xref: /linux/mm/memblock.c (revision 00c010e130e58301db2ea0cec1eadc931e1cb8cf)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 #include <linux/mutex.h>
20 
21 #ifdef CONFIG_KEXEC_HANDOVER
22 #include <linux/libfdt.h>
23 #include <linux/kexec_handover.h>
24 #endif /* CONFIG_KEXEC_HANDOVER */
25 
26 #include <asm/sections.h>
27 #include <linux/io.h>
28 
29 #include "internal.h"
30 
31 #define INIT_MEMBLOCK_REGIONS			128
32 #define INIT_PHYSMEM_REGIONS			4
33 
34 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
35 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
36 #endif
37 
38 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
39 #define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
40 #endif
41 
42 /**
43  * DOC: memblock overview
44  *
45  * Memblock is a method of managing memory regions during the early
46  * boot period when the usual kernel memory allocators are not up and
47  * running.
48  *
49  * Memblock views the system memory as collections of contiguous
50  * regions. There are several types of these collections:
51  *
52  * * ``memory`` - describes the physical memory available to the
53  *   kernel; this may differ from the actual physical memory installed
54  *   in the system, for instance when the memory is restricted with
55  *   ``mem=`` command line parameter
56  * * ``reserved`` - describes the regions that were allocated
57  * * ``physmem`` - describes the actual physical memory available during
58  *   boot regardless of the possible restrictions and memory hot(un)plug;
59  *   the ``physmem`` type is only available on some architectures.
60  *
61  * Each region is represented by struct memblock_region that
62  * defines the region extents, its attributes and NUMA node id on NUMA
63  * systems. Every memory type is described by the struct memblock_type
64  * which contains an array of memory regions along with
65  * the allocator metadata. The "memory" and "reserved" types are nicely
66  * wrapped with struct memblock. This structure is statically
67  * initialized at build time. The region arrays are initially sized to
68  * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
69  * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
70  * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
71  * The memblock_allow_resize() enables automatic resizing of the region
72  * arrays during addition of new regions. This feature should be used
73  * with care so that memory allocated for the region array will not
74  * overlap with areas that should be reserved, for example initrd.
75  *
76  * The early architecture setup should tell memblock what the physical
77  * memory layout is by using memblock_add() or memblock_add_node()
78  * functions. The first function does not assign the region to a NUMA
79  * node and it is appropriate for UMA systems. Yet, it is possible to
80  * use it on NUMA systems as well and assign the region to a NUMA node
81  * later in the setup process using memblock_set_node(). The
82  * memblock_add_node() performs such an assignment directly.
83  *
84  * Once memblock is setup the memory can be allocated using one of the
85  * API variants:
86  *
87  * * memblock_phys_alloc*() - these functions return the **physical**
88  *   address of the allocated memory
89  * * memblock_alloc*() - these functions return the **virtual** address
90  *   of the allocated memory.
91  *
92  * Note, that both API variants use implicit assumptions about allowed
93  * memory ranges and the fallback methods. Consult the documentation
94  * of memblock_alloc_internal() and memblock_alloc_range_nid()
95  * functions for more elaborate description.
96  *
97  * As the system boot progresses, the architecture specific mem_init()
98  * function frees all the memory to the buddy page allocator.
99  *
100  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
101  * memblock data structures (except "physmem") will be discarded after the
102  * system initialization completes.
103  */
104 
105 #ifndef CONFIG_NUMA
106 struct pglist_data __refdata contig_page_data;
107 EXPORT_SYMBOL(contig_page_data);
108 #endif
109 
110 unsigned long max_low_pfn;
111 unsigned long min_low_pfn;
112 unsigned long max_pfn;
113 unsigned long long max_possible_pfn;
114 
115 #ifdef CONFIG_MEMBLOCK_KHO_SCRATCH
116 /* When set to true, only allocate from MEMBLOCK_KHO_SCRATCH ranges */
117 static bool kho_scratch_only;
118 #else
119 #define kho_scratch_only false
120 #endif
121 
122 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
123 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
124 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
125 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
126 #endif
127 
128 struct memblock memblock __initdata_memblock = {
129 	.memory.regions		= memblock_memory_init_regions,
130 	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
131 	.memory.name		= "memory",
132 
133 	.reserved.regions	= memblock_reserved_init_regions,
134 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
135 	.reserved.name		= "reserved",
136 
137 	.bottom_up		= false,
138 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
139 };
140 
141 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
142 struct memblock_type physmem = {
143 	.regions		= memblock_physmem_init_regions,
144 	.max			= INIT_PHYSMEM_REGIONS,
145 	.name			= "physmem",
146 };
147 #endif
148 
149 /*
150  * keep a pointer to &memblock.memory in the text section to use it in
151  * __next_mem_range() and its helpers.
152  *  For architectures that do not keep memblock data after init, this
153  * pointer will be reset to NULL at memblock_discard()
154  */
155 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
156 
157 #define for_each_memblock_type(i, memblock_type, rgn)			\
158 	for (i = 0, rgn = &memblock_type->regions[0];			\
159 	     i < memblock_type->cnt;					\
160 	     i++, rgn = &memblock_type->regions[i])
161 
162 #define memblock_dbg(fmt, ...)						\
163 	do {								\
164 		if (memblock_debug)					\
165 			pr_info(fmt, ##__VA_ARGS__);			\
166 	} while (0)
167 
168 static int memblock_debug __initdata_memblock;
169 static bool system_has_some_mirror __initdata_memblock;
170 static int memblock_can_resize __initdata_memblock;
171 static int memblock_memory_in_slab __initdata_memblock;
172 static int memblock_reserved_in_slab __initdata_memblock;
173 
memblock_has_mirror(void)174 bool __init_memblock memblock_has_mirror(void)
175 {
176 	return system_has_some_mirror;
177 }
178 
choose_memblock_flags(void)179 static enum memblock_flags __init_memblock choose_memblock_flags(void)
180 {
181 	/* skip non-scratch memory for kho early boot allocations */
182 	if (kho_scratch_only)
183 		return MEMBLOCK_KHO_SCRATCH;
184 
185 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
186 }
187 
188 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)189 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
190 {
191 	return *size = min(*size, PHYS_ADDR_MAX - base);
192 }
193 
194 /*
195  * Address comparison utilities
196  */
197 unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)198 memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
199 		       phys_addr_t size2)
200 {
201 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
202 }
203 
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)204 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
205 					phys_addr_t base, phys_addr_t size)
206 {
207 	unsigned long i;
208 
209 	memblock_cap_size(base, &size);
210 
211 	for (i = 0; i < type->cnt; i++)
212 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
213 					   type->regions[i].size))
214 			return true;
215 	return false;
216 }
217 
218 /**
219  * __memblock_find_range_bottom_up - find free area utility in bottom-up
220  * @start: start of candidate range
221  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
222  *       %MEMBLOCK_ALLOC_ACCESSIBLE
223  * @size: size of free area to find
224  * @align: alignment of free area to find
225  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
226  * @flags: pick from blocks based on memory attributes
227  *
228  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
229  *
230  * Return:
231  * Found address on success, 0 on failure.
232  */
233 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)234 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
235 				phys_addr_t size, phys_addr_t align, int nid,
236 				enum memblock_flags flags)
237 {
238 	phys_addr_t this_start, this_end, cand;
239 	u64 i;
240 
241 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
242 		this_start = clamp(this_start, start, end);
243 		this_end = clamp(this_end, start, end);
244 
245 		cand = round_up(this_start, align);
246 		if (cand < this_end && this_end - cand >= size)
247 			return cand;
248 	}
249 
250 	return 0;
251 }
252 
253 /**
254  * __memblock_find_range_top_down - find free area utility, in top-down
255  * @start: start of candidate range
256  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
257  *       %MEMBLOCK_ALLOC_ACCESSIBLE
258  * @size: size of free area to find
259  * @align: alignment of free area to find
260  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
261  * @flags: pick from blocks based on memory attributes
262  *
263  * Utility called from memblock_find_in_range_node(), find free area top-down.
264  *
265  * Return:
266  * Found address on success, 0 on failure.
267  */
268 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)269 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
270 			       phys_addr_t size, phys_addr_t align, int nid,
271 			       enum memblock_flags flags)
272 {
273 	phys_addr_t this_start, this_end, cand;
274 	u64 i;
275 
276 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
277 					NULL) {
278 		this_start = clamp(this_start, start, end);
279 		this_end = clamp(this_end, start, end);
280 
281 		if (this_end < size)
282 			continue;
283 
284 		cand = round_down(this_end - size, align);
285 		if (cand >= this_start)
286 			return cand;
287 	}
288 
289 	return 0;
290 }
291 
292 /**
293  * memblock_find_in_range_node - find free area in given range and node
294  * @size: size of free area to find
295  * @align: alignment of free area to find
296  * @start: start of candidate range
297  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
298  *       %MEMBLOCK_ALLOC_ACCESSIBLE
299  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
300  * @flags: pick from blocks based on memory attributes
301  *
302  * Find @size free area aligned to @align in the specified range and node.
303  *
304  * Return:
305  * Found address on success, 0 on failure.
306  */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)307 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
308 					phys_addr_t align, phys_addr_t start,
309 					phys_addr_t end, int nid,
310 					enum memblock_flags flags)
311 {
312 	/* pump up @end */
313 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
314 	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
315 		end = memblock.current_limit;
316 
317 	/* avoid allocating the first page */
318 	start = max_t(phys_addr_t, start, PAGE_SIZE);
319 	end = max(start, end);
320 
321 	if (memblock_bottom_up())
322 		return __memblock_find_range_bottom_up(start, end, size, align,
323 						       nid, flags);
324 	else
325 		return __memblock_find_range_top_down(start, end, size, align,
326 						      nid, flags);
327 }
328 
329 /**
330  * memblock_find_in_range - find free area in given range
331  * @start: start of candidate range
332  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
333  *       %MEMBLOCK_ALLOC_ACCESSIBLE
334  * @size: size of free area to find
335  * @align: alignment of free area to find
336  *
337  * Find @size free area aligned to @align in the specified range.
338  *
339  * Return:
340  * Found address on success, 0 on failure.
341  */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)342 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
343 					phys_addr_t end, phys_addr_t size,
344 					phys_addr_t align)
345 {
346 	phys_addr_t ret;
347 	enum memblock_flags flags = choose_memblock_flags();
348 
349 again:
350 	ret = memblock_find_in_range_node(size, align, start, end,
351 					    NUMA_NO_NODE, flags);
352 
353 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
354 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
355 			&size);
356 		flags &= ~MEMBLOCK_MIRROR;
357 		goto again;
358 	}
359 
360 	return ret;
361 }
362 
memblock_remove_region(struct memblock_type * type,unsigned long r)363 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
364 {
365 	type->total_size -= type->regions[r].size;
366 	memmove(&type->regions[r], &type->regions[r + 1],
367 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
368 	type->cnt--;
369 
370 	/* Special case for empty arrays */
371 	if (type->cnt == 0) {
372 		WARN_ON(type->total_size != 0);
373 		type->regions[0].base = 0;
374 		type->regions[0].size = 0;
375 		type->regions[0].flags = 0;
376 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
377 	}
378 }
379 
380 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
381 /**
382  * memblock_discard - discard memory and reserved arrays if they were allocated
383  */
memblock_discard(void)384 void __init memblock_discard(void)
385 {
386 	phys_addr_t addr, size;
387 
388 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
389 		addr = __pa(memblock.reserved.regions);
390 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
391 				  memblock.reserved.max);
392 		if (memblock_reserved_in_slab)
393 			kfree(memblock.reserved.regions);
394 		else
395 			memblock_free_late(addr, size);
396 	}
397 
398 	if (memblock.memory.regions != memblock_memory_init_regions) {
399 		addr = __pa(memblock.memory.regions);
400 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
401 				  memblock.memory.max);
402 		if (memblock_memory_in_slab)
403 			kfree(memblock.memory.regions);
404 		else
405 			memblock_free_late(addr, size);
406 	}
407 
408 	memblock_memory = NULL;
409 }
410 #endif
411 
412 /**
413  * memblock_double_array - double the size of the memblock regions array
414  * @type: memblock type of the regions array being doubled
415  * @new_area_start: starting address of memory range to avoid overlap with
416  * @new_area_size: size of memory range to avoid overlap with
417  *
418  * Double the size of the @type regions array. If memblock is being used to
419  * allocate memory for a new reserved regions array and there is a previously
420  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
421  * waiting to be reserved, ensure the memory used by the new array does
422  * not overlap.
