr_t r_end;
1249
1250 r = &type_b->regions[idx_b];
1251 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1252 r_end = idx_b < type_b->cnt ?
1253 r->base : PHYS_ADDR_MAX;
1254
1255 /*
1256 * if idx_b advanced past idx_a,
1257 * break out to advance idx_a
1258 */
1259 if (r_start >= m_end)
1260 break;
1261 /* if the two regions intersect, we're done */
1262 if (m_start < r_end) {
1263 if (out_start)
1264 *out_start =
1265 max(m_start, r_start);
1266 if (out_end)
1267 *out_end = min(m_end, r_end);
1268 if (out_nid)
1269 *out_nid = m_nid;
1270 /*
1271 * The region which ends first is
1272 * advanced for the next iteration.
1273 */
1274 if (m_end <= r_end)
1275 idx_a++;
1276 else
1277 idx_b++;
1278 *idx = (u32)idx_a | (u64)idx_b << 32;
1279 return;
1280 }
1281 }
1282 }
1283
1284 /* signal end of iteration */
1285 *idx = ULLONG_MAX;
1286 }
1287
1288 /**
1289 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1290 *
1291 * @idx: pointer to u64 loop variable
1292 * @nid: node selector, %NUMA_NO_NODE for all nodes
1293 * @flags: pick from blocks based on memory attributes
1294 * @type_a: pointer to memblock_type from where the range is taken
1295 * @type_b: pointer to memblock_type which excludes memory from being taken
1296 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1297 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1298 * @out_nid: ptr to int for nid of the range, can be %NULL
1299 *
1300 * Finds the next range from type_a which is not marked as unsuitable
1301 * in type_b.
1302 *
1303 * Reverse of __next_mem_range().
1304 */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1305 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1306 enum memblock_flags flags,
1307 struct memblock_type *type_a,
1308 struct memblock_type *type_b,
1309 phys_addr_t *out_start,
1310 phys_addr_t *out_end, int *out_nid)
1311 {
1312 int idx_a = *idx & 0xffffffff;
1313 int idx_b = *idx >> 32;
1314
1315 if (*idx == (u64)ULLONG_MAX) {
1316 idx_a = type_a->cnt - 1;
1317 if (type_b != NULL)
1318 idx_b = type_b->cnt;
1319 else
1320 idx_b = 0;
1321 }
1322
1323 for (; idx_a >= 0; idx_a--) {
1324 struct memblock_region *m = &type_a->regions[idx_a];
1325
1326 phys_addr_t m_start = m->base;
1327 phys_addr_t m_end = m->base + m->size;
1328 int m_nid = memblock_get_region_node(m);
1329
1330 if (should_skip_region(type_a, m, nid, flags))
1331 continue;
1332
1333 if (!type_b) {
1334 if (out_start)
1335 *out_start = m_start;
1336 if (out_end)
1337 *out_end = m_end;
1338 if (out_nid)
1339 *out_nid = m_nid;
1340 idx_a--;
1341 *idx = (u32)idx_a | (u64)idx_b << 32;
1342 return;
1343 }
1344
1345 /* scan areas before each reservation */
1346 for (; idx_b >= 0; idx_b--) {
1347 struct memblock_region *r;
1348 phys_addr_t r_start;
1349 phys_addr_t r_end;
1350
1351 r = &type_b->regions[idx_b];
1352 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1353 r_end = idx_b < type_b->cnt ?
1354 r->base : PHYS_ADDR_MAX;
1355 /*
1356 * if idx_b advanced past idx_a,
1357 * break out to advance idx_a
1358 */
1359
1360 if (r_end <= m_start)
1361 break;
1362 /* if the two regions intersect, we're done */
1363 if (m_end > r_start) {
1364 if (out_start)
1365 *out_start = max(m_start, r_start);
1366 if (out_end)
1367 *out_end = min(m_end, r_end);
1368 if (out_nid)
1369 *out_nid = m_nid;
1370 if (m_start >= r_start)
1371 idx_a--;
1372 else
1373 idx_b--;
1374 *idx = (u32)idx_a | (u64)idx_b << 32;
1375 return;
1376 }
1377 }
1378 }
1379 /* signal end of iteration */
1380 *idx = ULLONG_MAX;
1381 }
1382
1383 /*
1384 * Common iterator interface used to define for_each_mem_pfn_range().
1385 */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1386 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1387 unsigned long *out_start_pfn,
1388 unsigned long *out_end_pfn, int *out_nid)
1389 {
1390 struct memblock_type *type = &memblock.memory;
1391 struct memblock_region *r;
1392 int r_nid;
1393
1394 while (++*idx < type->cnt) {
1395 r = &type->regions[*idx];
1396 r_nid = memblock_get_region_node(r);
1397
1398 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1399 continue;
1400 if (!numa_valid_node(nid) || nid == r_nid)
1401 break;
1402 }
1403 if (*idx >= type->cnt) {
1404 *idx = -1;
1405 return;
1406 }
1407
1408 if (out_start_pfn)
1409 *out_start_pfn = PFN_UP(r->base);
1410 if (out_end_pfn)
1411 *out_end_pfn = PFN_DOWN(r->base + r->size);
1412 if (out_nid)
1413 *out_nid = r_nid;
1414 }
1415
1416 /**
1417 * memblock_set_node - set node ID on memblock regions
1418 * @base: base of area to set node ID for
1419 * @size: size of area to set node ID for
1420 * @type: memblock type to set node ID for
1421 * @nid: node ID to set
1422 *
1423 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1424 * Regions which cross the area boundaries are split as necessary.
1425 *
1426 * Return:
1427 * 0 on success, -errno on failure.
1428 */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1429 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1430 struct memblock_type *type, int nid)
1431 {
1432 #ifdef CONFIG_NUMA
1433 int start_rgn, end_rgn;
1434 int i, ret;
1435
1436 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1437 if (ret)
1438 return ret;
1439
1440 for (i = start_rgn; i < end_rgn; i++)
1441 memblock_set_region_node(&type->regions[i], nid);
1442
1443 memblock_merge_regions(type, start_rgn, end_rgn);
1444 #endif
1445 return 0;
1446 }
1447
1448 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1449 /**
1450 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1451 *
1452 * @idx: pointer to u64 loop variable
1453 * @zone: zone in which all of the memory blocks reside
1454 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1455 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1456 *
1457 * This function is meant to be a zone/pfn specific wrapper for the
1458 * for_each_mem_range type iterators. Specifically they are used in the
1459 * deferred memory init routines and as such we were duplicating much of
1460 * this logic throughout the code. So instead of having it in multiple
1461 * locations it seemed like it would make more sense to centralize this to
1462 * one new iterator that does everything they need.
