1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for maintaining information about logical memory blocks. 4 * 5 * Peter Bergner, IBM Corp. June 2001. 6 * Copyright (C) 2001 Peter Bergner. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/init.h> 12 #include <linux/bitops.h> 13 #include <linux/poison.h> 14 #include <linux/pfn.h> 15 #include <linux/debugfs.h> 16 #include <linux/kmemleak.h> 17 #include <linux/seq_file.h> 18 #include <linux/memblock.h> 19 #include <linux/mutex.h> 20 21 #ifdef CONFIG_KEXEC_HANDOVER 22 #include <linux/libfdt.h> 23 #include <linux/kexec_handover.h> 24 #include <linux/kho/abi/memblock.h> 25 #endif /* CONFIG_KEXEC_HANDOVER */ 26 27 #include <asm/sections.h> 28 #include <linux/io.h> 29 30 #include "internal.h" 31 32 #define INIT_MEMBLOCK_REGIONS 128 33 #define INIT_PHYSMEM_REGIONS 4 34 35 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS 36 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS 37 #endif 38 39 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS 40 #define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS 41 #endif 42 43 /** 44 * DOC: memblock overview 45 * 46 * Memblock is a method of managing memory regions during the early 47 * boot period when the usual kernel memory allocators are not up and 48 * running. 49 * 50 * Memblock views the system memory as collections of contiguous 51 * regions. There are several types of these collections: 52 * 53 * * ``memory`` - describes the physical memory available to the 54 * kernel; this may differ from the actual physical memory installed 55 * in the system, for instance when the memory is restricted with 56 * ``mem=`` command line parameter 57 * * ``reserved`` - describes the regions that were allocated 58 * * ``physmem`` - describes the actual physical memory available during 59 * boot regardless of the possible restrictions and memory hot(un)plug; 60 * the ``physmem`` type is only available on some architectures. 61 * 62 * Each region is represented by struct memblock_region that 63 * defines the region extents, its attributes and NUMA node id on NUMA 64 * systems. Every memory type is described by the struct memblock_type 65 * which contains an array of memory regions along with 66 * the allocator metadata. The "memory" and "reserved" types are nicely 67 * wrapped with struct memblock. This structure is statically 68 * initialized at build time. The region arrays are initially sized to 69 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and 70 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array 71 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS. 72 * The memblock_allow_resize() enables automatic resizing of the region 73 * arrays during addition of new regions. This feature should be used 74 * with care so that memory allocated for the region array will not 75 * overlap with areas that should be reserved, for example initrd. 76 * 77 * The early architecture setup should tell memblock what the physical 78 * memory layout is by using memblock_add() or memblock_add_node() 79 * functions. The first function does not assign the region to a NUMA 80 * node and it is appropriate for UMA systems. Yet, it is possible to 81 * use it on NUMA systems as well and assign the region to a NUMA node 82 * later in the setup process using memblock_set_node(). The 83 * memblock_add_node() performs such an assignment directly. 84 * 85 * Once memblock is setup the memory can be allocated using one of the 86 * API variants: 87 * 88 * * memblock_phys_alloc*() - these functions return the **physical** 89 * address of the allocated memory 90 * * memblock_alloc*() - these functions return the **virtual** address 91 * of the allocated memory. 92 * 93 * Note, that both API variants use implicit assumptions about allowed 94 * memory ranges and the fallback methods. Consult the documentation 95 * of memblock_alloc_internal() and memblock_alloc_range_nid() 96 * functions for more elaborate description. 97 * 98 * As the system boot progresses, the architecture specific mem_init() 99 * function frees all the memory to the buddy page allocator. 100 * 101 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the 102 * memblock data structures (except "physmem") will be discarded after the 103 * system initialization completes. 104 */ 105 106 #ifndef CONFIG_NUMA 107 struct pglist_data __refdata contig_page_data; 108 EXPORT_SYMBOL(contig_page_data); 109 #endif 110 111 unsigned long max_low_pfn; 112 unsigned long min_low_pfn; 113 unsigned long max_pfn; 114 unsigned long long max_possible_pfn; 115 116 #ifdef CONFIG_MEMBLOCK_KHO_SCRATCH 117 /* When set to true, only allocate from MEMBLOCK_KHO_SCRATCH ranges */ 118 static bool kho_scratch_only; 119 #else 120 #define kho_scratch_only false 121 #endif 122 123 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock; 124 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; 125 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 126 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; 127 #endif 128 129 struct memblock memblock __initdata_memblock = { 130 .memory.regions = memblock_memory_init_regions, 131 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS, 132 .memory.name = "memory", 133 134 .reserved.regions = memblock_reserved_init_regions, 135 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, 136 .reserved.name = "reserved", 137 138 .bottom_up = false, 139 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 140 }; 141 142 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 143 struct memblock_type physmem = { 144 .regions = memblock_physmem_init_regions, 145 .max = INIT_PHYSMEM_REGIONS, 146 .name = "physmem", 147 }; 148 #endif 149 150 /* 151 * keep a pointer to &memblock.memory in the text section to use it in 152 * __next_mem_range() and its helpers. 153 * For architectures that do not keep memblock data after init, this 154 * pointer will be reset to NULL at memblock_discard() 155 */ 156 static __refdata struct memblock_type *memblock_memory = &memblock.memory; 157 158 #define for_each_memblock_type(i, memblock_type, rgn) \ 159 for (i = 0, rgn = &memblock_type->regions[0]; \ 160 i < memblock_type->cnt; \ 161 i++, rgn = &memblock_type->regions[i]) 162 163 #define memblock_dbg(fmt, ...) \ 164 do { \ 165 if (memblock_debug) \ 166 pr_info(fmt, ##__VA_ARGS__); \ 167 } while (0) 168 169 static int memblock_debug __initdata_memblock; 170 static bool system_has_some_mirror __initdata_memblock; 171 static int memblock_can_resize __initdata_memblock; 172 static int memblock_memory_in_slab __initdata_memblock; 173 static int memblock_reserved_in_slab __initdata_memblock; 174 175 bool __init_memblock memblock_has_mirror(void) 176 { 177 return system_has_some_mirror; 178 } 179 180 static enum memblock_flags __init_memblock choose_memblock_flags(void) 181 { 182 /* skip non-scratch memory for kho early boot allocations */ 183 if (kho_scratch_only) 184 return MEMBLOCK_KHO_SCRATCH; 185 186 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 187 } 188 189 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 190 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 191 { 192 return *size = min(*size, PHYS_ADDR_MAX - base); 193 } 194 195 /* 196 * Address comparison utilities 197 */ 198 unsigned long __init_memblock 199 memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2, 200 phys_addr_t size2) 201 { 202 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 203 } 204 205 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 206 phys_addr_t base, phys_addr_t size) 207 { 208 unsigned long i; 209 210 memblock_cap_size(base, &size); 211 212 for (i = 0; i < type->cnt; i++) 213 if (memblock_addrs_overlap(base, size, type->regions[i].base, 214 type->regions[i].size)) 215 return true; 216 return false; 217 } 218 219 /** 220 * __memblock_find_range_bottom_up - find free area utility in bottom-up 221 * @start: start of candidate range 222 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 223 * %MEMBLOCK_ALLOC_ACCESSIBLE 224 * @size: size of free area to find 225 * @align: alignment of free area to find 226 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 227 * @flags: pick from blocks based on memory attributes 228 * 229 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 230 * 231 * Return: 232 * Found address on success, 0 on failure. 233 */ 234 static phys_addr_t __init_memblock 235 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 236 phys_addr_t size, phys_addr_t align, int nid, 237 enum memblock_flags flags) 238 { 239 phys_addr_t this_start, this_end, cand; 240 u64 i; 241 242 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 243 this_start = clamp(this_start, start, end); 244 this_end = clamp(this_end, start, end); 245 246 cand = round_up(this_start, align); 247 if (cand < this_end && this_end - cand >= size) 248 return cand; 249 } 250 251 return 0; 252 } 253 254 /** 255 * __memblock_find_range_top_down - find free area utility, in top-down 256 * @start: start of candidate range 257 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 258 * %MEMBLOCK_ALLOC_ACCESSIBLE 259 * @size: size of free area to find 260 * @align: alignment of free area to find 261 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 262 * @flags: pick from blocks based on memory attributes 263 * 264 * Utility called from memblock_find_in_range_node(), find free area top-down. 265 * 266 * Return: 267 * Found address on success, 0 on failure. 268 */ 269 static phys_addr_t __init_memblock 270 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 271 phys_addr_t size, phys_addr_t align, int nid, 272 enum memblock_flags flags) 273 { 274 phys_addr_t this_start, this_end, cand; 275 u64 i; 276 277 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 278 NULL) { 279 this_start = clamp(this_start, start, end); 280 this_end = clamp(this_end, start, end); 281 282 if (this_end < size) 283 continue; 284 285 cand = round_down(this_end - size, align); 286 if (cand >= this_start) 287 return cand; 288 } 289 290 return 0; 291 } 292 293 /** 294 * memblock_find_in_range_node - find free area in given range and node 295 * @size: size of free area to find 296 * @align: alignment of free area to find 297 * @start: start of candidate range 298 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 299 * %MEMBLOCK_ALLOC_ACCESSIBLE 300 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 301 * @flags: pick from blocks based on memory attributes 302 * 303 * Find @size free area aligned to @align in the specified range and node. 304 * 305 * Return: 306 * Found address on success, 0 on failure. 