1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 #include <linux/mutex.h>
20
21 #ifdef CONFIG_KEXEC_HANDOVER
22 #include <linux/libfdt.h>
23 #include <linux/kexec_handover.h>
24 #endif /* CONFIG_KEXEC_HANDOVER */
25
26 #include <asm/sections.h>
27 #include <linux/io.h>
28
29 #include "internal.h"
30
31 #define INIT_MEMBLOCK_REGIONS 128
32 #define INIT_PHYSMEM_REGIONS 4
33
34 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
35 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
36 #endif
37
38 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
39 #define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
40 #endif
41
42 /**
43 * DOC: memblock overview
44 *
45 * Memblock is a method of managing memory regions during the early
46 * boot period when the usual kernel memory allocators are not up and
47 * running.
48 *
49 * Memblock views the system memory as collections of contiguous
50 * regions. There are several types of these collections:
51 *
52 * * ``memory`` - describes the physical memory available to the
53 * kernel; this may differ from the actual physical memory installed
54 * in the system, for instance when the memory is restricted with
55 * ``mem=`` command line parameter
56 * * ``reserved`` - describes the regions that were allocated
57 * * ``physmem`` - describes the actual physical memory available during
58 * boot regardless of the possible restrictions and memory hot(un)plug;
59 * the ``physmem`` type is only available on some architectures.
60 *
61 * Each region is represented by struct memblock_region that
62 * defines the region extents, its attributes and NUMA node id on NUMA
63 * systems. Every memory type is described by the struct memblock_type
64 * which contains an array of memory regions along with
65 * the allocator metadata. The "memory" and "reserved" types are nicely
66 * wrapped with struct memblock. This structure is statically
67 * initialized at build time. The region arrays are initially sized to
68 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
69 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
70 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
71 * The memblock_allow_resize() enables automatic resizing of the region
72 * arrays during addition of new regions. This feature should be used
73 * with care so that memory allocated for the region array will not
74 * overlap with areas that should be reserved, for example initrd.
75 *
76 * The early architecture setup should tell memblock what the physical
77 * memory layout is by using memblock_add() or memblock_add_node()
78 * functions. The first function does not assign the region to a NUMA
79 * node and it is appropriate for UMA systems. Yet, it is possible to
80 * use it on NUMA systems as well and assign the region to a NUMA node
81 * later in the setup process using memblock_set_node(). The
82 * memblock_add_node() performs such an assignment directly.
83 *
84 * Once memblock is setup the memory can be allocated using one of the
85 * API variants:
86 *
87 * * memblock_phys_alloc*() - these functions return the **physical**
88 * address of the allocated memory
89 * * memblock_alloc*() - these functions return the **virtual** address
90 * of the allocated memory.
91 *
92 * Note, that both API variants use implicit assumptions about allowed
93 * memory ranges and the fallback methods. Consult the documentation
94 * of memblock_alloc_internal() and memblock_alloc_range_nid()
95 * functions for more elaborate description.
96 *
97 * As the system boot progresses, the architecture specific mem_init()
98 * function frees all the memory to the buddy page allocator.
99 *
100 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
101 * memblock data structures (except "physmem") will be discarded after the
102 * system initialization completes.
103 */
104
105 #ifndef CONFIG_NUMA
106 struct pglist_data __refdata contig_page_data;
107 EXPORT_SYMBOL(contig_page_data);
108 #endif
109
110 unsigned long max_low_pfn;
111 unsigned long min_low_pfn;
112 unsigned long max_pfn;
113 unsigned long long max_possible_pfn;
114
115 #ifdef CONFIG_MEMBLOCK_KHO_SCRATCH
116 /* When set to true, only allocate from MEMBLOCK_KHO_SCRATCH ranges */
117 static bool kho_scratch_only;
118 #else
119 #define kho_scratch_only false
120 #endif
121
122 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
123 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
124 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
125 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
126 #endif
127
128 struct memblock memblock __initdata_memblock = {
129 .memory.regions = memblock_memory_init_regions,
130 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
131 .memory.name = "memory",
132
133 .reserved.regions = memblock_reserved_init_regions,
134 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
135 .reserved.name = "reserved",
136
137 .bottom_up = false,
138 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
139 };
140
141 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
142 struct memblock_type physmem = {
143 .regions = memblock_physmem_init_regions,
144 .max = INIT_PHYSMEM_REGIONS,
145 .name = "physmem",
146 };
147 #endif
148
149 /*
150 * keep a pointer to &memblock.memory in the text section to use it in
151 * __next_mem_range() and its helpers.
152 * For architectures that do not keep memblock data after init, this
153 * pointer will be reset to NULL at memblock_discard()
154 */
155 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
156
157 #define for_each_memblock_type(i, memblock_type, rgn) \
158 for (i = 0, rgn = &memblock_type->regions[0]; \
159 i < memblock_type->cnt; \
160 i++, rgn = &memblock_type->regions[i])
161
162 #define memblock_dbg(fmt, ...) \
163 do { \
164 if (memblock_debug) \
165 pr_info(fmt, ##__VA_ARGS__); \
166 } while (0)
167
168 static int memblock_debug __initdata_memblock;
169 static bool system_has_some_mirror __initdata_memblock;
170 static int memblock_can_resize __initdata_memblock;
171 static int memblock_memory_in_slab __initdata_memblock;
172 static int memblock_reserved_in_slab __initdata_memblock;
173
memblock_has_mirror(void)174 bool __init_memblock memblock_has_mirror(void)
175 {
176 return system_has_some_mirror;
177 }
178
choose_memblock_flags(void)179 static enum memblock_flags __init_memblock choose_memblock_flags(void)
180 {
181 /* skip non-scratch memory for kho early boot allocations */
182 if (kho_scratch_only)
183 return MEMBLOCK_KHO_SCRATCH;
184
185 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
186 }
187
188 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)189 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
190 {
191 return *size = min(*size, PHYS_ADDR_MAX - base);
192 }
193
194 /*
195 * Address comparison utilities
196 */
197 unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)198 memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
199 phys_addr_t size2)
200 {
201 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
202 }
203
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)204 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
205 phys_addr_t base, phys_addr_t size)
206 {
207 unsigned long i;
208
209 memblock_cap_size(base, &size);
210
211 for (i = 0; i < type->cnt; i++)
212 if (memblock_addrs_overlap(base, size, type->regions[i].base,
213 type->regions[i].size))
214 return true;
215 return false;
216 }
217
218 /**
219 * __memblock_find_range_bottom_up - find free area utility in bottom-up
220 * @start: start of candidate range
221 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
222 * %MEMBLOCK_ALLOC_ACCESSIBLE
223 * @size: size of free area to find
224 * @align: alignment of free area to find
225 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
226 * @flags: pick from blocks based on memory attributes
227 *
228 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
229 *
230 * Return:
231 * Found address on success, 0 on failure.
232 */
233 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)234 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
235 phys_addr_t size, phys_addr_t align, int nid,
236 enum memblock_flags flags)
237 {
238 phys_addr_t this_start, this_end, cand;
239 u64 i;
240
241 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
242 this_start = clamp(this_start, start, end);
243 this_end = clamp(this_end, start, end);
244
245 cand = round_up(this_start, align);
246 if (cand < this_end && this_end - cand >= size)
247 return cand;
248 }
249
250 return 0;
251 }
252
253 /**
254 * __memblock_find_range_top_down - find free area utility, in top-down
255 * @start: start of candidate range
256 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
257 * %MEMBLOCK_ALLOC_ACCESSIBLE
258 * @size: size of free area to find
259 * @align: alignment of free area to find
260 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
261 * @flags: pick from blocks based on memory attributes
262 *
263 * Utility called from memblock_find_in_range_node(), find free area top-down.
264 *
265 * Return:
266 * Found address on success, 0 on failure.
267 */
268 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)269 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
270 phys_addr_t size, phys_addr_t align, int nid,
271 enum memblock_flags flags)
272 {
273 phys_addr_t this_start, this_end, cand;
274 u64 i;
275
276 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
277 NULL) {
278 this_start = clamp(this_start, start, end);
279 this_end = clamp(this_end, start, end);
280
281 if (this_end < size)
282 continue;
283
284 cand = round_down(this_end - size, align);
285 if (cand >= this_start)
286 return cand;
287 }
288
289 return 0;
290 }
291
292 /**
293 * memblock_find_in_range_node - find free area in given range and node
294 * @size: size of free area to find
295 * @align: alignment of free area to find
296 * @start: start of candidate range
297 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
298 * %MEMBLOCK_ALLOC_ACCESSIBLE
299 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
300 * @flags: pick from blocks based on memory attributes
301 *
302 * Find @size free area aligned to @align in the specified range and node.
303 *
304 * Return:
305 * Found address on success, 0 on failure.
306 */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)307 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
308 phys_addr_t align, phys_addr_t start,
309 phys_addr_t end, int nid,
310 enum memblock_flags flags)
311 {
312 /* pump up @end */
313 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
314 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
315 end = memblock.current_limit;
316
317 /* avoid allocating the first page */
318 start = max_t(phys_addr_t, start, PAGE_SIZE);
319 end = max(start, end);
320
321 if (memblock_bottom_up())
322 return __memblock_find_range_bottom_up(start, end, size, align,
323 nid, flags);
324 else
325 return __memblock_find_range_top_down(start, end, size, align,
326 nid, flags);
327 }
328
329 /**
330 * memblock_find_in_range - find free area in given range
331 * @start: start of candidate range
332 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
333 * %MEMBLOCK_ALLOC_ACCESSIBLE
334 * @size: size of free area to find
335 * @align: alignment of free area to find
336 *
337 * Find @size free area aligned to @align in the specified range.
338 *
339 * Return:
340 * Found address on success, 0 on failure.
341 */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)342 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
343 phys_addr_t end, phys_addr_t size,
344 phys_addr_t align)
345 {
346 phys_addr_t ret;
347 enum memblock_flags flags = choose_memblock_flags();
348
349 again:
350 ret = memblock_find_in_range_node(size, align, start, end,
351 NUMA_NO_NODE, flags);
352
353 if (!ret && (flags & MEMBLOCK_MIRROR)) {
354 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
355 &size);
356 flags &= ~MEMBLOCK_MIRROR;
357 goto again;
358 }
359
360 return ret;
361 }
362
memblock_remove_region(struct memblock_type * type,unsigned long r)363 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
364 {
365 type->total_size -= type->regions[r].size;
366 memmove(&type->regions[r], &type->regions[r + 1],
367 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
368 type->cnt--;
369
370 /* Special case for empty arrays */
371 if (type->cnt == 0) {
372 WARN_ON(type->total_size != 0);
373 type->regions[0].base = 0;
374 type->regions[0].size = 0;
375 type->regions[0].flags = 0;
376 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
377 }
378 }
379
380 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
381 /**
382 * memblock_discard - discard memory and reserved arrays if they were allocated
383 */
memblock_discard(void)384 void __init memblock_discard(void)
385 {
386 phys_addr_t addr, size;
387
388 if (memblock.reserved.regions != memblock_reserved_init_regions) {
389 addr = __pa(memblock.reserved.regions);
390 size = PAGE_ALIGN(sizeof(struct memblock_region) *
391 memblock.reserved.max);
392 if (memblock_reserved_in_slab)
393 kfree(memblock.reserved.regions);
394 else
395 memblock_free_late(addr, size);
396 }
397
398 if (memblock.memory.regions != memblock_memory_init_regions) {
399 addr = __pa(memblock.memory.regions);
400 size = PAGE_ALIGN(sizeof(struct memblock_region) *
401 memblock.memory.max);
402 if (memblock_memory_in_slab)
403 kfree(memblock.memory.regions);
404 else
405 memblock_free_late(addr, size);
406 }
407
408 memblock_memory = NULL;
409 }
410 #endif
411
412 /**
413 * memblock_double_array - double the size of the memblock regions array
414 * @type: memblock type of the regions array being doubled
415 * @new_area_start: starting address of memory range to avoid overlap with
416 * @new_area_size: size of memory range to avoid overlap with
417 *
418 * Double the size of the @type regions array. If memblock is being used to
419 * allocate memory for a new reserved regions array and there is a previously
420 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
421 * waiting to be reserved, ensure the memory used by the new array does
422 * not overlap.
