1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel-tpmi : Driver to enumerate TPMI features and create devices
4 *
5 * Copyright (c) 2023, Intel Corporation.
6 * All Rights Reserved.
7 *
8 * The TPMI (Topology Aware Register and PM Capsule Interface) provides a
9 * flexible, extendable and PCIe enumerable MMIO interface for PM features.
10 *
11 * For example Intel RAPL (Running Average Power Limit) provides a MMIO
12 * interface using TPMI. This has advantage over traditional MSR
13 * (Model Specific Register) interface, where a thread needs to be scheduled
14 * on the target CPU to read or write. Also the RAPL features vary between
15 * CPU models, and hence lot of model specific code. Here TPMI provides an
16 * architectural interface by providing hierarchical tables and fields,
17 * which will not need any model specific implementation.
18 *
19 * The TPMI interface uses a PCI VSEC structure to expose the location of
20 * MMIO region.
21 *
22 * This VSEC structure is present in the PCI configuration space of the
23 * Intel Out-of-Band (OOB) device, which is handled by the Intel VSEC
24 * driver. The Intel VSEC driver parses VSEC structures present in the PCI
25 * configuration space of the given device and creates an auxiliary device
26 * object for each of them. In particular, it creates an auxiliary device
27 * object representing TPMI that can be bound by an auxiliary driver.
28 *
29 * This TPMI driver will bind to the TPMI auxiliary device object created
30 * by the Intel VSEC driver.
31 *
32 * The TPMI specification defines a PFS (PM Feature Structure) table.
33 * This table is present in the TPMI MMIO region. The starting address
34 * of PFS is derived from the tBIR (Bar Indicator Register) and "Address"
35 * field from the VSEC header.
36 *
37 * Each TPMI PM feature has one entry in the PFS with a unique TPMI
38 * ID and its access details. The TPMI driver creates device nodes
39 * for the supported PM features.
40 *
41 * The names of the devices created by the TPMI driver start with the
42 * "intel_vsec.tpmi-" prefix which is followed by a specific name of the
43 * given PM feature (for example, "intel_vsec.tpmi-rapl.0").
44 *
45 * The device nodes are create by using interface "intel_vsec_add_aux()"
46 * provided by the Intel VSEC driver.
47 */
48
49 #include <linux/auxiliary_bus.h>
50 #include <linux/bitfield.h>
51 #include <linux/debugfs.h>
52 #include <linux/delay.h>
53 #include <linux/intel_tpmi.h>
54 #include <linux/intel_vsec.h>
55 #include <linux/io.h>
56 #include <linux/iopoll.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/security.h>
60 #include <linux/sizes.h>
61 #include <linux/string_helpers.h>
62
63 /**
64 * struct intel_tpmi_pfs_entry - TPMI PM Feature Structure (PFS) entry
65 * @tpmi_id: TPMI feature identifier (what the feature is and its data format).
66 * @num_entries: Number of feature interface instances present in the PFS.
67 * This represents the maximum number of Power domains in the SoC.
68 * @entry_size: Interface instance entry size in 32-bit words.
69 * @cap_offset: Offset from the PM_Features base address to the base of the PM VSEC
70 * register bank in KB.
71 * @attribute: Feature attribute: 0=BIOS. 1=OS. 2-3=Reserved.
72 * @reserved: Bits for use in the future.
73 *
74 * Represents one TPMI feature entry data in the PFS retrieved as is
75 * from the hardware.
76 */
77 struct intel_tpmi_pfs_entry {
78 u64 tpmi_id:8;
79 u64 num_entries:8;
80 u64 entry_size:16;
81 u64 cap_offset:16;
82 u64 attribute:2;
83 u64 reserved:14;
84 } __packed;
85
86 /**
87 * struct intel_tpmi_pm_feature - TPMI PM Feature information for a TPMI ID
88 * @pfs_header: PFS header retireved from the hardware.
89 * @vsec_offset: Starting MMIO address for this feature in bytes. Essentially
90 * this offset = "Address" from VSEC header + PFS Capability
91 * offset for this feature entry.
92 * @vsec_dev: Pointer to intel_vsec_device structure for this TPMI device
93 *
94 * Represents TPMI instance information for one TPMI ID.