423  *
424  * Return:
425  * 0 on success, -1 on failure.
426  */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)427 static int __init_memblock memblock_double_array(struct memblock_type *type,
428 						phys_addr_t new_area_start,
429 						phys_addr_t new_area_size)
430 {
431 	struct memblock_region *new_array, *old_array;
432 	phys_addr_t old_alloc_size, new_alloc_size;
433 	phys_addr_t old_size, new_size, addr, new_end;
434 	int use_slab = slab_is_available();
435 	int *in_slab;
436 
437 	/* We don't allow resizing until we know about the reserved regions
438 	 * of memory that aren't suitable for allocation
439 	 */
440 	if (!memblock_can_resize)
441 		panic("memblock: cannot resize %s array\n", type->name);
442 
443 	/* Calculate new doubled size */
444 	old_size = type->max * sizeof(struct memblock_region);
445 	new_size = old_size << 1;
446 	/*
447 	 * We need to allocated new one align to PAGE_SIZE,
448 	 *   so we can free them completely later.
449 	 */
450 	old_alloc_size = PAGE_ALIGN(old_size);
451 	new_alloc_size = PAGE_ALIGN(new_size);
452 
453 	/* Retrieve the slab flag */
454 	if (type == &memblock.memory)
455 		in_slab = &memblock_memory_in_slab;
456 	else
457 		in_slab = &memblock_reserved_in_slab;
458 
459 	/* Try to find some space for it */
460 	if (use_slab) {
461 		new_array = kmalloc(new_size, GFP_KERNEL);
462 		addr = new_array ? __pa(new_array) : 0;
463 	} else {
464 		/* only exclude range when trying to double reserved.regions */
465 		if (type != &memblock.reserved)
466 			new_area_start = new_area_size = 0;
467 
468 		addr = memblock_find_in_range(new_area_start + new_area_size,
469 						memblock.current_limit,
470 						new_alloc_size, PAGE_SIZE);
471 		if (!addr && new_area_size)
472 			addr = memblock_find_in_range(0,
473 				min(new_area_start, memblock.current_limit),
474 				new_alloc_size, PAGE_SIZE);
475 
476 		if (addr) {
477 			/* The memory may not have been accepted, yet. */
478 			accept_memory(addr, new_alloc_size);
479 
480 			new_array = __va(addr);
481 		} else {
482 			new_array = NULL;
483 		}
484 	}
485 	if (!addr) {
486 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
487 		       type->name, type->max, type->max * 2);
488 		return -1;
489 	}
490 
491 	new_end = addr + new_size - 1;
492 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
493 			type->name, type->max * 2, &addr, &new_end);
494 
495 	/*
496 	 * Found space, we now need to move the array over before we add the
497 	 * reserved region since it may be our reserved array itself that is
498 	 * full.
499 	 */
500 	memcpy(new_array, type->regions, old_size);
501 	memset(new_array + type->max, 0, old_size);
502 	old_array = type->regions;
503 	type->regions = new_array;
504 	type->max <<= 1;
505 
506 	/* Free old array. We needn't free it if the array is the static one */
507 	if (*in_slab)
508 		kfree(old_array);
509 	else if (old_array != memblock_memory_init_regions &&
510 		 old_array != memblock_reserved_init_regions)
511 		memblock_free(old_array, old_alloc_size);
512 
513 	/*
514 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
515 	 * needn't do it
516 	 */
517 	if (!use_slab)
518 		BUG_ON(memblock_reserve_kern(addr, new_alloc_size));
519 
520 	/* Update slab flag */
521 	*in_slab = use_slab;
522 
523 	return 0;
524 }
525 
526 /**
527  * memblock_merge_regions - merge neighboring compatible regions
528  * @type: memblock type to scan
529  * @start_rgn: start scanning from (@start_rgn - 1)
530  * @end_rgn: end scanning at (@end_rgn - 1)
531  * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
532  */
memblock_merge_regions(struct memblock_type * type,unsigned long start_rgn,unsigned long end_rgn)533 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
534 						   unsigned long start_rgn,
535 						   unsigned long end_rgn)
536 {
537 	int i = 0;
538 	if (start_rgn)
539 		i = start_rgn - 1;
540 	end_rgn = min(end_rgn, type->cnt - 1);
541 	while (i < end_rgn) {
542 		struct memblock_region *this = &type->regions[i];
543 		struct memblock_region *next = &type->regions[i + 1];
544 
545 		if (this->base + this->size != next->base ||
546 		    memblock_get_region_node(this) !=
547 		    memblock_get_region_node(next) ||
548 		    this->flags != next->flags) {
549 			BUG_ON(this->base + this->size > next->base);
550 			i++;
551 			continue;
552 		}
553 
554 		this->size += next->size;
555 		/* move forward from next + 1, index of which is i + 2 */
556 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
557 		type->cnt--;
558 		end_rgn--;
559 	}
560 }
561 
562 /**
563  * memblock_insert_region - insert new memblock region
564  * @type:	memblock type to insert into
565  * @idx:	index for the insertion point
566  * @base:	base address of the new region
567  * @size:	size of the new region
568  * @nid:	node id of the new region
569  * @flags:	flags of the new region
570  *
571  * Insert new memblock region [@base, @base + @size) into @type at @idx.
572  * @type must already have extra room to accommodate the new region.
573  */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)574 static void __init_memblock memblock_insert_region(struct memblock_type *type,
575 						   int idx, phys_addr_t base,
576 						   phys_addr_t size,
577 						   int nid,
578 						   enum memblock_flags flags)
579 {
580 	struct memblock_region *rgn = &type->regions[idx];
581 
582 	BUG_ON(type->cnt >= type->max);
583 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
584 	rgn->base = base;
585 	rgn->size = size;
586 	rgn->flags = flags;
587 	memblock_set_region_node(rgn, nid);
588 	type->cnt++;
589 	type->total_size += size;
590 }
591 
592 /**
593  * memblock_add_range - add new memblock region
594  * @type: memblock type to add new region into
595  * @base: base address of the new region
596  * @size: size of the new region
597  * @nid: nid of the new region
598  * @flags: flags of the new region
599  *
600  * Add new memblock region [@base, @base + @size) into @type.  The new region
601  * is allowed to overlap with existing ones - overlaps don't affect already
602  * existing regions.  @type is guaranteed to be minimal (all neighbouring
603  * compatible regions are merged) after the addition.
604  *
605  * Return:
606  * 0 on success, -errno on failure.
607  */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)608 static int __init_memblock memblock_add_range(struct memblock_type *type,
609 				phys_addr_t base, phys_addr_t size,
610 				int nid, enum memblock_flags flags)
611 {
612 	bool insert = false;
613 	phys_addr_t obase = base;
614 	phys_addr_t end = base + memblock_cap_size(base, &size);
615 	int idx, nr_new, start_rgn = -1, end_rgn;
616 	struct memblock_region *rgn;
617 
618 	if (!size)
619 		return 0;
620 
621 	/* special case for empty array */
622 	if (type->regions[0].size == 0) {
623 		WARN_ON(type->cnt != 0 || type->total_size);
624 		type->regions[0].base = base;
625 		type->regions[0].size = size;
626 		type->regions[0].flags = flags;
627 		memblock_set_region_node(&type->regions[0], nid);
628 		type->total_size = size;
629 		type->cnt = 1;
630 		return 0;
631 	}
632 
633 	/*
634 	 * The worst case is when new range overlaps all existing regions,
635 	 * then we'll need type->cnt + 1 empty regions in @type. So if
636 	 * type->cnt * 2 + 1 is less than or equal to type->max, we know
637 	 * that there is enough empty regions in @type, and we can insert
638 	 * regions directly.
639 	 */
640 	if (type->cnt * 2 + 1 <= type->max)
641 		insert = true;
642 
643 repeat:
644 	/*
645 	 * The following is executed twice.  Once with %false @insert and
646 	 * then with %true.  The first counts the number of regions needed
647 	 * to accommodate the new area.  The second actually inserts them.
648 	 */
649 	base = obase;
650 	nr_new = 0;
651 
652 	for_each_memblock_type(idx, type, rgn) {
653 		phys_addr_t rbase = rgn->base;
654 		phys_addr_t rend = rbase + rgn->size;
655 
656 		if (rbase >= end)
657 			break;
658 		if (rend <= base)
659 			continue;
660 		/*
661 		 * @rgn overlaps.  If it separates the lower part of new
662 		 * area, insert that portion.
663 		 */
664 		if (rbase > base) {
665 #ifdef CONFIG_NUMA
666 			WARN_ON(nid != memblock_get_region_node(rgn));
667 #endif
668 			WARN_ON(flags != MEMBLOCK_NONE && flags != rgn->flags);
669 			nr_new++;
670 			if (insert) {
671 				if (start_rgn == -1)
672 					start_rgn = idx;
673 				end_rgn = idx + 1;
674 				memblock_insert_region(type, idx++, base,
675 						       rbase - base, nid,
676 						       flags);
677 			}
678 		}
679 		/* area below @rend is dealt with, forget about it */
680 		base = min(rend, end);
681 	}
682 
683 	/* insert the remaining portion */
684 	if (base < end) {
685 		nr_new++;
686 		if (insert) {
687 			if (start_rgn == -1)
688 				start_rgn = idx;
689 			end_rgn = idx + 1;
690 			memblock_insert_region(type, idx, base, end - base,
691 					       nid, flags);
692 		}
693 	}
694 
695 	if (!nr_new)
696 		return 0;
697 
698 	/*
699 	 * If this was the first round, resize array and repeat for actual
700 	 * insertions; otherwise, merge and return.
701 	 */
702 	if (!insert) {
703 		while (type->cnt + nr_new > type->max)
704 			if (memblock_double_array(type, obase, size) < 0)
705 				return -ENOMEM;
706 		insert = true;
707 		goto repeat;
708 	} else {
709 		memblock_merge_regions(type, start_rgn, end_rgn);
710 		return 0;
711 	}
712 }
713 
714 /**
715  * memblock_add_node - add new memblock region within a NUMA node
716  * @base: base address of the new region
717  * @size: size of the new region
718  * @nid: nid of the new region
719  * @flags: flags of the new region
720  *
721  * Add new memblock region [@base, @base + @size) to the "memory"
722  * type. See memblock_add_range() description for mode details
723  *
724  * Return:
725  * 0 on success, -errno on failure.
726  */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)727 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
728 				      int nid, enum memblock_flags flags)
729 {
730 	phys_addr_t end = base + size - 1;
731 
732 	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
733 		     &base, &end, nid, flags, (void *)_RET_IP_);
734 
735 	return memblock_add_range(&memblock.memory, base, size, nid, flags);
736 }
737 
738 /**
739  * memblock_add - add new memblock region
740  * @base: base address of the new region
741  * @size: size of the new region
742  *
743  * Add new memblock region [@base, @base + @size) to the "memory"
744  * type. See memblock_add_range() description for mode details
745  *
746  * Return:
747  * 0 on success, -errno on failure.
