1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/cgroup-defs.h>
29 #include <linux/page_counter.h>
30 #include <linux/memcontrol.h>
31 #include <linux/cgroup.h>
32 #include <linux/cpuset.h>
33 #include <linux/sched/mm.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/hugetlb.h>
36 #include <linux/pagemap.h>
37 #include <linux/pagevec.h>
38 #include <linux/vm_event_item.h>
39 #include <linux/smp.h>
40 #include <linux/page-flags.h>
41 #include <linux/backing-dev.h>
42 #include <linux/bit_spinlock.h>
43 #include <linux/rcupdate.h>
44 #include <linux/limits.h>
45 #include <linux/export.h>
46 #include <linux/list.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swapops.h>
51 #include <linux/spinlock.h>
52 #include <linux/fs.h>
53 #include <linux/seq_file.h>
54 #include <linux/parser.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/resume_user_mode.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include <linux/sched/isolation.h>
66 #include <linux/kmemleak.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "memcontrol-v1.h"
72
73 #include <linux/uaccess.h>
74
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/memcg.h>
77 #undef CREATE_TRACE_POINTS
78
79 #include <trace/events/vmscan.h>
80
81 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
82 EXPORT_SYMBOL(memory_cgrp_subsys);
83
84 struct mem_cgroup *root_mem_cgroup __read_mostly;
85
86 /* Active memory cgroup to use from an interrupt context */
87 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
88 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
89
90 /* Socket memory accounting disabled? */
91 static bool cgroup_memory_nosocket __ro_after_init;
92
93 /* Kernel memory accounting disabled? */
94 static bool cgroup_memory_nokmem __ro_after_init;
95
96 /* BPF memory accounting disabled? */
97 static bool cgroup_memory_nobpf __ro_after_init;
98
99 static struct kmem_cache *memcg_cachep;
100 static struct kmem_cache *memcg_pn_cachep;
101
102 #ifdef CONFIG_CGROUP_WRITEBACK
103 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
104 #endif
105
task_is_dying(void)106 static inline bool task_is_dying(void)
107 {
108 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
109 (current->flags & PF_EXITING);
110 }
111
112 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)113 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
114 {
115 if (!memcg)
116 memcg = root_mem_cgroup;
117 return &memcg->vmpressure;
118 }
119
vmpressure_to_memcg(struct vmpressure * vmpr)120 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
121 {
122 return container_of(vmpr, struct mem_cgroup, vmpressure);
123 }
124
125 #define SEQ_BUF_SIZE SZ_4K
126 #define CURRENT_OBJCG_UPDATE_BIT 0
127 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
128
129 static DEFINE_SPINLOCK(objcg_lock);
130
mem_cgroup_kmem_disabled(void)131 bool mem_cgroup_kmem_disabled(void)
132 {
133 return cgroup_memory_nokmem;
134 }
135
136 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
137
obj_cgroup_release(struct percpu_ref * ref)138 static void obj_cgroup_release(struct percpu_ref *ref)
139 {
140 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
141 unsigned int nr_bytes;
142 unsigned int nr_pages;
143 unsigned long flags;
144
145 /*
146 * At this point all allocated objects are freed, and
147 * objcg->nr_charged_bytes can't have an arbitrary byte value.
148 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
149 *
150 * The following sequence can lead to it:
151 * 1) CPU0: objcg == stock->cached_objcg
152 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
153 * PAGE_SIZE bytes are charged
154 * 3) CPU1: a process from another memcg is allocating something,
155 * the stock if flushed,
156 * objcg->nr_charged_bytes = PAGE_SIZE - 92
157 * 5) CPU0: we do release this object,
158 * 92 bytes are added to stock->nr_bytes
159 * 6) CPU0: stock is flushed,
160 * 92 bytes are added to objcg->nr_charged_bytes
161 *
162 * In the result, nr_charged_bytes == PAGE_SIZE.
163 * This page will be uncharged in obj_cgroup_release().
164 */
165 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
166 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
167 nr_pages = nr_bytes >> PAGE_SHIFT;
168
169 if (nr_pages) {
170 struct mem_cgroup *memcg;
171
172 memcg = get_mem_cgroup_from_objcg(objcg);
173 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
174 memcg1_account_kmem(memcg, -nr_pages);
175 if (!mem_cgroup_is_root(memcg))
176 memcg_uncharge(memcg, nr_pages);
177 mem_cgroup_put(memcg);
178 }
179
180 spin_lock_irqsave(&objcg_lock, flags);
181 list_del(&objcg->list);
182 spin_unlock_irqrestore(&objcg_lock, flags);
183
184 percpu_ref_exit(ref);
185 kfree_rcu(objcg, rcu);
186 }
187
obj_cgroup_alloc(void)188 static struct obj_cgroup *obj_cgroup_alloc(void)
189 {
190 struct obj_cgroup *objcg;
191 int ret;
192
193 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
194 if (!objcg)
195 return NULL;
196
197 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
198 GFP_KERNEL);
199 if (ret) {
200 kfree(objcg);
201 return NULL;
202 }
203 INIT_LIST_HEAD(&objcg->list);
204 return objcg;
205 }
206
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)207 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
208 struct mem_cgroup *parent)
209 {
210 struct obj_cgroup *objcg, *iter;
211
212 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
213
214 spin_lock_irq(&objcg_lock);
215
216 /* 1) Ready to reparent active objcg. */
217 list_add(&objcg->list, &memcg->objcg_list);
218 /* 2) Reparent active objcg and already reparented objcgs to parent. */
219 list_for_each_entry(iter, &memcg->objcg_list, list)
220 WRITE_ONCE(iter->memcg, parent);
221 /* 3) Move already reparented objcgs to the parent's list */
222 list_splice(&memcg->objcg_list, &parent->objcg_list);
223
224 spin_unlock_irq(&objcg_lock);
225
226 percpu_ref_kill(&objcg->refcnt);
227 }
228
229 /*
230 * A lot of the calls to the cache allocation functions are expected to be
231 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
232 * conditional to this static branch, we'll have to allow modules that does
233 * kmem_cache_alloc and the such to see this symbol as well
234 */
235 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
236 EXPORT_SYMBOL(memcg_kmem_online_key);
237
238 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
239 EXPORT_SYMBOL(memcg_bpf_enabled_key);
240
241 /**
242 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
243 * @folio: folio of interest
244 *
245 * If memcg is bound to the default hierarchy, css of the memcg associated
246 * with @folio is returned. The returned css remains associated with @folio
247 * until it is released.
248 *
249 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
250 * is returned.
251 */
mem_cgroup_css_from_folio(struct folio * folio)252 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
253 {
254 struct mem_cgroup *memcg = folio_memcg(folio);
255
256 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
257 memcg = root_mem_cgroup;
258
259 return &memcg->css;
260 }
261
262 /**
263 * page_cgroup_ino - return inode number of the memcg a page is charged to
264 * @page: the page
265 *
266 * Look up the closest online ancestor of the memory cgroup @page is charged to
267 * and return its inode number or 0 if @page is not charged to any cgroup. It
268 * is safe to call this function without holding a reference to @page.
269 *
270 * Note, this function is inherently racy, because there is nothing to prevent
271 * the cgroup inode from getting torn down and potentially reallocated a moment
272 * after page_cgroup_ino() returns, so it only should be used by callers that
273 * do not care (such as procfs interfaces).
274 */
page_cgroup_ino(struct page * page)275 ino_t page_cgroup_ino(struct page *page)
276 {
277 struct mem_cgroup *memcg;
278 unsigned long ino = 0;
279
280 rcu_read_lock();
281 /* page_folio() is racy here, but the entire function is racy anyway */
282 memcg = folio_memcg_check(page_folio(page));
283
284 while (memcg && !(memcg->css.flags & CSS_ONLINE))
285 memcg = parent_mem_cgroup(memcg);
286 if (memcg)
287 ino = cgroup_ino(memcg->css.cgroup);
288 rcu_read_unlock();
289 return ino;
290 }
291
292 /* Subset of node_stat_item for memcg stats */
293 static const unsigned int memcg_node_stat_items[] = {
294 NR_INACTIVE_ANON,
295 NR_ACTIVE_ANON,
296 NR_INACTIVE_FILE,
297 NR_ACTIVE_FILE,
298 NR_UNEVICTABLE,
299 NR_SLAB_RECLAIMABLE_B,
300 NR_SLAB_UNRECLAIMABLE_B,
301 WORKINGSET_REFAULT_ANON,
302 WORKINGSET_REFAULT_FILE,
303 WORKINGSET_ACTIVATE_ANON,
304 WORKINGSET_ACTIVATE_FILE,
305 WORKINGSET_RESTORE_ANON,
306 WORKINGSET_RESTORE_FILE,
307 WORKINGSET_NODERECLAIM,
308 NR_ANON_MAPPED,
309 NR_FILE_MAPPED,
310 NR_FILE_PAGES,
311 NR_FILE_DIRTY,
312 NR_WRITEBACK,
313 NR_SHMEM,
314 NR_SHMEM_THPS,
315 NR_FILE_THPS,
316 NR_ANON_THPS,
317 NR_KERNEL_STACK_KB,
318 NR_PAGETABLE,
319 NR_SECONDARY_PAGETABLE,
320 #ifdef CONFIG_SWAP
321 NR_SWAPCACHE,
322 #endif
323 #ifdef CONFIG_NUMA_BALANCING
324 PGPROMOTE_SUCCESS,
325 #endif
326 PGDEMOTE_KSWAPD,
327 PGDEMOTE_DIRECT,
328 PGDEMOTE_KHUGEPAGED,
329 PGDEMOTE_PROACTIVE,
330 #ifdef CONFIG_HUGETLB_PAGE
331 NR_HUGETLB,
332 #endif
333 };
334
335 static const unsigned int memcg_stat_items[] = {
336 MEMCG_SWAP,
337 MEMCG_SOCK,
338 MEMCG_PERCPU_B,
339 MEMCG_VMALLOC,
340 MEMCG_KMEM,
341 MEMCG_ZSWAP_B,
342 MEMCG_ZSWAPPED,
343 };
344
345 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
346 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
347 ARRAY_SIZE(memcg_stat_items))
348 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
349 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
350
init_memcg_stats(void)351 static void init_memcg_stats(void)
352 {
353 u8 i, j = 0;
354
355 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
356
357 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
358
359 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
360 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
361
362 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
363 mem_cgroup_stats_index[memcg_stat_items[i]] = j;
364 }
365
memcg_stats_index(int idx)366 static inline int memcg_stats_index(int idx)
367 {
368 return mem_cgroup_stats_index[idx];
369 }
370
371 struct lruvec_stats_percpu {
372 /* Local (CPU and cgroup) state */
373 long state[NR_MEMCG_NODE_STAT_ITEMS];
374
375 /* Delta calculation for lockless upward propagation */
376 long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
377 };
378
379 struct lruvec_stats {
380 /* Aggregated (CPU and subtree) state */
381 long state[NR_MEMCG_NODE_STAT_ITEMS];
382
383 /* Non-hierarchical (CPU aggregated) state */
384 long state_local[NR_MEMCG_NODE_STAT_ITEMS];
385
386 /* Pending child counts during tree propagation */
387 long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
388 };
389
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)390 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
391 {
392 struct mem_cgroup_per_node *pn;
393 long x;
394 int i;
395
396 if (mem_cgroup_disabled())
397 return node_page_state(lruvec_pgdat(lruvec), idx);
398
399 i = memcg_stats_index(idx);
400 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
401 return 0;
402
403 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
404 x = READ_ONCE(pn->lruvec_stats->state[i]);
405 #ifdef CONFIG_SMP
406 if (x < 0)
407 x = 0;
408 #endif
409 return x;
410 }
411
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)412 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
413 enum node_stat_item idx)
414 {
415 struct mem_cgroup_per_node *pn;
416 long x;
417 int i;
418
419 if (mem_cgroup_disabled())
420 return node_page_state(lruvec_pgdat(lruvec), idx);
421
422 i = memcg_stats_index(idx);
423 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
424 return 0;
425
426 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
427 x = READ_ONCE(pn->lruvec_stats->state_local[i]);
428 #ifdef CONFIG_SMP
429 if (x < 0)
430 x = 0;
431 #endif
432 return x;
433 }
434
435 /* Subset of vm_event_item to report for memcg event stats */
436 static const unsigned int memcg_vm_event_stat[] = {
437 #ifdef CONFIG_MEMCG_V1
438 PGPGIN,
439 PGPGOUT,
440 #endif
441 PSWPIN,
442 PSWPOUT,
443 PGSCAN_KSWAPD,
444 PGSCAN_DIRECT,
445 PGSCAN_KHUGEPAGED,
446 PGSCAN_PROACTIVE,
447 PGSTEAL_KSWAPD,
448 PGSTEAL_DIRECT,
449 PGSTEAL_KHUGEPAGED,
450 PGSTEAL_PROACTIVE,
451 PGFAULT,
452 PGMAJFAULT,
453 PGREFILL,
454 PGACTIVATE,
455 PGDEACTIVATE,
456 PGLAZYFREE,
457 PGLAZYFREED,
458 #ifdef CONFIG_SWAP
459 SWPIN_ZERO,
460 SWPOUT_ZERO,
461 #endif
462 #ifdef CONFIG_ZSWAP
463 ZSWPIN,
464 ZSWPOUT,
465 ZSWPWB,
466 #endif
467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
468 THP_FAULT_ALLOC,
469 THP_COLLAPSE_ALLOC,
470 THP_SWPOUT,
471 THP_SWPOUT_FALLBACK,
472 #endif
473 #ifdef CONFIG_NUMA_BALANCING
474 NUMA_PAGE_MIGRATE,
475 NUMA_PTE_UPDATES,
476 NUMA_HINT_FAULTS,
477 #endif
478 };
479
480 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
481 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
482
init_memcg_events(void)483 static void init_memcg_events(void)
484 {
485 u8 i;
486
487 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
488
489 memset(mem_cgroup_events_index, U8_MAX,
490 sizeof(mem_cgroup_events_index));
491
492 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
493 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
494 }
495
memcg_events_index(enum vm_event_item idx)496 static inline int memcg_events_index(enum vm_event_item idx)
497 {
498 return mem_cgroup_events_index[idx];
499 }
500
501 struct memcg_vmstats_percpu {
502 /* Stats updates since the last flush */
503 unsigned int stats_updates;
504
505 /* Cached pointers for fast iteration in memcg_rstat_updated() */
506 struct memcg_vmstats_percpu __percpu *parent_pcpu;
507 struct memcg_vmstats *vmstats;
508
509 /* The above should fit a single cacheline for memcg_rstat_updated() */
510
511 /* Local (CPU and cgroup) page state & events */
512 long state[MEMCG_VMSTAT_SIZE];
513 unsigned long events[NR_MEMCG_EVENTS];
514
515 /* Delta calculation for lockless upward propagation */
516 long state_prev[MEMCG_VMSTAT_SIZE];
517 unsigned long events_prev[NR_MEMCG_EVENTS];
518 } ____cacheline_aligned;
519
520 struct memcg_vmstats {
521 /* Aggregated (CPU and subtree) page state & events */
522 long state[MEMCG_VMSTAT_SIZE];
523 unsigned long events[NR_MEMCG_EVENTS];
524
525 /* Non-hierarchical (CPU aggregated) page state & events */
526 long state_local[MEMCG_VMSTAT_SIZE];
527 unsigned long events_local[NR_MEMCG_EVENTS];
528
529 /* Pending child counts during tree propagation */
530 long state_pending[MEMCG_VMSTAT_SIZE];
531 unsigned long events_pending[NR_MEMCG_EVENTS];
532
533 /* Stats updates since the last flush */
534 atomic_t stats_updates;
535 };
536
537 /*
538 * memcg and lruvec stats flushing
539 *
540 * Many codepaths leading to stats update or read are performance sensitive and
541 * adding stats flushing in such codepaths is not desirable. So, to optimize the
542 * flushing the kernel does:
543 *
544 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
545 * rstat update tree grow unbounded.
546 *
547 * 2) Flush the stats synchronously on reader side only when there are more than
548 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
549 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
550 * only for 2 seconds due to (1).
551 */
552 static void flush_memcg_stats_dwork(struct work_struct *w);
553 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
554 static u64 flush_last_time;
555
556 #define FLUSH_TIME (2UL*HZ)
557
memcg_vmstats_needs_flush(struct memcg_vmstats * vmstats)558 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
559 {
560 return atomic_read(&vmstats->stats_updates) >
561 MEMCG_CHARGE_BATCH * num_online_cpus();
562 }
563
memcg_rstat_updated(struct mem_cgroup * memcg,int val,int cpu)564 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val,
565 int cpu)
566 {
567 struct memcg_vmstats_percpu __percpu *statc_pcpu;
568 struct memcg_vmstats_percpu *statc;
569 unsigned int stats_updates;
570
571 if (!val)
572 return;
573
574 /* TODO: add to cgroup update tree once it is nmi-safe. */
575 if (!in_nmi())
576 css_rstat_updated(&memcg->css, cpu);
577 statc_pcpu = memcg->vmstats_percpu;
578 for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) {
579 statc = this_cpu_ptr(statc_pcpu);
580 /*
581 * If @memcg is already flushable then all its ancestors are
582 * flushable as well and also there is no need to increase
583 * stats_updates.
584 */
585 if (memcg_vmstats_needs_flush(statc->vmstats))
586 break;
587
588 stats_updates = this_cpu_add_return(statc_pcpu->stats_updates,
589 abs(val));
590 if (stats_updates < MEMCG_CHARGE_BATCH)
591 continue;
592
593 stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0);
594 atomic_add(stats_updates, &statc->vmstats->stats_updates);
595 }
596 }
597
__mem_cgroup_flush_stats(struct mem_cgroup * memcg,bool force)598 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
599 {
600 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
601
602 trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates),
603 force, needs_flush);
604
605 if (!force && !needs_flush)
606 return;
607
608 if (mem_cgroup_is_root(memcg))
609 WRITE_ONCE(flush_last_time, jiffies_64);
610
611 css_rstat_flush(&memcg->css);
612 }
613
614 /*
615 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
616 * @memcg: root of the subtree to flush
617 *
618 * Flushing is serialized by the underlying global rstat lock. There is also a
619 * minimum amount of work to be done even if there are no stat updates to flush.
620 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
621 * avoids unnecessary work and contention on the underlying lock.
622 */
mem_cgroup_flush_stats(struct mem_cgroup * memcg)623 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
624 {
625 if (mem_cgroup_disabled())
626 return;
627
628 if (!memcg)
629 memcg = root_mem_cgroup;
630
631 __mem_cgroup_flush_stats(memcg, false);
632 }
633
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)634 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
635 {
636 /* Only flush if the periodic flusher is one full cycle late */
637 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
638 mem_cgroup_flush_stats(memcg);
639 }
640
flush_memcg_stats_dwork(struct work_struct * w)641 static void flush_memcg_stats_dwork(struct work_struct *w)
642 {
643 /*
644 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
645 * in latency-sensitive paths is as cheap as possible.
646 */
647 __mem_cgroup_flush_stats(root_mem_cgroup, true);
648 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
649 }
650
memcg_page_state(struct mem_cgroup * memcg,int idx)651 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
652 {
653 long x;
654 int i = memcg_stats_index(idx);
655
656 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
657 return 0;
658
659 x = READ_ONCE(memcg->vmstats->state[i]);
660 #ifdef CONFIG_SMP
661 if (x < 0)
662 x = 0;
663 #endif
664 return x;
665 }
666
667 static int memcg_page_state_unit(int item);
668
669 /*
670 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
671 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
672 */
memcg_state_val_in_pages(int idx,int val)673 static int memcg_state_val_in_pages(int idx, int val)
674 {
675 int unit = memcg_page_state_unit(idx);
676
677 if (!val || unit == PAGE_SIZE)
678 return val;
679 else
680 return max(val * unit / PAGE_SIZE, 1UL);
681 }
682
683 /**
684 * mod_memcg_state - update cgroup memory statistics
685 * @memcg: the memory cgroup
686 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
687 * @val: delta to add to the counter, can be negative
688 */
mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int val)689 void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
690 int val)
691 {
692 int i = memcg_stats_index(idx);
693 int cpu;
694
695 if (mem_cgroup_disabled())
696 return;
697
698 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
699 return;
700
701 cpu = get_cpu();
702
703 this_cpu_add(memcg->vmstats_percpu->state[i], val);
704 val = memcg_state_val_in_pages(idx, val);
705 memcg_rstat_updated(memcg, val, cpu);
706 trace_mod_memcg_state(memcg, idx, val);
707
708 put_cpu();
709 }
710
711 #ifdef CONFIG_MEMCG_V1
712 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)713 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
714 {
715 long x;
716 int i = memcg_stats_index(idx);
717
718 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
719 return 0;
720
721 x = READ_ONCE(memcg->vmstats->state_local[i]);
722 #ifdef CONFIG_SMP
723 if (x < 0)
724 x = 0;
725 #endif
726 return x;
727 }
728 #endif
729
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)730 static void mod_memcg_lruvec_state(struct lruvec *lruvec,
731 enum node_stat_item idx,
732 int val)
733 {
734 struct mem_cgroup_per_node *pn;
735 struct mem_cgroup *memcg;
736 int i = memcg_stats_index(idx);
737 int cpu;
738
739 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
740 return;
741
742 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
743 memcg = pn->memcg;
744
745 cpu = get_cpu();
746
747 /* Update memcg */
748 this_cpu_add(memcg->vmstats_percpu->state[i], val);
749
750 /* Update lruvec */
751 this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
752
753 val = memcg_state_val_in_pages(idx, val);
754 memcg_rstat_updated(memcg, val, cpu);
755 trace_mod_memcg_lruvec_state(memcg, idx, val);
756
757 put_cpu();
758 }
759
760 /**
761 * __mod_lruvec_state - update lruvec memory statistics
762 * @lruvec: the lruvec
763 * @idx: the stat item
764 * @val: delta to add to the counter, can be negative
765 *
766 * The lruvec is the intersection of the NUMA node and a cgroup. This
767 * function updates the all three counters that are affected by a
768 * change of state at this level: per-node, per-cgroup, per-lruvec.
