xref: /linux/include/linux/sched/mm.h (revision d3d1556696c1a993eec54ac585fe5bf677e07474)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_MM_H
3 #define _LINUX_SCHED_MM_H
4 
5 #include <linux/kernel.h>
6 #include <linux/atomic.h>
7 #include <linux/sched.h>
8 #include <linux/mm_types.h>
9 #include <linux/gfp.h>
10 #include <linux/sync_core.h>
11 #include <linux/sched/coredump.h>
12 
13 /*
14  * Routines for handling mm_structs
15  */
16 extern struct mm_struct *mm_alloc(void);
17 
18 /**
19  * mmgrab() - Pin a &struct mm_struct.
20  * @mm: The &struct mm_struct to pin.
21  *
22  * Make sure that @mm will not get freed even after the owning task
23  * exits. This doesn't guarantee that the associated address space
24  * will still exist later on and mmget_not_zero() has to be used before
25  * accessing it.
26  *
27  * This is a preferred way to pin @mm for a longer/unbounded amount
28  * of time.
29  *
30  * Use mmdrop() to release the reference acquired by mmgrab().
31  *
32  * See also <Documentation/mm/active_mm.rst> for an in-depth explanation
33  * of &mm_struct.mm_count vs &mm_struct.mm_users.
34  */
mmgrab(struct mm_struct * mm)35 static inline void mmgrab(struct mm_struct *mm)
36 {
37 	atomic_inc(&mm->mm_count);
38 }
39 
smp_mb__after_mmgrab(void)40 static inline void smp_mb__after_mmgrab(void)
41 {
42 	smp_mb__after_atomic();
43 }
44 
45 extern void __mmdrop(struct mm_struct *mm);
46 
mmdrop(struct mm_struct * mm)47 static inline void mmdrop(struct mm_struct *mm)
48 {
49 	/*
50 	 * The implicit full barrier implied by atomic_dec_and_test() is
51 	 * required by the membarrier system call before returning to
52 	 * user-space, after storing to rq->curr.
53 	 */
54 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
55 		__mmdrop(mm);
56 }
57 
58 #ifdef CONFIG_PREEMPT_RT
59 /*
60  * RCU callback for delayed mm drop. Not strictly RCU, but call_rcu() is
61  * by far the least expensive way to do that.
62  */
__mmdrop_delayed(struct rcu_head * rhp)63 static inline void __mmdrop_delayed(struct rcu_head *rhp)
64 {
65 	struct mm_struct *mm = container_of(rhp, struct mm_struct, delayed_drop);
66 
67 	__mmdrop(mm);
68 }
69 
70 /*
71  * Invoked from finish_task_switch(). Delegates the heavy lifting on RT
72  * kernels via RCU.
73  */
mmdrop_sched(struct mm_struct * mm)74 static inline void mmdrop_sched(struct mm_struct *mm)
75 {
76 	/* Provides a full memory barrier. See mmdrop() */
77 	if (atomic_dec_and_test(&mm->mm_count))
78 		call_rcu(&mm->delayed_drop, __mmdrop_delayed);
79 }
80 #else
mmdrop_sched(struct mm_struct * mm)81 static inline void mmdrop_sched(struct mm_struct *mm)
82 {
83 	mmdrop(mm);
84 }
85 #endif
86 
87 /* Helpers for lazy TLB mm refcounting */
mmgrab_lazy_tlb(struct mm_struct * mm)88 static inline void mmgrab_lazy_tlb(struct mm_struct *mm)
89 {
90 	if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT))
91 		mmgrab(mm);
92 }
93 
mmdrop_lazy_tlb(struct mm_struct * mm)94 static inline void mmdrop_lazy_tlb(struct mm_struct *mm)
95 {
96 	if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) {
97 		mmdrop(mm);
98 	} else {
99 		/*
100 		 * mmdrop_lazy_tlb must provide a full memory barrier, see the
101 		 * membarrier comment finish_task_switch which relies on this.
102 		 */
103 		smp_mb();
104 	}
105 }
106 
mmdrop_lazy_tlb_sched(struct mm_struct * mm)107 static inline void mmdrop_lazy_tlb_sched(struct mm_struct *mm)
108 {
109 	if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT))
110 		mmdrop_sched(mm);
111 	else
112 		smp_mb(); /* see mmdrop_lazy_tlb() above */
113 }
114 
115 /**
116  * mmget() - Pin the address space associated with a &struct mm_struct.
117  * @mm: The address space to pin.