423 *
424 * Return:
425 * 0 on success, -1 on failure.
426 */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)427 static int __init_memblock memblock_double_array(struct memblock_type *type,
428 phys_addr_t new_area_start,
429 phys_addr_t new_area_size)
430 {
431 struct memblock_region *new_array, *old_array;
432 phys_addr_t old_alloc_size, new_alloc_size;
433 phys_addr_t old_size, new_size, addr, new_end;
434 int use_slab = slab_is_available();
435 int *in_slab;
436
437 /* We don't allow resizing until we know about the reserved regions
438 * of memory that aren't suitable for allocation
439 */
440 if (!memblock_can_resize)
441 panic("memblock: cannot resize %s array\n", type->name);
442
443 /* Calculate new doubled size */
444 old_size = type->max * sizeof(struct memblock_region);
445 new_size = old_size << 1;
446 /*
447 * We need to allocated new one align to PAGE_SIZE,
448 * so we can free them completely later.
449 */
450 old_alloc_size = PAGE_ALIGN(old_size);
451 new_alloc_size = PAGE_ALIGN(new_size);
452
453 /* Retrieve the slab flag */
454 if (type == &memblock.memory)
455 in_slab = &memblock_memory_in_slab;
456 else
457 in_slab = &memblock_reserved_in_slab;
458
459 /* Try to find some space for it */
460 if (use_slab) {
461 new_array = kmalloc(new_size, GFP_KERNEL);
462 addr = new_array ? __pa(new_array) : 0;
463 } else {
464 /* only exclude range when trying to double reserved.regions */
465 if (type != &memblock.reserved)
466 new_area_start = new_area_size = 0;
467
468 addr = memblock_find_in_range(new_area_start + new_area_size,
469 memblock.current_limit,
470 new_alloc_size, PAGE_SIZE);
471 if (!addr && new_area_size)
472 addr = memblock_find_in_range(0,
473 min(new_area_start, memblock.current_limit),
474 new_alloc_size, PAGE_SIZE);
475
476 if (addr) {
477 /* The memory may not have been accepted, yet. */
478 accept_memory(addr, new_alloc_size);
479
480 new_array = __va(addr);
481 } else {
482 new_array = NULL;
483 }
484 }
485 if (!addr) {
486 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
487 type->name, type->max, type->max * 2);
488 return -1;
489 }
490
491 new_end = addr + new_size - 1;
492 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
493 type->name, type->max * 2, &addr, &new_end);
494
495 /*
496 * Found space, we now need to move the array over before we add the
497 * reserved region since it may be our reserved array itself that is
498 * full.
499 */
500 memcpy(new_array, type->regions, old_size);
501 memset(new_array + type->max, 0, old_size);
502 old_array = type->regions;
503 type->regions = new_array;
504 type->max <<= 1;
505
506 /* Free old array. We needn't free it if the array is the static one */
507 if (*in_slab)
508 kfree(old_array);
509 else if (old_array != memblock_memory_init_regions &&
510 old_array != memblock_reserved_init_regions)
511 memblock_free(old_array, old_alloc_size);
512
513 /*
514 * Reserve the new array if that comes from the memblock. Otherwise, we
515 * needn't do it
516 */
517 if (!use_slab)
518 BUG_ON(memblock_reserve_kern(addr, new_alloc_size));
519
520 /* Update slab flag */
521 *in_slab = use_slab;
522
523 return 0;
524 }
525
526 /**
527 * memblock_merge_regions - merge neighboring compatible regions
528 * @type: memblock type to scan
529 * @start_rgn: start scanning from (@start_rgn - 1)
530 * @end_rgn: end scanning at (@end_rgn - 1)
531 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
532 */
memblock_merge_regions(struct memblock_type * type,unsigned long start_rgn,unsigned long end_rgn)533 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
534 unsigned long start_rgn,
535 unsigned long end_rgn)
536 {
537 int i = 0;
538 if (start_rgn)
539 i = start_rgn - 1;
540 end_rgn = min(end_rgn, type->cnt - 1);
541 while (i < end_rgn) {
542 struct memblock_region *this = &type->regions[i];
543 struct memblock_region *next = &type->regions[i + 1];
544
545 if (this->base + this->size != next->base ||
546 memblock_get_region_node(this) !=
547 memblock_get_region_node(next) ||
548 this->flags != next->flags) {
549 BUG_ON(this->base + this->size > next->base);
550 i++;
551 continue;
552 }
553
554 this->size += next->size;
555 /* move forward from next + 1, index of which is i + 2 */
556 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
557 type->cnt--;
558 end_rgn--;
559 }
560 }
561
562 /**
563 * memblock_insert_region - insert new memblock region
564 * @type: memblock type to insert into
565 * @idx: index for the insertion point
566 * @base: base address of the new region
567 * @size: size of the new region
568 * @nid: node id of the new region
569 * @flags: flags of the new region
570 *
571 * Insert new memblock region [@base, @base + @size) into @type at @idx.
572 * @type must already have extra room to accommodate the new region.
573 */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)574 static void __init_memblock memblock_insert_region(struct memblock_type *type,
575 int idx, phys_addr_t base,
576 phys_addr_t size,
577 int nid,
578 enum memblock_flags flags)
579 {
580 struct memblock_region *rgn = &type->regions[idx];
581
582 BUG_ON(type->cnt >= type->max);
583 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
584 rgn->base = base;
585 rgn->size = size;
586 rgn->flags = flags;
587 memblock_set_region_node(rgn, nid);
588 type->cnt++;
589 type->total_size += size;
590 }
591
592 /**
593 * memblock_add_range - add new memblock region
594 * @type: memblock type to add new region into
595 * @base: base address of the new region
596 * @size: size of the new region
597 * @nid: nid of the new region
598 * @flags: flags of the new region
599 *
600 * Add new memblock region [@base, @base + @size) into @type. The new region
601 * is allowed to overlap with existing ones - overlaps don't affect already
602 * existing regions. @type is guaranteed to be minimal (all neighbouring
603 * compatible regions are merged) after the addition.
604 *
605 * Return:
606 * 0 on success, -errno on failure.
607 */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)608 static int __init_memblock memblock_add_range(struct memblock_type *type,
609 phys_addr_t base, phys_addr_t size,
610 int nid, enum memblock_flags flags)
611 {
612 bool insert = false;
613 phys_addr_t obase = base;
614 phys_addr_t end = base + memblock_cap_size(base, &size);
615 int idx, nr_new, start_rgn = -1, end_rgn;
616 struct memblock_region *rgn;
617
618 if (!size)
619 return 0;
620
621 /* special case for empty array */
622 if (type->regions[0].size == 0) {
623 WARN_ON(type->cnt != 0 || type->total_size);
624 type->regions[0].base = base;
625 type->regions[0].size = size;
626 type->regions[0].flags = flags;
627 memblock_set_region_node(&type->regions[0], nid);
628 type->total_size = size;
629 type->cnt = 1;
630 return 0;
631 }
632
633 /*
634 * The worst case is when new range overlaps all existing regions,
635 * then we'll need type->cnt + 1 empty regions in @type. So if
636 * type->cnt * 2 + 1 is less than or equal to type->max, we know
637 * that there is enough empty regions in @type, and we can insert
638 * regions directly.
639 */
640 if (type->cnt * 2 + 1 <= type->max)
641 insert = true;
642
643 repeat:
644 /*
645 * The following is executed twice. Once with %false @insert and
646 * then with %true. The first counts the number of regions needed
647 * to accommodate the new area. The second actually inserts them.
648 */
649 base = obase;
650 nr_new = 0;
651
652 for_each_memblock_type(idx, type, rgn) {
653 phys_addr_t rbase = rgn->base;
654 phys_addr_t rend = rbase + rgn->size;
655
656 if (rbase >= end)
657 break;
658 if (rend <= base)
659 continue;
660 /*
661 * @rgn overlaps. If it separates the lower part of new
662 * area, insert that portion.
663 */
664 if (rbase > base) {
665 #ifdef CONFIG_NUMA
666 WARN_ON(nid != memblock_get_region_node(rgn));
667 #endif
668 WARN_ON(flags != MEMBLOCK_NONE && flags != rgn->flags);
669 nr_new++;
670 if (insert) {
671 if (start_rgn == -1)
672 start_rgn = idx;
673 end_rgn = idx + 1;
674 memblock_insert_region(type, idx++, base,
675 rbase - base, nid,
676 flags);
677 }
678 }
679 /* area below @rend is dealt with, forget about it */
680 base = min(rend, end);
681 }
682
683 /* insert the remaining portion */
684 if (base < end) {
685 nr_new++;
686 if (insert) {
687 if (start_rgn == -1)
688 start_rgn = idx;
689 end_rgn = idx + 1;
690 memblock_insert_region(type, idx, base, end - base,
691 nid, flags);
692 }
693 }
694
695 if (!nr_new)
696 return 0;
697
698 /*
699 * If this was the first round, resize array and repeat for actual
700 * insertions; otherwise, merge and return.
701 */
702 if (!insert) {
703 while (type->cnt + nr_new > type->max)
704 if (memblock_double_array(type, obase, size) < 0)
705 return -ENOMEM;
706 insert = true;
707 goto repeat;
708 } else {
709 memblock_merge_regions(type, start_rgn, end_rgn);
710 return 0;
711 }
712 }
713
714 /**
715 * memblock_add_node - add new memblock region within a NUMA node
716 * @base: base address of the new region
717 * @size: size of the new region
718 * @nid: nid of the new region
719 * @flags: flags of the new region
720 *
721 * Add new memblock region [@base, @base + @size) to the "memory"
722 * type. See memblock_add_range() description for mode details
723 *
724 * Return:
725 * 0 on success, -errno on failure.
726 */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)727 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
728 int nid, enum memblock_flags flags)
729 {
730 phys_addr_t end = base + size - 1;
731
732 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
733 &base, &end, nid, flags, (void *)_RET_IP_);
734
735 return memblock_add_range(&memblock.memory, base, size, nid, flags);
736 }
737
738 /**
739 * memblock_add - add new memblock region
740 * @base: base address of the new region
741 * @size: size of the new region
742 *
743 * Add new memblock region [@base, @base + @size) to the "memory"
744 * type. See memblock_add_range() description for mode details
745 *
746 * Return:
747 * 0 on success, -errno on failure.