769 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)770 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
771 int val)
772 {
773 /* Update node */
774 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
775
776 /* Update memcg and lruvec */
777 if (!mem_cgroup_disabled())
778 mod_memcg_lruvec_state(lruvec, idx, val);
779 }
780
__lruvec_stat_mod_folio(struct folio * folio,enum node_stat_item idx,int val)781 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
782 int val)
783 {
784 struct mem_cgroup *memcg;
785 pg_data_t *pgdat = folio_pgdat(folio);
786 struct lruvec *lruvec;
787
788 rcu_read_lock();
789 memcg = folio_memcg(folio);
790 /* Untracked pages have no memcg, no lruvec. Update only the node */
791 if (!memcg) {
792 rcu_read_unlock();
793 __mod_node_page_state(pgdat, idx, val);
794 return;
795 }
796
797 lruvec = mem_cgroup_lruvec(memcg, pgdat);
798 __mod_lruvec_state(lruvec, idx, val);
799 rcu_read_unlock();
800 }
801 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
802
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)803 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
804 {
805 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
806 struct mem_cgroup *memcg;
807 struct lruvec *lruvec;
808
809 rcu_read_lock();
810 memcg = mem_cgroup_from_slab_obj(p);
811
812 /*
813 * Untracked pages have no memcg, no lruvec. Update only the
814 * node. If we reparent the slab objects to the root memcg,
815 * when we free the slab object, we need to update the per-memcg
816 * vmstats to keep it correct for the root memcg.
817 */
818 if (!memcg) {
819 __mod_node_page_state(pgdat, idx, val);
820 } else {
821 lruvec = mem_cgroup_lruvec(memcg, pgdat);
822 __mod_lruvec_state(lruvec, idx, val);
823 }
824 rcu_read_unlock();
825 }
826
827 /**
828 * count_memcg_events - account VM events in a cgroup
829 * @memcg: the memory cgroup
830 * @idx: the event item
831 * @count: the number of events that occurred
832 */
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)833 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
834 unsigned long count)
835 {
836 int i = memcg_events_index(idx);
837 int cpu;
838
839 if (mem_cgroup_disabled())
840 return;
841
842 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
843 return;
844
845 cpu = get_cpu();
846
847 this_cpu_add(memcg->vmstats_percpu->events[i], count);
848 memcg_rstat_updated(memcg, count, cpu);
849 trace_count_memcg_events(memcg, idx, count);
850
851 put_cpu();
852 }
853
memcg_events(struct mem_cgroup * memcg,int event)854 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
855 {
856 int i = memcg_events_index(event);
857
858 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
859 return 0;
860
861 return READ_ONCE(memcg->vmstats->events[i]);
862 }
863
864 #ifdef CONFIG_MEMCG_V1
memcg_events_local(struct mem_cgroup * memcg,int event)865 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
866 {
867 int i = memcg_events_index(event);
868
869 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
870 return 0;
871
872 return READ_ONCE(memcg->vmstats->events_local[i]);
873 }
874 #endif
875
mem_cgroup_from_task(struct task_struct * p)876 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
877 {
878 /*
879 * mm_update_next_owner() may clear mm->owner to NULL
880 * if it races with swapoff, page migration, etc.
881 * So this can be called with p == NULL.
882 */
883 if (unlikely(!p))
884 return NULL;
885
886 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
887 }
888 EXPORT_SYMBOL(mem_cgroup_from_task);
889
active_memcg(void)890 static __always_inline struct mem_cgroup *active_memcg(void)
891 {
892 if (!in_task())
893 return this_cpu_read(int_active_memcg);
894 else
895 return current->active_memcg;
896 }
897
898 /**
899 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
900 * @mm: mm from which memcg should be extracted. It can be NULL.
901 *
902 * Obtain a reference on mm->memcg and returns it if successful. If mm
903 * is NULL, then the memcg is chosen as follows:
904 * 1) The active memcg, if set.
905 * 2) current->mm->memcg, if available
906 * 3) root memcg
907 * If mem_cgroup is disabled, NULL is returned.
908 */
get_mem_cgroup_from_mm(struct mm_struct * mm)909 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
910 {
911 struct mem_cgroup *memcg;
912
913 if (mem_cgroup_disabled())
914 return NULL;
915
916 /*
917 * Page cache insertions can happen without an
918 * actual mm context, e.g. during disk probing
919 * on boot, loopback IO, acct() writes etc.
920 *
921 * No need to css_get on root memcg as the reference
922 * counting is disabled on the root level in the
923 * cgroup core. See CSS_NO_REF.
924 */
925 if (unlikely(!mm)) {
926 memcg = active_memcg();
927 if (unlikely(memcg)) {
928 /* remote memcg must hold a ref */
929 css_get(&memcg->css);
930 return memcg;
931 }
932 mm = current->mm;
933 if (unlikely(!mm))
934 return root_mem_cgroup;
935 }
936
937 rcu_read_lock();
938 do {
939 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
940 if (unlikely(!memcg))
941 memcg = root_mem_cgroup;
942 } while (!css_tryget(&memcg->css));
943 rcu_read_unlock();
944 return memcg;
945 }
946 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
947
948 /**
949 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
950 */
get_mem_cgroup_from_current(void)951 struct mem_cgroup *get_mem_cgroup_from_current(void)
952 {
953 struct mem_cgroup *memcg;
954
955 if (mem_cgroup_disabled())
956 return NULL;
957
958 again:
959 rcu_read_lock();
960 memcg = mem_cgroup_from_task(current);
961 if (!css_tryget(&memcg->css)) {
962 rcu_read_unlock();
963 goto again;
964 }
965 rcu_read_unlock();
966 return memcg;
967 }
968
969 /**
970 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
971 * @folio: folio from which memcg should be extracted.
972 */
get_mem_cgroup_from_folio(struct folio * folio)973 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
974 {
975 struct mem_cgroup *memcg = folio_memcg(folio);
976
977 if (mem_cgroup_disabled())
978 return NULL;
979
980 rcu_read_lock();
981 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
982 memcg = root_mem_cgroup;
983 rcu_read_unlock();
984 return memcg;
985 }
986
987 /**
988 * mem_cgroup_iter - iterate over memory cgroup hierarchy
989 * @root: hierarchy root
990 * @prev: previously returned memcg, NULL on first invocation
991 * @reclaim: cookie for shared reclaim walks, NULL for full walks
992 *
993 * Returns references to children of the hierarchy below @root, or
994 * @root itself, or %NULL after a full round-trip.
995 *
996 * Caller must pass the return value in @prev on subsequent
997 * invocations for reference counting, or use mem_cgroup_iter_break()
998 * to cancel a hierarchy walk before the round-trip is complete.
999 *
1000 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1001 * in the hierarchy among all concurrent reclaimers operating on the
1002 * same node.
1003 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1004 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1005 struct mem_cgroup *prev,
1006 struct mem_cgroup_reclaim_cookie *reclaim)
1007 {
1008 struct mem_cgroup_reclaim_iter *iter;
1009 struct cgroup_subsys_state *css;
1010 struct mem_cgroup *pos;
1011 struct mem_cgroup *next;
1012
1013 if (mem_cgroup_disabled())
1014 return NULL;
1015
1016 if (!root)
1017 root = root_mem_cgroup;
1018
1019 rcu_read_lock();
1020 restart:
1021 next = NULL;
1022
1023 if (reclaim) {
1024 int gen;
1025 int nid = reclaim->pgdat->node_id;
1026
1027 iter = &root->nodeinfo[nid]->iter;
1028 gen = atomic_read(&iter->generation);
1029
1030 /*
1031 * On start, join the current reclaim iteration cycle.
1032 * Exit when a concurrent walker completes it.
1033 */
1034 if (!prev)
1035 reclaim->generation = gen;
1036 else if (reclaim->generation != gen)
1037 goto out_unlock;
1038
1039 pos = READ_ONCE(iter->position);
1040 } else
1041 pos = prev;
1042
1043 css = pos ? &pos->css : NULL;
1044
1045 while ((css = css_next_descendant_pre(css, &root->css))) {
1046 /*
1047 * Verify the css and acquire a reference. The root
1048 * is provided by the caller, so we know it's alive
1049 * and kicking, and don't take an extra reference.
1050 */
1051 if (css == &root->css || css_tryget(css))
1052 break;
1053 }
1054
1055 next = mem_cgroup_from_css(css);
1056
1057 if (reclaim) {
1058 /*
1059 * The position could have already been updated by a competing
1060 * thread, so check that the value hasn't changed since we read
1061 * it to avoid reclaiming from the same cgroup twice.
1062 */
1063 if (cmpxchg(&iter->position, pos, next) != pos) {
1064 if (css && css != &root->css)
1065 css_put(css);
1066 goto restart;
1067 }
1068
1069 if (!next) {
1070 atomic_inc(&iter->generation);
1071
1072 /*
1073 * Reclaimers share the hierarchy walk, and a
1074 * new one might jump in right at the end of
1075 * the hierarchy - make sure they see at least
1076 * one group and restart from the beginning.
1077 */
1078 if (!prev)
1079 goto restart;
1080 }
1081 }
1082
1083 out_unlock:
1084 rcu_read_unlock();
1085 if (prev && prev != root)
1086 css_put(&prev->css);
1087
1088 return next;
1089 }
1090
1091 /**
1092 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1093 * @root: hierarchy root
1094 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1095 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1096 void mem_cgroup_iter_break(struct mem_cgroup *root,
1097 struct mem_cgroup *prev)
1098 {
1099 if (!root)
1100 root = root_mem_cgroup;
1101 if (prev && prev != root)
1102 css_put(&prev->css);
1103 }
1104
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1105 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1106 struct mem_cgroup *dead_memcg)
1107 {
1108 struct mem_cgroup_reclaim_iter *iter;
1109 struct mem_cgroup_per_node *mz;
1110 int nid;
1111
1112 for_each_node(nid) {
1113 mz = from->nodeinfo[nid];
1114 iter = &mz->iter;
1115 cmpxchg(&iter->position, dead_memcg, NULL);
1116 }
1117 }
1118
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1119 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1120 {
1121 struct mem_cgroup *memcg = dead_memcg;
1122 struct mem_cgroup *last;
1123
1124 do {
1125 __invalidate_reclaim_iterators(memcg, dead_memcg);
1126 last = memcg;
1127 } while ((memcg = parent_mem_cgroup(memcg)));
1128
1129 /*
1130 * When cgroup1 non-hierarchy mode is used,
1131 * parent_mem_cgroup() does not walk all the way up to the
1132 * cgroup root (root_mem_cgroup). So we have to handle
1133 * dead_memcg from cgroup root separately.
1134 */
1135 if (!mem_cgroup_is_root(last))
1136 __invalidate_reclaim_iterators(root_mem_cgroup,
1137 dead_memcg);
1138 }
1139
1140 /**
1141 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1142 * @memcg: hierarchy root
1143 * @fn: function to call for each task
1144 * @arg: argument passed to @fn
1145 *
1146 * This function iterates over tasks attached to @memcg or to any of its
1147 * descendants and calls @fn for each task. If @fn returns a non-zero
1148 * value, the function breaks the iteration loop. Otherwise, it will iterate
1149 * over all tasks and return 0.
1150 *
1151 * This function must not be called for the root memory cgroup.
1152 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1153 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1154 int (*fn)(struct task_struct *, void *), void *arg)
1155 {
1156 struct mem_cgroup *iter;
1157 int ret = 0;
1158
1159 BUG_ON(mem_cgroup_is_root(memcg));
1160
1161 for_each_mem_cgroup_tree(iter, memcg) {
1162 struct css_task_iter it;
1163 struct task_struct *task;
1164
1165 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1166 while (!ret && (task = css_task_iter_next(&it))) {
1167 ret = fn(task, arg);
1168 /* Avoid potential softlockup warning */
1169 cond_resched();
1170 }
1171 css_task_iter_end(&it);
1172 if (ret) {
1173 mem_cgroup_iter_break(memcg, iter);
1174 break;
1175 }
1176 }
1177 }
1178
1179 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1180 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1181 {
1182 struct mem_cgroup *memcg;
1183
1184 if (mem_cgroup_disabled())
1185 return;
1186
1187 memcg = folio_memcg(folio);
1188
1189 if (!memcg)
1190 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1191 else
1192 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1193 }
1194 #endif
1195
1196 /**
1197 * folio_lruvec_lock - Lock the lruvec for a folio.
1198 * @folio: Pointer to the folio.
1199 *
1200 * These functions are safe to use under any of the following conditions:
1201 * - folio locked
1202 * - folio_test_lru false
1203 * - folio frozen (refcount of 0)
1204 *
1205 * Return: The lruvec this folio is on with its lock held.
1206 */
folio_lruvec_lock(struct folio * folio)1207 struct lruvec *folio_lruvec_lock(struct folio *folio)
1208 {
1209 struct lruvec *lruvec = folio_lruvec(folio);
1210
1211 spin_lock(&lruvec->lru_lock);
1212 lruvec_memcg_debug(lruvec, folio);
1213
1214 return lruvec;
1215 }
1216
1217 /**
1218 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1219 * @folio: Pointer to the folio.
1220 *
1221 * These functions are safe to use under any of the following conditions:
1222 * - folio locked
1223 * - folio_test_lru false
1224 * - folio frozen (refcount of 0)
1225 *
1226 * Return: The lruvec this folio is on with its lock held and interrupts
1227 * disabled.
1228 */
folio_lruvec_lock_irq(struct folio * folio)1229 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1230 {
1231 struct lruvec *lruvec = folio_lruvec(folio);
1232
1233 spin_lock_irq(&lruvec->lru_lock);
1234 lruvec_memcg_debug(lruvec, folio);
1235
1236 return lruvec;
1237 }
1238
1239 /**
1240 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1241 * @folio: Pointer to the folio.
1242 * @flags: Pointer to irqsave flags.
1243 *
1244 * These functions are safe to use under any of the following conditions:
1245 * - folio locked
1246 * - folio_test_lru false
1247 * - folio frozen (refcount of 0)
1248 *
1249 * Return: The lruvec this folio is on with its lock held and interrupts
1250 * disabled.
1251 */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1252 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1253 unsigned long *flags)
1254 {
1255 struct lruvec *lruvec = folio_lruvec(folio);
1256
1257 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1258 lruvec_memcg_debug(lruvec, folio);
1259
1260 return lruvec;
1261 }
1262
1263 /**
1264 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1265 * @lruvec: mem_cgroup per zone lru vector
1266 * @lru: index of lru list the page is sitting on
1267 * @zid: zone id of the accounted pages
1268 * @nr_pages: positive when adding or negative when removing
1269 *
1270 * This function must be called under lru_lock, just before a page is added
1271 * to or just after a page is removed from an lru list.
1272 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1273 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1274 int zid, int nr_pages)
1275 {
1276 struct mem_cgroup_per_node *mz;
1277 unsigned long *lru_size;
1278 long size;
1279
1280 if (mem_cgroup_disabled())
1281 return;
1282
1283 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1284 lru_size = &mz->lru_zone_size[zid][lru];
1285
1286 if (nr_pages < 0)
1287 *lru_size += nr_pages;
1288
1289 size = *lru_size;
1290 if (WARN_ONCE(size < 0,
1291 "%s(%p, %d, %d): lru_size %ld\n",
1292 __func__, lruvec, lru, nr_pages, size)) {
1293 VM_BUG_ON(1);
1294 *lru_size = 0;
1295 }
1296
1297 if (nr_pages > 0)
1298 *lru_size += nr_pages;
1299 }
1300
1301 /**
1302 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1303 * @memcg: the memory cgroup
1304 *
1305 * Returns the maximum amount of memory @mem can be charged with, in
1306 * pages.
1307 */
mem_cgroup_margin(struct mem_cgroup * memcg)1308 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1309 {
1310 unsigned long margin = 0;
1311 unsigned long count;
1312 unsigned long limit;
1313
1314 count = page_counter_read(&memcg->memory);
1315 limit = READ_ONCE(memcg->memory.max);
1316 if (count < limit)
1317 margin = limit - count;
1318
1319 if (do_memsw_account()) {
1320 count = page_counter_read(&memcg->memsw);
1321 limit = READ_ONCE(memcg->memsw.max);
1322 if (count < limit)
1323 margin = min(margin, limit - count);
1324 else
1325 margin = 0;
1326 }
1327
1328 return margin;
1329 }
1330
1331 struct memory_stat {
1332 const char *name;
1333 unsigned int idx;
1334 };
1335
1336 static const struct memory_stat memory_stats[] = {
1337 { "anon", NR_ANON_MAPPED },
1338 { "file", NR_FILE_PAGES },
1339 { "kernel", MEMCG_KMEM },
1340 { "kernel_stack", NR_KERNEL_STACK_KB },
1341 { "pagetables", NR_PAGETABLE },
1342 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1343 { "percpu", MEMCG_PERCPU_B },
1344 { "sock", MEMCG_SOCK },
1345 { "vmalloc", MEMCG_VMALLOC },
1346 { "shmem", NR_SHMEM },
1347 #ifdef CONFIG_ZSWAP
1348 { "zswap", MEMCG_ZSWAP_B },
1349 { "zswapped", MEMCG_ZSWAPPED },
1350 #endif
1351 { "file_mapped", NR_FILE_MAPPED },
1352 { "file_dirty", NR_FILE_DIRTY },
1353 { "file_writeback", NR_WRITEBACK },
1354 #ifdef CONFIG_SWAP
1355 { "swapcached", NR_SWAPCACHE },
1356 #endif
1357 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1358 { "anon_thp", NR_ANON_THPS },
1359 { "file_thp", NR_FILE_THPS },
1360 { "shmem_thp", NR_SHMEM_THPS },
1361 #endif
1362 { "inactive_anon", NR_INACTIVE_ANON },
1363 { "active_anon", NR_ACTIVE_ANON },
1364 { "inactive_file", NR_INACTIVE_FILE },
1365 { "active_file", NR_ACTIVE_FILE },
1366 { "unevictable", NR_UNEVICTABLE },
1367 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1368 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1369 #ifdef CONFIG_HUGETLB_PAGE
1370 { "hugetlb", NR_HUGETLB },
1371 #endif
1372
1373 /* The memory events */
1374 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1375 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1376 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1377 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1378 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1379 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1380 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1381
1382 { "pgdemote_kswapd", PGDEMOTE_KSWAPD },
1383 { "pgdemote_direct", PGDEMOTE_DIRECT },
1384 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED },
1385 { "pgdemote_proactive", PGDEMOTE_PROACTIVE },
1386 #ifdef CONFIG_NUMA_BALANCING
1387 { "pgpromote_success", PGPROMOTE_SUCCESS },
1388 #endif
1389 };
1390
1391 /* The actual unit of the state item, not the same as the output unit */
memcg_page_state_unit(int item)1392 static int memcg_page_state_unit(int item)
1393 {
1394 switch (item) {
1395 case MEMCG_PERCPU_B:
1396 case MEMCG_ZSWAP_B:
1397 case NR_SLAB_RECLAIMABLE_B:
1398 case NR_SLAB_UNRECLAIMABLE_B:
1399 return 1;
1400 case NR_KERNEL_STACK_KB:
1401 return SZ_1K;
1402 default:
1403 return PAGE_SIZE;
1404 }
1405 }
1406
1407 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_output_unit(int item)1408 static int memcg_page_state_output_unit(int item)
1409 {
1410 /*
1411 * Workingset state is actually in pages, but we export it to userspace
1412 * as a scalar count of events, so special case it here.
1413 *
1414 * Demotion and promotion activities are exported in pages, consistent
1415 * with their global counterparts.
1416 */
1417 switch (item) {
1418 case WORKINGSET_REFAULT_ANON:
1419 case WORKINGSET_REFAULT_FILE:
1420 case WORKINGSET_ACTIVATE_ANON:
1421 case WORKINGSET_ACTIVATE_FILE:
1422 case WORKINGSET_RESTORE_ANON:
1423 case WORKINGSET_RESTORE_FILE:
1424 case WORKINGSET_NODERECLAIM:
1425 case PGDEMOTE_KSWAPD:
1426 case PGDEMOTE_DIRECT:
1427 case PGDEMOTE_KHUGEPAGED:
1428 case PGDEMOTE_PROACTIVE:
1429 #ifdef CONFIG_NUMA_BALANCING
1430 case PGPROMOTE_SUCCESS:
1431 #endif
1432 return 1;
1433 default:
1434 return memcg_page_state_unit(item);
1435 }
1436 }
1437
memcg_page_state_output(struct mem_cgroup * memcg,int item)1438 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1439 {
1440 return memcg_page_state(memcg, item) *
1441 memcg_page_state_output_unit(item);
1442 }
1443
1444 #ifdef CONFIG_MEMCG_V1
memcg_page_state_local_output(struct mem_cgroup * memcg,int item)1445 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1446 {
1447 return memcg_page_state_local(memcg, item) *
1448 memcg_page_state_output_unit(item);
1449 }
1450 #endif
1451
1452 #ifdef CONFIG_HUGETLB_PAGE
memcg_accounts_hugetlb(void)1453 static bool memcg_accounts_hugetlb(void)
1454 {
1455 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1456 }
1457 #else /* CONFIG_HUGETLB_PAGE */
memcg_accounts_hugetlb(void)1458 static bool memcg_accounts_hugetlb(void)
1459 {
1460 return false;
1461 }
1462 #endif /* CONFIG_HUGETLB_PAGE */
1463
memcg_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1464 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1465 {
1466 int i;
1467
1468 /*
1469 * Provide statistics on the state of the memory subsystem as
1470 * well as cumulative event counters that show past behavior.
