1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/cgroup-defs.h>
29 #include <linux/page_counter.h>
30 #include <linux/memcontrol.h>
31 #include <linux/cgroup.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/pagevec.h>
37 #include <linux/vm_event_item.h>
38 #include <linux/smp.h>
39 #include <linux/page-flags.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bit_spinlock.h>
42 #include <linux/rcupdate.h>
43 #include <linux/limits.h>
44 #include <linux/export.h>
45 #include <linux/list.h>
46 #include <linux/mutex.h>
47 #include <linux/rbtree.h>
48 #include <linux/slab.h>
49 #include <linux/swapops.h>
50 #include <linux/spinlock.h>
51 #include <linux/fs.h>
52 #include <linux/seq_file.h>
53 #include <linux/parser.h>
54 #include <linux/vmpressure.h>
55 #include <linux/memremap.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/resume_user_mode.h>
62 #include <linux/psi.h>
63 #include <linux/seq_buf.h>
64 #include <linux/sched/isolation.h>
65 #include <linux/kmemleak.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "memcontrol-v1.h"
71
72 #include <linux/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 /* Active memory cgroup to use from an interrupt context */
82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84
85 /* Socket memory accounting disabled? */
86 static bool cgroup_memory_nosocket __ro_after_init;
87
88 /* Kernel memory accounting disabled? */
89 static bool cgroup_memory_nokmem __ro_after_init;
90
91 /* BPF memory accounting disabled? */
92 static bool cgroup_memory_nobpf __ro_after_init;
93
94 #ifdef CONFIG_CGROUP_WRITEBACK
95 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
96 #endif
97
task_is_dying(void)98 static inline bool task_is_dying(void)
99 {
100 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
101 (current->flags & PF_EXITING);
102 }
103
104 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)105 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
106 {
107 if (!memcg)
108 memcg = root_mem_cgroup;
109 return &memcg->vmpressure;
110 }
111
vmpressure_to_memcg(struct vmpressure * vmpr)112 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
113 {
114 return container_of(vmpr, struct mem_cgroup, vmpressure);
115 }
116
117 #define CURRENT_OBJCG_UPDATE_BIT 0
118 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
119
120 static DEFINE_SPINLOCK(objcg_lock);
121
mem_cgroup_kmem_disabled(void)122 bool mem_cgroup_kmem_disabled(void)
123 {
124 return cgroup_memory_nokmem;
125 }
126
127 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
128 unsigned int nr_pages);
129
obj_cgroup_release(struct percpu_ref * ref)130 static void obj_cgroup_release(struct percpu_ref *ref)
131 {
132 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
133 unsigned int nr_bytes;
134 unsigned int nr_pages;
135 unsigned long flags;
136
137 /*
138 * At this point all allocated objects are freed, and
139 * objcg->nr_charged_bytes can't have an arbitrary byte value.
140 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
141 *
142 * The following sequence can lead to it:
143 * 1) CPU0: objcg == stock->cached_objcg
144 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
145 * PAGE_SIZE bytes are charged
146 * 3) CPU1: a process from another memcg is allocating something,
147 * the stock if flushed,
148 * objcg->nr_charged_bytes = PAGE_SIZE - 92
149 * 5) CPU0: we do release this object,
150 * 92 bytes are added to stock->nr_bytes
151 * 6) CPU0: stock is flushed,
152 * 92 bytes are added to objcg->nr_charged_bytes
153 *
154 * In the result, nr_charged_bytes == PAGE_SIZE.
155 * This page will be uncharged in obj_cgroup_release().
156 */
157 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
158 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
159 nr_pages = nr_bytes >> PAGE_SHIFT;
160
161 if (nr_pages)
162 obj_cgroup_uncharge_pages(objcg, nr_pages);
163
164 spin_lock_irqsave(&objcg_lock, flags);
165 list_del(&objcg->list);
166 spin_unlock_irqrestore(&objcg_lock, flags);
167
168 percpu_ref_exit(ref);
169 kfree_rcu(objcg, rcu);
170 }
171
obj_cgroup_alloc(void)172 static struct obj_cgroup *obj_cgroup_alloc(void)
173 {
174 struct obj_cgroup *objcg;
175 int ret;
176
177 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
178 if (!objcg)
179 return NULL;
180
181 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
182 GFP_KERNEL);
183 if (ret) {
184 kfree(objcg);
185 return NULL;
186 }
187 INIT_LIST_HEAD(&objcg->list);
188 return objcg;
189 }
190
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)191 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
192 struct mem_cgroup *parent)
193 {
194 struct obj_cgroup *objcg, *iter;
195
196 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
197
198 spin_lock_irq(&objcg_lock);
199
200 /* 1) Ready to reparent active objcg. */
201 list_add(&objcg->list, &memcg->objcg_list);
202 /* 2) Reparent active objcg and already reparented objcgs to parent. */
203 list_for_each_entry(iter, &memcg->objcg_list, list)
204 WRITE_ONCE(iter->memcg, parent);
205 /* 3) Move already reparented objcgs to the parent's list */
206 list_splice(&memcg->objcg_list, &parent->objcg_list);
207
208 spin_unlock_irq(&objcg_lock);
209
210 percpu_ref_kill(&objcg->refcnt);
211 }
212
213 /*
214 * A lot of the calls to the cache allocation functions are expected to be
215 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
216 * conditional to this static branch, we'll have to allow modules that does
217 * kmem_cache_alloc and the such to see this symbol as well
218 */
219 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
220 EXPORT_SYMBOL(memcg_kmem_online_key);
221
222 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
223 EXPORT_SYMBOL(memcg_bpf_enabled_key);
224
225 /**
226 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
227 * @folio: folio of interest
228 *
229 * If memcg is bound to the default hierarchy, css of the memcg associated
230 * with @folio is returned. The returned css remains associated with @folio
231 * until it is released.
232 *
233 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
234 * is returned.
235 */
mem_cgroup_css_from_folio(struct folio * folio)236 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
237 {
238 struct mem_cgroup *memcg = folio_memcg(folio);
239
240 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
241 memcg = root_mem_cgroup;
242
243 return &memcg->css;
244 }
245
246 /**
247 * page_cgroup_ino - return inode number of the memcg a page is charged to
248 * @page: the page
249 *
250 * Look up the closest online ancestor of the memory cgroup @page is charged to
251 * and return its inode number or 0 if @page is not charged to any cgroup. It
252 * is safe to call this function without holding a reference to @page.
253 *
254 * Note, this function is inherently racy, because there is nothing to prevent
255 * the cgroup inode from getting torn down and potentially reallocated a moment
256 * after page_cgroup_ino() returns, so it only should be used by callers that
257 * do not care (such as procfs interfaces).
258 */
page_cgroup_ino(struct page * page)259 ino_t page_cgroup_ino(struct page *page)
260 {
261 struct mem_cgroup *memcg;
262 unsigned long ino = 0;
263
264 rcu_read_lock();
265 /* page_folio() is racy here, but the entire function is racy anyway */
266 memcg = folio_memcg_check(page_folio(page));
267
268 while (memcg && !(memcg->css.flags & CSS_ONLINE))
269 memcg = parent_mem_cgroup(memcg);
270 if (memcg)
271 ino = cgroup_ino(memcg->css.cgroup);
272 rcu_read_unlock();
273 return ino;
274 }
275
276 /* Subset of node_stat_item for memcg stats */
277 static const unsigned int memcg_node_stat_items[] = {
278 NR_INACTIVE_ANON,
279 NR_ACTIVE_ANON,
280 NR_INACTIVE_FILE,
281 NR_ACTIVE_FILE,
282 NR_UNEVICTABLE,
283 NR_SLAB_RECLAIMABLE_B,
284 NR_SLAB_UNRECLAIMABLE_B,
285 WORKINGSET_REFAULT_ANON,
286 WORKINGSET_REFAULT_FILE,
287 WORKINGSET_ACTIVATE_ANON,
288 WORKINGSET_ACTIVATE_FILE,
289 WORKINGSET_RESTORE_ANON,
290 WORKINGSET_RESTORE_FILE,
291 WORKINGSET_NODERECLAIM,
292 NR_ANON_MAPPED,
293 NR_FILE_MAPPED,
294 NR_FILE_PAGES,
295 NR_FILE_DIRTY,
296 NR_WRITEBACK,
297 NR_SHMEM,
298 NR_SHMEM_THPS,
299 NR_FILE_THPS,
300 NR_ANON_THPS,
301 NR_KERNEL_STACK_KB,
302 NR_PAGETABLE,
303 NR_SECONDARY_PAGETABLE,
304 #ifdef CONFIG_SWAP
305 NR_SWAPCACHE,
306 #endif
307 #ifdef CONFIG_NUMA_BALANCING
308 PGPROMOTE_SUCCESS,
309 #endif
310 PGDEMOTE_KSWAPD,
311 PGDEMOTE_DIRECT,
312 PGDEMOTE_KHUGEPAGED,
313 };
314
315 static const unsigned int memcg_stat_items[] = {
316 MEMCG_SWAP,
317 MEMCG_SOCK,
318 MEMCG_PERCPU_B,
319 MEMCG_VMALLOC,
320 MEMCG_KMEM,
321 MEMCG_ZSWAP_B,
322 MEMCG_ZSWAPPED,
323 };
324
325 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
326 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
327 ARRAY_SIZE(memcg_stat_items))
328 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
329 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
330
init_memcg_stats(void)331 static void init_memcg_stats(void)
332 {
333 u8 i, j = 0;
334
335 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
336
337 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
338
339 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
340 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
341
342 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
343 mem_cgroup_stats_index[memcg_stat_items[i]] = j;
344 }
345
memcg_stats_index(int idx)346 static inline int memcg_stats_index(int idx)
347 {
348 return mem_cgroup_stats_index[idx];
349 }
350
351 struct lruvec_stats_percpu {
352 /* Local (CPU and cgroup) state */
353 long state[NR_MEMCG_NODE_STAT_ITEMS];
354
355 /* Delta calculation for lockless upward propagation */
356 long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
357 };
358
359 struct lruvec_stats {
360 /* Aggregated (CPU and subtree) state */
361 long state[NR_MEMCG_NODE_STAT_ITEMS];
362
363 /* Non-hierarchical (CPU aggregated) state */
364 long state_local[NR_MEMCG_NODE_STAT_ITEMS];
365
366 /* Pending child counts during tree propagation */
367 long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
368 };
369
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)370 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
371 {
372 struct mem_cgroup_per_node *pn;
373 long x;
374 int i;
375
376 if (mem_cgroup_disabled())
377 return node_page_state(lruvec_pgdat(lruvec), idx);
378
379 i = memcg_stats_index(idx);
380 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
381 return 0;
382
383 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
384 x = READ_ONCE(pn->lruvec_stats->state[i]);
385 #ifdef CONFIG_SMP
386 if (x < 0)
387 x = 0;
388 #endif
389 return x;
390 }
391
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)392 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
393 enum node_stat_item idx)
394 {
395 struct mem_cgroup_per_node *pn;
396 long x;
397 int i;
398
399 if (mem_cgroup_disabled())
400 return node_page_state(lruvec_pgdat(lruvec), idx);
401
402 i = memcg_stats_index(idx);
403 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
404 return 0;
405
406 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
407 x = READ_ONCE(pn->lruvec_stats->state_local[i]);
408 #ifdef CONFIG_SMP
409 if (x < 0)
410 x = 0;
411 #endif
412 return x;
413 }
414
415 /* Subset of vm_event_item to report for memcg event stats */
416 static const unsigned int memcg_vm_event_stat[] = {
417 #ifdef CONFIG_MEMCG_V1
418 PGPGIN,
419 PGPGOUT,
420 #endif
421 PGSCAN_KSWAPD,
422 PGSCAN_DIRECT,
423 PGSCAN_KHUGEPAGED,
424 PGSTEAL_KSWAPD,
425 PGSTEAL_DIRECT,
426 PGSTEAL_KHUGEPAGED,
427 PGFAULT,
428 PGMAJFAULT,
429 PGREFILL,
430 PGACTIVATE,
431 PGDEACTIVATE,
432 PGLAZYFREE,
433 PGLAZYFREED,
434 #ifdef CONFIG_SWAP
435 SWPIN_ZERO,
436 SWPOUT_ZERO,
437 #endif
438 #ifdef CONFIG_ZSWAP
439 ZSWPIN,
440 ZSWPOUT,
441 ZSWPWB,
442 #endif
443 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
444 THP_FAULT_ALLOC,
445 THP_COLLAPSE_ALLOC,
446 THP_SWPOUT,
447 THP_SWPOUT_FALLBACK,
448 #endif
449 #ifdef CONFIG_NUMA_BALANCING
450 NUMA_PAGE_MIGRATE,
451 NUMA_PTE_UPDATES,
452 NUMA_HINT_FAULTS,
453 #endif
454 };
455
456 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
457 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
458
init_memcg_events(void)459 static void init_memcg_events(void)
460 {
461 u8 i;
462
463 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
464
465 memset(mem_cgroup_events_index, U8_MAX,
466 sizeof(mem_cgroup_events_index));
467
468 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
469 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
470 }
471
memcg_events_index(enum vm_event_item idx)472 static inline int memcg_events_index(enum vm_event_item idx)
473 {
474 return mem_cgroup_events_index[idx];
475 }
476
477 struct memcg_vmstats_percpu {
478 /* Stats updates since the last flush */
479 unsigned int stats_updates;
480
481 /* Cached pointers for fast iteration in memcg_rstat_updated() */
482 struct memcg_vmstats_percpu *parent;
483 struct memcg_vmstats *vmstats;
484
485 /* The above should fit a single cacheline for memcg_rstat_updated() */
486
487 /* Local (CPU and cgroup) page state & events */
488 long state[MEMCG_VMSTAT_SIZE];
489 unsigned long events[NR_MEMCG_EVENTS];
490
491 /* Delta calculation for lockless upward propagation */
492 long state_prev[MEMCG_VMSTAT_SIZE];
493 unsigned long events_prev[NR_MEMCG_EVENTS];
494 } ____cacheline_aligned;
495
496 struct memcg_vmstats {
497 /* Aggregated (CPU and subtree) page state & events */
498 long state[MEMCG_VMSTAT_SIZE];
499 unsigned long events[NR_MEMCG_EVENTS];
500
501 /* Non-hierarchical (CPU aggregated) page state & events */
502 long state_local[MEMCG_VMSTAT_SIZE];
503 unsigned long events_local[NR_MEMCG_EVENTS];
504
505 /* Pending child counts during tree propagation */
506 long state_pending[MEMCG_VMSTAT_SIZE];
507 unsigned long events_pending[NR_MEMCG_EVENTS];
508
509 /* Stats updates since the last flush */
510 atomic64_t stats_updates;
511 };
512
513 /*
514 * memcg and lruvec stats flushing
515 *
516 * Many codepaths leading to stats update or read are performance sensitive and
517 * adding stats flushing in such codepaths is not desirable. So, to optimize the
518 * flushing the kernel does:
519 *
520 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
521 * rstat update tree grow unbounded.
522 *
523 * 2) Flush the stats synchronously on reader side only when there are more than
524 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
525 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
526 * only for 2 seconds due to (1).
527 */
528 static void flush_memcg_stats_dwork(struct work_struct *w);
529 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
530 static u64 flush_last_time;
531
532 #define FLUSH_TIME (2UL*HZ)
533
534 /*
535 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
536 * not rely on this as part of an acquired spinlock_t lock. These functions are
537 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
538 * is sufficient.
539 */
memcg_stats_lock(void)540 static void memcg_stats_lock(void)
541 {
542 preempt_disable_nested();
543 VM_WARN_ON_IRQS_ENABLED();
544 }
545
__memcg_stats_lock(void)546 static void __memcg_stats_lock(void)
547 {
548 preempt_disable_nested();
549 }
550
memcg_stats_unlock(void)551 static void memcg_stats_unlock(void)
552 {
553 preempt_enable_nested();
554 }
555
556
memcg_vmstats_needs_flush(struct memcg_vmstats * vmstats)557 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
558 {
559 return atomic64_read(&vmstats->stats_updates) >
560 MEMCG_CHARGE_BATCH * num_online_cpus();
561 }
562
memcg_rstat_updated(struct mem_cgroup * memcg,int val)563 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
564 {
565 struct memcg_vmstats_percpu *statc;
566 int cpu = smp_processor_id();
567 unsigned int stats_updates;
568
569 if (!val)
570 return;
571
572 cgroup_rstat_updated(memcg->css.cgroup, cpu);
573 statc = this_cpu_ptr(memcg->vmstats_percpu);
574 for (; statc; statc = statc->parent) {
575 stats_updates = READ_ONCE(statc->stats_updates) + abs(val);
576 WRITE_ONCE(statc->stats_updates, stats_updates);
577 if (stats_updates < MEMCG_CHARGE_BATCH)
578 continue;
579
580 /*
581 * If @memcg is already flush-able, increasing stats_updates is
582 * redundant. Avoid the overhead of the atomic update.
583 */
584 if (!memcg_vmstats_needs_flush(statc->vmstats))
585 atomic64_add(stats_updates,
586 &statc->vmstats->stats_updates);
587 WRITE_ONCE(statc->stats_updates, 0);
588 }
589 }
590
do_flush_stats(struct mem_cgroup * memcg)591 static void do_flush_stats(struct mem_cgroup *memcg)
592 {
593 if (mem_cgroup_is_root(memcg))
594 WRITE_ONCE(flush_last_time, jiffies_64);
595
596 cgroup_rstat_flush(memcg->css.cgroup);
597 }
598
599 /*
600 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
601 * @memcg: root of the subtree to flush
602 *
603 * Flushing is serialized by the underlying global rstat lock. There is also a
604 * minimum amount of work to be done even if there are no stat updates to flush.
605 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
606 * avoids unnecessary work and contention on the underlying lock.
607 */
mem_cgroup_flush_stats(struct mem_cgroup * memcg)608 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
609 {
610 if (mem_cgroup_disabled())
611 return;
612
613 if (!memcg)
614 memcg = root_mem_cgroup;
615
616 if (memcg_vmstats_needs_flush(memcg->vmstats))
617 do_flush_stats(memcg);
618 }
619
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)620 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
621 {
622 /* Only flush if the periodic flusher is one full cycle late */
623 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
624 mem_cgroup_flush_stats(memcg);
625 }
626
flush_memcg_stats_dwork(struct work_struct * w)627 static void flush_memcg_stats_dwork(struct work_struct *w)
628 {
629 /*
630 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
631 * in latency-sensitive paths is as cheap as possible.
632 */
633 do_flush_stats(root_mem_cgroup);
634 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
635 }
636
memcg_page_state(struct mem_cgroup * memcg,int idx)637 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
638 {
639 long x;
640 int i = memcg_stats_index(idx);
641
642 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
643 return 0;
644
645 x = READ_ONCE(memcg->vmstats->state[i]);
646 #ifdef CONFIG_SMP
647 if (x < 0)
648 x = 0;
649 #endif
650 return x;
651 }
652
653 static int memcg_page_state_unit(int item);
654
655 /*
656 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
657 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
658 */
memcg_state_val_in_pages(int idx,int val)659 static int memcg_state_val_in_pages(int idx, int val)
660 {
661 int unit = memcg_page_state_unit(idx);
662
663 if (!val || unit == PAGE_SIZE)
664 return val;
665 else
666 return max(val * unit / PAGE_SIZE, 1UL);
667 }
668
669 /**
670 * __mod_memcg_state - update cgroup memory statistics
671 * @memcg: the memory cgroup
672 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
673 * @val: delta to add to the counter, can be negative
674 */
__mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int val)675 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
676 int val)
677 {
678 int i = memcg_stats_index(idx);
679
680 if (mem_cgroup_disabled())
681 return;
682
683 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
684 return;
685
686 __this_cpu_add(memcg->vmstats_percpu->state[i], val);
687 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
688 }
689
690 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)691 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
692 {
693 long x;
694 int i = memcg_stats_index(idx);
695
696 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
697 return 0;
698
699 x = READ_ONCE(memcg->vmstats->state_local[i]);
700 #ifdef CONFIG_SMP
701 if (x < 0)
702 x = 0;
703 #endif
704 return x;
705 }
706
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)707 static void __mod_memcg_lruvec_state(struct lruvec *lruvec,
708 enum node_stat_item idx,
709 int val)
710 {
711 struct mem_cgroup_per_node *pn;
712 struct mem_cgroup *memcg;
713 int i = memcg_stats_index(idx);
714
715 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
716 return;
717
718 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
719 memcg = pn->memcg;
720
721 /*
722 * The caller from rmap relies on disabled preemption because they never
723 * update their counter from in-interrupt context. For these two
724 * counters we check that the update is never performed from an
725 * interrupt context while other caller need to have disabled interrupt.