307 */ 308 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 309 phys_addr_t align, phys_addr_t start, 310 phys_addr_t end, int nid, 311 enum memblock_flags flags) 312 { 313 /* pump up @end */ 314 if (end == MEMBLOCK_ALLOC_ACCESSIBLE || 315 end == MEMBLOCK_ALLOC_NOLEAKTRACE) 316 end = memblock.current_limit; 317 318 /* avoid allocating the first page */ 319 start = max_t(phys_addr_t, start, PAGE_SIZE); 320 end = max(start, end); 321 322 if (memblock_bottom_up()) 323 return __memblock_find_range_bottom_up(start, end, size, align, 324 nid, flags); 325 else 326 return __memblock_find_range_top_down(start, end, size, align, 327 nid, flags); 328 } 329 330 /** 331 * memblock_find_in_range - find free area in given range 332 * @start: start of candidate range 333 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 334 * %MEMBLOCK_ALLOC_ACCESSIBLE 335 * @size: size of free area to find 336 * @align: alignment of free area to find 337 * 338 * Find @size free area aligned to @align in the specified range. 339 * 340 * Return: 341 * Found address on success, 0 on failure. 342 */ 343 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 344 phys_addr_t end, phys_addr_t size, 345 phys_addr_t align) 346 { 347 phys_addr_t ret; 348 enum memblock_flags flags = choose_memblock_flags(); 349 350 again: 351 ret = memblock_find_in_range_node(size, align, start, end, 352 NUMA_NO_NODE, flags); 353 354 if (!ret && (flags & MEMBLOCK_MIRROR)) { 355 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", 356 &size); 357 flags &= ~MEMBLOCK_MIRROR; 358 goto again; 359 } 360 361 return ret; 362 } 363 364 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 365 { 366 type->total_size -= type->regions[r].size; 367 memmove(&type->regions[r], &type->regions[r + 1], 368 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 369 type->cnt--; 370 371 /* Special case for empty arrays */ 372 if (type->cnt == 0) { 373 WARN_ON(type->total_size != 0); 374 type->regions[0].base = 0; 375 type->regions[0].size = 0; 376 type->regions[0].flags = 0; 377 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 378 } 379 } 380 381 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK 382 /** 383 * memblock_discard - discard memory and reserved arrays if they were allocated 384 */ 385 void __init memblock_discard(void) 386 { 387 phys_addr_t addr, size; 388 389 if (memblock.reserved.regions != memblock_reserved_init_regions) { 390 addr = __pa(memblock.reserved.regions); 391 size = PAGE_ALIGN(sizeof(struct memblock_region) * 392 memblock.reserved.max); 393 if (memblock_reserved_in_slab) 394 kfree(memblock.reserved.regions); 395 else 396 memblock_free_late(addr, size); 397 } 398 399 if (memblock.memory.regions != memblock_memory_init_regions) { 400 addr = __pa(memblock.memory.regions); 401 size = PAGE_ALIGN(sizeof(struct memblock_region) * 402 memblock.memory.max); 403 if (memblock_memory_in_slab) 404 kfree(memblock.memory.regions); 405 else 406 memblock_free_late(addr, size); 407 } 408 409 memblock_memory = NULL; 410 } 411 #endif 412 413 /** 414 * memblock_double_array - double the size of the memblock regions array 415 * @type: memblock type of the regions array being doubled 416 * @new_area_start: starting address of memory range to avoid overlap with 417 * @new_area_size: size of memory range to avoid overlap with 418 * 419 * Double the size of the @type regions array. If memblock is being used to 420 * allocate memory for a new reserved regions array and there is a previously 421 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 422 * waiting to be reserved, ensure the memory used by the new array does 423 * not overlap. 424 * 425 * Return: 426 * 0 on success, -1 on failure. 427 */ 428 static int __init_memblock memblock_double_array(struct memblock_type *type, 429 phys_addr_t new_area_start, 430 phys_addr_t new_area_size) 431 { 432 struct memblock_region *new_array, *old_array; 433 phys_addr_t old_alloc_size, new_alloc_size; 434 phys_addr_t old_size, new_size, addr, new_end; 435 int use_slab = slab_is_available(); 436 int *in_slab; 437 438 /* We don't allow resizing until we know about the reserved regions 439 * of memory that aren't suitable for allocation 440 */ 441 if (!memblock_can_resize) 442 panic("memblock: cannot resize %s array\n", type->name); 443 444 /* Calculate new doubled size */ 445 old_size = type->max * sizeof(struct memblock_region); 446 new_size = old_size << 1; 447 /* 448 * We need to allocated new one align to PAGE_SIZE, 449 * so we can free them completely later. 450 */ 451 old_alloc_size = PAGE_ALIGN(old_size); 452 new_alloc_size = PAGE_ALIGN(new_size); 453 454 /* Retrieve the slab flag */ 455 if (type == &memblock.memory) 456 in_slab = &memblock_memory_in_slab; 457 else 458 in_slab = &memblock_reserved_in_slab; 459 460 /* Try to find some space for it */ 461 if (use_slab) { 462 new_array = kmalloc(new_size, GFP_KERNEL); 463 addr = new_array ? __pa(new_array) : 0; 464 } else { 465 /* only exclude range when trying to double reserved.regions */ 466 if (type != &memblock.reserved) 467 new_area_start = new_area_size = 0; 468 469 addr = memblock_find_in_range(new_area_start + new_area_size, 470 memblock.current_limit, 471 new_alloc_size, PAGE_SIZE); 472 if (!addr && new_area_size) 473 addr = memblock_find_in_range(0, 474 min(new_area_start, memblock.current_limit), 475 new_alloc_size, PAGE_SIZE); 476 477 if (addr) { 478 /* The memory may not have been accepted, yet. */ 479 accept_memory(addr, new_alloc_size); 480 481 new_array = __va(addr); 482 } else { 483 new_array = NULL; 484 } 485 } 486 if (!addr) { 487 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 488 type->name, type->max, type->max * 2); 489 return -1; 490 } 491 492 new_end = addr + new_size - 1; 493 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 494 type->name, type->max * 2, &addr, &new_end); 495 496 /* 497 * Found space, we now need to move the array over before we add the 498 * reserved region since it may be our reserved array itself that is 499 * full. 500 */ 501 memcpy(new_array, type->regions, old_size); 502 memset(new_array + type->max, 0, old_size); 503 old_array = type->regions; 504 type->regions = new_array; 505 type->max <<= 1; 506 507 /* Free old array. We needn't free it if the array is the static one */ 508 if (*in_slab) 509 kfree(old_array); 510 else if (old_array != memblock_memory_init_regions && 511 old_array != memblock_reserved_init_regions) 512 memblock_free(old_array, old_alloc_size); 513 514 /* 515 * Reserve the new array if that comes from the memblock. Otherwise, we 516 * needn't do it 517 */ 518 if (!use_slab) 519 BUG_ON(memblock_reserve_kern(addr, new_alloc_size)); 520 521 /* Update slab flag */ 522 *in_slab = use_slab; 523 524 return 0; 525 } 526 527 /** 528 * memblock_merge_regions - merge neighboring compatible regions 529 * @type: memblock type to scan 530 * @start_rgn: start scanning from (@start_rgn - 1) 531 * @end_rgn: end scanning at (@end_rgn - 1) 532 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn) 533 */ 534 static void __init_memblock memblock_merge_regions(struct memblock_type *type, 535 unsigned long start_rgn, 536 unsigned long end_rgn) 537 { 538 int i = 0; 539 if (start_rgn) 540 i = start_rgn - 1; 541 end_rgn = min(end_rgn, type->cnt - 1); 542 while (i < end_rgn) { 543 struct memblock_region *this = &type->regions[i]; 544 struct memblock_region *next = &type->regions[i + 1]; 545 546 if (this->base + this->size != next->base || 547 memblock_get_region_node(this) != 548 memblock_get_region_node(next) || 549 this->flags != next->flags) { 550 BUG_ON(this->base + this->size > next->base); 551 i++; 552 continue; 553 } 554 555 this->size += next->size; 556 /* move forward from next + 1, index of which is i + 2 */ 557 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 558 type->cnt--; 559 end_rgn--; 560 } 561 } 562 563 /** 564 * memblock_insert_region - insert new memblock region 565 * @type: memblock type to insert into 566 * @idx: index for the insertion point 567 * @base: base address of the new region 568 * @size: size of the new region 569 * @nid: node id of the new region 570 * @flags: flags of the new region 571 * 572 * Insert new memblock region [@base, @base + @size) into @type at @idx. 573 * @type must already have extra room to accommodate the new region. 574 */ 575 static void __init_memblock memblock_insert_region(struct memblock_type *type, 576 int idx, phys_addr_t base, 577 phys_addr_t size, 578 int nid, 579 enum memblock_flags flags) 580 { 581 struct memblock_region *rgn = &type->regions[idx]; 582 583 BUG_ON(type->cnt >= type->max); 584 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 585 rgn->base = base; 586 rgn->size = size; 587 rgn->flags = flags; 588 memblock_set_region_node(rgn, nid); 589 type->cnt++; 590 type->total_size += size; 591 } 592 593 /** 594 * memblock_add_range - add new memblock region 595 * @type: memblock type to add new region into 596 * @base: base address of the new region 597 * @size: size of the new region 598 * @nid: nid of the new region 599 * @flags: flags of the new region 600 * 601 * Add new memblock region [@base, @base + @size) into @type. The new region 602 * is allowed to overlap with existing ones - overlaps don't affect already 603 * existing regions. @type is guaranteed to be minimal (all neighbouring 604 * compatible regions are merged) after the addition. 605 * 606 * Return: 607 * 0 on success, -errno on failure. 608 */ 609 static int __init_memblock memblock_add_range(struct memblock_type *type, 610 phys_addr_t base, phys_addr_t size, 611 int nid, enum memblock_flags flags) 612 { 613 bool insert = false; 614 phys_addr_t obase = base; 615 phys_addr_t end = base + memblock_cap_size(base, &size); 616 int idx, nr_new, start_rgn = -1, end_rgn; 617 struct memblock_region *rgn; 618 619 if (!size) 620 return 0; 621 622 /* special case for empty array */ 623 if (type->regions[0].size == 0) { 624 WARN_ON(type->cnt != 0 || type->total_size); 625 type->regions[0].base = base; 626 type->regions[0].size = size; 627 type->regions[0].flags = flags; 628 memblock_set_region_node(&type->regions[0], nid); 629 type->total_size = size; 630 type->cnt = 1; 631 return 0; 632 } 633 634 /* 635 * The worst case is when new range overlaps all existing regions, 636 * then we'll need type->cnt + 1 empty regions in @type. So if 637 * type->cnt * 2 + 1 is less than or equal to type->max, we know 638 * that there is enough empty regions in @type, and we can insert 639 * regions directly. 