748 */
memblock_add(phys_addr_t base,phys_addr_t size)749 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
750 {
751 phys_addr_t end = base + size - 1;
752
753 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
754 &base, &end, (void *)_RET_IP_);
755
756 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
757 }
758
759 /**
760 * memblock_validate_numa_coverage - check if amount of memory with
761 * no node ID assigned is less than a threshold
762 * @threshold_bytes: maximal memory size that can have unassigned node
763 * ID (in bytes).
764 *
765 * A buggy firmware may report memory that does not belong to any node.
766 * Check if amount of such memory is below @threshold_bytes.
767 *
768 * Return: true on success, false on failure.
769 */
memblock_validate_numa_coverage(unsigned long threshold_bytes)770 bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
771 {
772 unsigned long nr_pages = 0;
773 unsigned long start_pfn, end_pfn, mem_size_mb;
774 int nid, i;
775
776 /* calculate lose page */
777 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
778 if (!numa_valid_node(nid))
779 nr_pages += end_pfn - start_pfn;
780 }
781
782 if ((nr_pages << PAGE_SHIFT) > threshold_bytes) {
783 mem_size_mb = memblock_phys_mem_size() >> 20;
784 pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
785 (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
786 return false;
787 }
788
789 return true;
790 }
791
792
793 /**
794 * memblock_isolate_range - isolate given range into disjoint memblocks
795 * @type: memblock type to isolate range for
796 * @base: base of range to isolate
797 * @size: size of range to isolate
798 * @start_rgn: out parameter for the start of isolated region
799 * @end_rgn: out parameter for the end of isolated region
800 *
801 * Walk @type and ensure that regions don't cross the boundaries defined by
802 * [@base, @base + @size). Crossing regions are split at the boundaries,
803 * which may create at most two more regions. The index of the first
804 * region inside the range is returned in *@start_rgn and the index of the
805 * first region after the range is returned in *@end_rgn.
806 *
807 * Return:
808 * 0 on success, -errno on failure.
809 */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)810 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
811 phys_addr_t base, phys_addr_t size,
812 int *start_rgn, int *end_rgn)
813 {
814 phys_addr_t end = base + memblock_cap_size(base, &size);
815 int idx;
816 struct memblock_region *rgn;
817
818 *start_rgn = *end_rgn = 0;
819
820 if (!size)
821 return 0;
822
823 /* we'll create at most two more regions */
824 while (type->cnt + 2 > type->max)
825 if (memblock_double_array(type, base, size) < 0)
826 return -ENOMEM;
827
828 for_each_memblock_type(idx, type, rgn) {
829 phys_addr_t rbase = rgn->base;
830 phys_addr_t rend = rbase + rgn->size;
831
832 if (rbase >= end)
833 break;
834 if (rend <= base)
835 continue;
836
837 if (rbase < base) {
838 /*
839 * @rgn intersects from below. Split and continue
840 * to process the next region - the new top half.
841 */
842 rgn->base = base;
843 rgn->size -= base - rbase;
844 type->total_size -= base - rbase;
845 memblock_insert_region(type, idx, rbase, base - rbase,
846 memblock_get_region_node(rgn),
847 rgn->flags);
848 } else if (rend > end) {
849 /*
850 * @rgn intersects from above. Split and redo the
851 * current region - the new bottom half.
852 */
853 rgn->base = end;
854 rgn->size -= end - rbase;
855 type->total_size -= end - rbase;
856 memblock_insert_region(type, idx--, rbase, end - rbase,
857 memblock_get_region_node(rgn),
858 rgn->flags);
859 } else {
860 /* @rgn is fully contained, record it */
861 if (!*end_rgn)
862 *start_rgn = idx;
863 *end_rgn = idx + 1;
864 }
865 }
866
867 return 0;
868 }
869
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)870 static int __init_memblock memblock_remove_range(struct memblock_type *type,
871 phys_addr_t base, phys_addr_t size)
872 {
873 int start_rgn, end_rgn;
874 int i, ret;
875
876 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
877 if (ret)
878 return ret;
879
880 for (i = end_rgn - 1; i >= start_rgn; i--)
881 memblock_remove_region(type, i);
882 return 0;
883 }
884
memblock_remove(phys_addr_t base,phys_addr_t size)885 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
886 {
887 phys_addr_t end = base + size - 1;
888
889 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
890 &base, &end, (void *)_RET_IP_);
891
892 return memblock_remove_range(&memblock.memory, base, size);
893 }
894
895 /**
896 * memblock_free - free boot memory allocation
897 * @ptr: starting address of the boot memory allocation
898 * @size: size of the boot memory block in bytes
899 *
900 * Free boot memory block previously allocated by memblock_alloc_xx() API.
901 * The freeing memory will not be released to the buddy allocator.
902 */
memblock_free(void * ptr,size_t size)903 void __init_memblock memblock_free(void *ptr, size_t size)
904 {
905 if (ptr)
906 memblock_phys_free(__pa(ptr), size);
907 }
908
909 /**
910 * memblock_phys_free - free boot memory block
911 * @base: phys starting address of the boot memory block
912 * @size: size of the boot memory block in bytes
913 *
914 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
915 * The freeing memory will not be released to the buddy allocator.
916 */
memblock_phys_free(phys_addr_t base,phys_addr_t size)917 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
918 {
919 phys_addr_t end = base + size - 1;
920
921 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
922 &base, &end, (void *)_RET_IP_);
923
924 kmemleak_free_part_phys(base, size);
925 return memblock_remove_range(&memblock.reserved, base, size);
926 }
927
__memblock_reserve(phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)928 int __init_memblock __memblock_reserve(phys_addr_t base, phys_addr_t size,
929 int nid, enum memblock_flags flags)
930 {
931 phys_addr_t end = base + size - 1;
932
933 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
934 &base, &end, nid, flags, (void *)_RET_IP_);
935
936 return memblock_add_range(&memblock.reserved, base, size, nid, flags);
937 }
938
939 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)940 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
941 {
942 phys_addr_t end = base + size - 1;
943
944 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
945 &base, &end, (void *)_RET_IP_);
946
947 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
948 }
949 #endif
950
951 #ifdef CONFIG_MEMBLOCK_KHO_SCRATCH
memblock_set_kho_scratch_only(void)952 __init void memblock_set_kho_scratch_only(void)
953 {
954 kho_scratch_only = true;
955 }
956
memblock_clear_kho_scratch_only(void)957 __init void memblock_clear_kho_scratch_only(void)
958 {
959 kho_scratch_only = false;
960 }
961
memmap_init_kho_scratch_pages(void)962 __init void memmap_init_kho_scratch_pages(void)
963 {
964 phys_addr_t start, end;
965 unsigned long pfn;
966 int nid;
967 u64 i;
968
969 if (!IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT))
970 return;
971
972 /*
973 * Initialize struct pages for free scratch memory.
974 * The struct pages for reserved scratch memory will be set up in
975 * reserve_bootmem_region()
976 */
977 __for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE,
978 MEMBLOCK_KHO_SCRATCH, &start, &end, &nid) {
979 for (pfn = PFN_UP(start); pfn < PFN_DOWN(end); pfn++)
980 init_deferred_page(pfn, nid);
981 }
982 }
983 #endif
984
985 /**
986 * memblock_setclr_flag - set or clear flag for a memory region
987 * @type: memblock type to set/clear flag for
988 * @base: base address of the region
989 * @size: size of the region
990 * @set: set or clear the flag
991 * @flag: the flag to update
992 *
993 * This function isolates region [@base, @base + @size), and sets/clears flag
994 *
995 * Return: 0 on success, -errno on failure.
996 */
memblock_setclr_flag(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int set,int flag)997 static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
998 phys_addr_t base, phys_addr_t size, int set, int flag)
999 {
1000 int i, ret, start_rgn, end_rgn;
1001
1002 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1003 if (ret)
1004 return ret;
1005
1006 for (i = start_rgn; i < end_rgn; i++) {
1007 struct memblock_region *r = &type->regions[i];
1008
1009 if (set)
1010 r->flags |= flag;
1011 else
1012 r->flags &= ~flag;
1013 }
1014
1015 memblock_merge_regions(type, start_rgn, end_rgn);
1016 return 0;
1017 }
1018
1019 /**
1020 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
1021 * @base: the base phys addr of the region
1022 * @size: the size of the region
1023 *
1024 * Return: 0 on success, -errno on failure.
1025 */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)1026 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
1027 {
1028 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
1029 }
1030
1031 /**
1032 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
1033 * @base: the base phys addr of the region
1034 * @size: the size of the region
1035 *
1036 * Return: 0 on success, -errno on failure.
1037 */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)1038 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
1039 {
1040 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
1041 }
1042
1043 /**
1044 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
1045 * @base: the base phys addr of the region
1046 * @size: the size of the region
1047 *
1048 * Return: 0 on success, -errno on failure.
1049 */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)1050 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
1051 {
1052 if (!mirrored_kernelcore)
1053 return 0;
1054
1055 system_has_some_mirror = true;
1056
1057 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
1058 }
1059
1060 /**
1061 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1062 * @base: the base phys addr of the region
1063 * @size: the size of the region
1064 *
1065 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1066 * direct mapping of the physical memory. These regions will still be
1067 * covered by the memory map. The struct page representing NOMAP memory
1068 * frames in the memory map will be PageReserved()
1069 *
1070 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1071 * memblock, the caller must inform kmemleak to ignore that memory
1072 *
1073 * Return: 0 on success, -errno on failure.
1074 */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)1075 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1076 {
1077 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
1078 }
1079
1080 /**
1081 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1082 * @base: the base phys addr of the region
1083 * @size: the size of the region
1084 *
1085 * Return: 0 on success, -errno on failure.
1086 */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)1087 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1088 {
1089 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
1090 }
1091
1092 /**
1093 * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1094 * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
1095 * for this region.
1096 * @base: the base phys addr of the region
1097 * @size: the size of the region
1098 *
1099 * struct pages will not be initialized for reserved memory regions marked with
1100 * %MEMBLOCK_RSRV_NOINIT.
1101 *
1102 * Return: 0 on success, -errno on failure.
1103 */
memblock_reserved_mark_noinit(phys_addr_t base,phys_addr_t size)1104 int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
1105 {
1106 return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1107 MEMBLOCK_RSRV_NOINIT);
1108 }
1109
1110 /**
1111 * memblock_mark_kho_scratch - Mark a memory region as MEMBLOCK_KHO_SCRATCH.
1112 * @base: the base phys addr of the region
1113 * @size: the size of the region
1114 *
1115 * Only memory regions marked with %MEMBLOCK_KHO_SCRATCH will be considered
1116 * for allocations during early boot with kexec handover.
1117 *
1118 * Return: 0 on success, -errno on failure.
1119 */
memblock_mark_kho_scratch(phys_addr_t base,phys_addr_t size)1120 __init int memblock_mark_kho_scratch(phys_addr_t base, phys_addr_t size)
1121 {
1122 return memblock_setclr_flag(&memblock.memory, base, size, 1,
1123 MEMBLOCK_KHO_SCRATCH);
1124 }
1125
1126 /**
1127 * memblock_clear_kho_scratch - Clear MEMBLOCK_KHO_SCRATCH flag for a
1128 * specified region.