726 */
727 __memcg_stats_lock();
728 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
729 switch (idx) {
730 case NR_ANON_MAPPED:
731 case NR_FILE_MAPPED:
732 case NR_ANON_THPS:
733 WARN_ON_ONCE(!in_task());
734 break;
735 default:
736 VM_WARN_ON_IRQS_ENABLED();
737 }
738 }
739
740 /* Update memcg */
741 __this_cpu_add(memcg->vmstats_percpu->state[i], val);
742
743 /* Update lruvec */
744 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
745
746 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
747 memcg_stats_unlock();
748 }
749
750 /**
751 * __mod_lruvec_state - update lruvec memory statistics
752 * @lruvec: the lruvec
753 * @idx: the stat item
754 * @val: delta to add to the counter, can be negative
755 *
756 * The lruvec is the intersection of the NUMA node and a cgroup. This
757 * function updates the all three counters that are affected by a
758 * change of state at this level: per-node, per-cgroup, per-lruvec.
759 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)760 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
761 int val)
762 {
763 /* Update node */
764 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
765
766 /* Update memcg and lruvec */
767 if (!mem_cgroup_disabled())
768 __mod_memcg_lruvec_state(lruvec, idx, val);
769 }
770
__lruvec_stat_mod_folio(struct folio * folio,enum node_stat_item idx,int val)771 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
772 int val)
773 {
774 struct mem_cgroup *memcg;
775 pg_data_t *pgdat = folio_pgdat(folio);
776 struct lruvec *lruvec;
777
778 rcu_read_lock();
779 memcg = folio_memcg(folio);
780 /* Untracked pages have no memcg, no lruvec. Update only the node */
781 if (!memcg) {
782 rcu_read_unlock();
783 __mod_node_page_state(pgdat, idx, val);
784 return;
785 }
786
787 lruvec = mem_cgroup_lruvec(memcg, pgdat);
788 __mod_lruvec_state(lruvec, idx, val);
789 rcu_read_unlock();
790 }
791 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
792
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)793 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
794 {
795 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
796 struct mem_cgroup *memcg;
797 struct lruvec *lruvec;
798
799 rcu_read_lock();
800 memcg = mem_cgroup_from_slab_obj(p);
801
802 /*
803 * Untracked pages have no memcg, no lruvec. Update only the
804 * node. If we reparent the slab objects to the root memcg,
805 * when we free the slab object, we need to update the per-memcg
806 * vmstats to keep it correct for the root memcg.
807 */
808 if (!memcg) {
809 __mod_node_page_state(pgdat, idx, val);
810 } else {
811 lruvec = mem_cgroup_lruvec(memcg, pgdat);
812 __mod_lruvec_state(lruvec, idx, val);
813 }
814 rcu_read_unlock();
815 }
816
817 /**
818 * __count_memcg_events - account VM events in a cgroup
819 * @memcg: the memory cgroup
820 * @idx: the event item
821 * @count: the number of events that occurred
822 */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)823 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
824 unsigned long count)
825 {
826 int i = memcg_events_index(idx);
827
828 if (mem_cgroup_disabled())
829 return;
830
831 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
832 return;
833
834 memcg_stats_lock();
835 __this_cpu_add(memcg->vmstats_percpu->events[i], count);
836 memcg_rstat_updated(memcg, count);
837 memcg_stats_unlock();
838 }
839
memcg_events(struct mem_cgroup * memcg,int event)840 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
841 {
842 int i = memcg_events_index(event);
843
844 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
845 return 0;
846
847 return READ_ONCE(memcg->vmstats->events[i]);
848 }
849
memcg_events_local(struct mem_cgroup * memcg,int event)850 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
851 {
852 int i = memcg_events_index(event);
853
854 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
855 return 0;
856
857 return READ_ONCE(memcg->vmstats->events_local[i]);
858 }
859
mem_cgroup_from_task(struct task_struct * p)860 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
861 {
862 /*
863 * mm_update_next_owner() may clear mm->owner to NULL
864 * if it races with swapoff, page migration, etc.
865 * So this can be called with p == NULL.
866 */
867 if (unlikely(!p))
868 return NULL;
869
870 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
871 }
872 EXPORT_SYMBOL(mem_cgroup_from_task);
873
active_memcg(void)874 static __always_inline struct mem_cgroup *active_memcg(void)
875 {
876 if (!in_task())
877 return this_cpu_read(int_active_memcg);
878 else
879 return current->active_memcg;
880 }
881
882 /**
883 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
884 * @mm: mm from which memcg should be extracted. It can be NULL.
885 *
886 * Obtain a reference on mm->memcg and returns it if successful. If mm
887 * is NULL, then the memcg is chosen as follows:
888 * 1) The active memcg, if set.
889 * 2) current->mm->memcg, if available
890 * 3) root memcg
891 * If mem_cgroup is disabled, NULL is returned.
892 */
get_mem_cgroup_from_mm(struct mm_struct * mm)893 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
894 {
895 struct mem_cgroup *memcg;
896
897 if (mem_cgroup_disabled())
898 return NULL;
899
900 /*
901 * Page cache insertions can happen without an
902 * actual mm context, e.g. during disk probing
903 * on boot, loopback IO, acct() writes etc.
904 *
905 * No need to css_get on root memcg as the reference
906 * counting is disabled on the root level in the
907 * cgroup core. See CSS_NO_REF.
908 */
909 if (unlikely(!mm)) {
910 memcg = active_memcg();
911 if (unlikely(memcg)) {
912 /* remote memcg must hold a ref */
913 css_get(&memcg->css);
914 return memcg;
915 }
916 mm = current->mm;
917 if (unlikely(!mm))
918 return root_mem_cgroup;
919 }
920
921 rcu_read_lock();
922 do {
923 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
924 if (unlikely(!memcg))
925 memcg = root_mem_cgroup;
926 } while (!css_tryget(&memcg->css));
927 rcu_read_unlock();
928 return memcg;
929 }
930 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
931
932 /**
933 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
934 */
get_mem_cgroup_from_current(void)935 struct mem_cgroup *get_mem_cgroup_from_current(void)
936 {
937 struct mem_cgroup *memcg;
938
939 if (mem_cgroup_disabled())
940 return NULL;
941
942 again:
943 rcu_read_lock();
944 memcg = mem_cgroup_from_task(current);
945 if (!css_tryget(&memcg->css)) {
946 rcu_read_unlock();
947 goto again;
948 }
949 rcu_read_unlock();
950 return memcg;
951 }
952
953 /**
954 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
955 * @folio: folio from which memcg should be extracted.
956 */
get_mem_cgroup_from_folio(struct folio * folio)957 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
958 {
959 struct mem_cgroup *memcg = folio_memcg(folio);
960
961 if (mem_cgroup_disabled())
962 return NULL;
963
964 rcu_read_lock();
965 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
966 memcg = root_mem_cgroup;
967 rcu_read_unlock();
968 return memcg;
969 }
970
971 /**
972 * mem_cgroup_iter - iterate over memory cgroup hierarchy
973 * @root: hierarchy root
974 * @prev: previously returned memcg, NULL on first invocation
975 * @reclaim: cookie for shared reclaim walks, NULL for full walks
976 *
977 * Returns references to children of the hierarchy below @root, or
978 * @root itself, or %NULL after a full round-trip.
979 *
980 * Caller must pass the return value in @prev on subsequent
981 * invocations for reference counting, or use mem_cgroup_iter_break()
982 * to cancel a hierarchy walk before the round-trip is complete.
983 *
984 * Reclaimers can specify a node in @reclaim to divide up the memcgs
985 * in the hierarchy among all concurrent reclaimers operating on the
986 * same node.
987 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)988 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
989 struct mem_cgroup *prev,
990 struct mem_cgroup_reclaim_cookie *reclaim)
991 {
992 struct mem_cgroup_reclaim_iter *iter;
993 struct cgroup_subsys_state *css;
994 struct mem_cgroup *pos;
995 struct mem_cgroup *next;
996
997 if (mem_cgroup_disabled())
998 return NULL;
999
1000 if (!root)
1001 root = root_mem_cgroup;
1002
1003 rcu_read_lock();
1004 restart:
1005 next = NULL;
1006
1007 if (reclaim) {
1008 int gen;
1009 int nid = reclaim->pgdat->node_id;
1010
1011 iter = &root->nodeinfo[nid]->iter;
1012 gen = atomic_read(&iter->generation);
1013
1014 /*
1015 * On start, join the current reclaim iteration cycle.
1016 * Exit when a concurrent walker completes it.
1017 */
1018 if (!prev)
1019 reclaim->generation = gen;
1020 else if (reclaim->generation != gen)
1021 goto out_unlock;
1022
1023 pos = READ_ONCE(iter->position);
1024 } else
1025 pos = prev;
1026
1027 css = pos ? &pos->css : NULL;
1028
1029 while ((css = css_next_descendant_pre(css, &root->css))) {
1030 /*
1031 * Verify the css and acquire a reference. The root
1032 * is provided by the caller, so we know it's alive
1033 * and kicking, and don't take an extra reference.
1034 */
1035 if (css == &root->css || css_tryget(css))
1036 break;
1037 }
1038
1039 next = mem_cgroup_from_css(css);
1040
1041 if (reclaim) {
1042 /*
1043 * The position could have already been updated by a competing
1044 * thread, so check that the value hasn't changed since we read
1045 * it to avoid reclaiming from the same cgroup twice.
1046 */
1047 if (cmpxchg(&iter->position, pos, next) != pos) {
1048 if (css && css != &root->css)
1049 css_put(css);
1050 goto restart;
1051 }
1052
1053 if (!next) {
1054 atomic_inc(&iter->generation);
1055
1056 /*
1057 * Reclaimers share the hierarchy walk, and a
1058 * new one might jump in right at the end of
1059 * the hierarchy - make sure they see at least
1060 * one group and restart from the beginning.
1061 */
1062 if (!prev)
1063 goto restart;
1064 }
1065 }
1066
1067 out_unlock:
1068 rcu_read_unlock();
1069 if (prev && prev != root)
1070 css_put(&prev->css);
1071
1072 return next;
1073 }
1074
1075 /**
1076 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1077 * @root: hierarchy root
1078 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1079 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1080 void mem_cgroup_iter_break(struct mem_cgroup *root,
1081 struct mem_cgroup *prev)
1082 {
1083 if (!root)
1084 root = root_mem_cgroup;
1085 if (prev && prev != root)
1086 css_put(&prev->css);
1087 }
1088
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1089 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1090 struct mem_cgroup *dead_memcg)
1091 {
1092 struct mem_cgroup_reclaim_iter *iter;
1093 struct mem_cgroup_per_node *mz;
1094 int nid;
1095
1096 for_each_node(nid) {
1097 mz = from->nodeinfo[nid];
1098 iter = &mz->iter;
1099 cmpxchg(&iter->position, dead_memcg, NULL);
1100 }
1101 }
1102
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1103 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1104 {
1105 struct mem_cgroup *memcg = dead_memcg;
1106 struct mem_cgroup *last;
1107
1108 do {
1109 __invalidate_reclaim_iterators(memcg, dead_memcg);
1110 last = memcg;
1111 } while ((memcg = parent_mem_cgroup(memcg)));
1112
1113 /*
1114 * When cgroup1 non-hierarchy mode is used,
1115 * parent_mem_cgroup() does not walk all the way up to the
1116 * cgroup root (root_mem_cgroup). So we have to handle
1117 * dead_memcg from cgroup root separately.
1118 */
1119 if (!mem_cgroup_is_root(last))
1120 __invalidate_reclaim_iterators(root_mem_cgroup,
1121 dead_memcg);
1122 }
1123
1124 /**
1125 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1126 * @memcg: hierarchy root
1127 * @fn: function to call for each task
1128 * @arg: argument passed to @fn
1129 *
1130 * This function iterates over tasks attached to @memcg or to any of its
1131 * descendants and calls @fn for each task. If @fn returns a non-zero
1132 * value, the function breaks the iteration loop. Otherwise, it will iterate
1133 * over all tasks and return 0.
1134 *
1135 * This function must not be called for the root memory cgroup.
1136 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1137 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1138 int (*fn)(struct task_struct *, void *), void *arg)
1139 {
1140 struct mem_cgroup *iter;
1141 int ret = 0;
1142
1143 BUG_ON(mem_cgroup_is_root(memcg));
1144
1145 for_each_mem_cgroup_tree(iter, memcg) {
1146 struct css_task_iter it;
1147 struct task_struct *task;
1148
1149 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1150 while (!ret && (task = css_task_iter_next(&it)))
1151 ret = fn(task, arg);
1152 css_task_iter_end(&it);
1153 if (ret) {
1154 mem_cgroup_iter_break(memcg, iter);
1155 break;
1156 }
1157 }
1158 }
1159
1160 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1161 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1162 {
1163 struct mem_cgroup *memcg;
1164
1165 if (mem_cgroup_disabled())
1166 return;
1167
1168 memcg = folio_memcg(folio);
1169
1170 if (!memcg)
1171 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1172 else
1173 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1174 }
1175 #endif
1176
1177 /**
1178 * folio_lruvec_lock - Lock the lruvec for a folio.
1179 * @folio: Pointer to the folio.
1180 *
1181 * These functions are safe to use under any of the following conditions:
1182 * - folio locked
1183 * - folio_test_lru false
1184 * - folio_memcg_lock()
1185 * - folio frozen (refcount of 0)
1186 *
1187 * Return: The lruvec this folio is on with its lock held.
1188 */
folio_lruvec_lock(struct folio * folio)1189 struct lruvec *folio_lruvec_lock(struct folio *folio)
1190 {
1191 struct lruvec *lruvec = folio_lruvec(folio);
1192
1193 spin_lock(&lruvec->lru_lock);
1194 lruvec_memcg_debug(lruvec, folio);
1195
1196 return lruvec;
1197 }
1198
1199 /**
1200 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1201 * @folio: Pointer to the folio.
1202 *
1203 * These functions are safe to use under any of the following conditions:
1204 * - folio locked
1205 * - folio_test_lru false
1206 * - folio_memcg_lock()
1207 * - folio frozen (refcount of 0)
1208 *
1209 * Return: The lruvec this folio is on with its lock held and interrupts
1210 * disabled.
1211 */
folio_lruvec_lock_irq(struct folio * folio)1212 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1213 {
1214 struct lruvec *lruvec = folio_lruvec(folio);
1215
1216 spin_lock_irq(&lruvec->lru_lock);
1217 lruvec_memcg_debug(lruvec, folio);
1218
1219 return lruvec;
1220 }
1221
1222 /**
1223 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1224 * @folio: Pointer to the folio.
1225 * @flags: Pointer to irqsave flags.
1226 *
1227 * These functions are safe to use under any of the following conditions:
1228 * - folio locked
1229 * - folio_test_lru false
1230 * - folio_memcg_lock()
1231 * - folio frozen (refcount of 0)
1232 *
1233 * Return: The lruvec this folio is on with its lock held and interrupts
1234 * disabled.
1235 */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1236 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1237 unsigned long *flags)
1238 {
1239 struct lruvec *lruvec = folio_lruvec(folio);
1240
1241 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1242 lruvec_memcg_debug(lruvec, folio);
1243
1244 return lruvec;
1245 }
1246
1247 /**
1248 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1249 * @lruvec: mem_cgroup per zone lru vector
1250 * @lru: index of lru list the page is sitting on
1251 * @zid: zone id of the accounted pages
1252 * @nr_pages: positive when adding or negative when removing
1253 *
1254 * This function must be called under lru_lock, just before a page is added
1255 * to or just after a page is removed from an lru list.
1256 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1257 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1258 int zid, int nr_pages)
1259 {
1260 struct mem_cgroup_per_node *mz;
1261 unsigned long *lru_size;
1262 long size;
1263
1264 if (mem_cgroup_disabled())
1265 return;
1266
1267 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1268 lru_size = &mz->lru_zone_size[zid][lru];
1269
1270 if (nr_pages < 0)
1271 *lru_size += nr_pages;
1272
1273 size = *lru_size;
1274 if (WARN_ONCE(size < 0,
1275 "%s(%p, %d, %d): lru_size %ld\n",
1276 __func__, lruvec, lru, nr_pages, size)) {
1277 VM_BUG_ON(1);
1278 *lru_size = 0;
1279 }
1280
1281 if (nr_pages > 0)
1282 *lru_size += nr_pages;
1283 }
1284
1285 /**
1286 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1287 * @memcg: the memory cgroup
1288 *
1289 * Returns the maximum amount of memory @mem can be charged with, in
1290 * pages.
1291 */
mem_cgroup_margin(struct mem_cgroup * memcg)1292 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1293 {
1294 unsigned long margin = 0;
1295 unsigned long count;
1296 unsigned long limit;
1297
1298 count = page_counter_read(&memcg->memory);
1299 limit = READ_ONCE(memcg->memory.max);
1300 if (count < limit)
1301 margin = limit - count;
1302
1303 if (do_memsw_account()) {
1304 count = page_counter_read(&memcg->memsw);
1305 limit = READ_ONCE(memcg->memsw.max);
1306 if (count < limit)
1307 margin = min(margin, limit - count);
1308 else
1309 margin = 0;
1310 }
1311
1312 return margin;
1313 }
1314
1315 struct memory_stat {
1316 const char *name;
1317 unsigned int idx;
1318 };
1319
1320 static const struct memory_stat memory_stats[] = {
1321 { "anon", NR_ANON_MAPPED },
1322 { "file", NR_FILE_PAGES },
1323 { "kernel", MEMCG_KMEM },
1324 { "kernel_stack", NR_KERNEL_STACK_KB },
1325 { "pagetables", NR_PAGETABLE },
1326 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1327 { "percpu", MEMCG_PERCPU_B },
1328 { "sock", MEMCG_SOCK },
1329 { "vmalloc", MEMCG_VMALLOC },
1330 { "shmem", NR_SHMEM },
1331 #ifdef CONFIG_ZSWAP
1332 { "zswap", MEMCG_ZSWAP_B },
1333 { "zswapped", MEMCG_ZSWAPPED },
1334 #endif
1335 { "file_mapped", NR_FILE_MAPPED },
1336 { "file_dirty", NR_FILE_DIRTY },
1337 { "file_writeback", NR_WRITEBACK },
1338 #ifdef CONFIG_SWAP
1339 { "swapcached", NR_SWAPCACHE },
1340 #endif
1341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1342 { "anon_thp", NR_ANON_THPS },
1343 { "file_thp", NR_FILE_THPS },
1344 { "shmem_thp", NR_SHMEM_THPS },
1345 #endif
1346 { "inactive_anon", NR_INACTIVE_ANON },
1347 { "active_anon", NR_ACTIVE_ANON },
1348 { "inactive_file", NR_INACTIVE_FILE },
1349 { "active_file", NR_ACTIVE_FILE },
1350 { "unevictable", NR_UNEVICTABLE },
1351 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1352 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1353
1354 /* The memory events */
1355 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1356 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1357 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1358 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1359 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1360 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1361 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1362
1363 { "pgdemote_kswapd", PGDEMOTE_KSWAPD },
1364 { "pgdemote_direct", PGDEMOTE_DIRECT },
1365 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED },
1366 #ifdef CONFIG_NUMA_BALANCING
1367 { "pgpromote_success", PGPROMOTE_SUCCESS },
1368 #endif
1369 };
1370
1371 /* The actual unit of the state item, not the same as the output unit */
memcg_page_state_unit(int item)1372 static int memcg_page_state_unit(int item)
1373 {
1374 switch (item) {
1375 case MEMCG_PERCPU_B:
1376 case MEMCG_ZSWAP_B:
1377 case NR_SLAB_RECLAIMABLE_B:
1378 case NR_SLAB_UNRECLAIMABLE_B:
1379 return 1;
1380 case NR_KERNEL_STACK_KB:
1381 return SZ_1K;
1382 default:
1383 return PAGE_SIZE;
1384 }
1385 }
1386
1387 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_output_unit(int item)1388 static int memcg_page_state_output_unit(int item)
1389 {
1390 /*
1391 * Workingset state is actually in pages, but we export it to userspace
1392 * as a scalar count of events, so special case it here.
1393 *
1394 * Demotion and promotion activities are exported in pages, consistent
1395 * with their global counterparts.