640 */ 641 if (type->cnt * 2 + 1 <= type->max) 642 insert = true; 643 644 repeat: 645 /* 646 * The following is executed twice. Once with %false @insert and 647 * then with %true. The first counts the number of regions needed 648 * to accommodate the new area. The second actually inserts them. 649 */ 650 base = obase; 651 nr_new = 0; 652 653 for_each_memblock_type(idx, type, rgn) { 654 phys_addr_t rbase = rgn->base; 655 phys_addr_t rend = rbase + rgn->size; 656 657 if (rbase >= end) 658 break; 659 if (rend <= base) 660 continue; 661 /* 662 * @rgn overlaps. If it separates the lower part of new 663 * area, insert that portion. 664 */ 665 if (rbase > base) { 666 #ifdef CONFIG_NUMA 667 WARN_ON(nid != memblock_get_region_node(rgn)); 668 #endif 669 WARN_ON(flags != MEMBLOCK_NONE && flags != rgn->flags); 670 nr_new++; 671 if (insert) { 672 if (start_rgn == -1) 673 start_rgn = idx; 674 end_rgn = idx + 1; 675 memblock_insert_region(type, idx++, base, 676 rbase - base, nid, 677 flags); 678 } 679 } 680 /* area below @rend is dealt with, forget about it */ 681 base = min(rend, end); 682 } 683 684 /* insert the remaining portion */ 685 if (base < end) { 686 nr_new++; 687 if (insert) { 688 if (start_rgn == -1) 689 start_rgn = idx; 690 end_rgn = idx + 1; 691 memblock_insert_region(type, idx, base, end - base, 692 nid, flags); 693 } 694 } 695 696 if (!nr_new) 697 return 0; 698 699 /* 700 * If this was the first round, resize array and repeat for actual 701 * insertions; otherwise, merge and return. 702 */ 703 if (!insert) { 704 while (type->cnt + nr_new > type->max) 705 if (memblock_double_array(type, obase, size) < 0) 706 return -ENOMEM; 707 insert = true; 708 goto repeat; 709 } else { 710 memblock_merge_regions(type, start_rgn, end_rgn); 711 return 0; 712 } 713 } 714 715 /** 716 * memblock_add_node - add new memblock region within a NUMA node 717 * @base: base address of the new region 718 * @size: size of the new region 719 * @nid: nid of the new region 720 * @flags: flags of the new region 721 * 722 * Add new memblock region [@base, @base + @size) to the "memory" 723 * type. See memblock_add_range() description for mode details 724 * 725 * Return: 726 * 0 on success, -errno on failure. 727 */ 728 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 729 int nid, enum memblock_flags flags) 730 { 731 phys_addr_t end = base + size - 1; 732 733 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__, 734 &base, &end, nid, flags, (void *)_RET_IP_); 735 736 return memblock_add_range(&memblock.memory, base, size, nid, flags); 737 } 738 739 /** 740 * memblock_add - add new memblock region 741 * @base: base address of the new region 742 * @size: size of the new region 743 * 744 * Add new memblock region [@base, @base + @size) to the "memory" 745 * type. See memblock_add_range() description for mode details 746 * 747 * Return: 748 * 0 on success, -errno on failure. 749 */ 750 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 751 { 752 phys_addr_t end = base + size - 1; 753 754 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 755 &base, &end, (void *)_RET_IP_); 756 757 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 758 } 759 760 /** 761 * memblock_validate_numa_coverage - check if amount of memory with 762 * no node ID assigned is less than a threshold 763 * @threshold_bytes: maximal memory size that can have unassigned node 764 * ID (in bytes). 765 * 766 * A buggy firmware may report memory that does not belong to any node. 767 * Check if amount of such memory is below @threshold_bytes. 768 * 769 * Return: true on success, false on failure. 770 */ 771 bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes) 772 { 773 unsigned long nr_pages = 0; 774 unsigned long start_pfn, end_pfn, mem_size_mb; 775 int nid, i; 776 777 /* calculate lost page */ 778 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 779 if (!numa_valid_node(nid)) 780 nr_pages += end_pfn - start_pfn; 781 } 782 783 if ((nr_pages << PAGE_SHIFT) > threshold_bytes) { 784 mem_size_mb = memblock_phys_mem_size() / SZ_1M; 785 pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n", 786 (nr_pages << PAGE_SHIFT) / SZ_1M, mem_size_mb); 787 return false; 788 } 789 790 return true; 791 } 792 793 794 /** 795 * memblock_isolate_range - isolate given range into disjoint memblocks 796 * @type: memblock type to isolate range for 797 * @base: base of range to isolate 798 * @size: size of range to isolate 799 * @start_rgn: out parameter for the start of isolated region 800 * @end_rgn: out parameter for the end of isolated region 801 * 802 * Walk @type and ensure that regions don't cross the boundaries defined by 803 * [@base, @base + @size). Crossing regions are split at the boundaries, 804 * which may create at most two more regions. The index of the first 805 * region inside the range is returned in *@start_rgn and the index of the 806 * first region after the range is returned in *@end_rgn. 807 * 808 * Return: 809 * 0 on success, -errno on failure. 810 */ 811 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 812 phys_addr_t base, phys_addr_t size, 813 int *start_rgn, int *end_rgn) 814 { 815 phys_addr_t end = base + memblock_cap_size(base, &size); 816 int idx; 817 struct memblock_region *rgn; 818 819 *start_rgn = *end_rgn = 0; 820 821 if (!size) 822 return 0; 823 824 /* we'll create at most two more regions */ 825 while (type->cnt + 2 > type->max) 826 if (memblock_double_array(type, base, size) < 0) 827 return -ENOMEM; 828 829 for_each_memblock_type(idx, type, rgn) { 830 phys_addr_t rbase = rgn->base; 831 phys_addr_t rend = rbase + rgn->size; 832 833 if (rbase >= end) 834 break; 835 if (rend <= base) 836 continue; 837 838 if (rbase < base) { 839 /* 840 * @rgn intersects from below. Split and continue 841 * to process the next region - the new top half. 842 */ 843 rgn->base = base; 844 rgn->size -= base - rbase; 845 type->total_size -= base - rbase; 846 memblock_insert_region(type, idx, rbase, base - rbase, 847 memblock_get_region_node(rgn), 848 rgn->flags); 849 } else if (rend > end) { 850 /* 851 * @rgn intersects from above. Split and redo the 852 * current region - the new bottom half. 853 */ 854 rgn->base = end; 855 rgn->size -= end - rbase; 856 type->total_size -= end - rbase; 857 memblock_insert_region(type, idx--, rbase, end - rbase, 858 memblock_get_region_node(rgn), 859 rgn->flags); 860 } else { 861 /* @rgn is fully contained, record it */ 862 if (!*end_rgn) 863 *start_rgn = idx; 864 *end_rgn = idx + 1; 865 } 866 } 867 868 return 0; 869 } 870 871 static int __init_memblock memblock_remove_range(struct memblock_type *type, 872 phys_addr_t base, phys_addr_t size) 873 { 874 int start_rgn, end_rgn; 875 int i, ret; 876 877 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 878 if (ret) 879 return ret; 880 881 for (i = end_rgn - 1; i >= start_rgn; i--) 882 memblock_remove_region(type, i); 883 return 0; 884 } 885 886 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 887 { 888 phys_addr_t end = base + size - 1; 889 890 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 891 &base, &end, (void *)_RET_IP_); 892 893 return memblock_remove_range(&memblock.memory, base, size); 894 } 895 896 /** 897 * memblock_free - free boot memory allocation 898 * @ptr: starting address of the boot memory allocation 899 * @size: size of the boot memory block in bytes 900 * 901 * Free boot memory block previously allocated by memblock_alloc_xx() API. 902 * The freeing memory will not be released to the buddy allocator. 903 */ 904 void __init_memblock memblock_free(void *ptr, size_t size) 905 { 906 if (ptr) 907 memblock_phys_free(__pa(ptr), size); 908 } 909 910 /** 911 * memblock_phys_free - free boot memory block 912 * @base: phys starting address of the boot memory block 913 * @size: size of the boot memory block in bytes 914 * 915 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API. 916 * The freeing memory will not be released to the buddy allocator. 917 */ 918 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size) 919 { 920 phys_addr_t end = base + size - 1; 921 922 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 923 &base, &end, (void *)_RET_IP_); 924 925 kmemleak_free_part_phys(base, size); 926 return memblock_remove_range(&memblock.reserved, base, size); 927 } 928 929 int __init_memblock __memblock_reserve(phys_addr_t base, phys_addr_t size, 930 int nid, enum memblock_flags flags) 931 { 932 phys_addr_t end = base + size - 1; 933 934 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__, 935 &base, &end, nid, flags, (void *)_RET_IP_); 936 937 return memblock_add_range(&memblock.reserved, base, size, nid, flags); 938 } 939 940 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 941 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) 942 { 943 phys_addr_t end = base + size - 1; 944 945 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 946 &base, &end, (void *)_RET_IP_); 947 948 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); 949 } 950 #endif 951 952 #ifdef CONFIG_MEMBLOCK_KHO_SCRATCH 953 __init void memblock_set_kho_scratch_only(void) 954 { 955 kho_scratch_only = true; 956 } 957 958 __init void memblock_clear_kho_scratch_only(void) 959 { 960 kho_scratch_only = false; 961 } 962 963 __init void memmap_init_kho_scratch_pages(void) 964 { 965 phys_addr_t start, end; 966 unsigned long pfn; 967 int nid; 968 u64 i; 969 970 if (!IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) 971 return; 972 973 /* 974 * Initialize struct pages for free scratch memory. 975 * The struct pages for reserved scratch memory will be set up in 976 * reserve_bootmem_region() 977 */ 978 __for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE, 979 MEMBLOCK_KHO_SCRATCH, &start, &end, &nid) { 980 for (pfn = PFN_UP(start); pfn < PFN_DOWN(end); pfn++) 981 init_deferred_page(pfn, nid); 982 } 983 } 984 #endif 985 986 /** 987 * memblock_setclr_flag - set or clear flag for a memory region 988 * @type: memblock type to set/clear flag for 989 * @base: base address of the region 990 * @size: size of the region 991 * @set: set or clear the flag 992 * @flag: the flag to update 993 * 994 * This function isolates region [@base, @base + @size), and sets/clears flag 995 * 996 * Return: 0 on success, -errno on failure. 