748  */
memblock_add(phys_addr_t base,phys_addr_t size)749 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
750 {
751 	phys_addr_t end = base + size - 1;
752 
753 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
754 		     &base, &end, (void *)_RET_IP_);
755 
756 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
757 }
758 
759 /**
760  * memblock_validate_numa_coverage - check if amount of memory with
761  * no node ID assigned is less than a threshold
762  * @threshold_bytes: maximal memory size that can have unassigned node
763  * ID (in bytes).
764  *
765  * A buggy firmware may report memory that does not belong to any node.
766  * Check if amount of such memory is below @threshold_bytes.
767  *
768  * Return: true on success, false on failure.
769  */
memblock_validate_numa_coverage(unsigned long threshold_bytes)770 bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
771 {
772 	unsigned long nr_pages = 0;
773 	unsigned long start_pfn, end_pfn, mem_size_mb;
774 	int nid, i;
775 
776 	/* calculate lose page */
777 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
778 		if (!numa_valid_node(nid))
779 			nr_pages += end_pfn - start_pfn;
780 	}
781 
782 	if ((nr_pages << PAGE_SHIFT) > threshold_bytes) {
783 		mem_size_mb = memblock_phys_mem_size() >> 20;
784 		pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
785 		       (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
786 		return false;
787 	}
788 
789 	return true;
790 }
791 
792 
793 /**
794  * memblock_isolate_range - isolate given range into disjoint memblocks
795  * @type: memblock type to isolate range for
796  * @base: base of range to isolate
797  * @size: size of range to isolate
798  * @start_rgn: out parameter for the start of isolated region
799  * @end_rgn: out parameter for the end of isolated region
800  *
801  * Walk @type and ensure that regions don't cross the boundaries defined by
802  * [@base, @base + @size).  Crossing regions are split at the boundaries,
803  * which may create at most two more regions.  The index of the first
804  * region inside the range is returned in *@start_rgn and the index of the
805  * first region after the range is returned in *@end_rgn.
806  *
807  * Return:
808  * 0 on success, -errno on failure.
809  */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)810 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
811 					phys_addr_t base, phys_addr_t size,
812 					int *start_rgn, int *end_rgn)
813 {
814 	phys_addr_t end = base + memblock_cap_size(base, &size);
815 	int idx;
816 	struct memblock_region *rgn;
817 
818 	*start_rgn = *end_rgn = 0;
819 
820 	if (!size)
821 		return 0;
822 
823 	/* we'll create at most two more regions */
824 	while (type->cnt + 2 > type->max)
825 		if (memblock_double_array(type, base, size) < 0)
826 			return -ENOMEM;
827 
828 	for_each_memblock_type(idx, type, rgn) {
829 		phys_addr_t rbase = rgn->base;
830 		phys_addr_t rend = rbase + rgn->size;
831 
832 		if (rbase >= end)
833 			break;
834 		if (rend <= base)
835 			continue;
836 
837 		if (rbase < base) {
838 			/*
839 			 * @rgn intersects from below.  Split and continue
840 			 * to process the next region - the new top half.
841 			 */
842 			rgn->base = base;
843 			rgn->size -= base - rbase;
844 			type->total_size -= base - rbase;
845 			memblock_insert_region(type, idx, rbase, base - rbase,
846 					       memblock_get_region_node(rgn),
847 					       rgn->flags);
848 		} else if (rend > end) {
849 			/*
850 			 * @rgn intersects from above.  Split and redo the
851 			 * current region - the new bottom half.
852 			 */
853 			rgn->base = end;
854 			rgn->size -= end - rbase;
855 			type->total_size -= end - rbase;
856 			memblock_insert_region(type, idx--, rbase, end - rbase,
857 					       memblock_get_region_node(rgn),
858 					       rgn->flags);
859 		} else {
860 			/* @rgn is fully contained, record it */
861 			if (!*end_rgn)
862 				*start_rgn = idx;
863 			*end_rgn = idx + 1;
864 		}
865 	}
866 
867 	return 0;
868 }
869 
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)870 static int __init_memblock memblock_remove_range(struct memblock_type *type,
871 					  phys_addr_t base, phys_addr_t size)
872 {
873 	int start_rgn, end_rgn;
874 	int i, ret;
875 
876 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
877 	if (ret)
878 		return ret;
879 
880 	for (i = end_rgn - 1; i >= start_rgn; i--)
881 		memblock_remove_region(type, i);
882 	return 0;
883 }
884 
memblock_remove(phys_addr_t base,phys_addr_t size)885 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
886 {
887 	phys_addr_t end = base + size - 1;
888 
889 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
890 		     &base, &end, (void *)_RET_IP_);
891 
892 	return memblock_remove_range(&memblock.memory, base, size);
893 }
894 
895 /**
896  * memblock_free - free boot memory allocation
897  * @ptr: starting address of the  boot memory allocation
898  * @size: size of the boot memory block in bytes
899  *
900  * Free boot memory block previously allocated by memblock_alloc_xx() API.
901  * The freeing memory will not be released to the buddy allocator.
902  */
memblock_free(void * ptr,size_t size)903 void __init_memblock memblock_free(void *ptr, size_t size)
904 {
905 	if (ptr)
906 		memblock_phys_free(__pa(ptr), size);
907 }
908 
909 /**
910  * memblock_phys_free - free boot memory block
911  * @base: phys starting address of the  boot memory block
912  * @size: size of the boot memory block in bytes
913  *
914  * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
915  * The freeing memory will not be released to the buddy allocator.
916  */
memblock_phys_free(phys_addr_t base,phys_addr_t size)917 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
918 {
919 	phys_addr_t end = base + size - 1;
920 
921 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
922 		     &base, &end, (void *)_RET_IP_);
923 
924 	kmemleak_free_part_phys(base, size);
925 	return memblock_remove_range(&memblock.reserved, base, size);
926 }
927 
__memblock_reserve(phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)928 int __init_memblock __memblock_reserve(phys_addr_t base, phys_addr_t size,
929 				       int nid, enum memblock_flags flags)
930 {
931 	phys_addr_t end = base + size - 1;
932 
933 	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
934 		     &base, &end, nid, flags, (void *)_RET_IP_);
935 
936 	return memblock_add_range(&memblock.reserved, base, size, nid, flags);
937 }
938 
939 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)940 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
941 {
942 	phys_addr_t end = base + size - 1;
943 
944 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
945 		     &base, &end, (void *)_RET_IP_);
946 
947 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
948 }
949 #endif
950 
951 #ifdef CONFIG_MEMBLOCK_KHO_SCRATCH
memblock_set_kho_scratch_only(void)952 __init void memblock_set_kho_scratch_only(void)
953 {
954 	kho_scratch_only = true;
955 }
956 
memblock_clear_kho_scratch_only(void)957 __init void memblock_clear_kho_scratch_only(void)
958 {
959 	kho_scratch_only = false;
960 }
961 
memmap_init_kho_scratch_pages(void)962 __init void memmap_init_kho_scratch_pages(void)
963 {
964 	phys_addr_t start, end;
965 	unsigned long pfn;
966 	int nid;
967 	u64 i;
968 
969 	if (!IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT))
970 		return;
971 
972 	/*
973 	 * Initialize struct pages for free scratch memory.
974 	 * The struct pages for reserved scratch memory will be set up in
975 	 * reserve_bootmem_region()
976 	 */
977 	__for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE,
978 			     MEMBLOCK_KHO_SCRATCH, &start, &end, &nid) {
979 		for (pfn = PFN_UP(start); pfn < PFN_DOWN(end); pfn++)
980 			init_deferred_page(pfn, nid);
981 	}
982 }
983 #endif
984 
985 /**
986  * memblock_setclr_flag - set or clear flag for a memory region
987  * @type: memblock type to set/clear flag for
988  * @base: base address of the region
989  * @size: size of the region
990  * @set: set or clear the flag
991  * @flag: the flag to update
992  *
993  * This function isolates region [@base, @base + @size), and sets/clears flag
994  *
995  * Return: 0 on success, -errno on failure.
996  */
memblock_setclr_flag(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int set,int flag)997 static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
998 				phys_addr_t base, phys_addr_t size, int set, int flag)
999 {
1000 	int i, ret, start_rgn, end_rgn;
1001 
1002 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1003 	if (ret)
1004 		return ret;
1005 
1006 	for (i = start_rgn; i < end_rgn; i++) {
1007 		struct memblock_region *r = &type->regions[i];
1008 
1009 		if (set)
1010 			r->flags |= flag;
1011 		else
1012 			r->flags &= ~flag;
1013 	}
1014 
1015 	memblock_merge_regions(type, start_rgn, end_rgn);
1016 	return 0;
1017 }
1018 
1019 /**
1020  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
1021  * @base: the base phys addr of the region
1022  * @size: the size of the region
1023  *
1024  * Return: 0 on success, -errno on failure.
1025  */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)1026 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
1027 {
1028 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
1029 }
1030 
1031 /**
1032  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
1033  * @base: the base phys addr of the region
1034  * @size: the size of the region
1035  *
1036  * Return: 0 on success, -errno on failure.
1037  */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)1038 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
1039 {
1040 	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
1041 }
1042 
1043 /**
1044  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
1045  * @base: the base phys addr of the region
1046  * @size: the size of the region
1047  *
1048  * Return: 0 on success, -errno on failure.
1049  */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)1050 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
1051 {
1052 	if (!mirrored_kernelcore)
1053 		return 0;
1054 
1055 	system_has_some_mirror = true;
1056 
1057 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
1058 }
1059 
1060 /**
1061  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1062  * @base: the base phys addr of the region
1063  * @size: the size of the region
1064  *
1065  * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1066  * direct mapping of the physical memory. These regions will still be
1067  * covered by the memory map. The struct page representing NOMAP memory
1068  * frames in the memory map will be PageReserved()
1069  *
1070  * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1071  * memblock, the caller must inform kmemleak to ignore that memory
1072  *
1073  * Return: 0 on success, -errno on failure.
1074  */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)1075 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1076 {
1077 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
1078 }
1079 
1080 /**
1081  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1082  * @base: the base phys addr of the region
1083  * @size: the size of the region
1084  *
1085  * Return: 0 on success, -errno on failure.
1086  */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)1087 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1088 {
1089 	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
1090 }
1091 
1092 /**
1093  * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1094  * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
1095  * for this region.
1096  * @base: the base phys addr of the region
1097  * @size: the size of the region
1098  *
1099  * struct pages will not be initialized for reserved memory regions marked with
1100  * %MEMBLOCK_RSRV_NOINIT.
1101  *
1102  * Return: 0 on success, -errno on failure.
1103  */
memblock_reserved_mark_noinit(phys_addr_t base,phys_addr_t size)1104 int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
1105 {
1106 	return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1107 				    MEMBLOCK_RSRV_NOINIT);
1108 }
1109 
1110 /**
1111  * memblock_mark_kho_scratch - Mark a memory region as MEMBLOCK_KHO_SCRATCH.
1112  * @base: the base phys addr of the region
1113  * @size: the size of the region
1114  *
1115  * Only memory regions marked with %MEMBLOCK_KHO_SCRATCH will be considered
1116  * for allocations during early boot with kexec handover.
1117  *
1118  * Return: 0 on success, -errno on failure.
1119  */
memblock_mark_kho_scratch(phys_addr_t base,phys_addr_t size)1120 __init int memblock_mark_kho_scratch(phys_addr_t base, phys_addr_t size)
1121 {
1122 	return memblock_setclr_flag(&memblock.memory, base, size, 1,
1123 				    MEMBLOCK_KHO_SCRATCH);
1124 }
1125 
1126 /**
1127  * memblock_clear_kho_scratch - Clear MEMBLOCK_KHO_SCRATCH flag for a
1128  * specified region.
