xref: /linux/mm/memcontrol-v1.c (revision c34e9ab9a612ee8b18273398ef75c207b01f516d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 #include <linux/memcontrol.h>
4 #include <linux/swap.h>
5 #include <linux/mm_inline.h>
6 #include <linux/pagewalk.h>
7 #include <linux/backing-dev.h>
8 #include <linux/swap_cgroup.h>
9 #include <linux/eventfd.h>
10 #include <linux/poll.h>
11 #include <linux/sort.h>
12 #include <linux/file.h>
13 #include <linux/seq_buf.h>
14 
15 #include "internal.h"
16 #include "swap.h"
17 #include "memcontrol-v1.h"
18 
19 /*
20  * Cgroups above their limits are maintained in a RB-Tree, independent of
21  * their hierarchy representation
22  */
23 
24 struct mem_cgroup_tree_per_node {
25 	struct rb_root rb_root;
26 	struct rb_node *rb_rightmost;
27 	spinlock_t lock;
28 };
29 
30 struct mem_cgroup_tree {
31 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
32 };
33 
34 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
35 
36 /*
37  * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
38  * limit reclaim to prevent infinite loops, if they ever occur.
39  */
40 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
41 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
42 
43 /* for OOM */
44 struct mem_cgroup_eventfd_list {
45 	struct list_head list;
46 	struct eventfd_ctx *eventfd;
47 };
48 
49 /*
50  * cgroup_event represents events which userspace want to receive.
51  */
52 struct mem_cgroup_event {
53 	/*
54 	 * memcg which the event belongs to.
55 	 */
56 	struct mem_cgroup *memcg;
57 	/*
58 	 * eventfd to signal userspace about the event.
59 	 */
60 	struct eventfd_ctx *eventfd;
61 	/*
62 	 * Each of these stored in a list by the cgroup.
63 	 */
64 	struct list_head list;
65 	/*
66 	 * register_event() callback will be used to add new userspace
67 	 * waiter for changes related to this event.  Use eventfd_signal()
68 	 * on eventfd to send notification to userspace.
69 	 */
70 	int (*register_event)(struct mem_cgroup *memcg,
71 			      struct eventfd_ctx *eventfd, const char *args);
72 	/*
73 	 * unregister_event() callback will be called when userspace closes
74 	 * the eventfd or on cgroup removing.  This callback must be set,
75 	 * if you want provide notification functionality.
76 	 */
77 	void (*unregister_event)(struct mem_cgroup *memcg,
78 				 struct eventfd_ctx *eventfd);
79 	/*
80 	 * All fields below needed to unregister event when
81 	 * userspace closes eventfd.
82 	 */
83 	poll_table pt;
84 	wait_queue_head_t *wqh;
85 	wait_queue_entry_t wait;
86 	struct work_struct remove;
87 };
88 
89 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
90 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
91 #define MEMFILE_ATTR(val)	((val) & 0xffff)
92 
93 enum {
94 	RES_USAGE,
95 	RES_LIMIT,
96 	RES_MAX_USAGE,
97 	RES_FAILCNT,
98 	RES_SOFT_LIMIT,
99 };
100 
101 #ifdef CONFIG_LOCKDEP
102 static struct lockdep_map memcg_oom_lock_dep_map = {
103 	.name = "memcg_oom_lock",
104 };
105 #endif
106 
107 DEFINE_SPINLOCK(memcg_oom_lock);
108 
109 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
110 					 struct mem_cgroup_tree_per_node *mctz,
111 					 unsigned long new_usage_in_excess)
112 {
113 	struct rb_node **p = &mctz->rb_root.rb_node;
114 	struct rb_node *parent = NULL;
115 	struct mem_cgroup_per_node *mz_node;
116 	bool rightmost = true;
117 
118 	if (mz->on_tree)
119 		return;
120 
121 	mz->usage_in_excess = new_usage_in_excess;
122 	if (!mz->usage_in_excess)
123 		return;
124 	while (*p) {
125 		parent = *p;
126 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
127 					tree_node);
128 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
129 			p = &(*p)->rb_left;
130 			rightmost = false;
131 		} else {
132 			p = &(*p)->rb_right;
133 		}
134 	}
135 
136 	if (rightmost)
137 		mctz->rb_rightmost = &mz->tree_node;
138 
139 	rb_link_node(&mz->tree_node, parent, p);
140 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
141 	mz->on_tree = true;
142 }
143 
144 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
145 					 struct mem_cgroup_tree_per_node *mctz)
146 {
147 	if (!mz->on_tree)
148 		return;
149 
150 	if (&mz->tree_node == mctz->rb_rightmost)