1463 */
1464 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1465 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1466 unsigned long *out_spfn, unsigned long *out_epfn)
1467 {
1468 int zone_nid = zone_to_nid(zone);
1469 phys_addr_t spa, epa;
1470
1471 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1472 &memblock.memory, &memblock.reserved,
1473 &spa, &epa, NULL);
1474
1475 while (*idx != U64_MAX) {
1476 unsigned long epfn = PFN_DOWN(epa);
1477 unsigned long spfn = PFN_UP(spa);
1478
1479 /*
1480 * Verify the end is at least past the start of the zone and
1481 * that we have at least one PFN to initialize.
1482 */
1483 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1484 /* if we went too far just stop searching */
1485 if (zone_end_pfn(zone) <= spfn) {
1486 *idx = U64_MAX;
1487 break;
1488 }
1489
1490 if (out_spfn)
1491 *out_spfn = max(zone->zone_start_pfn, spfn);
1492 if (out_epfn)
1493 *out_epfn = min(zone_end_pfn(zone), epfn);
1494
1495 return;
1496 }
1497
1498 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1499 &memblock.memory, &memblock.reserved,
1500 &spa, &epa, NULL);
1501 }
1502
1503 /* signal end of iteration */
1504 if (out_spfn)
1505 *out_spfn = ULONG_MAX;
1506 if (out_epfn)
1507 *out_epfn = 0;
1508 }
1509
1510 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1511
1512 /**
1513 * memblock_alloc_range_nid - allocate boot memory block
1514 * @size: size of memory block to be allocated in bytes
1515 * @align: alignment of the region and block's size
1516 * @start: the lower bound of the memory region to allocate (phys address)
1517 * @end: the upper bound of the memory region to allocate (phys address)
1518 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1519 * @exact_nid: control the allocation fall back to other nodes
1520 *
1521 * The allocation is performed from memory region limited by
1522 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1523 *
1524 * If the specified node can not hold the requested memory and @exact_nid
1525 * is false, the allocation falls back to any node in the system.
1526 *
1527 * For systems with memory mirroring, the allocation is attempted first
1528 * from the regions with mirroring enabled and then retried from any
1529 * memory region.
1530 *
1531 * In addition, function using kmemleak_alloc_phys for allocated boot
1532 * memory block, it is never reported as leaks.
1533 *
1534 * Return:
1535 * Physical address of allocated memory block on success, %0 on failure.
1536 */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1537 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1538 phys_addr_t align, phys_addr_t start,
1539 phys_addr_t end, int nid,
1540 bool exact_nid)
1541 {
1542 enum memblock_flags flags = choose_memblock_flags();
1543 phys_addr_t found;
1544
1545 /*
1546 * Detect any accidental use of these APIs after slab is ready, as at
1547 * this moment memblock may be deinitialized already and its
1548 * internal data may be destroyed (after execution of memblock_free_all)
1549 */
1550 if (WARN_ON_ONCE(slab_is_available())) {
1551 void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid);
1552
1553 return vaddr ? virt_to_phys(vaddr) : 0;
1554 }
1555
1556 if (!align) {
1557 /* Can't use WARNs this early in boot on powerpc */
1558 dump_stack();
1559 align = SMP_CACHE_BYTES;
1560 }
1561
1562 again:
1563 found = memblock_find_in_range_node(size, align, start, end, nid,
1564 flags);
1565 if (found && !__memblock_reserve(found, size, nid, MEMBLOCK_RSRV_KERN))
1566 goto done;
1567
1568 if (numa_valid_node(nid) && !exact_nid) {
1569 found = memblock_find_in_range_node(size, align, start,
1570 end, NUMA_NO_NODE,
1571 flags);
1572 if (found && !memblock_reserve_kern(found, size))
1573 goto done;
1574 }
1575
1576 if (flags & MEMBLOCK_MIRROR) {
1577 flags &= ~MEMBLOCK_MIRROR;
1578 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1579 &size);
1580 goto again;
1581 }
1582
1583 return 0;
1584
1585 done:
1586 /*
1587 * Skip kmemleak for those places like kasan_init() and
1588 * early_pgtable_alloc() due to high volume.
1589 */
1590 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1591 /*
1592 * Memblock allocated blocks are never reported as
1593 * leaks. This is because many of these blocks are
1594 * only referred via the physical address which is
1595 * not looked up by kmemleak.
1596 */
1597 kmemleak_alloc_phys(found, size, 0);
1598
1599 /*
1600 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1601 * require memory to be accepted before it can be used by the
1602 * guest.
1603 *
1604 * Accept the memory of the allocated buffer.
1605 */
1606 accept_memory(found, size);
1607
1608 return found;
1609 }
1610
1611 /**
1612 * memblock_phys_alloc_range - allocate a memory block inside specified range
1613 * @size: size of memory block to be allocated in bytes
1614 * @align: alignment of the region and block's size
1615 * @start: the lower bound of the memory region to allocate (physical address)
1616 * @end: the upper bound of the memory region to allocate (physical address)
1617 *
1618 * Allocate @size bytes in the between @start and @end.
1619 *
1620 * Return: physical address of the allocated memory block on success,
1621 * %0 on failure.
1622 */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1623 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1624 phys_addr_t align,
1625 phys_addr_t start,
1626 phys_addr_t end)
1627 {
1628 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1629 __func__, (u64)size, (u64)align, &start, &end,
1630 (void *)_RET_IP_);
1631 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1632 false);
1633 }
1634
1635 /**
1636 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1637 * @size: size of memory block to be allocated in bytes
1638 * @align: alignment of the region and block's size
1639 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1640 *
1641 * Allocates memory block from the specified NUMA node. If the node
1642 * has no available memory, attempts to allocated from any node in the
1643 * system.
1644 *
1645 * Return: physical address of the allocated memory block on success,
1646 * %0 on failure.
1647 */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1648 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1649 {
1650 return memblock_alloc_range_nid(size, align, 0,
1651 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1652 }
1653
1654 /**
1655 * memblock_alloc_internal - allocate boot memory block
1656 * @size: size of memory block to be allocated in bytes
1657 * @align: alignment of the region and block's size
1658 * @min_addr: the lower bound of the memory region to allocate (phys address)
1659 * @max_addr: the upper bound of the memory region to allocate (phys address)
1660 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1661 * @exact_nid: control the allocation fall back to other nodes
1662 *
1663 * Allocates memory block using memblock_alloc_range_nid() and
1664 * converts the returned physical address to virtual.