997 */ 998 static int __init_memblock memblock_setclr_flag(struct memblock_type *type, 999 phys_addr_t base, phys_addr_t size, int set, int flag) 1000 { 1001 int i, ret, start_rgn, end_rgn; 1002 1003 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1004 if (ret) 1005 return ret; 1006 1007 for (i = start_rgn; i < end_rgn; i++) { 1008 struct memblock_region *r = &type->regions[i]; 1009 1010 if (set) 1011 r->flags |= flag; 1012 else 1013 r->flags &= ~flag; 1014 } 1015 1016 memblock_merge_regions(type, start_rgn, end_rgn); 1017 return 0; 1018 } 1019 1020 /** 1021 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 1022 * @base: the base phys addr of the region 1023 * @size: the size of the region 1024 * 1025 * Return: 0 on success, -errno on failure. 1026 */ 1027 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 1028 { 1029 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG); 1030 } 1031 1032 /** 1033 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 1034 * @base: the base phys addr of the region 1035 * @size: the size of the region 1036 * 1037 * Return: 0 on success, -errno on failure. 1038 */ 1039 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 1040 { 1041 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG); 1042 } 1043 1044 /** 1045 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 1046 * @base: the base phys addr of the region 1047 * @size: the size of the region 1048 * 1049 * Return: 0 on success, -errno on failure. 1050 */ 1051 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 1052 { 1053 if (!mirrored_kernelcore) 1054 return 0; 1055 1056 system_has_some_mirror = true; 1057 1058 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR); 1059 } 1060 1061 /** 1062 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 1063 * @base: the base phys addr of the region 1064 * @size: the size of the region 1065 * 1066 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the 1067 * direct mapping of the physical memory. These regions will still be 1068 * covered by the memory map. The struct page representing NOMAP memory 1069 * frames in the memory map will be PageReserved() 1070 * 1071 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from 1072 * memblock, the caller must inform kmemleak to ignore that memory 1073 * 1074 * Return: 0 on success, -errno on failure. 1075 */ 1076 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 1077 { 1078 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP); 1079 } 1080 1081 /** 1082 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 1083 * @base: the base phys addr of the region 1084 * @size: the size of the region 1085 * 1086 * Return: 0 on success, -errno on failure. 1087 */ 1088 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 1089 { 1090 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP); 1091 } 1092 1093 /** 1094 * memblock_reserved_mark_noinit - Mark a reserved memory region with flag 1095 * MEMBLOCK_RSRV_NOINIT 1096 * 1097 * @base: the base phys addr of the region 1098 * @size: the size of the region 1099 * 1100 * The struct pages for the reserved regions marked %MEMBLOCK_RSRV_NOINIT will 1101 * not be fully initialized to allow the caller optimize their initialization. 1102 * 1103 * When %CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled, setting this flag 1104 * completely bypasses the initialization of struct pages for such region. 1105 * 1106 * When %CONFIG_DEFERRED_STRUCT_PAGE_INIT is disabled, struct pages in this 1107 * region will be initialized with default values but won't be marked as 1108 * reserved. 1109 * 1110 * Return: 0 on success, -errno on failure. 1111 */ 1112 int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size) 1113 { 1114 return memblock_setclr_flag(&memblock.reserved, base, size, 1, 1115 MEMBLOCK_RSRV_NOINIT); 1116 } 1117 1118 /** 1119 * memblock_mark_kho_scratch - Mark a memory region as MEMBLOCK_KHO_SCRATCH. 1120 * @base: the base phys addr of the region 1121 * @size: the size of the region 1122 * 1123 * Only memory regions marked with %MEMBLOCK_KHO_SCRATCH will be considered 1124 * for allocations during early boot with kexec handover. 1125 * 1126 * Return: 0 on success, -errno on failure. 1127 */ 1128 __init int memblock_mark_kho_scratch(phys_addr_t base, phys_addr_t size) 1129 { 1130 return memblock_setclr_flag(&memblock.memory, base, size, 1, 1131 MEMBLOCK_KHO_SCRATCH); 1132 } 1133 1134 /** 1135 * memblock_clear_kho_scratch - Clear MEMBLOCK_KHO_SCRATCH flag for a 1136 * specified region. 1137 * @base: the base phys addr of the region 1138 * @size: the size of the region 1139 * 1140 * Return: 0 on success, -errno on failure. 1141 */ 1142 __init int memblock_clear_kho_scratch(phys_addr_t base, phys_addr_t size) 1143 { 1144 return memblock_setclr_flag(&memblock.memory, base, size, 0, 1145 MEMBLOCK_KHO_SCRATCH); 1146 } 1147 1148 static bool should_skip_region(struct memblock_type *type, 1149 struct memblock_region *m, 1150 int nid, int flags) 1151 { 1152 int m_nid = memblock_get_region_node(m); 1153 1154 /* we never skip regions when iterating memblock.reserved or physmem */ 1155 if (type != memblock_memory) 1156 return false; 1157 1158 /* only memory regions are associated with nodes, check it */ 1159 if (numa_valid_node(nid) && nid != m_nid) 1160 return true; 1161 1162 /* skip hotpluggable memory regions if needed */ 1163 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) && 1164 !(flags & MEMBLOCK_HOTPLUG)) 1165 return true; 1166 1167 /* if we want mirror memory skip non-mirror memory regions */ 1168 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 1169 return true; 1170 1171 /* skip nomap memory unless we were asked for it explicitly */ 1172 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 1173 return true; 1174 1175 /* skip driver-managed memory unless we were asked for it explicitly */ 1176 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m)) 1177 return true; 1178 1179 /* 1180 * In early alloc during kexec handover, we can only consider 1181 * MEMBLOCK_KHO_SCRATCH regions for the allocations 1182 */ 1183 if ((flags & MEMBLOCK_KHO_SCRATCH) && !memblock_is_kho_scratch(m)) 1184 return true; 1185 1186 return false; 1187 } 1188 1189 /** 1190 * __next_mem_range - next function for for_each_free_mem_range() etc. 1191 * @idx: pointer to u64 loop variable 1192 * @nid: node selector, %NUMA_NO_NODE for all nodes 1193 * @flags: pick from blocks based on memory attributes 1194 * @type_a: pointer to memblock_type from where the range is taken 1195 * @type_b: pointer to memblock_type which excludes memory from being taken 1196 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1197 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1198 * @out_nid: ptr to int for nid of the range, can be %NULL 1199 * 1200 * Find the first area from *@idx which matches @nid, fill the out 1201 * parameters, and update *@idx for the next iteration. The lower 32bit of 1202 * *@idx contains index into type_a and the upper 32bit indexes the 1203 * areas before each region in type_b. For example, if type_b regions 1204 * look like the following, 1205 * 1206 * 0:[0-16), 1:[32-48), 2:[128-130) 1207 * 1208 * The upper 32bit indexes the following regions. 1209 * 1210 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 1211 * 1212 * As both region arrays are sorted, the function advances the two indices 1213 * in lockstep and returns each intersection. 1214 */ 1215 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, 1216 struct memblock_type *type_a, 1217 struct memblock_type *type_b, phys_addr_t *out_start, 1218 phys_addr_t *out_end, int *out_nid) 1219 { 1220 int idx_a = *idx & 0xffffffff; 1221 int idx_b = *idx >> 32; 1222 1223 for (; idx_a < type_a->cnt; idx_a++) { 1224 struct memblock_region *m = &type_a->regions[idx_a]; 1225 1226 phys_addr_t m_start = m->base; 1227 phys_addr_t m_end = m->base + m->size; 1228 int m_nid = memblock_get_region_node(m); 1229 1230 if (should_skip_region(type_a, m, nid, flags)) 1231 continue; 1232 1233 if (!type_b) { 1234 if (out_start) 1235 *out_start = m_start; 1236 if (out_end) 1237 *out_end = m_end; 1238 if (out_nid) 1239 *out_nid = m_nid; 1240 idx_a++; 1241 *idx = (u32)idx_a | (u64)idx_b << 32; 1242 return; 1243 } 1244 1245 /* scan areas before each reservation */ 1246 for (; idx_b < type_b->cnt + 1; idx_b++) { 1247 struct memblock_region *r; 1248 phys_addr_t r_start; 1249 phys_addr_t r_end; 1250 1251 r = &type_b->regions[idx_b]; 1252 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1253 r_end = idx_b < type_b->cnt ? 1254 r->base : PHYS_ADDR_MAX; 1255 1256 /* 1257 * if idx_b advanced past idx_a, 1258 * break out to advance idx_a 1259 */ 1260 if (r_start >= m_end) 1261 break; 1262 /* if the two regions intersect, we're done */ 1263 if (m_start < r_end) { 1264 if (out_start) 1265 *out_start = 1266 max(m_start, r_start); 1267 if (out_end) 1268 *out_end = min(m_end, r_end); 1269 if (out_nid) 1270 *out_nid = m_nid; 1271 /* 1272 * The region which ends first is 1273 * advanced for the next iteration. 1274 */ 1275 if (m_end <= r_end) 1276 idx_a++; 1277 else 1278 idx_b++; 1279 *idx = (u32)idx_a | (u64)idx_b << 32; 1280 return; 1281 } 1282 } 1283 } 1284 1285 /* signal end of iteration */ 1286 *idx = ULLONG_MAX; 1287 } 1288 1289 /** 1290 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1291 * 1292 * @idx: pointer to u64 loop variable 1293 * @nid: node selector, %NUMA_NO_NODE for all nodes 1294 * @flags: pick from blocks based on memory attributes 1295 * @type_a: pointer to memblock_type from where the range is taken 1296 * @type_b: pointer to memblock_type which excludes memory from being taken 1297 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1298 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1299 * @out_nid: ptr to int for nid of the range, can be %NULL 1300 * 1301 * Finds the next range from type_a which is not marked as unsuitable 1302 * in type_b. 1303 * 1304 * Reverse of __next_mem_range(). 1305 */ 1306 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1307 enum memblock_flags flags, 1308 struct memblock_type *type_a, 1309 struct memblock_type *type_b, 1310 phys_addr_t *out_start, 1311 phys_addr_t *out_end, int *out_nid) 1312 { 1313 int idx_a = *idx & 0xffffffff; 1314 int idx_b = *idx >> 32; 1315 1316 if (*idx == (u64)ULLONG_MAX) { 1317 idx_a = type_a->cnt - 1; 1318 if (type_b != NULL) 1319 idx_b = type_b->cnt; 1320 else 1321 idx_b = 0; 1322 } 1323 1324 for (; idx_a >= 0; idx_a--) { 1325 struct memblock_region *m = &type_a->regions[idx_a]; 1326 1327 phys_addr_t m_start = m->base; 1328 phys_addr_t m_end = m->base + m->size; 1329 int m_nid = memblock_get_region_node(m); 1330 1331 if (should_skip_region(type_a, m, nid, flags)) 1332 continue; 1333 1334 if (!type_b) { 1335 if (out_start) 1336 *out_start = m_start; 1337 if (out_end) 1338 *out_end = m_end; 1339 if (out_nid) 1340 *out_nid = m_nid; 1341 idx_a--; 1342 *idx = (u32)idx_a | (u64)idx_b << 32; 1343 return; 1344 } 1345 1346 /* scan areas before each reservation */ 1347 for (; idx_b >= 0; idx_b--) { 1348 struct memblock_region *r; 1349 phys_addr_t r_start; 1350 phys_addr_t r_end; 1351 1352 r = &type_b->regions[idx_b]; 1353 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1354 r_end = idx_b < type_b->cnt ? 