151 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
152 
153 	rb_erase(&mz->tree_node, &mctz->rb_root);
154 	mz->on_tree = false;
155 }
156 
157 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
158 				       struct mem_cgroup_tree_per_node *mctz)
159 {
160 	unsigned long flags;
161 
162 	spin_lock_irqsave(&mctz->lock, flags);
163 	__mem_cgroup_remove_exceeded(mz, mctz);
164 	spin_unlock_irqrestore(&mctz->lock, flags);
165 }
166 
167 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
168 {
169 	unsigned long nr_pages = page_counter_read(&memcg->memory);
170 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
171 	unsigned long excess = 0;
172 
173 	if (nr_pages > soft_limit)
174 		excess = nr_pages - soft_limit;
175 
176 	return excess;
177 }
178 
179 static void memcg1_update_tree(struct mem_cgroup *memcg, int nid)
180 {
181 	unsigned long excess;
182 	struct mem_cgroup_per_node *mz;
183 	struct mem_cgroup_tree_per_node *mctz;
184 
185 	if (lru_gen_enabled()) {
186 		if (soft_limit_excess(memcg))
187 			lru_gen_soft_reclaim(memcg, nid);
188 		return;
189 	}
190 
191 	mctz = soft_limit_tree.rb_tree_per_node[nid];
192 	if (!mctz)
193 		return;
194 	/*
195 	 * Necessary to update all ancestors when hierarchy is used.
196 	 * because their event counter is not touched.
197 	 */
198 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
199 		mz = memcg->nodeinfo[nid];
200 		excess = soft_limit_excess(memcg);
201 		/*
202 		 * We have to update the tree if mz is on RB-tree or
203 		 * mem is over its softlimit.
204 		 */
205 		if (excess || mz->on_tree) {
206 			unsigned long flags;
207 
208 			spin_lock_irqsave(&mctz->lock, flags);
209 			/* if on-tree, remove it */
210 			if (mz->on_tree)
211 				__mem_cgroup_remove_exceeded(mz, mctz);
212 			/*
213 			 * Insert again. mz->usage_in_excess will be updated.
214 			 * If excess is 0, no tree ops.
215 			 */
216 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
217 			spin_unlock_irqrestore(&mctz->lock, flags);
218 		}
219 	}
220 }
221 
222 void memcg1_remove_from_trees(struct mem_cgroup *memcg)
223 {
224 	struct mem_cgroup_tree_per_node *mctz;
225 	struct mem_cgroup_per_node *mz;
226 	int nid;
227 
228 	for_each_node(nid) {
229 		mz = memcg->nodeinfo[nid];
230 		mctz = soft_limit_tree.rb_tree_per_node[nid];
231 		if (mctz)
232 			mem_cgroup_remove_exceeded(mz, mctz);
233 	}
234 }
235 
236 static struct mem_cgroup_per_node *
237 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
238 {
239 	struct mem_cgroup_per_node *mz;
240 
241 retry:
242 	mz = NULL;
243 	if (!mctz->rb_rightmost)
244 		goto done;		/* Nothing to reclaim from */
245 
246 	mz = rb_entry(mctz->rb_rightmost,
247 		      struct mem_cgroup_per_node, tree_node);
248 	/*
249 	 * Remove the node now but someone else can add it back,
250 	 * we will to add it back at the end of reclaim to its correct
251 	 * position in the tree.
252 	 */
253 	__mem_cgroup_remove_exceeded(mz, mctz);
254 	if (!soft_limit_excess(mz->memcg) ||
255 	    !css_tryget(&mz->memcg->css))
256 		goto retry;
257 done:
258 	return mz;
259 }
260 
261 static struct mem_cgroup_per_node *
262 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
263 {
264 	struct mem_cgroup_per_node *mz;
265 
266 	spin_lock_irq(&mctz->lock);
267 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
268 	spin_unlock_irq(&mctz->lock);
269 	return mz;
270 }
271 
272 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
273 				   pg_data_t *pgdat,
274 				   gfp_t gfp_mask,
275 				   unsigned long *total_scanned)
276 {
277 	struct mem_cgroup *victim = NULL;
278 	int total = 0;
279 	int loop = 0;
280 	unsigned long excess;
281 	unsigned long nr_scanned;
282 	struct mem_cgroup_reclaim_cookie reclaim = {
283 		.pgdat = pgdat,
284 	};
285 
286 	excess = soft_limit_excess(root_memcg);
287 
288 	while (1) {
289 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
290 		if (!victim) {
291 			loop++;
292 			if (loop >= 2) {
293 				/*
294 				 * If we have not been able to reclaim
295 				 * anything, it might because there are
296 				 * no reclaimable pages under this hierarchy
297 				 */
298 				if (!total)
299 					break;
300 				/*
301 				 * We want to do more targeted reclaim.