1471 *
1472 * This list is ordered following a combination of these gradients:
1473 * 1) generic big picture -> specifics and details
1474 * 2) reflecting userspace activity -> reflecting kernel heuristics
1475 *
1476 * Current memory state:
1477 */
1478 mem_cgroup_flush_stats(memcg);
1479
1480 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1481 u64 size;
1482
1483 #ifdef CONFIG_HUGETLB_PAGE
1484 if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1485 !memcg_accounts_hugetlb())
1486 continue;
1487 #endif
1488 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1489 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1490
1491 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1492 size += memcg_page_state_output(memcg,
1493 NR_SLAB_RECLAIMABLE_B);
1494 seq_buf_printf(s, "slab %llu\n", size);
1495 }
1496 }
1497
1498 /* Accumulated memory events */
1499 seq_buf_printf(s, "pgscan %lu\n",
1500 memcg_events(memcg, PGSCAN_KSWAPD) +
1501 memcg_events(memcg, PGSCAN_DIRECT) +
1502 memcg_events(memcg, PGSCAN_PROACTIVE) +
1503 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1504 seq_buf_printf(s, "pgsteal %lu\n",
1505 memcg_events(memcg, PGSTEAL_KSWAPD) +
1506 memcg_events(memcg, PGSTEAL_DIRECT) +
1507 memcg_events(memcg, PGSTEAL_PROACTIVE) +
1508 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1509
1510 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1511 #ifdef CONFIG_MEMCG_V1
1512 if (memcg_vm_event_stat[i] == PGPGIN ||
1513 memcg_vm_event_stat[i] == PGPGOUT)
1514 continue;
1515 #endif
1516 seq_buf_printf(s, "%s %lu\n",
1517 vm_event_name(memcg_vm_event_stat[i]),
1518 memcg_events(memcg, memcg_vm_event_stat[i]));
1519 }
1520 }
1521
memory_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1522 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1523 {
1524 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1525 memcg_stat_format(memcg, s);
1526 else
1527 memcg1_stat_format(memcg, s);
1528 if (seq_buf_has_overflowed(s))
1529 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1530 }
1531
1532 /**
1533 * mem_cgroup_print_oom_context: Print OOM information relevant to
1534 * memory controller.
1535 * @memcg: The memory cgroup that went over limit
1536 * @p: Task that is going to be killed
1537 *
1538 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1539 * enabled
1540 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1541 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1542 {
1543 rcu_read_lock();
1544
1545 if (memcg) {
1546 pr_cont(",oom_memcg=");
1547 pr_cont_cgroup_path(memcg->css.cgroup);
1548 } else
1549 pr_cont(",global_oom");
1550 if (p) {
1551 pr_cont(",task_memcg=");
1552 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1553 }
1554 rcu_read_unlock();
1555 }
1556
1557 /**
1558 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1559 * memory controller.
1560 * @memcg: The memory cgroup that went over limit
1561 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1562 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1563 {
1564 /* Use static buffer, for the caller is holding oom_lock. */
1565 static char buf[SEQ_BUF_SIZE];
1566 struct seq_buf s;
1567 unsigned long memory_failcnt;
1568
1569 lockdep_assert_held(&oom_lock);
1570
1571 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1572 memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]);
1573 else
1574 memory_failcnt = memcg->memory.failcnt;
1575
1576 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1577 K((u64)page_counter_read(&memcg->memory)),
1578 K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt);
1579 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1580 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1581 K((u64)page_counter_read(&memcg->swap)),
1582 K((u64)READ_ONCE(memcg->swap.max)),
1583 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
1584 #ifdef CONFIG_MEMCG_V1
1585 else {
1586 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1587 K((u64)page_counter_read(&memcg->memsw)),
1588 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1589 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1590 K((u64)page_counter_read(&memcg->kmem)),
1591 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1592 }
1593 #endif
1594
1595 pr_info("Memory cgroup stats for ");
1596 pr_cont_cgroup_path(memcg->css.cgroup);
1597 pr_cont(":");
1598 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1599 memory_stat_format(memcg, &s);
1600 seq_buf_do_printk(&s, KERN_INFO);
1601 }
1602
1603 /*
1604 * Return the memory (and swap, if configured) limit for a memcg.
1605 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1606 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1607 {
1608 unsigned long max = READ_ONCE(memcg->memory.max);
1609
1610 if (do_memsw_account()) {
1611 if (mem_cgroup_swappiness(memcg)) {
1612 /* Calculate swap excess capacity from memsw limit */
1613 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1614
1615 max += min(swap, (unsigned long)total_swap_pages);
1616 }
1617 } else {
1618 if (mem_cgroup_swappiness(memcg))
1619 max += min(READ_ONCE(memcg->swap.max),
1620 (unsigned long)total_swap_pages);
1621 }
1622 return max;
1623 }
1624
mem_cgroup_size(struct mem_cgroup * memcg)1625 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1626 {
1627 return page_counter_read(&memcg->memory);
1628 }
1629
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1630 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1631 int order)
1632 {
1633 struct oom_control oc = {
1634 .zonelist = NULL,
1635 .nodemask = NULL,
1636 .memcg = memcg,
1637 .gfp_mask = gfp_mask,
1638 .order = order,
1639 };
1640 bool ret = true;
1641
1642 if (mutex_lock_killable(&oom_lock))
1643 return true;
1644
1645 if (mem_cgroup_margin(memcg) >= (1 << order))
1646 goto unlock;
1647
1648 /*
1649 * A few threads which were not waiting at mutex_lock_killable() can
1650 * fail to bail out. Therefore, check again after holding oom_lock.
1651 */
1652 ret = out_of_memory(&oc);
1653
1654 unlock:
1655 mutex_unlock(&oom_lock);
1656 return ret;
1657 }
1658
1659 /*
1660 * Returns true if successfully killed one or more processes. Though in some
1661 * corner cases it can return true even without killing any process.
1662 */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1663 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1664 {
1665 bool locked, ret;
1666
1667 if (order > PAGE_ALLOC_COSTLY_ORDER)
1668 return false;
1669
1670 memcg_memory_event(memcg, MEMCG_OOM);
1671
1672 if (!memcg1_oom_prepare(memcg, &locked))
1673 return false;
1674
1675 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1676
1677 memcg1_oom_finish(memcg, locked);
1678
1679 return ret;
1680 }
1681
1682 /**
1683 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1684 * @victim: task to be killed by the OOM killer
1685 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1686 *
1687 * Returns a pointer to a memory cgroup, which has to be cleaned up
1688 * by killing all belonging OOM-killable tasks.
1689 *
1690 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1691 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1692 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1693 struct mem_cgroup *oom_domain)
1694 {
1695 struct mem_cgroup *oom_group = NULL;
1696 struct mem_cgroup *memcg;
1697
1698 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1699 return NULL;
1700
1701 if (!oom_domain)
1702 oom_domain = root_mem_cgroup;
1703
1704 rcu_read_lock();
1705
1706 memcg = mem_cgroup_from_task(victim);
1707 if (mem_cgroup_is_root(memcg))
1708 goto out;
1709
1710 /*
1711 * If the victim task has been asynchronously moved to a different
1712 * memory cgroup, we might end up killing tasks outside oom_domain.
1713 * In this case it's better to ignore memory.group.oom.
1714 */
1715 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1716 goto out;
1717
1718 /*
1719 * Traverse the memory cgroup hierarchy from the victim task's
1720 * cgroup up to the OOMing cgroup (or root) to find the
1721 * highest-level memory cgroup with oom.group set.
1722 */
1723 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1724 if (READ_ONCE(memcg->oom_group))
1725 oom_group = memcg;
1726
1727 if (memcg == oom_domain)
1728 break;
1729 }
1730
1731 if (oom_group)
1732 css_get(&oom_group->css);
1733 out:
1734 rcu_read_unlock();
1735
1736 return oom_group;
1737 }
1738
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1739 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1740 {
1741 pr_info("Tasks in ");
1742 pr_cont_cgroup_path(memcg->css.cgroup);
1743 pr_cont(" are going to be killed due to memory.oom.group set\n");
1744 }
1745
1746 /*
1747 * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their
1748 * nr_pages in a single cacheline. This may change in future.
1749 */
1750 #define NR_MEMCG_STOCK 7
1751 #define FLUSHING_CACHED_CHARGE 0
1752 struct memcg_stock_pcp {
1753 local_trylock_t lock;
1754 uint8_t nr_pages[NR_MEMCG_STOCK];
1755 struct mem_cgroup *cached[NR_MEMCG_STOCK];
1756
1757 struct work_struct work;
1758 unsigned long flags;
1759 };
1760
1761 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = {
1762 .lock = INIT_LOCAL_TRYLOCK(lock),
1763 };
1764
1765 struct obj_stock_pcp {
1766 local_trylock_t lock;
1767 unsigned int nr_bytes;
1768 struct obj_cgroup *cached_objcg;
1769 struct pglist_data *cached_pgdat;
1770 int nr_slab_reclaimable_b;
1771 int nr_slab_unreclaimable_b;
1772
1773 struct work_struct work;
1774 unsigned long flags;
1775 };
1776
1777 static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = {
1778 .lock = INIT_LOCAL_TRYLOCK(lock),
1779 };
1780
1781 static DEFINE_MUTEX(percpu_charge_mutex);
1782
1783 static void drain_obj_stock(struct obj_stock_pcp *stock);
1784 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
1785 struct mem_cgroup *root_memcg);
1786
1787 /**
1788 * consume_stock: Try to consume stocked charge on this cpu.
1789 * @memcg: memcg to consume from.
1790 * @nr_pages: how many pages to charge.
1791 *
1792 * Consume the cached charge if enough nr_pages are present otherwise return
1793 * failure. Also return failure for charge request larger than
1794 * MEMCG_CHARGE_BATCH or if the local lock is already taken.
1795 *
1796 * returns true if successful, false otherwise.
1797 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1798 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1799 {
1800 struct memcg_stock_pcp *stock;
1801 uint8_t stock_pages;
1802 bool ret = false;
1803 int i;
1804
1805 if (nr_pages > MEMCG_CHARGE_BATCH ||
1806 !local_trylock(&memcg_stock.lock))
1807 return ret;
1808
1809 stock = this_cpu_ptr(&memcg_stock);
1810
1811 for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1812 if (memcg != READ_ONCE(stock->cached[i]))
1813 continue;
1814
1815 stock_pages = READ_ONCE(stock->nr_pages[i]);
1816 if (stock_pages >= nr_pages) {
1817 WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages);
1818 ret = true;
1819 }
1820 break;
1821 }
1822
1823 local_unlock(&memcg_stock.lock);
1824
1825 return ret;
1826 }
1827
memcg_uncharge(struct mem_cgroup * memcg,unsigned int nr_pages)1828 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
1829 {
1830 page_counter_uncharge(&memcg->memory, nr_pages);
1831 if (do_memsw_account())
1832 page_counter_uncharge(&memcg->memsw, nr_pages);
1833 }
1834
1835 /*
1836 * Returns stocks cached in percpu and reset cached information.
1837 */
drain_stock(struct memcg_stock_pcp * stock,int i)1838 static void drain_stock(struct memcg_stock_pcp *stock, int i)
1839 {
1840 struct mem_cgroup *old = READ_ONCE(stock->cached[i]);
1841 uint8_t stock_pages;
1842
1843 if (!old)
1844 return;
1845
1846 stock_pages = READ_ONCE(stock->nr_pages[i]);
1847 if (stock_pages) {
1848 memcg_uncharge(old, stock_pages);
1849 WRITE_ONCE(stock->nr_pages[i], 0);
1850 }
1851
1852 css_put(&old->css);
1853 WRITE_ONCE(stock->cached[i], NULL);
1854 }
1855
drain_stock_fully(struct memcg_stock_pcp * stock)1856 static void drain_stock_fully(struct memcg_stock_pcp *stock)
1857 {
1858 int i;
1859
1860 for (i = 0; i < NR_MEMCG_STOCK; ++i)
1861 drain_stock(stock, i);
1862 }
1863
drain_local_memcg_stock(struct work_struct * dummy)1864 static void drain_local_memcg_stock(struct work_struct *dummy)
1865 {
1866 struct memcg_stock_pcp *stock;
1867
1868 if (WARN_ONCE(!in_task(), "drain in non-task context"))
1869 return;
1870
1871 local_lock(&memcg_stock.lock);
1872
1873 stock = this_cpu_ptr(&memcg_stock);
1874 drain_stock_fully(stock);
1875 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1876
1877 local_unlock(&memcg_stock.lock);
1878 }
1879
drain_local_obj_stock(struct work_struct * dummy)1880 static void drain_local_obj_stock(struct work_struct *dummy)
1881 {
1882 struct obj_stock_pcp *stock;
1883
1884 if (WARN_ONCE(!in_task(), "drain in non-task context"))
1885 return;
1886
1887 local_lock(&obj_stock.lock);
1888
1889 stock = this_cpu_ptr(&obj_stock);
1890 drain_obj_stock(stock);
1891 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1892
1893 local_unlock(&obj_stock.lock);
1894 }
1895
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1896 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1897 {
1898 struct memcg_stock_pcp *stock;
1899 struct mem_cgroup *cached;
1900 uint8_t stock_pages;
1901 bool success = false;
1902 int empty_slot = -1;
1903 int i;
1904
1905 /*
1906 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we
1907 * decide to increase it more than 127 then we will need more careful
1908 * handling of nr_pages[] in struct memcg_stock_pcp.
1909 */
1910 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX);
1911
1912 VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg));
1913
1914 if (nr_pages > MEMCG_CHARGE_BATCH ||
1915 !local_trylock(&memcg_stock.lock)) {
1916 /*
1917 * In case of larger than batch refill or unlikely failure to
1918 * lock the percpu memcg_stock.lock, uncharge memcg directly.
1919 */
1920 memcg_uncharge(memcg, nr_pages);
1921 return;
1922 }
1923
1924 stock = this_cpu_ptr(&memcg_stock);
1925 for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1926 cached = READ_ONCE(stock->cached[i]);
1927 if (!cached && empty_slot == -1)
1928 empty_slot = i;
1929 if (memcg == READ_ONCE(stock->cached[i])) {
1930 stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages;
1931 WRITE_ONCE(stock->nr_pages[i], stock_pages);
1932 if (stock_pages > MEMCG_CHARGE_BATCH)
1933 drain_stock(stock, i);
1934 success = true;
1935 break;
1936 }
1937 }
1938
1939 if (!success) {
1940 i = empty_slot;
1941 if (i == -1) {
1942 i = get_random_u32_below(NR_MEMCG_STOCK);
1943 drain_stock(stock, i);
1944 }
1945 css_get(&memcg->css);
1946 WRITE_ONCE(stock->cached[i], memcg);
1947 WRITE_ONCE(stock->nr_pages[i], nr_pages);
1948 }
1949
1950 local_unlock(&memcg_stock.lock);
1951 }
1952
is_memcg_drain_needed(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)1953 static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock,
1954 struct mem_cgroup *root_memcg)
1955 {
1956 struct mem_cgroup *memcg;
1957 bool flush = false;
1958 int i;
1959
1960 rcu_read_lock();
1961 for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1962 memcg = READ_ONCE(stock->cached[i]);
1963 if (!memcg)
1964 continue;
1965
1966 if (READ_ONCE(stock->nr_pages[i]) &&
1967 mem_cgroup_is_descendant(memcg, root_memcg)) {
1968 flush = true;
1969 break;
1970 }
1971 }
1972 rcu_read_unlock();
1973 return flush;
1974 }
1975
1976 /*
1977 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1978 * of the hierarchy under it.
1979 */
drain_all_stock(struct mem_cgroup * root_memcg)1980 void drain_all_stock(struct mem_cgroup *root_memcg)
1981 {
1982 int cpu, curcpu;
1983
1984 /* If someone's already draining, avoid adding running more workers. */
1985 if (!mutex_trylock(&percpu_charge_mutex))
1986 return;
1987 /*
1988 * Notify other cpus that system-wide "drain" is running
1989 * We do not care about races with the cpu hotplug because cpu down
1990 * as well as workers from this path always operate on the local
1991 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1992 */
1993 migrate_disable();
1994 curcpu = smp_processor_id();
1995 for_each_online_cpu(cpu) {
1996 struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu);
1997 struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu);
1998
1999 if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) &&
2000 is_memcg_drain_needed(memcg_st, root_memcg) &&
2001 !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2002 &memcg_st->flags)) {
2003 if (cpu == curcpu)
2004 drain_local_memcg_stock(&memcg_st->work);
2005 else if (!cpu_is_isolated(cpu))
2006 schedule_work_on(cpu, &memcg_st->work);
2007 }
2008
2009 if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) &&
2010 obj_stock_flush_required(obj_st, root_memcg) &&
2011 !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2012 &obj_st->flags)) {
2013 if (cpu == curcpu)
2014 drain_local_obj_stock(&obj_st->work);
2015 else if (!cpu_is_isolated(cpu))
2016 schedule_work_on(cpu, &obj_st->work);
2017 }
2018 }
2019 migrate_enable();
2020 mutex_unlock(&percpu_charge_mutex);
2021 }
2022
memcg_hotplug_cpu_dead(unsigned int cpu)2023 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2024 {
2025 /* no need for the local lock */
2026 drain_obj_stock(&per_cpu(obj_stock, cpu));
2027 drain_stock_fully(&per_cpu(memcg_stock, cpu));
2028
2029 return 0;
2030 }
2031
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2032 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2033 unsigned int nr_pages,
2034 gfp_t gfp_mask)
2035 {
2036 unsigned long nr_reclaimed = 0;
2037
2038 do {
2039 unsigned long pflags;
2040
2041 if (page_counter_read(&memcg->memory) <=
2042 READ_ONCE(memcg->memory.high))
2043 continue;
2044
2045 memcg_memory_event(memcg, MEMCG_HIGH);
2046
2047 psi_memstall_enter(&pflags);
2048 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2049 gfp_mask,
2050 MEMCG_RECLAIM_MAY_SWAP,
2051 NULL);
2052 psi_memstall_leave(&pflags);
2053 } while ((memcg = parent_mem_cgroup(memcg)) &&
2054 !mem_cgroup_is_root(memcg));
2055
2056 return nr_reclaimed;
2057 }
2058
high_work_func(struct work_struct * work)2059 static void high_work_func(struct work_struct *work)
2060 {
2061 struct mem_cgroup *memcg;
2062
2063 memcg = container_of(work, struct mem_cgroup, high_work);
2064 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2065 }
2066
2067 /*
2068 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2069 * enough to still cause a significant slowdown in most cases, while still
2070 * allowing diagnostics and tracing to proceed without becoming stuck.
2071 */
2072 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2073
2074 /*
2075 * When calculating the delay, we use these either side of the exponentiation to
2076 * maintain precision and scale to a reasonable number of jiffies (see the table
2077 * below.
2078 *
2079 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2080 * overage ratio to a delay.
2081 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2082 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2083 * to produce a reasonable delay curve.
2084 *
2085 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2086 * reasonable delay curve compared to precision-adjusted overage, not
2087 * penalising heavily at first, but still making sure that growth beyond the
2088 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2089 * example, with a high of 100 megabytes:
2090 *
2091 * +-------+------------------------+
2092 * | usage | time to allocate in ms |
2093 * +-------+------------------------+
2094 * | 100M | 0 |
2095 * | 101M | 6 |
2096 * | 102M | 25 |
2097 * | 103M | 57 |
2098 * | 104M | 102 |
2099 * | 105M | 159 |
2100 * | 106M | 230 |
2101 * | 107M | 313 |
2102 * | 108M | 409 |
2103 * | 109M | 518 |
2104 * | 110M | 639 |
2105 * | 111M | 774 |
2106 * | 112M | 921 |
2107 * | 113M | 1081 |
2108 * | 114M | 1254 |
2109 * | 115M | 1439 |
2110 * | 116M | 1638 |
2111 * | 117M | 1849 |
2112 * | 118M | 2000 |
2113 * | 119M | 2000 |
2114 * | 120M | 2000 |
2115 * +-------+------------------------+
2116 */
2117 #define MEMCG_DELAY_PRECISION_SHIFT 20
2118 #define MEMCG_DELAY_SCALING_SHIFT 14
2119
calculate_overage(unsigned long usage,unsigned long high)2120 static u64 calculate_overage(unsigned long usage, unsigned long high)
2121 {
2122 u64 overage;
2123
2124 if (usage <= high)
2125 return 0;
2126
2127 /*
2128 * Prevent division by 0 in overage calculation by acting as if
2129 * it was a threshold of 1 page
2130 */
2131 high = max(high, 1UL);
2132
2133 overage = usage - high;
2134 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2135 return div64_u64(overage, high);
2136 }
2137
mem_find_max_overage(struct mem_cgroup * memcg)2138 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2139 {
2140 u64 overage, max_overage = 0;
2141
2142 do {
2143 overage = calculate_overage(page_counter_read(&memcg->memory),
2144 READ_ONCE(memcg->memory.high));
2145 max_overage = max(overage, max_overage);
2146 } while ((memcg = parent_mem_cgroup(memcg)) &&
2147 !mem_cgroup_is_root(memcg));
2148
2149 return max_overage;
2150 }
2151
swap_find_max_overage(struct mem_cgroup * memcg)2152 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2153 {
2154 u64 overage, max_overage = 0;
2155
2156 do {
2157 overage = calculate_overage(page_counter_read(&memcg->swap),
2158 READ_ONCE(memcg->swap.high));
2159 if (overage)
2160 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2161 max_overage = max(overage, max_overage);
2162 } while ((memcg = parent_mem_cgroup(memcg)) &&
2163 !mem_cgroup_is_root(memcg));
2164
2165 return max_overage;
2166 }
2167
2168 /*
2169 * Get the number of jiffies that we should penalise a mischievous cgroup which
2170 * is exceeding its memory.high by checking both it and its ancestors.