1129  * @base: the base phys addr of the region
1130  * @size: the size of the region
1131  *
1132  * Return: 0 on success, -errno on failure.
1133  */
memblock_clear_kho_scratch(phys_addr_t base,phys_addr_t size)1134 __init int memblock_clear_kho_scratch(phys_addr_t base, phys_addr_t size)
1135 {
1136 	return memblock_setclr_flag(&memblock.memory, base, size, 0,
1137 				    MEMBLOCK_KHO_SCRATCH);
1138 }
1139 
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)1140 static bool should_skip_region(struct memblock_type *type,
1141 			       struct memblock_region *m,
1142 			       int nid, int flags)
1143 {
1144 	int m_nid = memblock_get_region_node(m);
1145 
1146 	/* we never skip regions when iterating memblock.reserved or physmem */
1147 	if (type != memblock_memory)
1148 		return false;
1149 
1150 	/* only memory regions are associated with nodes, check it */
1151 	if (numa_valid_node(nid) && nid != m_nid)
1152 		return true;
1153 
1154 	/* skip hotpluggable memory regions if needed */
1155 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1156 	    !(flags & MEMBLOCK_HOTPLUG))
1157 		return true;
1158 
1159 	/* if we want mirror memory skip non-mirror memory regions */
1160 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1161 		return true;
1162 
1163 	/* skip nomap memory unless we were asked for it explicitly */
1164 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1165 		return true;
1166 
1167 	/* skip driver-managed memory unless we were asked for it explicitly */
1168 	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1169 		return true;
1170 
1171 	/*
1172 	 * In early alloc during kexec handover, we can only consider
1173 	 * MEMBLOCK_KHO_SCRATCH regions for the allocations
1174 	 */
1175 	if ((flags & MEMBLOCK_KHO_SCRATCH) && !memblock_is_kho_scratch(m))
1176 		return true;
1177 
1178 	return false;
1179 }
1180 
1181 /**
1182  * __next_mem_range - next function for for_each_free_mem_range() etc.
1183  * @idx: pointer to u64 loop variable
1184  * @nid: node selector, %NUMA_NO_NODE for all nodes
1185  * @flags: pick from blocks based on memory attributes
1186  * @type_a: pointer to memblock_type from where the range is taken
1187  * @type_b: pointer to memblock_type which excludes memory from being taken
1188  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1189  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1190  * @out_nid: ptr to int for nid of the range, can be %NULL
1191  *
1192  * Find the first area from *@idx which matches @nid, fill the out
1193  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1194  * *@idx contains index into type_a and the upper 32bit indexes the
1195  * areas before each region in type_b.	For example, if type_b regions
1196  * look like the following,
1197  *
1198  *	0:[0-16), 1:[32-48), 2:[128-130)
1199  *
1200  * The upper 32bit indexes the following regions.
1201  *
1202  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1203  *
1204  * As both region arrays are sorted, the function advances the two indices
1205  * in lockstep and returns each intersection.
1206  */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1207 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1208 		      struct memblock_type *type_a,
1209 		      struct memblock_type *type_b, phys_addr_t *out_start,
1210 		      phys_addr_t *out_end, int *out_nid)
1211 {
1212 	int idx_a = *idx & 0xffffffff;
1213 	int idx_b = *idx >> 32;
1214 
1215 	for (; idx_a < type_a->cnt; idx_a++) {
1216 		struct memblock_region *m = &type_a->regions[idx_a];
1217 
1218 		phys_addr_t m_start = m->base;
1219 		phys_addr_t m_end = m->base + m->size;
1220 		int	    m_nid = memblock_get_region_node(m);
1221 
1222 		if (should_skip_region(type_a, m, nid, flags))
1223 			continue;
1224 
1225 		if (!type_b) {
1226 			if (out_start)
1227 				*out_start = m_start;
1228 			if (out_end)
1229 				*out_end = m_end;
1230 			if (out_nid)
1231 				*out_nid = m_nid;
1232 			idx_a++;
1233 			*idx = (u32)idx_a | (u64)idx_b << 32;
1234 			return;
1235 		}
1236 
1237 		/* scan areas before each reservation */
1238 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1239 			struct memblock_region *r;
1240 			phys_addr_t r_start;
1241 			phys_addr_t r_end;
1242 
1243 			r = &type_b->regions[idx_b];
1244 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1245 			r_end = idx_b < type_b->cnt ?
1246 				r->base : PHYS_ADDR_MAX;
1247 
1248 			/*
1249 			 * if idx_b advanced past idx_a,
1250 			 * break out to advance idx_a
1251 			 */
1252 			if (r_start >= m_end)
1253 				break;
1254 			/* if the two regions intersect, we're done */
1255 			if (m_start < r_end) {
1256 				if (out_start)
1257 					*out_start =
1258 						max(m_start, r_start);
1259 				if (out_end)
1260 					*out_end = min(m_end, r_end);
1261 				if (out_nid)
1262 					*out_nid = m_nid;
1263 				/*
1264 				 * The region which ends first is
1265 				 * advanced for the next iteration.
1266 				 */
1267 				if (m_end <= r_end)
1268 					idx_a++;
1269 				else
1270 					idx_b++;
1271 				*idx = (u32)idx_a | (u64)idx_b << 32;
1272 				return;
1273 			}
1274 		}
1275 	}
1276 
1277 	/* signal end of iteration */
1278 	*idx = ULLONG_MAX;
1279 }
1280 
1281 /**
1282  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1283  *
1284  * @idx: pointer to u64 loop variable
1285  * @nid: node selector, %NUMA_NO_NODE for all nodes
1286  * @flags: pick from blocks based on memory attributes
1287  * @type_a: pointer to memblock_type from where the range is taken
1288  * @type_b: pointer to memblock_type which excludes memory from being taken
1289  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1290  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1291  * @out_nid: ptr to int for nid of the range, can be %NULL
1292  *
1293  * Finds the next range from type_a which is not marked as unsuitable
1294  * in type_b.
1295  *
1296  * Reverse of __next_mem_range().
1297  */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1298 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1299 					  enum memblock_flags flags,
1300 					  struct memblock_type *type_a,
1301 					  struct memblock_type *type_b,
1302 					  phys_addr_t *out_start,
1303 					  phys_addr_t *out_end, int *out_nid)
1304 {
1305 	int idx_a = *idx & 0xffffffff;
1306 	int idx_b = *idx >> 32;
1307 
1308 	if (*idx == (u64)ULLONG_MAX) {
1309 		idx_a = type_a->cnt - 1;
1310 		if (type_b != NULL)
1311 			idx_b = type_b->cnt;
1312 		else
1313 			idx_b = 0;
1314 	}
1315 
1316 	for (; idx_a >= 0; idx_a--) {
1317 		struct memblock_region *m = &type_a->regions[idx_a];
1318 
1319 		phys_addr_t m_start = m->base;
1320 		phys_addr_t m_end = m->base + m->size;
1321 		int m_nid = memblock_get_region_node(m);
1322 
1323 		if (should_skip_region(type_a, m, nid, flags))
1324 			continue;
1325 
1326 		if (!type_b) {
1327 			if (out_start)
1328 				*out_start = m_start;
1329 			if (out_end)
1330 				*out_end = m_end;
1331 			if (out_nid)
1332 				*out_nid = m_nid;
1333 			idx_a--;
1334 			*idx = (u32)idx_a | (u64)idx_b << 32;
1335 			return;
1336 		}
1337 
1338 		/* scan areas before each reservation */
1339 		for (; idx_b >= 0; idx_b--) {
1340 			struct memblock_region *r;
1341 			phys_addr_t r_start;
1342 			phys_addr_t r_end;
1343 
1344 			r = &type_b->regions[idx_b];
1345 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1346 			r_end = idx_b < type_b->cnt ?
1347 				r->base : PHYS_ADDR_MAX;
1348 			/*
1349 			 * if idx_b advanced past idx_a,
1350 			 * break out to advance idx_a
1351 			 */
1352 
1353 			if (r_end <= m_start)
1354 				break;
1355 			/* if the two regions intersect, we're done */
1356 			if (m_end > r_start) {
1357 				if (out_start)
1358 					*out_start = max(m_start, r_start);
1359 				if (out_end)
1360 					*out_end = min(m_end, r_end);
1361 				if (out_nid)
1362 					*out_nid = m_nid;
1363 				if (m_start >= r_start)
1364 					idx_a--;
1365 				else
1366 					idx_b--;
1367 				*idx = (u32)idx_a | (u64)idx_b << 32;
1368 				return;
1369 			}
1370 		}
1371 	}
1372 	/* signal end of iteration */
1373 	*idx = ULLONG_MAX;
1374 }
1375 
1376 /*
1377  * Common iterator interface used to define for_each_mem_pfn_range().
1378  */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1379 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1380 				unsigned long *out_start_pfn,
1381 				unsigned long *out_end_pfn, int *out_nid)
1382 {
1383 	struct memblock_type *type = &memblock.memory;
1384 	struct memblock_region *r;
1385 	int r_nid;
1386 
1387 	while (++*idx < type->cnt) {
1388 		r = &type->regions[*idx];
1389 		r_nid = memblock_get_region_node(r);
1390 
1391 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1392 			continue;
1393 		if (!numa_valid_node(nid) || nid == r_nid)
1394 			break;
1395 	}
1396 	if (*idx >= type->cnt) {
1397 		*idx = -1;
1398 		return;
1399 	}
1400 
1401 	if (out_start_pfn)
1402 		*out_start_pfn = PFN_UP(r->base);
1403 	if (out_end_pfn)
1404 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1405 	if (out_nid)
1406 		*out_nid = r_nid;
1407 }
1408 
1409 /**
1410  * memblock_set_node - set node ID on memblock regions
1411  * @base: base of area to set node ID for
1412  * @size: size of area to set node ID for
1413  * @type: memblock type to set node ID for
1414  * @nid: node ID to set
1415  *
1416  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1417  * Regions which cross the area boundaries are split as necessary.
1418  *
1419  * Return:
1420  * 0 on success, -errno on failure.
1421  */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1422 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1423 				      struct memblock_type *type, int nid)
1424 {
1425 #ifdef CONFIG_NUMA
1426 	int start_rgn, end_rgn;
1427 	int i, ret;
1428 
1429 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1430 	if (ret)
1431 		return ret;
1432 
1433 	for (i = start_rgn; i < end_rgn; i++)
1434 		memblock_set_region_node(&type->regions[i], nid);
1435 
1436 	memblock_merge_regions(type, start_rgn, end_rgn);
1437 #endif
1438 	return 0;
1439 }
1440 
1441 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1442 /**
1443  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1444  *
1445  * @idx: pointer to u64 loop variable
1446  * @zone: zone in which all of the memory blocks reside
1447  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1448  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1449  *
1450  * This function is meant to be a zone/pfn specific wrapper for the
1451  * for_each_mem_range type iterators. Specifically they are used in the
1452  * deferred memory init routines and as such we were duplicating much of
1453  * this logic throughout the code. So instead of having it in multiple
1454  * locations it seemed like it would make more sense to centralize this to
1455  * one new iterator that does everything they need.
1456  */
1457 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1458 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1459 			     unsigned long *out_spfn, unsigned long *out_epfn)
1460 {
1461 	int zone_nid = zone_to_nid(zone);
1462 	phys_addr_t spa, epa;
1463 
1464 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1465 			 &memblock.memory, &memblock.reserved,
1466 			 &spa, &epa, NULL);
1467 
1468 	while (*idx != U64_MAX) {
1469 		unsigned long epfn = PFN_DOWN(epa);
1470 		unsigned long spfn = PFN_UP(spa);
1471 
1472 		/*
1473 		 * Verify the end is at least past the start of the zone and
1474 		 * that we have at least one PFN to initialize.