95 */
96 struct intel_tpmi_pm_feature {
97 struct intel_tpmi_pfs_entry pfs_header;
98 u64 vsec_offset;
99 struct intel_vsec_device *vsec_dev;
100 };
101
102 /**
103 * struct intel_tpmi_info - TPMI information for all IDs in an instance
104 * @tpmi_features: Pointer to a list of TPMI feature instances
105 * @vsec_dev: Pointer to intel_vsec_device structure for this TPMI device
106 * @feature_count: Number of TPMI of TPMI instances pointed by tpmi_features
107 * @pfs_start: Start of PFS offset for the TPMI instances in this device
108 * @plat_info: Stores platform info which can be used by the client drivers
109 * @tpmi_control_mem: Memory mapped IO for getting control information
110 * @dbgfs_dir: debugfs entry pointer
111 *
112 * Stores the information for all TPMI devices enumerated from a single PCI device.
113 */
114 struct intel_tpmi_info {
115 struct intel_tpmi_pm_feature *tpmi_features;
116 struct intel_vsec_device *vsec_dev;
117 int feature_count;
118 u64 pfs_start;
119 struct intel_tpmi_plat_info plat_info;
120 void __iomem *tpmi_control_mem;
121 struct dentry *dbgfs_dir;
122 };
123
124 /**
125 * struct tpmi_info_header - CPU package ID to PCI device mapping information
126 * @fn: PCI function number
127 * @dev: PCI device number
128 * @bus: PCI bus number
129 * @pkg: CPU Package id
130 * @segment: PCI segment id
131 * @partition: Package Partition id
132 * @cdie_mask: Bitmap of compute dies in the current partition
133 * @reserved: Reserved for future use
134 * @lock: When set to 1 the register is locked and becomes read-only
135 * until next reset. Not for use by the OS driver.
136 *
137 * The structure to read hardware provided mapping information.
138 */
139 struct tpmi_info_header {
140 u64 fn:3;
141 u64 dev:5;
142 u64 bus:8;
143 u64 pkg:8;
144 u64 segment:8;
145 u64 partition:2;
146 u64 cdie_mask:16;
147 u64 reserved:13;
148 u64 lock:1;
149 } __packed;
150
151 /**
152 * struct tpmi_feature_state - Structure to read hardware state of a feature
153 * @enabled: Enable state of a feature, 1: enabled, 0: disabled
154 * @reserved_1: Reserved for future use
155 * @write_blocked: Writes are blocked means all write operations are ignored
156 * @read_blocked: Reads are blocked means will read 0xFFs
157 * @pcs_select: Interface used by out of band software, not used in OS
158 * @reserved_2: Reserved for future use
159 * @id: TPMI ID of the feature
160 * @reserved_3: Reserved for future use
161 * @locked: When set to 1, OS can't change this register.
162 *
163 * The structure is used to read hardware state of a TPMI feature. This
164 * information is used for debug and restricting operations for this feature.
165 */
166 struct tpmi_feature_state {
167 u32 enabled:1;
168 u32 reserved_1:3;
169 u32 write_blocked:1;
170 u32 read_blocked:1;
171 u32 pcs_select:1;
172 u32 reserved_2:1;
173 u32 id:8;
174 u32 reserved_3:15;
175 u32 locked:1;
176 } __packed;
177
178 /*
179 * The size from hardware is in u32 units. This size is from a trusted hardware,
180 * but better to verify for pre silicon platforms. Set size to 0, when invalid.
181 */
182 #define TPMI_GET_SINGLE_ENTRY_SIZE(pfs) \
183 ({ \
184 pfs->pfs_header.entry_size > SZ_1K ? 0 : pfs->pfs_header.entry_size << 2; \
185 })
186
187 /* Used during auxbus device creation */
188 static DEFINE_IDA(intel_vsec_tpmi_ida);
189
tpmi_get_platform_data(struct auxiliary_device * auxdev)190 struct intel_tpmi_plat_info *tpmi_get_platform_data(struct auxiliary_device *auxdev)
191 {
192 struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
193
194 return vsec_dev->priv_data;
195 }
196 EXPORT_SYMBOL_NS_GPL(tpmi_get_platform_data, INTEL_TPMI);
197
tpmi_get_resource_count(struct auxiliary_device * auxdev)198 int tpmi_get_resource_count(struct auxiliary_device *auxdev)
199 {
200 struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
201
202 if (vsec_dev)
203 return vsec_dev->num_resources;
204
205 return 0;
206 }
207 EXPORT_SYMBOL_NS_GPL(tpmi_get_resource_count, INTEL_TPMI);
208
tpmi_get_resource_at_index(struct auxiliary_device * auxdev,int index)209 struct resource *tpmi_get_resource_at_index(struct auxiliary_device *auxdev, int index)
210 {
211 struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
212
213 if (vsec_dev && index < vsec_dev->num_resources)
214 return &vsec_dev->resource[index];
215
216 return NULL;
217 }
218 EXPORT_SYMBOL_NS_GPL(tpmi_get_resource_at_index, INTEL_TPMI);
219
220 /* TPMI Control Interface */
221
222 #define TPMI_CONTROL_STATUS_OFFSET 0x00
223 #define TPMI_COMMAND_OFFSET 0x08
224 #define TMPI_CONTROL_DATA_VAL_OFFSET 0x0c
225
226 /*
227 * Spec is calling for max 1 seconds to get ownership at the worst
228 * case. Read at 10 ms timeouts and repeat up to 1 second.