1129 * @base: the base phys addr of the region
1130 * @size: the size of the region
1131 *
1132 * Return: 0 on success, -errno on failure.
1133 */
memblock_clear_kho_scratch(phys_addr_t base,phys_addr_t size)1134 __init int memblock_clear_kho_scratch(phys_addr_t base, phys_addr_t size)
1135 {
1136 return memblock_setclr_flag(&memblock.memory, base, size, 0,
1137 MEMBLOCK_KHO_SCRATCH);
1138 }
1139
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)1140 static bool should_skip_region(struct memblock_type *type,
1141 struct memblock_region *m,
1142 int nid, int flags)
1143 {
1144 int m_nid = memblock_get_region_node(m);
1145
1146 /* we never skip regions when iterating memblock.reserved or physmem */
1147 if (type != memblock_memory)
1148 return false;
1149
1150 /* only memory regions are associated with nodes, check it */
1151 if (numa_valid_node(nid) && nid != m_nid)
1152 return true;
1153
1154 /* skip hotpluggable memory regions if needed */
1155 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1156 !(flags & MEMBLOCK_HOTPLUG))
1157 return true;
1158
1159 /* if we want mirror memory skip non-mirror memory regions */
1160 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1161 return true;
1162
1163 /* skip nomap memory unless we were asked for it explicitly */
1164 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1165 return true;
1166
1167 /* skip driver-managed memory unless we were asked for it explicitly */
1168 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1169 return true;
1170
1171 /*
1172 * In early alloc during kexec handover, we can only consider
1173 * MEMBLOCK_KHO_SCRATCH regions for the allocations
1174 */
1175 if ((flags & MEMBLOCK_KHO_SCRATCH) && !memblock_is_kho_scratch(m))
1176 return true;
1177
1178 return false;
1179 }
1180
1181 /**
1182 * __next_mem_range - next function for for_each_free_mem_range() etc.
1183 * @idx: pointer to u64 loop variable
1184 * @nid: node selector, %NUMA_NO_NODE for all nodes
1185 * @flags: pick from blocks based on memory attributes
1186 * @type_a: pointer to memblock_type from where the range is taken
1187 * @type_b: pointer to memblock_type which excludes memory from being taken
1188 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1189 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1190 * @out_nid: ptr to int for nid of the range, can be %NULL
1191 *
1192 * Find the first area from *@idx which matches @nid, fill the out
1193 * parameters, and update *@idx for the next iteration. The lower 32bit of
1194 * *@idx contains index into type_a and the upper 32bit indexes the
1195 * areas before each region in type_b. For example, if type_b regions
1196 * look like the following,
1197 *
1198 * 0:[0-16), 1:[32-48), 2:[128-130)
1199 *
1200 * The upper 32bit indexes the following regions.
1201 *
1202 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1203 *
1204 * As both region arrays are sorted, the function advances the two indices
1205 * in lockstep and returns each intersection.
1206 */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1207 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1208 struct memblock_type *type_a,
1209 struct memblock_type *type_b, phys_addr_t *out_start,
1210 phys_addr_t *out_end, int *out_nid)
1211 {
1212 int idx_a = *idx & 0xffffffff;
1213 int idx_b = *idx >> 32;
1214
1215 for (; idx_a < type_a->cnt; idx_a++) {
1216 struct memblock_region *m = &type_a->regions[idx_a];
1217
1218 phys_addr_t m_start = m->base;
1219 phys_addr_t m_end = m->base + m->size;
1220 int m_nid = memblock_get_region_node(m);
1221
1222 if (should_skip_region(type_a, m, nid, flags))
1223 continue;
1224
1225 if (!type_b) {
1226 if (out_start)
1227 *out_start = m_start;
1228 if (out_end)
1229 *out_end = m_end;
1230 if (out_nid)
1231 *out_nid = m_nid;
1232 idx_a++;
1233 *idx = (u32)idx_a | (u64)idx_b << 32;
1234 return;
1235 }
1236
1237 /* scan areas before each reservation */
1238 for (; idx_b < type_b->cnt + 1; idx_b++) {
1239 struct memblock_region *r;
1240 phys_addr_t r_start;
1241 phys_addr_t r_end;
1242
1243 r = &type_b->regions[idx_b];
1244 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1245 r_end = idx_b < type_b->cnt ?
1246 r->base : PHYS_ADDR_MAX;
1247
1248 /*
1249 * if idx_b advanced past idx_a,
1250 * break out to advance idx_a
1251 */
1252 if (r_start >= m_end)
1253 break;
1254 /* if the two regions intersect, we're done */
1255 if (m_start < r_end) {
1256 if (out_start)
1257 *out_start =
1258 max(m_start, r_start);
1259 if (out_end)
1260 *out_end = min(m_end, r_end);
1261 if (out_nid)
1262 *out_nid = m_nid;
1263 /*
1264 * The region which ends first is
1265 * advanced for the next iteration.
1266 */
1267 if (m_end <= r_end)
1268 idx_a++;
1269 else
1270 idx_b++;
1271 *idx = (u32)idx_a | (u64)idx_b << 32;
1272 return;
1273 }
1274 }
1275 }
1276
1277 /* signal end of iteration */
1278 *idx = ULLONG_MAX;
1279 }
1280
1281 /**
1282 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1283 *
1284 * @idx: pointer to u64 loop variable
1285 * @nid: node selector, %NUMA_NO_NODE for all nodes
1286 * @flags: pick from blocks based on memory attributes
1287 * @type_a: pointer to memblock_type from where the range is taken
1288 * @type_b: pointer to memblock_type which excludes memory from being taken
1289 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1290 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1291 * @out_nid: ptr to int for nid of the range, can be %NULL
1292 *
1293 * Finds the next range from type_a which is not marked as unsuitable
1294 * in type_b.
1295 *
1296 * Reverse of __next_mem_range().
1297 */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1298 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1299 enum memblock_flags flags,
1300 struct memblock_type *type_a,
1301 struct memblock_type *type_b,
1302 phys_addr_t *out_start,
1303 phys_addr_t *out_end, int *out_nid)
1304 {
1305 int idx_a = *idx & 0xffffffff;
1306 int idx_b = *idx >> 32;
1307
1308 if (*idx == (u64)ULLONG_MAX) {
1309 idx_a = type_a->cnt - 1;
1310 if (type_b != NULL)
1311 idx_b = type_b->cnt;
1312 else
1313 idx_b = 0;
1314 }
1315
1316 for (; idx_a >= 0; idx_a--) {
1317 struct memblock_region *m = &type_a->regions[idx_a];
1318
1319 phys_addr_t m_start = m->base;
1320 phys_addr_t m_end = m->base + m->size;
1321 int m_nid = memblock_get_region_node(m);
1322
1323 if (should_skip_region(type_a, m, nid, flags))
1324 continue;
1325
1326 if (!type_b) {
1327 if (out_start)
1328 *out_start = m_start;
1329 if (out_end)
1330 *out_end = m_end;
1331 if (out_nid)
1332 *out_nid = m_nid;
1333 idx_a--;
1334 *idx = (u32)idx_a | (u64)idx_b << 32;
1335 return;
1336 }
1337
1338 /* scan areas before each reservation */
1339 for (; idx_b >= 0; idx_b--) {
1340 struct memblock_region *r;
1341 phys_addr_t r_start;
1342 phys_addr_t r_end;
1343
1344 r = &type_b->regions[idx_b];
1345 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1346 r_end = idx_b < type_b->cnt ?
1347 r->base : PHYS_ADDR_MAX;
1348 /*
1349 * if idx_b advanced past idx_a,
1350 * break out to advance idx_a
1351 */
1352
1353 if (r_end <= m_start)
1354 break;
1355 /* if the two regions intersect, we're done */
1356 if (m_end > r_start) {
1357 if (out_start)
1358 *out_start = max(m_start, r_start);
1359 if (out_end)
1360 *out_end = min(m_end, r_end);
1361 if (out_nid)
1362 *out_nid = m_nid;
1363 if (m_start >= r_start)
1364 idx_a--;
1365 else
1366 idx_b--;
1367 *idx = (u32)idx_a | (u64)idx_b << 32;
1368 return;
1369 }
1370 }
1371 }
1372 /* signal end of iteration */
1373 *idx = ULLONG_MAX;
1374 }
1375
1376 /*
1377 * Common iterator interface used to define for_each_mem_pfn_range().
1378 */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1379 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1380 unsigned long *out_start_pfn,
1381 unsigned long *out_end_pfn, int *out_nid)
1382 {
1383 struct memblock_type *type = &memblock.memory;
1384 struct memblock_region *r;
1385 int r_nid;
1386
1387 while (++*idx < type->cnt) {
1388 r = &type->regions[*idx];
1389 r_nid = memblock_get_region_node(r);
1390
1391 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1392 continue;
1393 if (!numa_valid_node(nid) || nid == r_nid)
1394 break;
1395 }
1396 if (*idx >= type->cnt) {
1397 *idx = -1;
1398 return;
1399 }
1400
1401 if (out_start_pfn)
1402 *out_start_pfn = PFN_UP(r->base);
1403 if (out_end_pfn)
1404 *out_end_pfn = PFN_DOWN(r->base + r->size);
1405 if (out_nid)
1406 *out_nid = r_nid;
1407 }
1408
1409 /**
1410 * memblock_set_node - set node ID on memblock regions
1411 * @base: base of area to set node ID for
1412 * @size: size of area to set node ID for
1413 * @type: memblock type to set node ID for
1414 * @nid: node ID to set
1415 *
1416 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1417 * Regions which cross the area boundaries are split as necessary.
1418 *
1419 * Return:
1420 * 0 on success, -errno on failure.
1421 */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1422 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1423 struct memblock_type *type, int nid)
1424 {
1425 #ifdef CONFIG_NUMA
1426 int start_rgn, end_rgn;
1427 int i, ret;
1428
1429 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1430 if (ret)
1431 return ret;
1432
1433 for (i = start_rgn; i < end_rgn; i++)
1434 memblock_set_region_node(&type->regions[i], nid);
1435
1436 memblock_merge_regions(type, start_rgn, end_rgn);
1437 #endif
1438 return 0;
1439 }
1440
1441 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1442 /**
1443 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1444 *
1445 * @idx: pointer to u64 loop variable
1446 * @zone: zone in which all of the memory blocks reside
1447 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1448 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1449 *
1450 * This function is meant to be a zone/pfn specific wrapper for the
1451 * for_each_mem_range type iterators. Specifically they are used in the
1452 * deferred memory init routines and as such we were duplicating much of
1453 * this logic throughout the code. So instead of having it in multiple
1454 * locations it seemed like it would make more sense to centralize this to
1455 * one new iterator that does everything they need.
1456 */
1457 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1458 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1459 unsigned long *out_spfn, unsigned long *out_epfn)
1460 {
1461 int zone_nid = zone_to_nid(zone);
1462 phys_addr_t spa, epa;
1463
1464 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1465 &memblock.memory, &memblock.reserved,
1466 &spa, &epa, NULL);
1467
1468 while (*idx != U64_MAX) {
1469 unsigned long epfn = PFN_DOWN(epa);
1470 unsigned long spfn = PFN_UP(spa);
1471
1472 /*
1473 * Verify the end is at least past the start of the zone and
1474 * that we have at least one PFN to initialize.