1665 *
1666 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1667 * will fall back to memory below @min_addr. Other constraints, such
1668 * as node and mirrored memory will be handled again in
1669 * memblock_alloc_range_nid().
1670 *
1671 * Return:
1672 * Virtual address of allocated memory block on success, NULL on failure.
1673 */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1674 static void * __init memblock_alloc_internal(
1675 phys_addr_t size, phys_addr_t align,
1676 phys_addr_t min_addr, phys_addr_t max_addr,
1677 int nid, bool exact_nid)
1678 {
1679 phys_addr_t alloc;
1680
1681
1682 if (max_addr > memblock.current_limit)
1683 max_addr = memblock.current_limit;
1684
1685 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1686 exact_nid);
1687
1688 /* retry allocation without lower limit */
1689 if (!alloc && min_addr)
1690 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1691 exact_nid);
1692
1693 if (!alloc)
1694 return NULL;
1695
1696 return phys_to_virt(alloc);
1697 }
1698
1699 /**
1700 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1701 * without zeroing memory
1702 * @size: size of memory block to be allocated in bytes
1703 * @align: alignment of the region and block's size
1704 * @min_addr: the lower bound of the memory region from where the allocation
1705 * is preferred (phys address)
1706 * @max_addr: the upper bound of the memory region from where the allocation
1707 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1708 * allocate only from memory limited by memblock.current_limit value
1709 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1710 *
1711 * Public function, provides additional debug information (including caller
1712 * info), if enabled. Does not zero allocated memory.
1713 *
1714 * Return:
1715 * Virtual address of allocated memory block on success, NULL on failure.
1716 */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1717 void * __init memblock_alloc_exact_nid_raw(
1718 phys_addr_t size, phys_addr_t align,
1719 phys_addr_t min_addr, phys_addr_t max_addr,
1720 int nid)
1721 {
1722 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1723 __func__, (u64)size, (u64)align, nid, &min_addr,
1724 &max_addr, (void *)_RET_IP_);
1725
1726 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1727 true);
1728 }
1729
1730 /**
1731 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1732 * memory and without panicking
1733 * @size: size of memory block to be allocated in bytes
1734 * @align: alignment of the region and block's size
1735 * @min_addr: the lower bound of the memory region from where the allocation
1736 * is preferred (phys address)
1737 * @max_addr: the upper bound of the memory region from where the allocation
1738 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1739 * allocate only from memory limited by memblock.current_limit value
1740 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1741 *
1742 * Public function, provides additional debug information (including caller
1743 * info), if enabled. Does not zero allocated memory, does not panic if request
1744 * cannot be satisfied.
1745 *
1746 * Return:
1747 * Virtual address of allocated memory block on success, NULL on failure.
1748 */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1749 void * __init memblock_alloc_try_nid_raw(
1750 phys_addr_t size, phys_addr_t align,
1751 phys_addr_t min_addr, phys_addr_t max_addr,
1752 int nid)
1753 {
1754 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1755 __func__, (u64)size, (u64)align, nid, &min_addr,
1756 &max_addr, (void *)_RET_IP_);
1757
1758 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1759 false);
1760 }
1761
1762 /**
1763 * memblock_alloc_try_nid - allocate boot memory block
1764 * @size: size of memory block to be allocated in bytes
1765 * @align: alignment of the region and block's size
1766 * @min_addr: the lower bound of the memory region from where the allocation
1767 * is preferred (phys address)
1768 * @max_addr: the upper bound of the memory region from where the allocation
1769 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1770 * allocate only from memory limited by memblock.current_limit value
1771 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1772 *
1773 * Public function, provides additional debug information (including caller
1774 * info), if enabled. This function zeroes the allocated memory.
1775 *
1776 * Return:
1777 * Virtual address of allocated memory block on success, NULL on failure.
1778 */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1779 void * __init memblock_alloc_try_nid(
1780 phys_addr_t size, phys_addr_t align,
1781 phys_addr_t min_addr, phys_addr_t max_addr,
1782 int nid)
1783 {
1784 void *ptr;
1785
1786 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1787 __func__, (u64)size, (u64)align, nid, &min_addr,
1788 &max_addr, (void *)_RET_IP_);
1789 ptr = memblock_alloc_internal(size, align,
1790 min_addr, max_addr, nid, false);
1791 if (ptr)
1792 memset(ptr, 0, size);
1793
1794 return ptr;
1795 }
1796
1797 /**
1798 * __memblock_alloc_or_panic - Try to allocate memory and panic on failure
1799 * @size: size of memory block to be allocated in bytes
1800 * @align: alignment of the region and block's size
1801 * @func: caller func name
1802 *
1803 * This function attempts to allocate memory using memblock_alloc,
1804 * and in case of failure, it calls panic with the formatted message.
1805 * This function should not be used directly, please use the macro memblock_alloc_or_panic.
1806 */
__memblock_alloc_or_panic(phys_addr_t size,phys_addr_t align,const char * func)1807 void *__init __memblock_alloc_or_panic(phys_addr_t size, phys_addr_t align,
1808 const char *func)
1809 {
1810 void *addr = memblock_alloc(size, align);
1811
1812 if (unlikely(!addr))
1813 panic("%s: Failed to allocate %pap bytes\n", func, &size);
1814 return addr;
1815 }
1816
1817 /**
1818 * memblock_free_late - free pages directly to buddy allocator
1819 * @base: phys starting address of the boot memory block
1820 * @size: size of the boot memory block in bytes
1821 *
1822 * This is only useful when the memblock allocator has already been torn
1823 * down, but we are still initializing the system. Pages are released directly
1824 * to the buddy allocator.