229 */
230 #define TPMI_CONTROL_TIMEOUT_US (10 * USEC_PER_MSEC)
231 #define TPMI_CONTROL_TIMEOUT_MAX_US (1 * USEC_PER_SEC)
232
233 #define TPMI_RB_TIMEOUT_US (10 * USEC_PER_MSEC)
234 #define TPMI_RB_TIMEOUT_MAX_US USEC_PER_SEC
235
236 /* TPMI Control status register defines */
237
238 #define TPMI_CONTROL_STATUS_RB BIT_ULL(0)
239
240 #define TPMI_CONTROL_STATUS_OWNER GENMASK_ULL(5, 4)
241 #define TPMI_OWNER_NONE 0
242 #define TPMI_OWNER_IN_BAND 1
243
244 #define TPMI_CONTROL_STATUS_CPL BIT_ULL(6)
245 #define TPMI_CONTROL_STATUS_RESULT GENMASK_ULL(15, 8)
246 #define TPMI_CONTROL_STATUS_LEN GENMASK_ULL(31, 16)
247
248 #define TPMI_CMD_PKT_LEN 2
249 #define TPMI_CMD_STATUS_SUCCESS 0x40
250
251 /* TPMI command data registers */
252 #define TMPI_CONTROL_DATA_CMD GENMASK_ULL(7, 0)
253 #define TPMI_CONTROL_DATA_VAL_FEATURE GENMASK_ULL(48, 40)
254
255 /* Command to send via control interface */
256 #define TPMI_CONTROL_GET_STATE_CMD 0x10
257
258 #define TPMI_CONTROL_CMD_MASK GENMASK_ULL(48, 40)
259
260 #define TPMI_CMD_LEN_MASK GENMASK_ULL(18, 16)
261
262 /* Mutex to complete get feature status without interruption */
263 static DEFINE_MUTEX(tpmi_dev_lock);
264
tpmi_wait_for_owner(struct intel_tpmi_info * tpmi_info,u8 owner)265 static int tpmi_wait_for_owner(struct intel_tpmi_info *tpmi_info, u8 owner)
266 {
267 u64 control;
268
269 return readq_poll_timeout(tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET,
270 control, owner == FIELD_GET(TPMI_CONTROL_STATUS_OWNER, control),
271 TPMI_CONTROL_TIMEOUT_US, TPMI_CONTROL_TIMEOUT_MAX_US);
272 }
273
tpmi_read_feature_status(struct intel_tpmi_info * tpmi_info,int feature_id,struct tpmi_feature_state * feature_state)274 static int tpmi_read_feature_status(struct intel_tpmi_info *tpmi_info, int feature_id,
275 struct tpmi_feature_state *feature_state)
276 {
277 u64 control, data;
278 int ret;
279
280 if (!tpmi_info->tpmi_control_mem)
281 return -EFAULT;
282
283 mutex_lock(&tpmi_dev_lock);
284
285 /* Wait for owner bit set to 0 (none) */
286 ret = tpmi_wait_for_owner(tpmi_info, TPMI_OWNER_NONE);
287 if (ret)
288 goto err_unlock;
289
290 /* set command id to 0x10 for TPMI_GET_STATE */
291 data = FIELD_PREP(TMPI_CONTROL_DATA_CMD, TPMI_CONTROL_GET_STATE_CMD);
292
293 /* 32 bits for DATA offset and +8 for feature_id field */
294 data |= FIELD_PREP(TPMI_CONTROL_DATA_VAL_FEATURE, feature_id);
295
296 /* Write at command offset for qword access */
297 writeq(data, tpmi_info->tpmi_control_mem + TPMI_COMMAND_OFFSET);
298
299 /* Wait for owner bit set to in-band */
300 ret = tpmi_wait_for_owner(tpmi_info, TPMI_OWNER_IN_BAND);
301 if (ret)
302 goto err_unlock;
303
304 /* Set Run Busy and packet length of 2 dwords */
305 control = TPMI_CONTROL_STATUS_RB;
306 control |= FIELD_PREP(TPMI_CONTROL_STATUS_LEN, TPMI_CMD_PKT_LEN);
307
308 /* Write at status offset for qword access */
309 writeq(control, tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET);
310
311 /* Wait for Run Busy clear */
312 ret = readq_poll_timeout(tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET,
313 control, !(control & TPMI_CONTROL_STATUS_RB),
314 TPMI_RB_TIMEOUT_US, TPMI_RB_TIMEOUT_MAX_US);
315 if (ret)
316 goto done_proc;
317
318 control = FIELD_GET(TPMI_CONTROL_STATUS_RESULT, control);
319 if (control != TPMI_CMD_STATUS_SUCCESS) {
320 ret = -EBUSY;
321 goto done_proc;
322 }
323