1396 */
1397 switch (item) {
1398 case WORKINGSET_REFAULT_ANON:
1399 case WORKINGSET_REFAULT_FILE:
1400 case WORKINGSET_ACTIVATE_ANON:
1401 case WORKINGSET_ACTIVATE_FILE:
1402 case WORKINGSET_RESTORE_ANON:
1403 case WORKINGSET_RESTORE_FILE:
1404 case WORKINGSET_NODERECLAIM:
1405 case PGDEMOTE_KSWAPD:
1406 case PGDEMOTE_DIRECT:
1407 case PGDEMOTE_KHUGEPAGED:
1408 #ifdef CONFIG_NUMA_BALANCING
1409 case PGPROMOTE_SUCCESS:
1410 #endif
1411 return 1;
1412 default:
1413 return memcg_page_state_unit(item);
1414 }
1415 }
1416
memcg_page_state_output(struct mem_cgroup * memcg,int item)1417 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1418 {
1419 return memcg_page_state(memcg, item) *
1420 memcg_page_state_output_unit(item);
1421 }
1422
memcg_page_state_local_output(struct mem_cgroup * memcg,int item)1423 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1424 {
1425 return memcg_page_state_local(memcg, item) *
1426 memcg_page_state_output_unit(item);
1427 }
1428
memcg_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1429 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1430 {
1431 int i;
1432
1433 /*
1434 * Provide statistics on the state of the memory subsystem as
1435 * well as cumulative event counters that show past behavior.
1436 *
1437 * This list is ordered following a combination of these gradients:
1438 * 1) generic big picture -> specifics and details
1439 * 2) reflecting userspace activity -> reflecting kernel heuristics
1440 *
1441 * Current memory state:
1442 */
1443 mem_cgroup_flush_stats(memcg);
1444
1445 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1446 u64 size;
1447
1448 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1449 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1450
1451 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1452 size += memcg_page_state_output(memcg,
1453 NR_SLAB_RECLAIMABLE_B);
1454 seq_buf_printf(s, "slab %llu\n", size);
1455 }
1456 }
1457
1458 /* Accumulated memory events */
1459 seq_buf_printf(s, "pgscan %lu\n",
1460 memcg_events(memcg, PGSCAN_KSWAPD) +
1461 memcg_events(memcg, PGSCAN_DIRECT) +
1462 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1463 seq_buf_printf(s, "pgsteal %lu\n",
1464 memcg_events(memcg, PGSTEAL_KSWAPD) +
1465 memcg_events(memcg, PGSTEAL_DIRECT) +
1466 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1467
1468 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1469 #ifdef CONFIG_MEMCG_V1
1470 if (memcg_vm_event_stat[i] == PGPGIN ||
1471 memcg_vm_event_stat[i] == PGPGOUT)
1472 continue;
1473 #endif
1474 seq_buf_printf(s, "%s %lu\n",
1475 vm_event_name(memcg_vm_event_stat[i]),
1476 memcg_events(memcg, memcg_vm_event_stat[i]));
1477 }
1478 }
1479
memory_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1480 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1481 {
1482 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1483 memcg_stat_format(memcg, s);
1484 else
1485 memcg1_stat_format(memcg, s);
1486 if (seq_buf_has_overflowed(s))
1487 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1488 }
1489
1490 /**
1491 * mem_cgroup_print_oom_context: Print OOM information relevant to
1492 * memory controller.
1493 * @memcg: The memory cgroup that went over limit
1494 * @p: Task that is going to be killed
1495 *
1496 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1497 * enabled
1498 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1499 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1500 {
1501 rcu_read_lock();
1502
1503 if (memcg) {
1504 pr_cont(",oom_memcg=");
1505 pr_cont_cgroup_path(memcg->css.cgroup);
1506 } else
1507 pr_cont(",global_oom");
1508 if (p) {
1509 pr_cont(",task_memcg=");
1510 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1511 }
1512 rcu_read_unlock();
1513 }
1514
1515 /**
1516 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1517 * memory controller.
1518 * @memcg: The memory cgroup that went over limit
1519 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1520 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1521 {
1522 /* Use static buffer, for the caller is holding oom_lock. */
1523 static char buf[PAGE_SIZE];
1524 struct seq_buf s;
1525
1526 lockdep_assert_held(&oom_lock);
1527
1528 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1529 K((u64)page_counter_read(&memcg->memory)),
1530 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1531 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1532 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1533 K((u64)page_counter_read(&memcg->swap)),
1534 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1535 #ifdef CONFIG_MEMCG_V1
1536 else {
1537 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1538 K((u64)page_counter_read(&memcg->memsw)),
1539 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1540 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1541 K((u64)page_counter_read(&memcg->kmem)),
1542 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1543 }
1544 #endif
1545
1546 pr_info("Memory cgroup stats for ");
1547 pr_cont_cgroup_path(memcg->css.cgroup);
1548 pr_cont(":");
1549 seq_buf_init(&s, buf, sizeof(buf));
1550 memory_stat_format(memcg, &s);
1551 seq_buf_do_printk(&s, KERN_INFO);
1552 }
1553
1554 /*
1555 * Return the memory (and swap, if configured) limit for a memcg.
1556 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1557 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1558 {
1559 unsigned long max = READ_ONCE(memcg->memory.max);
1560
1561 if (do_memsw_account()) {
1562 if (mem_cgroup_swappiness(memcg)) {
1563 /* Calculate swap excess capacity from memsw limit */
1564 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1565
1566 max += min(swap, (unsigned long)total_swap_pages);
1567 }
1568 } else {
1569 if (mem_cgroup_swappiness(memcg))
1570 max += min(READ_ONCE(memcg->swap.max),
1571 (unsigned long)total_swap_pages);
1572 }
1573 return max;
1574 }
1575
mem_cgroup_size(struct mem_cgroup * memcg)1576 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1577 {
1578 return page_counter_read(&memcg->memory);
1579 }
1580
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1581 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1582 int order)
1583 {
1584 struct oom_control oc = {
1585 .zonelist = NULL,
1586 .nodemask = NULL,
1587 .memcg = memcg,
1588 .gfp_mask = gfp_mask,
1589 .order = order,
1590 };
1591 bool ret = true;
1592
1593 if (mutex_lock_killable(&oom_lock))
1594 return true;
1595
1596 if (mem_cgroup_margin(memcg) >= (1 << order))
1597 goto unlock;
1598
1599 /*
1600 * A few threads which were not waiting at mutex_lock_killable() can
1601 * fail to bail out. Therefore, check again after holding oom_lock.
1602 */
1603 ret = task_is_dying() || out_of_memory(&oc);
1604
1605 unlock:
1606 mutex_unlock(&oom_lock);
1607 return ret;
1608 }
1609
1610 /*
1611 * Returns true if successfully killed one or more processes. Though in some
1612 * corner cases it can return true even without killing any process.
1613 */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1614 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1615 {
1616 bool locked, ret;
1617
1618 if (order > PAGE_ALLOC_COSTLY_ORDER)
1619 return false;
1620
1621 memcg_memory_event(memcg, MEMCG_OOM);
1622
1623 if (!memcg1_oom_prepare(memcg, &locked))
1624 return false;
1625
1626 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1627
1628 memcg1_oom_finish(memcg, locked);
1629
1630 return ret;
1631 }
1632
1633 /**
1634 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1635 * @victim: task to be killed by the OOM killer
1636 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1637 *
1638 * Returns a pointer to a memory cgroup, which has to be cleaned up
1639 * by killing all belonging OOM-killable tasks.
1640 *
1641 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1642 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1643 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1644 struct mem_cgroup *oom_domain)
1645 {
1646 struct mem_cgroup *oom_group = NULL;
1647 struct mem_cgroup *memcg;
1648
1649 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1650 return NULL;
1651
1652 if (!oom_domain)
1653 oom_domain = root_mem_cgroup;
1654
1655 rcu_read_lock();
1656
1657 memcg = mem_cgroup_from_task(victim);
1658 if (mem_cgroup_is_root(memcg))
1659 goto out;
1660
1661 /*
1662 * If the victim task has been asynchronously moved to a different
1663 * memory cgroup, we might end up killing tasks outside oom_domain.
1664 * In this case it's better to ignore memory.group.oom.
1665 */
1666 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1667 goto out;
1668
1669 /*
1670 * Traverse the memory cgroup hierarchy from the victim task's
1671 * cgroup up to the OOMing cgroup (or root) to find the
1672 * highest-level memory cgroup with oom.group set.
1673 */
1674 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1675 if (READ_ONCE(memcg->oom_group))
1676 oom_group = memcg;
1677
1678 if (memcg == oom_domain)
1679 break;
1680 }
1681
1682 if (oom_group)
1683 css_get(&oom_group->css);
1684 out:
1685 rcu_read_unlock();
1686
1687 return oom_group;
1688 }
1689
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1690 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1691 {
1692 pr_info("Tasks in ");
1693 pr_cont_cgroup_path(memcg->css.cgroup);
1694 pr_cont(" are going to be killed due to memory.oom.group set\n");
1695 }
1696
1697 struct memcg_stock_pcp {
1698 local_lock_t stock_lock;
1699 struct mem_cgroup *cached; /* this never be root cgroup */
1700 unsigned int nr_pages;
1701
1702 struct obj_cgroup *cached_objcg;
1703 struct pglist_data *cached_pgdat;
1704 unsigned int nr_bytes;
1705 int nr_slab_reclaimable_b;
1706 int nr_slab_unreclaimable_b;
1707
1708 struct work_struct work;
1709 unsigned long flags;
1710 #define FLUSHING_CACHED_CHARGE 0
1711 };
1712 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
1713 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
1714 };
1715 static DEFINE_MUTEX(percpu_charge_mutex);
1716
1717 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
1718 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
1719 struct mem_cgroup *root_memcg);
1720
1721 /**
1722 * consume_stock: Try to consume stocked charge on this cpu.
1723 * @memcg: memcg to consume from.
1724 * @nr_pages: how many pages to charge.
1725 *
1726 * The charges will only happen if @memcg matches the current cpu's memcg
1727 * stock, and at least @nr_pages are available in that stock. Failure to
1728 * service an allocation will refill the stock.
1729 *
1730 * returns true if successful, false otherwise.
1731 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1732 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1733 {
1734 struct memcg_stock_pcp *stock;
1735 unsigned int stock_pages;
1736 unsigned long flags;
1737 bool ret = false;
1738
1739 if (nr_pages > MEMCG_CHARGE_BATCH)
1740 return ret;
1741
1742 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1743
1744 stock = this_cpu_ptr(&memcg_stock);
1745 stock_pages = READ_ONCE(stock->nr_pages);
1746 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) {
1747 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages);
1748 ret = true;
1749 }
1750
1751 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1752
1753 return ret;
1754 }
1755
1756 /*
1757 * Returns stocks cached in percpu and reset cached information.
1758 */
drain_stock(struct memcg_stock_pcp * stock)1759 static void drain_stock(struct memcg_stock_pcp *stock)
1760 {
1761 unsigned int stock_pages = READ_ONCE(stock->nr_pages);
1762 struct mem_cgroup *old = READ_ONCE(stock->cached);
1763
1764 if (!old)
1765 return;
1766
1767 if (stock_pages) {
1768 page_counter_uncharge(&old->memory, stock_pages);
1769 if (do_memsw_account())
1770 page_counter_uncharge(&old->memsw, stock_pages);
1771
1772 WRITE_ONCE(stock->nr_pages, 0);
1773 }
1774
1775 css_put(&old->css);
1776 WRITE_ONCE(stock->cached, NULL);
1777 }
1778
drain_local_stock(struct work_struct * dummy)1779 static void drain_local_stock(struct work_struct *dummy)
1780 {
1781 struct memcg_stock_pcp *stock;
1782 struct obj_cgroup *old = NULL;
1783 unsigned long flags;
1784
1785 /*
1786 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
1787 * drain_stock races is that we always operate on local CPU stock
1788 * here with IRQ disabled
1789 */
1790 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1791
1792 stock = this_cpu_ptr(&memcg_stock);
1793 old = drain_obj_stock(stock);
1794 drain_stock(stock);
1795 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1796
1797 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1798 obj_cgroup_put(old);
1799 }
1800
1801 /*
1802 * Cache charges(val) to local per_cpu area.
1803 * This will be consumed by consume_stock() function, later.
1804 */
__refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1805 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1806 {
1807 struct memcg_stock_pcp *stock;
1808 unsigned int stock_pages;
1809
1810 stock = this_cpu_ptr(&memcg_stock);
1811 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
1812 drain_stock(stock);
1813 css_get(&memcg->css);
1814 WRITE_ONCE(stock->cached, memcg);
1815 }
1816 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages;
1817 WRITE_ONCE(stock->nr_pages, stock_pages);
1818
1819 if (stock_pages > MEMCG_CHARGE_BATCH)
1820 drain_stock(stock);
1821 }
1822
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1823 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1824 {
1825 unsigned long flags;
1826
1827 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1828 __refill_stock(memcg, nr_pages);
1829 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1830 }
1831
1832 /*
1833 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1834 * of the hierarchy under it.
1835 */
drain_all_stock(struct mem_cgroup * root_memcg)1836 void drain_all_stock(struct mem_cgroup *root_memcg)
1837 {
1838 int cpu, curcpu;
1839
1840 /* If someone's already draining, avoid adding running more workers. */
1841 if (!mutex_trylock(&percpu_charge_mutex))
1842 return;
1843 /*
1844 * Notify other cpus that system-wide "drain" is running
1845 * We do not care about races with the cpu hotplug because cpu down
1846 * as well as workers from this path always operate on the local
1847 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1848 */
1849 migrate_disable();
1850 curcpu = smp_processor_id();
1851 for_each_online_cpu(cpu) {
1852 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1853 struct mem_cgroup *memcg;
1854 bool flush = false;
1855
1856 rcu_read_lock();
1857 memcg = READ_ONCE(stock->cached);
1858 if (memcg && READ_ONCE(stock->nr_pages) &&
1859 mem_cgroup_is_descendant(memcg, root_memcg))
1860 flush = true;
1861 else if (obj_stock_flush_required(stock, root_memcg))
1862 flush = true;
1863 rcu_read_unlock();
1864
1865 if (flush &&
1866 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1867 if (cpu == curcpu)
1868 drain_local_stock(&stock->work);
1869 else if (!cpu_is_isolated(cpu))
1870 schedule_work_on(cpu, &stock->work);
1871 }
1872 }
1873 migrate_enable();
1874 mutex_unlock(&percpu_charge_mutex);
1875 }
1876
memcg_hotplug_cpu_dead(unsigned int cpu)1877 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1878 {
1879 struct memcg_stock_pcp *stock;
1880
1881 stock = &per_cpu(memcg_stock, cpu);
1882 drain_stock(stock);
1883
1884 return 0;
1885 }
1886
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)1887 static unsigned long reclaim_high(struct mem_cgroup *memcg,
1888 unsigned int nr_pages,
1889 gfp_t gfp_mask)
1890 {
1891 unsigned long nr_reclaimed = 0;
1892
1893 do {
1894 unsigned long pflags;
1895
1896 if (page_counter_read(&memcg->memory) <=
1897 READ_ONCE(memcg->memory.high))
1898 continue;
1899
1900 memcg_memory_event(memcg, MEMCG_HIGH);
1901
1902 psi_memstall_enter(&pflags);
1903 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
1904 gfp_mask,
1905 MEMCG_RECLAIM_MAY_SWAP,
1906 NULL);
1907 psi_memstall_leave(&pflags);
1908 } while ((memcg = parent_mem_cgroup(memcg)) &&
1909 !mem_cgroup_is_root(memcg));
1910
1911 return nr_reclaimed;
1912 }
1913
high_work_func(struct work_struct * work)1914 static void high_work_func(struct work_struct *work)
1915 {
1916 struct mem_cgroup *memcg;
1917
1918 memcg = container_of(work, struct mem_cgroup, high_work);
1919 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1920 }
1921
1922 /*
1923 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
1924 * enough to still cause a significant slowdown in most cases, while still
1925 * allowing diagnostics and tracing to proceed without becoming stuck.
1926 */
1927 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
1928
1929 /*
1930 * When calculating the delay, we use these either side of the exponentiation to
1931 * maintain precision and scale to a reasonable number of jiffies (see the table
1932 * below.
1933 *
1934 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
1935 * overage ratio to a delay.
1936 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
1937 * proposed penalty in order to reduce to a reasonable number of jiffies, and
1938 * to produce a reasonable delay curve.
1939 *
1940 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
1941 * reasonable delay curve compared to precision-adjusted overage, not
1942 * penalising heavily at first, but still making sure that growth beyond the
1943 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
1944 * example, with a high of 100 megabytes:
1945 *
1946 * +-------+------------------------+
1947 * | usage | time to allocate in ms |
1948 * +-------+------------------------+
1949 * | 100M | 0 |
1950 * | 101M | 6 |
1951 * | 102M | 25 |
1952 * | 103M | 57 |
1953 * | 104M | 102 |
1954 * | 105M | 159 |
1955 * | 106M | 230 |
1956 * | 107M | 313 |
1957 * | 108M | 409 |
1958 * | 109M | 518 |
1959 * | 110M | 639 |
1960 * | 111M | 774 |
1961 * | 112M | 921 |
1962 * | 113M | 1081 |
1963 * | 114M | 1254 |
1964 * | 115M | 1439 |
1965 * | 116M | 1638 |
1966 * | 117M | 1849 |
1967 * | 118M | 2000 |
1968 * | 119M | 2000 |
1969 * | 120M | 2000 |
1970 * +-------+------------------------+
1971 */
1972 #define MEMCG_DELAY_PRECISION_SHIFT 20
1973 #define MEMCG_DELAY_SCALING_SHIFT 14
1974
calculate_overage(unsigned long usage,unsigned long high)1975 static u64 calculate_overage(unsigned long usage, unsigned long high)
1976 {
1977 u64 overage;
1978
1979 if (usage <= high)
1980 return 0;
1981
1982 /*
1983 * Prevent division by 0 in overage calculation by acting as if
1984 * it was a threshold of 1 page
1985 */
1986 high = max(high, 1UL);
1987
1988 overage = usage - high;
1989 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
1990 return div64_u64(overage, high);
1991 }
1992
mem_find_max_overage(struct mem_cgroup * memcg)1993 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
1994 {
1995 u64 overage, max_overage = 0;
1996
1997 do {
1998 overage = calculate_overage(page_counter_read(&memcg->memory),
1999 READ_ONCE(memcg->memory.high));
2000 max_overage = max(overage, max_overage);
2001 } while ((memcg = parent_mem_cgroup(memcg)) &&
2002 !mem_cgroup_is_root(memcg));
2003
2004 return max_overage;
2005 }
2006
swap_find_max_overage(struct mem_cgroup * memcg)2007 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2008 {
2009 u64 overage, max_overage = 0;
2010
2011 do {
2012 overage = calculate_overage(page_counter_read(&memcg->swap),
2013 READ_ONCE(memcg->swap.high));
2014 if (overage)
2015 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2016 max_overage = max(overage, max_overage);
2017 } while ((memcg = parent_mem_cgroup(memcg)) &&
2018 !mem_cgroup_is_root(memcg));
2019
2020 return max_overage;
2021 }
2022
2023 /*
2024 * Get the number of jiffies that we should penalise a mischievous cgroup which
2025 * is exceeding its memory.high by checking both it and its ancestors.
2026 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2027 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2028 unsigned int nr_pages,
2029 u64 max_overage)
2030 {
2031 unsigned long penalty_jiffies;
2032
2033 if (!max_overage)
2034 return 0;
2035
2036 /*
2037 * We use overage compared to memory.high to calculate the number of
2038 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2039 * fairly lenient on small overages, and increasingly harsh when the
2040 * memcg in question makes it clear that it has no intention of stopping
2041 * its crazy behaviour, so we exponentially increase the delay based on
2042 * overage amount.
2043 */
2044 penalty_jiffies = max_overage * max_overage * HZ;
2045 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2046 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2047
2048 /*
2049 * Factor in the task's own contribution to the overage, such that four
2050 * N-sized allocations are throttled approximately the same as one
2051 * 4N-sized allocation.
2052 *
2053 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2054 * larger the current charge patch is than that.
2055 */
2056 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2057 }
2058
2059 /*
2060 * Reclaims memory over the high limit. Called directly from
2061 * try_charge() (context permitting), as well as from the userland
2062 * return path where reclaim is always able to block.