1825 */
memblock_free_late(phys_addr_t base,phys_addr_t size)1826 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1827 {
1828 phys_addr_t cursor, end;
1829
1830 end = base + size - 1;
1831 memblock_dbg("%s: [%pa-%pa] %pS\n",
1832 __func__, &base, &end, (void *)_RET_IP_);
1833 kmemleak_free_part_phys(base, size);
1834 cursor = PFN_UP(base);
1835 end = PFN_DOWN(base + size);
1836
1837 for (; cursor < end; cursor++) {
1838 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1839 totalram_pages_inc();
1840 }
1841 }
1842
1843 /*
1844 * Remaining API functions
1845 */
1846
memblock_phys_mem_size(void)1847 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1848 {
1849 return memblock.memory.total_size;
1850 }
1851
memblock_reserved_size(void)1852 phys_addr_t __init_memblock memblock_reserved_size(void)
1853 {
1854 return memblock.reserved.total_size;
1855 }
1856
memblock_reserved_kern_size(phys_addr_t limit,int nid)1857 phys_addr_t __init_memblock memblock_reserved_kern_size(phys_addr_t limit, int nid)
1858 {
1859 struct memblock_region *r;
1860 phys_addr_t total = 0;
1861
1862 for_each_reserved_mem_region(r) {
1863 phys_addr_t size = r->size;
1864
1865 if (r->base > limit)
1866 break;
1867
1868 if (r->base + r->size > limit)
1869 size = limit - r->base;
1870
1871 if (nid == memblock_get_region_node(r) || !numa_valid_node(nid))
1872 if (r->flags & MEMBLOCK_RSRV_KERN)
1873 total += size;
1874 }
1875
1876 return total;
1877 }
1878
1879 /**
1880 * memblock_estimated_nr_free_pages - return estimated number of free pages
1881 * from memblock point of view
1882 *
1883 * During bootup, subsystems might need a rough estimate of the number of free
1884 * pages in the whole system, before precise numbers are available from the
1885 * buddy. Especially with CONFIG_DEFERRED_STRUCT_PAGE_INIT, the numbers
1886 * obtained from the buddy might be very imprecise during bootup.
1887 *
1888 * Return:
1889 * An estimated number of free pages from memblock point of view.
1890 */
memblock_estimated_nr_free_pages(void)1891 unsigned long __init memblock_estimated_nr_free_pages(void)
1892 {
1893 return PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size());
1894 }
1895
1896 /* lowest address */
memblock_start_of_DRAM(void)1897 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1898 {
1899 return memblock.memory.regions[0].base;
1900 }
1901
memblock_end_of_DRAM(void)1902 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1903 {
1904 int idx = memblock.memory.cnt - 1;
1905
1906 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1907 }
1908
__find_max_addr(phys_addr_t limit)1909 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1910 {
1911 phys_addr_t max_addr = PHYS_ADDR_MAX;
1912 struct memblock_region *r;
1913
1914 /*
1915 * translate the memory @limit size into the max address within one of
1916 * the memory memblock regions, if the @limit exceeds the total size
1917 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1918 */
1919 for_each_mem_region(r) {
1920 if (limit <= r->size) {
1921 max_addr = r->base + limit;
1922 break;
1923 }
1924 limit -= r->size;
1925 }
1926
1927 return max_addr;
1928 }
1929
memblock_enforce_memory_limit(phys_addr_t limit)1930 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1931 {
1932 phys_addr_t max_addr;
1933
1934 if (!limit)
1935 return;
1936
1937 max_addr = __find_max_addr(limit);
1938
1939 /* @limit exceeds the total size of the memory, do nothing */
1940 if (max_addr == PHYS_ADDR_MAX)
1941 return;
1942
1943 /* truncate both memory and reserved regions */
1944 memblock_remove_range(&memblock.memory, max_addr,
1945 PHYS_ADDR_MAX);
1946 memblock_remove_range(&memblock.reserved, max_addr,
1947 PHYS_ADDR_MAX);
1948 }
1949
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1950 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1951 {
1952 int start_rgn, end_rgn;
1953 int i, ret;
1954
1955 if (!size)
1956 return;
1957
1958 if (!memblock_memory->total_size) {
1959 pr_warn("%s: No memory registered yet\n", __func__);
1960 return;
1961 }
1962
1963 ret = memblock_isolate_range(&memblock.memory, base, size,
1964 &start_rgn, &end_rgn);
1965 if (ret)
1966 return;
1967
1968 /* remove all the MAP regions */
1969 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1970 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1971 memblock_remove_region(&memblock.memory, i);
1972
1973 for (i = start_rgn - 1; i >= 0; i--)
1974 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1975 memblock_remove_region(&memblock.memory, i);
1976
1977 /* truncate the reserved regions */
1978 memblock_remove_range(&memblock.reserved, 0, base);
1979 memblock_remove_range(&memblock.reserved,
1980 base + size, PHYS_ADDR_MAX);
1981 }
1982
memblock_mem_limit_remove_map(phys_addr_t limit)1983 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1984 {
1985 phys_addr_t max_addr;
1986
1987 if (!limit)
1988 return;
1989
1990 max_addr = __find_max_addr(limit);
1991
1992 /* @limit exceeds the total size of the memory, do nothing */
1993 if (max_addr == PHYS_ADDR_MAX)
1994 return;
1995
1996 memblock_cap_memory_range(0, max_addr);
1997 }
1998
memblock_search(struct memblock_type * type,phys_addr_t addr)1999 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
2000 {
2001 unsigned int left = 0, right = type->cnt;
2002
2003 do {
2004 unsigned int mid = (right + left) / 2;
2005
2006 if (addr < type->regions[mid].base)
2007 right = mid;
2008 else if (addr >= (type->regions[mid].base +
2009 type->regions[mid].size))
2010 left = mid + 1;
2011 else
2012 return mid;
2013 } while (left < right);
2014 return -1;
2015 }
2016
memblock_is_reserved(phys_addr_t addr)2017 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
2018 {
2019 return memblock_search(&memblock.reserved, addr) != -1;
2020 }
2021
memblock_is_memory(phys_addr_t addr)2022 bool __init_memblock memblock_is_memory(phys_addr_t addr)
2023 {
2024 return memblock_search(&memblock.memory, addr) != -1;
2025 }
2026
memblock_is_map_memory(phys_addr_t addr)2027 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
2028 {
2029 int i = memblock_search(&memblock.memory, addr);
2030
2031 if (i == -1)
2032 return false;
2033 return !memblock_is_nomap(&memblock.memory.regions[i]);
2034 }
2035
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)2036 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
2037 unsigned long *start_pfn, unsigned long *end_pfn)
2038 {
2039 struct memblock_type *type = &memblock.memory;
2040 int mid = memblock_search(type, PFN_PHYS(pfn));
2041
2042 if (mid == -1)
2043 return NUMA_NO_NODE;
2044
2045 *start_pfn = PFN_DOWN(type->regions[mid].base);
2046 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
2047
2048 return memblock_get_region_node(&type->regions[mid]);
2049 }
2050
2051 /**
2052 * memblock_is_region_memory - check if a region is a subset of memory
2053 * @base: base of region to check
2054 * @size: size of region to check
2055 *
2056 * Check if the region [@base, @base + @size) is a subset of a memory block.