1475 */
1476 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1477 /* if we went too far just stop searching */
1478 if (zone_end_pfn(zone) <= spfn) {
1479 *idx = U64_MAX;
1480 break;
1481 }
1482
1483 if (out_spfn)
1484 *out_spfn = max(zone->zone_start_pfn, spfn);
1485 if (out_epfn)
1486 *out_epfn = min(zone_end_pfn(zone), epfn);
1487
1488 return;
1489 }
1490
1491 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1492 &memblock.memory, &memblock.reserved,
1493 &spa, &epa, NULL);
1494 }
1495
1496 /* signal end of iteration */
1497 if (out_spfn)
1498 *out_spfn = ULONG_MAX;
1499 if (out_epfn)
1500 *out_epfn = 0;
1501 }
1502
1503 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1504
1505 /**
1506 * memblock_alloc_range_nid - allocate boot memory block
1507 * @size: size of memory block to be allocated in bytes
1508 * @align: alignment of the region and block's size
1509 * @start: the lower bound of the memory region to allocate (phys address)
1510 * @end: the upper bound of the memory region to allocate (phys address)
1511 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1512 * @exact_nid: control the allocation fall back to other nodes
1513 *
1514 * The allocation is performed from memory region limited by
1515 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1516 *
1517 * If the specified node can not hold the requested memory and @exact_nid
1518 * is false, the allocation falls back to any node in the system.
1519 *
1520 * For systems with memory mirroring, the allocation is attempted first
1521 * from the regions with mirroring enabled and then retried from any
1522 * memory region.
1523 *
1524 * In addition, function using kmemleak_alloc_phys for allocated boot
1525 * memory block, it is never reported as leaks.
1526 *
1527 * Return:
1528 * Physical address of allocated memory block on success, %0 on failure.
1529 */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1530 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1531 phys_addr_t align, phys_addr_t start,
1532 phys_addr_t end, int nid,
1533 bool exact_nid)
1534 {
1535 enum memblock_flags flags = choose_memblock_flags();
1536 phys_addr_t found;
1537
1538 /*
1539 * Detect any accidental use of these APIs after slab is ready, as at
1540 * this moment memblock may be deinitialized already and its
1541 * internal data may be destroyed (after execution of memblock_free_all)
1542 */
1543 if (WARN_ON_ONCE(slab_is_available())) {
1544 void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid);
1545
1546 return vaddr ? virt_to_phys(vaddr) : 0;
1547 }
1548
1549 if (!align) {
1550 /* Can't use WARNs this early in boot on powerpc */
1551 dump_stack();
1552 align = SMP_CACHE_BYTES;
1553 }
1554
1555 again:
1556 found = memblock_find_in_range_node(size, align, start, end, nid,
1557 flags);
1558 if (found && !__memblock_reserve(found, size, nid, MEMBLOCK_RSRV_KERN))
1559 goto done;
1560
1561 if (numa_valid_node(nid) && !exact_nid) {
1562 found = memblock_find_in_range_node(size, align, start,
1563 end, NUMA_NO_NODE,
1564 flags);
1565 if (found && !memblock_reserve_kern(found, size))
1566 goto done;
1567 }
1568
1569 if (flags & MEMBLOCK_MIRROR) {
1570 flags &= ~MEMBLOCK_MIRROR;
1571 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1572 &size);
1573 goto again;
1574 }
1575
1576 return 0;
1577
1578 done:
1579 /*
1580 * Skip kmemleak for those places like kasan_init() and
1581 * early_pgtable_alloc() due to high volume.
1582 */
1583 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1584 /*
1585 * Memblock allocated blocks are never reported as
1586 * leaks. This is because many of these blocks are
1587 * only referred via the physical address which is
1588 * not looked up by kmemleak.
1589 */
1590 kmemleak_alloc_phys(found, size, 0);
1591
1592 /*
1593 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1594 * require memory to be accepted before it can be used by the
1595 * guest.
1596 *
1597 * Accept the memory of the allocated buffer.
1598 */
1599 accept_memory(found, size);
1600
1601 return found;
1602 }
1603
1604 /**
1605 * memblock_phys_alloc_range - allocate a memory block inside specified range
1606 * @size: size of memory block to be allocated in bytes
1607 * @align: alignment of the region and block's size
1608 * @start: the lower bound of the memory region to allocate (physical address)
1609 * @end: the upper bound of the memory region to allocate (physical address)
1610 *
1611 * Allocate @size bytes in the between @start and @end.
1612 *
1613 * Return: physical address of the allocated memory block on success,
1614 * %0 on failure.
1615 */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1616 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1617 phys_addr_t align,
1618 phys_addr_t start,
1619 phys_addr_t end)
1620 {
1621 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1622 __func__, (u64)size, (u64)align, &start, &end,
1623 (void *)_RET_IP_);
1624 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1625 false);
1626 }
1627
1628 /**
1629 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1630 * @size: size of memory block to be allocated in bytes
1631 * @align: alignment of the region and block's size
1632 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1633 *
1634 * Allocates memory block from the specified NUMA node. If the node
1635 * has no available memory, attempts to allocated from any node in the
1636 * system.
1637 *
1638 * Return: physical address of the allocated memory block on success,
1639 * %0 on failure.
1640 */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1641 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1642 {
1643 return memblock_alloc_range_nid(size, align, 0,
1644 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1645 }
1646
1647 /**
1648 * memblock_alloc_internal - allocate boot memory block
1649 * @size: size of memory block to be allocated in bytes
1650 * @align: alignment of the region and block's size
1651 * @min_addr: the lower bound of the memory region to allocate (phys address)
1652 * @max_addr: the upper bound of the memory region to allocate (phys address)
1653 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1654 * @exact_nid: control the allocation fall back to other nodes
1655 *
1656 * Allocates memory block using memblock_alloc_range_nid() and
1657 * converts the returned physical address to virtual.
1658 *
1659 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1660 * will fall back to memory below @min_addr. Other constraints, such
1661 * as node and mirrored memory will be handled again in
1662 * memblock_alloc_range_nid().
1663 *
1664 * Return:
1665 * Virtual address of allocated memory block on success, NULL on failure.
1666 */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1667 static void * __init memblock_alloc_internal(
1668 phys_addr_t size, phys_addr_t align,
1669 phys_addr_t min_addr, phys_addr_t max_addr,
1670 int nid, bool exact_nid)
1671 {
1672 phys_addr_t alloc;
1673
1674
1675 if (max_addr > memblock.current_limit)
1676 max_addr = memblock.current_limit;
1677
1678 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1679 exact_nid);
1680
1681 /* retry allocation without lower limit */
1682 if (!alloc && min_addr)
1683 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1684 exact_nid);
1685
1686 if (!alloc)
1687 return NULL;
1688
1689 return phys_to_virt(alloc);
1690 }
1691
1692 /**
1693 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1694 * without zeroing memory
1695 * @size: size of memory block to be allocated in bytes
1696 * @align: alignment of the region and block's size
1697 * @min_addr: the lower bound of the memory region from where the allocation
1698 * is preferred (phys address)
1699 * @max_addr: the upper bound of the memory region from where the allocation
1700 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1701 * allocate only from memory limited by memblock.current_limit value
1702 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1703 *
1704 * Public function, provides additional debug information (including caller
1705 * info), if enabled. Does not zero allocated memory.
1706 *
1707 * Return:
1708 * Virtual address of allocated memory block on success, NULL on failure.
1709 */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1710 void * __init memblock_alloc_exact_nid_raw(
1711 phys_addr_t size, phys_addr_t align,
1712 phys_addr_t min_addr, phys_addr_t max_addr,
1713 int nid)
1714 {
1715 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1716 __func__, (u64)size, (u64)align, nid, &min_addr,
1717 &max_addr, (void *)_RET_IP_);
1718
1719 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1720 true);
1721 }
1722
1723 /**
1724 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1725 * memory and without panicking
1726 * @size: size of memory block to be allocated in bytes
1727 * @align: alignment of the region and block's size
1728 * @min_addr: the lower bound of the memory region from where the allocation
1729 * is preferred (phys address)
1730 * @max_addr: the upper bound of the memory region from where the allocation
1731 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1732 * allocate only from memory limited by memblock.current_limit value
1733 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1734 *
1735 * Public function, provides additional debug information (including caller
1736 * info), if enabled. Does not zero allocated memory, does not panic if request
1737 * cannot be satisfied.
1738 *
1739 * Return:
1740 * Virtual address of allocated memory block on success, NULL on failure.
1741 */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1742 void * __init memblock_alloc_try_nid_raw(
1743 phys_addr_t size, phys_addr_t align,
1744 phys_addr_t min_addr, phys_addr_t max_addr,
1745 int nid)
1746 {
1747 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1748 __func__, (u64)size, (u64)align, nid, &min_addr,
1749 &max_addr, (void *)_RET_IP_);
1750
1751 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1752 false);
1753 }
1754
1755 /**
1756 * memblock_alloc_try_nid - allocate boot memory block
1757 * @size: size of memory block to be allocated in bytes
1758 * @align: alignment of the region and block's size
1759 * @min_addr: the lower bound of the memory region from where the allocation
1760 * is preferred (phys address)
1761 * @max_addr: the upper bound of the memory region from where the allocation
1762 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1763 * allocate only from memory limited by memblock.current_limit value
1764 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1765 *
1766 * Public function, provides additional debug information (including caller
1767 * info), if enabled. This function zeroes the allocated memory.
1768 *
1769 * Return:
1770 * Virtual address of allocated memory block on success, NULL on failure.
1771 */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1772 void * __init memblock_alloc_try_nid(
1773 phys_addr_t size, phys_addr_t align,
1774 phys_addr_t min_addr, phys_addr_t max_addr,
1775 int nid)
1776 {
1777 void *ptr;
1778
1779 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1780 __func__, (u64)size, (u64)align, nid, &min_addr,
1781 &max_addr, (void *)_RET_IP_);
1782 ptr = memblock_alloc_internal(size, align,
1783 min_addr, max_addr, nid, false);
1784 if (ptr)
1785 memset(ptr, 0, size);
1786
1787 return ptr;
1788 }
1789
1790 /**
1791 * __memblock_alloc_or_panic - Try to allocate memory and panic on failure
1792 * @size: size of memory block to be allocated in bytes
1793 * @align: alignment of the region and block's size
1794 * @func: caller func name
1795 *
1796 * This function attempts to allocate memory using memblock_alloc,
1797 * and in case of failure, it calls panic with the formatted message.
1798 * This function should not be used directly, please use the macro memblock_alloc_or_panic.
1799 */
__memblock_alloc_or_panic(phys_addr_t size,phys_addr_t align,const char * func)1800 void *__init __memblock_alloc_or_panic(phys_addr_t size, phys_addr_t align,
1801 const char *func)
1802 {
1803 void *addr = memblock_alloc(size, align);
1804
1805 if (unlikely(!addr))
1806 panic("%s: Failed to allocate %pap bytes\n", func, &size);
1807 return addr;
1808 }
1809
1810 /**
1811 * memblock_free_late - free pages directly to buddy allocator
1812 * @base: phys starting address of the boot memory block
1813 * @size: size of the boot memory block in bytes
1814 *
1815 * This is only useful when the memblock allocator has already been torn
1816 * down, but we are still initializing the system. Pages are released directly
1817 * to the buddy allocator.