2063 */
mem_cgroup_handle_over_high(gfp_t gfp_mask)2064 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2065 {
2066 unsigned long penalty_jiffies;
2067 unsigned long pflags;
2068 unsigned long nr_reclaimed;
2069 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2070 int nr_retries = MAX_RECLAIM_RETRIES;
2071 struct mem_cgroup *memcg;
2072 bool in_retry = false;
2073
2074 if (likely(!nr_pages))
2075 return;
2076
2077 memcg = get_mem_cgroup_from_mm(current->mm);
2078 current->memcg_nr_pages_over_high = 0;
2079
2080 retry_reclaim:
2081 /*
2082 * Bail if the task is already exiting. Unlike memory.max,
2083 * memory.high enforcement isn't as strict, and there is no
2084 * OOM killer involved, which means the excess could already
2085 * be much bigger (and still growing) than it could for
2086 * memory.max; the dying task could get stuck in fruitless
2087 * reclaim for a long time, which isn't desirable.
2088 */
2089 if (task_is_dying())
2090 goto out;
2091
2092 /*
2093 * The allocating task should reclaim at least the batch size, but for
2094 * subsequent retries we only want to do what's necessary to prevent oom
2095 * or breaching resource isolation.
2096 *
2097 * This is distinct from memory.max or page allocator behaviour because
2098 * memory.high is currently batched, whereas memory.max and the page
2099 * allocator run every time an allocation is made.
2100 */
2101 nr_reclaimed = reclaim_high(memcg,
2102 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2103 gfp_mask);
2104
2105 /*
2106 * memory.high is breached and reclaim is unable to keep up. Throttle
2107 * allocators proactively to slow down excessive growth.
2108 */
2109 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2110 mem_find_max_overage(memcg));
2111
2112 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2113 swap_find_max_overage(memcg));
2114
2115 /*
2116 * Clamp the max delay per usermode return so as to still keep the
2117 * application moving forwards and also permit diagnostics, albeit
2118 * extremely slowly.
2119 */
2120 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2121
2122 /*
2123 * Don't sleep if the amount of jiffies this memcg owes us is so low
2124 * that it's not even worth doing, in an attempt to be nice to those who
2125 * go only a small amount over their memory.high value and maybe haven't
2126 * been aggressively reclaimed enough yet.
2127 */
2128 if (penalty_jiffies <= HZ / 100)
2129 goto out;
2130
2131 /*
2132 * If reclaim is making forward progress but we're still over
2133 * memory.high, we want to encourage that rather than doing allocator
2134 * throttling.
2135 */
2136 if (nr_reclaimed || nr_retries--) {
2137 in_retry = true;
2138 goto retry_reclaim;
2139 }
2140
2141 /*
2142 * Reclaim didn't manage to push usage below the limit, slow
2143 * this allocating task down.
2144 *
2145 * If we exit early, we're guaranteed to die (since
2146 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2147 * need to account for any ill-begotten jiffies to pay them off later.
2148 */
2149 psi_memstall_enter(&pflags);
2150 schedule_timeout_killable(penalty_jiffies);
2151 psi_memstall_leave(&pflags);
2152
2153 out:
2154 css_put(&memcg->css);
2155 }
2156
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2157 int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2158 unsigned int nr_pages)
2159 {
2160 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2161 int nr_retries = MAX_RECLAIM_RETRIES;
2162 struct mem_cgroup *mem_over_limit;
2163 struct page_counter *counter;
2164 unsigned long nr_reclaimed;
2165 bool passed_oom = false;
2166 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2167 bool drained = false;
2168 bool raised_max_event = false;
2169 unsigned long pflags;
2170
2171 retry:
2172 if (consume_stock(memcg, nr_pages))
2173 return 0;
2174
2175 if (!do_memsw_account() ||
2176 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2177 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2178 goto done_restock;
2179 if (do_memsw_account())
2180 page_counter_uncharge(&memcg->memsw, batch);
2181 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2182 } else {
2183 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2184 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2185 }
2186
2187 if (batch > nr_pages) {
2188 batch = nr_pages;
2189 goto retry;
2190 }
2191
2192 /*
2193 * Prevent unbounded recursion when reclaim operations need to
2194 * allocate memory. This might exceed the limits temporarily,
2195 * but we prefer facilitating memory reclaim and getting back
2196 * under the limit over triggering OOM kills in these cases.
2197 */
2198 if (unlikely(current->flags & PF_MEMALLOC))
2199 goto force;
2200
2201 if (unlikely(task_in_memcg_oom(current)))
2202 goto nomem;
2203
2204 if (!gfpflags_allow_blocking(gfp_mask))
2205 goto nomem;
2206
2207 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2208 raised_max_event = true;
2209
2210 psi_memstall_enter(&pflags);
2211 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2212 gfp_mask, reclaim_options, NULL);
2213 psi_memstall_leave(&pflags);
2214
2215 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2216 goto retry;
2217
2218 if (!drained) {
2219 drain_all_stock(mem_over_limit);
2220 drained = true;
2221 goto retry;
2222 }
2223
2224 if (gfp_mask & __GFP_NORETRY)
2225 goto nomem;
2226 /*
2227 * Even though the limit is exceeded at this point, reclaim
2228 * may have been able to free some pages. Retry the charge
2229 * before killing the task.
2230 *
2231 * Only for regular pages, though: huge pages are rather
2232 * unlikely to succeed so close to the limit, and we fall back
2233 * to regular pages anyway in case of failure.
2234 */
2235 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2236 goto retry;
2237 /*
2238 * At task move, charge accounts can be doubly counted. So, it's
2239 * better to wait until the end of task_move if something is going on.
2240 */
2241 if (memcg1_wait_acct_move(mem_over_limit))
2242 goto retry;
2243
2244 if (nr_retries--)
2245 goto retry;
2246
2247 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2248 goto nomem;
2249
2250 /* Avoid endless loop for tasks bypassed by the oom killer */
2251 if (passed_oom && task_is_dying())
2252 goto nomem;
2253
2254 /*
2255 * keep retrying as long as the memcg oom killer is able to make
2256 * a forward progress or bypass the charge if the oom killer
2257 * couldn't make any progress.
2258 */
2259 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2260 get_order(nr_pages * PAGE_SIZE))) {
2261 passed_oom = true;
2262 nr_retries = MAX_RECLAIM_RETRIES;
2263 goto retry;
2264 }
2265 nomem:
2266 /*
2267 * Memcg doesn't have a dedicated reserve for atomic
2268 * allocations. But like the global atomic pool, we need to
2269 * put the burden of reclaim on regular allocation requests
2270 * and let these go through as privileged allocations.
2271 */
2272 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2273 return -ENOMEM;
2274 force:
2275 /*
2276 * If the allocation has to be enforced, don't forget to raise
2277 * a MEMCG_MAX event.
2278 */
2279 if (!raised_max_event)
2280 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2281
2282 /*
2283 * The allocation either can't fail or will lead to more memory
2284 * being freed very soon. Allow memory usage go over the limit
2285 * temporarily by force charging it.
2286 */
2287 page_counter_charge(&memcg->memory, nr_pages);
2288 if (do_memsw_account())
2289 page_counter_charge(&memcg->memsw, nr_pages);
2290
2291 return 0;
2292
2293 done_restock:
2294 if (batch > nr_pages)
2295 refill_stock(memcg, batch - nr_pages);
2296
2297 /*
2298 * If the hierarchy is above the normal consumption range, schedule
2299 * reclaim on returning to userland. We can perform reclaim here
2300 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2301 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2302 * not recorded as it most likely matches current's and won't
2303 * change in the meantime. As high limit is checked again before
2304 * reclaim, the cost of mismatch is negligible.
2305 */
2306 do {
2307 bool mem_high, swap_high;
2308
2309 mem_high = page_counter_read(&memcg->memory) >
2310 READ_ONCE(memcg->memory.high);
2311 swap_high = page_counter_read(&memcg->swap) >
2312 READ_ONCE(memcg->swap.high);
2313
2314 /* Don't bother a random interrupted task */
2315 if (!in_task()) {
2316 if (mem_high) {
2317 schedule_work(&memcg->high_work);
2318 break;
2319 }
2320 continue;
2321 }
2322
2323 if (mem_high || swap_high) {
2324 /*
2325 * The allocating tasks in this cgroup will need to do
2326 * reclaim or be throttled to prevent further growth
2327 * of the memory or swap footprints.
2328 *
2329 * Target some best-effort fairness between the tasks,
2330 * and distribute reclaim work and delay penalties
2331 * based on how much each task is actually allocating.
2332 */
2333 current->memcg_nr_pages_over_high += batch;
2334 set_notify_resume(current);
2335 break;
2336 }
2337 } while ((memcg = parent_mem_cgroup(memcg)));
2338
2339 /*
2340 * Reclaim is set up above to be called from the userland
2341 * return path. But also attempt synchronous reclaim to avoid
2342 * excessive overrun while the task is still inside the
2343 * kernel. If this is successful, the return path will see it
2344 * when it rechecks the overage and simply bail out.
2345 */
2346 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2347 !(current->flags & PF_MEMALLOC) &&
2348 gfpflags_allow_blocking(gfp_mask))
2349 mem_cgroup_handle_over_high(gfp_mask);
2350 return 0;
2351 }
2352
2353 /**
2354 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2355 * @memcg: memcg previously charged.
2356 * @nr_pages: number of pages previously charged.
2357 */
mem_cgroup_cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2358 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2359 {
2360 if (mem_cgroup_is_root(memcg))
2361 return;
2362
2363 page_counter_uncharge(&memcg->memory, nr_pages);
2364 if (do_memsw_account())
2365 page_counter_uncharge(&memcg->memsw, nr_pages);
2366 }
2367
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2368 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2369 {
2370 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2371 /*
2372 * Any of the following ensures page's memcg stability:
2373 *
2374 * - the page lock
2375 * - LRU isolation
2376 * - folio_memcg_lock()
2377 * - exclusive reference
2378 * - mem_cgroup_trylock_pages()
2379 */
2380 folio->memcg_data = (unsigned long)memcg;
2381 }
2382
2383 /**
2384 * mem_cgroup_commit_charge - commit a previously successful try_charge().
2385 * @folio: folio to commit the charge to.
2386 * @memcg: memcg previously charged.
2387 */
mem_cgroup_commit_charge(struct folio * folio,struct mem_cgroup * memcg)2388 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2389 {
2390 css_get(&memcg->css);
2391 commit_charge(folio, memcg);
2392 memcg1_commit_charge(folio, memcg);
2393 }
2394
__mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2395 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg,
2396 struct pglist_data *pgdat,
2397 enum node_stat_item idx, int nr)
2398 {
2399 struct mem_cgroup *memcg;
2400 struct lruvec *lruvec;
2401
2402 rcu_read_lock();
2403 memcg = obj_cgroup_memcg(objcg);
2404 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2405 __mod_memcg_lruvec_state(lruvec, idx, nr);
2406 rcu_read_unlock();
2407 }
2408
2409 static __always_inline
mem_cgroup_from_obj_folio(struct folio * folio,void * p)2410 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2411 {
2412 /*
2413 * Slab objects are accounted individually, not per-page.
2414 * Memcg membership data for each individual object is saved in
2415 * slab->obj_exts.
2416 */
2417 if (folio_test_slab(folio)) {
2418 struct slabobj_ext *obj_exts;
2419 struct slab *slab;
2420 unsigned int off;
2421
2422 slab = folio_slab(folio);
2423 obj_exts = slab_obj_exts(slab);
2424 if (!obj_exts)
2425 return NULL;
2426
2427 off = obj_to_index(slab->slab_cache, slab, p);
2428 if (obj_exts[off].objcg)
2429 return obj_cgroup_memcg(obj_exts[off].objcg);
2430
2431 return NULL;
2432 }
2433
2434 /*
2435 * folio_memcg_check() is used here, because in theory we can encounter
2436 * a folio where the slab flag has been cleared already, but
2437 * slab->obj_exts has not been freed yet
2438 * folio_memcg_check() will guarantee that a proper memory
2439 * cgroup pointer or NULL will be returned.
2440 */
2441 return folio_memcg_check(folio);
2442 }
2443
2444 /*
2445 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2446 * It is not suitable for objects allocated using vmalloc().
2447 *
2448 * A passed kernel object must be a slab object or a generic kernel page.
2449 *
2450 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2451 * cgroup_mutex, etc.
2452 */
mem_cgroup_from_slab_obj(void * p)2453 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2454 {
2455 if (mem_cgroup_disabled())
2456 return NULL;
2457
2458 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2459 }
2460
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)2461 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2462 {
2463 struct obj_cgroup *objcg = NULL;
2464
2465 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2466 objcg = rcu_dereference(memcg->objcg);
2467 if (likely(objcg && obj_cgroup_tryget(objcg)))
2468 break;
2469 objcg = NULL;
2470 }
2471 return objcg;
2472 }
2473
current_objcg_update(void)2474 static struct obj_cgroup *current_objcg_update(void)
2475 {
2476 struct mem_cgroup *memcg;
2477 struct obj_cgroup *old, *objcg = NULL;
2478
2479 do {
2480 /* Atomically drop the update bit. */
2481 old = xchg(¤t->objcg, NULL);
2482 if (old) {
2483 old = (struct obj_cgroup *)
2484 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2485 obj_cgroup_put(old);
2486
2487 old = NULL;
2488 }
2489
2490 /* If new objcg is NULL, no reason for the second atomic update. */
2491 if (!current->mm || (current->flags & PF_KTHREAD))
2492 return NULL;
2493
2494 /*
2495 * Release the objcg pointer from the previous iteration,
2496 * if try_cmpxcg() below fails.
2497 */
2498 if (unlikely(objcg)) {
2499 obj_cgroup_put(objcg);
2500 objcg = NULL;
2501 }
2502
2503 /*
2504 * Obtain the new objcg pointer. The current task can be
2505 * asynchronously moved to another memcg and the previous
2506 * memcg can be offlined. So let's get the memcg pointer
2507 * and try get a reference to objcg under a rcu read lock.
2508 */
2509
2510 rcu_read_lock();
2511 memcg = mem_cgroup_from_task(current);
2512 objcg = __get_obj_cgroup_from_memcg(memcg);
2513 rcu_read_unlock();
2514
2515 /*
2516 * Try set up a new objcg pointer atomically. If it
2517 * fails, it means the update flag was set concurrently, so
2518 * the whole procedure should be repeated.
2519 */
2520 } while (!try_cmpxchg(¤t->objcg, &old, objcg));
2521
2522 return objcg;
2523 }
2524
current_obj_cgroup(void)2525 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2526 {
2527 struct mem_cgroup *memcg;
2528 struct obj_cgroup *objcg;
2529
2530 if (in_task()) {
2531 memcg = current->active_memcg;
2532 if (unlikely(memcg))
2533 goto from_memcg;
2534
2535 objcg = READ_ONCE(current->objcg);
2536 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2537 objcg = current_objcg_update();
2538 /*
2539 * Objcg reference is kept by the task, so it's safe
2540 * to use the objcg by the current task.
2541 */
2542 return objcg;
2543 }
2544
2545 memcg = this_cpu_read(int_active_memcg);
2546 if (unlikely(memcg))
2547 goto from_memcg;
2548
2549 return NULL;
2550
2551 from_memcg:
2552 objcg = NULL;
2553 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2554 /*
2555 * Memcg pointer is protected by scope (see set_active_memcg())
2556 * and is pinning the corresponding objcg, so objcg can't go
2557 * away and can be used within the scope without any additional
2558 * protection.
2559 */
2560 objcg = rcu_dereference_check(memcg->objcg, 1);
2561 if (likely(objcg))
2562 break;
2563 }
2564
2565 return objcg;
2566 }
2567
get_obj_cgroup_from_folio(struct folio * folio)2568 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2569 {
2570 struct obj_cgroup *objcg;
2571
2572 if (!memcg_kmem_online())
2573 return NULL;
2574
2575 if (folio_memcg_kmem(folio)) {
2576 objcg = __folio_objcg(folio);
2577 obj_cgroup_get(objcg);
2578 } else {
2579 struct mem_cgroup *memcg;
2580
2581 rcu_read_lock();
2582 memcg = __folio_memcg(folio);
2583 if (memcg)
2584 objcg = __get_obj_cgroup_from_memcg(memcg);
2585 else
2586 objcg = NULL;
2587 rcu_read_unlock();
2588 }
2589 return objcg;
2590 }
2591
2592 /*
2593 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2594 * @objcg: object cgroup to uncharge
2595 * @nr_pages: number of pages to uncharge
2596 */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)2597 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2598 unsigned int nr_pages)
2599 {
2600 struct mem_cgroup *memcg;
2601
2602 memcg = get_mem_cgroup_from_objcg(objcg);
2603
2604 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2605 memcg1_account_kmem(memcg, -nr_pages);
2606 refill_stock(memcg, nr_pages);
2607
2608 css_put(&memcg->css);
2609 }
2610
2611 /*
2612 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2613 * @objcg: object cgroup to charge
2614 * @gfp: reclaim mode
2615 * @nr_pages: number of pages to charge
2616 *
2617 * Returns 0 on success, an error code on failure.
2618 */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)2619 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2620 unsigned int nr_pages)
2621 {
2622 struct mem_cgroup *memcg;
2623 int ret;
2624
2625 memcg = get_mem_cgroup_from_objcg(objcg);
2626
2627 ret = try_charge_memcg(memcg, gfp, nr_pages);
2628 if (ret)
2629 goto out;
2630
2631 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2632 memcg1_account_kmem(memcg, nr_pages);
2633 out:
2634 css_put(&memcg->css);
2635
2636 return ret;
2637 }
2638
2639 /**
2640 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2641 * @page: page to charge
2642 * @gfp: reclaim mode
2643 * @order: allocation order
2644 *
2645 * Returns 0 on success, an error code on failure.
2646 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)2647 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2648 {
2649 struct obj_cgroup *objcg;
2650 int ret = 0;
2651
2652 objcg = current_obj_cgroup();
2653 if (objcg) {
2654 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2655 if (!ret) {
2656 obj_cgroup_get(objcg);
2657 page->memcg_data = (unsigned long)objcg |
2658 MEMCG_DATA_KMEM;
2659 return 0;
2660 }
2661 }
2662 return ret;
2663 }
2664
2665 /**
2666 * __memcg_kmem_uncharge_page: uncharge a kmem page
2667 * @page: page to uncharge
2668 * @order: allocation order
2669 */
__memcg_kmem_uncharge_page(struct page * page,int order)2670 void __memcg_kmem_uncharge_page(struct page *page, int order)
2671 {
2672 struct folio *folio = page_folio(page);
2673 struct obj_cgroup *objcg;
2674 unsigned int nr_pages = 1 << order;
2675
2676 if (!folio_memcg_kmem(folio))
2677 return;
2678
2679 objcg = __folio_objcg(folio);
2680 obj_cgroup_uncharge_pages(objcg, nr_pages);
2681 folio->memcg_data = 0;
2682 obj_cgroup_put(objcg);
2683 }
2684
mod_objcg_state(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2685 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
2686 enum node_stat_item idx, int nr)
2687 {
2688 struct memcg_stock_pcp *stock;
2689 struct obj_cgroup *old = NULL;
2690 unsigned long flags;
2691 int *bytes;
2692
2693 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2694 stock = this_cpu_ptr(&memcg_stock);
2695
2696 /*
2697 * Save vmstat data in stock and skip vmstat array update unless
2698 * accumulating over a page of vmstat data or when pgdat or idx
2699 * changes.
2700 */
2701 if (READ_ONCE(stock->cached_objcg) != objcg) {
2702 old = drain_obj_stock(stock);
2703 obj_cgroup_get(objcg);
2704 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2705 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2706 WRITE_ONCE(stock->cached_objcg, objcg);
2707 stock->cached_pgdat = pgdat;
2708 } else if (stock->cached_pgdat != pgdat) {
2709 /* Flush the existing cached vmstat data */
2710 struct pglist_data *oldpg = stock->cached_pgdat;
2711
2712 if (stock->nr_slab_reclaimable_b) {
2713 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2714 stock->nr_slab_reclaimable_b);
2715 stock->nr_slab_reclaimable_b = 0;
2716 }
2717 if (stock->nr_slab_unreclaimable_b) {
2718 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2719 stock->nr_slab_unreclaimable_b);
2720 stock->nr_slab_unreclaimable_b = 0;
2721 }
2722 stock->cached_pgdat = pgdat;
2723 }
2724
2725 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2726 : &stock->nr_slab_unreclaimable_b;
2727 /*
2728 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2729 * cached locally at least once before pushing it out.