118  *
119  * Make sure that the address space of the given &struct mm_struct doesn't
120  * go away. This does not protect against parts of the address space being
121  * modified or freed, however.
122  *
123  * Never use this function to pin this address space for an
124  * unbounded/indefinite amount of time.
125  *
126  * Use mmput() to release the reference acquired by mmget().
127  *
128  * See also <Documentation/mm/active_mm.rst> for an in-depth explanation
129  * of &mm_struct.mm_count vs &mm_struct.mm_users.
130  */
mmget(struct mm_struct * mm)131 static inline void mmget(struct mm_struct *mm)
132 {
133 	atomic_inc(&mm->mm_users);
134 }
135 
mmget_not_zero(struct mm_struct * mm)136 static inline bool mmget_not_zero(struct mm_struct *mm)
137 {
138 	return atomic_inc_not_zero(&mm->mm_users);
139 }
140 
141 /* mmput gets rid of the mappings and all user-space */
142 extern void mmput(struct mm_struct *);
143 #ifdef CONFIG_MMU
144 /* same as above but performs the slow path from the async context. Can
145  * be called from the atomic context as well
146  */
147 void mmput_async(struct mm_struct *);
148 #endif
149 
150 /* Grab a reference to a task's mm, if it is not already going away */
151 extern struct mm_struct *get_task_mm(struct task_struct *task);
152 /*
153  * Grab a reference to a task's mm, if it is not already going away
154  * and ptrace_may_access with the mode parameter passed to it
155  * succeeds.
156  */
157 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
158 /* Remove the current tasks stale references to the old mm_struct on exit() */
159 extern void exit_mm_release(struct task_struct *, struct mm_struct *);
160 /* Remove the current tasks stale references to the old mm_struct on exec() */
161 extern void exec_mm_release(struct task_struct *, struct mm_struct *);
162 
163 #ifdef CONFIG_MEMCG
164 extern void mm_update_next_owner(struct mm_struct *mm);
165 #else
mm_update_next_owner(struct mm_struct * mm)166 static inline void mm_update_next_owner(struct mm_struct *mm)
167 {
168 }
169 #endif /* CONFIG_MEMCG */
170 
171 #ifdef CONFIG_MMU
172 #ifndef arch_get_mmap_end
173 #define arch_get_mmap_end(addr, len, flags)	(TASK_SIZE)
174 #endif
175 
176 #ifndef arch_get_mmap_base
177 #define arch_get_mmap_base(addr, base) (base)
178 #endif
179 
180 extern void arch_pick_mmap_layout(struct mm_struct *mm,
181 				  struct rlimit *rlim_stack);
182 
183 unsigned long
184 arch_get_unmapped_area(struct file *filp, unsigned long addr,
185 		       unsigned long len, unsigned long pgoff,
186 		       unsigned long flags, vm_flags_t vm_flags);
187 unsigned long
188 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
189 			       unsigned long len, unsigned long pgoff,
190 			       unsigned long flags, vm_flags_t);
191 
192 unsigned long mm_get_unmapped_area(struct mm_struct *mm, struct file *filp,
193 				   unsigned long addr, unsigned long len,
194 				   unsigned long pgoff, unsigned long flags);
195 
196 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm,
197 					   struct file *filp,
198 					   unsigned long addr,
199 					   unsigned long len,
200 					   unsigned long pgoff,
201 					   unsigned long flags,
202 					   vm_flags_t vm_flags);
203 
204 unsigned long
205 generic_get_unmapped_area(struct file *filp, unsigned long addr,
206 			  unsigned long len, unsigned long pgoff,
207 			  unsigned long flags, vm_flags_t vm_flags);
208 unsigned long
209 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
210 				  unsigned long len, unsigned long pgoff,
211 				  unsigned long flags, vm_flags_t vm_flags);
212 #else
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)213 static inline void arch_pick_mmap_layout(struct mm_struct *mm,
214 					 struct rlimit *rlim_stack) {}
215 #endif
216 
in_vfork(struct task_struct * tsk)217 static inline bool in_vfork(struct task_struct *tsk)
218 {
219 	bool ret;
220 
221 	/*
222 	 * need RCU to access ->real_parent if CLONE_VM was used along with
223 	 * CLONE_PARENT.
224 	 *
225 	 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
226 	 * imply CLONE_VM
227 	 *
228 	 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
229 	 * ->real_parent is not necessarily the task doing vfork(), so in
230 	 * theory we can't rely on task_lock() if we want to dereference it.