1475 		 */
1476 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1477 			/* if we went too far just stop searching */
1478 			if (zone_end_pfn(zone) <= spfn) {
1479 				*idx = U64_MAX;
1480 				break;
1481 			}
1482 
1483 			if (out_spfn)
1484 				*out_spfn = max(zone->zone_start_pfn, spfn);
1485 			if (out_epfn)
1486 				*out_epfn = min(zone_end_pfn(zone), epfn);
1487 
1488 			return;
1489 		}
1490 
1491 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1492 				 &memblock.memory, &memblock.reserved,
1493 				 &spa, &epa, NULL);
1494 	}
1495 
1496 	/* signal end of iteration */
1497 	if (out_spfn)
1498 		*out_spfn = ULONG_MAX;
1499 	if (out_epfn)
1500 		*out_epfn = 0;
1501 }
1502 
1503 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1504 
1505 /**
1506  * memblock_alloc_range_nid - allocate boot memory block
1507  * @size: size of memory block to be allocated in bytes
1508  * @align: alignment of the region and block's size
1509  * @start: the lower bound of the memory region to allocate (phys address)
1510  * @end: the upper bound of the memory region to allocate (phys address)
1511  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1512  * @exact_nid: control the allocation fall back to other nodes
1513  *
1514  * The allocation is performed from memory region limited by
1515  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1516  *
1517  * If the specified node can not hold the requested memory and @exact_nid
1518  * is false, the allocation falls back to any node in the system.
1519  *
1520  * For systems with memory mirroring, the allocation is attempted first
1521  * from the regions with mirroring enabled and then retried from any
1522  * memory region.
1523  *
1524  * In addition, function using kmemleak_alloc_phys for allocated boot
1525  * memory block, it is never reported as leaks.
1526  *
1527  * Return:
1528  * Physical address of allocated memory block on success, %0 on failure.
1529  */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1530 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1531 					phys_addr_t align, phys_addr_t start,
1532 					phys_addr_t end, int nid,
1533 					bool exact_nid)
1534 {
1535 	enum memblock_flags flags = choose_memblock_flags();
1536 	phys_addr_t found;
1537 
1538 	/*
1539 	 * Detect any accidental use of these APIs after slab is ready, as at
1540 	 * this moment memblock may be deinitialized already and its
1541 	 * internal data may be destroyed (after execution of memblock_free_all)
1542 	 */
1543 	if (WARN_ON_ONCE(slab_is_available())) {
1544 		void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid);
1545 
1546 		return vaddr ? virt_to_phys(vaddr) : 0;
1547 	}
1548 
1549 	if (!align) {
1550 		/* Can't use WARNs this early in boot on powerpc */
1551 		dump_stack();
1552 		align = SMP_CACHE_BYTES;
1553 	}
1554 
1555 again:
1556 	found = memblock_find_in_range_node(size, align, start, end, nid,
1557 					    flags);
1558 	if (found && !__memblock_reserve(found, size, nid, MEMBLOCK_RSRV_KERN))
1559 		goto done;
1560 
1561 	if (numa_valid_node(nid) && !exact_nid) {
1562 		found = memblock_find_in_range_node(size, align, start,
1563 						    end, NUMA_NO_NODE,
1564 						    flags);
1565 		if (found && !memblock_reserve_kern(found, size))
1566 			goto done;
1567 	}
1568 
1569 	if (flags & MEMBLOCK_MIRROR) {
1570 		flags &= ~MEMBLOCK_MIRROR;
1571 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1572 			&size);
1573 		goto again;
1574 	}
1575 
1576 	return 0;
1577 
1578 done:
1579 	/*
1580 	 * Skip kmemleak for those places like kasan_init() and
1581 	 * early_pgtable_alloc() due to high volume.
1582 	 */
1583 	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1584 		/*
1585 		 * Memblock allocated blocks are never reported as
1586 		 * leaks. This is because many of these blocks are
1587 		 * only referred via the physical address which is
1588 		 * not looked up by kmemleak.
1589 		 */
1590 		kmemleak_alloc_phys(found, size, 0);
1591 
1592 	/*
1593 	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1594 	 * require memory to be accepted before it can be used by the
1595 	 * guest.
1596 	 *
1597 	 * Accept the memory of the allocated buffer.
1598 	 */
1599 	accept_memory(found, size);
1600 
1601 	return found;
1602 }
1603 
1604 /**
1605  * memblock_phys_alloc_range - allocate a memory block inside specified range
1606  * @size: size of memory block to be allocated in bytes
1607  * @align: alignment of the region and block's size
1608  * @start: the lower bound of the memory region to allocate (physical address)
1609  * @end: the upper bound of the memory region to allocate (physical address)
1610  *
1611  * Allocate @size bytes in the between @start and @end.
1612  *
1613  * Return: physical address of the allocated memory block on success,
1614  * %0 on failure.
1615  */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1616 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1617 					     phys_addr_t align,
1618 					     phys_addr_t start,
1619 					     phys_addr_t end)
1620 {
1621 	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1622 		     __func__, (u64)size, (u64)align, &start, &end,
1623 		     (void *)_RET_IP_);
1624 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1625 					false);
1626 }
1627 
1628 /**
1629  * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1630  * @size: size of memory block to be allocated in bytes
1631  * @align: alignment of the region and block's size
1632  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1633  *
1634  * Allocates memory block from the specified NUMA node. If the node
1635  * has no available memory, attempts to allocated from any node in the
1636  * system.
1637  *
1638  * Return: physical address of the allocated memory block on success,
1639  * %0 on failure.
1640  */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1641 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1642 {
1643 	return memblock_alloc_range_nid(size, align, 0,
1644 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1645 }
1646 
1647 /**
1648  * memblock_alloc_internal - allocate boot memory block
1649  * @size: size of memory block to be allocated in bytes
1650  * @align: alignment of the region and block's size
1651  * @min_addr: the lower bound of the memory region to allocate (phys address)
1652  * @max_addr: the upper bound of the memory region to allocate (phys address)
1653  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1654  * @exact_nid: control the allocation fall back to other nodes
1655  *
1656  * Allocates memory block using memblock_alloc_range_nid() and
1657  * converts the returned physical address to virtual.
1658  *
1659  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1660  * will fall back to memory below @min_addr. Other constraints, such
1661  * as node and mirrored memory will be handled again in
1662  * memblock_alloc_range_nid().
1663  *
1664  * Return:
1665  * Virtual address of allocated memory block on success, NULL on failure.
1666  */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1667 static void * __init memblock_alloc_internal(
1668 				phys_addr_t size, phys_addr_t align,
1669 				phys_addr_t min_addr, phys_addr_t max_addr,
1670 				int nid, bool exact_nid)
1671 {
1672 	phys_addr_t alloc;
1673 
1674 
1675 	if (max_addr > memblock.current_limit)
1676 		max_addr = memblock.current_limit;
1677 
1678 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1679 					exact_nid);
1680 
1681 	/* retry allocation without lower limit */
1682 	if (!alloc && min_addr)
1683 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1684 						exact_nid);
1685 
1686 	if (!alloc)
1687 		return NULL;
1688 
1689 	return phys_to_virt(alloc);
1690 }
1691 
1692 /**
1693  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1694  * without zeroing memory
1695  * @size: size of memory block to be allocated in bytes
1696  * @align: alignment of the region and block's size
1697  * @min_addr: the lower bound of the memory region from where the allocation
1698  *	  is preferred (phys address)
1699  * @max_addr: the upper bound of the memory region from where the allocation
1700  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1701  *	      allocate only from memory limited by memblock.current_limit value
1702  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1703  *
1704  * Public function, provides additional debug information (including caller
1705  * info), if enabled. Does not zero allocated memory.
1706  *
1707  * Return:
1708  * Virtual address of allocated memory block on success, NULL on failure.
1709  */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1710 void * __init memblock_alloc_exact_nid_raw(
1711 			phys_addr_t size, phys_addr_t align,
1712 			phys_addr_t min_addr, phys_addr_t max_addr,
1713 			int nid)
1714 {
1715 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1716 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1717 		     &max_addr, (void *)_RET_IP_);
1718 
1719 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1720 				       true);
1721 }
1722 
1723 /**
1724  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1725  * memory and without panicking
1726  * @size: size of memory block to be allocated in bytes
1727  * @align: alignment of the region and block's size
1728  * @min_addr: the lower bound of the memory region from where the allocation
1729  *	  is preferred (phys address)
1730  * @max_addr: the upper bound of the memory region from where the allocation
1731  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1732  *	      allocate only from memory limited by memblock.current_limit value
1733  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1734  *
1735  * Public function, provides additional debug information (including caller
1736  * info), if enabled. Does not zero allocated memory, does not panic if request
1737  * cannot be satisfied.
1738  *
1739  * Return:
1740  * Virtual address of allocated memory block on success, NULL on failure.
1741  */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1742 void * __init memblock_alloc_try_nid_raw(
1743 			phys_addr_t size, phys_addr_t align,
1744 			phys_addr_t min_addr, phys_addr_t max_addr,
1745 			int nid)
1746 {
1747 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1748 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1749 		     &max_addr, (void *)_RET_IP_);
1750 
1751 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1752 				       false);
1753 }
1754 
1755 /**
1756  * memblock_alloc_try_nid - allocate boot memory block
1757  * @size: size of memory block to be allocated in bytes
1758  * @align: alignment of the region and block's size
1759  * @min_addr: the lower bound of the memory region from where the allocation
1760  *	  is preferred (phys address)
1761  * @max_addr: the upper bound of the memory region from where the allocation
1762  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1763  *	      allocate only from memory limited by memblock.current_limit value
1764  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1765  *
1766  * Public function, provides additional debug information (including caller
1767  * info), if enabled. This function zeroes the allocated memory.
1768  *
1769  * Return:
1770  * Virtual address of allocated memory block on success, NULL on failure.
1771  */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1772 void * __init memblock_alloc_try_nid(
1773 			phys_addr_t size, phys_addr_t align,
1774 			phys_addr_t min_addr, phys_addr_t max_addr,
1775 			int nid)
1776 {
1777 	void *ptr;
1778 
1779 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1780 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1781 		     &max_addr, (void *)_RET_IP_);
1782 	ptr = memblock_alloc_internal(size, align,
1783 					   min_addr, max_addr, nid, false);
1784 	if (ptr)
1785 		memset(ptr, 0, size);
1786 
1787 	return ptr;
1788 }
1789 
1790 /**
1791  * __memblock_alloc_or_panic - Try to allocate memory and panic on failure
1792  * @size: size of memory block to be allocated in bytes
1793  * @align: alignment of the region and block's size
1794  * @func: caller func name
1795  *
1796  * This function attempts to allocate memory using memblock_alloc,
1797  * and in case of failure, it calls panic with the formatted message.
1798  * This function should not be used directly, please use the macro memblock_alloc_or_panic.
1799  */
__memblock_alloc_or_panic(phys_addr_t size,phys_addr_t align,const char * func)1800 void *__init __memblock_alloc_or_panic(phys_addr_t size, phys_addr_t align,
1801 				       const char *func)
1802 {
1803 	void *addr = memblock_alloc(size, align);
1804 
1805 	if (unlikely(!addr))
1806 		panic("%s: Failed to allocate %pap bytes\n", func, &size);
1807 	return addr;
1808 }
1809 
1810 /**
1811  * memblock_free_late - free pages directly to buddy allocator
1812  * @base: phys starting address of the  boot memory block
1813  * @size: size of the boot memory block in bytes
1814  *
1815  * This is only useful when the memblock allocator has already been torn
1816  * down, but we are still initializing the system.  Pages are released directly
1817  * to the buddy allocator.