324 /* Response is ready */
325 memcpy_fromio(feature_state, tpmi_info->tpmi_control_mem + TMPI_CONTROL_DATA_VAL_OFFSET,
326 sizeof(*feature_state));
327
328 ret = 0;
329
330 done_proc:
331 /* Set CPL "completion" bit */
332 writeq(TPMI_CONTROL_STATUS_CPL, tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET);
333
334 err_unlock:
335 mutex_unlock(&tpmi_dev_lock);
336
337 return ret;
338 }
339
tpmi_get_feature_status(struct auxiliary_device * auxdev,int feature_id,bool * read_blocked,bool * write_blocked)340 int tpmi_get_feature_status(struct auxiliary_device *auxdev,
341 int feature_id, bool *read_blocked, bool *write_blocked)
342 {
343 struct intel_vsec_device *intel_vsec_dev = dev_to_ivdev(auxdev->dev.parent);
344 struct intel_tpmi_info *tpmi_info = auxiliary_get_drvdata(&intel_vsec_dev->auxdev);
345 struct tpmi_feature_state feature_state;
346 int ret;
347
348 ret = tpmi_read_feature_status(tpmi_info, feature_id, &feature_state);
349 if (ret)
350 return ret;
351
352 *read_blocked = feature_state.read_blocked;
353 *write_blocked = feature_state.write_blocked;
354
355 return 0;
356 }
357 EXPORT_SYMBOL_NS_GPL(tpmi_get_feature_status, INTEL_TPMI);
358
tpmi_get_debugfs_dir(struct auxiliary_device * auxdev)359 struct dentry *tpmi_get_debugfs_dir(struct auxiliary_device *auxdev)
360 {
361 struct intel_vsec_device *intel_vsec_dev = dev_to_ivdev(auxdev->dev.parent);
362 struct intel_tpmi_info *tpmi_info = auxiliary_get_drvdata(&intel_vsec_dev->auxdev);
363
364 return tpmi_info->dbgfs_dir;
365 }
366 EXPORT_SYMBOL_NS_GPL(tpmi_get_debugfs_dir, INTEL_TPMI);
367
tpmi_pfs_dbg_show(struct seq_file * s,void * unused)368 static int tpmi_pfs_dbg_show(struct seq_file *s, void *unused)
369 {
370 struct intel_tpmi_info *tpmi_info = s->private;
371 int locked, disabled, read_blocked, write_blocked;
372 struct tpmi_feature_state feature_state;
373 struct intel_tpmi_pm_feature *pfs;
374 int ret, i;
375
376
377 seq_printf(s, "tpmi PFS start offset 0x:%llx\n", tpmi_info->pfs_start);
378 seq_puts(s, "tpmi_id\t\tentries\t\tsize\t\tcap_offset\tattribute\tvsec_offset\tlocked\tdisabled\tread_blocked\twrite_blocked\n");
379 for (i = 0; i < tpmi_info->feature_count; ++i) {
380 pfs = &tpmi_info->tpmi_features[i];
381 ret = tpmi_read_feature_status(tpmi_info, pfs->pfs_header.tpmi_id, &feature_state);
382 if (ret) {
383 locked = 'U';
384 disabled = 'U';
385 read_blocked = 'U';
386 write_blocked = 'U';
387 } else {
388 disabled = feature_state.enabled ? 'N' : 'Y';
389 locked = feature_state.locked ? 'Y' : 'N';
390 read_blocked = feature_state.read_blocked ? 'Y' : 'N';
391 write_blocked = feature_state.write_blocked ? 'Y' : 'N';
392 }
393 seq_printf(s, "0x%02x\t\t0x%02x\t\t0x%04x\t\t0x%04x\t\t0x%02x\t\t0x%016llx\t%c\t%c\t\t%c\t\t%c\n",
394 pfs->pfs_header.tpmi_id, pfs->pfs_header.num_entries,
395 pfs->pfs_header.entry_size, pfs->pfs_header.cap_offset,
396 pfs->pfs_header.attribute, pfs->vsec_offset, locked, disabled,
397 read_blocked, write_blocked);
398 }
399
400 return 0;
401 }
402 DEFINE_SHOW_ATTRIBUTE(tpmi_pfs_dbg);
403
404 #define MEM_DUMP_COLUMN_COUNT 8
405
tpmi_mem_dump_show(struct seq_file * s,void * unused)406 static int tpmi_mem_dump_show(struct seq_file *s, void *unused)
407 {
408 size_t row_size = MEM_DUMP_COLUMN_COUNT * sizeof(u32);
409 struct intel_tpmi_pm_feature *pfs = s->private;
410 int count, ret = 0;