231 	 *
232 	 * And in this case we can't trust the real_parent->mm == tsk->mm
233 	 * check, it can be false negative. But we do not care, if init or
234 	 * another oom-unkillable task does this it should blame itself.
235 	 */
236 	rcu_read_lock();
237 	ret = tsk->vfork_done &&
238 			rcu_dereference(tsk->real_parent)->mm == tsk->mm;
239 	rcu_read_unlock();
240 
241 	return ret;
242 }
243 
244 /*
245  * Applies per-task gfp context to the given allocation flags.
246  * PF_MEMALLOC_NOIO implies GFP_NOIO
247  * PF_MEMALLOC_NOFS implies GFP_NOFS
248  * PF_MEMALLOC_PIN  implies !GFP_MOVABLE
249  */
current_gfp_context(gfp_t flags)250 static inline gfp_t current_gfp_context(gfp_t flags)
251 {
252 	unsigned int pflags = READ_ONCE(current->flags);
253 
254 	if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_PIN))) {
255 		/*
256 		 * NOIO implies both NOIO and NOFS and it is a weaker context
257 		 * so always make sure it makes precedence
258 		 */
259 		if (pflags & PF_MEMALLOC_NOIO)
260 			flags &= ~(__GFP_IO | __GFP_FS);
261 		else if (pflags & PF_MEMALLOC_NOFS)
262 			flags &= ~__GFP_FS;
263 
264 		if (pflags & PF_MEMALLOC_PIN)
265 			flags &= ~__GFP_MOVABLE;
266 	}
267 	return flags;
268 }
269 
270 #ifdef CONFIG_LOCKDEP
271 extern void __fs_reclaim_acquire(unsigned long ip);
272 extern void __fs_reclaim_release(unsigned long ip);
273 extern void fs_reclaim_acquire(gfp_t gfp_mask);
274 extern void fs_reclaim_release(gfp_t gfp_mask);
275 #else
__fs_reclaim_acquire(unsigned long ip)276 static inline void __fs_reclaim_acquire(unsigned long ip) { }
__fs_reclaim_release(unsigned long ip)277 static inline void __fs_reclaim_release(unsigned long ip) { }
fs_reclaim_acquire(gfp_t gfp_mask)278 static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
fs_reclaim_release(gfp_t gfp_mask)279 static inline void fs_reclaim_release(gfp_t gfp_mask) { }
280 #endif
281 
282 /* Any memory-allocation retry loop should use
283  * memalloc_retry_wait(), and pass the flags for the most
284  * constrained allocation attempt that might have failed.
285  * This provides useful documentation of where loops are,
286  * and a central place to fine tune the waiting as the MM
287  * implementation changes.
288  */
memalloc_retry_wait(gfp_t gfp_flags)289 static inline void memalloc_retry_wait(gfp_t gfp_flags)
290 {
291 	/* We use io_schedule_timeout because waiting for memory
292 	 * typically included waiting for dirty pages to be
293 	 * written out, which requires IO.
294 	 */
295 	__set_current_state(TASK_UNINTERRUPTIBLE);
296 	gfp_flags = current_gfp_context(gfp_flags);
297 	if (gfpflags_allow_blocking(gfp_flags) &&
298 	    !(gfp_flags & __GFP_NORETRY))
299 		/* Probably waited already, no need for much more */
300 		io_schedule_timeout(1);
301 	else
302 		/* Probably didn't wait, and has now released a lock,
303 		 * so now is a good time to wait
304 		 */
305 		io_schedule_timeout(HZ/50);
306 }
307 
308 /**
309  * might_alloc - Mark possible allocation sites
310  * @gfp_mask: gfp_t flags that would be used to allocate
311  *
312  * Similar to might_sleep() and other annotations, this can be used in functions
313  * that might allocate, but often don't. Compiles to nothing without
314  * CONFIG_LOCKDEP. Includes a conditional might_sleep() if @gfp allows blocking.
315  */
might_alloc(gfp_t gfp_mask)316 static inline void might_alloc(gfp_t gfp_mask)
317 {
318 	fs_reclaim_acquire(gfp_mask);
319 	fs_reclaim_release(gfp_mask);
320 
321 	might_sleep_if(gfpflags_allow_blocking(gfp_mask));
322 }
323 
324 /**
325  * memalloc_flags_save - Add a PF_* flag to current->flags, save old value
326  *
327  * This allows PF_* flags to be conveniently added, irrespective of current
328  * value, and then the old version restored with memalloc_flags_restore().