2057 *
2058 * Return:
2059 * 0 if false, non-zero if true
2060 */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)2061 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
2062 {
2063 int idx = memblock_search(&memblock.memory, base);
2064 phys_addr_t end = base + memblock_cap_size(base, &size);
2065
2066 if (idx == -1)
2067 return false;
2068 return (memblock.memory.regions[idx].base +
2069 memblock.memory.regions[idx].size) >= end;
2070 }
2071
2072 /**
2073 * memblock_is_region_reserved - check if a region intersects reserved memory
2074 * @base: base of region to check
2075 * @size: size of region to check
2076 *
2077 * Check if the region [@base, @base + @size) intersects a reserved
2078 * memory block.
2079 *
2080 * Return:
2081 * True if they intersect, false if not.
2082 */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)2083 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
2084 {
2085 return memblock_overlaps_region(&memblock.reserved, base, size);
2086 }
2087
memblock_trim_memory(phys_addr_t align)2088 void __init_memblock memblock_trim_memory(phys_addr_t align)
2089 {
2090 phys_addr_t start, end, orig_start, orig_end;
2091 struct memblock_region *r;
2092
2093 for_each_mem_region(r) {
2094 orig_start = r->base;
2095 orig_end = r->base + r->size;
2096 start = round_up(orig_start, align);
2097 end = round_down(orig_end, align);
2098
2099 if (start == orig_start && end == orig_end)
2100 continue;
2101
2102 if (start < end) {
2103 r->base = start;
2104 r->size = end - start;
2105 } else {
2106 memblock_remove_region(&memblock.memory,
2107 r - memblock.memory.regions);
2108 r--;
2109 }
2110 }
2111 }
2112
memblock_set_current_limit(phys_addr_t limit)2113 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
2114 {
2115 memblock.current_limit = limit;
2116 }
2117
memblock_get_current_limit(void)2118 phys_addr_t __init_memblock memblock_get_current_limit(void)
2119 {
2120 return memblock.current_limit;
2121 }
2122
memblock_dump(struct memblock_type * type)2123 static void __init_memblock memblock_dump(struct memblock_type *type)
2124 {
2125 phys_addr_t base, end, size;
2126 enum memblock_flags flags;
2127 int idx;
2128 struct memblock_region *rgn;
2129
2130 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
2131
2132 for_each_memblock_type(idx, type, rgn) {
2133 char nid_buf[32] = "";
2134
2135 base = rgn->base;
2136 size = rgn->size;
2137 end = base + size - 1;
2138 flags = rgn->flags;
2139 #ifdef CONFIG_NUMA
2140 if (numa_valid_node(memblock_get_region_node(rgn)))
2141 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
2142 memblock_get_region_node(rgn));
2143 #endif
2144 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
2145 type->name, idx, &base, &end, &size, nid_buf, flags);
2146 }
2147 }
2148
__memblock_dump_all(void)2149 static void __init_memblock __memblock_dump_all(void)
2150 {
2151 pr_info("MEMBLOCK configuration:\n");
2152 pr_info(" memory size = %pa reserved size = %pa\n",
2153 &memblock.memory.total_size,
2154 &memblock.reserved.total_size);
2155
2156 memblock_dump(&memblock.memory);
2157 memblock_dump(&memblock.reserved);
2158 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2159 memblock_dump(&physmem);
2160 #endif
2161 }
2162
memblock_dump_all(void)2163 void __init_memblock memblock_dump_all(void)
2164 {
2165 if (memblock_debug)
2166 __memblock_dump_all();
2167 }
2168
memblock_allow_resize(void)2169 void __init memblock_allow_resize(void)
2170 {
2171 memblock_can_resize = 1;
2172 }
2173
early_memblock(char * p)2174 static int __init early_memblock(char *p)
2175 {
2176 if (p && strstr(p, "debug"))
2177 memblock_debug = 1;
2178 return 0;
2179 }
2180 early_param("memblock", early_memblock);
2181
free_memmap(unsigned long start_pfn,unsigned long end_pfn)2182 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2183 {
2184 struct page *start_pg, *end_pg;
2185 phys_addr_t pg, pgend;
2186
2187 /*
2188 * Convert start_pfn/end_pfn to a struct page pointer.
2189 */
2190 start_pg = pfn_to_page(start_pfn - 1) + 1;
2191 end_pg = pfn_to_page(end_pfn - 1) + 1;
2192
2193 /*
2194 * Convert to physical addresses, and round start upwards and end
2195 * downwards.
2196 */
2197 pg = PAGE_ALIGN(__pa(start_pg));
2198 pgend = PAGE_ALIGN_DOWN(__pa(end_pg));
2199
2200 /*
2201 * If there are free pages between these, free the section of the
2202 * memmap array.
2203 */
2204 if (pg < pgend)
2205 memblock_phys_free(pg, pgend - pg);
2206 }
2207
2208 /*
2209 * The mem_map array can get very big. Free the unused area of the memory map.
2210 */
free_unused_memmap(void)2211 static void __init free_unused_memmap(void)
2212 {
2213 unsigned long start, end, prev_end = 0;
2214 int i;
2215
2216 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2217 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2218 return;
2219
2220 /*
2221 * This relies on each bank being in address order.
2222 * The banks are sorted previously in bootmem_init().
2223 */
2224 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2225 #ifdef CONFIG_SPARSEMEM
2226 /*
2227 * Take care not to free memmap entries that don't exist
2228 * due to SPARSEMEM sections which aren't present.
2229 */
2230 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2231 #endif
2232 /*
2233 * Align down here since many operations in VM subsystem
2234 * presume that there are no holes in the memory map inside
2235 * a pageblock
2236 */
2237 start = pageblock_start_pfn(start);
2238
2239 /*
2240 * If we had a previous bank, and there is a space
2241 * between the current bank and the previous, free it.
2242 */
2243 if (prev_end && prev_end < start)
2244 free_memmap(prev_end, start);
2245
2246 /*
2247 * Align up here since many operations in VM subsystem
2248 * presume that there are no holes in the memory map inside
2249 * a pageblock
2250 */
2251 prev_end = pageblock_align(end);
2252 }
2253
2254 #ifdef CONFIG_SPARSEMEM
2255 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2256 prev_end = pageblock_align(end);
2257 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2258 }
2259 #endif
2260 }
2261
__free_pages_memory(unsigned long start,unsigned long end)2262 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2263 {
2264 int order;
2265
2266 while (start < end) {
2267 /*
2268 * Free the pages in the largest chunks alignment allows.
2269 *
2270 * __ffs() behaviour is undefined for 0. start == 0 is
2271 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2272 * the case.