2171 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2172 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2173 unsigned int nr_pages,
2174 u64 max_overage)
2175 {
2176 unsigned long penalty_jiffies;
2177
2178 if (!max_overage)
2179 return 0;
2180
2181 /*
2182 * We use overage compared to memory.high to calculate the number of
2183 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2184 * fairly lenient on small overages, and increasingly harsh when the
2185 * memcg in question makes it clear that it has no intention of stopping
2186 * its crazy behaviour, so we exponentially increase the delay based on
2187 * overage amount.
2188 */
2189 penalty_jiffies = max_overage * max_overage * HZ;
2190 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2191 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2192
2193 /*
2194 * Factor in the task's own contribution to the overage, such that four
2195 * N-sized allocations are throttled approximately the same as one
2196 * 4N-sized allocation.
2197 *
2198 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2199 * larger the current charge patch is than that.
2200 */
2201 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2202 }
2203
2204 /*
2205 * Reclaims memory over the high limit. Called directly from
2206 * try_charge() (context permitting), as well as from the userland
2207 * return path where reclaim is always able to block.
2208 */
mem_cgroup_handle_over_high(gfp_t gfp_mask)2209 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2210 {
2211 unsigned long penalty_jiffies;
2212 unsigned long pflags;
2213 unsigned long nr_reclaimed;
2214 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2215 int nr_retries = MAX_RECLAIM_RETRIES;
2216 struct mem_cgroup *memcg;
2217 bool in_retry = false;
2218
2219 if (likely(!nr_pages))
2220 return;
2221
2222 memcg = get_mem_cgroup_from_mm(current->mm);
2223 current->memcg_nr_pages_over_high = 0;
2224
2225 retry_reclaim:
2226 /*
2227 * Bail if the task is already exiting. Unlike memory.max,
2228 * memory.high enforcement isn't as strict, and there is no
2229 * OOM killer involved, which means the excess could already
2230 * be much bigger (and still growing) than it could for
2231 * memory.max; the dying task could get stuck in fruitless
2232 * reclaim for a long time, which isn't desirable.
2233 */
2234 if (task_is_dying())
2235 goto out;
2236
2237 /*
2238 * The allocating task should reclaim at least the batch size, but for
2239 * subsequent retries we only want to do what's necessary to prevent oom
2240 * or breaching resource isolation.
2241 *
2242 * This is distinct from memory.max or page allocator behaviour because
2243 * memory.high is currently batched, whereas memory.max and the page
2244 * allocator run every time an allocation is made.
2245 */
2246 nr_reclaimed = reclaim_high(memcg,
2247 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2248 gfp_mask);
2249
2250 /*
2251 * memory.high is breached and reclaim is unable to keep up. Throttle
2252 * allocators proactively to slow down excessive growth.
2253 */
2254 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2255 mem_find_max_overage(memcg));
2256
2257 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2258 swap_find_max_overage(memcg));
2259
2260 /*
2261 * Clamp the max delay per usermode return so as to still keep the
2262 * application moving forwards and also permit diagnostics, albeit
2263 * extremely slowly.
2264 */
2265 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2266
2267 /*
2268 * Don't sleep if the amount of jiffies this memcg owes us is so low
2269 * that it's not even worth doing, in an attempt to be nice to those who
2270 * go only a small amount over their memory.high value and maybe haven't
2271 * been aggressively reclaimed enough yet.
2272 */
2273 if (penalty_jiffies <= HZ / 100)
2274 goto out;
2275
2276 /*
2277 * If reclaim is making forward progress but we're still over
2278 * memory.high, we want to encourage that rather than doing allocator
2279 * throttling.
2280 */
2281 if (nr_reclaimed || nr_retries--) {
2282 in_retry = true;
2283 goto retry_reclaim;
2284 }
2285
2286 /*
2287 * Reclaim didn't manage to push usage below the limit, slow
2288 * this allocating task down.
2289 *
2290 * If we exit early, we're guaranteed to die (since
2291 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2292 * need to account for any ill-begotten jiffies to pay them off later.
2293 */
2294 psi_memstall_enter(&pflags);
2295 schedule_timeout_killable(penalty_jiffies);
2296 psi_memstall_leave(&pflags);
2297
2298 out:
2299 css_put(&memcg->css);
2300 }
2301
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2302 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2303 unsigned int nr_pages)
2304 {
2305 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2306 int nr_retries = MAX_RECLAIM_RETRIES;
2307 struct mem_cgroup *mem_over_limit;
2308 struct page_counter *counter;
2309 unsigned long nr_reclaimed;
2310 bool passed_oom = false;
2311 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2312 bool drained = false;
2313 bool raised_max_event = false;
2314 unsigned long pflags;
2315
2316 retry:
2317 if (consume_stock(memcg, nr_pages))
2318 return 0;
2319
2320 if (!gfpflags_allow_spinning(gfp_mask))
2321 /* Avoid the refill and flush of the older stock */
2322 batch = nr_pages;
2323
2324 if (!do_memsw_account() ||
2325 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2326 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2327 goto done_restock;
2328 if (do_memsw_account())
2329 page_counter_uncharge(&memcg->memsw, batch);
2330 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2331 } else {
2332 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2333 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2334 }
2335
2336 if (batch > nr_pages) {
2337 batch = nr_pages;
2338 goto retry;
2339 }
2340
2341 /*
2342 * Prevent unbounded recursion when reclaim operations need to
2343 * allocate memory. This might exceed the limits temporarily,
2344 * but we prefer facilitating memory reclaim and getting back
2345 * under the limit over triggering OOM kills in these cases.
2346 */
2347 if (unlikely(current->flags & PF_MEMALLOC))
2348 goto force;
2349
2350 if (unlikely(task_in_memcg_oom(current)))
2351 goto nomem;
2352
2353 if (!gfpflags_allow_blocking(gfp_mask))
2354 goto nomem;
2355
2356 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2357 raised_max_event = true;
2358
2359 psi_memstall_enter(&pflags);
2360 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2361 gfp_mask, reclaim_options, NULL);
2362 psi_memstall_leave(&pflags);
2363
2364 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2365 goto retry;
2366
2367 if (!drained) {
2368 drain_all_stock(mem_over_limit);
2369 drained = true;
2370 goto retry;
2371 }
2372
2373 if (gfp_mask & __GFP_NORETRY)
2374 goto nomem;
2375 /*
2376 * Even though the limit is exceeded at this point, reclaim
2377 * may have been able to free some pages. Retry the charge
2378 * before killing the task.
2379 *
2380 * Only for regular pages, though: huge pages are rather
2381 * unlikely to succeed so close to the limit, and we fall back
2382 * to regular pages anyway in case of failure.
2383 */
2384 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2385 goto retry;
2386
2387 if (nr_retries--)
2388 goto retry;
2389
2390 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2391 goto nomem;
2392
2393 /* Avoid endless loop for tasks bypassed by the oom killer */
2394 if (passed_oom && task_is_dying())
2395 goto nomem;
2396
2397 /*
2398 * keep retrying as long as the memcg oom killer is able to make
2399 * a forward progress or bypass the charge if the oom killer
2400 * couldn't make any progress.
2401 */
2402 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2403 get_order(nr_pages * PAGE_SIZE))) {
2404 passed_oom = true;
2405 nr_retries = MAX_RECLAIM_RETRIES;
2406 goto retry;
2407 }
2408 nomem:
2409 /*
2410 * Memcg doesn't have a dedicated reserve for atomic
2411 * allocations. But like the global atomic pool, we need to
2412 * put the burden of reclaim on regular allocation requests
2413 * and let these go through as privileged allocations.
2414 */
2415 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2416 return -ENOMEM;
2417 force:
2418 /*
2419 * If the allocation has to be enforced, don't forget to raise
2420 * a MEMCG_MAX event.
2421 */
2422 if (!raised_max_event)
2423 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2424
2425 /*
2426 * The allocation either can't fail or will lead to more memory
2427 * being freed very soon. Allow memory usage go over the limit
2428 * temporarily by force charging it.
2429 */
2430 page_counter_charge(&memcg->memory, nr_pages);
2431 if (do_memsw_account())
2432 page_counter_charge(&memcg->memsw, nr_pages);
2433
2434 return 0;
2435
2436 done_restock:
2437 if (batch > nr_pages)
2438 refill_stock(memcg, batch - nr_pages);
2439
2440 /*
2441 * If the hierarchy is above the normal consumption range, schedule
2442 * reclaim on returning to userland. We can perform reclaim here
2443 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2444 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2445 * not recorded as it most likely matches current's and won't
2446 * change in the meantime. As high limit is checked again before
2447 * reclaim, the cost of mismatch is negligible.
2448 */
2449 do {
2450 bool mem_high, swap_high;
2451
2452 mem_high = page_counter_read(&memcg->memory) >
2453 READ_ONCE(memcg->memory.high);
2454 swap_high = page_counter_read(&memcg->swap) >
2455 READ_ONCE(memcg->swap.high);
2456
2457 /* Don't bother a random interrupted task */
2458 if (!in_task()) {
2459 if (mem_high) {
2460 schedule_work(&memcg->high_work);
2461 break;
2462 }
2463 continue;
2464 }
2465
2466 if (mem_high || swap_high) {
2467 /*
2468 * The allocating tasks in this cgroup will need to do
2469 * reclaim or be throttled to prevent further growth
2470 * of the memory or swap footprints.
2471 *
2472 * Target some best-effort fairness between the tasks,
2473 * and distribute reclaim work and delay penalties
2474 * based on how much each task is actually allocating.
2475 */
2476 current->memcg_nr_pages_over_high += batch;
2477 set_notify_resume(current);
2478 break;
2479 }
2480 } while ((memcg = parent_mem_cgroup(memcg)));
2481
2482 /*
2483 * Reclaim is set up above to be called from the userland
2484 * return path. But also attempt synchronous reclaim to avoid
2485 * excessive overrun while the task is still inside the
2486 * kernel. If this is successful, the return path will see it
2487 * when it rechecks the overage and simply bail out.
2488 */
2489 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2490 !(current->flags & PF_MEMALLOC) &&
2491 gfpflags_allow_blocking(gfp_mask))
2492 mem_cgroup_handle_over_high(gfp_mask);
2493 return 0;
2494 }
2495
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2496 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2497 unsigned int nr_pages)
2498 {
2499 if (mem_cgroup_is_root(memcg))
2500 return 0;
2501
2502 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2503 }
2504
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2505 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2506 {
2507 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2508 /*
2509 * Any of the following ensures page's memcg stability:
2510 *
2511 * - the page lock
2512 * - LRU isolation
2513 * - exclusive reference
2514 */
2515 folio->memcg_data = (unsigned long)memcg;
2516 }
2517
2518 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
account_slab_nmi_safe(struct mem_cgroup * memcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2519 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2520 struct pglist_data *pgdat,
2521 enum node_stat_item idx, int nr)
2522 {
2523 struct lruvec *lruvec;
2524
2525 if (likely(!in_nmi())) {
2526 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2527 mod_memcg_lruvec_state(lruvec, idx, nr);
2528 } else {
2529 struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id];
2530
2531 /* TODO: add to cgroup update tree once it is nmi-safe. */
2532 if (idx == NR_SLAB_RECLAIMABLE_B)
2533 atomic_add(nr, &pn->slab_reclaimable);
2534 else
2535 atomic_add(nr, &pn->slab_unreclaimable);
2536 }
2537 }
2538 #else
account_slab_nmi_safe(struct mem_cgroup * memcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2539 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2540 struct pglist_data *pgdat,
2541 enum node_stat_item idx, int nr)
2542 {
2543 struct lruvec *lruvec;
2544
2545 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2546 mod_memcg_lruvec_state(lruvec, idx, nr);
2547 }
2548 #endif
2549
mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2550 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2551 struct pglist_data *pgdat,
2552 enum node_stat_item idx, int nr)
2553 {
2554 struct mem_cgroup *memcg;
2555
2556 rcu_read_lock();
2557 memcg = obj_cgroup_memcg(objcg);
2558 account_slab_nmi_safe(memcg, pgdat, idx, nr);
2559 rcu_read_unlock();
2560 }
2561
2562 static __always_inline
mem_cgroup_from_obj_folio(struct folio * folio,void * p)2563 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2564 {
2565 /*
2566 * Slab objects are accounted individually, not per-page.
2567 * Memcg membership data for each individual object is saved in
2568 * slab->obj_exts.
2569 */
2570 if (folio_test_slab(folio)) {
2571 struct slabobj_ext *obj_exts;
2572 struct slab *slab;
2573 unsigned int off;
2574
2575 slab = folio_slab(folio);
2576 obj_exts = slab_obj_exts(slab);
2577 if (!obj_exts)
2578 return NULL;
2579
2580 off = obj_to_index(slab->slab_cache, slab, p);
2581 if (obj_exts[off].objcg)
2582 return obj_cgroup_memcg(obj_exts[off].objcg);
2583
2584 return NULL;
2585 }
2586
2587 /*
2588 * folio_memcg_check() is used here, because in theory we can encounter
2589 * a folio where the slab flag has been cleared already, but
2590 * slab->obj_exts has not been freed yet
2591 * folio_memcg_check() will guarantee that a proper memory
2592 * cgroup pointer or NULL will be returned.
2593 */
2594 return folio_memcg_check(folio);
2595 }
2596
2597 /*
2598 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2599 * It is not suitable for objects allocated using vmalloc().
2600 *
2601 * A passed kernel object must be a slab object or a generic kernel page.
2602 *
2603 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2604 * cgroup_mutex, etc.
2605 */
mem_cgroup_from_slab_obj(void * p)2606 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2607 {
2608 if (mem_cgroup_disabled())
2609 return NULL;
2610
2611 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2612 }
2613
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)2614 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2615 {
2616 struct obj_cgroup *objcg = NULL;
2617
2618 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2619 objcg = rcu_dereference(memcg->objcg);
2620 if (likely(objcg && obj_cgroup_tryget(objcg)))
2621 break;
2622 objcg = NULL;
2623 }
2624 return objcg;
2625 }
2626
current_objcg_update(void)2627 static struct obj_cgroup *current_objcg_update(void)
2628 {
2629 struct mem_cgroup *memcg;
2630 struct obj_cgroup *old, *objcg = NULL;
2631
2632 do {
2633 /* Atomically drop the update bit. */
2634 old = xchg(¤t->objcg, NULL);
2635 if (old) {
2636 old = (struct obj_cgroup *)
2637 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2638 obj_cgroup_put(old);
2639
2640 old = NULL;
2641 }
2642
2643 /* If new objcg is NULL, no reason for the second atomic update. */
2644 if (!current->mm || (current->flags & PF_KTHREAD))
2645 return NULL;
2646
2647 /*
2648 * Release the objcg pointer from the previous iteration,
2649 * if try_cmpxcg() below fails.
2650 */
2651 if (unlikely(objcg)) {
2652 obj_cgroup_put(objcg);
2653 objcg = NULL;
2654 }
2655
2656 /*
2657 * Obtain the new objcg pointer. The current task can be
2658 * asynchronously moved to another memcg and the previous
2659 * memcg can be offlined. So let's get the memcg pointer
2660 * and try get a reference to objcg under a rcu read lock.
2661 */
2662
2663 rcu_read_lock();
2664 memcg = mem_cgroup_from_task(current);
2665 objcg = __get_obj_cgroup_from_memcg(memcg);
2666 rcu_read_unlock();
2667
2668 /*
2669 * Try set up a new objcg pointer atomically. If it
2670 * fails, it means the update flag was set concurrently, so
2671 * the whole procedure should be repeated.
2672 */
2673 } while (!try_cmpxchg(¤t->objcg, &old, objcg));
2674
2675 return objcg;
2676 }
2677
current_obj_cgroup(void)2678 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2679 {
2680 struct mem_cgroup *memcg;
2681 struct obj_cgroup *objcg;
2682
2683 if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi())
2684 return NULL;
2685
2686 if (in_task()) {
2687 memcg = current->active_memcg;
2688 if (unlikely(memcg))
2689 goto from_memcg;
2690
2691 objcg = READ_ONCE(current->objcg);
2692 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2693 objcg = current_objcg_update();
2694 /*
2695 * Objcg reference is kept by the task, so it's safe
2696 * to use the objcg by the current task.
2697 */
2698 return objcg;
2699 }
2700
2701 memcg = this_cpu_read(int_active_memcg);
2702 if (unlikely(memcg))
2703 goto from_memcg;
2704
2705 return NULL;
2706
2707 from_memcg:
2708 objcg = NULL;
2709 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2710 /*
2711 * Memcg pointer is protected by scope (see set_active_memcg())
2712 * and is pinning the corresponding objcg, so objcg can't go
2713 * away and can be used within the scope without any additional
2714 * protection.
2715 */
2716 objcg = rcu_dereference_check(memcg->objcg, 1);
2717 if (likely(objcg))
2718 break;
2719 }
2720
2721 return objcg;
2722 }
2723
get_obj_cgroup_from_folio(struct folio * folio)2724 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2725 {
2726 struct obj_cgroup *objcg;
2727
2728 if (!memcg_kmem_online())
2729 return NULL;
2730
2731 if (folio_memcg_kmem(folio)) {
2732 objcg = __folio_objcg(folio);
2733 obj_cgroup_get(objcg);
2734 } else {
2735 struct mem_cgroup *memcg;
2736
2737 rcu_read_lock();
2738 memcg = __folio_memcg(folio);
2739 if (memcg)
2740 objcg = __get_obj_cgroup_from_memcg(memcg);
2741 else
2742 objcg = NULL;
2743 rcu_read_unlock();
2744 }
2745 return objcg;
2746 }
2747
2748 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
account_kmem_nmi_safe(struct mem_cgroup * memcg,int val)2749 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2750 {
2751 if (likely(!in_nmi())) {
2752 mod_memcg_state(memcg, MEMCG_KMEM, val);
2753 } else {
2754 /* TODO: add to cgroup update tree once it is nmi-safe. */
2755 atomic_add(val, &memcg->kmem_stat);
2756 }
2757 }
2758 #else
account_kmem_nmi_safe(struct mem_cgroup * memcg,int val)2759 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2760 {
2761 mod_memcg_state(memcg, MEMCG_KMEM, val);
2762 }
2763 #endif
2764
2765 /*
2766 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2767 * @objcg: object cgroup to uncharge
2768 * @nr_pages: number of pages to uncharge
2769 */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)2770 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2771 unsigned int nr_pages)
2772 {
2773 struct mem_cgroup *memcg;
2774
2775 memcg = get_mem_cgroup_from_objcg(objcg);
2776
2777 account_kmem_nmi_safe(memcg, -nr_pages);
2778 memcg1_account_kmem(memcg, -nr_pages);
2779 if (!mem_cgroup_is_root(memcg))
2780 refill_stock(memcg, nr_pages);
2781
2782 css_put(&memcg->css);
2783 }
2784
2785 /*
2786 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2787 * @objcg: object cgroup to charge
2788 * @gfp: reclaim mode
2789 * @nr_pages: number of pages to charge
2790 *
2791 * Returns 0 on success, an error code on failure.
2792 */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)2793 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2794 unsigned int nr_pages)
2795 {
2796 struct mem_cgroup *memcg;
2797 int ret;
2798
2799 memcg = get_mem_cgroup_from_objcg(objcg);
2800
2801 ret = try_charge_memcg(memcg, gfp, nr_pages);
2802 if (ret)
2803 goto out;
2804
2805 account_kmem_nmi_safe(memcg, nr_pages);
2806 memcg1_account_kmem(memcg, nr_pages);
2807 out:
2808 css_put(&memcg->css);
2809
2810 return ret;
2811 }
2812
page_objcg(const struct page * page)2813 static struct obj_cgroup *page_objcg(const struct page *page)
2814 {
2815 unsigned long memcg_data = page->memcg_data;
2816
2817 if (mem_cgroup_disabled() || !memcg_data)
2818 return NULL;
2819
2820 VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM,
2821 page);
2822 return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM);
2823 }
2824
page_set_objcg(struct page * page,const struct obj_cgroup * objcg)2825 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg)
2826 {
2827 page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM;
2828 }
2829
2830 /**
2831 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2832 * @page: page to charge
2833 * @gfp: reclaim mode
2834 * @order: allocation order
2835 *
2836 * Returns 0 on success, an error code on failure.