2730 */
2731 if (!*bytes) {
2732 *bytes = nr;
2733 nr = 0;
2734 } else {
2735 *bytes += nr;
2736 if (abs(*bytes) > PAGE_SIZE) {
2737 nr = *bytes;
2738 *bytes = 0;
2739 } else {
2740 nr = 0;
2741 }
2742 }
2743 if (nr)
2744 __mod_objcg_mlstate(objcg, pgdat, idx, nr);
2745
2746 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2747 obj_cgroup_put(old);
2748 }
2749
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)2750 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
2751 {
2752 struct memcg_stock_pcp *stock;
2753 unsigned long flags;
2754 bool ret = false;
2755
2756 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2757
2758 stock = this_cpu_ptr(&memcg_stock);
2759 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2760 stock->nr_bytes -= nr_bytes;
2761 ret = true;
2762 }
2763
2764 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2765
2766 return ret;
2767 }
2768
drain_obj_stock(struct memcg_stock_pcp * stock)2769 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2770 {
2771 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2772
2773 if (!old)
2774 return NULL;
2775
2776 if (stock->nr_bytes) {
2777 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2778 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2779
2780 if (nr_pages) {
2781 struct mem_cgroup *memcg;
2782
2783 memcg = get_mem_cgroup_from_objcg(old);
2784
2785 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2786 memcg1_account_kmem(memcg, -nr_pages);
2787 __refill_stock(memcg, nr_pages);
2788
2789 css_put(&memcg->css);
2790 }
2791
2792 /*
2793 * The leftover is flushed to the centralized per-memcg value.
2794 * On the next attempt to refill obj stock it will be moved
2795 * to a per-cpu stock (probably, on an other CPU), see
2796 * refill_obj_stock().
2797 *
2798 * How often it's flushed is a trade-off between the memory
2799 * limit enforcement accuracy and potential CPU contention,
2800 * so it might be changed in the future.
2801 */
2802 atomic_add(nr_bytes, &old->nr_charged_bytes);
2803 stock->nr_bytes = 0;
2804 }
2805
2806 /*
2807 * Flush the vmstat data in current stock
2808 */
2809 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2810 if (stock->nr_slab_reclaimable_b) {
2811 __mod_objcg_mlstate(old, stock->cached_pgdat,
2812 NR_SLAB_RECLAIMABLE_B,
2813 stock->nr_slab_reclaimable_b);
2814 stock->nr_slab_reclaimable_b = 0;
2815 }
2816 if (stock->nr_slab_unreclaimable_b) {
2817 __mod_objcg_mlstate(old, stock->cached_pgdat,
2818 NR_SLAB_UNRECLAIMABLE_B,
2819 stock->nr_slab_unreclaimable_b);
2820 stock->nr_slab_unreclaimable_b = 0;
2821 }
2822 stock->cached_pgdat = NULL;
2823 }
2824
2825 WRITE_ONCE(stock->cached_objcg, NULL);
2826 /*
2827 * The `old' objects needs to be released by the caller via
2828 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
2829 */
2830 return old;
2831 }
2832
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2833 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2834 struct mem_cgroup *root_memcg)
2835 {
2836 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
2837 struct mem_cgroup *memcg;
2838
2839 if (objcg) {
2840 memcg = obj_cgroup_memcg(objcg);
2841 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
2842 return true;
2843 }
2844
2845 return false;
2846 }
2847
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge)2848 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2849 bool allow_uncharge)
2850 {
2851 struct memcg_stock_pcp *stock;
2852 struct obj_cgroup *old = NULL;
2853 unsigned long flags;
2854 unsigned int nr_pages = 0;
2855
2856 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2857
2858 stock = this_cpu_ptr(&memcg_stock);
2859 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
2860 old = drain_obj_stock(stock);
2861 obj_cgroup_get(objcg);
2862 WRITE_ONCE(stock->cached_objcg, objcg);
2863 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2864 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2865 allow_uncharge = true; /* Allow uncharge when objcg changes */
2866 }
2867 stock->nr_bytes += nr_bytes;
2868
2869 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
2870 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2871 stock->nr_bytes &= (PAGE_SIZE - 1);
2872 }
2873
2874 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2875 obj_cgroup_put(old);
2876
2877 if (nr_pages)
2878 obj_cgroup_uncharge_pages(objcg, nr_pages);
2879 }
2880
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)2881 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
2882 {
2883 unsigned int nr_pages, nr_bytes;
2884 int ret;
2885
2886 if (consume_obj_stock(objcg, size))
2887 return 0;
2888
2889 /*
2890 * In theory, objcg->nr_charged_bytes can have enough
2891 * pre-charged bytes to satisfy the allocation. However,
2892 * flushing objcg->nr_charged_bytes requires two atomic
2893 * operations, and objcg->nr_charged_bytes can't be big.
2894 * The shared objcg->nr_charged_bytes can also become a
2895 * performance bottleneck if all tasks of the same memcg are
2896 * trying to update it. So it's better to ignore it and try
2897 * grab some new pages. The stock's nr_bytes will be flushed to
2898 * objcg->nr_charged_bytes later on when objcg changes.
2899 *
2900 * The stock's nr_bytes may contain enough pre-charged bytes
2901 * to allow one less page from being charged, but we can't rely
2902 * on the pre-charged bytes not being changed outside of
2903 * consume_obj_stock() or refill_obj_stock(). So ignore those
2904 * pre-charged bytes as well when charging pages. To avoid a
2905 * page uncharge right after a page charge, we set the
2906 * allow_uncharge flag to false when calling refill_obj_stock()
2907 * to temporarily allow the pre-charged bytes to exceed the page
2908 * size limit. The maximum reachable value of the pre-charged
2909 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
2910 * race.
2911 */
2912 nr_pages = size >> PAGE_SHIFT;
2913 nr_bytes = size & (PAGE_SIZE - 1);
2914
2915 if (nr_bytes)
2916 nr_pages += 1;
2917
2918 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
2919 if (!ret && nr_bytes)
2920 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
2921
2922 return ret;
2923 }
2924
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)2925 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
2926 {
2927 refill_obj_stock(objcg, size, true);
2928 }
2929
obj_full_size(struct kmem_cache * s)2930 static inline size_t obj_full_size(struct kmem_cache *s)
2931 {
2932 /*
2933 * For each accounted object there is an extra space which is used
2934 * to store obj_cgroup membership. Charge it too.
2935 */
2936 return s->size + sizeof(struct obj_cgroup *);
2937 }
2938
__memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2939 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2940 gfp_t flags, size_t size, void **p)
2941 {
2942 struct obj_cgroup *objcg;
2943 struct slab *slab;
2944 unsigned long off;
2945 size_t i;
2946
2947 /*
2948 * The obtained objcg pointer is safe to use within the current scope,
2949 * defined by current task or set_active_memcg() pair.
2950 * obj_cgroup_get() is used to get a permanent reference.
2951 */
2952 objcg = current_obj_cgroup();
2953 if (!objcg)
2954 return true;
2955
2956 /*
2957 * slab_alloc_node() avoids the NULL check, so we might be called with a
2958 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
2959 * the whole requested size.
2960 * return success as there's nothing to free back
2961 */
2962 if (unlikely(*p == NULL))
2963 return true;
2964
2965 flags &= gfp_allowed_mask;
2966
2967 if (lru) {
2968 int ret;
2969 struct mem_cgroup *memcg;
2970
2971 memcg = get_mem_cgroup_from_objcg(objcg);
2972 ret = memcg_list_lru_alloc(memcg, lru, flags);
2973 css_put(&memcg->css);
2974
2975 if (ret)
2976 return false;
2977 }
2978
2979 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s)))
2980 return false;
2981
2982 for (i = 0; i < size; i++) {
2983 slab = virt_to_slab(p[i]);
2984
2985 if (!slab_obj_exts(slab) &&
2986 alloc_slab_obj_exts(slab, s, flags, false)) {
2987 obj_cgroup_uncharge(objcg, obj_full_size(s));
2988 continue;
2989 }
2990
2991 off = obj_to_index(s, slab, p[i]);
2992 obj_cgroup_get(objcg);
2993 slab_obj_exts(slab)[off].objcg = objcg;
2994 mod_objcg_state(objcg, slab_pgdat(slab),
2995 cache_vmstat_idx(s), obj_full_size(s));
2996 }
2997
2998 return true;
2999 }
3000
__memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects,struct slabobj_ext * obj_exts)3001 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3002 void **p, int objects, struct slabobj_ext *obj_exts)
3003 {
3004 for (int i = 0; i < objects; i++) {
3005 struct obj_cgroup *objcg;
3006 unsigned int off;
3007
3008 off = obj_to_index(s, slab, p[i]);
3009 objcg = obj_exts[off].objcg;
3010 if (!objcg)
3011 continue;
3012
3013 obj_exts[off].objcg = NULL;
3014 obj_cgroup_uncharge(objcg, obj_full_size(s));
3015 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
3016 -obj_full_size(s));
3017 obj_cgroup_put(objcg);
3018 }
3019 }
3020
3021 /*
3022 * Because folio_memcg(head) is not set on tails, set it now.
3023 */
split_page_memcg(struct page * head,int old_order,int new_order)3024 void split_page_memcg(struct page *head, int old_order, int new_order)
3025 {
3026 struct folio *folio = page_folio(head);
3027 int i;
3028 unsigned int old_nr = 1 << old_order;
3029 unsigned int new_nr = 1 << new_order;
3030
3031 if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3032 return;
3033
3034 for (i = new_nr; i < old_nr; i += new_nr)
3035 folio_page(folio, i)->memcg_data = folio->memcg_data;
3036
3037 if (folio_memcg_kmem(folio))
3038 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3039 else
3040 css_get_many(&folio_memcg(folio)->css, old_nr / new_nr - 1);
3041 }
3042
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3043 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3044 {
3045 unsigned long val;
3046
3047 if (mem_cgroup_is_root(memcg)) {
3048 /*
3049 * Approximate root's usage from global state. This isn't
3050 * perfect, but the root usage was always an approximation.
3051 */
3052 val = global_node_page_state(NR_FILE_PAGES) +
3053 global_node_page_state(NR_ANON_MAPPED);
3054 if (swap)
3055 val += total_swap_pages - get_nr_swap_pages();
3056 } else {
3057 if (!swap)
3058 val = page_counter_read(&memcg->memory);
3059 else
3060 val = page_counter_read(&memcg->memsw);
3061 }
3062 return val;
3063 }
3064
memcg_online_kmem(struct mem_cgroup * memcg)3065 static int memcg_online_kmem(struct mem_cgroup *memcg)
3066 {
3067 struct obj_cgroup *objcg;
3068
3069 if (mem_cgroup_kmem_disabled())
3070 return 0;
3071
3072 if (unlikely(mem_cgroup_is_root(memcg)))
3073 return 0;
3074
3075 objcg = obj_cgroup_alloc();
3076 if (!objcg)
3077 return -ENOMEM;
3078
3079 objcg->memcg = memcg;
3080 rcu_assign_pointer(memcg->objcg, objcg);
3081 obj_cgroup_get(objcg);
3082 memcg->orig_objcg = objcg;
3083
3084 static_branch_enable(&memcg_kmem_online_key);
3085
3086 memcg->kmemcg_id = memcg->id.id;
3087
3088 return 0;
3089 }
3090
memcg_offline_kmem(struct mem_cgroup * memcg)3091 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3092 {
3093 struct mem_cgroup *parent;
3094
3095 if (mem_cgroup_kmem_disabled())
3096 return;
3097
3098 if (unlikely(mem_cgroup_is_root(memcg)))
3099 return;
3100
3101 parent = parent_mem_cgroup(memcg);
3102 if (!parent)
3103 parent = root_mem_cgroup;
3104
3105 memcg_reparent_objcgs(memcg, parent);
3106
3107 /*
3108 * After we have finished memcg_reparent_objcgs(), all list_lrus
3109 * corresponding to this cgroup are guaranteed to remain empty.
3110 * The ordering is imposed by list_lru_node->lock taken by
3111 * memcg_reparent_list_lrus().
3112 */
3113 memcg_reparent_list_lrus(memcg, parent);
3114 }
3115
3116 #ifdef CONFIG_CGROUP_WRITEBACK
3117
3118 #include <trace/events/writeback.h>
3119
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3120 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3121 {
3122 return wb_domain_init(&memcg->cgwb_domain, gfp);
3123 }
3124
memcg_wb_domain_exit(struct mem_cgroup * memcg)3125 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3126 {
3127 wb_domain_exit(&memcg->cgwb_domain);
3128 }
3129
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3130 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3131 {
3132 wb_domain_size_changed(&memcg->cgwb_domain);
3133 }
3134
mem_cgroup_wb_domain(struct bdi_writeback * wb)3135 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3136 {
3137 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3138
3139 if (!memcg->css.parent)
3140 return NULL;
3141
3142 return &memcg->cgwb_domain;
3143 }
3144
3145 /**
3146 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3147 * @wb: bdi_writeback in question
3148 * @pfilepages: out parameter for number of file pages
3149 * @pheadroom: out parameter for number of allocatable pages according to memcg
3150 * @pdirty: out parameter for number of dirty pages
3151 * @pwriteback: out parameter for number of pages under writeback
3152 *
3153 * Determine the numbers of file, headroom, dirty, and writeback pages in
3154 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3155 * is a bit more involved.
3156 *
3157 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3158 * headroom is calculated as the lowest headroom of itself and the
3159 * ancestors. Note that this doesn't consider the actual amount of
3160 * available memory in the system. The caller should further cap
3161 * *@pheadroom accordingly.
3162 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3163 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3164 unsigned long *pheadroom, unsigned long *pdirty,
3165 unsigned long *pwriteback)
3166 {
3167 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3168 struct mem_cgroup *parent;
3169
3170 mem_cgroup_flush_stats_ratelimited(memcg);
3171
3172 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3173 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3174 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3175 memcg_page_state(memcg, NR_ACTIVE_FILE);
3176
3177 *pheadroom = PAGE_COUNTER_MAX;
3178 while ((parent = parent_mem_cgroup(memcg))) {
3179 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3180 READ_ONCE(memcg->memory.high));
3181 unsigned long used = page_counter_read(&memcg->memory);
3182
3183 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3184 memcg = parent;
3185 }
3186 }
3187
3188 /*
3189 * Foreign dirty flushing
3190 *
3191 * There's an inherent mismatch between memcg and writeback. The former
3192 * tracks ownership per-page while the latter per-inode. This was a
3193 * deliberate design decision because honoring per-page ownership in the
3194 * writeback path is complicated, may lead to higher CPU and IO overheads
3195 * and deemed unnecessary given that write-sharing an inode across
3196 * different cgroups isn't a common use-case.
3197 *
3198 * Combined with inode majority-writer ownership switching, this works well
3199 * enough in most cases but there are some pathological cases. For
3200 * example, let's say there are two cgroups A and B which keep writing to
3201 * different but confined parts of the same inode. B owns the inode and
3202 * A's memory is limited far below B's. A's dirty ratio can rise enough to
3203 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3204 * triggering background writeback. A will be slowed down without a way to
3205 * make writeback of the dirty pages happen.
3206 *
3207 * Conditions like the above can lead to a cgroup getting repeatedly and
3208 * severely throttled after making some progress after each
3209 * dirty_expire_interval while the underlying IO device is almost
3210 * completely idle.
3211 *
3212 * Solving this problem completely requires matching the ownership tracking
3213 * granularities between memcg and writeback in either direction. However,
3214 * the more egregious behaviors can be avoided by simply remembering the
3215 * most recent foreign dirtying events and initiating remote flushes on
3216 * them when local writeback isn't enough to keep the memory clean enough.
3217 *
3218 * The following two functions implement such mechanism. When a foreign
3219 * page - a page whose memcg and writeback ownerships don't match - is
3220 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3221 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
3222 * decides that the memcg needs to sleep due to high dirty ratio, it calls
3223 * mem_cgroup_flush_foreign() which queues writeback on the recorded
3224 * foreign bdi_writebacks which haven't expired. Both the numbers of
3225 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3226 * limited to MEMCG_CGWB_FRN_CNT.
3227 *
3228 * The mechanism only remembers IDs and doesn't hold any object references.
3229 * As being wrong occasionally doesn't matter, updates and accesses to the
3230 * records are lockless and racy.
3231 */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)3232 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3233 struct bdi_writeback *wb)
3234 {
3235 struct mem_cgroup *memcg = folio_memcg(folio);
3236 struct memcg_cgwb_frn *frn;
3237 u64 now = get_jiffies_64();
3238 u64 oldest_at = now;
3239 int oldest = -1;
3240 int i;
3241
3242 trace_track_foreign_dirty(folio, wb);
3243
3244 /*
3245 * Pick the slot to use. If there is already a slot for @wb, keep
3246 * using it. If not replace the oldest one which isn't being
3247 * written out.
3248 */
3249 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3250 frn = &memcg->cgwb_frn[i];
3251 if (frn->bdi_id == wb->bdi->id &&
3252 frn->memcg_id == wb->memcg_css->id)
3253 break;
3254 if (time_before64(frn->at, oldest_at) &&
3255 atomic_read(&frn->done.cnt) == 1) {
3256 oldest = i;
3257 oldest_at = frn->at;
3258 }
3259 }
3260
3261 if (i < MEMCG_CGWB_FRN_CNT) {
3262 /*
3263 * Re-using an existing one. Update timestamp lazily to
3264 * avoid making the cacheline hot. We want them to be
3265 * reasonably up-to-date and significantly shorter than
3266 * dirty_expire_interval as that's what expires the record.
3267 * Use the shorter of 1s and dirty_expire_interval / 8.
3268 */
3269 unsigned long update_intv =
3270 min_t(unsigned long, HZ,
3271 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3272
3273 if (time_before64(frn->at, now - update_intv))
3274 frn->at = now;
3275 } else if (oldest >= 0) {
3276 /* replace the oldest free one */
3277 frn = &memcg->cgwb_frn[oldest];
3278 frn->bdi_id = wb->bdi->id;
3279 frn->memcg_id = wb->memcg_css->id;
3280 frn->at = now;
3281 }
3282 }
3283
3284 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)3285 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3286 {
3287 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3288 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3289 u64 now = jiffies_64;
3290 int i;
3291
3292 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3293 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3294
3295 /*
3296 * If the record is older than dirty_expire_interval,
3297 * writeback on it has already started. No need to kick it
3298 * off again. Also, don't start a new one if there's
3299 * already one in flight.
3300 */
3301 if (time_after64(frn->at, now - intv) &&
3302 atomic_read(&frn->done.cnt) == 1) {
3303 frn->at = 0;
3304 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3305 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3306 WB_REASON_FOREIGN_FLUSH,
3307 &frn->done);
3308 }
3309 }
3310 }
3311
3312 #else /* CONFIG_CGROUP_WRITEBACK */
3313
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3314 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3315 {
3316 return 0;
3317 }
3318
memcg_wb_domain_exit(struct mem_cgroup * memcg)3319 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3320 {
3321 }
3322
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3323 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3324 {
3325 }
3326
3327 #endif /* CONFIG_CGROUP_WRITEBACK */
3328
3329 /*
3330 * Private memory cgroup IDR
3331 *
3332 * Swap-out records and page cache shadow entries need to store memcg
3333 * references in constrained space, so we maintain an ID space that is
3334 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3335 * memory-controlled cgroups to 64k.
3336 *
3337 * However, there usually are many references to the offline CSS after
3338 * the cgroup has been destroyed, such as page cache or reclaimable
3339 * slab objects, that don't need to hang on to the ID. We want to keep
3340 * those dead CSS from occupying IDs, or we might quickly exhaust the
3341 * relatively small ID space and prevent the creation of new cgroups
3342 * even when there are much fewer than 64k cgroups - possibly none.
3343 *
3344 * Maintain a private 16-bit ID space for memcg, and allow the ID to
3345 * be freed and recycled when it's no longer needed, which is usually
3346 * when the CSS is offlined.
3347 *
3348 * The only exception to that are records of swapped out tmpfs/shmem
3349 * pages that need to be attributed to live ancestors on swapin. But
3350 * those references are manageable from userspace.
3351 */
3352
3353 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3354 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3355
mem_cgroup_id_remove(struct mem_cgroup * memcg)3356 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3357 {
3358 if (memcg->id.id > 0) {
3359 xa_erase(&mem_cgroup_ids, memcg->id.id);
3360 memcg->id.id = 0;
3361 }
3362 }
3363
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)3364 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3365 unsigned int n)
3366 {
3367 refcount_add(n, &memcg->id.ref);
3368 }
3369
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)3370 void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3371 {
3372 if (refcount_sub_and_test(n, &memcg->id.ref)) {
3373 mem_cgroup_id_remove(memcg);
3374
3375 /* Memcg ID pins CSS */
3376 css_put(&memcg->css);
3377 }
3378 }
3379
mem_cgroup_id_put(struct mem_cgroup * memcg)3380 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3381 {
3382 mem_cgroup_id_put_many(memcg, 1);
3383 }
3384
3385 /**
3386 * mem_cgroup_from_id - look up a memcg from a memcg id
3387 * @id: the memcg id to look up
3388 *
3389 * Caller must hold rcu_read_lock().