2273 */
2274 if (start)
2275 order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
2276 else
2277 order = MAX_PAGE_ORDER;
2278
2279 while (start + (1UL << order) > end)
2280 order--;
2281
2282 memblock_free_pages(pfn_to_page(start), start, order);
2283
2284 start += (1UL << order);
2285 }
2286 }
2287
__free_memory_core(phys_addr_t start,phys_addr_t end)2288 static unsigned long __init __free_memory_core(phys_addr_t start,
2289 phys_addr_t end)
2290 {
2291 unsigned long start_pfn = PFN_UP(start);
2292 unsigned long end_pfn = PFN_DOWN(end);
2293
2294 if (!IS_ENABLED(CONFIG_HIGHMEM) && end_pfn > max_low_pfn)
2295 end_pfn = max_low_pfn;
2296
2297 if (start_pfn >= end_pfn)
2298 return 0;
2299
2300 __free_pages_memory(start_pfn, end_pfn);
2301
2302 return end_pfn - start_pfn;
2303 }
2304
memmap_init_reserved_pages(void)2305 static void __init memmap_init_reserved_pages(void)
2306 {
2307 struct memblock_region *region;
2308 phys_addr_t start, end;
2309 int nid;
2310 unsigned long max_reserved;
2311
2312 /*
2313 * set nid on all reserved pages and also treat struct
2314 * pages for the NOMAP regions as PageReserved
2315 */
2316 repeat:
2317 max_reserved = memblock.reserved.max;
2318 for_each_mem_region(region) {
2319 nid = memblock_get_region_node(region);
2320 start = region->base;
2321 end = start + region->size;
2322
2323 if (memblock_is_nomap(region))
2324 reserve_bootmem_region(start, end, nid);
2325
2326 memblock_set_node(start, region->size, &memblock.reserved, nid);
2327 }
2328 /*
2329 * 'max' is changed means memblock.reserved has been doubled its
2330 * array, which may result a new reserved region before current
2331 * 'start'. Now we should repeat the procedure to set its node id.
2332 */
2333 if (max_reserved != memblock.reserved.max)
2334 goto repeat;
2335
2336 /*
2337 * initialize struct pages for reserved regions that don't have
2338 * the MEMBLOCK_RSRV_NOINIT flag set
2339 */
2340 for_each_reserved_mem_region(region) {
2341 if (!memblock_is_reserved_noinit(region)) {
2342 nid = memblock_get_region_node(region);
2343 start = region->base;
2344 end = start + region->size;
2345
2346 if (!numa_valid_node(nid))
2347 nid = early_pfn_to_nid(PFN_DOWN(start));
2348
2349 reserve_bootmem_region(start, end, nid);
2350 }
2351 }
2352 }
2353
free_low_memory_core_early(void)2354 static unsigned long __init free_low_memory_core_early(void)
2355 {
2356 unsigned long count = 0;
2357 phys_addr_t start, end;
2358 u64 i;
2359
2360 memblock_clear_hotplug(0, -1);
2361
2362 memmap_init_reserved_pages();
2363
2364 /*
2365 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2366 * because in some case like Node0 doesn't have RAM installed
2367 * low ram will be on Node1
2368 */
2369 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2370 NULL)
2371 count += __free_memory_core(start, end);
2372
2373 return count;
2374 }
2375
2376 static int reset_managed_pages_done __initdata;
2377
reset_node_managed_pages(pg_data_t * pgdat)2378 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2379 {
2380 struct zone *z;
2381
2382 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2383 atomic_long_set(&z->managed_pages, 0);
2384 }
2385
reset_all_zones_managed_pages(void)2386 void __init reset_all_zones_managed_pages(void)
2387 {
2388 struct pglist_data *pgdat;
2389
2390 if (reset_managed_pages_done)
2391 return;
2392
2393 for_each_online_pgdat(pgdat)
2394 reset_node_managed_pages(pgdat);
2395
2396 reset_managed_pages_done = 1;
2397 }
2398
2399 /**
2400 * memblock_free_all - release free pages to the buddy allocator
2401 */
memblock_free_all(void)2402 void __init memblock_free_all(void)
2403 {
2404 unsigned long pages;
2405
2406 free_unused_memmap();
2407 reset_all_zones_managed_pages();
2408
2409 memblock_clear_kho_scratch_only();
2410 pages = free_low_memory_core_early();
2411 totalram_pages_add(pages);
2412 }
2413
2414 /* Keep a table to reserve named memory */
2415 #define RESERVE_MEM_MAX_ENTRIES 8
2416 #define RESERVE_MEM_NAME_SIZE 16
2417 struct reserve_mem_table {
2418 char name[RESERVE_MEM_NAME_SIZE];
2419 phys_addr_t start;
2420 phys_addr_t size;
2421 };
2422 static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES];
2423 static int reserved_mem_count;
2424 static DEFINE_MUTEX(reserve_mem_lock);
2425
2426 /* Add wildcard region with a lookup name */
reserved_mem_add(phys_addr_t start,phys_addr_t size,const char * name)2427 static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size,
2428 const char *name)
2429 {
2430 struct reserve_mem_table *map;
2431
2432 map = &reserved_mem_table[reserved_mem_count++];
2433 map->start = start;
2434 map->size = size;
2435 strscpy(map->name, name);
2436 }
2437
reserve_mem_find_by_name_nolock(const char * name)2438 static struct reserve_mem_table *reserve_mem_find_by_name_nolock(const char *name)
2439 {
2440 struct reserve_mem_table *map;
2441 int i;
2442
2443 for (i = 0; i < reserved_mem_count; i++) {
2444 map = &reserved_mem_table[i];
2445 if (!map->size)
2446 continue;
2447 if (strcmp(name, map->name) == 0)
2448 return map;
2449 }
2450 return NULL;
2451 }
2452
2453 /**
2454 * reserve_mem_find_by_name - Find reserved memory region with a given name
2455 * @name: The name that is attached to a reserved memory region
2456 * @start: If found, holds the start address
2457 * @size: If found, holds the size of the address.
2458 *
2459 * @start and @size are only updated if @name is found.
2460 *
2461 * Returns: 1 if found or 0 if not found.
2462 */
reserve_mem_find_by_name(const char * name,phys_addr_t * start,phys_addr_t * size)2463 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size)
2464 {
2465 struct reserve_mem_table *map;
2466
2467 guard(mutex)(&reserve_mem_lock);
2468 map = reserve_mem_find_by_name_nolock(name);
2469 if (!map)
2470 return 0;
2471
2472 *start = map->start;
2473 *size = map->size;
2474 return 1;
2475 }
2476 EXPORT_SYMBOL_GPL(reserve_mem_find_by_name);
2477
2478 /**
2479 * reserve_mem_release_by_name - Release reserved memory region with a given name
2480 * @name: The name that is attatched to a reserved memory region
2481 *
2482 * Forcibly release the pages in the reserved memory region so that those memory
2483 * can be used as free memory. After released the reserved region size becomes 0.