2837 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)2838 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2839 {
2840 struct obj_cgroup *objcg;
2841 int ret = 0;
2842
2843 objcg = current_obj_cgroup();
2844 if (objcg) {
2845 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2846 if (!ret) {
2847 obj_cgroup_get(objcg);
2848 page_set_objcg(page, objcg);
2849 return 0;
2850 }
2851 }
2852 return ret;
2853 }
2854
2855 /**
2856 * __memcg_kmem_uncharge_page: uncharge a kmem page
2857 * @page: page to uncharge
2858 * @order: allocation order
2859 */
__memcg_kmem_uncharge_page(struct page * page,int order)2860 void __memcg_kmem_uncharge_page(struct page *page, int order)
2861 {
2862 struct obj_cgroup *objcg = page_objcg(page);
2863 unsigned int nr_pages = 1 << order;
2864
2865 if (!objcg)
2866 return;
2867
2868 obj_cgroup_uncharge_pages(objcg, nr_pages);
2869 page->memcg_data = 0;
2870 obj_cgroup_put(objcg);
2871 }
2872
__account_obj_stock(struct obj_cgroup * objcg,struct obj_stock_pcp * stock,int nr,struct pglist_data * pgdat,enum node_stat_item idx)2873 static void __account_obj_stock(struct obj_cgroup *objcg,
2874 struct obj_stock_pcp *stock, int nr,
2875 struct pglist_data *pgdat, enum node_stat_item idx)
2876 {
2877 int *bytes;
2878
2879 /*
2880 * Save vmstat data in stock and skip vmstat array update unless
2881 * accumulating over a page of vmstat data or when pgdat changes.
2882 */
2883 if (stock->cached_pgdat != pgdat) {
2884 /* Flush the existing cached vmstat data */
2885 struct pglist_data *oldpg = stock->cached_pgdat;
2886
2887 if (stock->nr_slab_reclaimable_b) {
2888 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2889 stock->nr_slab_reclaimable_b);
2890 stock->nr_slab_reclaimable_b = 0;
2891 }
2892 if (stock->nr_slab_unreclaimable_b) {
2893 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2894 stock->nr_slab_unreclaimable_b);
2895 stock->nr_slab_unreclaimable_b = 0;
2896 }
2897 stock->cached_pgdat = pgdat;
2898 }
2899
2900 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2901 : &stock->nr_slab_unreclaimable_b;
2902 /*
2903 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2904 * cached locally at least once before pushing it out.
2905 */
2906 if (!*bytes) {
2907 *bytes = nr;
2908 nr = 0;
2909 } else {
2910 *bytes += nr;
2911 if (abs(*bytes) > PAGE_SIZE) {
2912 nr = *bytes;
2913 *bytes = 0;
2914 } else {
2915 nr = 0;
2916 }
2917 }
2918 if (nr)
2919 mod_objcg_mlstate(objcg, pgdat, idx, nr);
2920 }
2921
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,struct pglist_data * pgdat,enum node_stat_item idx)2922 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2923 struct pglist_data *pgdat, enum node_stat_item idx)
2924 {
2925 struct obj_stock_pcp *stock;
2926 bool ret = false;
2927
2928 if (!local_trylock(&obj_stock.lock))
2929 return ret;
2930
2931 stock = this_cpu_ptr(&obj_stock);
2932 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2933 stock->nr_bytes -= nr_bytes;
2934 ret = true;
2935
2936 if (pgdat)
2937 __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx);
2938 }
2939
2940 local_unlock(&obj_stock.lock);
2941
2942 return ret;
2943 }
2944
drain_obj_stock(struct obj_stock_pcp * stock)2945 static void drain_obj_stock(struct obj_stock_pcp *stock)
2946 {
2947 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2948
2949 if (!old)
2950 return;
2951
2952 if (stock->nr_bytes) {
2953 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2954 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2955
2956 if (nr_pages) {
2957 struct mem_cgroup *memcg;
2958
2959 memcg = get_mem_cgroup_from_objcg(old);
2960
2961 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2962 memcg1_account_kmem(memcg, -nr_pages);
2963 if (!mem_cgroup_is_root(memcg))
2964 memcg_uncharge(memcg, nr_pages);
2965
2966 css_put(&memcg->css);
2967 }
2968
2969 /*
2970 * The leftover is flushed to the centralized per-memcg value.
2971 * On the next attempt to refill obj stock it will be moved
2972 * to a per-cpu stock (probably, on an other CPU), see
2973 * refill_obj_stock().
2974 *
2975 * How often it's flushed is a trade-off between the memory
2976 * limit enforcement accuracy and potential CPU contention,
2977 * so it might be changed in the future.
2978 */
2979 atomic_add(nr_bytes, &old->nr_charged_bytes);
2980 stock->nr_bytes = 0;
2981 }
2982
2983 /*
2984 * Flush the vmstat data in current stock
2985 */
2986 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2987 if (stock->nr_slab_reclaimable_b) {
2988 mod_objcg_mlstate(old, stock->cached_pgdat,
2989 NR_SLAB_RECLAIMABLE_B,
2990 stock->nr_slab_reclaimable_b);
2991 stock->nr_slab_reclaimable_b = 0;
2992 }
2993 if (stock->nr_slab_unreclaimable_b) {
2994 mod_objcg_mlstate(old, stock->cached_pgdat,
2995 NR_SLAB_UNRECLAIMABLE_B,
2996 stock->nr_slab_unreclaimable_b);
2997 stock->nr_slab_unreclaimable_b = 0;
2998 }
2999 stock->cached_pgdat = NULL;
3000 }
3001
3002 WRITE_ONCE(stock->cached_objcg, NULL);
3003 obj_cgroup_put(old);
3004 }
3005
obj_stock_flush_required(struct obj_stock_pcp * stock,struct mem_cgroup * root_memcg)3006 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
3007 struct mem_cgroup *root_memcg)
3008 {
3009 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3010 struct mem_cgroup *memcg;
3011 bool flush = false;
3012
3013 rcu_read_lock();
3014 if (objcg) {
3015 memcg = obj_cgroup_memcg(objcg);
3016 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3017 flush = true;
3018 }
3019 rcu_read_unlock();
3020
3021 return flush;
3022 }
3023
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge,int nr_acct,struct pglist_data * pgdat,enum node_stat_item idx)3024 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3025 bool allow_uncharge, int nr_acct, struct pglist_data *pgdat,
3026 enum node_stat_item idx)
3027 {
3028 struct obj_stock_pcp *stock;
3029 unsigned int nr_pages = 0;
3030
3031 if (!local_trylock(&obj_stock.lock)) {
3032 if (pgdat)
3033 mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes);
3034 nr_pages = nr_bytes >> PAGE_SHIFT;
3035 nr_bytes = nr_bytes & (PAGE_SIZE - 1);
3036 atomic_add(nr_bytes, &objcg->nr_charged_bytes);
3037 goto out;
3038 }
3039
3040 stock = this_cpu_ptr(&obj_stock);
3041 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3042 drain_obj_stock(stock);
3043 obj_cgroup_get(objcg);
3044 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3045 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3046 WRITE_ONCE(stock->cached_objcg, objcg);
3047
3048 allow_uncharge = true; /* Allow uncharge when objcg changes */
3049 }
3050 stock->nr_bytes += nr_bytes;
3051
3052 if (pgdat)
3053 __account_obj_stock(objcg, stock, nr_acct, pgdat, idx);
3054
3055 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3056 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3057 stock->nr_bytes &= (PAGE_SIZE - 1);
3058 }
3059
3060 local_unlock(&obj_stock.lock);
3061 out:
3062 if (nr_pages)
3063 obj_cgroup_uncharge_pages(objcg, nr_pages);
3064 }
3065
obj_cgroup_charge_account(struct obj_cgroup * objcg,gfp_t gfp,size_t size,struct pglist_data * pgdat,enum node_stat_item idx)3066 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size,
3067 struct pglist_data *pgdat, enum node_stat_item idx)
3068 {
3069 unsigned int nr_pages, nr_bytes;
3070 int ret;
3071
3072 if (likely(consume_obj_stock(objcg, size, pgdat, idx)))
3073 return 0;
3074
3075 /*
3076 * In theory, objcg->nr_charged_bytes can have enough
3077 * pre-charged bytes to satisfy the allocation. However,
3078 * flushing objcg->nr_charged_bytes requires two atomic
3079 * operations, and objcg->nr_charged_bytes can't be big.
3080 * The shared objcg->nr_charged_bytes can also become a
3081 * performance bottleneck if all tasks of the same memcg are
3082 * trying to update it. So it's better to ignore it and try
3083 * grab some new pages. The stock's nr_bytes will be flushed to
3084 * objcg->nr_charged_bytes later on when objcg changes.
3085 *
3086 * The stock's nr_bytes may contain enough pre-charged bytes
3087 * to allow one less page from being charged, but we can't rely
3088 * on the pre-charged bytes not being changed outside of
3089 * consume_obj_stock() or refill_obj_stock(). So ignore those
3090 * pre-charged bytes as well when charging pages. To avoid a
3091 * page uncharge right after a page charge, we set the
3092 * allow_uncharge flag to false when calling refill_obj_stock()
3093 * to temporarily allow the pre-charged bytes to exceed the page
3094 * size limit. The maximum reachable value of the pre-charged
3095 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3096 * race.
3097 */
3098 nr_pages = size >> PAGE_SHIFT;
3099 nr_bytes = size & (PAGE_SIZE - 1);
3100
3101 if (nr_bytes)
3102 nr_pages += 1;
3103
3104 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3105 if (!ret && (nr_bytes || pgdat))
3106 refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0,
3107 false, size, pgdat, idx);
3108
3109 return ret;
3110 }
3111
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3112 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3113 {
3114 return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0);
3115 }
3116
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3117 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3118 {
3119 refill_obj_stock(objcg, size, true, 0, NULL, 0);
3120 }
3121
obj_full_size(struct kmem_cache * s)3122 static inline size_t obj_full_size(struct kmem_cache *s)
3123 {
3124 /*
3125 * For each accounted object there is an extra space which is used
3126 * to store obj_cgroup membership. Charge it too.
3127 */
3128 return s->size + sizeof(struct obj_cgroup *);
3129 }
3130
__memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)3131 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3132 gfp_t flags, size_t size, void **p)
3133 {
3134 struct obj_cgroup *objcg;
3135 struct slab *slab;
3136 unsigned long off;
3137 size_t i;
3138
3139 /*
3140 * The obtained objcg pointer is safe to use within the current scope,
3141 * defined by current task or set_active_memcg() pair.
3142 * obj_cgroup_get() is used to get a permanent reference.
3143 */
3144 objcg = current_obj_cgroup();
3145 if (!objcg)
3146 return true;
3147
3148 /*
3149 * slab_alloc_node() avoids the NULL check, so we might be called with a
3150 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
3151 * the whole requested size.
3152 * return success as there's nothing to free back
3153 */
3154 if (unlikely(*p == NULL))
3155 return true;
3156
3157 flags &= gfp_allowed_mask;
3158
3159 if (lru) {
3160 int ret;
3161 struct mem_cgroup *memcg;
3162
3163 memcg = get_mem_cgroup_from_objcg(objcg);
3164 ret = memcg_list_lru_alloc(memcg, lru, flags);
3165 css_put(&memcg->css);
3166
3167 if (ret)
3168 return false;
3169 }
3170
3171 for (i = 0; i < size; i++) {
3172 slab = virt_to_slab(p[i]);
3173
3174 if (!slab_obj_exts(slab) &&
3175 alloc_slab_obj_exts(slab, s, flags, false)) {
3176 continue;
3177 }
3178
3179 /*
3180 * if we fail and size is 1, memcg_alloc_abort_single() will
3181 * just free the object, which is ok as we have not assigned
3182 * objcg to its obj_ext yet
3183 *
3184 * for larger sizes, kmem_cache_free_bulk() will uncharge
3185 * any objects that were already charged and obj_ext assigned
3186 *
3187 * TODO: we could batch this until slab_pgdat(slab) changes
3188 * between iterations, with a more complicated undo
3189 */
3190 if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s),
3191 slab_pgdat(slab), cache_vmstat_idx(s)))
3192 return false;
3193
3194 off = obj_to_index(s, slab, p[i]);
3195 obj_cgroup_get(objcg);
3196 slab_obj_exts(slab)[off].objcg = objcg;
3197 }
3198
3199 return true;
3200 }
3201
__memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects,struct slabobj_ext * obj_exts)3202 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3203 void **p, int objects, struct slabobj_ext *obj_exts)
3204 {
3205 size_t obj_size = obj_full_size(s);
3206
3207 for (int i = 0; i < objects; i++) {
3208 struct obj_cgroup *objcg;
3209 unsigned int off;
3210
3211 off = obj_to_index(s, slab, p[i]);
3212 objcg = obj_exts[off].objcg;
3213 if (!objcg)
3214 continue;
3215
3216 obj_exts[off].objcg = NULL;
3217 refill_obj_stock(objcg, obj_size, true, -obj_size,
3218 slab_pgdat(slab), cache_vmstat_idx(s));
3219 obj_cgroup_put(objcg);
3220 }
3221 }
3222
3223 /*
3224 * The objcg is only set on the first page, so transfer it to all the
3225 * other pages.
3226 */
split_page_memcg(struct page * page,unsigned order)3227 void split_page_memcg(struct page *page, unsigned order)
3228 {
3229 struct obj_cgroup *objcg = page_objcg(page);
3230 unsigned int i, nr = 1 << order;
3231
3232 if (!objcg)
3233 return;
3234
3235 for (i = 1; i < nr; i++)
3236 page_set_objcg(&page[i], objcg);
3237
3238 obj_cgroup_get_many(objcg, nr - 1);
3239 }
3240
folio_split_memcg_refs(struct folio * folio,unsigned old_order,unsigned new_order)3241 void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
3242 unsigned new_order)
3243 {
3244 unsigned new_refs;
3245
3246 if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3247 return;
3248
3249 new_refs = (1 << (old_order - new_order)) - 1;
3250 css_get_many(&__folio_memcg(folio)->css, new_refs);
3251 }
3252
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3253 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3254 {
3255 unsigned long val;
3256
3257 if (mem_cgroup_is_root(memcg)) {
3258 /*
3259 * Approximate root's usage from global state. This isn't
3260 * perfect, but the root usage was always an approximation.
3261 */
3262 val = global_node_page_state(NR_FILE_PAGES) +
3263 global_node_page_state(NR_ANON_MAPPED);
3264 if (swap)
3265 val += total_swap_pages - get_nr_swap_pages();
3266 } else {
3267 if (!swap)
3268 val = page_counter_read(&memcg->memory);
3269 else
3270 val = page_counter_read(&memcg->memsw);
3271 }
3272 return val;
3273 }
3274
memcg_online_kmem(struct mem_cgroup * memcg)3275 static int memcg_online_kmem(struct mem_cgroup *memcg)
3276 {
3277 struct obj_cgroup *objcg;
3278
3279 if (mem_cgroup_kmem_disabled())
3280 return 0;
3281
3282 if (unlikely(mem_cgroup_is_root(memcg)))
3283 return 0;
3284
3285 objcg = obj_cgroup_alloc();
3286 if (!objcg)
3287 return -ENOMEM;
3288
3289 objcg->memcg = memcg;
3290 rcu_assign_pointer(memcg->objcg, objcg);
3291 obj_cgroup_get(objcg);
3292 memcg->orig_objcg = objcg;
3293
3294 static_branch_enable(&memcg_kmem_online_key);
3295
3296 memcg->kmemcg_id = memcg->id.id;
3297
3298 return 0;
3299 }
3300
memcg_offline_kmem(struct mem_cgroup * memcg)3301 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3302 {
3303 struct mem_cgroup *parent;
3304
3305 if (mem_cgroup_kmem_disabled())
3306 return;
3307
3308 if (unlikely(mem_cgroup_is_root(memcg)))
3309 return;
3310
3311 parent = parent_mem_cgroup(memcg);
3312 if (!parent)
3313 parent = root_mem_cgroup;
3314
3315 memcg_reparent_list_lrus(memcg, parent);
3316
3317 /*
3318 * Objcg's reparenting must be after list_lru's, make sure list_lru
3319 * helpers won't use parent's list_lru until child is drained.
3320 */
3321 memcg_reparent_objcgs(memcg, parent);
3322 }
3323
3324 #ifdef CONFIG_CGROUP_WRITEBACK
3325
3326 #include <trace/events/writeback.h>
3327
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3328 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3329 {
3330 return wb_domain_init(&memcg->cgwb_domain, gfp);
3331 }
3332
memcg_wb_domain_exit(struct mem_cgroup * memcg)3333 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3334 {
3335 wb_domain_exit(&memcg->cgwb_domain);
3336 }
3337
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3338 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3339 {
3340 wb_domain_size_changed(&memcg->cgwb_domain);
3341 }
3342
mem_cgroup_wb_domain(struct bdi_writeback * wb)3343 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3344 {
3345 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3346
3347 if (!memcg->css.parent)
3348 return NULL;
3349
3350 return &memcg->cgwb_domain;
3351 }
3352
3353 /**
3354 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3355 * @wb: bdi_writeback in question
3356 * @pfilepages: out parameter for number of file pages
3357 * @pheadroom: out parameter for number of allocatable pages according to memcg
3358 * @pdirty: out parameter for number of dirty pages
3359 * @pwriteback: out parameter for number of pages under writeback
3360 *
3361 * Determine the numbers of file, headroom, dirty, and writeback pages in
3362 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3363 * is a bit more involved.
3364 *
3365 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3366 * headroom is calculated as the lowest headroom of itself and the
3367 * ancestors. Note that this doesn't consider the actual amount of
3368 * available memory in the system. The caller should further cap
3369 * *@pheadroom accordingly.
3370 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3371 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3372 unsigned long *pheadroom, unsigned long *pdirty,
3373 unsigned long *pwriteback)
3374 {
3375 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3376 struct mem_cgroup *parent;
3377
3378 mem_cgroup_flush_stats_ratelimited(memcg);
3379
3380 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3381 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3382 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3383 memcg_page_state(memcg, NR_ACTIVE_FILE);
3384
3385 *pheadroom = PAGE_COUNTER_MAX;
3386 while ((parent = parent_mem_cgroup(memcg))) {
3387 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3388 READ_ONCE(memcg->memory.high));
3389 unsigned long used = page_counter_read(&memcg->memory);
3390
3391 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3392 memcg = parent;
3393 }
3394 }
3395
3396 /*
3397 * Foreign dirty flushing
3398 *
3399 * There's an inherent mismatch between memcg and writeback. The former
3400 * tracks ownership per-page while the latter per-inode. This was a
3401 * deliberate design decision because honoring per-page ownership in the
3402 * writeback path is complicated, may lead to higher CPU and IO overheads
3403 * and deemed unnecessary given that write-sharing an inode across
3404 * different cgroups isn't a common use-case.
3405 *
3406 * Combined with inode majority-writer ownership switching, this works well
3407 * enough in most cases but there are some pathological cases. For
3408 * example, let's say there are two cgroups A and B which keep writing to
3409 * different but confined parts of the same inode. B owns the inode and
3410 * A's memory is limited far below B's. A's dirty ratio can rise enough to
3411 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3412 * triggering background writeback. A will be slowed down without a way to
3413 * make writeback of the dirty pages happen.
3414 *
3415 * Conditions like the above can lead to a cgroup getting repeatedly and
3416 * severely throttled after making some progress after each
3417 * dirty_expire_interval while the underlying IO device is almost
3418 * completely idle.
3419 *
3420 * Solving this problem completely requires matching the ownership tracking
3421 * granularities between memcg and writeback in either direction. However,
3422 * the more egregious behaviors can be avoided by simply remembering the
3423 * most recent foreign dirtying events and initiating remote flushes on
3424 * them when local writeback isn't enough to keep the memory clean enough.
3425 *
3426 * The following two functions implement such mechanism. When a foreign
3427 * page - a page whose memcg and writeback ownerships don't match - is
3428 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3429 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
3430 * decides that the memcg needs to sleep due to high dirty ratio, it calls
3431 * mem_cgroup_flush_foreign() which queues writeback on the recorded
3432 * foreign bdi_writebacks which haven't expired. Both the numbers of
3433 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3434 * limited to MEMCG_CGWB_FRN_CNT.
3435 *
3436 * The mechanism only remembers IDs and doesn't hold any object references.
3437 * As being wrong occasionally doesn't matter, updates and accesses to the
3438 * records are lockless and racy.
3439 */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)3440 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3441 struct bdi_writeback *wb)
3442 {
3443 struct mem_cgroup *memcg = folio_memcg(folio);
3444 struct memcg_cgwb_frn *frn;
3445 u64 now = get_jiffies_64();
3446 u64 oldest_at = now;
3447 int oldest = -1;
3448 int i;
3449
3450 trace_track_foreign_dirty(folio, wb);
3451
3452 /*
3453 * Pick the slot to use. If there is already a slot for @wb, keep
3454 * using it. If not replace the oldest one which isn't being
3455 * written out.
3456 */
3457 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3458 frn = &memcg->cgwb_frn[i];
3459 if (frn->bdi_id == wb->bdi->id &&
3460 frn->memcg_id == wb->memcg_css->id)
3461 break;
3462 if (time_before64(frn->at, oldest_at) &&
3463 atomic_read(&frn->done.cnt) == 1) {
3464 oldest = i;
3465 oldest_at = frn->at;
3466 }
3467 }
3468
3469 if (i < MEMCG_CGWB_FRN_CNT) {
3470 /*
3471 * Re-using an existing one. Update timestamp lazily to
3472 * avoid making the cacheline hot. We want them to be
3473 * reasonably up-to-date and significantly shorter than
3474 * dirty_expire_interval as that's what expires the record.
3475 * Use the shorter of 1s and dirty_expire_interval / 8.
3476 */
3477 unsigned long update_intv =
3478 min_t(unsigned long, HZ,
3479 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3480
3481 if (time_before64(frn->at, now - update_intv))
3482 frn->at = now;
3483 } else if (oldest >= 0) {
3484 /* replace the oldest free one */
3485 frn = &memcg->cgwb_frn[oldest];
3486 frn->bdi_id = wb->bdi->id;
3487 frn->memcg_id = wb->memcg_css->id;
3488 frn->at = now;
3489 }
3490 }
3491
3492 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)3493 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3494 {
3495 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3496 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3497 u64 now = jiffies_64;
3498 int i;
3499
3500 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3501 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3502
3503 /*
3504 * If the record is older than dirty_expire_interval,
3505 * writeback on it has already started. No need to kick it
3506 * off again. Also, don't start a new one if there's
3507 * already one in flight.