1818 */
memblock_free_late(phys_addr_t base,phys_addr_t size)1819 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1820 {
1821 phys_addr_t cursor, end;
1822
1823 end = base + size - 1;
1824 memblock_dbg("%s: [%pa-%pa] %pS\n",
1825 __func__, &base, &end, (void *)_RET_IP_);
1826 kmemleak_free_part_phys(base, size);
1827 cursor = PFN_UP(base);
1828 end = PFN_DOWN(base + size);
1829
1830 for (; cursor < end; cursor++) {
1831 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1832 totalram_pages_inc();
1833 }
1834 }
1835
1836 /*
1837 * Remaining API functions
1838 */
1839
memblock_phys_mem_size(void)1840 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1841 {
1842 return memblock.memory.total_size;
1843 }
1844
memblock_reserved_size(void)1845 phys_addr_t __init_memblock memblock_reserved_size(void)
1846 {
1847 return memblock.reserved.total_size;
1848 }
1849
memblock_reserved_kern_size(phys_addr_t limit,int nid)1850 phys_addr_t __init_memblock memblock_reserved_kern_size(phys_addr_t limit, int nid)
1851 {
1852 struct memblock_region *r;
1853 phys_addr_t total = 0;
1854
1855 for_each_reserved_mem_region(r) {
1856 phys_addr_t size = r->size;
1857
1858 if (r->base > limit)
1859 break;
1860
1861 if (r->base + r->size > limit)
1862 size = limit - r->base;
1863
1864 if (nid == memblock_get_region_node(r) || !numa_valid_node(nid))
1865 if (r->flags & MEMBLOCK_RSRV_KERN)
1866 total += size;
1867 }
1868
1869 return total;
1870 }
1871
1872 /**
1873 * memblock_estimated_nr_free_pages - return estimated number of free pages
1874 * from memblock point of view
1875 *
1876 * During bootup, subsystems might need a rough estimate of the number of free
1877 * pages in the whole system, before precise numbers are available from the
1878 * buddy. Especially with CONFIG_DEFERRED_STRUCT_PAGE_INIT, the numbers
1879 * obtained from the buddy might be very imprecise during bootup.
1880 *
1881 * Return:
1882 * An estimated number of free pages from memblock point of view.
1883 */
memblock_estimated_nr_free_pages(void)1884 unsigned long __init memblock_estimated_nr_free_pages(void)
1885 {
1886 return PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size());
1887 }
1888
1889 /* lowest address */
memblock_start_of_DRAM(void)1890 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1891 {
1892 return memblock.memory.regions[0].base;
1893 }
1894
memblock_end_of_DRAM(void)1895 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1896 {
1897 int idx = memblock.memory.cnt - 1;
1898
1899 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1900 }
1901
__find_max_addr(phys_addr_t limit)1902 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1903 {
1904 phys_addr_t max_addr = PHYS_ADDR_MAX;
1905 struct memblock_region *r;
1906
1907 /*
1908 * translate the memory @limit size into the max address within one of
1909 * the memory memblock regions, if the @limit exceeds the total size
1910 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1911 */
1912 for_each_mem_region(r) {
1913 if (limit <= r->size) {
1914 max_addr = r->base + limit;
1915 break;
1916 }
1917 limit -= r->size;
1918 }
1919
1920 return max_addr;
1921 }
1922
memblock_enforce_memory_limit(phys_addr_t limit)1923 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1924 {
1925 phys_addr_t max_addr;
1926
1927 if (!limit)
1928 return;
1929
1930 max_addr = __find_max_addr(limit);
1931
1932 /* @limit exceeds the total size of the memory, do nothing */
1933 if (max_addr == PHYS_ADDR_MAX)
1934 return;
1935
1936 /* truncate both memory and reserved regions */
1937 memblock_remove_range(&memblock.memory, max_addr,
1938 PHYS_ADDR_MAX);
1939 memblock_remove_range(&memblock.reserved, max_addr,
1940 PHYS_ADDR_MAX);
1941 }
1942
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1943 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1944 {
1945 int start_rgn, end_rgn;
1946 int i, ret;
1947
1948 if (!size)
1949 return;
1950
1951 if (!memblock_memory->total_size) {
1952 pr_warn("%s: No memory registered yet\n", __func__);
1953 return;
1954 }
1955
1956 ret = memblock_isolate_range(&memblock.memory, base, size,
1957 &start_rgn, &end_rgn);
1958 if (ret)
1959 return;
1960
1961 /* remove all the MAP regions */
1962 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1963 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1964 memblock_remove_region(&memblock.memory, i);
1965
1966 for (i = start_rgn - 1; i >= 0; i--)
1967 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1968 memblock_remove_region(&memblock.memory, i);
1969
1970 /* truncate the reserved regions */
1971 memblock_remove_range(&memblock.reserved, 0, base);
1972 memblock_remove_range(&memblock.reserved,
1973 base + size, PHYS_ADDR_MAX);
1974 }
1975
memblock_mem_limit_remove_map(phys_addr_t limit)1976 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1977 {
1978 phys_addr_t max_addr;
1979
1980 if (!limit)
1981 return;
1982
1983 max_addr = __find_max_addr(limit);
1984
1985 /* @limit exceeds the total size of the memory, do nothing */
1986 if (max_addr == PHYS_ADDR_MAX)
1987 return;
1988
1989 memblock_cap_memory_range(0, max_addr);
1990 }
1991
memblock_search(struct memblock_type * type,phys_addr_t addr)1992 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1993 {
1994 unsigned int left = 0, right = type->cnt;
1995
1996 do {
1997 unsigned int mid = (right + left) / 2;
1998
1999 if (addr < type->regions[mid].base)
2000 right = mid;
2001 else if (addr >= (type->regions[mid].base +
2002 type->regions[mid].size))
2003 left = mid + 1;
2004 else
2005 return mid;
2006 } while (left < right);
2007 return -1;
2008 }
2009
memblock_is_reserved(phys_addr_t addr)2010 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
2011 {
2012 return memblock_search(&memblock.reserved, addr) != -1;
2013 }
2014
memblock_is_memory(phys_addr_t addr)2015 bool __init_memblock memblock_is_memory(phys_addr_t addr)
2016 {
2017 return memblock_search(&memblock.memory, addr) != -1;
2018 }
2019
memblock_is_map_memory(phys_addr_t addr)2020 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
2021 {
2022 int i = memblock_search(&memblock.memory, addr);
2023
2024 if (i == -1)
2025 return false;
2026 return !memblock_is_nomap(&memblock.memory.regions[i]);
2027 }
2028
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)2029 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
2030 unsigned long *start_pfn, unsigned long *end_pfn)
2031 {
2032 struct memblock_type *type = &memblock.memory;
2033 int mid = memblock_search(type, PFN_PHYS(pfn));
2034
2035 if (mid == -1)
2036 return NUMA_NO_NODE;
2037
2038 *start_pfn = PFN_DOWN(type->regions[mid].base);
2039 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
2040
2041 return memblock_get_region_node(&type->regions[mid]);
2042 }
2043
2044 /**
2045 * memblock_is_region_memory - check if a region is a subset of memory
2046 * @base: base of region to check
2047 * @size: size of region to check
2048 *
2049 * Check if the region [@base, @base + @size) is a subset of a memory block.
2050 *
2051 * Return:
2052 * 0 if false, non-zero if true
2053 */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)2054 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
2055 {
2056 int idx = memblock_search(&memblock.memory, base);
2057 phys_addr_t end = base + memblock_cap_size(base, &size);
2058
2059 if (idx == -1)
2060 return false;
2061 return (memblock.memory.regions[idx].base +
2062 memblock.memory.regions[idx].size) >= end;
2063 }
2064
2065 /**
2066 * memblock_is_region_reserved - check if a region intersects reserved memory
2067 * @base: base of region to check
2068 * @size: size of region to check
2069 *
2070 * Check if the region [@base, @base + @size) intersects a reserved
2071 * memory block.
2072 *
2073 * Return:
2074 * True if they intersect, false if not.
2075 */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)2076 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
2077 {
2078 return memblock_overlaps_region(&memblock.reserved, base, size);
2079 }
2080
memblock_trim_memory(phys_addr_t align)2081 void __init_memblock memblock_trim_memory(phys_addr_t align)
2082 {
2083 phys_addr_t start, end, orig_start, orig_end;
2084 struct memblock_region *r;
2085
2086 for_each_mem_region(r) {
2087 orig_start = r->base;
2088 orig_end = r->base + r->size;
2089 start = round_up(orig_start, align);
2090 end = round_down(orig_end, align);
2091
2092 if (start == orig_start && end == orig_end)
2093 continue;
2094
2095 if (start < end) {
2096 r->base = start;
2097 r->size = end - start;
2098 } else {
2099 memblock_remove_region(&memblock.memory,
2100 r - memblock.memory.regions);
2101 r--;
2102 }
2103 }
2104 }
2105
memblock_set_current_limit(phys_addr_t limit)2106 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
2107 {
2108 memblock.current_limit = limit;
2109 }
2110
memblock_get_current_limit(void)2111 phys_addr_t __init_memblock memblock_get_current_limit(void)
2112 {
2113 return memblock.current_limit;
2114 }
2115
memblock_dump(struct memblock_type * type)2116 static void __init_memblock memblock_dump(struct memblock_type *type)
2117 {
2118 phys_addr_t base, end, size;
2119 enum memblock_flags flags;
2120 int idx;
2121 struct memblock_region *rgn;
2122
2123 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
2124
2125 for_each_memblock_type(idx, type, rgn) {
2126 char nid_buf[32] = "";
2127
2128 base = rgn->base;
2129 size = rgn->size;
2130 end = base + size - 1;
2131 flags = rgn->flags;
2132 #ifdef CONFIG_NUMA
2133 if (numa_valid_node(memblock_get_region_node(rgn)))
2134 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
2135 memblock_get_region_node(rgn));
2136 #endif
2137 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
2138 type->name, idx, &base, &end, &size, nid_buf, flags);
2139 }
2140 }
2141
__memblock_dump_all(void)2142 static void __init_memblock __memblock_dump_all(void)
2143 {
2144 pr_info("MEMBLOCK configuration:\n");
2145 pr_info(" memory size = %pa reserved size = %pa\n",
2146 &memblock.memory.total_size,
2147 &memblock.reserved.total_size);
2148
2149 memblock_dump(&memblock.memory);
2150 memblock_dump(&memblock.reserved);
2151 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2152 memblock_dump(&physmem);
2153 #endif
2154 }
2155
memblock_dump_all(void)2156 void __init_memblock memblock_dump_all(void)
2157 {
2158 if (memblock_debug)
2159 __memblock_dump_all();
2160 }
2161
memblock_allow_resize(void)2162 void __init memblock_allow_resize(void)
2163 {
2164 memblock_can_resize = 1;
2165 }
2166
early_memblock(char * p)2167 static int __init early_memblock(char *p)
2168 {
2169 if (p && strstr(p, "debug"))
2170 memblock_debug = 1;
2171 return 0;
2172 }
2173 early_param("memblock", early_memblock);
2174
free_memmap(unsigned long start_pfn,unsigned long end_pfn)2175 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2176 {
2177 struct page *start_pg, *end_pg;
2178 phys_addr_t pg, pgend;
2179
2180 /*
2181 * Convert start_pfn/end_pfn to a struct page pointer.