329  */
memalloc_flags_save(unsigned flags)330 static inline unsigned memalloc_flags_save(unsigned flags)
331 {
332 	unsigned oldflags = ~current->flags & flags;
333 	current->flags |= flags;
334 	return oldflags;
335 }
336 
memalloc_flags_restore(unsigned flags)337 static inline void memalloc_flags_restore(unsigned flags)
338 {
339 	current->flags &= ~flags;
340 }
341 
342 /**
343  * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
344  *
345  * This functions marks the beginning of the GFP_NOIO allocation scope.
346  * All further allocations will implicitly drop __GFP_IO flag and so
347  * they are safe for the IO critical section from the allocation recursion
348  * point of view. Use memalloc_noio_restore to end the scope with flags
349  * returned by this function.
350  *
351  * Context: This function is safe to be used from any context.
352  * Return: The saved flags to be passed to memalloc_noio_restore.
353  */
memalloc_noio_save(void)354 static inline unsigned int memalloc_noio_save(void)
355 {
356 	return memalloc_flags_save(PF_MEMALLOC_NOIO);
357 }
358 
359 /**
360  * memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
361  * @flags: Flags to restore.
362  *
363  * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
364  * Always make sure that the given flags is the return value from the
365  * pairing memalloc_noio_save call.
366  */
memalloc_noio_restore(unsigned int flags)367 static inline void memalloc_noio_restore(unsigned int flags)
368 {
369 	memalloc_flags_restore(flags);
370 }
371 
372 /**
373  * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
374  *
375  * This functions marks the beginning of the GFP_NOFS allocation scope.
376  * All further allocations will implicitly drop __GFP_FS flag and so
377  * they are safe for the FS critical section from the allocation recursion
378  * point of view. Use memalloc_nofs_restore to end the scope with flags
379  * returned by this function.
380  *
381  * Context: This function is safe to be used from any context.
382  * Return: The saved flags to be passed to memalloc_nofs_restore.
383  */
memalloc_nofs_save(void)384 static inline unsigned int memalloc_nofs_save(void)
385 {
386 	return memalloc_flags_save(PF_MEMALLOC_NOFS);
387 }
388 
389 /**
390  * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
391  * @flags: Flags to restore.
392  *
393  * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
394  * Always make sure that the given flags is the return value from the
395  * pairing memalloc_nofs_save call.
396  */
memalloc_nofs_restore(unsigned int flags)397 static inline void memalloc_nofs_restore(unsigned int flags)
398 {
399 	memalloc_flags_restore(flags);
400 }
401 
402 /**
403  * memalloc_noreclaim_save - Marks implicit __GFP_MEMALLOC scope.
404  *
405  * This function marks the beginning of the __GFP_MEMALLOC allocation scope.
406  * All further allocations will implicitly add the __GFP_MEMALLOC flag, which
407  * prevents entering reclaim and allows access to all memory reserves. This
408  * should only be used when the caller guarantees the allocation will allow more
409  * memory to be freed very shortly, i.e. it needs to allocate some memory in
410  * the process of freeing memory, and cannot reclaim due to potential recursion.
411  *
412  * Users of this scope have to be extremely careful to not deplete the reserves
413  * completely and implement a throttling mechanism which controls the
414  * consumption of the reserve based on the amount of freed memory. Usage of a
415  * pre-allocated pool (e.g. mempool) should be always considered before using
416  * this scope.
417  *
418  * Individual allocations under the scope can opt out using __GFP_NOMEMALLOC
419  *
420  * Context: This function should not be used in an interrupt context as that one
421  *          does not give PF_MEMALLOC access to reserves.
422  *          See __gfp_pfmemalloc_flags().
423  * Return: The saved flags to be passed to memalloc_noreclaim_restore.
424  */
memalloc_noreclaim_save(void)425 static inline unsigned int memalloc_noreclaim_save(void)
426 {
427 	return memalloc_flags_save(PF_MEMALLOC);
428 }
429 
430 /**
431  * memalloc_noreclaim_restore - Ends the implicit __GFP_MEMALLOC scope.
432  * @flags: Flags to restore.
433  *
434  * Ends the implicit __GFP_MEMALLOC scope started by memalloc_noreclaim_save
435  * function. Always make sure that the given flags is the return value from the
436  * pairing memalloc_noreclaim_save call.
437  */
memalloc_noreclaim_restore(unsigned int flags)438 static inline void memalloc_noreclaim_restore(unsigned int flags)
439 {
440 	memalloc_flags_restore(flags);
441 }
442 
443 /**
444  * memalloc_pin_save - Marks implicit ~__GFP_MOVABLE scope.