1818  */
memblock_free_late(phys_addr_t base,phys_addr_t size)1819 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1820 {
1821 	phys_addr_t cursor, end;
1822 
1823 	end = base + size - 1;
1824 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1825 		     __func__, &base, &end, (void *)_RET_IP_);
1826 	kmemleak_free_part_phys(base, size);
1827 	cursor = PFN_UP(base);
1828 	end = PFN_DOWN(base + size);
1829 
1830 	for (; cursor < end; cursor++) {
1831 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1832 		totalram_pages_inc();
1833 	}
1834 }
1835 
1836 /*
1837  * Remaining API functions
1838  */
1839 
memblock_phys_mem_size(void)1840 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1841 {
1842 	return memblock.memory.total_size;
1843 }
1844 
memblock_reserved_size(void)1845 phys_addr_t __init_memblock memblock_reserved_size(void)
1846 {
1847 	return memblock.reserved.total_size;
1848 }
1849 
memblock_reserved_kern_size(phys_addr_t limit,int nid)1850 phys_addr_t __init_memblock memblock_reserved_kern_size(phys_addr_t limit, int nid)
1851 {
1852 	struct memblock_region *r;
1853 	phys_addr_t total = 0;
1854 
1855 	for_each_reserved_mem_region(r) {
1856 		phys_addr_t size = r->size;
1857 
1858 		if (r->base > limit)
1859 			break;
1860 
1861 		if (r->base + r->size > limit)
1862 			size = limit - r->base;
1863 
1864 		if (nid == memblock_get_region_node(r) || !numa_valid_node(nid))
1865 			if (r->flags & MEMBLOCK_RSRV_KERN)
1866 				total += size;
1867 	}
1868 
1869 	return total;
1870 }
1871 
1872 /**
1873  * memblock_estimated_nr_free_pages - return estimated number of free pages
1874  * from memblock point of view
1875  *
1876  * During bootup, subsystems might need a rough estimate of the number of free
1877  * pages in the whole system, before precise numbers are available from the
1878  * buddy. Especially with CONFIG_DEFERRED_STRUCT_PAGE_INIT, the numbers
1879  * obtained from the buddy might be very imprecise during bootup.
1880  *
1881  * Return:
1882  * An estimated number of free pages from memblock point of view.
1883  */
memblock_estimated_nr_free_pages(void)1884 unsigned long __init memblock_estimated_nr_free_pages(void)
1885 {
1886 	return PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size());
1887 }
1888 
1889 /* lowest address */
memblock_start_of_DRAM(void)1890 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1891 {
1892 	return memblock.memory.regions[0].base;
1893 }
1894 
memblock_end_of_DRAM(void)1895 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1896 {
1897 	int idx = memblock.memory.cnt - 1;
1898 
1899 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1900 }
1901 
__find_max_addr(phys_addr_t limit)1902 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1903 {
1904 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1905 	struct memblock_region *r;
1906 
1907 	/*
1908 	 * translate the memory @limit size into the max address within one of
1909 	 * the memory memblock regions, if the @limit exceeds the total size
1910 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1911 	 */
1912 	for_each_mem_region(r) {
1913 		if (limit <= r->size) {
1914 			max_addr = r->base + limit;
1915 			break;
1916 		}
1917 		limit -= r->size;
1918 	}
1919 
1920 	return max_addr;
1921 }
1922 
memblock_enforce_memory_limit(phys_addr_t limit)1923 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1924 {
1925 	phys_addr_t max_addr;
1926 
1927 	if (!limit)
1928 		return;
1929 
1930 	max_addr = __find_max_addr(limit);
1931 
1932 	/* @limit exceeds the total size of the memory, do nothing */
1933 	if (max_addr == PHYS_ADDR_MAX)
1934 		return;
1935 
1936 	/* truncate both memory and reserved regions */
1937 	memblock_remove_range(&memblock.memory, max_addr,
1938 			      PHYS_ADDR_MAX);
1939 	memblock_remove_range(&memblock.reserved, max_addr,
1940 			      PHYS_ADDR_MAX);
1941 }
1942 
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1943 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1944 {
1945 	int start_rgn, end_rgn;
1946 	int i, ret;
1947 
1948 	if (!size)
1949 		return;
1950 
1951 	if (!memblock_memory->total_size) {
1952 		pr_warn("%s: No memory registered yet\n", __func__);
1953 		return;
1954 	}
1955 
1956 	ret = memblock_isolate_range(&memblock.memory, base, size,
1957 						&start_rgn, &end_rgn);
1958 	if (ret)
1959 		return;
1960 
1961 	/* remove all the MAP regions */
1962 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1963 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1964 			memblock_remove_region(&memblock.memory, i);
1965 
1966 	for (i = start_rgn - 1; i >= 0; i--)
1967 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1968 			memblock_remove_region(&memblock.memory, i);
1969 
1970 	/* truncate the reserved regions */
1971 	memblock_remove_range(&memblock.reserved, 0, base);
1972 	memblock_remove_range(&memblock.reserved,
1973 			base + size, PHYS_ADDR_MAX);
1974 }
1975 
memblock_mem_limit_remove_map(phys_addr_t limit)1976 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1977 {
1978 	phys_addr_t max_addr;
1979 
1980 	if (!limit)
1981 		return;
1982 
1983 	max_addr = __find_max_addr(limit);
1984 
1985 	/* @limit exceeds the total size of the memory, do nothing */
1986 	if (max_addr == PHYS_ADDR_MAX)
1987 		return;
1988 
1989 	memblock_cap_memory_range(0, max_addr);
1990 }
1991 
memblock_search(struct memblock_type * type,phys_addr_t addr)1992 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1993 {
1994 	unsigned int left = 0, right = type->cnt;
1995 
1996 	do {
1997 		unsigned int mid = (right + left) / 2;
1998 
1999 		if (addr < type->regions[mid].base)
2000 			right = mid;
2001 		else if (addr >= (type->regions[mid].base +
2002 				  type->regions[mid].size))
2003 			left = mid + 1;
2004 		else
2005 			return mid;
2006 	} while (left < right);
2007 	return -1;
2008 }
2009 
memblock_is_reserved(phys_addr_t addr)2010 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
2011 {
2012 	return memblock_search(&memblock.reserved, addr) != -1;
2013 }
2014 
memblock_is_memory(phys_addr_t addr)2015 bool __init_memblock memblock_is_memory(phys_addr_t addr)
2016 {
2017 	return memblock_search(&memblock.memory, addr) != -1;
2018 }
2019 
memblock_is_map_memory(phys_addr_t addr)2020 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
2021 {
2022 	int i = memblock_search(&memblock.memory, addr);
2023 
2024 	if (i == -1)
2025 		return false;
2026 	return !memblock_is_nomap(&memblock.memory.regions[i]);
2027 }
2028 
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)2029 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
2030 			 unsigned long *start_pfn, unsigned long *end_pfn)
2031 {
2032 	struct memblock_type *type = &memblock.memory;
2033 	int mid = memblock_search(type, PFN_PHYS(pfn));
2034 
2035 	if (mid == -1)
2036 		return NUMA_NO_NODE;
2037 
2038 	*start_pfn = PFN_DOWN(type->regions[mid].base);
2039 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
2040 
2041 	return memblock_get_region_node(&type->regions[mid]);
2042 }
2043 
2044 /**
2045  * memblock_is_region_memory - check if a region is a subset of memory
2046  * @base: base of region to check
2047  * @size: size of region to check
2048  *
2049  * Check if the region [@base, @base + @size) is a subset of a memory block.
2050  *
2051  * Return:
2052  * 0 if false, non-zero if true
2053  */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)2054 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
2055 {
2056 	int idx = memblock_search(&memblock.memory, base);
2057 	phys_addr_t end = base + memblock_cap_size(base, &size);
2058 
2059 	if (idx == -1)
2060 		return false;
2061 	return (memblock.memory.regions[idx].base +
2062 		 memblock.memory.regions[idx].size) >= end;
2063 }
2064 
2065 /**
2066  * memblock_is_region_reserved - check if a region intersects reserved memory
2067  * @base: base of region to check
2068  * @size: size of region to check
2069  *
2070  * Check if the region [@base, @base + @size) intersects a reserved
2071  * memory block.
2072  *
2073  * Return:
2074  * True if they intersect, false if not.
2075  */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)2076 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
2077 {
2078 	return memblock_overlaps_region(&memblock.reserved, base, size);
2079 }
2080 
memblock_trim_memory(phys_addr_t align)2081 void __init_memblock memblock_trim_memory(phys_addr_t align)
2082 {
2083 	phys_addr_t start, end, orig_start, orig_end;
2084 	struct memblock_region *r;
2085 
2086 	for_each_mem_region(r) {
2087 		orig_start = r->base;
2088 		orig_end = r->base + r->size;
2089 		start = round_up(orig_start, align);
2090 		end = round_down(orig_end, align);
2091 
2092 		if (start == orig_start && end == orig_end)
2093 			continue;
2094 
2095 		if (start < end) {
2096 			r->base = start;
2097 			r->size = end - start;
2098 		} else {
2099 			memblock_remove_region(&memblock.memory,
2100 					       r - memblock.memory.regions);
2101 			r--;
2102 		}
2103 	}
2104 }
2105 
memblock_set_current_limit(phys_addr_t limit)2106 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
2107 {
2108 	memblock.current_limit = limit;
2109 }
2110 
memblock_get_current_limit(void)2111 phys_addr_t __init_memblock memblock_get_current_limit(void)
2112 {
2113 	return memblock.current_limit;
2114 }
2115 
memblock_dump(struct memblock_type * type)2116 static void __init_memblock memblock_dump(struct memblock_type *type)
2117 {
2118 	phys_addr_t base, end, size;
2119 	enum memblock_flags flags;
2120 	int idx;
2121 	struct memblock_region *rgn;
2122 
2123 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
2124 
2125 	for_each_memblock_type(idx, type, rgn) {
2126 		char nid_buf[32] = "";
2127 
2128 		base = rgn->base;
2129 		size = rgn->size;
2130 		end = base + size - 1;
2131 		flags = rgn->flags;
2132 #ifdef CONFIG_NUMA
2133 		if (numa_valid_node(memblock_get_region_node(rgn)))
2134 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
2135 				 memblock_get_region_node(rgn));
2136 #endif
2137 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
2138 			type->name, idx, &base, &end, &size, nid_buf, flags);
2139 	}
2140 }
2141 
__memblock_dump_all(void)2142 static void __init_memblock __memblock_dump_all(void)
2143 {
2144 	pr_info("MEMBLOCK configuration:\n");
2145 	pr_info(" memory size = %pa reserved size = %pa\n",
2146 		&memblock.memory.total_size,
2147 		&memblock.reserved.total_size);
2148 
2149 	memblock_dump(&memblock.memory);
2150 	memblock_dump(&memblock.reserved);
2151 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2152 	memblock_dump(&physmem);
2153 #endif
2154 }
2155 
memblock_dump_all(void)2156 void __init_memblock memblock_dump_all(void)
2157 {
2158 	if (memblock_debug)
2159 		__memblock_dump_all();
2160 }
2161 
memblock_allow_resize(void)2162 void __init memblock_allow_resize(void)
2163 {
2164 	memblock_can_resize = 1;
2165 }
2166 
early_memblock(char * p)2167 static int __init early_memblock(char *p)
2168 {
2169 	if (p && strstr(p, "debug"))
2170 		memblock_debug = 1;
2171 	return 0;
2172 }
2173 early_param("memblock", early_memblock);
2174 
free_memmap(unsigned long start_pfn,unsigned long end_pfn)2175 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2176 {
2177 	struct page *start_pg, *end_pg;
2178 	phys_addr_t pg, pgend;
2179 
2180 	/*
2181 	 * Convert start_pfn/end_pfn to a struct page pointer.