2182 */
2183 start_pg = pfn_to_page(start_pfn - 1) + 1;
2184 end_pg = pfn_to_page(end_pfn - 1) + 1;
2185
2186 /*
2187 * Convert to physical addresses, and round start upwards and end
2188 * downwards.
2189 */
2190 pg = PAGE_ALIGN(__pa(start_pg));
2191 pgend = PAGE_ALIGN_DOWN(__pa(end_pg));
2192
2193 /*
2194 * If there are free pages between these, free the section of the
2195 * memmap array.
2196 */
2197 if (pg < pgend)
2198 memblock_phys_free(pg, pgend - pg);
2199 }
2200
2201 /*
2202 * The mem_map array can get very big. Free the unused area of the memory map.
2203 */
free_unused_memmap(void)2204 static void __init free_unused_memmap(void)
2205 {
2206 unsigned long start, end, prev_end = 0;
2207 int i;
2208
2209 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2210 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2211 return;
2212
2213 /*
2214 * This relies on each bank being in address order.
2215 * The banks are sorted previously in bootmem_init().
2216 */
2217 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2218 #ifdef CONFIG_SPARSEMEM
2219 /*
2220 * Take care not to free memmap entries that don't exist
2221 * due to SPARSEMEM sections which aren't present.
2222 */
2223 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2224 #endif
2225 /*
2226 * Align down here since many operations in VM subsystem
2227 * presume that there are no holes in the memory map inside
2228 * a pageblock
2229 */
2230 start = pageblock_start_pfn(start);
2231
2232 /*
2233 * If we had a previous bank, and there is a space
2234 * between the current bank and the previous, free it.
2235 */
2236 if (prev_end && prev_end < start)
2237 free_memmap(prev_end, start);
2238
2239 /*
2240 * Align up here since many operations in VM subsystem
2241 * presume that there are no holes in the memory map inside
2242 * a pageblock
2243 */
2244 prev_end = pageblock_align(end);
2245 }
2246
2247 #ifdef CONFIG_SPARSEMEM
2248 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2249 prev_end = pageblock_align(end);
2250 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2251 }
2252 #endif
2253 }
2254
__free_pages_memory(unsigned long start,unsigned long end)2255 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2256 {
2257 int order;
2258
2259 while (start < end) {
2260 /*
2261 * Free the pages in the largest chunks alignment allows.
2262 *
2263 * __ffs() behaviour is undefined for 0. start == 0 is
2264 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2265 * the case.
2266 */
2267 if (start)
2268 order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
2269 else
2270 order = MAX_PAGE_ORDER;
2271
2272 while (start + (1UL << order) > end)
2273 order--;
2274
2275 memblock_free_pages(pfn_to_page(start), start, order);
2276
2277 start += (1UL << order);
2278 }
2279 }
2280
__free_memory_core(phys_addr_t start,phys_addr_t end)2281 static unsigned long __init __free_memory_core(phys_addr_t start,
2282 phys_addr_t end)
2283 {
2284 unsigned long start_pfn = PFN_UP(start);
2285 unsigned long end_pfn = PFN_DOWN(end);
2286
2287 if (!IS_ENABLED(CONFIG_HIGHMEM) && end_pfn > max_low_pfn)
2288 end_pfn = max_low_pfn;
2289
2290 if (start_pfn >= end_pfn)
2291 return 0;
2292
2293 __free_pages_memory(start_pfn, end_pfn);
2294
2295 return end_pfn - start_pfn;
2296 }
2297
memmap_init_reserved_pages(void)2298 static void __init memmap_init_reserved_pages(void)
2299 {
2300 struct memblock_region *region;
2301 phys_addr_t start, end;
2302 int nid;
2303 unsigned long max_reserved;
2304
2305 /*
2306 * set nid on all reserved pages and also treat struct
2307 * pages for the NOMAP regions as PageReserved
2308 */
2309 repeat:
2310 max_reserved = memblock.reserved.max;
2311 for_each_mem_region(region) {
2312 nid = memblock_get_region_node(region);
2313 start = region->base;
2314 end = start + region->size;
2315
2316 if (memblock_is_nomap(region))
2317 reserve_bootmem_region(start, end, nid);
2318
2319 memblock_set_node(start, region->size, &memblock.reserved, nid);
2320 }
2321 /*
2322 * 'max' is changed means memblock.reserved has been doubled its
2323 * array, which may result a new reserved region before current
2324 * 'start'. Now we should repeat the procedure to set its node id.
2325 */
2326 if (max_reserved != memblock.reserved.max)
2327 goto repeat;
2328
2329 /*
2330 * initialize struct pages for reserved regions that don't have
2331 * the MEMBLOCK_RSRV_NOINIT flag set
2332 */
2333 for_each_reserved_mem_region(region) {
2334 if (!memblock_is_reserved_noinit(region)) {
2335 nid = memblock_get_region_node(region);
2336 start = region->base;
2337 end = start + region->size;
2338
2339 if (!numa_valid_node(nid))
2340 nid = early_pfn_to_nid(PFN_DOWN(start));
2341
2342 reserve_bootmem_region(start, end, nid);
2343 }
2344 }
2345 }
2346
free_low_memory_core_early(void)2347 static unsigned long __init free_low_memory_core_early(void)
2348 {
2349 unsigned long count = 0;
2350 phys_addr_t start, end;
2351 u64 i;
2352
2353 memblock_clear_hotplug(0, -1);
2354
2355 memmap_init_reserved_pages();
2356
2357 /*
2358 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2359 * because in some case like Node0 doesn't have RAM installed
2360 * low ram will be on Node1
2361 */
2362 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2363 NULL)
2364 count += __free_memory_core(start, end);
2365
2366 return count;
2367 }
2368
2369 static int reset_managed_pages_done __initdata;
2370
reset_node_managed_pages(pg_data_t * pgdat)2371 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2372 {
2373 struct zone *z;
2374
2375 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2376 atomic_long_set(&z->managed_pages, 0);
2377 }
2378
reset_all_zones_managed_pages(void)2379 void __init reset_all_zones_managed_pages(void)
2380 {
2381 struct pglist_data *pgdat;
2382
2383 if (reset_managed_pages_done)
2384 return;
2385
2386 for_each_online_pgdat(pgdat)
2387 reset_node_managed_pages(pgdat);
2388
2389 reset_managed_pages_done = 1;
2390 }
2391
2392 /**
2393 * memblock_free_all - release free pages to the buddy allocator
2394 */
memblock_free_all(void)2395 void __init memblock_free_all(void)
2396 {
2397 unsigned long pages;
2398
2399 free_unused_memmap();
2400 reset_all_zones_managed_pages();
2401
2402 memblock_clear_kho_scratch_only();
2403 pages = free_low_memory_core_early();
2404 totalram_pages_add(pages);
2405 }
2406
2407 /* Keep a table to reserve named memory */
2408 #define RESERVE_MEM_MAX_ENTRIES 8
2409 #define RESERVE_MEM_NAME_SIZE 16
2410 struct reserve_mem_table {
2411 char name[RESERVE_MEM_NAME_SIZE];
2412 phys_addr_t start;
2413 phys_addr_t size;
2414 };
2415 static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES];
2416 static int reserved_mem_count;
2417 static DEFINE_MUTEX(reserve_mem_lock);
2418
2419 /* Add wildcard region with a lookup name */
reserved_mem_add(phys_addr_t start,phys_addr_t size,const char * name)2420 static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size,
2421 const char *name)
2422 {
2423 struct reserve_mem_table *map;
2424
2425 map = &reserved_mem_table[reserved_mem_count++];
2426 map->start = start;
2427 map->size = size;
2428 strscpy(map->name, name);
2429 }
2430
reserve_mem_find_by_name_nolock(const char * name)2431 static struct reserve_mem_table *reserve_mem_find_by_name_nolock(const char *name)
2432 {
2433 struct reserve_mem_table *map;
2434 int i;
2435
2436 for (i = 0; i < reserved_mem_count; i++) {
2437 map = &reserved_mem_table[i];
2438 if (!map->size)
2439 continue;
2440 if (strcmp(name, map->name) == 0)
2441 return map;
2442 }
2443 return NULL;
2444 }
2445
2446 /**
2447 * reserve_mem_find_by_name - Find reserved memory region with a given name
2448 * @name: The name that is attached to a reserved memory region
2449 * @start: If found, holds the start address
2450 * @size: If found, holds the size of the address.
2451 *
2452 * @start and @size are only updated if @name is found.
2453 *
2454 * Returns: 1 if found or 0 if not found.
2455 */
reserve_mem_find_by_name(const char * name,phys_addr_t * start,phys_addr_t * size)2456 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size)
2457 {
2458 struct reserve_mem_table *map;
2459
2460 guard(mutex)(&reserve_mem_lock);
2461 map = reserve_mem_find_by_name_nolock(name);
2462 if (!map)
2463 return 0;
2464
2465 *start = map->start;
2466 *size = map->size;
2467 return 1;
2468 }
2469 EXPORT_SYMBOL_GPL(reserve_mem_find_by_name);
2470
2471 /**
2472 * reserve_mem_release_by_name - Release reserved memory region with a given name
2473 * @name: The name that is attatched to a reserved memory region
2474 *
2475 * Forcibly release the pages in the reserved memory region so that those memory
2476 * can be used as free memory. After released the reserved region size becomes 0.
2477 *
2478 * Returns: 1 if released or 0 if not found.