445  *
446  * This function marks the beginning of the ~__GFP_MOVABLE allocation scope.
447  * All further allocations will implicitly remove the __GFP_MOVABLE flag, which
448  * will constraint the allocations to zones that allow long term pinning, i.e.
449  * not ZONE_MOVABLE zones.
450  *
451  * Return: The saved flags to be passed to memalloc_pin_restore.
452  */
memalloc_pin_save(void)453 static inline unsigned int memalloc_pin_save(void)
454 {
455 	return memalloc_flags_save(PF_MEMALLOC_PIN);
456 }
457 
458 /**
459  * memalloc_pin_restore - Ends the implicit ~__GFP_MOVABLE scope.
460  * @flags: Flags to restore.
461  *
462  * Ends the implicit ~__GFP_MOVABLE scope started by memalloc_pin_save function.
463  * Always make sure that the given flags is the return value from the pairing
464  * memalloc_pin_save call.
465  */
memalloc_pin_restore(unsigned int flags)466 static inline void memalloc_pin_restore(unsigned int flags)
467 {
468 	memalloc_flags_restore(flags);
469 }
470 
471 #ifdef CONFIG_MEMCG
472 DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg);
473 /**
474  * set_active_memcg - Starts the remote memcg charging scope.
475  * @memcg: memcg to charge.
476  *
477  * This function marks the beginning of the remote memcg charging scope. All the
478  * __GFP_ACCOUNT allocations till the end of the scope will be charged to the
479  * given memcg.
480  *
481  * Please, make sure that caller has a reference to the passed memcg structure,
482  * so its lifetime is guaranteed to exceed the scope between two
483  * set_active_memcg() calls.
484  *
485  * NOTE: This function can nest. Users must save the return value and
486  * reset the previous value after their own charging scope is over.
487  */
488 static inline struct mem_cgroup *
set_active_memcg(struct mem_cgroup * memcg)489 set_active_memcg(struct mem_cgroup *memcg)
490 {
491 	struct mem_cgroup *old;
492 
493 	if (!in_task()) {
494 		old = this_cpu_read(int_active_memcg);
495 		this_cpu_write(int_active_memcg, memcg);
496 	} else {
497 		old = current->active_memcg;
498 		current->active_memcg = memcg;
499 	}
500 
501 	return old;
502 }
503 #else
504 static inline struct mem_cgroup *
set_active_memcg(struct mem_cgroup * memcg)505 set_active_memcg(struct mem_cgroup *memcg)
506 {
507 	return NULL;
508 }
509 #endif
510 
511 #ifdef CONFIG_MEMBARRIER
512 enum {
513 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY		= (1U << 0),
514 	MEMBARRIER_STATE_PRIVATE_EXPEDITED			= (1U << 1),
515 	MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY			= (1U << 2),
516 	MEMBARRIER_STATE_GLOBAL_EXPEDITED			= (1U << 3),
517 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY	= (1U << 4),
518 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE		= (1U << 5),
519 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY		= (1U << 6),
520 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ			= (1U << 7),
521 };
522 
523 enum {
524 	MEMBARRIER_FLAG_SYNC_CORE	= (1U << 0),
525 	MEMBARRIER_FLAG_RSEQ		= (1U << 1),
526 };
527 
528 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
529 #include <asm/membarrier.h>
530 #endif
531 
membarrier_mm_sync_core_before_usermode(struct mm_struct * mm)532 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
533 {
534 	if (current->mm != mm)
535 		return;
536 	if (likely(!(atomic_read(&mm->membarrier_state) &
537 		     MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
538 		return;
539 	sync_core_before_usermode();
540 }
541 
542 extern void membarrier_exec_mmap(struct mm_struct *mm);
543 
544 extern void membarrier_update_current_mm(struct mm_struct *next_mm);
545 
546 #else
547 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
membarrier_arch_switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)548 static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
549 					     struct mm_struct *next,
550 					     struct task_struct *tsk)
551 {
552 }
553 #endif
membarrier_exec_mmap(struct mm_struct * mm)554 static inline void membarrier_exec_mmap(struct mm_struct *mm)
555 {
556 }
membarrier_mm_sync_core_before_usermode(struct mm_struct * mm)557 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
558 {
559 }
membarrier_update_current_mm(struct mm_struct * next_mm)560 static inline void membarrier_update_current_mm(struct mm_struct *next_mm)
561 {
562 }
563 #endif
564 
565 #endif /* _LINUX_SCHED_MM_H */
566