2182 	 */
2183 	start_pg = pfn_to_page(start_pfn - 1) + 1;
2184 	end_pg = pfn_to_page(end_pfn - 1) + 1;
2185 
2186 	/*
2187 	 * Convert to physical addresses, and round start upwards and end
2188 	 * downwards.
2189 	 */
2190 	pg = PAGE_ALIGN(__pa(start_pg));
2191 	pgend = PAGE_ALIGN_DOWN(__pa(end_pg));
2192 
2193 	/*
2194 	 * If there are free pages between these, free the section of the
2195 	 * memmap array.
2196 	 */
2197 	if (pg < pgend)
2198 		memblock_phys_free(pg, pgend - pg);
2199 }
2200 
2201 /*
2202  * The mem_map array can get very big.  Free the unused area of the memory map.
2203  */
free_unused_memmap(void)2204 static void __init free_unused_memmap(void)
2205 {
2206 	unsigned long start, end, prev_end = 0;
2207 	int i;
2208 
2209 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2210 	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2211 		return;
2212 
2213 	/*
2214 	 * This relies on each bank being in address order.
2215 	 * The banks are sorted previously in bootmem_init().
2216 	 */
2217 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2218 #ifdef CONFIG_SPARSEMEM
2219 		/*
2220 		 * Take care not to free memmap entries that don't exist
2221 		 * due to SPARSEMEM sections which aren't present.
2222 		 */
2223 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2224 #endif
2225 		/*
2226 		 * Align down here since many operations in VM subsystem
2227 		 * presume that there are no holes in the memory map inside
2228 		 * a pageblock
2229 		 */
2230 		start = pageblock_start_pfn(start);
2231 
2232 		/*
2233 		 * If we had a previous bank, and there is a space
2234 		 * between the current bank and the previous, free it.
2235 		 */
2236 		if (prev_end && prev_end < start)
2237 			free_memmap(prev_end, start);
2238 
2239 		/*
2240 		 * Align up here since many operations in VM subsystem
2241 		 * presume that there are no holes in the memory map inside
2242 		 * a pageblock
2243 		 */
2244 		prev_end = pageblock_align(end);
2245 	}
2246 
2247 #ifdef CONFIG_SPARSEMEM
2248 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2249 		prev_end = pageblock_align(end);
2250 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2251 	}
2252 #endif
2253 }
2254 
__free_pages_memory(unsigned long start,unsigned long end)2255 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2256 {
2257 	int order;
2258 
2259 	while (start < end) {
2260 		/*
2261 		 * Free the pages in the largest chunks alignment allows.
2262 		 *
2263 		 * __ffs() behaviour is undefined for 0. start == 0 is
2264 		 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2265 		 * the case.
2266 		 */
2267 		if (start)
2268 			order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
2269 		else
2270 			order = MAX_PAGE_ORDER;
2271 
2272 		while (start + (1UL << order) > end)
2273 			order--;
2274 
2275 		memblock_free_pages(pfn_to_page(start), start, order);
2276 
2277 		start += (1UL << order);
2278 	}
2279 }
2280 
__free_memory_core(phys_addr_t start,phys_addr_t end)2281 static unsigned long __init __free_memory_core(phys_addr_t start,
2282 				 phys_addr_t end)
2283 {
2284 	unsigned long start_pfn = PFN_UP(start);
2285 	unsigned long end_pfn = PFN_DOWN(end);
2286 
2287 	if (!IS_ENABLED(CONFIG_HIGHMEM) && end_pfn > max_low_pfn)
2288 		end_pfn = max_low_pfn;
2289 
2290 	if (start_pfn >= end_pfn)
2291 		return 0;
2292 
2293 	__free_pages_memory(start_pfn, end_pfn);
2294 
2295 	return end_pfn - start_pfn;
2296 }
2297 
memmap_init_reserved_pages(void)2298 static void __init memmap_init_reserved_pages(void)
2299 {
2300 	struct memblock_region *region;
2301 	phys_addr_t start, end;
2302 	int nid;
2303 	unsigned long max_reserved;
2304 
2305 	/*
2306 	 * set nid on all reserved pages and also treat struct
2307 	 * pages for the NOMAP regions as PageReserved
2308 	 */
2309 repeat:
2310 	max_reserved = memblock.reserved.max;
2311 	for_each_mem_region(region) {
2312 		nid = memblock_get_region_node(region);
2313 		start = region->base;
2314 		end = start + region->size;
2315 
2316 		if (memblock_is_nomap(region))
2317 			reserve_bootmem_region(start, end, nid);
2318 
2319 		memblock_set_node(start, region->size, &memblock.reserved, nid);
2320 	}
2321 	/*
2322 	 * 'max' is changed means memblock.reserved has been doubled its
2323 	 * array, which may result a new reserved region before current
2324 	 * 'start'. Now we should repeat the procedure to set its node id.
2325 	 */
2326 	if (max_reserved != memblock.reserved.max)
2327 		goto repeat;
2328 
2329 	/*
2330 	 * initialize struct pages for reserved regions that don't have
2331 	 * the MEMBLOCK_RSRV_NOINIT flag set
2332 	 */
2333 	for_each_reserved_mem_region(region) {
2334 		if (!memblock_is_reserved_noinit(region)) {
2335 			nid = memblock_get_region_node(region);
2336 			start = region->base;
2337 			end = start + region->size;
2338 
2339 			if (!numa_valid_node(nid))
2340 				nid = early_pfn_to_nid(PFN_DOWN(start));
2341 
2342 			reserve_bootmem_region(start, end, nid);
2343 		}
2344 	}
2345 }
2346 
free_low_memory_core_early(void)2347 static unsigned long __init free_low_memory_core_early(void)
2348 {
2349 	unsigned long count = 0;
2350 	phys_addr_t start, end;
2351 	u64 i;
2352 
2353 	memblock_clear_hotplug(0, -1);
2354 
2355 	memmap_init_reserved_pages();
2356 
2357 	/*
2358 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2359 	 *  because in some case like Node0 doesn't have RAM installed
2360 	 *  low ram will be on Node1
2361 	 */
2362 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2363 				NULL)
2364 		count += __free_memory_core(start, end);
2365 
2366 	return count;
2367 }
2368 
2369 static int reset_managed_pages_done __initdata;
2370 
reset_node_managed_pages(pg_data_t * pgdat)2371 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2372 {
2373 	struct zone *z;
2374 
2375 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2376 		atomic_long_set(&z->managed_pages, 0);
2377 }
2378 
reset_all_zones_managed_pages(void)2379 void __init reset_all_zones_managed_pages(void)
2380 {
2381 	struct pglist_data *pgdat;
2382 
2383 	if (reset_managed_pages_done)
2384 		return;
2385 
2386 	for_each_online_pgdat(pgdat)
2387 		reset_node_managed_pages(pgdat);
2388 
2389 	reset_managed_pages_done = 1;
2390 }
2391 
2392 /**
2393  * memblock_free_all - release free pages to the buddy allocator
2394  */
memblock_free_all(void)2395 void __init memblock_free_all(void)
2396 {
2397 	unsigned long pages;
2398 
2399 	free_unused_memmap();
2400 	reset_all_zones_managed_pages();
2401 
2402 	memblock_clear_kho_scratch_only();
2403 	pages = free_low_memory_core_early();
2404 	totalram_pages_add(pages);
2405 }
2406 
2407 /* Keep a table to reserve named memory */
2408 #define RESERVE_MEM_MAX_ENTRIES		8
2409 #define RESERVE_MEM_NAME_SIZE		16
2410 struct reserve_mem_table {
2411 	char			name[RESERVE_MEM_NAME_SIZE];
2412 	phys_addr_t		start;
2413 	phys_addr_t		size;
2414 };
2415 static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES];
2416 static int reserved_mem_count;
2417 static DEFINE_MUTEX(reserve_mem_lock);
2418 
2419 /* Add wildcard region with a lookup name */
reserved_mem_add(phys_addr_t start,phys_addr_t size,const char * name)2420 static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size,
2421 				   const char *name)
2422 {
2423 	struct reserve_mem_table *map;
2424 
2425 	map = &reserved_mem_table[reserved_mem_count++];
2426 	map->start = start;
2427 	map->size = size;
2428 	strscpy(map->name, name);
2429 }
2430 
reserve_mem_find_by_name_nolock(const char * name)2431 static struct reserve_mem_table *reserve_mem_find_by_name_nolock(const char *name)
2432 {
2433 	struct reserve_mem_table *map;
2434 	int i;
2435 
2436 	for (i = 0; i < reserved_mem_count; i++) {
2437 		map = &reserved_mem_table[i];
2438 		if (!map->size)
2439 			continue;
2440 		if (strcmp(name, map->name) == 0)
2441 			return map;
2442 	}
2443 	return NULL;
2444 }
2445 
2446 /**
2447  * reserve_mem_find_by_name - Find reserved memory region with a given name
2448  * @name: The name that is attached to a reserved memory region
2449  * @start: If found, holds the start address
2450  * @size: If found, holds the size of the address.
2451  *
2452  * @start and @size are only updated if @name is found.
2453  *
2454  * Returns: 1 if found or 0 if not found.
2455  */
reserve_mem_find_by_name(const char * name,phys_addr_t * start,phys_addr_t * size)2456 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size)
2457 {
2458 	struct reserve_mem_table *map;
2459 
2460 	guard(mutex)(&reserve_mem_lock);
2461 	map = reserve_mem_find_by_name_nolock(name);
2462 	if (!map)
2463 		return 0;
2464 
2465 	*start = map->start;
2466 	*size = map->size;
2467 	return 1;
2468 }
2469 EXPORT_SYMBOL_GPL(reserve_mem_find_by_name);
2470 
2471 /**
2472  * reserve_mem_release_by_name - Release reserved memory region with a given name
2473  * @name: The name that is attatched to a reserved memory region
2474  *
2475  * Forcibly release the pages in the reserved memory region so that those memory
2476  * can be used as free memory. After released the reserved region size becomes 0.
2477  *
2478  * Returns: 1 if released or 0 if not found.