2479 */
reserve_mem_release_by_name(const char * name)2480 int reserve_mem_release_by_name(const char *name)
2481 {
2482 char buf[RESERVE_MEM_NAME_SIZE + 12];
2483 struct reserve_mem_table *map;
2484 void *start, *end;
2485
2486 guard(mutex)(&reserve_mem_lock);
2487 map = reserve_mem_find_by_name_nolock(name);
2488 if (!map)
2489 return 0;
2490
2491 start = phys_to_virt(map->start);
2492 end = start + map->size - 1;
2493 snprintf(buf, sizeof(buf), "reserve_mem:%s", name);
2494 free_reserved_area(start, end, 0, buf);
2495 map->size = 0;
2496
2497 return 1;
2498 }
2499
2500 #ifdef CONFIG_KEXEC_HANDOVER
2501 #define MEMBLOCK_KHO_FDT "memblock"
2502 #define MEMBLOCK_KHO_NODE_COMPATIBLE "memblock-v1"
2503 #define RESERVE_MEM_KHO_NODE_COMPATIBLE "reserve-mem-v1"
2504 static struct page *kho_fdt;
2505
reserve_mem_kho_finalize(struct kho_serialization * ser)2506 static int reserve_mem_kho_finalize(struct kho_serialization *ser)
2507 {
2508 int err = 0, i;
2509
2510 for (i = 0; i < reserved_mem_count; i++) {
2511 struct reserve_mem_table *map = &reserved_mem_table[i];
2512
2513 err |= kho_preserve_phys(map->start, map->size);
2514 }
2515
2516 err |= kho_preserve_folio(page_folio(kho_fdt));
2517 err |= kho_add_subtree(ser, MEMBLOCK_KHO_FDT, page_to_virt(kho_fdt));
2518
2519 return notifier_from_errno(err);
2520 }
2521
reserve_mem_kho_notifier(struct notifier_block * self,unsigned long cmd,void * v)2522 static int reserve_mem_kho_notifier(struct notifier_block *self,
2523 unsigned long cmd, void *v)
2524 {
2525 switch (cmd) {
2526 case KEXEC_KHO_FINALIZE:
2527 return reserve_mem_kho_finalize((struct kho_serialization *)v);
2528 case KEXEC_KHO_ABORT:
2529 return NOTIFY_DONE;
2530 default:
2531 return NOTIFY_BAD;
2532 }
2533 }
2534
2535 static struct notifier_block reserve_mem_kho_nb = {
2536 .notifier_call = reserve_mem_kho_notifier,
2537 };
2538
prepare_kho_fdt(void)2539 static int __init prepare_kho_fdt(void)
2540 {
2541 int err = 0, i;
2542 void *fdt;
2543
2544 kho_fdt = alloc_page(GFP_KERNEL);
2545 if (!kho_fdt)
2546 return -ENOMEM;
2547
2548 fdt = page_to_virt(kho_fdt);
2549
2550 err |= fdt_create(fdt, PAGE_SIZE);
2551 err |= fdt_finish_reservemap(fdt);
2552
2553 err |= fdt_begin_node(fdt, "");
2554 err |= fdt_property_string(fdt, "compatible", MEMBLOCK_KHO_NODE_COMPATIBLE);
2555 for (i = 0; i < reserved_mem_count; i++) {
2556 struct reserve_mem_table *map = &reserved_mem_table[i];
2557
2558 err |= fdt_begin_node(fdt, map->name);
2559 err |= fdt_property_string(fdt, "compatible", RESERVE_MEM_KHO_NODE_COMPATIBLE);
2560 err |= fdt_property(fdt, "start", &map->start, sizeof(map->start));
2561 err |= fdt_property(fdt, "size", &map->size, sizeof(map->size));
2562 err |= fdt_end_node(fdt);
2563 }
2564 err |= fdt_end_node(fdt);
2565
2566 err |= fdt_finish(fdt);
2567
2568 if (err) {
2569 pr_err("failed to prepare memblock FDT for KHO: %d\n", err);
2570 put_page(kho_fdt);
2571 kho_fdt = NULL;
2572 }
2573
2574 return err;
2575 }
2576
reserve_mem_init(void)2577 static int __init reserve_mem_init(void)
2578 {
2579 int err;
2580
2581 if (!kho_is_enabled() || !reserved_mem_count)
2582 return 0;
2583
2584 err = prepare_kho_fdt();
2585 if (err)
2586 return err;
2587
2588 err = register_kho_notifier(&reserve_mem_kho_nb);
2589 if (err) {
2590 put_page(kho_fdt);
2591 kho_fdt = NULL;
2592 }
2593
2594 return err;
2595 }
2596 late_initcall(reserve_mem_init);
2597
reserve_mem_kho_retrieve_fdt(void)2598 static void *__init reserve_mem_kho_retrieve_fdt(void)
2599 {
2600 phys_addr_t fdt_phys;
2601 static void *fdt;
2602 int err;
2603
2604 if (fdt)
2605 return fdt;
2606
2607 err = kho_retrieve_subtree(MEMBLOCK_KHO_FDT, &fdt_phys);
2608 if (err) {
2609 if (err != -ENOENT)
2610 pr_warn("failed to retrieve FDT '%s' from KHO: %d\n",
2611 MEMBLOCK_KHO_FDT, err);
2612 return NULL;
2613 }
2614
2615 fdt = phys_to_virt(fdt_phys);
2616
2617 err = fdt_node_check_compatible(fdt, 0, MEMBLOCK_KHO_NODE_COMPATIBLE);
2618 if (err) {
2619 pr_warn("FDT '%s' is incompatible with '%s': %d\n",
2620 MEMBLOCK_KHO_FDT, MEMBLOCK_KHO_NODE_COMPATIBLE, err);
2621 fdt = NULL;
2622 }
2623
2624 return fdt;
2625 }
2626
reserve_mem_kho_revive(const char * name,phys_addr_t size,phys_addr_t align)2627 static bool __init reserve_mem_kho_revive(const char *name, phys_addr_t size,
2628 phys_addr_t align)
2629 {
2630 int err, len_start, len_size, offset;
2631 const phys_addr_t *p_start, *p_size;
2632 const void *fdt;
2633
2634 fdt = reserve_mem_kho_retrieve_fdt();
2635 if (!fdt)
2636 return false;
2637
2638 offset = fdt_subnode_offset(fdt, 0, name);
2639 if (offset < 0) {
2640 pr_warn("FDT '%s' has no child '%s': %d\n",
2641 MEMBLOCK_KHO_FDT, name, offset);
2642 return false;
2643 }
2644 err = fdt_node_check_compatible(fdt, offset, RESERVE_MEM_KHO_NODE_COMPATIBLE);
2645 if (err) {
2646 pr_warn("Node '%s' is incompatible with '%s': %d\n",
2647 name, RESERVE_MEM_KHO_NODE_COMPATIBLE, err);
2648 return false;
2649 }
2650
2651 p_start = fdt_getprop(fdt, offset, "start", &len_start);
2652 p_size = fdt_getprop(fdt, offset, "size", &len_size);
2653 if (!p_start || len_start != sizeof(*p_start) || !p_size ||
2654 len_size != sizeof(*p_size)) {
2655 return false;
2656 }
2657
2658 if (*p_start & (align - 1)) {
2659 pr_warn("KHO reserve-mem '%s' has wrong alignment (0x%lx, 0x%lx)\n",
2660 name, (long)align, (long)*p_start);
2661 return false;
2662 }
2663
2664 if (*p_size != size) {
2665 pr_warn("KHO reserve-mem '%s' has wrong size (0x%lx != 0x%lx)\n",
2666 name, (long)*p_size, (long)size);
2667 return false;
2668 }
2669
2670 reserved_mem_add(*p_start, size, name);
2671 pr_info("Revived memory reservation '%s' from KHO\n", name);
2672
2673 return true;
2674 }
2675 #else
reserve_mem_kho_revive(const char * name,phys_addr_t size,phys_addr_t align)2676 static bool __init reserve_mem_kho_revive(const char *name, phys_addr_t size,
2677 phys_addr_t align)
2678 {
2679 return false;
2680 }
2681 #endif /* CONFIG_KEXEC_HANDOVER */
2682
2683 /*
2684 * Parse reserve_mem=nn:align:name
2685 */
reserve_mem(char * p)2686 static int __init reserve_mem(char *p)
2687 {
2688 phys_addr_t start, size, align, tmp;
2689 char *name;
2690 char *oldp;
2691 int len;
2692
2693 if (!p)
2694 return -EINVAL;
2695
2696 /* Check if there's room for more reserved memory */
2697 if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES)
2698 return -EBUSY;
2699
2700 oldp = p;
2701 size = memparse(p, &p);
2702 if (!size || p == oldp)
2703 return -EINVAL;
2704
2705 if (*p != ':')
2706 return -EINVAL;
2707
2708 align = memparse(p+1, &p);
2709 if (*p != ':')
2710 return -EINVAL;
2711
2712 /*
2713 * memblock_phys_alloc() doesn't like a zero size align,
2714 * but it is OK for this command to have it.
2715 */
2716 if (align < SMP_CACHE_BYTES)
2717 align = SMP_CACHE_BYTES;
2718
2719 name = p + 1;
2720 len = strlen(name);
2721
2722 /* name needs to have length but not too big */
2723 if (!len || len >= RESERVE_MEM_NAME_SIZE)
2724 return -EINVAL;
2725
2726 /* Make sure that name has text */
2727 for (p = name; *p; p++) {
2728 if (!isspace(*p))
2729 break;
2730 }
2731 if (!*p)
2732 return -EINVAL;
2733
2734 /* Make sure the name is not already used */
2735 if (reserve_mem_find_by_name(name, &start, &tmp))
2736 return -EBUSY;
2737
2738 /* Pick previous allocations up from KHO if available */
2739 if (reserve_mem_kho_revive(name, size, align))
2740 return 1;
2741
2742 /* TODO: Allocation must be outside of scratch region */
2743 start = memblock_phys_alloc(size, align);
2744 if (!start)
2745 return -ENOMEM;
2746
2747 reserved_mem_add(start, size, name);
2748
2749 return 1;
2750 }
2751 __setup("reserve_mem=", reserve_mem);
2752
2753 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2754 static const char * const flagname[] = {
2755 [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2756 [ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2757 [ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2758 [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2759 [ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
2760 [ilog2(MEMBLOCK_RSRV_KERN)] = "RSV_KERN",
2761 [ilog2(MEMBLOCK_KHO_SCRATCH)] = "KHO_SCRATCH",
2762 };
2763
memblock_debug_show(struct seq_file * m,void * private)2764 static int memblock_debug_show(struct seq_file *m, void *private)
2765 {
2766 struct memblock_type *type = m->private;
2767 struct memblock_region *reg;
2768 int i, j, nid;
2769 unsigned int count = ARRAY_SIZE(flagname);
2770 phys_addr_t end;
2771
2772 for (i = 0; i < type->cnt; i++) {
2773 reg = &type->regions[i];
2774 end = reg->base + reg->size - 1;
2775 nid = memblock_get_region_node(reg);
2776
2777 seq_printf(m, "%4d: ", i);
2778 seq_printf(m, "%pa..%pa ", ®->base, &end);
2779 if (numa_valid_node(nid))
2780 seq_printf(m, "%4d ", nid);
2781 else
2782 seq_printf(m, "%4c ", 'x');
2783 if (reg->flags) {
2784 for (j = 0; j < count; j++) {
2785 if (reg->flags & (1U << j)) {
2786 seq_printf(m, "%s\n", flagname[j]);
2787 break;
2788 }
2789 }
2790 if (j == count)
2791 seq_printf(m, "%s\n", "UNKNOWN");
2792 } else {
2793 seq_printf(m, "%s\n", "NONE");
2794 }
2795 }
2796 return 0;
2797 }
2798 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2799
memblock_init_debugfs(void)2800 static int __init memblock_init_debugfs(void)
2801 {
2802 struct dentry *root = debugfs_create_dir("memblock", NULL);
2803
2804 debugfs_create_file("memory", 0444, root,
2805 &memblock.memory, &memblock_debug_fops);
2806 debugfs_create_file("reserved", 0444, root,
2807 &memblock.reserved, &memblock_debug_fops);
2808 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2809 debugfs_create_file("physmem", 0444, root, &physmem,
2810 &memblock_debug_fops);
2811 #endif
2812
2813 return 0;
2814 }
2815 __initcall(memblock_init_debugfs);
2816
2817 #endif /* CONFIG_DEBUG_FS */
2818