3390 */
mem_cgroup_from_id(unsigned short id)3391 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3392 {
3393 WARN_ON_ONCE(!rcu_read_lock_held());
3394 return xa_load(&mem_cgroup_ids, id);
3395 }
3396
3397 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)3398 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3399 {
3400 struct cgroup *cgrp;
3401 struct cgroup_subsys_state *css;
3402 struct mem_cgroup *memcg;
3403
3404 cgrp = cgroup_get_from_id(ino);
3405 if (IS_ERR(cgrp))
3406 return ERR_CAST(cgrp);
3407
3408 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3409 if (css)
3410 memcg = container_of(css, struct mem_cgroup, css);
3411 else
3412 memcg = ERR_PTR(-ENOENT);
3413
3414 cgroup_put(cgrp);
3415
3416 return memcg;
3417 }
3418 #endif
3419
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)3420 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3421 {
3422 struct mem_cgroup_per_node *pn;
3423
3424 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
3425 if (!pn)
3426 return false;
3427
3428 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3429 GFP_KERNEL_ACCOUNT, node);
3430 if (!pn->lruvec_stats)
3431 goto fail;
3432
3433 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3434 GFP_KERNEL_ACCOUNT);
3435 if (!pn->lruvec_stats_percpu)
3436 goto fail;
3437
3438 lruvec_init(&pn->lruvec);
3439 pn->memcg = memcg;
3440
3441 memcg->nodeinfo[node] = pn;
3442 return true;
3443 fail:
3444 kfree(pn->lruvec_stats);
3445 kfree(pn);
3446 return false;
3447 }
3448
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)3449 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3450 {
3451 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3452
3453 if (!pn)
3454 return;
3455
3456 free_percpu(pn->lruvec_stats_percpu);
3457 kfree(pn->lruvec_stats);
3458 kfree(pn);
3459 }
3460
__mem_cgroup_free(struct mem_cgroup * memcg)3461 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3462 {
3463 int node;
3464
3465 obj_cgroup_put(memcg->orig_objcg);
3466
3467 for_each_node(node)
3468 free_mem_cgroup_per_node_info(memcg, node);
3469 memcg1_free_events(memcg);
3470 kfree(memcg->vmstats);
3471 free_percpu(memcg->vmstats_percpu);
3472 kfree(memcg);
3473 }
3474
mem_cgroup_free(struct mem_cgroup * memcg)3475 static void mem_cgroup_free(struct mem_cgroup *memcg)
3476 {
3477 lru_gen_exit_memcg(memcg);
3478 memcg_wb_domain_exit(memcg);
3479 __mem_cgroup_free(memcg);
3480 }
3481
mem_cgroup_alloc(struct mem_cgroup * parent)3482 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3483 {
3484 struct memcg_vmstats_percpu *statc, *pstatc;
3485 struct mem_cgroup *memcg;
3486 int node, cpu;
3487 int __maybe_unused i;
3488 long error;
3489
3490 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
3491 if (!memcg)
3492 return ERR_PTR(-ENOMEM);
3493
3494 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3495 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3496 if (error)
3497 goto fail;
3498 error = -ENOMEM;
3499
3500 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3501 GFP_KERNEL_ACCOUNT);
3502 if (!memcg->vmstats)
3503 goto fail;
3504
3505 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3506 GFP_KERNEL_ACCOUNT);
3507 if (!memcg->vmstats_percpu)
3508 goto fail;
3509
3510 if (!memcg1_alloc_events(memcg))
3511 goto fail;
3512
3513 for_each_possible_cpu(cpu) {
3514 if (parent)
3515 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
3516 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3517 statc->parent = parent ? pstatc : NULL;
3518 statc->vmstats = memcg->vmstats;
3519 }
3520
3521 for_each_node(node)
3522 if (!alloc_mem_cgroup_per_node_info(memcg, node))
3523 goto fail;
3524
3525 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3526 goto fail;
3527
3528 INIT_WORK(&memcg->high_work, high_work_func);
3529 vmpressure_init(&memcg->vmpressure);
3530 INIT_LIST_HEAD(&memcg->memory_peaks);
3531 INIT_LIST_HEAD(&memcg->swap_peaks);
3532 spin_lock_init(&memcg->peaks_lock);
3533 memcg->socket_pressure = jiffies;
3534 memcg1_memcg_init(memcg);
3535 memcg->kmemcg_id = -1;
3536 INIT_LIST_HEAD(&memcg->objcg_list);
3537 #ifdef CONFIG_CGROUP_WRITEBACK
3538 INIT_LIST_HEAD(&memcg->cgwb_list);
3539 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3540 memcg->cgwb_frn[i].done =
3541 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3542 #endif
3543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3544 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3545 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3546 memcg->deferred_split_queue.split_queue_len = 0;
3547 #endif
3548 lru_gen_init_memcg(memcg);
3549 return memcg;
3550 fail:
3551 mem_cgroup_id_remove(memcg);
3552 __mem_cgroup_free(memcg);
3553 return ERR_PTR(error);
3554 }
3555
3556 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)3557 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3558 {
3559 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3560 struct mem_cgroup *memcg, *old_memcg;
3561
3562 old_memcg = set_active_memcg(parent);
3563 memcg = mem_cgroup_alloc(parent);
3564 set_active_memcg(old_memcg);
3565 if (IS_ERR(memcg))
3566 return ERR_CAST(memcg);
3567
3568 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3569 memcg1_soft_limit_reset(memcg);
3570 #ifdef CONFIG_ZSWAP
3571 memcg->zswap_max = PAGE_COUNTER_MAX;
3572 WRITE_ONCE(memcg->zswap_writeback, true);
3573 #endif
3574 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3575 if (parent) {
3576 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3577
3578 page_counter_init(&memcg->memory, &parent->memory, true);
3579 page_counter_init(&memcg->swap, &parent->swap, false);
3580 #ifdef CONFIG_MEMCG_V1
3581 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3582 page_counter_init(&memcg->kmem, &parent->kmem, false);
3583 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3584 #endif
3585 } else {
3586 init_memcg_stats();
3587 init_memcg_events();
3588 page_counter_init(&memcg->memory, NULL, true);
3589 page_counter_init(&memcg->swap, NULL, false);
3590 #ifdef CONFIG_MEMCG_V1
3591 page_counter_init(&memcg->kmem, NULL, false);
3592 page_counter_init(&memcg->tcpmem, NULL, false);
3593 #endif
3594 root_mem_cgroup = memcg;
3595 return &memcg->css;
3596 }
3597
3598 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3599 static_branch_inc(&memcg_sockets_enabled_key);
3600
3601 if (!cgroup_memory_nobpf)
3602 static_branch_inc(&memcg_bpf_enabled_key);
3603
3604 return &memcg->css;
3605 }
3606
mem_cgroup_css_online(struct cgroup_subsys_state * css)3607 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3608 {
3609 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3610
3611 if (memcg_online_kmem(memcg))
3612 goto remove_id;
3613
3614 /*
3615 * A memcg must be visible for expand_shrinker_info()
3616 * by the time the maps are allocated. So, we allocate maps
3617 * here, when for_each_mem_cgroup() can't skip it.
3618 */
3619 if (alloc_shrinker_info(memcg))
3620 goto offline_kmem;
3621
3622 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3623 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3624 FLUSH_TIME);
3625 lru_gen_online_memcg(memcg);
3626
3627 /* Online state pins memcg ID, memcg ID pins CSS */
3628 refcount_set(&memcg->id.ref, 1);
3629 css_get(css);
3630
3631 /*
3632 * Ensure mem_cgroup_from_id() works once we're fully online.
3633 *
3634 * We could do this earlier and require callers to filter with
3635 * css_tryget_online(). But right now there are no users that
3636 * need earlier access, and the workingset code relies on the
3637 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3638 * publish it here at the end of onlining. This matches the
3639 * regular ID destruction during offlining.
3640 */
3641 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3642
3643 return 0;
3644 offline_kmem:
3645 memcg_offline_kmem(memcg);
3646 remove_id:
3647 mem_cgroup_id_remove(memcg);
3648 return -ENOMEM;
3649 }
3650
mem_cgroup_css_offline(struct cgroup_subsys_state * css)3651 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3652 {
3653 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3654
3655 memcg1_css_offline(memcg);
3656
3657 page_counter_set_min(&memcg->memory, 0);
3658 page_counter_set_low(&memcg->memory, 0);
3659
3660 zswap_memcg_offline_cleanup(memcg);
3661
3662 memcg_offline_kmem(memcg);
3663 reparent_shrinker_deferred(memcg);
3664 wb_memcg_offline(memcg);
3665 lru_gen_offline_memcg(memcg);
3666
3667 drain_all_stock(memcg);
3668
3669 mem_cgroup_id_put(memcg);
3670 }
3671
mem_cgroup_css_released(struct cgroup_subsys_state * css)3672 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3673 {
3674 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3675
3676 invalidate_reclaim_iterators(memcg);
3677 lru_gen_release_memcg(memcg);
3678 }
3679
mem_cgroup_css_free(struct cgroup_subsys_state * css)3680 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3681 {
3682 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3683 int __maybe_unused i;
3684
3685 #ifdef CONFIG_CGROUP_WRITEBACK
3686 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3687 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3688 #endif
3689 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3690 static_branch_dec(&memcg_sockets_enabled_key);
3691
3692 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3693 static_branch_dec(&memcg_sockets_enabled_key);
3694
3695 if (!cgroup_memory_nobpf)
3696 static_branch_dec(&memcg_bpf_enabled_key);
3697
3698 vmpressure_cleanup(&memcg->vmpressure);
3699 cancel_work_sync(&memcg->high_work);
3700 memcg1_remove_from_trees(memcg);
3701 free_shrinker_info(memcg);
3702 mem_cgroup_free(memcg);
3703 }
3704
3705 /**
3706 * mem_cgroup_css_reset - reset the states of a mem_cgroup
3707 * @css: the target css
3708 *
3709 * Reset the states of the mem_cgroup associated with @css. This is
3710 * invoked when the userland requests disabling on the default hierarchy
3711 * but the memcg is pinned through dependency. The memcg should stop
3712 * applying policies and should revert to the vanilla state as it may be
3713 * made visible again.
3714 *
3715 * The current implementation only resets the essential configurations.
3716 * This needs to be expanded to cover all the visible parts.
3717 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)3718 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3719 {
3720 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3721
3722 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3723 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3724 #ifdef CONFIG_MEMCG_V1
3725 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3726 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3727 #endif
3728 page_counter_set_min(&memcg->memory, 0);
3729 page_counter_set_low(&memcg->memory, 0);
3730 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3731 memcg1_soft_limit_reset(memcg);
3732 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3733 memcg_wb_domain_size_changed(memcg);
3734 }
3735
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)3736 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
3737 {
3738 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3739 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3740 struct memcg_vmstats_percpu *statc;
3741 long delta, delta_cpu, v;
3742 int i, nid;
3743
3744 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3745
3746 for (i = 0; i < MEMCG_VMSTAT_SIZE; i++) {
3747 /*
3748 * Collect the aggregated propagation counts of groups
3749 * below us. We're in a per-cpu loop here and this is
3750 * a global counter, so the first cycle will get them.
3751 */
3752 delta = memcg->vmstats->state_pending[i];
3753 if (delta)
3754 memcg->vmstats->state_pending[i] = 0;
3755
3756 /* Add CPU changes on this level since the last flush */
3757 delta_cpu = 0;
3758 v = READ_ONCE(statc->state[i]);
3759 if (v != statc->state_prev[i]) {
3760 delta_cpu = v - statc->state_prev[i];
3761 delta += delta_cpu;
3762 statc->state_prev[i] = v;
3763 }
3764
3765 /* Aggregate counts on this level and propagate upwards */
3766 if (delta_cpu)
3767 memcg->vmstats->state_local[i] += delta_cpu;
3768
3769 if (delta) {
3770 memcg->vmstats->state[i] += delta;
3771 if (parent)
3772 parent->vmstats->state_pending[i] += delta;
3773 }
3774 }
3775
3776 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
3777 delta = memcg->vmstats->events_pending[i];
3778 if (delta)
3779 memcg->vmstats->events_pending[i] = 0;
3780
3781 delta_cpu = 0;
3782 v = READ_ONCE(statc->events[i]);
3783 if (v != statc->events_prev[i]) {
3784 delta_cpu = v - statc->events_prev[i];
3785 delta += delta_cpu;
3786 statc->events_prev[i] = v;
3787 }
3788
3789 if (delta_cpu)
3790 memcg->vmstats->events_local[i] += delta_cpu;
3791
3792 if (delta) {
3793 memcg->vmstats->events[i] += delta;
3794 if (parent)
3795 parent->vmstats->events_pending[i] += delta;
3796 }
3797 }
3798
3799 for_each_node_state(nid, N_MEMORY) {
3800 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
3801 struct lruvec_stats *lstats = pn->lruvec_stats;
3802 struct lruvec_stats *plstats = NULL;
3803 struct lruvec_stats_percpu *lstatc;
3804
3805 if (parent)
3806 plstats = parent->nodeinfo[nid]->lruvec_stats;
3807
3808 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
3809
3810 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; i++) {
3811 delta = lstats->state_pending[i];
3812 if (delta)
3813 lstats->state_pending[i] = 0;
3814
3815 delta_cpu = 0;
3816 v = READ_ONCE(lstatc->state[i]);
3817 if (v != lstatc->state_prev[i]) {
3818 delta_cpu = v - lstatc->state_prev[i];
3819 delta += delta_cpu;
3820 lstatc->state_prev[i] = v;
3821 }
3822
3823 if (delta_cpu)
3824 lstats->state_local[i] += delta_cpu;
3825
3826 if (delta) {
3827 lstats->state[i] += delta;
3828 if (plstats)
3829 plstats->state_pending[i] += delta;
3830 }
3831 }
3832 }
3833 WRITE_ONCE(statc->stats_updates, 0);
3834 /* We are in a per-cpu loop here, only do the atomic write once */
3835 if (atomic64_read(&memcg->vmstats->stats_updates))
3836 atomic64_set(&memcg->vmstats->stats_updates, 0);
3837 }
3838
mem_cgroup_fork(struct task_struct * task)3839 static void mem_cgroup_fork(struct task_struct *task)
3840 {
3841 /*
3842 * Set the update flag to cause task->objcg to be initialized lazily
3843 * on the first allocation. It can be done without any synchronization
3844 * because it's always performed on the current task, so does
3845 * current_objcg_update().
3846 */
3847 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
3848 }
3849
mem_cgroup_exit(struct task_struct * task)3850 static void mem_cgroup_exit(struct task_struct *task)
3851 {
3852 struct obj_cgroup *objcg = task->objcg;
3853
3854 objcg = (struct obj_cgroup *)
3855 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
3856 obj_cgroup_put(objcg);
3857
3858 /*
3859 * Some kernel allocations can happen after this point,
3860 * but let's ignore them. It can be done without any synchronization
3861 * because it's always performed on the current task, so does
3862 * current_objcg_update().
3863 */
3864 task->objcg = NULL;
3865 }
3866
3867 #ifdef CONFIG_LRU_GEN
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)3868 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
3869 {
3870 struct task_struct *task;
3871 struct cgroup_subsys_state *css;
3872
3873 /* find the first leader if there is any */
3874 cgroup_taskset_for_each_leader(task, css, tset)
3875 break;
3876
3877 if (!task)
3878 return;
3879
3880 task_lock(task);
3881 if (task->mm && READ_ONCE(task->mm->owner) == task)
3882 lru_gen_migrate_mm(task->mm);
3883 task_unlock(task);
3884 }
3885 #else
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)3886 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
3887 #endif /* CONFIG_LRU_GEN */
3888
mem_cgroup_kmem_attach(struct cgroup_taskset * tset)3889 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
3890 {
3891 struct task_struct *task;
3892 struct cgroup_subsys_state *css;
3893
3894 cgroup_taskset_for_each(task, css, tset) {
3895 /* atomically set the update bit */
3896 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
3897 }
3898 }
3899
mem_cgroup_attach(struct cgroup_taskset * tset)3900 static void mem_cgroup_attach(struct cgroup_taskset *tset)
3901 {
3902 mem_cgroup_lru_gen_attach(tset);
3903 mem_cgroup_kmem_attach(tset);
3904 }
3905
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)3906 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
3907 {
3908 if (value == PAGE_COUNTER_MAX)
3909 seq_puts(m, "max\n");
3910 else
3911 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
3912
3913 return 0;
3914 }
3915
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)3916 static u64 memory_current_read(struct cgroup_subsys_state *css,
3917 struct cftype *cft)
3918 {
3919 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3920
3921 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
3922 }
3923
3924 #define OFP_PEAK_UNSET (((-1UL)))
3925
peak_show(struct seq_file * sf,void * v,struct page_counter * pc)3926 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
3927 {
3928 struct cgroup_of_peak *ofp = of_peak(sf->private);
3929 u64 fd_peak = READ_ONCE(ofp->value), peak;
3930
3931 /* User wants global or local peak? */
3932 if (fd_peak == OFP_PEAK_UNSET)
3933 peak = pc->watermark;
3934 else
3935 peak = max(fd_peak, READ_ONCE(pc->local_watermark));
3936
3937 seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
3938 return 0;
3939 }
3940
memory_peak_show(struct seq_file * sf,void * v)3941 static int memory_peak_show(struct seq_file *sf, void *v)
3942 {
3943 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3944
3945 return peak_show(sf, v, &memcg->memory);
3946 }
3947
peak_open(struct kernfs_open_file * of)3948 static int peak_open(struct kernfs_open_file *of)
3949 {
3950 struct cgroup_of_peak *ofp = of_peak(of);
3951
3952 ofp->value = OFP_PEAK_UNSET;
3953 return 0;
3954 }
3955
peak_release(struct kernfs_open_file * of)3956 static void peak_release(struct kernfs_open_file *of)
3957 {
3958 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3959 struct cgroup_of_peak *ofp = of_peak(of);
3960
3961 if (ofp->value == OFP_PEAK_UNSET) {
3962 /* fast path (no writes on this fd) */
3963 return;
3964 }
3965 spin_lock(&memcg->peaks_lock);
3966 list_del(&ofp->list);
3967 spin_unlock(&memcg->peaks_lock);
3968 }
3969
peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,struct page_counter * pc,struct list_head * watchers)3970 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
3971 loff_t off, struct page_counter *pc,
3972 struct list_head *watchers)
3973 {
3974 unsigned long usage;
3975 struct cgroup_of_peak *peer_ctx;
3976 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3977 struct cgroup_of_peak *ofp = of_peak(of);
3978
3979 spin_lock(&memcg->peaks_lock);
3980
3981 usage = page_counter_read(pc);
3982 WRITE_ONCE(pc->local_watermark, usage);
3983
3984 list_for_each_entry(peer_ctx, watchers, list)
3985 if (usage > peer_ctx->value)
3986 WRITE_ONCE(peer_ctx->value, usage);
3987
3988 /* initial write, register watcher */
3989 if (ofp->value == -1)
3990 list_add(&ofp->list, watchers);
3991
3992 WRITE_ONCE(ofp->value, usage);
3993 spin_unlock(&memcg->peaks_lock);
3994
3995 return nbytes;
3996 }
3997
memory_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3998 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
3999 size_t nbytes, loff_t off)
4000 {
4001 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4002
4003 return peak_write(of, buf, nbytes, off, &memcg->memory,
4004 &memcg->memory_peaks);
4005 }
4006
4007 #undef OFP_PEAK_UNSET
4008
memory_min_show(struct seq_file * m,void * v)4009 static int memory_min_show(struct seq_file *m, void *v)
4010 {
4011 return seq_puts_memcg_tunable(m,
4012 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4013 }
4014
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4015 static ssize_t memory_min_write(struct kernfs_open_file *of,
4016 char *buf, size_t nbytes, loff_t off)
4017 {
4018 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4019 unsigned long min;
4020 int err;
4021
4022 buf = strstrip(buf);
4023 err = page_counter_memparse(buf, "max", &min);
4024 if (err)
4025 return err;
4026
4027 page_counter_set_min(&memcg->memory, min);
4028
4029 return nbytes;
4030 }
4031
memory_low_show(struct seq_file * m,void * v)4032 static int memory_low_show(struct seq_file *m, void *v)
4033 {
4034 return seq_puts_memcg_tunable(m,
4035 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4036 }
4037
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4038 static ssize_t memory_low_write(struct kernfs_open_file *of,
4039 char *buf, size_t nbytes, loff_t off)
4040 {
4041 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4042 unsigned long low;
4043 int err;
4044
4045 buf = strstrip(buf);
4046 err = page_counter_memparse(buf, "max", &low);
4047 if (err)
4048 return err;
4049
4050 page_counter_set_low(&memcg->memory, low);
4051
4052 return nbytes;
4053 }
4054
memory_high_show(struct seq_file * m,void * v)4055 static int memory_high_show(struct seq_file *m, void *v)
4056 {
4057 return seq_puts_memcg_tunable(m,
4058 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4059 }
4060
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4061 static ssize_t memory_high_write(struct kernfs_open_file *of,
4062 char *buf, size_t nbytes, loff_t off)
4063 {
4064 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4065 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4066 bool drained = false;
4067 unsigned long high;
4068 int err;
4069
4070 buf = strstrip(buf);
4071 err = page_counter_memparse(buf, "max", &high);
4072 if (err)
4073 return err;
4074
4075 page_counter_set_high(&memcg->memory, high);
4076
4077 for (;;) {
4078 unsigned long nr_pages = page_counter_read(&memcg->memory);
4079 unsigned long reclaimed;
4080
4081 if (nr_pages <= high)
4082 break;
4083
4084 if (signal_pending(current))
4085 break;
4086
4087 if (!drained) {
4088 drain_all_stock(memcg);
4089 drained = true;
4090 continue;
4091 }
4092
4093 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4094 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4095
4096 if (!reclaimed && !nr_retries--)
4097 break;
4098 }
4099
4100 memcg_wb_domain_size_changed(memcg);
4101 return nbytes;
4102 }
4103
memory_max_show(struct seq_file * m,void * v)4104 static int memory_max_show(struct seq_file *m, void *v)
4105 {
4106 return seq_puts_memcg_tunable(m,
4107 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4108 }
4109
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4110 static ssize_t memory_max_write(struct kernfs_open_file *of,
4111 char *buf, size_t nbytes, loff_t off)
4112 {
4113 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4114 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4115 bool drained = false;
4116 unsigned long max;
4117 int err;
4118
4119 buf = strstrip(buf);
4120 err = page_counter_memparse(buf, "max", &max);
4121 if (err)
4122 return err;
4123
4124 xchg(&memcg->memory.max, max);
4125
4126 for (;;) {
4127 unsigned long nr_pages = page_counter_read(&memcg->memory);
4128
4129 if (nr_pages <= max)
4130 break;
4131
4132 if (signal_pending(current))
4133 break;
4134
4135 if (!drained) {
4136 drain_all_stock(memcg);
4137 drained = true;
4138 continue;
4139 }
4140
4141 if (nr_reclaims) {
4142 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4143 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4144 nr_reclaims--;
4145 continue;
4146 }
4147
4148 memcg_memory_event(memcg, MEMCG_OOM);
4149 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4150 break;
4151 }
4152
4153 memcg_wb_domain_size_changed(memcg);
4154 return nbytes;
4155 }
4156
4157 /*
4158 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4159 * if any new events become available.