2479  */
reserve_mem_release_by_name(const char * name)2480 int reserve_mem_release_by_name(const char *name)
2481 {
2482 	char buf[RESERVE_MEM_NAME_SIZE + 12];
2483 	struct reserve_mem_table *map;
2484 	void *start, *end;
2485 
2486 	guard(mutex)(&reserve_mem_lock);
2487 	map = reserve_mem_find_by_name_nolock(name);
2488 	if (!map)
2489 		return 0;
2490 
2491 	start = phys_to_virt(map->start);
2492 	end = start + map->size - 1;
2493 	snprintf(buf, sizeof(buf), "reserve_mem:%s", name);
2494 	free_reserved_area(start, end, 0, buf);
2495 	map->size = 0;
2496 
2497 	return 1;
2498 }
2499 
2500 #ifdef CONFIG_KEXEC_HANDOVER
2501 #define MEMBLOCK_KHO_FDT "memblock"
2502 #define MEMBLOCK_KHO_NODE_COMPATIBLE "memblock-v1"
2503 #define RESERVE_MEM_KHO_NODE_COMPATIBLE "reserve-mem-v1"
2504 static struct page *kho_fdt;
2505 
reserve_mem_kho_finalize(struct kho_serialization * ser)2506 static int reserve_mem_kho_finalize(struct kho_serialization *ser)
2507 {
2508 	int err = 0, i;
2509 
2510 	for (i = 0; i < reserved_mem_count; i++) {
2511 		struct reserve_mem_table *map = &reserved_mem_table[i];
2512 
2513 		err |= kho_preserve_phys(map->start, map->size);
2514 	}
2515 
2516 	err |= kho_preserve_folio(page_folio(kho_fdt));
2517 	err |= kho_add_subtree(ser, MEMBLOCK_KHO_FDT, page_to_virt(kho_fdt));
2518 
2519 	return notifier_from_errno(err);
2520 }
2521 
reserve_mem_kho_notifier(struct notifier_block * self,unsigned long cmd,void * v)2522 static int reserve_mem_kho_notifier(struct notifier_block *self,
2523 				    unsigned long cmd, void *v)
2524 {
2525 	switch (cmd) {
2526 	case KEXEC_KHO_FINALIZE:
2527 		return reserve_mem_kho_finalize((struct kho_serialization *)v);
2528 	case KEXEC_KHO_ABORT:
2529 		return NOTIFY_DONE;
2530 	default:
2531 		return NOTIFY_BAD;
2532 	}
2533 }
2534 
2535 static struct notifier_block reserve_mem_kho_nb = {
2536 	.notifier_call = reserve_mem_kho_notifier,
2537 };
2538 
prepare_kho_fdt(void)2539 static int __init prepare_kho_fdt(void)
2540 {
2541 	int err = 0, i;
2542 	void *fdt;
2543 
2544 	kho_fdt = alloc_page(GFP_KERNEL);
2545 	if (!kho_fdt)
2546 		return -ENOMEM;
2547 
2548 	fdt = page_to_virt(kho_fdt);
2549 
2550 	err |= fdt_create(fdt, PAGE_SIZE);
2551 	err |= fdt_finish_reservemap(fdt);
2552 
2553 	err |= fdt_begin_node(fdt, "");
2554 	err |= fdt_property_string(fdt, "compatible", MEMBLOCK_KHO_NODE_COMPATIBLE);
2555 	for (i = 0; i < reserved_mem_count; i++) {
2556 		struct reserve_mem_table *map = &reserved_mem_table[i];
2557 
2558 		err |= fdt_begin_node(fdt, map->name);
2559 		err |= fdt_property_string(fdt, "compatible", RESERVE_MEM_KHO_NODE_COMPATIBLE);
2560 		err |= fdt_property(fdt, "start", &map->start, sizeof(map->start));
2561 		err |= fdt_property(fdt, "size", &map->size, sizeof(map->size));
2562 		err |= fdt_end_node(fdt);
2563 	}
2564 	err |= fdt_end_node(fdt);
2565 
2566 	err |= fdt_finish(fdt);
2567 
2568 	if (err) {
2569 		pr_err("failed to prepare memblock FDT for KHO: %d\n", err);
2570 		put_page(kho_fdt);
2571 		kho_fdt = NULL;
2572 	}
2573 
2574 	return err;
2575 }
2576 
reserve_mem_init(void)2577 static int __init reserve_mem_init(void)
2578 {
2579 	int err;
2580 
2581 	if (!kho_is_enabled() || !reserved_mem_count)
2582 		return 0;
2583 
2584 	err = prepare_kho_fdt();
2585 	if (err)
2586 		return err;
2587 
2588 	err = register_kho_notifier(&reserve_mem_kho_nb);
2589 	if (err) {
2590 		put_page(kho_fdt);
2591 		kho_fdt = NULL;
2592 	}
2593 
2594 	return err;
2595 }
2596 late_initcall(reserve_mem_init);
2597 
reserve_mem_kho_retrieve_fdt(void)2598 static void *__init reserve_mem_kho_retrieve_fdt(void)
2599 {
2600 	phys_addr_t fdt_phys;
2601 	static void *fdt;
2602 	int err;
2603 
2604 	if (fdt)
2605 		return fdt;
2606 
2607 	err = kho_retrieve_subtree(MEMBLOCK_KHO_FDT, &fdt_phys);
2608 	if (err) {
2609 		if (err != -ENOENT)
2610 			pr_warn("failed to retrieve FDT '%s' from KHO: %d\n",
2611 				MEMBLOCK_KHO_FDT, err);
2612 		return NULL;
2613 	}
2614 
2615 	fdt = phys_to_virt(fdt_phys);
2616 
2617 	err = fdt_node_check_compatible(fdt, 0, MEMBLOCK_KHO_NODE_COMPATIBLE);
2618 	if (err) {
2619 		pr_warn("FDT '%s' is incompatible with '%s': %d\n",
2620 			MEMBLOCK_KHO_FDT, MEMBLOCK_KHO_NODE_COMPATIBLE, err);
2621 		fdt = NULL;
2622 	}
2623 
2624 	return fdt;
2625 }
2626 
reserve_mem_kho_revive(const char * name,phys_addr_t size,phys_addr_t align)2627 static bool __init reserve_mem_kho_revive(const char *name, phys_addr_t size,
2628 					  phys_addr_t align)
2629 {
2630 	int err, len_start, len_size, offset;
2631 	const phys_addr_t *p_start, *p_size;
2632 	const void *fdt;
2633 
2634 	fdt = reserve_mem_kho_retrieve_fdt();
2635 	if (!fdt)
2636 		return false;
2637 
2638 	offset = fdt_subnode_offset(fdt, 0, name);
2639 	if (offset < 0) {
2640 		pr_warn("FDT '%s' has no child '%s': %d\n",
2641 			MEMBLOCK_KHO_FDT, name, offset);
2642 		return false;
2643 	}
2644 	err = fdt_node_check_compatible(fdt, offset, RESERVE_MEM_KHO_NODE_COMPATIBLE);
2645 	if (err) {
2646 		pr_warn("Node '%s' is incompatible with '%s': %d\n",
2647 			name, RESERVE_MEM_KHO_NODE_COMPATIBLE, err);
2648 		return false;
2649 	}
2650 
2651 	p_start = fdt_getprop(fdt, offset, "start", &len_start);
2652 	p_size = fdt_getprop(fdt, offset, "size", &len_size);
2653 	if (!p_start || len_start != sizeof(*p_start) || !p_size ||
2654 	    len_size != sizeof(*p_size)) {
2655 		return false;
2656 	}
2657 
2658 	if (*p_start & (align - 1)) {
2659 		pr_warn("KHO reserve-mem '%s' has wrong alignment (0x%lx, 0x%lx)\n",
2660 			name, (long)align, (long)*p_start);
2661 		return false;
2662 	}
2663 
2664 	if (*p_size != size) {
2665 		pr_warn("KHO reserve-mem '%s' has wrong size (0x%lx != 0x%lx)\n",
2666 			name, (long)*p_size, (long)size);
2667 		return false;
2668 	}
2669 
2670 	reserved_mem_add(*p_start, size, name);
2671 	pr_info("Revived memory reservation '%s' from KHO\n", name);
2672 
2673 	return true;
2674 }
2675 #else
reserve_mem_kho_revive(const char * name,phys_addr_t size,phys_addr_t align)2676 static bool __init reserve_mem_kho_revive(const char *name, phys_addr_t size,
2677 					  phys_addr_t align)
2678 {
2679 	return false;
2680 }
2681 #endif /* CONFIG_KEXEC_HANDOVER */
2682 
2683 /*
2684  * Parse reserve_mem=nn:align:name
2685  */
reserve_mem(char * p)2686 static int __init reserve_mem(char *p)
2687 {
2688 	phys_addr_t start, size, align, tmp;
2689 	char *name;
2690 	char *oldp;
2691 	int len;
2692 
2693 	if (!p)
2694 		return -EINVAL;
2695 
2696 	/* Check if there's room for more reserved memory */
2697 	if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES)
2698 		return -EBUSY;
2699 
2700 	oldp = p;
2701 	size = memparse(p, &p);
2702 	if (!size || p == oldp)
2703 		return -EINVAL;
2704 
2705 	if (*p != ':')
2706 		return -EINVAL;
2707 
2708 	align = memparse(p+1, &p);
2709 	if (*p != ':')
2710 		return -EINVAL;
2711 
2712 	/*
2713 	 * memblock_phys_alloc() doesn't like a zero size align,
2714 	 * but it is OK for this command to have it.
2715 	 */
2716 	if (align < SMP_CACHE_BYTES)
2717 		align = SMP_CACHE_BYTES;
2718 
2719 	name = p + 1;
2720 	len = strlen(name);
2721 
2722 	/* name needs to have length but not too big */
2723 	if (!len || len >= RESERVE_MEM_NAME_SIZE)
2724 		return -EINVAL;
2725 
2726 	/* Make sure that name has text */
2727 	for (p = name; *p; p++) {
2728 		if (!isspace(*p))
2729 			break;
2730 	}
2731 	if (!*p)
2732 		return -EINVAL;
2733 
2734 	/* Make sure the name is not already used */
2735 	if (reserve_mem_find_by_name(name, &start, &tmp))
2736 		return -EBUSY;
2737 
2738 	/* Pick previous allocations up from KHO if available */
2739 	if (reserve_mem_kho_revive(name, size, align))
2740 		return 1;
2741 
2742 	/* TODO: Allocation must be outside of scratch region */
2743 	start = memblock_phys_alloc(size, align);
2744 	if (!start)
2745 		return -ENOMEM;
2746 
2747 	reserved_mem_add(start, size, name);
2748 
2749 	return 1;
2750 }
2751 __setup("reserve_mem=", reserve_mem);
2752 
2753 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2754 static const char * const flagname[] = {
2755 	[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2756 	[ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2757 	[ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2758 	[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2759 	[ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
2760 	[ilog2(MEMBLOCK_RSRV_KERN)] = "RSV_KERN",
2761 	[ilog2(MEMBLOCK_KHO_SCRATCH)] = "KHO_SCRATCH",
2762 };
2763 
memblock_debug_show(struct seq_file * m,void * private)2764 static int memblock_debug_show(struct seq_file *m, void *private)
2765 {
2766 	struct memblock_type *type = m->private;
2767 	struct memblock_region *reg;
2768 	int i, j, nid;
2769 	unsigned int count = ARRAY_SIZE(flagname);
2770 	phys_addr_t end;
2771 
2772 	for (i = 0; i < type->cnt; i++) {
2773 		reg = &type->regions[i];
2774 		end = reg->base + reg->size - 1;
2775 		nid = memblock_get_region_node(reg);
2776 
2777 		seq_printf(m, "%4d: ", i);
2778 		seq_printf(m, "%pa..%pa ", &reg->base, &end);
2779 		if (numa_valid_node(nid))
2780 			seq_printf(m, "%4d ", nid);
2781 		else
2782 			seq_printf(m, "%4c ", 'x');
2783 		if (reg->flags) {
2784 			for (j = 0; j < count; j++) {
2785 				if (reg->flags & (1U << j)) {
2786 					seq_printf(m, "%s\n", flagname[j]);
2787 					break;
2788 				}
2789 			}
2790 			if (j == count)
2791 				seq_printf(m, "%s\n", "UNKNOWN");
2792 		} else {
2793 			seq_printf(m, "%s\n", "NONE");
2794 		}
2795 	}
2796 	return 0;
2797 }
2798 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2799 
memblock_init_debugfs(void)2800 static int __init memblock_init_debugfs(void)
2801 {
2802 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2803 
2804 	debugfs_create_file("memory", 0444, root,
2805 			    &memblock.memory, &memblock_debug_fops);
2806 	debugfs_create_file("reserved", 0444, root,
2807 			    &memblock.reserved, &memblock_debug_fops);
2808 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2809 	debugfs_create_file("physmem", 0444, root, &physmem,
2810 			    &memblock_debug_fops);
2811 #endif
2812 
2813 	return 0;
2814 }
2815 __initcall(memblock_init_debugfs);
2816 
2817 #endif /* CONFIG_DEBUG_FS */
2818