411 void __iomem *mem;
412 u32 size;
413 u64 off;
414 u8 *buffer;
415
416 size = TPMI_GET_SINGLE_ENTRY_SIZE(pfs);
417 if (!size)
418 return -EIO;
419
420 buffer = kmalloc(size, GFP_KERNEL);
421 if (!buffer)
422 return -ENOMEM;
423
424 off = pfs->vsec_offset;
425
426 mutex_lock(&tpmi_dev_lock);
427
428 for (count = 0; count < pfs->pfs_header.num_entries; ++count) {
429 seq_printf(s, "TPMI Instance:%d offset:0x%llx\n", count, off);
430
431 mem = ioremap(off, size);
432 if (!mem) {
433 ret = -ENOMEM;
434 break;
435 }
436
437 memcpy_fromio(buffer, mem, size);
438
439 seq_hex_dump(s, " ", DUMP_PREFIX_OFFSET, row_size, sizeof(u32), buffer, size,
440 false);
441
442 iounmap(mem);
443
444 off += size;
445 }
446
447 mutex_unlock(&tpmi_dev_lock);
448
449 kfree(buffer);
450
451 return ret;
452 }
453 DEFINE_SHOW_ATTRIBUTE(tpmi_mem_dump);
454
mem_write(struct file * file,const char __user * userbuf,size_t len,loff_t * ppos)455 static ssize_t mem_write(struct file *file, const char __user *userbuf, size_t len, loff_t *ppos)
456 {
457 struct seq_file *m = file->private_data;
458 struct intel_tpmi_pm_feature *pfs = m->private;
459 u32 addr, value, punit, size;
460 u32 num_elems, *array;
461 void __iomem *mem;
462 int ret;
463
464 size = TPMI_GET_SINGLE_ENTRY_SIZE(pfs);
465 if (!size)
466 return -EIO;
467
468 ret = parse_int_array_user(userbuf, len, (int **)&array);
469 if (ret < 0)
470 return ret;
471
472 num_elems = *array;
473 if (num_elems != 3) {
474 ret = -EINVAL;
475 goto exit_write;
476 }
477
478 punit = array[1];
479 addr = array[2];
480 value = array[3];
481
482 if (punit >= pfs->pfs_header.num_entries) {
483 ret = -EINVAL;
484 goto exit_write;
485 }
486
487 if (addr >= size) {
488 ret = -EINVAL;
489 goto exit_write;
490 }
491
492 mutex_lock(&tpmi_dev_lock);
493
494 mem = ioremap(pfs->vsec_offset + punit * size, size);
495 if (!mem) {
496 ret = -ENOMEM;
497 goto unlock_mem_write;
498 }
499
500 writel(value, mem + addr);
501
502 iounmap(mem);
503
504 ret = len;
505
506 unlock_mem_write:
507 mutex_unlock(&tpmi_dev_lock);
508
509 exit_write:
510 kfree(array);
511
512 return ret;
513 }
514
mem_write_show(struct seq_file * s,void * unused)515 static int mem_write_show(struct seq_file *s, void *unused)
516 {
517 return 0;
518 }
519
mem_write_open(struct inode * inode,struct file * file)520 static int mem_write_open(struct inode *inode, struct file *file)
521 {
522 return single_open(file, mem_write_show, inode->i_private);
523 }
524
525 static const struct file_operations mem_write_ops = {
526 .open = mem_write_open,
527 .read = seq_read,
528 .write = mem_write,
529 .llseek = seq_lseek,
530 .release = single_release,
531 };
532
533 #define tpmi_to_dev(info) (&info->vsec_dev->pcidev->dev)
534
tpmi_dbgfs_register(struct intel_tpmi_info * tpmi_info)535 static void tpmi_dbgfs_register(struct intel_tpmi_info *tpmi_info)
536 {
537 char name[64];
538 int i;
539
540 snprintf(name, sizeof(name), "tpmi-%s", dev_name(tpmi_to_dev(tpmi_info)));
541 tpmi_info->dbgfs_dir = debugfs_create_dir(name, NULL);
542
543 debugfs_create_file("pfs_dump", 0444, tpmi_info->dbgfs_dir, tpmi_info, &tpmi_pfs_dbg_fops);
544
545 for (i = 0; i < tpmi_info->feature_count; ++i) {
546 struct intel_tpmi_pm_feature *pfs;
547 struct dentry *dir;
548
549 pfs = &tpmi_info->tpmi_features[i];
550 snprintf(name, sizeof(name), "tpmi-id-%02x", pfs->pfs_header.tpmi_id);