2484 *
2485 * Returns: 1 if released or 0 if not found.
2486 */
reserve_mem_release_by_name(const char * name)2487 int reserve_mem_release_by_name(const char *name)
2488 {
2489 char buf[RESERVE_MEM_NAME_SIZE + 12];
2490 struct reserve_mem_table *map;
2491 void *start, *end;
2492
2493 guard(mutex)(&reserve_mem_lock);
2494 map = reserve_mem_find_by_name_nolock(name);
2495 if (!map)
2496 return 0;
2497
2498 start = phys_to_virt(map->start);
2499 end = start + map->size - 1;
2500 snprintf(buf, sizeof(buf), "reserve_mem:%s", name);
2501 free_reserved_area(start, end, 0, buf);
2502 map->size = 0;
2503
2504 return 1;
2505 }
2506
2507 #ifdef CONFIG_KEXEC_HANDOVER
2508 #define MEMBLOCK_KHO_FDT "memblock"
2509 #define MEMBLOCK_KHO_NODE_COMPATIBLE "memblock-v1"
2510 #define RESERVE_MEM_KHO_NODE_COMPATIBLE "reserve-mem-v1"
2511 static struct page *kho_fdt;
2512
reserve_mem_kho_finalize(struct kho_serialization * ser)2513 static int reserve_mem_kho_finalize(struct kho_serialization *ser)
2514 {
2515 int err = 0, i;
2516
2517 for (i = 0; i < reserved_mem_count; i++) {
2518 struct reserve_mem_table *map = &reserved_mem_table[i];
2519
2520 err |= kho_preserve_phys(map->start, map->size);
2521 }
2522
2523 err |= kho_preserve_folio(page_folio(kho_fdt));
2524 err |= kho_add_subtree(ser, MEMBLOCK_KHO_FDT, page_to_virt(kho_fdt));
2525
2526 return notifier_from_errno(err);
2527 }
2528
reserve_mem_kho_notifier(struct notifier_block * self,unsigned long cmd,void * v)2529 static int reserve_mem_kho_notifier(struct notifier_block *self,
2530 unsigned long cmd, void *v)
2531 {
2532 switch (cmd) {
2533 case KEXEC_KHO_FINALIZE:
2534 return reserve_mem_kho_finalize((struct kho_serialization *)v);
2535 case KEXEC_KHO_ABORT:
2536 return NOTIFY_DONE;
2537 default:
2538 return NOTIFY_BAD;
2539 }
2540 }
2541
2542 static struct notifier_block reserve_mem_kho_nb = {
2543 .notifier_call = reserve_mem_kho_notifier,
2544 };
2545
prepare_kho_fdt(void)2546 static int __init prepare_kho_fdt(void)
2547 {
2548 int err = 0, i;
2549 void *fdt;
2550
2551 kho_fdt = alloc_page(GFP_KERNEL);
2552 if (!kho_fdt)
2553 return -ENOMEM;
2554
2555 fdt = page_to_virt(kho_fdt);
2556
2557 err |= fdt_create(fdt, PAGE_SIZE);
2558 err |= fdt_finish_reservemap(fdt);
2559
2560 err |= fdt_begin_node(fdt, "");
2561 err |= fdt_property_string(fdt, "compatible", MEMBLOCK_KHO_NODE_COMPATIBLE);
2562 for (i = 0; i < reserved_mem_count; i++) {
2563 struct reserve_mem_table *map = &reserved_mem_table[i];
2564
2565 err |= fdt_begin_node(fdt, map->name);
2566 err |= fdt_property_string(fdt, "compatible", RESERVE_MEM_KHO_NODE_COMPATIBLE);
2567 err |= fdt_property(fdt, "start", &map->start, sizeof(map->start));
2568 err |= fdt_property(fdt, "size", &map->size, sizeof(map->size));
2569 err |= fdt_end_node(fdt);
2570 }
2571 err |= fdt_end_node(fdt);
2572
2573 err |= fdt_finish(fdt);
2574
2575 if (err) {
2576 pr_err("failed to prepare memblock FDT for KHO: %d\n", err);
2577 put_page(kho_fdt);
2578 kho_fdt = NULL;
2579 }
2580
2581 return err;
2582 }
2583
reserve_mem_init(void)2584 static int __init reserve_mem_init(void)
2585 {
2586 int err;
2587
2588 if (!kho_is_enabled() || !reserved_mem_count)
2589 return 0;
2590
2591 err = prepare_kho_fdt();
2592 if (err)
2593 return err;
2594
2595 err = register_kho_notifier(&reserve_mem_kho_nb);
2596 if (err) {
2597 put_page(kho_fdt);
2598 kho_fdt = NULL;
2599 }
2600
2601 return err;
2602 }
2603 late_initcall(reserve_mem_init);
2604
reserve_mem_kho_retrieve_fdt(void)2605 static void *__init reserve_mem_kho_retrieve_fdt(void)
2606 {
2607 phys_addr_t fdt_phys;
2608 static void *fdt;
2609 int err;
2610
2611 if (fdt)
2612 return fdt;
2613
2614 err = kho_retrieve_subtree(MEMBLOCK_KHO_FDT, &fdt_phys);
2615 if (err) {
2616 if (err != -ENOENT)
2617 pr_warn("failed to retrieve FDT '%s' from KHO: %d\n",
2618 MEMBLOCK_KHO_FDT, err);
2619 return NULL;
2620 }
2621
2622 fdt = phys_to_virt(fdt_phys);
2623
2624 err = fdt_node_check_compatible(fdt, 0, MEMBLOCK_KHO_NODE_COMPATIBLE);
2625 if (err) {
2626 pr_warn("FDT '%s' is incompatible with '%s': %d\n",
2627 MEMBLOCK_KHO_FDT, MEMBLOCK_KHO_NODE_COMPATIBLE, err);
2628 fdt = NULL;
2629 }
2630
2631 return fdt;
2632 }
2633
reserve_mem_kho_revive(const char * name,phys_addr_t size,phys_addr_t align)2634 static bool __init reserve_mem_kho_revive(const char *name, phys_addr_t size,
2635 phys_addr_t align)
2636 {
2637 int err, len_start, len_size, offset;
2638 const phys_addr_t *p_start, *p_size;
2639 const void *fdt;
2640
2641 fdt = reserve_mem_kho_retrieve_fdt();
2642 if (!fdt)
2643 return false;
2644
2645 offset = fdt_subnode_offset(fdt, 0, name);
2646 if (offset < 0) {
2647 pr_warn("FDT '%s' has no child '%s': %d\n",
2648 MEMBLOCK_KHO_FDT, name, offset);
2649 return false;
2650 }
2651 err = fdt_node_check_compatible(fdt, offset, RESERVE_MEM_KHO_NODE_COMPATIBLE);
2652 if (err) {
2653 pr_warn("Node '%s' is incompatible with '%s': %d\n",