4160 */
__memory_events_show(struct seq_file * m,atomic_long_t * events)4161 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4162 {
4163 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4164 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4165 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4166 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4167 seq_printf(m, "oom_kill %lu\n",
4168 atomic_long_read(&events[MEMCG_OOM_KILL]));
4169 seq_printf(m, "oom_group_kill %lu\n",
4170 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4171 }
4172
memory_events_show(struct seq_file * m,void * v)4173 static int memory_events_show(struct seq_file *m, void *v)
4174 {
4175 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4176
4177 __memory_events_show(m, memcg->memory_events);
4178 return 0;
4179 }
4180
memory_events_local_show(struct seq_file * m,void * v)4181 static int memory_events_local_show(struct seq_file *m, void *v)
4182 {
4183 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4184
4185 __memory_events_show(m, memcg->memory_events_local);
4186 return 0;
4187 }
4188
memory_stat_show(struct seq_file * m,void * v)4189 int memory_stat_show(struct seq_file *m, void *v)
4190 {
4191 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4192 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4193 struct seq_buf s;
4194
4195 if (!buf)
4196 return -ENOMEM;
4197 seq_buf_init(&s, buf, PAGE_SIZE);
4198 memory_stat_format(memcg, &s);
4199 seq_puts(m, buf);
4200 kfree(buf);
4201 return 0;
4202 }
4203
4204 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)4205 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4206 int item)
4207 {
4208 return lruvec_page_state(lruvec, item) *
4209 memcg_page_state_output_unit(item);
4210 }
4211
memory_numa_stat_show(struct seq_file * m,void * v)4212 static int memory_numa_stat_show(struct seq_file *m, void *v)
4213 {
4214 int i;
4215 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4216
4217 mem_cgroup_flush_stats(memcg);
4218
4219 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4220 int nid;
4221
4222 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4223 continue;
4224
4225 seq_printf(m, "%s", memory_stats[i].name);
4226 for_each_node_state(nid, N_MEMORY) {
4227 u64 size;
4228 struct lruvec *lruvec;
4229
4230 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4231 size = lruvec_page_state_output(lruvec,
4232 memory_stats[i].idx);
4233 seq_printf(m, " N%d=%llu", nid, size);
4234 }
4235 seq_putc(m, '\n');
4236 }
4237
4238 return 0;
4239 }
4240 #endif
4241
memory_oom_group_show(struct seq_file * m,void * v)4242 static int memory_oom_group_show(struct seq_file *m, void *v)
4243 {
4244 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4245
4246 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4247
4248 return 0;
4249 }
4250
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4251 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4252 char *buf, size_t nbytes, loff_t off)
4253 {
4254 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4255 int ret, oom_group;
4256
4257 buf = strstrip(buf);
4258 if (!buf)
4259 return -EINVAL;
4260
4261 ret = kstrtoint(buf, 0, &oom_group);
4262 if (ret)
4263 return ret;
4264
4265 if (oom_group != 0 && oom_group != 1)
4266 return -EINVAL;
4267
4268 WRITE_ONCE(memcg->oom_group, oom_group);
4269
4270 return nbytes;
4271 }
4272
4273 enum {
4274 MEMORY_RECLAIM_SWAPPINESS = 0,
4275 MEMORY_RECLAIM_NULL,
4276 };
4277
4278 static const match_table_t tokens = {
4279 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
4280 { MEMORY_RECLAIM_NULL, NULL },
4281 };
4282
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4283 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4284 size_t nbytes, loff_t off)
4285 {
4286 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4287 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4288 unsigned long nr_to_reclaim, nr_reclaimed = 0;
4289 int swappiness = -1;
4290 unsigned int reclaim_options;
4291 char *old_buf, *start;
4292 substring_t args[MAX_OPT_ARGS];
4293
4294 buf = strstrip(buf);
4295
4296 old_buf = buf;
4297 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
4298 if (buf == old_buf)
4299 return -EINVAL;
4300
4301 buf = strstrip(buf);
4302
4303 while ((start = strsep(&buf, " ")) != NULL) {
4304 if (!strlen(start))
4305 continue;
4306 switch (match_token(start, tokens, args)) {
4307 case MEMORY_RECLAIM_SWAPPINESS:
4308 if (match_int(&args[0], &swappiness))
4309 return -EINVAL;
4310 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS)
4311 return -EINVAL;
4312 break;
4313 default:
4314 return -EINVAL;
4315 }
4316 }
4317
4318 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
4319 while (nr_reclaimed < nr_to_reclaim) {
4320 /* Will converge on zero, but reclaim enforces a minimum */
4321 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
4322 unsigned long reclaimed;
4323
4324 if (signal_pending(current))
4325 return -EINTR;
4326
4327 /*
4328 * This is the final attempt, drain percpu lru caches in the
4329 * hope of introducing more evictable pages for
4330 * try_to_free_mem_cgroup_pages().
4331 */
4332 if (!nr_retries)
4333 lru_add_drain_all();
4334
4335 reclaimed = try_to_free_mem_cgroup_pages(memcg,
4336 batch_size, GFP_KERNEL,
4337 reclaim_options,
4338 swappiness == -1 ? NULL : &swappiness);
4339
4340 if (!reclaimed && !nr_retries--)
4341 return -EAGAIN;
4342
4343 nr_reclaimed += reclaimed;
4344 }
4345
4346 return nbytes;
4347 }
4348
4349 static struct cftype memory_files[] = {
4350 {
4351 .name = "current",
4352 .flags = CFTYPE_NOT_ON_ROOT,
4353 .read_u64 = memory_current_read,
4354 },
4355 {
4356 .name = "peak",
4357 .flags = CFTYPE_NOT_ON_ROOT,
4358 .open = peak_open,
4359 .release = peak_release,
4360 .seq_show = memory_peak_show,
4361 .write = memory_peak_write,
4362 },
4363 {
4364 .name = "min",
4365 .flags = CFTYPE_NOT_ON_ROOT,
4366 .seq_show = memory_min_show,
4367 .write = memory_min_write,
4368 },
4369 {
4370 .name = "low",
4371 .flags = CFTYPE_NOT_ON_ROOT,
4372 .seq_show = memory_low_show,
4373 .write = memory_low_write,
4374 },
4375 {
4376 .name = "high",
4377 .flags = CFTYPE_NOT_ON_ROOT,
4378 .seq_show = memory_high_show,
4379 .write = memory_high_write,
4380 },
4381 {
4382 .name = "max",
4383 .flags = CFTYPE_NOT_ON_ROOT,
4384 .seq_show = memory_max_show,
4385 .write = memory_max_write,
4386 },
4387 {
4388 .name = "events",
4389 .flags = CFTYPE_NOT_ON_ROOT,
4390 .file_offset = offsetof(struct mem_cgroup, events_file),
4391 .seq_show = memory_events_show,
4392 },
4393 {
4394 .name = "events.local",
4395 .flags = CFTYPE_NOT_ON_ROOT,
4396 .file_offset = offsetof(struct mem_cgroup, events_local_file),
4397 .seq_show = memory_events_local_show,
4398 },
4399 {
4400 .name = "stat",
4401 .seq_show = memory_stat_show,
4402 },
4403 #ifdef CONFIG_NUMA
4404 {
4405 .name = "numa_stat",
4406 .seq_show = memory_numa_stat_show,
4407 },
4408 #endif
4409 {
4410 .name = "oom.group",
4411 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4412 .seq_show = memory_oom_group_show,
4413 .write = memory_oom_group_write,
4414 },
4415 {
4416 .name = "reclaim",
4417 .flags = CFTYPE_NS_DELEGATABLE,
4418 .write = memory_reclaim,
4419 },
4420 { } /* terminate */
4421 };
4422
4423 struct cgroup_subsys memory_cgrp_subsys = {
4424 .css_alloc = mem_cgroup_css_alloc,
4425 .css_online = mem_cgroup_css_online,
4426 .css_offline = mem_cgroup_css_offline,
4427 .css_released = mem_cgroup_css_released,
4428 .css_free = mem_cgroup_css_free,
4429 .css_reset = mem_cgroup_css_reset,
4430 .css_rstat_flush = mem_cgroup_css_rstat_flush,
4431 .attach = mem_cgroup_attach,
4432 .fork = mem_cgroup_fork,
4433 .exit = mem_cgroup_exit,
4434 .dfl_cftypes = memory_files,
4435 #ifdef CONFIG_MEMCG_V1
4436 .can_attach = memcg1_can_attach,
4437 .cancel_attach = memcg1_cancel_attach,
4438 .post_attach = memcg1_move_task,
4439 .legacy_cftypes = mem_cgroup_legacy_files,
4440 #endif
4441 .early_init = 0,
4442 };
4443
4444 /**
4445 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4446 * @root: the top ancestor of the sub-tree being checked
4447 * @memcg: the memory cgroup to check
4448 *
4449 * WARNING: This function is not stateless! It can only be used as part
4450 * of a top-down tree iteration, not for isolated queries.
4451 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)4452 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4453 struct mem_cgroup *memcg)
4454 {
4455 bool recursive_protection =
4456 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4457
4458 if (mem_cgroup_disabled())
4459 return;
4460
4461 if (!root)
4462 root = root_mem_cgroup;
4463
4464 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4465 }
4466
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)4467 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4468 gfp_t gfp)
4469 {
4470 int ret;
4471
4472 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4473 if (ret)
4474 goto out;
4475
4476 mem_cgroup_commit_charge(folio, memcg);
4477 out:
4478 return ret;
4479 }
4480
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)4481 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4482 {
4483 struct mem_cgroup *memcg;
4484 int ret;
4485
4486 memcg = get_mem_cgroup_from_mm(mm);
4487 ret = charge_memcg(folio, memcg, gfp);
4488 css_put(&memcg->css);
4489
4490 return ret;
4491 }
4492
4493 /**
4494 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
4495 * @memcg: memcg to charge.
4496 * @gfp: reclaim mode.
4497 * @nr_pages: number of pages to charge.
4498 *
4499 * This function is called when allocating a huge page folio to determine if
4500 * the memcg has the capacity for it. It does not commit the charge yet,
4501 * as the hugetlb folio itself has not been obtained from the hugetlb pool.
4502 *
4503 * Once we have obtained the hugetlb folio, we can call
4504 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
4505 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
4506 * of try_charge().
4507 *
4508 * Returns 0 on success. Otherwise, an error code is returned.
4509 */
mem_cgroup_hugetlb_try_charge(struct mem_cgroup * memcg,gfp_t gfp,long nr_pages)4510 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
4511 long nr_pages)
4512 {
4513 /*
4514 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
4515 * but do not attempt to commit charge later (or cancel on error) either.
4516 */
4517 if (mem_cgroup_disabled() || !memcg ||
4518 !cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
4519 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
4520 return -EOPNOTSUPP;
4521
4522 if (try_charge(memcg, gfp, nr_pages))
4523 return -ENOMEM;
4524
4525 return 0;
4526 }
4527
4528 /**
4529 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4530 * @folio: folio to charge.
4531 * @mm: mm context of the victim
4532 * @gfp: reclaim mode
4533 * @entry: swap entry for which the folio is allocated
4534 *
4535 * This function charges a folio allocated for swapin. Please call this before
4536 * adding the folio to the swapcache.
4537 *
4538 * Returns 0 on success. Otherwise, an error code is returned.
4539 */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)4540 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4541 gfp_t gfp, swp_entry_t entry)
4542 {
4543 struct mem_cgroup *memcg;
4544 unsigned short id;
4545 int ret;
4546
4547 if (mem_cgroup_disabled())
4548 return 0;
4549
4550 id = lookup_swap_cgroup_id(entry);
4551 rcu_read_lock();
4552 memcg = mem_cgroup_from_id(id);
4553 if (!memcg || !css_tryget_online(&memcg->css))
4554 memcg = get_mem_cgroup_from_mm(mm);
4555 rcu_read_unlock();
4556
4557 ret = charge_memcg(folio, memcg, gfp);
4558
4559 css_put(&memcg->css);
4560 return ret;
4561 }
4562
4563 /*
4564 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
4565 * @entry: the first swap entry for which the pages are charged
4566 * @nr_pages: number of pages which will be uncharged
4567 *
4568 * Call this function after successfully adding the charged page to swapcache.
4569 *
4570 * Note: This function assumes the page for which swap slot is being uncharged
4571 * is order 0 page.
4572 */
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)4573 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
4574 {
4575 /*
4576 * Cgroup1's unified memory+swap counter has been charged with the
4577 * new swapcache page, finish the transfer by uncharging the swap
4578 * slot. The swap slot would also get uncharged when it dies, but
4579 * it can stick around indefinitely and we'd count the page twice
4580 * the entire time.
4581 *
4582 * Cgroup2 has separate resource counters for memory and swap,
4583 * so this is a non-issue here. Memory and swap charge lifetimes
4584 * correspond 1:1 to page and swap slot lifetimes: we charge the
4585 * page to memory here, and uncharge swap when the slot is freed.
4586 */
4587 if (!mem_cgroup_disabled() && do_memsw_account()) {
4588 /*
4589 * The swap entry might not get freed for a long time,
4590 * let's not wait for it. The page already received a
4591 * memory+swap charge, drop the swap entry duplicate.
4592 */
4593 mem_cgroup_uncharge_swap(entry, nr_pages);
4594 }
4595 }
4596
4597 struct uncharge_gather {
4598 struct mem_cgroup *memcg;
4599 unsigned long nr_memory;
4600 unsigned long pgpgout;
4601 unsigned long nr_kmem;
4602 int nid;
4603 };
4604
uncharge_gather_clear(struct uncharge_gather * ug)4605 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4606 {
4607 memset(ug, 0, sizeof(*ug));
4608 }
4609
uncharge_batch(const struct uncharge_gather * ug)4610 static void uncharge_batch(const struct uncharge_gather *ug)
4611 {
4612 if (ug->nr_memory) {
4613 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
4614 if (do_memsw_account())
4615 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
4616 if (ug->nr_kmem) {
4617 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4618 memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4619 }
4620 memcg1_oom_recover(ug->memcg);
4621 }
4622
4623 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4624
4625 /* drop reference from uncharge_folio */
4626 css_put(&ug->memcg->css);
4627 }
4628
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)4629 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4630 {
4631 long nr_pages;
4632 struct mem_cgroup *memcg;
4633 struct obj_cgroup *objcg;
4634
4635 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4636
4637 /*
4638 * Nobody should be changing or seriously looking at
4639 * folio memcg or objcg at this point, we have fully
4640 * exclusive access to the folio.
4641 */
4642 if (folio_memcg_kmem(folio)) {
4643 objcg = __folio_objcg(folio);
4644 /*
4645 * This get matches the put at the end of the function and
4646 * kmem pages do not hold memcg references anymore.
4647 */
4648 memcg = get_mem_cgroup_from_objcg(objcg);
4649 } else {
4650 memcg = __folio_memcg(folio);
4651 }
4652
4653 if (!memcg)
4654 return;
4655
4656 if (ug->memcg != memcg) {
4657 if (ug->memcg) {
4658 uncharge_batch(ug);
4659 uncharge_gather_clear(ug);
4660 }
4661 ug->memcg = memcg;
4662 ug->nid = folio_nid(folio);
4663
4664 /* pairs with css_put in uncharge_batch */
4665 css_get(&memcg->css);
4666 }
4667
4668 nr_pages = folio_nr_pages(folio);
4669
4670 if (folio_memcg_kmem(folio)) {
4671 ug->nr_memory += nr_pages;
4672 ug->nr_kmem += nr_pages;
4673
4674 folio->memcg_data = 0;
4675 obj_cgroup_put(objcg);
4676 } else {
4677 /* LRU pages aren't accounted at the root level */
4678 if (!mem_cgroup_is_root(memcg))
4679 ug->nr_memory += nr_pages;
4680 ug->pgpgout++;
4681
4682 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4683 folio->memcg_data = 0;
4684 }
4685
4686 css_put(&memcg->css);
4687 }
4688
__mem_cgroup_uncharge(struct folio * folio)4689 void __mem_cgroup_uncharge(struct folio *folio)
4690 {
4691 struct uncharge_gather ug;
4692
4693 /* Don't touch folio->lru of any random page, pre-check: */
4694 if (!folio_memcg_charged(folio))
4695 return;
4696
4697 uncharge_gather_clear(&ug);
4698 uncharge_folio(folio, &ug);
4699 uncharge_batch(&ug);
4700 }
4701
__mem_cgroup_uncharge_folios(struct folio_batch * folios)4702 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4703 {
4704 struct uncharge_gather ug;
4705 unsigned int i;
4706
4707 uncharge_gather_clear(&ug);
4708 for (i = 0; i < folios->nr; i++)
4709 uncharge_folio(folios->folios[i], &ug);
4710 if (ug.memcg)
4711 uncharge_batch(&ug);
4712 }
4713
4714 /**
4715 * mem_cgroup_replace_folio - Charge a folio's replacement.
4716 * @old: Currently circulating folio.
4717 * @new: Replacement folio.
4718 *
4719 * Charge @new as a replacement folio for @old. @old will
4720 * be uncharged upon free.
4721 *
4722 * Both folios must be locked, @new->mapping must be set up.