551 dir = debugfs_create_dir(name, tpmi_info->dbgfs_dir);
552
553 debugfs_create_file("mem_dump", 0444, dir, pfs, &tpmi_mem_dump_fops);
554 debugfs_create_file("mem_write", 0644, dir, pfs, &mem_write_ops);
555 }
556 }
557
tpmi_set_control_base(struct auxiliary_device * auxdev,struct intel_tpmi_info * tpmi_info,struct intel_tpmi_pm_feature * pfs)558 static void tpmi_set_control_base(struct auxiliary_device *auxdev,
559 struct intel_tpmi_info *tpmi_info,
560 struct intel_tpmi_pm_feature *pfs)
561 {
562 void __iomem *mem;
563 u32 size;
564
565 size = TPMI_GET_SINGLE_ENTRY_SIZE(pfs);
566 if (!size)
567 return;
568
569 mem = devm_ioremap(&auxdev->dev, pfs->vsec_offset, size);
570 if (!mem)
571 return;
572
573 /* mem is pointing to TPMI CONTROL base */
574 tpmi_info->tpmi_control_mem = mem;
575 }
576
intel_tpmi_name(enum intel_tpmi_id id)577 static const char *intel_tpmi_name(enum intel_tpmi_id id)
578 {
579 switch (id) {
580 case TPMI_ID_RAPL:
581 return "rapl";
582 case TPMI_ID_PEM:
583 return "pem";
584 case TPMI_ID_UNCORE:
585 return "uncore";
586 case TPMI_ID_SST:
587 return "sst";
588 case TPMI_ID_PLR:
589 return "plr";
590 default:
591 return NULL;
592 }
593 }
594
595 /* String Length for tpmi-"feature_name(upto 8 bytes)" */
596 #define TPMI_FEATURE_NAME_LEN 14
597
tpmi_create_device(struct intel_tpmi_info * tpmi_info,struct intel_tpmi_pm_feature * pfs,u64 pfs_start)598 static int tpmi_create_device(struct intel_tpmi_info *tpmi_info,
599 struct intel_tpmi_pm_feature *pfs,
600 u64 pfs_start)
601 {
602 struct intel_vsec_device *vsec_dev = tpmi_info->vsec_dev;
603 char feature_id_name[TPMI_FEATURE_NAME_LEN];
604 struct intel_vsec_device *feature_vsec_dev;
605 struct tpmi_feature_state feature_state;
606 struct resource *res, *tmp;
607 const char *name;
608 int i, ret;
609
610 ret = tpmi_read_feature_status(tpmi_info, pfs->pfs_header.tpmi_id, &feature_state);
611 if (ret)
612 return ret;
613
614 /*
615 * If not enabled, continue to look at other features in the PFS, so return -EOPNOTSUPP.
616 * This will not cause failure of loading of this driver.
617 */
618 if (!feature_state.enabled)
619 return -EOPNOTSUPP;
620
621 name = intel_tpmi_name(pfs->pfs_header.tpmi_id);
622 if (!name)
623 return -EOPNOTSUPP;
624
625 res = kcalloc(pfs->pfs_header.num_entries, sizeof(*res), GFP_KERNEL);
626 if (!res)
627 return -ENOMEM;
628
629 feature_vsec_dev = kzalloc(sizeof(*feature_vsec_dev), GFP_KERNEL);
630 if (!feature_vsec_dev) {
631 kfree(res);
632 return -ENOMEM;
633 }
634
635 snprintf(feature_id_name, sizeof(feature_id_name), "tpmi-%s", name);
636
637 for (i = 0, tmp = res; i < pfs->pfs_header.num_entries; i++, tmp++) {
638 u64 entry_size_bytes = pfs->pfs_header.entry_size * sizeof(u32);
639
640 tmp->start = pfs->vsec_offset + entry_size_bytes * i;
641 tmp->end = tmp->start + entry_size_bytes - 1;
642 tmp->flags = IORESOURCE_MEM;
643 }
644
645 feature_vsec_dev->pcidev = vsec_dev->pcidev;
646 feature_vsec_dev->resource = res;
647 feature_vsec_dev->num_resources = pfs->pfs_header.num_entries;
648 feature_vsec_dev->priv_data = &tpmi_info->plat_info;
649 feature_vsec_dev->priv_data_size = sizeof(tpmi_info->plat_info);
650 feature_vsec_dev->ida = &intel_vsec_tpmi_ida;
651
652 /*
653 * intel_vsec_add_aux() is resource managed, no explicit
654 * delete is required on error or on module unload.