1355 r->base : PHYS_ADDR_MAX; 1356 /* 1357 * if idx_b advanced past idx_a, 1358 * break out to advance idx_a 1359 */ 1360 1361 if (r_end <= m_start) 1362 break; 1363 /* if the two regions intersect, we're done */ 1364 if (m_end > r_start) { 1365 if (out_start) 1366 *out_start = max(m_start, r_start); 1367 if (out_end) 1368 *out_end = min(m_end, r_end); 1369 if (out_nid) 1370 *out_nid = m_nid; 1371 if (m_start >= r_start) 1372 idx_a--; 1373 else 1374 idx_b--; 1375 *idx = (u32)idx_a | (u64)idx_b << 32; 1376 return; 1377 } 1378 } 1379 } 1380 /* signal end of iteration */ 1381 *idx = ULLONG_MAX; 1382 } 1383 1384 /* 1385 * Common iterator interface used to define for_each_mem_pfn_range(). 1386 */ 1387 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1388 unsigned long *out_start_pfn, 1389 unsigned long *out_end_pfn, int *out_nid) 1390 { 1391 struct memblock_type *type = &memblock.memory; 1392 struct memblock_region *r; 1393 int r_nid; 1394 1395 while (++*idx < type->cnt) { 1396 r = &type->regions[*idx]; 1397 r_nid = memblock_get_region_node(r); 1398 1399 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1400 continue; 1401 if (!numa_valid_node(nid) || nid == r_nid) 1402 break; 1403 } 1404 if (*idx >= type->cnt) { 1405 *idx = -1; 1406 return; 1407 } 1408 1409 if (out_start_pfn) 1410 *out_start_pfn = PFN_UP(r->base); 1411 if (out_end_pfn) 1412 *out_end_pfn = PFN_DOWN(r->base + r->size); 1413 if (out_nid) 1414 *out_nid = r_nid; 1415 } 1416 1417 /** 1418 * memblock_set_node - set node ID on memblock regions 1419 * @base: base of area to set node ID for 1420 * @size: size of area to set node ID for 1421 * @type: memblock type to set node ID for 1422 * @nid: node ID to set 1423 * 1424 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1425 * Regions which cross the area boundaries are split as necessary. 1426 * 1427 * Return: 1428 * 0 on success, -errno on failure. 1429 */ 1430 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1431 struct memblock_type *type, int nid) 1432 { 1433 #ifdef CONFIG_NUMA 1434 int start_rgn, end_rgn; 1435 int i, ret; 1436 1437 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1438 if (ret) 1439 return ret; 1440 1441 for (i = start_rgn; i < end_rgn; i++) 1442 memblock_set_region_node(&type->regions[i], nid); 1443 1444 memblock_merge_regions(type, start_rgn, end_rgn); 1445 #endif 1446 return 0; 1447 } 1448 1449 /** 1450 * memblock_alloc_range_nid - allocate boot memory block 1451 * @size: size of memory block to be allocated in bytes 1452 * @align: alignment of the region and block's size 1453 * @start: the lower bound of the memory region to allocate (phys address) 1454 * @end: the upper bound of the memory region to allocate (phys address) 1455 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1456 * @exact_nid: control the allocation fall back to other nodes 1457 * 1458 * The allocation is performed from memory region limited by 1459 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. 1460 * 1461 * If the specified node can not hold the requested memory and @exact_nid 1462 * is false, the allocation falls back to any node in the system. 1463 * 1464 * For systems with memory mirroring, the allocation is attempted first 1465 * from the regions with mirroring enabled and then retried from any 1466 * memory region. 1467 * 1468 * In addition, function using kmemleak_alloc_phys for allocated boot 1469 * memory block, it is never reported as leaks. 1470 * 1471 * Return: 1472 * Physical address of allocated memory block on success, %0 on failure. 1473 */ 1474 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1475 phys_addr_t align, phys_addr_t start, 1476 phys_addr_t end, int nid, 1477 bool exact_nid) 1478 { 1479 enum memblock_flags flags = choose_memblock_flags(); 1480 phys_addr_t found; 1481 1482 /* 1483 * Detect any accidental use of these APIs after slab is ready, as at 1484 * this moment memblock may be deinitialized already and its 1485 * internal data may be destroyed (after execution of memblock_free_all) 1486 */ 1487 if (WARN_ON_ONCE(slab_is_available())) { 1488 void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid); 1489 1490 return vaddr ? virt_to_phys(vaddr) : 0; 1491 } 1492 1493 if (!align) { 1494 /* Can't use WARNs this early in boot on powerpc */ 1495 dump_stack(); 1496 align = SMP_CACHE_BYTES; 1497 } 1498 1499 again: 1500 found = memblock_find_in_range_node(size, align, start, end, nid, 1501 flags); 1502 if (found && !__memblock_reserve(found, size, nid, MEMBLOCK_RSRV_KERN)) 1503 goto done; 1504 1505 if (numa_valid_node(nid) && !exact_nid) { 1506 found = memblock_find_in_range_node(size, align, start, 1507 end, NUMA_NO_NODE, 1508 flags); 1509 if (found && !memblock_reserve_kern(found, size)) 1510 goto done; 1511 } 1512 1513 if (flags & MEMBLOCK_MIRROR) { 1514 flags &= ~MEMBLOCK_MIRROR; 1515 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", 1516 &size); 1517 goto again; 1518 } 1519 1520 return 0; 1521 1522 done: 1523 /* 1524 * Skip kmemleak for those places like kasan_init() and 1525 * early_pgtable_alloc() due to high volume. 1526 */ 1527 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE) 1528 /* 1529 * Memblock allocated blocks are never reported as 1530 * leaks. This is because many of these blocks are 1531 * only referred via the physical address which is 1532 * not looked up by kmemleak. 1533 */ 1534 kmemleak_alloc_phys(found, size, 0); 1535 1536 /* 1537 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP, 1538 * require memory to be accepted before it can be used by the 1539 * guest. 1540 * 1541 * Accept the memory of the allocated buffer. 1542 */ 1543 accept_memory(found, size); 1544 1545 return found; 1546 } 1547 1548 /** 1549 * memblock_phys_alloc_range - allocate a memory block inside specified range 1550 * @size: size of memory block to be allocated in bytes 1551 * @align: alignment of the region and block's size 1552 * @start: the lower bound of the memory region to allocate (physical address) 1553 * @end: the upper bound of the memory region to allocate (physical address) 1554 * 1555 * Allocate @size bytes in the between @start and @end. 1556 * 1557 * Return: physical address of the allocated memory block on success, 1558 * %0 on failure. 1559 */ 1560 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, 1561 phys_addr_t align, 1562 phys_addr_t start, 1563 phys_addr_t end) 1564 { 1565 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n", 1566 __func__, (u64)size, (u64)align, &start, &end, 1567 (void *)_RET_IP_); 1568 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1569 false); 1570 } 1571 1572 /** 1573 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node 1574 * @size: size of memory block to be allocated in bytes 1575 * @align: alignment of the region and block's size 1576 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1577 * 1578 * Allocates memory block from the specified NUMA node. If the node 1579 * has no available memory, attempts to allocated from any node in the 1580 * system. 1581 * 1582 * Return: physical address of the allocated memory block on success, 1583 * %0 on failure. 1584 */ 1585 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1586 { 1587 return memblock_alloc_range_nid(size, align, 0, 1588 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); 1589 } 1590 1591 /** 1592 * memblock_alloc_internal - allocate boot memory block 1593 * @size: size of memory block to be allocated in bytes 1594 * @align: alignment of the region and block's size 1595 * @min_addr: the lower bound of the memory region to allocate (phys address) 1596 * @max_addr: the upper bound of the memory region to allocate (phys address) 1597 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1598 * @exact_nid: control the allocation fall back to other nodes 1599 * 1600 * Allocates memory block using memblock_alloc_range_nid() and 1601 * converts the returned physical address to virtual. 1602 * 1603 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1604 * will fall back to memory below @min_addr. Other constraints, such 1605 * as node and mirrored memory will be handled again in 1606 * memblock_alloc_range_nid(). 1607 * 1608 * Return: 1609 * Virtual address of allocated memory block on success, NULL on failure. 1610 */ 1611 static void * __init memblock_alloc_internal( 1612 phys_addr_t size, phys_addr_t align, 1613 phys_addr_t min_addr, phys_addr_t max_addr, 1614 int nid, bool exact_nid) 1615 { 1616 phys_addr_t alloc; 1617 1618 1619 if (max_addr > memblock.current_limit) 1620 max_addr = memblock.current_limit; 1621 1622 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, 1623 exact_nid); 1624 1625 /* retry allocation without lower limit */ 1626 if (!alloc && min_addr) 1627 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, 1628 exact_nid); 1629 1630 if (!alloc) 1631 return NULL; 1632 1633 return phys_to_virt(alloc); 1634 } 1635 1636 /** 1637 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node 1638 * without zeroing memory 1639 * @size: size of memory block to be allocated in bytes 1640 * @align: alignment of the region and block's size 1641 * @min_addr: the lower bound of the memory region from where the allocation 1642 * is preferred (phys address) 1643 * @max_addr: the upper bound of the memory region from where the allocation 1644 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1645 * allocate only from memory limited by memblock.current_limit value 1646 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1647 * 1648 * Public function, provides additional debug information (including caller 1649 * info), if enabled. Does not zero allocated memory. 1650 * 1651 * Return: 1652 * Virtual address of allocated memory block on success, NULL on failure. 