4723 */
mem_cgroup_replace_folio(struct folio * old,struct folio * new)4724 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4725 {
4726 struct mem_cgroup *memcg;
4727 long nr_pages = folio_nr_pages(new);
4728
4729 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4730 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4731 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4732 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4733
4734 if (mem_cgroup_disabled())
4735 return;
4736
4737 /* Page cache replacement: new folio already charged? */
4738 if (folio_memcg_charged(new))
4739 return;
4740
4741 memcg = folio_memcg(old);
4742 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4743 if (!memcg)
4744 return;
4745
4746 /* Force-charge the new page. The old one will be freed soon */
4747 if (!mem_cgroup_is_root(memcg)) {
4748 page_counter_charge(&memcg->memory, nr_pages);
4749 if (do_memsw_account())
4750 page_counter_charge(&memcg->memsw, nr_pages);
4751 }
4752
4753 css_get(&memcg->css);
4754 commit_charge(new, memcg);
4755 memcg1_commit_charge(new, memcg);
4756 }
4757
4758 /**
4759 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4760 * @old: Currently circulating folio.
4761 * @new: Replacement folio.
4762 *
4763 * Transfer the memcg data from the old folio to the new folio for migration.
4764 * The old folio's data info will be cleared. Note that the memory counters
4765 * will remain unchanged throughout the process.
4766 *
4767 * Both folios must be locked, @new->mapping must be set up.
4768 */
mem_cgroup_migrate(struct folio * old,struct folio * new)4769 void mem_cgroup_migrate(struct folio *old, struct folio *new)
4770 {
4771 struct mem_cgroup *memcg;
4772
4773 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4774 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4775 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4776 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4777 VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4778
4779 if (mem_cgroup_disabled())
4780 return;
4781
4782 memcg = folio_memcg(old);
4783 /*
4784 * Note that it is normal to see !memcg for a hugetlb folio.
4785 * For e.g, itt could have been allocated when memory_hugetlb_accounting
4786 * was not selected.
4787 */
4788 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4789 if (!memcg)
4790 return;
4791
4792 /* Transfer the charge and the css ref */
4793 commit_charge(new, memcg);
4794
4795 /* Warning should never happen, so don't worry about refcount non-0 */
4796 WARN_ON_ONCE(folio_unqueue_deferred_split(old));
4797 old->memcg_data = 0;
4798 }
4799
4800 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4801 EXPORT_SYMBOL(memcg_sockets_enabled_key);
4802
mem_cgroup_sk_alloc(struct sock * sk)4803 void mem_cgroup_sk_alloc(struct sock *sk)
4804 {
4805 struct mem_cgroup *memcg;
4806
4807 if (!mem_cgroup_sockets_enabled)
4808 return;
4809
4810 /* Do not associate the sock with unrelated interrupted task's memcg. */
4811 if (!in_task())
4812 return;
4813
4814 rcu_read_lock();
4815 memcg = mem_cgroup_from_task(current);
4816 if (mem_cgroup_is_root(memcg))
4817 goto out;
4818 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
4819 goto out;
4820 if (css_tryget(&memcg->css))
4821 sk->sk_memcg = memcg;
4822 out:
4823 rcu_read_unlock();
4824 }
4825
mem_cgroup_sk_free(struct sock * sk)4826 void mem_cgroup_sk_free(struct sock *sk)
4827 {
4828 if (sk->sk_memcg)
4829 css_put(&sk->sk_memcg->css);
4830 }
4831
4832 /**
4833 * mem_cgroup_charge_skmem - charge socket memory
4834 * @memcg: memcg to charge
4835 * @nr_pages: number of pages to charge
4836 * @gfp_mask: reclaim mode
4837 *
4838 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4839 * @memcg's configured limit, %false if it doesn't.
4840 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)4841 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
4842 gfp_t gfp_mask)
4843 {
4844 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
4845 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
4846
4847 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
4848 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
4849 return true;
4850 }
4851
4852 return false;
4853 }
4854
4855 /**
4856 * mem_cgroup_uncharge_skmem - uncharge socket memory
4857 * @memcg: memcg to uncharge
4858 * @nr_pages: number of pages to uncharge
4859 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)4860 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
4861 {
4862 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
4863 memcg1_uncharge_skmem(memcg, nr_pages);
4864 return;
4865 }
4866
4867 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
4868
4869 refill_stock(memcg, nr_pages);
4870 }
4871
cgroup_memory(char * s)4872 static int __init cgroup_memory(char *s)
4873 {
4874 char *token;
4875
4876 while ((token = strsep(&s, ",")) != NULL) {
4877 if (!*token)
4878 continue;
4879 if (!strcmp(token, "nosocket"))
4880 cgroup_memory_nosocket = true;
4881 if (!strcmp(token, "nokmem"))
4882 cgroup_memory_nokmem = true;
4883 if (!strcmp(token, "nobpf"))
4884 cgroup_memory_nobpf = true;
4885 }
4886 return 1;
4887 }
4888 __setup("cgroup.memory=", cgroup_memory);
4889
4890 /*
4891 * subsys_initcall() for memory controller.
4892 *
4893 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
4894 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
4895 * basically everything that doesn't depend on a specific mem_cgroup structure
4896 * should be initialized from here.
4897 */
mem_cgroup_init(void)4898 static int __init mem_cgroup_init(void)
4899 {
4900 int cpu;
4901
4902 /*
4903 * Currently s32 type (can refer to struct batched_lruvec_stat) is
4904 * used for per-memcg-per-cpu caching of per-node statistics. In order
4905 * to work fine, we should make sure that the overfill threshold can't
4906 * exceed S32_MAX / PAGE_SIZE.
4907 */
4908 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
4909
4910 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
4911 memcg_hotplug_cpu_dead);
4912
4913 for_each_possible_cpu(cpu)
4914 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
4915 drain_local_stock);
4916
4917 return 0;
4918 }
4919 subsys_initcall(mem_cgroup_init);
4920
4921 #ifdef CONFIG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)4922 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
4923 {
4924 while (!refcount_inc_not_zero(&memcg->id.ref)) {
4925 /*
4926 * The root cgroup cannot be destroyed, so it's refcount must
4927 * always be >= 1.
4928 */
4929 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
4930 VM_BUG_ON(1);
4931 break;
4932 }
4933 memcg = parent_mem_cgroup(memcg);
4934 if (!memcg)
4935 memcg = root_mem_cgroup;
4936 }
4937 return memcg;
4938 }
4939
4940 /**
4941 * mem_cgroup_swapout - transfer a memsw charge to swap
4942 * @folio: folio whose memsw charge to transfer
4943 * @entry: swap entry to move the charge to
4944 *
4945 * Transfer the memsw charge of @folio to @entry.
4946 */
mem_cgroup_swapout(struct folio * folio,swp_entry_t entry)4947 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
4948 {
4949 struct mem_cgroup *memcg, *swap_memcg;
4950 unsigned int nr_entries;
4951 unsigned short oldid;
4952
4953 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4954 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
4955
4956 if (mem_cgroup_disabled())
4957 return;
4958
4959 if (!do_memsw_account())
4960 return;
4961
4962 memcg = folio_memcg(folio);
4963
4964 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
4965 if (!memcg)
4966 return;
4967
4968 /*
4969 * In case the memcg owning these pages has been offlined and doesn't
4970 * have an ID allocated to it anymore, charge the closest online
4971 * ancestor for the swap instead and transfer the memory+swap charge.
4972 */
4973 swap_memcg = mem_cgroup_id_get_online(memcg);
4974 nr_entries = folio_nr_pages(folio);
4975 /* Get references for the tail pages, too */
4976 if (nr_entries > 1)
4977 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
4978 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
4979 nr_entries);
4980 VM_BUG_ON_FOLIO(oldid, folio);
4981 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
4982
4983 folio_unqueue_deferred_split(folio);
4984 folio->memcg_data = 0;
4985
4986 if (!mem_cgroup_is_root(memcg))
4987 page_counter_uncharge(&memcg->memory, nr_entries);
4988
4989 if (memcg != swap_memcg) {
4990 if (!mem_cgroup_is_root(swap_memcg))
4991 page_counter_charge(&swap_memcg->memsw, nr_entries);
4992 page_counter_uncharge(&memcg->memsw, nr_entries);
4993 }
4994
4995 memcg1_swapout(folio, memcg);
4996 css_put(&memcg->css);
4997 }
4998
4999 /**
5000 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5001 * @folio: folio being added to swap
5002 * @entry: swap entry to charge
5003 *
5004 * Try to charge @folio's memcg for the swap space at @entry.
5005 *
5006 * Returns 0 on success, -ENOMEM on failure.
5007 */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)5008 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5009 {
5010 unsigned int nr_pages = folio_nr_pages(folio);
5011 struct page_counter *counter;
5012 struct mem_cgroup *memcg;
5013 unsigned short oldid;
5014
5015 if (do_memsw_account())
5016 return 0;
5017
5018 memcg = folio_memcg(folio);
5019
5020 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5021 if (!memcg)
5022 return 0;
5023
5024 if (!entry.val) {
5025 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5026 return 0;
5027 }
5028
5029 memcg = mem_cgroup_id_get_online(memcg);
5030
5031 if (!mem_cgroup_is_root(memcg) &&
5032 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5033 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5034 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5035 mem_cgroup_id_put(memcg);
5036 return -ENOMEM;
5037 }
5038
5039 /* Get references for the tail pages, too */
5040 if (nr_pages > 1)
5041 mem_cgroup_id_get_many(memcg, nr_pages - 1);
5042 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
5043 VM_BUG_ON_FOLIO(oldid, folio);
5044 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5045
5046 return 0;
5047 }
5048
5049 /**
5050 * __mem_cgroup_uncharge_swap - uncharge swap space
5051 * @entry: swap entry to uncharge
5052 * @nr_pages: the amount of swap space to uncharge
5053 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)5054 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5055 {
5056 struct mem_cgroup *memcg;
5057 unsigned short id;
5058
5059 id = swap_cgroup_record(entry, 0, nr_pages);
5060 rcu_read_lock();
5061 memcg = mem_cgroup_from_id(id);
5062 if (memcg) {
5063 if (!mem_cgroup_is_root(memcg)) {
5064 if (do_memsw_account())
5065 page_counter_uncharge(&memcg->memsw, nr_pages);
5066 else
5067 page_counter_uncharge(&memcg->swap, nr_pages);
5068 }
5069 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5070 mem_cgroup_id_put_many(memcg, nr_pages);
5071 }
5072 rcu_read_unlock();
5073 }
5074
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)5075 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5076 {
5077 long nr_swap_pages = get_nr_swap_pages();
5078
5079 if (mem_cgroup_disabled() || do_memsw_account())
5080 return nr_swap_pages;
5081 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5082 nr_swap_pages = min_t(long, nr_swap_pages,
5083 READ_ONCE(memcg->swap.max) -
5084 page_counter_read(&memcg->swap));
5085 return nr_swap_pages;
5086 }
5087
mem_cgroup_swap_full(struct folio * folio)5088 bool mem_cgroup_swap_full(struct folio *folio)
5089 {
5090 struct mem_cgroup *memcg;
5091
5092 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5093
5094 if (vm_swap_full())
5095 return true;
5096 if (do_memsw_account())
5097 return false;
5098
5099 memcg = folio_memcg(folio);
5100 if (!memcg)
5101 return false;
5102
5103 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5104 unsigned long usage = page_counter_read(&memcg->swap);
5105
5106 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5107 usage * 2 >= READ_ONCE(memcg->swap.max))
5108 return true;
5109 }
5110
5111 return false;
5112 }
5113
setup_swap_account(char * s)5114 static int __init setup_swap_account(char *s)
5115 {
5116 bool res;
5117
5118 if (!kstrtobool(s, &res) && !res)
5119 pr_warn_once("The swapaccount=0 commandline option is deprecated "
5120 "in favor of configuring swap control via cgroupfs. "
5121 "Please report your usecase to linux-mm@kvack.org if you "
5122 "depend on this functionality.\n");
5123 return 1;
5124 }
5125 __setup("swapaccount=", setup_swap_account);
5126
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5127 static u64 swap_current_read(struct cgroup_subsys_state *css,
5128 struct cftype *cft)
5129 {
5130 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5131
5132 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5133 }
5134
swap_peak_show(struct seq_file * sf,void * v)5135 static int swap_peak_show(struct seq_file *sf, void *v)
5136 {
5137 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5138
5139 return peak_show(sf, v, &memcg->swap);
5140 }
5141
swap_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5142 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5143 size_t nbytes, loff_t off)
5144 {
5145 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5146
5147 return peak_write(of, buf, nbytes, off, &memcg->swap,
5148 &memcg->swap_peaks);
5149 }
5150
swap_high_show(struct seq_file * m,void * v)5151 static int swap_high_show(struct seq_file *m, void *v)
5152 {
5153 return seq_puts_memcg_tunable(m,
5154 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5155 }
5156
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5157 static ssize_t swap_high_write(struct kernfs_open_file *of,
5158 char *buf, size_t nbytes, loff_t off)
5159 {
5160 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5161 unsigned long high;
5162 int err;
5163
5164 buf = strstrip(buf);
5165 err = page_counter_memparse(buf, "max", &high);
5166 if (err)
5167 return err;
5168
5169 page_counter_set_high(&memcg->swap, high);
5170
5171 return nbytes;
5172 }
5173
swap_max_show(struct seq_file * m,void * v)5174 static int swap_max_show(struct seq_file *m, void *v)
5175 {
5176 return seq_puts_memcg_tunable(m,
5177 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5178 }
5179
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5180 static ssize_t swap_max_write(struct kernfs_open_file *of,
5181 char *buf, size_t nbytes, loff_t off)
5182 {
5183 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5184 unsigned long max;
5185 int err;
5186
5187 buf = strstrip(buf);
5188 err = page_counter_memparse(buf, "max", &max);
5189 if (err)
5190 return err;
5191
5192 xchg(&memcg->swap.max, max);
5193
5194 return nbytes;
5195 }
5196
swap_events_show(struct seq_file * m,void * v)5197 static int swap_events_show(struct seq_file *m, void *v)
5198 {
5199 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5200
5201 seq_printf(m, "high %lu\n",
5202 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5203 seq_printf(m, "max %lu\n",
5204 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5205 seq_printf(m, "fail %lu\n",
5206 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5207
5208 return 0;
5209 }
5210
5211 static struct cftype swap_files[] = {
5212 {
5213 .name = "swap.current",
5214 .flags = CFTYPE_NOT_ON_ROOT,
5215 .read_u64 = swap_current_read,
5216 },
5217 {
5218 .name = "swap.high",
5219 .flags = CFTYPE_NOT_ON_ROOT,
5220 .seq_show = swap_high_show,
5221 .write = swap_high_write,
5222 },
5223 {
5224 .name = "swap.max",
5225 .flags = CFTYPE_NOT_ON_ROOT,
5226 .seq_show = swap_max_show,
5227 .write = swap_max_write,
5228 },
5229 {
5230 .name = "swap.peak",
5231 .flags = CFTYPE_NOT_ON_ROOT,
5232 .open = peak_open,
5233 .release = peak_release,
5234 .seq_show = swap_peak_show,
5235 .write = swap_peak_write,
5236 },
5237 {
5238 .name = "swap.events",
5239 .flags = CFTYPE_NOT_ON_ROOT,
5240 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
5241 .seq_show = swap_events_show,
5242 },
5243 { } /* terminate */
5244 };
5245
5246 #ifdef CONFIG_ZSWAP
5247 /**
5248 * obj_cgroup_may_zswap - check if this cgroup can zswap
5249 * @objcg: the object cgroup
5250 *
5251 * Check if the hierarchical zswap limit has been reached.
5252 *
5253 * This doesn't check for specific headroom, and it is not atomic
5254 * either. But with zswap, the size of the allocation is only known
5255 * once compression has occurred, and this optimistic pre-check avoids
5256 * spending cycles on compression when there is already no room left
5257 * or zswap is disabled altogether somewhere in the hierarchy.
5258 */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)5259 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5260 {
5261 struct mem_cgroup *memcg, *original_memcg;
5262 bool ret = true;
5263
5264 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5265 return true;
5266
5267 original_memcg = get_mem_cgroup_from_objcg(objcg);
5268 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5269 memcg = parent_mem_cgroup(memcg)) {
5270 unsigned long max = READ_ONCE(memcg->zswap_max);
5271 unsigned long pages;
5272
5273 if (max == PAGE_COUNTER_MAX)
5274 continue;
5275 if (max == 0) {
5276 ret = false;
5277 break;
5278 }
5279
5280 /*
5281 * mem_cgroup_flush_stats() ignores small changes. Use
5282 * do_flush_stats() directly to get accurate stats for charging.
5283 */
5284 do_flush_stats(memcg);
5285 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5286 if (pages < max)
5287 continue;
5288 ret = false;
5289 break;
5290 }
5291 mem_cgroup_put(original_memcg);
5292 return ret;
5293 }
5294
5295 /**
5296 * obj_cgroup_charge_zswap - charge compression backend memory
5297 * @objcg: the object cgroup
5298 * @size: size of compressed object
5299 *
5300 * This forces the charge after obj_cgroup_may_zswap() allowed
5301 * compression and storage in zwap for this cgroup to go ahead.
5302 */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)5303 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5304 {
5305 struct mem_cgroup *memcg;
5306
5307 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5308 return;
5309
5310 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5311
5312 /* PF_MEMALLOC context, charging must succeed */
5313 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5314 VM_WARN_ON_ONCE(1);
5315
5316 rcu_read_lock();
5317 memcg = obj_cgroup_memcg(objcg);
5318 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5319 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5320 rcu_read_unlock();
5321 }
5322
5323 /**
5324 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5325 * @objcg: the object cgroup
5326 * @size: size of compressed object
5327 *
5328 * Uncharges zswap memory on page in.
5329 */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)5330 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5331 {
5332 struct mem_cgroup *memcg;
5333
5334 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5335 return;
5336
5337 obj_cgroup_uncharge(objcg, size);
5338
5339 rcu_read_lock();
5340 memcg = obj_cgroup_memcg(objcg);
5341 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5342 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5343 rcu_read_unlock();
5344 }
5345
mem_cgroup_zswap_writeback_enabled(struct mem_cgroup * memcg)5346 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5347 {
5348 /* if zswap is disabled, do not block pages going to the swapping device */
5349 if (!zswap_is_enabled())
5350 return true;
5351
5352 for (; memcg; memcg = parent_mem_cgroup(memcg))
5353 if (!READ_ONCE(memcg->zswap_writeback))
5354 return false;
5355
5356 return true;
5357 }
5358
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5359 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5360 struct cftype *cft)
5361 {
5362 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5363
5364 mem_cgroup_flush_stats(memcg);
5365 return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5366 }
5367
zswap_max_show(struct seq_file * m,void * v)5368 static int zswap_max_show(struct seq_file *m, void *v)
5369 {
5370 return seq_puts_memcg_tunable(m,
5371 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5372 }
5373
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5374 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5375 char *buf, size_t nbytes, loff_t off)
5376 {
5377 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5378 unsigned long max;
5379 int err;
5380
5381 buf = strstrip(buf);
5382 err = page_counter_memparse(buf, "max", &max);
5383 if (err)
5384 return err;
5385
5386 xchg(&memcg->zswap_max, max);
5387
5388 return nbytes;
5389 }
5390
zswap_writeback_show(struct seq_file * m,void * v)5391 static int zswap_writeback_show(struct seq_file *m, void *v)
5392 {
5393 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5394
5395 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5396 return 0;
5397 }
5398
zswap_writeback_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5399 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5400 char *buf, size_t nbytes, loff_t off)
5401 {
5402 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5403 int zswap_writeback;
5404 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5405
5406 if (parse_ret)
5407 return parse_ret;
5408
5409 if (zswap_writeback != 0 && zswap_writeback != 1)
5410 return -EINVAL;
5411
5412 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5413 return nbytes;
5414 }
5415
5416 static struct cftype zswap_files[] = {
5417 {
5418 .name = "zswap.current",
5419 .flags = CFTYPE_NOT_ON_ROOT,
5420 .read_u64 = zswap_current_read,
5421 },
5422 {
5423 .name = "zswap.max",
5424 .flags = CFTYPE_NOT_ON_ROOT,
5425 .seq_show = zswap_max_show,
5426 .write = zswap_max_write,
5427 },
5428 {
5429 .name = "zswap.writeback",
5430 .seq_show = zswap_writeback_show,
5431 .write = zswap_writeback_write,
5432 },
5433 { } /* terminate */
5434 };
5435 #endif /* CONFIG_ZSWAP */
5436
mem_cgroup_swap_init(void)5437 static int __init mem_cgroup_swap_init(void)
5438 {
5439 if (mem_cgroup_disabled())
5440 return 0;
5441
5442 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5443 #ifdef CONFIG_MEMCG_V1
5444 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5445 #endif
5446 #ifdef CONFIG_ZSWAP
5447 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5448 #endif
5449 return 0;
5450 }
5451 subsys_initcall(mem_cgroup_swap_init);
5452
5453 #endif /* CONFIG_SWAP */
5454