655 * feature_vsec_dev and res memory are also freed as part of
656 * device deletion.
657 */
658 return intel_vsec_add_aux(vsec_dev->pcidev, &vsec_dev->auxdev.dev,
659 feature_vsec_dev, feature_id_name);
660 }
661
tpmi_create_devices(struct intel_tpmi_info * tpmi_info)662 static int tpmi_create_devices(struct intel_tpmi_info *tpmi_info)
663 {
664 struct intel_vsec_device *vsec_dev = tpmi_info->vsec_dev;
665 int ret, i;
666
667 for (i = 0; i < vsec_dev->num_resources; i++) {
668 ret = tpmi_create_device(tpmi_info, &tpmi_info->tpmi_features[i],
669 tpmi_info->pfs_start);
670 /*
671 * Fail, if the supported features fails to create device,
672 * otherwise, continue. Even if one device failed to create,
673 * fail the loading of driver. Since intel_vsec_add_aux()
674 * is resource managed, no clean up is required for the
675 * successfully created devices.
676 */
677 if (ret && ret != -EOPNOTSUPP)
678 return ret;
679 }
680
681 return 0;
682 }
683
684 #define TPMI_INFO_BUS_INFO_OFFSET 0x08
685 #define TPMI_INFO_MAJOR_VERSION 0x00
686 #define TPMI_INFO_MINOR_VERSION 0x02
687
tpmi_process_info(struct intel_tpmi_info * tpmi_info,struct intel_tpmi_pm_feature * pfs)688 static int tpmi_process_info(struct intel_tpmi_info *tpmi_info,
689 struct intel_tpmi_pm_feature *pfs)
690 {
691 struct tpmi_info_header header;
692 void __iomem *info_mem;
693 u64 feature_header;
694 int ret = 0;
695
696 info_mem = ioremap(pfs->vsec_offset, pfs->pfs_header.entry_size * sizeof(u32));
697 if (!info_mem)
698 return -ENOMEM;
699
700 feature_header = readq(info_mem);
701 if (TPMI_MAJOR_VERSION(feature_header) != TPMI_INFO_MAJOR_VERSION) {
702 ret = -ENODEV;
703 goto error_info_header;
704 }
705
706 memcpy_fromio(&header, info_mem + TPMI_INFO_BUS_INFO_OFFSET, sizeof(header));
707
708 tpmi_info->plat_info.package_id = header.pkg;
709 tpmi_info->plat_info.bus_number = header.bus;
710 tpmi_info->plat_info.device_number = header.dev;
711 tpmi_info->plat_info.function_number = header.fn;
712
713 if (TPMI_MINOR_VERSION(feature_header) >= TPMI_INFO_MINOR_VERSION) {
714 tpmi_info->plat_info.cdie_mask = header.cdie_mask;
715 tpmi_info->plat_info.partition = header.partition;
716 tpmi_info->plat_info.segment = header.segment;
717 }
718
719 error_info_header:
720 iounmap(info_mem);
721
722 return ret;
723 }
724
tpmi_fetch_pfs_header(struct intel_tpmi_pm_feature * pfs,u64 start,int size)725 static int tpmi_fetch_pfs_header(struct intel_tpmi_pm_feature *pfs, u64 start, int size)
726 {
727 void __iomem *pfs_mem;
728
729 pfs_mem = ioremap(start, size);
730 if (!pfs_mem)
731 return -ENOMEM;
732
733 memcpy_fromio(&pfs->pfs_header, pfs_mem, sizeof(pfs->pfs_header));
734
735 iounmap(pfs_mem);
736
737 return 0;
738 }
739
740 #define TPMI_CAP_OFFSET_UNIT 1024
741
intel_vsec_tpmi_init(struct auxiliary_device * auxdev)742 static int intel_vsec_tpmi_init(struct auxiliary_device *auxdev)
743 {
744 struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
745 struct pci_dev *pci_dev = vsec_dev->pcidev;
746 struct intel_tpmi_info *tpmi_info;
747 u64 pfs_start = 0;
748 int ret, i;
749
750 tpmi_info = devm_kzalloc(&auxdev->dev, sizeof(*tpmi_info), GFP_KERNEL);