1653 */ 1654 void * __init memblock_alloc_exact_nid_raw( 1655 phys_addr_t size, phys_addr_t align, 1656 phys_addr_t min_addr, phys_addr_t max_addr, 1657 int nid) 1658 { 1659 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1660 __func__, (u64)size, (u64)align, nid, &min_addr, 1661 &max_addr, (void *)_RET_IP_); 1662 1663 return memblock_alloc_internal(size, align, min_addr, max_addr, nid, 1664 true); 1665 } 1666 1667 /** 1668 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing 1669 * memory and without panicking 1670 * @size: size of memory block to be allocated in bytes 1671 * @align: alignment of the region and block's size 1672 * @min_addr: the lower bound of the memory region from where the allocation 1673 * is preferred (phys address) 1674 * @max_addr: the upper bound of the memory region from where the allocation 1675 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1676 * allocate only from memory limited by memblock.current_limit value 1677 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1678 * 1679 * Public function, provides additional debug information (including caller 1680 * info), if enabled. Does not zero allocated memory, does not panic if request 1681 * cannot be satisfied. 1682 * 1683 * Return: 1684 * Virtual address of allocated memory block on success, NULL on failure. 1685 */ 1686 void * __init memblock_alloc_try_nid_raw( 1687 phys_addr_t size, phys_addr_t align, 1688 phys_addr_t min_addr, phys_addr_t max_addr, 1689 int nid) 1690 { 1691 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1692 __func__, (u64)size, (u64)align, nid, &min_addr, 1693 &max_addr, (void *)_RET_IP_); 1694 1695 return memblock_alloc_internal(size, align, min_addr, max_addr, nid, 1696 false); 1697 } 1698 1699 /** 1700 * memblock_alloc_try_nid - allocate boot memory block 1701 * @size: size of memory block to be allocated in bytes 1702 * @align: alignment of the region and block's size 1703 * @min_addr: the lower bound of the memory region from where the allocation 1704 * is preferred (phys address) 1705 * @max_addr: the upper bound of the memory region from where the allocation 1706 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1707 * allocate only from memory limited by memblock.current_limit value 1708 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1709 * 1710 * Public function, provides additional debug information (including caller 1711 * info), if enabled. This function zeroes the allocated memory. 1712 * 1713 * Return: 1714 * Virtual address of allocated memory block on success, NULL on failure. 1715 */ 1716 void * __init memblock_alloc_try_nid( 1717 phys_addr_t size, phys_addr_t align, 1718 phys_addr_t min_addr, phys_addr_t max_addr, 1719 int nid) 1720 { 1721 void *ptr; 1722 1723 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1724 __func__, (u64)size, (u64)align, nid, &min_addr, 1725 &max_addr, (void *)_RET_IP_); 1726 ptr = memblock_alloc_internal(size, align, 1727 min_addr, max_addr, nid, false); 1728 if (ptr) 1729 memset(ptr, 0, size); 1730 1731 return ptr; 1732 } 1733 1734 /** 1735 * __memblock_alloc_or_panic - Try to allocate memory and panic on failure 1736 * @size: size of memory block to be allocated in bytes 1737 * @align: alignment of the region and block's size 1738 * @func: caller func name 1739 * 1740 * This function attempts to allocate memory using memblock_alloc, 1741 * and in case of failure, it calls panic with the formatted message. 1742 * This function should not be used directly, please use the macro memblock_alloc_or_panic. 1743 */ 1744 void *__init __memblock_alloc_or_panic(phys_addr_t size, phys_addr_t align, 1745 const char *func) 1746 { 1747 void *addr = memblock_alloc(size, align); 1748 1749 if (unlikely(!addr)) 1750 panic("%s: Failed to allocate %pap bytes\n", func, &size); 1751 return addr; 1752 } 1753 1754 /** 1755 * memblock_free_late - free pages directly to buddy allocator 1756 * @base: phys starting address of the boot memory block 1757 * @size: size of the boot memory block in bytes 1758 * 1759 * This is only useful when the memblock allocator has already been torn 1760 * down, but we are still initializing the system. Pages are released directly 1761 * to the buddy allocator. 1762 */ 1763 void __init memblock_free_late(phys_addr_t base, phys_addr_t size) 1764 { 1765 phys_addr_t cursor, end; 1766 1767 end = base + size - 1; 1768 memblock_dbg("%s: [%pa-%pa] %pS\n", 1769 __func__, &base, &end, (void *)_RET_IP_); 1770 kmemleak_free_part_phys(base, size); 1771 cursor = PFN_UP(base); 1772 end = PFN_DOWN(base + size); 1773 1774 for (; cursor < end; cursor++) { 1775 memblock_free_pages(pfn_to_page(cursor), cursor, 0); 1776 totalram_pages_inc(); 1777 } 1778 } 1779 1780 /* 1781 * Remaining API functions 1782 */ 1783 1784 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1785 { 1786 return memblock.memory.total_size; 1787 } 1788 1789 phys_addr_t __init_memblock memblock_reserved_size(void) 1790 { 1791 return memblock.reserved.total_size; 1792 } 1793 1794 phys_addr_t __init_memblock memblock_reserved_kern_size(phys_addr_t limit, int nid) 1795 { 1796 struct memblock_region *r; 1797 phys_addr_t total = 0; 1798 1799 for_each_reserved_mem_region(r) { 1800 phys_addr_t size = r->size; 1801 1802 if (r->base > limit) 1803 break; 1804 1805 if (r->base + r->size > limit) 1806 size = limit - r->base; 1807 1808 if (nid == memblock_get_region_node(r) || !numa_valid_node(nid)) 1809 if (r->flags & MEMBLOCK_RSRV_KERN) 1810 total += size; 1811 } 1812 1813 return total; 1814 } 1815 1816 /** 1817 * memblock_estimated_nr_free_pages - return estimated number of free pages 1818 * from memblock point of view 1819 * 1820 * During bootup, subsystems might need a rough estimate of the number of free 1821 * pages in the whole system, before precise numbers are available from the 1822 * buddy. Especially with CONFIG_DEFERRED_STRUCT_PAGE_INIT, the numbers 1823 * obtained from the buddy might be very imprecise during bootup. 1824 * 1825 * Return: 1826 * An estimated number of free pages from memblock point of view. 1827 */ 1828 unsigned long __init memblock_estimated_nr_free_pages(void) 1829 { 1830 return PHYS_PFN(memblock_phys_mem_size() - 1831 memblock_reserved_kern_size(MEMBLOCK_ALLOC_ANYWHERE, NUMA_NO_NODE)); 1832 } 1833 1834 /* lowest address */ 1835 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1836 { 1837 return memblock.memory.regions[0].base; 1838 } 1839 1840 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1841 { 1842 int idx = memblock.memory.cnt - 1; 1843 1844 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1845 } 1846 1847 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1848 { 1849 phys_addr_t max_addr = PHYS_ADDR_MAX; 1850 struct memblock_region *r; 1851 1852 /* 1853 * translate the memory @limit size into the max address within one of 1854 * the memory memblock regions, if the @limit exceeds the total size 1855 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1856 */ 1857 for_each_mem_region(r) { 1858 if (limit <= r->size) { 1859 max_addr = r->base + limit; 1860 break; 1861 } 1862 limit -= r->size; 1863 } 1864 1865 return max_addr; 1866 } 1867 1868 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1869 { 1870 phys_addr_t max_addr; 1871 1872 if (!limit) 1873 return; 1874 1875 max_addr = __find_max_addr(limit); 1876 1877 /* @limit exceeds the total size of the memory, do nothing */ 1878 if (max_addr == PHYS_ADDR_MAX) 1879 return; 1880 1881 /* truncate both memory and reserved regions */ 1882 memblock_remove_range(&memblock.memory, max_addr, 1883 PHYS_ADDR_MAX); 1884 memblock_remove_range(&memblock.reserved, max_addr, 1885 PHYS_ADDR_MAX); 1886 } 1887 1888 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1889 { 1890 int start_rgn, end_rgn; 1891 int i, ret; 1892 1893 if (!size) 1894 return; 1895 1896 if (!memblock_memory->total_size) { 1897 pr_warn("%s: No memory registered yet\n", __func__); 1898 return; 1899 } 1900 1901 ret = memblock_isolate_range(&memblock.memory, base, size, 1902 &start_rgn, &end_rgn); 1903 if (ret) 1904 return; 1905 1906 /* remove all the MAP regions */ 1907 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1908 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1909 memblock_remove_region(&memblock.memory, i); 1910 1911 for (i = start_rgn - 1; i >= 0; i--) 1912 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1913 memblock_remove_region(&memblock.memory, i); 1914 1915 /* truncate the reserved regions */ 1916 memblock_remove_range(&memblock.reserved, 0, base); 1917 memblock_remove_range(&memblock.reserved, 1918 base + size, PHYS_ADDR_MAX); 1919 } 1920 1921 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1922 { 1923 phys_addr_t max_addr; 1924 1925 if (!limit) 1926 return; 1927 1928 max_addr = __find_max_addr(limit); 1929 1930 /* @limit exceeds the total size of the memory, do nothing */ 1931 if (max_addr == PHYS_ADDR_MAX) 1932 return; 1933 1934 memblock_cap_memory_range(0, max_addr); 1935 } 1936 1937 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1938 { 1939 unsigned int left = 0, right = type->cnt; 1940 1941 do { 1942 unsigned int mid = (right + left) / 2; 1943 1944 if (addr < type->regions[mid].base) 1945 right = mid; 1946 else if (addr >= (type->regions[mid].base + 1947 type->regions[mid].size)) 1948 left = mid + 1; 1949 else 1950 return mid; 1951 } while (left < right); 1952 return -1; 1953 } 1954 1955 bool __init_memblock memblock_is_reserved(phys_addr_t addr) 1956 { 1957 return memblock_search(&memblock.reserved, addr) != -1; 1958 } 1959 1960 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1961 { 1962 return memblock_search(&memblock.memory, addr) != -1; 1963 } 1964 1965 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1966 { 1967 int i = memblock_search(&memblock.memory, addr); 1968 1969 if (i == -1) 1970 return false; 1971 return !memblock_is_nomap(&memblock.memory.regions[i]); 1972 } 1973 1974 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1975 unsigned long *start_pfn, unsigned long *end_pfn) 1976 { 1977 struct memblock_type *type = &memblock.memory; 1978 int mid = memblock_search(type, PFN_PHYS(pfn)); 1979 1980 if (mid == -1) 1981 return NUMA_NO_NODE; 1982 1983 *start_pfn = PFN_DOWN(type->regions[mid].base); 1984 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1985 1986 return memblock_get_region_node(&type->regions[mid]); 1987 } 1988 1989 /** 1990 * memblock_is_region_memory - check if a region is a subset of memory 1991 * @base: base of region to check 1992 * @size: size of region to check 1993 * 1994 * Check if the region [@base, @base + @size) is a subset of a memory block. 