3508 */
3509 if (time_after64(frn->at, now - intv) &&
3510 atomic_read(&frn->done.cnt) == 1) {
3511 frn->at = 0;
3512 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3513 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3514 WB_REASON_FOREIGN_FLUSH,
3515 &frn->done);
3516 }
3517 }
3518 }
3519
3520 #else /* CONFIG_CGROUP_WRITEBACK */
3521
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3522 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3523 {
3524 return 0;
3525 }
3526
memcg_wb_domain_exit(struct mem_cgroup * memcg)3527 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3528 {
3529 }
3530
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3531 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3532 {
3533 }
3534
3535 #endif /* CONFIG_CGROUP_WRITEBACK */
3536
3537 /*
3538 * Private memory cgroup IDR
3539 *
3540 * Swap-out records and page cache shadow entries need to store memcg
3541 * references in constrained space, so we maintain an ID space that is
3542 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3543 * memory-controlled cgroups to 64k.
3544 *
3545 * However, there usually are many references to the offline CSS after
3546 * the cgroup has been destroyed, such as page cache or reclaimable
3547 * slab objects, that don't need to hang on to the ID. We want to keep
3548 * those dead CSS from occupying IDs, or we might quickly exhaust the
3549 * relatively small ID space and prevent the creation of new cgroups
3550 * even when there are much fewer than 64k cgroups - possibly none.
3551 *
3552 * Maintain a private 16-bit ID space for memcg, and allow the ID to
3553 * be freed and recycled when it's no longer needed, which is usually
3554 * when the CSS is offlined.
3555 *
3556 * The only exception to that are records of swapped out tmpfs/shmem
3557 * pages that need to be attributed to live ancestors on swapin. But
3558 * those references are manageable from userspace.
3559 */
3560
3561 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3562 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3563
mem_cgroup_id_remove(struct mem_cgroup * memcg)3564 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3565 {
3566 if (memcg->id.id > 0) {
3567 xa_erase(&mem_cgroup_ids, memcg->id.id);
3568 memcg->id.id = 0;
3569 }
3570 }
3571
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)3572 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3573 unsigned int n)
3574 {
3575 refcount_add(n, &memcg->id.ref);
3576 }
3577
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)3578 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3579 {
3580 if (refcount_sub_and_test(n, &memcg->id.ref)) {
3581 mem_cgroup_id_remove(memcg);
3582
3583 /* Memcg ID pins CSS */
3584 css_put(&memcg->css);
3585 }
3586 }
3587
mem_cgroup_id_put(struct mem_cgroup * memcg)3588 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3589 {
3590 mem_cgroup_id_put_many(memcg, 1);
3591 }
3592
mem_cgroup_id_get_online(struct mem_cgroup * memcg)3593 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
3594 {
3595 while (!refcount_inc_not_zero(&memcg->id.ref)) {
3596 /*
3597 * The root cgroup cannot be destroyed, so it's refcount must
3598 * always be >= 1.
3599 */
3600 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
3601 VM_BUG_ON(1);
3602 break;
3603 }
3604 memcg = parent_mem_cgroup(memcg);
3605 if (!memcg)
3606 memcg = root_mem_cgroup;
3607 }
3608 return memcg;
3609 }
3610
3611 /**
3612 * mem_cgroup_from_id - look up a memcg from a memcg id
3613 * @id: the memcg id to look up
3614 *
3615 * Caller must hold rcu_read_lock().
3616 */
mem_cgroup_from_id(unsigned short id)3617 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3618 {
3619 WARN_ON_ONCE(!rcu_read_lock_held());
3620 return xa_load(&mem_cgroup_ids, id);
3621 }
3622
3623 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)3624 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3625 {
3626 struct cgroup *cgrp;
3627 struct cgroup_subsys_state *css;
3628 struct mem_cgroup *memcg;
3629
3630 cgrp = cgroup_get_from_id(ino);
3631 if (IS_ERR(cgrp))
3632 return ERR_CAST(cgrp);
3633
3634 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3635 if (css)
3636 memcg = container_of(css, struct mem_cgroup, css);
3637 else
3638 memcg = ERR_PTR(-ENOENT);
3639
3640 cgroup_put(cgrp);
3641
3642 return memcg;
3643 }
3644 #endif
3645
free_mem_cgroup_per_node_info(struct mem_cgroup_per_node * pn)3646 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn)
3647 {
3648 if (!pn)
3649 return;
3650
3651 free_percpu(pn->lruvec_stats_percpu);
3652 kfree(pn->lruvec_stats);
3653 kfree(pn);
3654 }
3655
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)3656 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3657 {
3658 struct mem_cgroup_per_node *pn;
3659
3660 pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO,
3661 node);
3662 if (!pn)
3663 return false;
3664
3665 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3666 GFP_KERNEL_ACCOUNT, node);
3667 if (!pn->lruvec_stats)
3668 goto fail;
3669
3670 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3671 GFP_KERNEL_ACCOUNT);
3672 if (!pn->lruvec_stats_percpu)
3673 goto fail;
3674
3675 lruvec_init(&pn->lruvec);
3676 pn->memcg = memcg;
3677
3678 memcg->nodeinfo[node] = pn;
3679 return true;
3680 fail:
3681 free_mem_cgroup_per_node_info(pn);
3682 return false;
3683 }
3684
__mem_cgroup_free(struct mem_cgroup * memcg)3685 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3686 {
3687 int node;
3688
3689 obj_cgroup_put(memcg->orig_objcg);
3690
3691 for_each_node(node)
3692 free_mem_cgroup_per_node_info(memcg->nodeinfo[node]);
3693 memcg1_free_events(memcg);
3694 kfree(memcg->vmstats);
3695 free_percpu(memcg->vmstats_percpu);
3696 kfree(memcg);
3697 }
3698
mem_cgroup_free(struct mem_cgroup * memcg)3699 static void mem_cgroup_free(struct mem_cgroup *memcg)
3700 {
3701 lru_gen_exit_memcg(memcg);
3702 memcg_wb_domain_exit(memcg);
3703 __mem_cgroup_free(memcg);
3704 }
3705
mem_cgroup_alloc(struct mem_cgroup * parent)3706 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3707 {
3708 struct memcg_vmstats_percpu *statc;
3709 struct memcg_vmstats_percpu __percpu *pstatc_pcpu;
3710 struct mem_cgroup *memcg;
3711 int node, cpu;
3712 int __maybe_unused i;
3713 long error;
3714
3715 memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL);
3716 if (!memcg)
3717 return ERR_PTR(-ENOMEM);
3718
3719 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3720 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3721 if (error)
3722 goto fail;
3723 error = -ENOMEM;
3724
3725 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3726 GFP_KERNEL_ACCOUNT);
3727 if (!memcg->vmstats)
3728 goto fail;
3729
3730 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3731 GFP_KERNEL_ACCOUNT);
3732 if (!memcg->vmstats_percpu)
3733 goto fail;
3734
3735 if (!memcg1_alloc_events(memcg))
3736 goto fail;
3737
3738 for_each_possible_cpu(cpu) {
3739 if (parent)
3740 pstatc_pcpu = parent->vmstats_percpu;
3741 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3742 statc->parent_pcpu = parent ? pstatc_pcpu : NULL;
3743 statc->vmstats = memcg->vmstats;
3744 }
3745
3746 for_each_node(node)
3747 if (!alloc_mem_cgroup_per_node_info(memcg, node))
3748 goto fail;
3749
3750 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3751 goto fail;
3752
3753 INIT_WORK(&memcg->high_work, high_work_func);
3754 vmpressure_init(&memcg->vmpressure);
3755 INIT_LIST_HEAD(&memcg->memory_peaks);
3756 INIT_LIST_HEAD(&memcg->swap_peaks);
3757 spin_lock_init(&memcg->peaks_lock);
3758 memcg->socket_pressure = jiffies;
3759 memcg1_memcg_init(memcg);
3760 memcg->kmemcg_id = -1;
3761 INIT_LIST_HEAD(&memcg->objcg_list);
3762 #ifdef CONFIG_CGROUP_WRITEBACK
3763 INIT_LIST_HEAD(&memcg->cgwb_list);
3764 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3765 memcg->cgwb_frn[i].done =
3766 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3767 #endif
3768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3769 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3770 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3771 memcg->deferred_split_queue.split_queue_len = 0;
3772 #endif
3773 lru_gen_init_memcg(memcg);
3774 return memcg;
3775 fail:
3776 mem_cgroup_id_remove(memcg);
3777 __mem_cgroup_free(memcg);
3778 return ERR_PTR(error);
3779 }
3780
3781 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)3782 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3783 {
3784 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3785 struct mem_cgroup *memcg, *old_memcg;
3786 bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys);
3787
3788 old_memcg = set_active_memcg(parent);
3789 memcg = mem_cgroup_alloc(parent);
3790 set_active_memcg(old_memcg);
3791 if (IS_ERR(memcg))
3792 return ERR_CAST(memcg);
3793
3794 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3795 memcg1_soft_limit_reset(memcg);
3796 #ifdef CONFIG_ZSWAP
3797 memcg->zswap_max = PAGE_COUNTER_MAX;
3798 WRITE_ONCE(memcg->zswap_writeback, true);
3799 #endif
3800 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3801 if (parent) {
3802 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3803
3804 page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl);
3805 page_counter_init(&memcg->swap, &parent->swap, false);
3806 #ifdef CONFIG_MEMCG_V1
3807 memcg->memory.track_failcnt = !memcg_on_dfl;
3808 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3809 page_counter_init(&memcg->kmem, &parent->kmem, false);
3810 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3811 #endif
3812 } else {
3813 init_memcg_stats();
3814 init_memcg_events();
3815 page_counter_init(&memcg->memory, NULL, true);
3816 page_counter_init(&memcg->swap, NULL, false);
3817 #ifdef CONFIG_MEMCG_V1
3818 page_counter_init(&memcg->kmem, NULL, false);
3819 page_counter_init(&memcg->tcpmem, NULL, false);
3820 #endif
3821 root_mem_cgroup = memcg;
3822 return &memcg->css;
3823 }
3824
3825 if (memcg_on_dfl && !cgroup_memory_nosocket)
3826 static_branch_inc(&memcg_sockets_enabled_key);
3827
3828 if (!cgroup_memory_nobpf)
3829 static_branch_inc(&memcg_bpf_enabled_key);
3830
3831 return &memcg->css;
3832 }
3833
mem_cgroup_css_online(struct cgroup_subsys_state * css)3834 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3835 {
3836 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3837
3838 if (memcg_online_kmem(memcg))
3839 goto remove_id;
3840
3841 /*
3842 * A memcg must be visible for expand_shrinker_info()
3843 * by the time the maps are allocated. So, we allocate maps
3844 * here, when for_each_mem_cgroup() can't skip it.
3845 */
3846 if (alloc_shrinker_info(memcg))
3847 goto offline_kmem;
3848
3849 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3850 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3851 FLUSH_TIME);
3852 lru_gen_online_memcg(memcg);
3853
3854 /* Online state pins memcg ID, memcg ID pins CSS */
3855 refcount_set(&memcg->id.ref, 1);
3856 css_get(css);
3857
3858 /*
3859 * Ensure mem_cgroup_from_id() works once we're fully online.
3860 *
3861 * We could do this earlier and require callers to filter with
3862 * css_tryget_online(). But right now there are no users that
3863 * need earlier access, and the workingset code relies on the
3864 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3865 * publish it here at the end of onlining. This matches the
3866 * regular ID destruction during offlining.
3867 */
3868 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3869
3870 return 0;
3871 offline_kmem:
3872 memcg_offline_kmem(memcg);
3873 remove_id:
3874 mem_cgroup_id_remove(memcg);
3875 return -ENOMEM;
3876 }
3877
mem_cgroup_css_offline(struct cgroup_subsys_state * css)3878 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3879 {
3880 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3881
3882 memcg1_css_offline(memcg);
3883
3884 page_counter_set_min(&memcg->memory, 0);
3885 page_counter_set_low(&memcg->memory, 0);
3886
3887 zswap_memcg_offline_cleanup(memcg);
3888
3889 memcg_offline_kmem(memcg);
3890 reparent_shrinker_deferred(memcg);
3891 wb_memcg_offline(memcg);
3892 lru_gen_offline_memcg(memcg);
3893
3894 drain_all_stock(memcg);
3895
3896 mem_cgroup_id_put(memcg);
3897 }
3898
mem_cgroup_css_released(struct cgroup_subsys_state * css)3899 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3900 {
3901 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3902
3903 invalidate_reclaim_iterators(memcg);
3904 lru_gen_release_memcg(memcg);
3905 }
3906
mem_cgroup_css_free(struct cgroup_subsys_state * css)3907 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3908 {
3909 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3910 int __maybe_unused i;
3911
3912 #ifdef CONFIG_CGROUP_WRITEBACK
3913 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3914 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3915 #endif
3916 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3917 static_branch_dec(&memcg_sockets_enabled_key);
3918
3919 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3920 static_branch_dec(&memcg_sockets_enabled_key);
3921
3922 if (!cgroup_memory_nobpf)
3923 static_branch_dec(&memcg_bpf_enabled_key);
3924
3925 vmpressure_cleanup(&memcg->vmpressure);
3926 cancel_work_sync(&memcg->high_work);
3927 memcg1_remove_from_trees(memcg);
3928 free_shrinker_info(memcg);
3929 mem_cgroup_free(memcg);
3930 }
3931
3932 /**
3933 * mem_cgroup_css_reset - reset the states of a mem_cgroup
3934 * @css: the target css
3935 *
3936 * Reset the states of the mem_cgroup associated with @css. This is
3937 * invoked when the userland requests disabling on the default hierarchy
3938 * but the memcg is pinned through dependency. The memcg should stop
3939 * applying policies and should revert to the vanilla state as it may be
3940 * made visible again.
3941 *
3942 * The current implementation only resets the essential configurations.
3943 * This needs to be expanded to cover all the visible parts.
3944 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)3945 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3946 {
3947 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3948
3949 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3950 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3951 #ifdef CONFIG_MEMCG_V1
3952 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3953 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3954 #endif
3955 page_counter_set_min(&memcg->memory, 0);
3956 page_counter_set_low(&memcg->memory, 0);
3957 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3958 memcg1_soft_limit_reset(memcg);
3959 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3960 memcg_wb_domain_size_changed(memcg);
3961 }
3962
3963 struct aggregate_control {
3964 /* pointer to the aggregated (CPU and subtree aggregated) counters */
3965 long *aggregate;
3966 /* pointer to the non-hierarchichal (CPU aggregated) counters */
3967 long *local;
3968 /* pointer to the pending child counters during tree propagation */
3969 long *pending;
3970 /* pointer to the parent's pending counters, could be NULL */
3971 long *ppending;
3972 /* pointer to the percpu counters to be aggregated */
3973 long *cstat;
3974 /* pointer to the percpu counters of the last aggregation*/
3975 long *cstat_prev;
3976 /* size of the above counters */
3977 int size;
3978 };
3979
mem_cgroup_stat_aggregate(struct aggregate_control * ac)3980 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
3981 {
3982 int i;
3983 long delta, delta_cpu, v;
3984
3985 for (i = 0; i < ac->size; i++) {
3986 /*
3987 * Collect the aggregated propagation counts of groups
3988 * below us. We're in a per-cpu loop here and this is
3989 * a global counter, so the first cycle will get them.
3990 */
3991 delta = ac->pending[i];
3992 if (delta)
3993 ac->pending[i] = 0;
3994
3995 /* Add CPU changes on this level since the last flush */
3996 delta_cpu = 0;
3997 v = READ_ONCE(ac->cstat[i]);
3998 if (v != ac->cstat_prev[i]) {
3999 delta_cpu = v - ac->cstat_prev[i];
4000 delta += delta_cpu;
4001 ac->cstat_prev[i] = v;
4002 }
4003
4004 /* Aggregate counts on this level and propagate upwards */
4005 if (delta_cpu)
4006 ac->local[i] += delta_cpu;
4007
4008 if (delta) {
4009 ac->aggregate[i] += delta;
4010 if (ac->ppending)
4011 ac->ppending[i] += delta;
4012 }
4013 }
4014 }
4015
4016 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
flush_nmi_stats(struct mem_cgroup * memcg,struct mem_cgroup * parent,int cpu)4017 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4018 int cpu)
4019 {
4020 int nid;
4021
4022 if (atomic_read(&memcg->kmem_stat)) {
4023 int kmem = atomic_xchg(&memcg->kmem_stat, 0);
4024 int index = memcg_stats_index(MEMCG_KMEM);
4025
4026 memcg->vmstats->state[index] += kmem;
4027 if (parent)
4028 parent->vmstats->state_pending[index] += kmem;
4029 }
4030
4031 for_each_node_state(nid, N_MEMORY) {
4032 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4033 struct lruvec_stats *lstats = pn->lruvec_stats;
4034 struct lruvec_stats *plstats = NULL;
4035
4036 if (parent)
4037 plstats = parent->nodeinfo[nid]->lruvec_stats;
4038
4039 if (atomic_read(&pn->slab_reclaimable)) {
4040 int slab = atomic_xchg(&pn->slab_reclaimable, 0);
4041 int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B);
4042
4043 lstats->state[index] += slab;
4044 if (plstats)
4045 plstats->state_pending[index] += slab;
4046 }
4047 if (atomic_read(&pn->slab_unreclaimable)) {
4048 int slab = atomic_xchg(&pn->slab_unreclaimable, 0);
4049 int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B);
4050
4051 lstats->state[index] += slab;
4052 if (plstats)
4053 plstats->state_pending[index] += slab;
4054 }
4055 }
4056 }
4057 #else
flush_nmi_stats(struct mem_cgroup * memcg,struct mem_cgroup * parent,int cpu)4058 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4059 int cpu)
4060 {}
4061 #endif
4062
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)4063 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
4064 {
4065 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4066 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4067 struct memcg_vmstats_percpu *statc;
4068 struct aggregate_control ac;
4069 int nid;
4070
4071 flush_nmi_stats(memcg, parent, cpu);
4072
4073 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
4074
4075 ac = (struct aggregate_control) {
4076 .aggregate = memcg->vmstats->state,
4077 .local = memcg->vmstats->state_local,
4078 .pending = memcg->vmstats->state_pending,
4079 .ppending = parent ? parent->vmstats->state_pending : NULL,
4080 .cstat = statc->state,
4081 .cstat_prev = statc->state_prev,
4082 .size = MEMCG_VMSTAT_SIZE,
4083 };
4084 mem_cgroup_stat_aggregate(&ac);
4085
4086 ac = (struct aggregate_control) {
4087 .aggregate = memcg->vmstats->events,
4088 .local = memcg->vmstats->events_local,
4089 .pending = memcg->vmstats->events_pending,
4090 .ppending = parent ? parent->vmstats->events_pending : NULL,
4091 .cstat = statc->events,
4092 .cstat_prev = statc->events_prev,
4093 .size = NR_MEMCG_EVENTS,
4094 };
4095 mem_cgroup_stat_aggregate(&ac);
4096
4097 for_each_node_state(nid, N_MEMORY) {
4098 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4099 struct lruvec_stats *lstats = pn->lruvec_stats;
4100 struct lruvec_stats *plstats = NULL;
4101 struct lruvec_stats_percpu *lstatc;
4102
4103 if (parent)
4104 plstats = parent->nodeinfo[nid]->lruvec_stats;
4105
4106 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
4107
4108 ac = (struct aggregate_control) {
4109 .aggregate = lstats->state,
4110 .local = lstats->state_local,
4111 .pending = lstats->state_pending,
4112 .ppending = plstats ? plstats->state_pending : NULL,
4113 .cstat = lstatc->state,
4114 .cstat_prev = lstatc->state_prev,
4115 .size = NR_MEMCG_NODE_STAT_ITEMS,
4116 };
4117 mem_cgroup_stat_aggregate(&ac);
4118
4119 }
4120 WRITE_ONCE(statc->stats_updates, 0);
4121 /* We are in a per-cpu loop here, only do the atomic write once */
4122 if (atomic_read(&memcg->vmstats->stats_updates))
4123 atomic_set(&memcg->vmstats->stats_updates, 0);
4124 }
4125
mem_cgroup_fork(struct task_struct * task)4126 static void mem_cgroup_fork(struct task_struct *task)
4127 {
4128 /*
4129 * Set the update flag to cause task->objcg to be initialized lazily
4130 * on the first allocation. It can be done without any synchronization
4131 * because it's always performed on the current task, so does
4132 * current_objcg_update().
4133 */
4134 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
4135 }
4136
mem_cgroup_exit(struct task_struct * task)4137 static void mem_cgroup_exit(struct task_struct *task)
4138 {
4139 struct obj_cgroup *objcg = task->objcg;
4140
4141 objcg = (struct obj_cgroup *)
4142 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
4143 obj_cgroup_put(objcg);
4144
4145 /*
4146 * Some kernel allocations can happen after this point,
4147 * but let's ignore them. It can be done without any synchronization
4148 * because it's always performed on the current task, so does
4149 * current_objcg_update().