751 if (!tpmi_info)
752 return -ENOMEM;
753
754 tpmi_info->vsec_dev = vsec_dev;
755 tpmi_info->feature_count = vsec_dev->num_resources;
756 tpmi_info->plat_info.bus_number = pci_dev->bus->number;
757
758 tpmi_info->tpmi_features = devm_kcalloc(&auxdev->dev, vsec_dev->num_resources,
759 sizeof(*tpmi_info->tpmi_features),
760 GFP_KERNEL);
761 if (!tpmi_info->tpmi_features)
762 return -ENOMEM;
763
764 for (i = 0; i < vsec_dev->num_resources; i++) {
765 struct intel_tpmi_pm_feature *pfs;
766 struct resource *res;
767 u64 res_start;
768 int size, ret;
769
770 pfs = &tpmi_info->tpmi_features[i];
771 pfs->vsec_dev = vsec_dev;
772
773 res = &vsec_dev->resource[i];
774 if (!res)
775 continue;
776
777 res_start = res->start;
778 size = resource_size(res);
779 if (size < 0)
780 continue;
781
782 ret = tpmi_fetch_pfs_header(pfs, res_start, size);
783 if (ret)
784 continue;
785
786 if (!pfs_start)
787 pfs_start = res_start;
788
789 pfs->vsec_offset = pfs_start + pfs->pfs_header.cap_offset * TPMI_CAP_OFFSET_UNIT;
790
791 /*
792 * Process TPMI_INFO to get PCI device to CPU package ID.
793 * Device nodes for TPMI features are not created in this
794 * for loop. So, the mapping information will be available
795 * when actual device nodes created outside this
796 * loop via tpmi_create_devices().
797 */
798 if (pfs->pfs_header.tpmi_id == TPMI_INFO_ID) {
799 ret = tpmi_process_info(tpmi_info, pfs);
800 if (ret)
801 return ret;
802 }
803
804 if (pfs->pfs_header.tpmi_id == TPMI_CONTROL_ID)
805 tpmi_set_control_base(auxdev, tpmi_info, pfs);
806 }
807
808 tpmi_info->pfs_start = pfs_start;
809
810 auxiliary_set_drvdata(auxdev, tpmi_info);
811
812 ret = tpmi_create_devices(tpmi_info);
813 if (ret)
814 return ret;
815
816 /*
817 * Allow debugfs when security policy allows. Everything this debugfs
818 * interface provides, can also be done via /dev/mem access. If
819 * /dev/mem interface is locked, don't allow debugfs to present any
820 * information. Also check for CAP_SYS_RAWIO as /dev/mem interface.
821 */
822 if (!security_locked_down(LOCKDOWN_DEV_MEM) && capable(CAP_SYS_RAWIO))
823 tpmi_dbgfs_register(tpmi_info);
824
825 return 0;
826 }
827
tpmi_probe(struct auxiliary_device * auxdev,const struct auxiliary_device_id * id)828 static int tpmi_probe(struct auxiliary_device *auxdev,
829 const struct auxiliary_device_id *id)
830 {
831 return intel_vsec_tpmi_init(auxdev);
832 }
833
tpmi_remove(struct auxiliary_device * auxdev)834 static void tpmi_remove(struct auxiliary_device *auxdev)
835 {
836 struct intel_tpmi_info *tpmi_info = auxiliary_get_drvdata(auxdev);
837
838 debugfs_remove_recursive(tpmi_info->dbgfs_dir);
839 }
840
841 static const struct auxiliary_device_id tpmi_id_table[] = {
842 { .name = "intel_vsec.tpmi" },
843 {}
844 };
845 MODULE_DEVICE_TABLE(auxiliary, tpmi_id_table);
846
847 static struct auxiliary_driver tpmi_aux_driver = {
848 .id_table = tpmi_id_table,
849 .probe = tpmi_probe,
850 .remove = tpmi_remove,
851 };
852
853 module_auxiliary_driver(tpmi_aux_driver);
854
855 MODULE_IMPORT_NS(INTEL_VSEC);
856 MODULE_DESCRIPTION("Intel TPMI enumeration module");
857 MODULE_LICENSE("GPL");
858