1995 * 1996 * Return: 1997 * 0 if false, non-zero if true 1998 */ 1999 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 2000 { 2001 int idx = memblock_search(&memblock.memory, base); 2002 phys_addr_t end = base + memblock_cap_size(base, &size); 2003 2004 if (idx == -1) 2005 return false; 2006 return (memblock.memory.regions[idx].base + 2007 memblock.memory.regions[idx].size) >= end; 2008 } 2009 2010 /** 2011 * memblock_is_region_reserved - check if a region intersects reserved memory 2012 * @base: base of region to check 2013 * @size: size of region to check 2014 * 2015 * Check if the region [@base, @base + @size) intersects a reserved 2016 * memory block. 2017 * 2018 * Return: 2019 * True if they intersect, false if not. 2020 */ 2021 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 2022 { 2023 return memblock_overlaps_region(&memblock.reserved, base, size); 2024 } 2025 2026 void __init_memblock memblock_trim_memory(phys_addr_t align) 2027 { 2028 phys_addr_t start, end, orig_start, orig_end; 2029 struct memblock_region *r; 2030 2031 for_each_mem_region(r) { 2032 orig_start = r->base; 2033 orig_end = r->base + r->size; 2034 start = round_up(orig_start, align); 2035 end = round_down(orig_end, align); 2036 2037 if (start == orig_start && end == orig_end) 2038 continue; 2039 2040 if (start < end) { 2041 r->base = start; 2042 r->size = end - start; 2043 } else { 2044 memblock_remove_region(&memblock.memory, 2045 r - memblock.memory.regions); 2046 r--; 2047 } 2048 } 2049 } 2050 2051 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 2052 { 2053 memblock.current_limit = limit; 2054 } 2055 2056 phys_addr_t __init_memblock memblock_get_current_limit(void) 2057 { 2058 return memblock.current_limit; 2059 } 2060 2061 static void __init_memblock memblock_dump(struct memblock_type *type) 2062 { 2063 phys_addr_t base, end, size; 2064 enum memblock_flags flags; 2065 int idx; 2066 struct memblock_region *rgn; 2067 2068 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 2069 2070 for_each_memblock_type(idx, type, rgn) { 2071 char nid_buf[32] = ""; 2072 2073 base = rgn->base; 2074 size = rgn->size; 2075 end = base + size - 1; 2076 flags = rgn->flags; 2077 #ifdef CONFIG_NUMA 2078 if (numa_valid_node(memblock_get_region_node(rgn))) 2079 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 2080 memblock_get_region_node(rgn)); 2081 #endif 2082 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 2083 type->name, idx, &base, &end, &size, nid_buf, flags); 2084 } 2085 } 2086 2087 static void __init_memblock __memblock_dump_all(void) 2088 { 2089 pr_info("MEMBLOCK configuration:\n"); 2090 pr_info(" memory size = %pa reserved size = %pa\n", 2091 &memblock.memory.total_size, 2092 &memblock.reserved.total_size); 2093 2094 memblock_dump(&memblock.memory); 2095 memblock_dump(&memblock.reserved); 2096 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2097 memblock_dump(&physmem); 2098 #endif 2099 } 2100 2101 void __init_memblock memblock_dump_all(void) 2102 { 2103 if (memblock_debug) 2104 __memblock_dump_all(); 2105 } 2106 2107 void __init memblock_allow_resize(void) 2108 { 2109 memblock_can_resize = 1; 2110 } 2111 2112 static int __init early_memblock(char *p) 2113 { 2114 if (p && strstr(p, "debug")) 2115 memblock_debug = 1; 2116 return 0; 2117 } 2118 early_param("memblock", early_memblock); 2119 2120 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn) 2121 { 2122 struct page *start_pg, *end_pg; 2123 phys_addr_t pg, pgend; 2124 2125 /* 2126 * Convert start_pfn/end_pfn to a struct page pointer. 2127 */ 2128 start_pg = pfn_to_page(start_pfn - 1) + 1; 2129 end_pg = pfn_to_page(end_pfn - 1) + 1; 2130 2131 /* 2132 * Convert to physical addresses, and round start upwards and end 2133 * downwards. 2134 */ 2135 pg = PAGE_ALIGN(__pa(start_pg)); 2136 pgend = PAGE_ALIGN_DOWN(__pa(end_pg)); 2137 2138 /* 2139 * If there are free pages between these, free the section of the 2140 * memmap array. 2141 */ 2142 if (pg < pgend) 2143 memblock_phys_free(pg, pgend - pg); 2144 } 2145 2146 /* 2147 * The mem_map array can get very big. Free the unused area of the memory map. 2148 */ 2149 static void __init free_unused_memmap(void) 2150 { 2151 unsigned long start, end, prev_end = 0; 2152 int i; 2153 2154 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) || 2155 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 2156 return; 2157 2158 /* 2159 * This relies on each bank being in address order. 2160 * The banks are sorted previously in bootmem_init(). 2161 */ 2162 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { 2163 #ifdef CONFIG_SPARSEMEM 2164 /* 2165 * Take care not to free memmap entries that don't exist 2166 * due to SPARSEMEM sections which aren't present. 2167 */ 2168 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 2169 #endif 2170 /* 2171 * Align down here since many operations in VM subsystem 2172 * presume that there are no holes in the memory map inside 2173 * a pageblock 2174 */ 2175 start = pageblock_start_pfn(start); 2176 2177 /* 2178 * If we had a previous bank, and there is a space 2179 * between the current bank and the previous, free it. 2180 */ 2181 if (prev_end && prev_end < start) 2182 free_memmap(prev_end, start); 2183 2184 /* 2185 * Align up here since many operations in VM subsystem 2186 * presume that there are no holes in the memory map inside 2187 * a pageblock 2188 */ 2189 prev_end = pageblock_align(end); 2190 } 2191 2192 #ifdef CONFIG_SPARSEMEM 2193 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) { 2194 prev_end = pageblock_align(end); 2195 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 2196 } 2197 #endif 2198 } 2199 2200 static void __init __free_pages_memory(unsigned long start, unsigned long end) 2201 { 2202 int order; 2203 2204 while (start < end) { 2205 /* 2206 * Free the pages in the largest chunks alignment allows. 2207 * 2208 * __ffs() behaviour is undefined for 0. start == 0 is 2209 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for 2210 * the case. 2211 */ 2212 if (start) 2213 order = min_t(int, MAX_PAGE_ORDER, __ffs(start)); 2214 else 2215 order = MAX_PAGE_ORDER; 2216 2217 while (start + (1UL << order) > end) 2218 order--; 2219 2220 memblock_free_pages(pfn_to_page(start), start, order); 2221 2222 start += (1UL << order); 2223 } 2224 } 2225 2226 static unsigned long __init __free_memory_core(phys_addr_t start, 2227 phys_addr_t end) 2228 { 2229 unsigned long start_pfn = PFN_UP(start); 2230 unsigned long end_pfn = PFN_DOWN(end); 2231 2232 if (!IS_ENABLED(CONFIG_HIGHMEM) && end_pfn > max_low_pfn) 2233 end_pfn = max_low_pfn; 2234 2235 if (start_pfn >= end_pfn) 2236 return 0; 2237 2238 __free_pages_memory(start_pfn, end_pfn); 2239 2240 return end_pfn - start_pfn; 2241 } 2242 2243 static void __init memmap_init_reserved_pages(void) 2244 { 2245 struct memblock_region *region; 2246 phys_addr_t start, end; 2247 int nid; 2248 unsigned long max_reserved; 2249 2250 /* 2251 * set nid on all reserved pages and also treat struct 2252 * pages for the NOMAP regions as PageReserved 2253 */ 2254 repeat: 2255 max_reserved = memblock.reserved.max; 2256 for_each_mem_region(region) { 2257 nid = memblock_get_region_node(region); 2258 start = region->base; 2259 end = start + region->size; 2260 2261 if (memblock_is_nomap(region)) 2262 reserve_bootmem_region(start, end, nid); 2263 2264 memblock_set_node(start, region->size, &memblock.reserved, nid); 2265 } 2266 /* 2267 * 'max' is changed means memblock.reserved has been doubled its 2268 * array, which may result a new reserved region before current 2269 * 'start'. Now we should repeat the procedure to set its node id. 2270 */ 2271 if (max_reserved != memblock.reserved.max) 2272 goto repeat; 2273 2274 /* 2275 * initialize struct pages for reserved regions that don't have 2276 * the MEMBLOCK_RSRV_NOINIT flag set 2277 */ 2278 for_each_reserved_mem_region(region) { 2279 if (!memblock_is_reserved_noinit(region)) { 2280 nid = memblock_get_region_node(region); 2281 start = region->base; 2282 end = start + region->size; 2283 2284 if (!numa_valid_node(nid)) 2285 nid = early_pfn_to_nid(PFN_DOWN(start)); 2286 2287 reserve_bootmem_region(start, end, nid); 2288 } 2289 } 2290 } 2291 2292 static unsigned long __init free_low_memory_core_early(void) 2293 { 2294 unsigned long count = 0; 2295 phys_addr_t start, end; 2296 u64 i; 2297 2298 memblock_clear_hotplug(0, -1); 2299 2300 memmap_init_reserved_pages(); 2301 2302 /* 2303 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id 2304 * because in some case like Node0 doesn't have RAM installed 2305 * low ram will be on Node1 2306 */ 2307 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, 2308 NULL) 2309 count += __free_memory_core(start, end); 2310 2311 return count; 2312 } 2313 2314 static int reset_managed_pages_done __initdata; 2315 2316 static void __init reset_node_managed_pages(pg_data_t *pgdat) 2317 { 2318 struct zone *z; 2319 2320 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 2321 atomic_long_set(&z->managed_pages, 0); 2322 } 2323 2324 void __init reset_all_zones_managed_pages(void) 2325 { 2326 struct pglist_data *pgdat; 2327 2328 if (reset_managed_pages_done) 2329 return; 2330 2331 for_each_online_pgdat(pgdat) 2332 reset_node_managed_pages(pgdat); 2333 2334 reset_managed_pages_done = 1; 2335 } 2336 2337 /** 2338 * memblock_free_all - release free pages to the buddy allocator 2339 */ 2340 void __init memblock_free_all(void) 2341 { 2342 unsigned long pages; 2343 2344 free_unused_memmap(); 2345 reset_all_zones_managed_pages(); 2346 2347 memblock_clear_kho_scratch_only(); 2348 pages = free_low_memory_core_early(); 2349 totalram_pages_add(pages); 2350 } 2351 2352 /* Keep a table to reserve named memory */ 2353 #define RESERVE_MEM_MAX_ENTRIES 8 2354 #define RESERVE_MEM_NAME_SIZE 16 2355 struct reserve_mem_table { 2356 char name[RESERVE_MEM_NAME_SIZE]; 2357 phys_addr_t start; 2358 phys_addr_t size; 2359 }; 2360 static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES]; 2361 static int reserved_mem_count; 2362 static DEFINE_MUTEX(reserve_mem_lock); 2363 2364 /* Add wildcard region with a lookup name */ 2365 static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size, 2366 const char *name) 2367 { 2368 struct reserve_mem_table *map; 2369 2370 map = &reserved_mem_table[reserved_mem_count++]; 2371 map->start = start; 2372 map->size = size; 2373 strscpy(map->name, name); 2374 } 2375 2376 static struct reserve_mem_table *reserve_mem_find_by_name_nolock(const char *name) 2377 { 2378 struct reserve_mem_table *map; 2379 int i; 2380 2381 for (i = 0; i < reserved_mem_count; i++) { 2382 map = &reserved_mem_table[i]; 2383 if (!map->size) 2384 continue; 2385 if (strcmp(name, map->name) == 0) 2386 return map; 2387 } 2388 return NULL; 2389 } 2390 2391 /** 2392 * reserve_mem_find_by_name - Find reserved memory region with a given name 2393 * @name: The name that is attached to a reserved memory region 2394 * @start: If found, holds the start address 2395 * @size: If found, holds the size of the address. 