4150 */
4151 task->objcg = NULL;
4152 }
4153
4154 #ifdef CONFIG_LRU_GEN
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)4155 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
4156 {
4157 struct task_struct *task;
4158 struct cgroup_subsys_state *css;
4159
4160 /* find the first leader if there is any */
4161 cgroup_taskset_for_each_leader(task, css, tset)
4162 break;
4163
4164 if (!task)
4165 return;
4166
4167 task_lock(task);
4168 if (task->mm && READ_ONCE(task->mm->owner) == task)
4169 lru_gen_migrate_mm(task->mm);
4170 task_unlock(task);
4171 }
4172 #else
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)4173 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
4174 #endif /* CONFIG_LRU_GEN */
4175
mem_cgroup_kmem_attach(struct cgroup_taskset * tset)4176 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
4177 {
4178 struct task_struct *task;
4179 struct cgroup_subsys_state *css;
4180
4181 cgroup_taskset_for_each(task, css, tset) {
4182 /* atomically set the update bit */
4183 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
4184 }
4185 }
4186
mem_cgroup_attach(struct cgroup_taskset * tset)4187 static void mem_cgroup_attach(struct cgroup_taskset *tset)
4188 {
4189 mem_cgroup_lru_gen_attach(tset);
4190 mem_cgroup_kmem_attach(tset);
4191 }
4192
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)4193 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
4194 {
4195 if (value == PAGE_COUNTER_MAX)
4196 seq_puts(m, "max\n");
4197 else
4198 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
4199
4200 return 0;
4201 }
4202
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)4203 static u64 memory_current_read(struct cgroup_subsys_state *css,
4204 struct cftype *cft)
4205 {
4206 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4207
4208 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4209 }
4210
4211 #define OFP_PEAK_UNSET (((-1UL)))
4212
peak_show(struct seq_file * sf,void * v,struct page_counter * pc)4213 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
4214 {
4215 struct cgroup_of_peak *ofp = of_peak(sf->private);
4216 u64 fd_peak = READ_ONCE(ofp->value), peak;
4217
4218 /* User wants global or local peak? */
4219 if (fd_peak == OFP_PEAK_UNSET)
4220 peak = pc->watermark;
4221 else
4222 peak = max(fd_peak, READ_ONCE(pc->local_watermark));
4223
4224 seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
4225 return 0;
4226 }
4227
memory_peak_show(struct seq_file * sf,void * v)4228 static int memory_peak_show(struct seq_file *sf, void *v)
4229 {
4230 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4231
4232 return peak_show(sf, v, &memcg->memory);
4233 }
4234
peak_open(struct kernfs_open_file * of)4235 static int peak_open(struct kernfs_open_file *of)
4236 {
4237 struct cgroup_of_peak *ofp = of_peak(of);
4238
4239 ofp->value = OFP_PEAK_UNSET;
4240 return 0;
4241 }
4242
peak_release(struct kernfs_open_file * of)4243 static void peak_release(struct kernfs_open_file *of)
4244 {
4245 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4246 struct cgroup_of_peak *ofp = of_peak(of);
4247
4248 if (ofp->value == OFP_PEAK_UNSET) {
4249 /* fast path (no writes on this fd) */
4250 return;
4251 }
4252 spin_lock(&memcg->peaks_lock);
4253 list_del(&ofp->list);
4254 spin_unlock(&memcg->peaks_lock);
4255 }
4256
peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,struct page_counter * pc,struct list_head * watchers)4257 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
4258 loff_t off, struct page_counter *pc,
4259 struct list_head *watchers)
4260 {
4261 unsigned long usage;
4262 struct cgroup_of_peak *peer_ctx;
4263 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4264 struct cgroup_of_peak *ofp = of_peak(of);
4265
4266 spin_lock(&memcg->peaks_lock);
4267
4268 usage = page_counter_read(pc);
4269 WRITE_ONCE(pc->local_watermark, usage);
4270
4271 list_for_each_entry(peer_ctx, watchers, list)
4272 if (usage > peer_ctx->value)
4273 WRITE_ONCE(peer_ctx->value, usage);
4274
4275 /* initial write, register watcher */
4276 if (ofp->value == OFP_PEAK_UNSET)
4277 list_add(&ofp->list, watchers);
4278
4279 WRITE_ONCE(ofp->value, usage);
4280 spin_unlock(&memcg->peaks_lock);
4281
4282 return nbytes;
4283 }
4284
memory_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4285 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4286 size_t nbytes, loff_t off)
4287 {
4288 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4289
4290 return peak_write(of, buf, nbytes, off, &memcg->memory,
4291 &memcg->memory_peaks);
4292 }
4293
4294 #undef OFP_PEAK_UNSET
4295
memory_min_show(struct seq_file * m,void * v)4296 static int memory_min_show(struct seq_file *m, void *v)
4297 {
4298 return seq_puts_memcg_tunable(m,
4299 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4300 }
4301
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4302 static ssize_t memory_min_write(struct kernfs_open_file *of,
4303 char *buf, size_t nbytes, loff_t off)
4304 {
4305 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4306 unsigned long min;
4307 int err;
4308
4309 buf = strstrip(buf);
4310 err = page_counter_memparse(buf, "max", &min);
4311 if (err)
4312 return err;
4313
4314 page_counter_set_min(&memcg->memory, min);
4315
4316 return nbytes;
4317 }
4318
memory_low_show(struct seq_file * m,void * v)4319 static int memory_low_show(struct seq_file *m, void *v)
4320 {
4321 return seq_puts_memcg_tunable(m,
4322 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4323 }
4324
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4325 static ssize_t memory_low_write(struct kernfs_open_file *of,
4326 char *buf, size_t nbytes, loff_t off)
4327 {
4328 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4329 unsigned long low;
4330 int err;
4331
4332 buf = strstrip(buf);
4333 err = page_counter_memparse(buf, "max", &low);
4334 if (err)
4335 return err;
4336
4337 page_counter_set_low(&memcg->memory, low);
4338
4339 return nbytes;
4340 }
4341
memory_high_show(struct seq_file * m,void * v)4342 static int memory_high_show(struct seq_file *m, void *v)
4343 {
4344 return seq_puts_memcg_tunable(m,
4345 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4346 }
4347
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4348 static ssize_t memory_high_write(struct kernfs_open_file *of,
4349 char *buf, size_t nbytes, loff_t off)
4350 {
4351 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4352 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4353 bool drained = false;
4354 unsigned long high;
4355 int err;
4356
4357 buf = strstrip(buf);
4358 err = page_counter_memparse(buf, "max", &high);
4359 if (err)
4360 return err;
4361
4362 page_counter_set_high(&memcg->memory, high);
4363
4364 if (of->file->f_flags & O_NONBLOCK)
4365 goto out;
4366
4367 for (;;) {
4368 unsigned long nr_pages = page_counter_read(&memcg->memory);
4369 unsigned long reclaimed;
4370
4371 if (nr_pages <= high)
4372 break;
4373
4374 if (signal_pending(current))
4375 break;
4376
4377 if (!drained) {
4378 drain_all_stock(memcg);
4379 drained = true;
4380 continue;
4381 }
4382
4383 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4384 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4385
4386 if (!reclaimed && !nr_retries--)
4387 break;
4388 }
4389 out:
4390 memcg_wb_domain_size_changed(memcg);
4391 return nbytes;
4392 }
4393
memory_max_show(struct seq_file * m,void * v)4394 static int memory_max_show(struct seq_file *m, void *v)
4395 {
4396 return seq_puts_memcg_tunable(m,
4397 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4398 }
4399
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4400 static ssize_t memory_max_write(struct kernfs_open_file *of,
4401 char *buf, size_t nbytes, loff_t off)
4402 {
4403 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4404 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4405 bool drained = false;
4406 unsigned long max;
4407 int err;
4408
4409 buf = strstrip(buf);
4410 err = page_counter_memparse(buf, "max", &max);
4411 if (err)
4412 return err;
4413
4414 xchg(&memcg->memory.max, max);
4415
4416 if (of->file->f_flags & O_NONBLOCK)
4417 goto out;
4418
4419 for (;;) {
4420 unsigned long nr_pages = page_counter_read(&memcg->memory);
4421
4422 if (nr_pages <= max)
4423 break;
4424
4425 if (signal_pending(current))
4426 break;
4427
4428 if (!drained) {
4429 drain_all_stock(memcg);
4430 drained = true;
4431 continue;
4432 }
4433
4434 if (nr_reclaims) {
4435 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4436 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4437 nr_reclaims--;
4438 continue;
4439 }
4440
4441 memcg_memory_event(memcg, MEMCG_OOM);
4442 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4443 break;
4444 cond_resched();
4445 }
4446 out:
4447 memcg_wb_domain_size_changed(memcg);
4448 return nbytes;
4449 }
4450
4451 /*
4452 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4453 * if any new events become available.
4454 */
__memory_events_show(struct seq_file * m,atomic_long_t * events)4455 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4456 {
4457 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4458 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4459 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4460 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4461 seq_printf(m, "oom_kill %lu\n",
4462 atomic_long_read(&events[MEMCG_OOM_KILL]));
4463 seq_printf(m, "oom_group_kill %lu\n",
4464 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4465 }
4466
memory_events_show(struct seq_file * m,void * v)4467 static int memory_events_show(struct seq_file *m, void *v)
4468 {
4469 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4470
4471 __memory_events_show(m, memcg->memory_events);
4472 return 0;
4473 }
4474
memory_events_local_show(struct seq_file * m,void * v)4475 static int memory_events_local_show(struct seq_file *m, void *v)
4476 {
4477 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4478
4479 __memory_events_show(m, memcg->memory_events_local);
4480 return 0;
4481 }
4482
memory_stat_show(struct seq_file * m,void * v)4483 int memory_stat_show(struct seq_file *m, void *v)
4484 {
4485 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4486 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4487 struct seq_buf s;
4488
4489 if (!buf)
4490 return -ENOMEM;
4491 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4492 memory_stat_format(memcg, &s);
4493 seq_puts(m, buf);
4494 kfree(buf);
4495 return 0;
4496 }
4497
4498 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)4499 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4500 int item)
4501 {
4502 return lruvec_page_state(lruvec, item) *
4503 memcg_page_state_output_unit(item);
4504 }
4505
memory_numa_stat_show(struct seq_file * m,void * v)4506 static int memory_numa_stat_show(struct seq_file *m, void *v)
4507 {
4508 int i;
4509 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4510
4511 mem_cgroup_flush_stats(memcg);
4512
4513 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4514 int nid;
4515
4516 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4517 continue;
4518
4519 seq_printf(m, "%s", memory_stats[i].name);
4520 for_each_node_state(nid, N_MEMORY) {
4521 u64 size;
4522 struct lruvec *lruvec;
4523
4524 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4525 size = lruvec_page_state_output(lruvec,
4526 memory_stats[i].idx);
4527 seq_printf(m, " N%d=%llu", nid, size);
4528 }
4529 seq_putc(m, '\n');
4530 }
4531
4532 return 0;
4533 }
4534 #endif
4535
memory_oom_group_show(struct seq_file * m,void * v)4536 static int memory_oom_group_show(struct seq_file *m, void *v)
4537 {
4538 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4539
4540 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4541
4542 return 0;
4543 }
4544
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4545 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4546 char *buf, size_t nbytes, loff_t off)
4547 {
4548 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4549 int ret, oom_group;
4550
4551 buf = strstrip(buf);
4552 if (!buf)
4553 return -EINVAL;
4554
4555 ret = kstrtoint(buf, 0, &oom_group);
4556 if (ret)
4557 return ret;
4558
4559 if (oom_group != 0 && oom_group != 1)
4560 return -EINVAL;
4561
4562 WRITE_ONCE(memcg->oom_group, oom_group);
4563
4564 return nbytes;
4565 }
4566
4567 enum {
4568 MEMORY_RECLAIM_SWAPPINESS = 0,
4569 MEMORY_RECLAIM_SWAPPINESS_MAX,
4570 MEMORY_RECLAIM_NULL,
4571 };
4572
4573 static const match_table_t tokens = {
4574 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
4575 { MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"},
4576 { MEMORY_RECLAIM_NULL, NULL },
4577 };
4578
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4579 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4580 size_t nbytes, loff_t off)
4581 {
4582 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4583 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4584 unsigned long nr_to_reclaim, nr_reclaimed = 0;
4585 int swappiness = -1;
4586 unsigned int reclaim_options;
4587 char *old_buf, *start;
4588 substring_t args[MAX_OPT_ARGS];
4589
4590 buf = strstrip(buf);
4591
4592 old_buf = buf;
4593 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
4594 if (buf == old_buf)
4595 return -EINVAL;
4596
4597 buf = strstrip(buf);
4598
4599 while ((start = strsep(&buf, " ")) != NULL) {
4600 if (!strlen(start))
4601 continue;
4602 switch (match_token(start, tokens, args)) {
4603 case MEMORY_RECLAIM_SWAPPINESS:
4604 if (match_int(&args[0], &swappiness))
4605 return -EINVAL;
4606 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS)
4607 return -EINVAL;
4608 break;
4609 case MEMORY_RECLAIM_SWAPPINESS_MAX:
4610 swappiness = SWAPPINESS_ANON_ONLY;
4611 break;
4612 default:
4613 return -EINVAL;
4614 }
4615 }
4616
4617 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
4618 while (nr_reclaimed < nr_to_reclaim) {
4619 /* Will converge on zero, but reclaim enforces a minimum */
4620 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
4621 unsigned long reclaimed;
4622
4623 if (signal_pending(current))
4624 return -EINTR;
4625
4626 /*
4627 * This is the final attempt, drain percpu lru caches in the
4628 * hope of introducing more evictable pages for
4629 * try_to_free_mem_cgroup_pages().
4630 */
4631 if (!nr_retries)
4632 lru_add_drain_all();
4633
4634 reclaimed = try_to_free_mem_cgroup_pages(memcg,
4635 batch_size, GFP_KERNEL,
4636 reclaim_options,
4637 swappiness == -1 ? NULL : &swappiness);
4638
4639 if (!reclaimed && !nr_retries--)
4640 return -EAGAIN;
4641
4642 nr_reclaimed += reclaimed;
4643 }
4644
4645 return nbytes;
4646 }
4647
4648 static struct cftype memory_files[] = {
4649 {
4650 .name = "current",
4651 .flags = CFTYPE_NOT_ON_ROOT,
4652 .read_u64 = memory_current_read,
4653 },
4654 {
4655 .name = "peak",
4656 .flags = CFTYPE_NOT_ON_ROOT,
4657 .open = peak_open,
4658 .release = peak_release,
4659 .seq_show = memory_peak_show,
4660 .write = memory_peak_write,
4661 },
4662 {
4663 .name = "min",
4664 .flags = CFTYPE_NOT_ON_ROOT,
4665 .seq_show = memory_min_show,
4666 .write = memory_min_write,
4667 },
4668 {
4669 .name = "low",
4670 .flags = CFTYPE_NOT_ON_ROOT,
4671 .seq_show = memory_low_show,
4672 .write = memory_low_write,
4673 },
4674 {
4675 .name = "high",
4676 .flags = CFTYPE_NOT_ON_ROOT,
4677 .seq_show = memory_high_show,
4678 .write = memory_high_write,
4679 },
4680 {
4681 .name = "max",
4682 .flags = CFTYPE_NOT_ON_ROOT,
4683 .seq_show = memory_max_show,
4684 .write = memory_max_write,
4685 },
4686 {
4687 .name = "events",
4688 .flags = CFTYPE_NOT_ON_ROOT,
4689 .file_offset = offsetof(struct mem_cgroup, events_file),
4690 .seq_show = memory_events_show,
4691 },
4692 {
4693 .name = "events.local",
4694 .flags = CFTYPE_NOT_ON_ROOT,
4695 .file_offset = offsetof(struct mem_cgroup, events_local_file),
4696 .seq_show = memory_events_local_show,
4697 },
4698 {
4699 .name = "stat",
4700 .seq_show = memory_stat_show,
4701 },
4702 #ifdef CONFIG_NUMA
4703 {
4704 .name = "numa_stat",
4705 .seq_show = memory_numa_stat_show,
4706 },
4707 #endif
4708 {
4709 .name = "oom.group",
4710 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4711 .seq_show = memory_oom_group_show,
4712 .write = memory_oom_group_write,
4713 },
4714 {
4715 .name = "reclaim",
4716 .flags = CFTYPE_NS_DELEGATABLE,
4717 .write = memory_reclaim,
4718 },
4719 { } /* terminate */
4720 };
4721
4722 struct cgroup_subsys memory_cgrp_subsys = {
4723 .css_alloc = mem_cgroup_css_alloc,
4724 .css_online = mem_cgroup_css_online,
4725 .css_offline = mem_cgroup_css_offline,
4726 .css_released = mem_cgroup_css_released,
4727 .css_free = mem_cgroup_css_free,
4728 .css_reset = mem_cgroup_css_reset,
4729 .css_rstat_flush = mem_cgroup_css_rstat_flush,
4730 .attach = mem_cgroup_attach,
4731 .fork = mem_cgroup_fork,
4732 .exit = mem_cgroup_exit,
4733 .dfl_cftypes = memory_files,
4734 #ifdef CONFIG_MEMCG_V1
4735 .legacy_cftypes = mem_cgroup_legacy_files,
4736 #endif
4737 .early_init = 0,
4738 };
4739
4740 /**
4741 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4742 * @root: the top ancestor of the sub-tree being checked
4743 * @memcg: the memory cgroup to check
4744 *
4745 * WARNING: This function is not stateless! It can only be used as part
4746 * of a top-down tree iteration, not for isolated queries.
4747 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)4748 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4749 struct mem_cgroup *memcg)
4750 {
4751 bool recursive_protection =
4752 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4753
4754 if (mem_cgroup_disabled())
4755 return;
4756
4757 if (!root)
4758 root = root_mem_cgroup;
4759
4760 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4761 }
4762
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)4763 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4764 gfp_t gfp)
4765 {
4766 int ret;
4767
4768 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4769 if (ret)
4770 goto out;
4771
4772 css_get(&memcg->css);
4773 commit_charge(folio, memcg);
4774 memcg1_commit_charge(folio, memcg);
4775 out:
4776 return ret;
4777 }
4778
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)4779 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4780 {
4781 struct mem_cgroup *memcg;
4782 int ret;
4783
4784 memcg = get_mem_cgroup_from_mm(mm);
4785 ret = charge_memcg(folio, memcg, gfp);
4786 css_put(&memcg->css);
4787
4788 return ret;
4789 }
4790
4791 /**
4792 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio
4793 * @folio: folio being charged
4794 * @gfp: reclaim mode
4795 *
4796 * This function is called when allocating a huge page folio, after the page has
4797 * already been obtained and charged to the appropriate hugetlb cgroup
4798 * controller (if it is enabled).
4799 *
4800 * Returns ENOMEM if the memcg is already full.
4801 * Returns 0 if either the charge was successful, or if we skip the charging.
4802 */
mem_cgroup_charge_hugetlb(struct folio * folio,gfp_t gfp)4803 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp)
4804 {
4805 struct mem_cgroup *memcg = get_mem_cgroup_from_current();
4806 int ret = 0;
4807
4808 /*
4809 * Even memcg does not account for hugetlb, we still want to update
4810 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip
4811 * charging the memcg.
4812 */
4813 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() ||
4814 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
4815 goto out;
4816
4817 if (charge_memcg(folio, memcg, gfp))
4818 ret = -ENOMEM;
4819
4820 out:
4821 mem_cgroup_put(memcg);
4822 return ret;
4823 }
4824
4825 /**
4826 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4827 * @folio: folio to charge.
4828 * @mm: mm context of the victim
4829 * @gfp: reclaim mode
4830 * @entry: swap entry for which the folio is allocated
4831 *
4832 * This function charges a folio allocated for swapin. Please call this before
4833 * adding the folio to the swapcache.
4834 *
4835 * Returns 0 on success. Otherwise, an error code is returned.
4836 */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)4837 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4838 gfp_t gfp, swp_entry_t entry)
4839 {
4840 struct mem_cgroup *memcg;
4841 unsigned short id;
4842 int ret;
4843
4844 if (mem_cgroup_disabled())
4845 return 0;
4846
4847 id = lookup_swap_cgroup_id(entry);
4848 rcu_read_lock();
4849 memcg = mem_cgroup_from_id(id);
4850 if (!memcg || !css_tryget_online(&memcg->css))
4851 memcg = get_mem_cgroup_from_mm(mm);
4852 rcu_read_unlock();
4853
4854 ret = charge_memcg(folio, memcg, gfp);
4855
4856 css_put(&memcg->css);
4857 return ret;
4858 }
4859
4860 struct uncharge_gather {
4861 struct mem_cgroup *memcg;
4862 unsigned long nr_memory;
4863 unsigned long pgpgout;
4864 unsigned long nr_kmem;
4865 int nid;
4866 };
4867
uncharge_gather_clear(struct uncharge_gather * ug)4868 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4869 {
4870 memset(ug, 0, sizeof(*ug));
4871 }
4872
uncharge_batch(const struct uncharge_gather * ug)4873 static void uncharge_batch(const struct uncharge_gather *ug)
4874 {
4875 if (ug->nr_memory) {
4876 memcg_uncharge(ug->memcg, ug->nr_memory);
4877 if (ug->nr_kmem) {
4878 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4879 memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4880 }
4881 memcg1_oom_recover(ug->memcg);
4882 }
4883
4884 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4885
4886 /* drop reference from uncharge_folio */
4887 css_put(&ug->memcg->css);
4888 }
4889
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)4890 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4891 {
4892 long nr_pages;
4893 struct mem_cgroup *memcg;
4894 struct obj_cgroup *objcg;
4895
4896 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4897
4898 /*
4899 * Nobody should be changing or seriously looking at
4900 * folio memcg or objcg at this point, we have fully
4901 * exclusive access to the folio.