2654 name, RESERVE_MEM_KHO_NODE_COMPATIBLE, err);
2655 return false;
2656 }
2657
2658 p_start = fdt_getprop(fdt, offset, "start", &len_start);
2659 p_size = fdt_getprop(fdt, offset, "size", &len_size);
2660 if (!p_start || len_start != sizeof(*p_start) || !p_size ||
2661 len_size != sizeof(*p_size)) {
2662 return false;
2663 }
2664
2665 if (*p_start & (align - 1)) {
2666 pr_warn("KHO reserve-mem '%s' has wrong alignment (0x%lx, 0x%lx)\n",
2667 name, (long)align, (long)*p_start);
2668 return false;
2669 }
2670
2671 if (*p_size != size) {
2672 pr_warn("KHO reserve-mem '%s' has wrong size (0x%lx != 0x%lx)\n",
2673 name, (long)*p_size, (long)size);
2674 return false;
2675 }
2676
2677 reserved_mem_add(*p_start, size, name);
2678 pr_info("Revived memory reservation '%s' from KHO\n", name);
2679
2680 return true;
2681 }
2682 #else
reserve_mem_kho_revive(const char * name,phys_addr_t size,phys_addr_t align)2683 static bool __init reserve_mem_kho_revive(const char *name, phys_addr_t size,
2684 phys_addr_t align)
2685 {
2686 return false;
2687 }
2688 #endif /* CONFIG_KEXEC_HANDOVER */
2689
2690 /*
2691 * Parse reserve_mem=nn:align:name
2692 */
reserve_mem(char * p)2693 static int __init reserve_mem(char *p)
2694 {
2695 phys_addr_t start, size, align, tmp;
2696 char *name;
2697 char *oldp;
2698 int len;
2699
2700 if (!p)
2701 return -EINVAL;
2702
2703 /* Check if there's room for more reserved memory */
2704 if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES)
2705 return -EBUSY;
2706
2707 oldp = p;
2708 size = memparse(p, &p);
2709 if (!size || p == oldp)
2710 return -EINVAL;
2711
2712 if (*p != ':')
2713 return -EINVAL;
2714
2715 align = memparse(p+1, &p);
2716 if (*p != ':')
2717 return -EINVAL;
2718
2719 /*
2720 * memblock_phys_alloc() doesn't like a zero size align,
2721 * but it is OK for this command to have it.
2722 */
2723 if (align < SMP_CACHE_BYTES)
2724 align = SMP_CACHE_BYTES;
2725
2726 name = p + 1;
2727 len = strlen(name);
2728
2729 /* name needs to have length but not too big */
2730 if (!len || len >= RESERVE_MEM_NAME_SIZE)
2731 return -EINVAL;
2732
2733 /* Make sure that name has text */
2734 for (p = name; *p; p++) {
2735 if (!isspace(*p))
2736 break;
2737 }
2738 if (!*p)
2739 return -EINVAL;
2740
2741 /* Make sure the name is not already used */
2742 if (reserve_mem_find_by_name(name, &start, &tmp))
2743 return -EBUSY;
2744
2745 /* Pick previous allocations up from KHO if available */
2746 if (reserve_mem_kho_revive(name, size, align))
2747 return 1;
2748
2749 /* TODO: Allocation must be outside of scratch region */
2750 start = memblock_phys_alloc(size, align);
2751 if (!start)
2752 return -ENOMEM;
2753
2754 reserved_mem_add(start, size, name);
2755
2756 return 1;
2757 }
2758 __setup("reserve_mem=", reserve_mem);
2759
2760 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2761 static const char * const flagname[] = {
2762 [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2763 [ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2764 [ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2765 [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2766 [ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
2767 [ilog2(MEMBLOCK_RSRV_KERN)] = "RSV_KERN",
2768 [ilog2(MEMBLOCK_KHO_SCRATCH)] = "KHO_SCRATCH",
2769 };
2770
memblock_debug_show(struct seq_file * m,void * private)2771 static int memblock_debug_show(struct seq_file *m, void *private)
2772 {
2773 struct memblock_type *type = m->private;
2774 struct memblock_region *reg;
2775 int i, j, nid;
2776 unsigned int count = ARRAY_SIZE(flagname);
2777 phys_addr_t end;
2778
2779 for (i = 0; i < type->cnt; i++) {
2780 reg = &type->regions[i];
2781 end = reg->base + reg->size - 1;
2782 nid = memblock_get_region_node(reg);
2783
2784 seq_printf(m, "%4d: ", i);
2785 seq_printf(m, "%pa..%pa ", ®->base, &end);
2786 if (numa_valid_node(nid))
2787 seq_printf(m, "%4d ", nid);
2788 else
2789 seq_printf(m, "%4c ", 'x');
2790 if (reg->flags) {
2791 for (j = 0; j < count; j++) {
2792 if (reg->flags & (1U << j)) {
2793 seq_printf(m, "%s\n", flagname[j]);
2794 break;
2795 }
2796 }
2797 if (j == count)
2798 seq_printf(m, "%s\n", "UNKNOWN");
2799 } else {
2800 seq_printf(m, "%s\n", "NONE");
2801 }
2802 }
2803 return 0;
2804 }
2805 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2806
memblock_init_debugfs(void)2807 static int __init memblock_init_debugfs(void)
2808 {
2809 struct dentry *root = debugfs_create_dir("memblock", NULL);
2810
2811 debugfs_create_file("memory", 0444, root,
2812 &memblock.memory, &memblock_debug_fops);
2813 debugfs_create_file("reserved", 0444, root,
2814 &memblock.reserved, &memblock_debug_fops);
2815 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2816 debugfs_create_file("physmem", 0444, root, &physmem,
2817 &memblock_debug_fops);
2818 #endif
2819
2820 return 0;
2821 }
2822 __initcall(memblock_init_debugfs);
2823
2824 #endif /* CONFIG_DEBUG_FS */
2825