2396 * 2397 * @start and @size are only updated if @name is found. 2398 * 2399 * Returns: 1 if found or 0 if not found. 2400 */ 2401 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size) 2402 { 2403 struct reserve_mem_table *map; 2404 2405 guard(mutex)(&reserve_mem_lock); 2406 map = reserve_mem_find_by_name_nolock(name); 2407 if (!map) 2408 return 0; 2409 2410 *start = map->start; 2411 *size = map->size; 2412 return 1; 2413 } 2414 EXPORT_SYMBOL_GPL(reserve_mem_find_by_name); 2415 2416 /** 2417 * reserve_mem_release_by_name - Release reserved memory region with a given name 2418 * @name: The name that is attached to a reserved memory region 2419 * 2420 * Forcibly release the pages in the reserved memory region so that those memory 2421 * can be used as free memory. After released the reserved region size becomes 0. 2422 * 2423 * Returns: 1 if released or 0 if not found. 2424 */ 2425 int reserve_mem_release_by_name(const char *name) 2426 { 2427 char buf[RESERVE_MEM_NAME_SIZE + 12]; 2428 struct reserve_mem_table *map; 2429 void *start, *end; 2430 2431 guard(mutex)(&reserve_mem_lock); 2432 map = reserve_mem_find_by_name_nolock(name); 2433 if (!map) 2434 return 0; 2435 2436 start = phys_to_virt(map->start); 2437 end = start + map->size - 1; 2438 snprintf(buf, sizeof(buf), "reserve_mem:%s", name); 2439 free_reserved_area(start, end, 0, buf); 2440 map->size = 0; 2441 2442 return 1; 2443 } 2444 2445 #ifdef CONFIG_KEXEC_HANDOVER 2446 2447 static int __init reserved_mem_preserve(void) 2448 { 2449 unsigned int nr_preserved = 0; 2450 int err; 2451 2452 for (unsigned int i = 0; i < reserved_mem_count; i++, nr_preserved++) { 2453 struct reserve_mem_table *map = &reserved_mem_table[i]; 2454 struct page *page = phys_to_page(map->start); 2455 unsigned int nr_pages = map->size >> PAGE_SHIFT; 2456 2457 err = kho_preserve_pages(page, nr_pages); 2458 if (err) 2459 goto err_unpreserve; 2460 } 2461 2462 return 0; 2463 2464 err_unpreserve: 2465 for (unsigned int i = 0; i < nr_preserved; i++) { 2466 struct reserve_mem_table *map = &reserved_mem_table[i]; 2467 struct page *page = phys_to_page(map->start); 2468 unsigned int nr_pages = map->size >> PAGE_SHIFT; 2469 2470 kho_unpreserve_pages(page, nr_pages); 2471 } 2472 2473 return err; 2474 } 2475 2476 static int __init prepare_kho_fdt(void) 2477 { 2478 struct page *fdt_page; 2479 void *fdt; 2480 int err; 2481 2482 fdt_page = alloc_page(GFP_KERNEL); 2483 if (!fdt_page) { 2484 err = -ENOMEM; 2485 goto err_report; 2486 } 2487 2488 fdt = page_to_virt(fdt_page); 2489 err = kho_preserve_pages(fdt_page, 1); 2490 if (err) 2491 goto err_free_fdt; 2492 2493 err |= fdt_create(fdt, PAGE_SIZE); 2494 err |= fdt_finish_reservemap(fdt); 2495 err |= fdt_begin_node(fdt, ""); 2496 err |= fdt_property_string(fdt, "compatible", MEMBLOCK_KHO_NODE_COMPATIBLE); 2497 2498 for (unsigned int i = 0; !err && i < reserved_mem_count; i++) { 2499 struct reserve_mem_table *map = &reserved_mem_table[i]; 2500 2501 err |= fdt_begin_node(fdt, map->name); 2502 err |= fdt_property_string(fdt, "compatible", RESERVE_MEM_KHO_NODE_COMPATIBLE); 2503 err |= fdt_property(fdt, "start", &map->start, sizeof(map->start)); 2504 err |= fdt_property(fdt, "size", &map->size, sizeof(map->size)); 2505 err |= fdt_end_node(fdt); 2506 } 2507 err |= fdt_end_node(fdt); 2508 err |= fdt_finish(fdt); 2509 2510 if (err) 2511 goto err_unpreserve_fdt; 2512 2513 err = kho_add_subtree(MEMBLOCK_KHO_FDT, fdt); 2514 if (err) 2515 goto err_unpreserve_fdt; 2516 2517 err = reserved_mem_preserve(); 2518 if (err) 2519 goto err_remove_subtree; 2520 2521 return 0; 2522 2523 err_remove_subtree: 2524 kho_remove_subtree(fdt); 2525 err_unpreserve_fdt: 2526 kho_unpreserve_pages(fdt_page, 1); 2527 err_free_fdt: 2528 put_page(fdt_page); 2529 err_report: 2530 pr_err("failed to prepare memblock FDT for KHO: %d\n", err); 2531 2532 return err; 2533 } 2534 2535 static int __init reserve_mem_init(void) 2536 { 2537 int err; 2538 2539 if (!kho_is_enabled() || !reserved_mem_count) 2540 return 0; 2541 2542 err = prepare_kho_fdt(); 2543 if (err) 2544 return err; 2545 return err; 2546 } 2547 late_initcall(reserve_mem_init); 2548 2549 static void *__init reserve_mem_kho_retrieve_fdt(void) 2550 { 2551 phys_addr_t fdt_phys; 2552 static void *fdt; 2553 int err; 2554 2555 if (fdt) 2556 return fdt; 2557 2558 err = kho_retrieve_subtree(MEMBLOCK_KHO_FDT, &fdt_phys); 2559 if (err) { 2560 if (err != -ENOENT) 2561 pr_warn("failed to retrieve FDT '%s' from KHO: %d\n", 2562 MEMBLOCK_KHO_FDT, err); 2563 return NULL; 2564 } 2565 2566 fdt = phys_to_virt(fdt_phys); 2567 2568 err = fdt_node_check_compatible(fdt, 0, MEMBLOCK_KHO_NODE_COMPATIBLE); 2569 if (err) { 2570 pr_warn("FDT '%s' is incompatible with '%s': %d\n", 2571 MEMBLOCK_KHO_FDT, MEMBLOCK_KHO_NODE_COMPATIBLE, err); 2572 fdt = NULL; 2573 } 2574 2575 return fdt; 2576 } 2577 2578 static bool __init reserve_mem_kho_revive(const char *name, phys_addr_t size, 2579 phys_addr_t align) 2580 { 2581 int err, len_start, len_size, offset; 2582 const phys_addr_t *p_start, *p_size; 2583 const void *fdt; 2584 2585 fdt = reserve_mem_kho_retrieve_fdt(); 2586 if (!fdt) 2587 return false; 2588 2589 offset = fdt_subnode_offset(fdt, 0, name); 2590 if (offset < 0) { 2591 pr_warn("FDT '%s' has no child '%s': %d\n", 2592 MEMBLOCK_KHO_FDT, name, offset); 2593 return false; 2594 } 2595 err = fdt_node_check_compatible(fdt, offset, RESERVE_MEM_KHO_NODE_COMPATIBLE); 2596 if (err) { 2597 pr_warn("Node '%s' is incompatible with '%s': %d\n", 2598 name, RESERVE_MEM_KHO_NODE_COMPATIBLE, err); 2599 return false; 2600 } 2601 2602 p_start = fdt_getprop(fdt, offset, "start", &len_start); 2603 p_size = fdt_getprop(fdt, offset, "size", &len_size); 2604 if (!p_start || len_start != sizeof(*p_start) || !p_size || 2605 len_size != sizeof(*p_size)) { 2606 return false; 2607 } 2608 2609 if (*p_start & (align - 1)) { 2610 pr_warn("KHO reserve-mem '%s' has wrong alignment (0x%lx, 0x%lx)\n", 2611 name, (long)align, (long)*p_start); 2612 return false; 2613 } 2614 2615 if (*p_size != size) { 2616 pr_warn("KHO reserve-mem '%s' has wrong size (0x%lx != 0x%lx)\n", 2617 name, (long)*p_size, (long)size); 2618 return false; 2619 } 2620 2621 reserved_mem_add(*p_start, size, name); 2622 pr_info("Revived memory reservation '%s' from KHO\n", name); 2623 2624 return true; 2625 } 2626 #else 2627 static bool __init reserve_mem_kho_revive(const char *name, phys_addr_t size, 2628 phys_addr_t align) 2629 { 2630 return false; 2631 } 2632 #endif /* CONFIG_KEXEC_HANDOVER */ 2633 2634 /* 2635 * Parse reserve_mem=nn:align:name 2636 */ 2637 static int __init reserve_mem(char *p) 2638 { 2639 phys_addr_t start, size, align, tmp; 2640 char *name; 2641 char *oldp; 2642 int len; 2643 2644 if (!p) 2645 return -EINVAL; 2646 2647 /* Check if there's room for more reserved memory */ 2648 if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES) 2649 return -EBUSY; 2650 2651 oldp = p; 2652 size = memparse(p, &p); 2653 if (!size || p == oldp) 2654 return -EINVAL; 2655 2656 if (*p != ':') 2657 return -EINVAL; 2658 2659 align = memparse(p+1, &p); 2660 if (*p != ':') 2661 return -EINVAL; 2662 2663 /* 2664 * memblock_phys_alloc() doesn't like a zero size align, 2665 * but it is OK for this command to have it. 2666 */ 2667 if (align < SMP_CACHE_BYTES) 2668 align = SMP_CACHE_BYTES; 2669 2670 name = p + 1; 2671 len = strlen(name); 2672 2673 /* name needs to have length but not too big */ 2674 if (!len || len >= RESERVE_MEM_NAME_SIZE) 2675 return -EINVAL; 2676 2677 /* Make sure that name has text */ 2678 for (p = name; *p; p++) { 2679 if (!isspace(*p)) 2680 break; 2681 } 2682 if (!*p) 2683 return -EINVAL; 2684 2685 /* Make sure the name is not already used */ 2686 if (reserve_mem_find_by_name(name, &start, &tmp)) 2687 return -EBUSY; 2688 2689 /* Pick previous allocations up from KHO if available */ 2690 if (reserve_mem_kho_revive(name, size, align)) 2691 return 1; 2692 2693 /* TODO: Allocation must be outside of scratch region */ 2694 start = memblock_phys_alloc(size, align); 2695 if (!start) 2696 return -ENOMEM; 2697 2698 reserved_mem_add(start, size, name); 2699 2700 return 1; 2701 } 2702 __setup("reserve_mem=", reserve_mem); 2703 2704 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) 2705 static const char * const flagname[] = { 2706 [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG", 2707 [ilog2(MEMBLOCK_MIRROR)] = "MIRROR", 2708 [ilog2(MEMBLOCK_NOMAP)] = "NOMAP", 2709 [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG", 2710 [ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT", 2711 [ilog2(MEMBLOCK_RSRV_KERN)] = "RSV_KERN", 2712 [ilog2(MEMBLOCK_KHO_SCRATCH)] = "KHO_SCRATCH", 2713 }; 2714 2715 static int memblock_debug_show(struct seq_file *m, void *private) 2716 { 2717 struct memblock_type *type = m->private; 2718 struct memblock_region *reg; 2719 int i, j, nid; 2720 unsigned int count = ARRAY_SIZE(flagname); 2721 phys_addr_t end; 2722 2723 for (i = 0; i < type->cnt; i++) { 2724 reg = &type->regions[i]; 2725 end = reg->base + reg->size - 1; 2726 nid = memblock_get_region_node(reg); 2727 2728 seq_printf(m, "%4d: ", i); 2729 seq_printf(m, "%pa..%pa ", ®->base, &end); 2730 if (numa_valid_node(nid)) 2731 seq_printf(m, "%4d ", nid); 2732 else 2733 seq_printf(m, "%4c ", 'x'); 2734 if (reg->flags) { 2735 for (j = 0; j < count; j++) { 2736 if (reg->flags & (1U << j)) { 2737 seq_printf(m, "%s\n", flagname[j]); 2738 break; 2739 } 2740 } 2741 if (j == count) 2742 seq_printf(m, "%s\n", "UNKNOWN"); 2743 } else { 2744 seq_printf(m, "%s\n", "NONE"); 2745 } 2746 } 2747 return 0; 2748 } 2749 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 2750 2751 static int __init memblock_init_debugfs(void) 2752 { 2753 struct dentry *root = debugfs_create_dir("memblock", NULL); 2754 2755 debugfs_create_file("memory", 0444, root, 2756 &memblock.memory, &memblock_debug_fops); 2757 debugfs_create_file("reserved", 0444, root, 2758 &memblock.reserved, &memblock_debug_fops); 2759 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2760 debugfs_create_file("physmem", 0444, root, &physmem, 2761 &memblock_debug_fops); 2762 #endif 2763 2764 return 0; 2765 } 2766 __initcall(memblock_init_debugfs); 2767 2768 #endif /* CONFIG_DEBUG_FS */ 2769