4902 */
4903 if (folio_memcg_kmem(folio)) {
4904 objcg = __folio_objcg(folio);
4905 /*
4906 * This get matches the put at the end of the function and
4907 * kmem pages do not hold memcg references anymore.
4908 */
4909 memcg = get_mem_cgroup_from_objcg(objcg);
4910 } else {
4911 memcg = __folio_memcg(folio);
4912 }
4913
4914 if (!memcg)
4915 return;
4916
4917 if (ug->memcg != memcg) {
4918 if (ug->memcg) {
4919 uncharge_batch(ug);
4920 uncharge_gather_clear(ug);
4921 }
4922 ug->memcg = memcg;
4923 ug->nid = folio_nid(folio);
4924
4925 /* pairs with css_put in uncharge_batch */
4926 css_get(&memcg->css);
4927 }
4928
4929 nr_pages = folio_nr_pages(folio);
4930
4931 if (folio_memcg_kmem(folio)) {
4932 ug->nr_memory += nr_pages;
4933 ug->nr_kmem += nr_pages;
4934
4935 folio->memcg_data = 0;
4936 obj_cgroup_put(objcg);
4937 } else {
4938 /* LRU pages aren't accounted at the root level */
4939 if (!mem_cgroup_is_root(memcg))
4940 ug->nr_memory += nr_pages;
4941 ug->pgpgout++;
4942
4943 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4944 folio->memcg_data = 0;
4945 }
4946
4947 css_put(&memcg->css);
4948 }
4949
__mem_cgroup_uncharge(struct folio * folio)4950 void __mem_cgroup_uncharge(struct folio *folio)
4951 {
4952 struct uncharge_gather ug;
4953
4954 /* Don't touch folio->lru of any random page, pre-check: */
4955 if (!folio_memcg_charged(folio))
4956 return;
4957
4958 uncharge_gather_clear(&ug);
4959 uncharge_folio(folio, &ug);
4960 uncharge_batch(&ug);
4961 }
4962
__mem_cgroup_uncharge_folios(struct folio_batch * folios)4963 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4964 {
4965 struct uncharge_gather ug;
4966 unsigned int i;
4967
4968 uncharge_gather_clear(&ug);
4969 for (i = 0; i < folios->nr; i++)
4970 uncharge_folio(folios->folios[i], &ug);
4971 if (ug.memcg)
4972 uncharge_batch(&ug);
4973 }
4974
4975 /**
4976 * mem_cgroup_replace_folio - Charge a folio's replacement.
4977 * @old: Currently circulating folio.
4978 * @new: Replacement folio.
4979 *
4980 * Charge @new as a replacement folio for @old. @old will
4981 * be uncharged upon free.
4982 *
4983 * Both folios must be locked, @new->mapping must be set up.
4984 */
mem_cgroup_replace_folio(struct folio * old,struct folio * new)4985 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4986 {
4987 struct mem_cgroup *memcg;
4988 long nr_pages = folio_nr_pages(new);
4989
4990 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4991 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4992 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4993 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4994
4995 if (mem_cgroup_disabled())
4996 return;
4997
4998 /* Page cache replacement: new folio already charged? */
4999 if (folio_memcg_charged(new))
5000 return;
5001
5002 memcg = folio_memcg(old);
5003 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
5004 if (!memcg)
5005 return;
5006
5007 /* Force-charge the new page. The old one will be freed soon */
5008 if (!mem_cgroup_is_root(memcg)) {
5009 page_counter_charge(&memcg->memory, nr_pages);
5010 if (do_memsw_account())
5011 page_counter_charge(&memcg->memsw, nr_pages);
5012 }
5013
5014 css_get(&memcg->css);
5015 commit_charge(new, memcg);
5016 memcg1_commit_charge(new, memcg);
5017 }
5018
5019 /**
5020 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
5021 * @old: Currently circulating folio.
5022 * @new: Replacement folio.
5023 *
5024 * Transfer the memcg data from the old folio to the new folio for migration.
5025 * The old folio's data info will be cleared. Note that the memory counters
5026 * will remain unchanged throughout the process.
5027 *
5028 * Both folios must be locked, @new->mapping must be set up.
5029 */
mem_cgroup_migrate(struct folio * old,struct folio * new)5030 void mem_cgroup_migrate(struct folio *old, struct folio *new)
5031 {
5032 struct mem_cgroup *memcg;
5033
5034 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
5035 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
5036 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
5037 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
5038 VM_BUG_ON_FOLIO(folio_test_lru(old), old);
5039
5040 if (mem_cgroup_disabled())
5041 return;
5042
5043 memcg = folio_memcg(old);
5044 /*
5045 * Note that it is normal to see !memcg for a hugetlb folio.
5046 * For e.g, itt could have been allocated when memory_hugetlb_accounting
5047 * was not selected.
5048 */
5049 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
5050 if (!memcg)
5051 return;
5052
5053 /* Transfer the charge and the css ref */
5054 commit_charge(new, memcg);
5055
5056 /* Warning should never happen, so don't worry about refcount non-0 */
5057 WARN_ON_ONCE(folio_unqueue_deferred_split(old));
5058 old->memcg_data = 0;
5059 }
5060
5061 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5062 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5063
mem_cgroup_sk_alloc(struct sock * sk)5064 void mem_cgroup_sk_alloc(struct sock *sk)
5065 {
5066 struct mem_cgroup *memcg;
5067
5068 if (!mem_cgroup_sockets_enabled)
5069 return;
5070
5071 /* Do not associate the sock with unrelated interrupted task's memcg. */
5072 if (!in_task())
5073 return;
5074
5075 rcu_read_lock();
5076 memcg = mem_cgroup_from_task(current);
5077 if (mem_cgroup_is_root(memcg))
5078 goto out;
5079 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
5080 goto out;
5081 if (css_tryget(&memcg->css))
5082 sk->sk_memcg = memcg;
5083 out:
5084 rcu_read_unlock();
5085 }
5086
mem_cgroup_sk_free(struct sock * sk)5087 void mem_cgroup_sk_free(struct sock *sk)
5088 {
5089 if (sk->sk_memcg)
5090 css_put(&sk->sk_memcg->css);
5091 }
5092
5093 /**
5094 * mem_cgroup_charge_skmem - charge socket memory
5095 * @memcg: memcg to charge
5096 * @nr_pages: number of pages to charge
5097 * @gfp_mask: reclaim mode
5098 *
5099 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5100 * @memcg's configured limit, %false if it doesn't.
5101 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)5102 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
5103 gfp_t gfp_mask)
5104 {
5105 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5106 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
5107
5108 if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) {
5109 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5110 return true;
5111 }
5112
5113 return false;
5114 }
5115
5116 /**
5117 * mem_cgroup_uncharge_skmem - uncharge socket memory
5118 * @memcg: memcg to uncharge
5119 * @nr_pages: number of pages to uncharge
5120 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)5121 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5122 {
5123 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5124 memcg1_uncharge_skmem(memcg, nr_pages);
5125 return;
5126 }
5127
5128 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5129
5130 refill_stock(memcg, nr_pages);
5131 }
5132
cgroup_memory(char * s)5133 static int __init cgroup_memory(char *s)
5134 {
5135 char *token;
5136
5137 while ((token = strsep(&s, ",")) != NULL) {
5138 if (!*token)
5139 continue;
5140 if (!strcmp(token, "nosocket"))
5141 cgroup_memory_nosocket = true;
5142 if (!strcmp(token, "nokmem"))
5143 cgroup_memory_nokmem = true;
5144 if (!strcmp(token, "nobpf"))
5145 cgroup_memory_nobpf = true;
5146 }
5147 return 1;
5148 }
5149 __setup("cgroup.memory=", cgroup_memory);
5150
5151 /*
5152 * Memory controller init before cgroup_init() initialize root_mem_cgroup.
5153 *
5154 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5155 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5156 * basically everything that doesn't depend on a specific mem_cgroup structure
5157 * should be initialized from here.
5158 */
mem_cgroup_init(void)5159 int __init mem_cgroup_init(void)
5160 {
5161 unsigned int memcg_size;
5162 int cpu;
5163
5164 /*
5165 * Currently s32 type (can refer to struct batched_lruvec_stat) is
5166 * used for per-memcg-per-cpu caching of per-node statistics. In order
5167 * to work fine, we should make sure that the overfill threshold can't
5168 * exceed S32_MAX / PAGE_SIZE.
5169 */
5170 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
5171
5172 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5173 memcg_hotplug_cpu_dead);
5174
5175 for_each_possible_cpu(cpu) {
5176 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5177 drain_local_memcg_stock);
5178 INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work,
5179 drain_local_obj_stock);
5180 }
5181
5182 memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids);
5183 memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0,
5184 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
5185
5186 memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node,
5187 SLAB_PANIC | SLAB_HWCACHE_ALIGN);
5188
5189 return 0;
5190 }
5191
5192 #ifdef CONFIG_SWAP
5193 /**
5194 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5195 * @folio: folio being added to swap
5196 * @entry: swap entry to charge
5197 *
5198 * Try to charge @folio's memcg for the swap space at @entry.
5199 *
5200 * Returns 0 on success, -ENOMEM on failure.
5201 */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)5202 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5203 {
5204 unsigned int nr_pages = folio_nr_pages(folio);
5205 struct page_counter *counter;
5206 struct mem_cgroup *memcg;
5207
5208 if (do_memsw_account())
5209 return 0;
5210
5211 memcg = folio_memcg(folio);
5212
5213 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5214 if (!memcg)
5215 return 0;
5216
5217 if (!entry.val) {
5218 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5219 return 0;
5220 }
5221
5222 memcg = mem_cgroup_id_get_online(memcg);
5223
5224 if (!mem_cgroup_is_root(memcg) &&
5225 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5226 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5227 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5228 mem_cgroup_id_put(memcg);
5229 return -ENOMEM;
5230 }
5231
5232 /* Get references for the tail pages, too */
5233 if (nr_pages > 1)
5234 mem_cgroup_id_get_many(memcg, nr_pages - 1);
5235 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5236
5237 swap_cgroup_record(folio, mem_cgroup_id(memcg), entry);
5238
5239 return 0;
5240 }
5241
5242 /**
5243 * __mem_cgroup_uncharge_swap - uncharge swap space
5244 * @entry: swap entry to uncharge
5245 * @nr_pages: the amount of swap space to uncharge
5246 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)5247 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5248 {
5249 struct mem_cgroup *memcg;
5250 unsigned short id;
5251
5252 id = swap_cgroup_clear(entry, nr_pages);
5253 rcu_read_lock();
5254 memcg = mem_cgroup_from_id(id);
5255 if (memcg) {
5256 if (!mem_cgroup_is_root(memcg)) {
5257 if (do_memsw_account())
5258 page_counter_uncharge(&memcg->memsw, nr_pages);
5259 else
5260 page_counter_uncharge(&memcg->swap, nr_pages);
5261 }
5262 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5263 mem_cgroup_id_put_many(memcg, nr_pages);
5264 }
5265 rcu_read_unlock();
5266 }
5267
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)5268 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5269 {
5270 long nr_swap_pages = get_nr_swap_pages();
5271
5272 if (mem_cgroup_disabled() || do_memsw_account())
5273 return nr_swap_pages;
5274 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5275 nr_swap_pages = min_t(long, nr_swap_pages,
5276 READ_ONCE(memcg->swap.max) -
5277 page_counter_read(&memcg->swap));
5278 return nr_swap_pages;
5279 }
5280
mem_cgroup_swap_full(struct folio * folio)5281 bool mem_cgroup_swap_full(struct folio *folio)
5282 {
5283 struct mem_cgroup *memcg;
5284
5285 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5286
5287 if (vm_swap_full())
5288 return true;
5289 if (do_memsw_account())
5290 return false;
5291
5292 memcg = folio_memcg(folio);
5293 if (!memcg)
5294 return false;
5295
5296 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5297 unsigned long usage = page_counter_read(&memcg->swap);
5298
5299 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5300 usage * 2 >= READ_ONCE(memcg->swap.max))
5301 return true;
5302 }
5303
5304 return false;
5305 }
5306
setup_swap_account(char * s)5307 static int __init setup_swap_account(char *s)
5308 {
5309 bool res;
5310
5311 if (!kstrtobool(s, &res) && !res)
5312 pr_warn_once("The swapaccount=0 commandline option is deprecated "
5313 "in favor of configuring swap control via cgroupfs. "
5314 "Please report your usecase to linux-mm@kvack.org if you "
5315 "depend on this functionality.\n");
5316 return 1;
5317 }
5318 __setup("swapaccount=", setup_swap_account);
5319
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5320 static u64 swap_current_read(struct cgroup_subsys_state *css,
5321 struct cftype *cft)
5322 {
5323 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5324
5325 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5326 }
5327
swap_peak_show(struct seq_file * sf,void * v)5328 static int swap_peak_show(struct seq_file *sf, void *v)
5329 {
5330 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5331
5332 return peak_show(sf, v, &memcg->swap);
5333 }
5334
swap_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5335 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5336 size_t nbytes, loff_t off)
5337 {
5338 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5339
5340 return peak_write(of, buf, nbytes, off, &memcg->swap,
5341 &memcg->swap_peaks);
5342 }
5343
swap_high_show(struct seq_file * m,void * v)5344 static int swap_high_show(struct seq_file *m, void *v)
5345 {
5346 return seq_puts_memcg_tunable(m,
5347 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5348 }
5349
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5350 static ssize_t swap_high_write(struct kernfs_open_file *of,
5351 char *buf, size_t nbytes, loff_t off)
5352 {
5353 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5354 unsigned long high;
5355 int err;
5356
5357 buf = strstrip(buf);
5358 err = page_counter_memparse(buf, "max", &high);
5359 if (err)
5360 return err;
5361
5362 page_counter_set_high(&memcg->swap, high);
5363
5364 return nbytes;
5365 }
5366
swap_max_show(struct seq_file * m,void * v)5367 static int swap_max_show(struct seq_file *m, void *v)
5368 {
5369 return seq_puts_memcg_tunable(m,
5370 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5371 }
5372
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5373 static ssize_t swap_max_write(struct kernfs_open_file *of,
5374 char *buf, size_t nbytes, loff_t off)
5375 {
5376 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5377 unsigned long max;
5378 int err;
5379
5380 buf = strstrip(buf);
5381 err = page_counter_memparse(buf, "max", &max);
5382 if (err)
5383 return err;
5384
5385 xchg(&memcg->swap.max, max);
5386
5387 return nbytes;
5388 }
5389
swap_events_show(struct seq_file * m,void * v)5390 static int swap_events_show(struct seq_file *m, void *v)
5391 {
5392 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5393
5394 seq_printf(m, "high %lu\n",
5395 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5396 seq_printf(m, "max %lu\n",
5397 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5398 seq_printf(m, "fail %lu\n",
5399 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5400
5401 return 0;
5402 }
5403
5404 static struct cftype swap_files[] = {
5405 {
5406 .name = "swap.current",
5407 .flags = CFTYPE_NOT_ON_ROOT,
5408 .read_u64 = swap_current_read,
5409 },
5410 {
5411 .name = "swap.high",
5412 .flags = CFTYPE_NOT_ON_ROOT,
5413 .seq_show = swap_high_show,
5414 .write = swap_high_write,
5415 },
5416 {
5417 .name = "swap.max",
5418 .flags = CFTYPE_NOT_ON_ROOT,
5419 .seq_show = swap_max_show,
5420 .write = swap_max_write,
5421 },
5422 {
5423 .name = "swap.peak",
5424 .flags = CFTYPE_NOT_ON_ROOT,
5425 .open = peak_open,
5426 .release = peak_release,
5427 .seq_show = swap_peak_show,
5428 .write = swap_peak_write,
5429 },
5430 {
5431 .name = "swap.events",
5432 .flags = CFTYPE_NOT_ON_ROOT,
5433 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
5434 .seq_show = swap_events_show,
5435 },
5436 { } /* terminate */
5437 };
5438
5439 #ifdef CONFIG_ZSWAP
5440 /**
5441 * obj_cgroup_may_zswap - check if this cgroup can zswap
5442 * @objcg: the object cgroup
5443 *
5444 * Check if the hierarchical zswap limit has been reached.
5445 *
5446 * This doesn't check for specific headroom, and it is not atomic
5447 * either. But with zswap, the size of the allocation is only known
5448 * once compression has occurred, and this optimistic pre-check avoids
5449 * spending cycles on compression when there is already no room left
5450 * or zswap is disabled altogether somewhere in the hierarchy.
5451 */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)5452 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5453 {
5454 struct mem_cgroup *memcg, *original_memcg;
5455 bool ret = true;
5456
5457 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5458 return true;
5459
5460 original_memcg = get_mem_cgroup_from_objcg(objcg);
5461 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5462 memcg = parent_mem_cgroup(memcg)) {
5463 unsigned long max = READ_ONCE(memcg->zswap_max);
5464 unsigned long pages;
5465
5466 if (max == PAGE_COUNTER_MAX)
5467 continue;
5468 if (max == 0) {
5469 ret = false;
5470 break;
5471 }
5472
5473 /* Force flush to get accurate stats for charging */
5474 __mem_cgroup_flush_stats(memcg, true);
5475 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5476 if (pages < max)
5477 continue;
5478 ret = false;
5479 break;
5480 }
5481 mem_cgroup_put(original_memcg);
5482 return ret;
5483 }
5484
5485 /**
5486 * obj_cgroup_charge_zswap - charge compression backend memory
5487 * @objcg: the object cgroup
5488 * @size: size of compressed object
5489 *
5490 * This forces the charge after obj_cgroup_may_zswap() allowed
5491 * compression and storage in zwap for this cgroup to go ahead.
5492 */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)5493 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5494 {
5495 struct mem_cgroup *memcg;
5496
5497 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5498 return;
5499
5500 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5501
5502 /* PF_MEMALLOC context, charging must succeed */
5503 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5504 VM_WARN_ON_ONCE(1);
5505
5506 rcu_read_lock();
5507 memcg = obj_cgroup_memcg(objcg);
5508 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5509 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5510 rcu_read_unlock();
5511 }
5512
5513 /**
5514 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5515 * @objcg: the object cgroup
5516 * @size: size of compressed object
5517 *
5518 * Uncharges zswap memory on page in.
5519 */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)5520 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5521 {
5522 struct mem_cgroup *memcg;
5523
5524 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5525 return;
5526
5527 obj_cgroup_uncharge(objcg, size);
5528
5529 rcu_read_lock();
5530 memcg = obj_cgroup_memcg(objcg);
5531 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5532 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5533 rcu_read_unlock();
5534 }
5535
mem_cgroup_zswap_writeback_enabled(struct mem_cgroup * memcg)5536 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5537 {
5538 /* if zswap is disabled, do not block pages going to the swapping device */
5539 if (!zswap_is_enabled())
5540 return true;
5541
5542 for (; memcg; memcg = parent_mem_cgroup(memcg))
5543 if (!READ_ONCE(memcg->zswap_writeback))
5544 return false;
5545
5546 return true;
5547 }
5548
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5549 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5550 struct cftype *cft)
5551 {
5552 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5553
5554 mem_cgroup_flush_stats(memcg);
5555 return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5556 }
5557
zswap_max_show(struct seq_file * m,void * v)5558 static int zswap_max_show(struct seq_file *m, void *v)
5559 {
5560 return seq_puts_memcg_tunable(m,
5561 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5562 }
5563
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5564 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5565 char *buf, size_t nbytes, loff_t off)
5566 {
5567 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5568 unsigned long max;
5569 int err;
5570
5571 buf = strstrip(buf);
5572 err = page_counter_memparse(buf, "max", &max);
5573 if (err)
5574 return err;
5575
5576 xchg(&memcg->zswap_max, max);
5577
5578 return nbytes;
5579 }
5580
zswap_writeback_show(struct seq_file * m,void * v)5581 static int zswap_writeback_show(struct seq_file *m, void *v)
5582 {
5583 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5584
5585 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5586 return 0;
5587 }
5588
zswap_writeback_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5589 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5590 char *buf, size_t nbytes, loff_t off)
5591 {
5592 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5593 int zswap_writeback;
5594 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5595
5596 if (parse_ret)
5597 return parse_ret;
5598
5599 if (zswap_writeback != 0 && zswap_writeback != 1)
5600 return -EINVAL;
5601
5602 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5603 return nbytes;
5604 }
5605
5606 static struct cftype zswap_files[] = {
5607 {
5608 .name = "zswap.current",
5609 .flags = CFTYPE_NOT_ON_ROOT,
5610 .read_u64 = zswap_current_read,
5611 },
5612 {
5613 .name = "zswap.max",
5614 .flags = CFTYPE_NOT_ON_ROOT,
5615 .seq_show = zswap_max_show,
5616 .write = zswap_max_write,
5617 },
5618 {
5619 .name = "zswap.writeback",
5620 .seq_show = zswap_writeback_show,
5621 .write = zswap_writeback_write,
5622 },
5623 { } /* terminate */
5624 };
5625 #endif /* CONFIG_ZSWAP */
5626
mem_cgroup_swap_init(void)5627 static int __init mem_cgroup_swap_init(void)
5628 {
5629 if (mem_cgroup_disabled())
5630 return 0;
5631
5632 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5633 #ifdef CONFIG_MEMCG_V1
5634 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5635 #endif
5636 #ifdef CONFIG_ZSWAP
5637 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5638 #endif
5639 return 0;
5640 }
5641 subsys_initcall(mem_cgroup_swap_init);
5642
5643 #endif /* CONFIG_SWAP */
5644
mem_cgroup_node_allowed(struct mem_cgroup * memcg,int nid)5645 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
5646 {
5647 return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true;
5648 }
5649