302 				 * excess >> 2 is not to excessive so as to
303 				 * reclaim too much, nor too less that we keep
304 				 * coming back to reclaim from this cgroup
305 				 */
306 				if (total >= (excess >> 2) ||
307 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
308 					break;
309 			}
310 			continue;
311 		}
312 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
313 					pgdat, &nr_scanned);
314 		*total_scanned += nr_scanned;
315 		if (!soft_limit_excess(root_memcg))
316 			break;
317 	}
318 	mem_cgroup_iter_break(root_memcg, victim);
319 	return total;
320 }
321 
322 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
323 					    gfp_t gfp_mask,
324 					    unsigned long *total_scanned)
325 {
326 	unsigned long nr_reclaimed = 0;
327 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
328 	unsigned long reclaimed;
329 	int loop = 0;
330 	struct mem_cgroup_tree_per_node *mctz;
331 	unsigned long excess;
332 
333 	if (lru_gen_enabled())
334 		return 0;
335 
336 	if (order > 0)
337 		return 0;
338 
339 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
340 
341 	/*
342 	 * Do not even bother to check the largest node if the root
343 	 * is empty. Do it lockless to prevent lock bouncing. Races
344 	 * are acceptable as soft limit is best effort anyway.
345 	 */
346 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
347 		return 0;
348 
349 	/*
350 	 * This loop can run a while, specially if mem_cgroup's continuously
351 	 * keep exceeding their soft limit and putting the system under
352 	 * pressure
353 	 */
354 	do {
355 		if (next_mz)
356 			mz = next_mz;
357 		else
358 			mz = mem_cgroup_largest_soft_limit_node(mctz);
359 		if (!mz)
360 			break;
361 
362 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
363 						    gfp_mask, total_scanned);
364 		nr_reclaimed += reclaimed;
365 		spin_lock_irq(&mctz->lock);
366 
367 		/*
368 		 * If we failed to reclaim anything from this memory cgroup
369 		 * it is time to move on to the next cgroup
370 		 */
371 		next_mz = NULL;
372 		if (!reclaimed)
373 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
374 
375 		excess = soft_limit_excess(mz->memcg);
376 		/*
377 		 * One school of thought says that we should not add
378 		 * back the node to the tree if reclaim returns 0.
379 		 * But our reclaim could return 0, simply because due
380 		 * to priority we are exposing a smaller subset of
381 		 * memory to reclaim from. Consider this as a longer
382 		 * term TODO.
383 		 */
384 		/* If excess == 0, no tree ops */
385 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
386 		spin_unlock_irq(&mctz->lock);
387 		css_put(&mz->memcg->css);
388 		loop++;
389 		/*
390 		 * Could not reclaim anything and there are no more
391 		 * mem cgroups to try or we seem to be looping without
392 		 * reclaiming anything.
393 		 */
394 		if (!nr_reclaimed &&
395 			(next_mz == NULL ||
396 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
397 			break;
398 	} while (!nr_reclaimed);
399 	if (next_mz)
400 		css_put(&next_mz->memcg->css);
401 	return nr_reclaimed;
402 }
403 
404 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
405 				struct cftype *cft)
406 {
407 	return 0;
408 }
409 
410 #ifdef CONFIG_MMU
411 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
412 				 struct cftype *cft, u64 val)
413 {
414 	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
415 		     "Please report your usecase to linux-mm@kvack.org if you "
416 		     "depend on this functionality.\n");
417 
418 	if (val != 0)
419 		return -EINVAL;
420 	return 0;
421 }
422 #else
423 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
424 				 struct cftype *cft, u64 val)
425 {
426 	return -ENOSYS;
427 }
428 #endif
429 
430 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
431 {
432 	struct mem_cgroup_threshold_ary *t;
433 	unsigned long usage;
434 	int i;
435 
436 	rcu_read_lock();
437 	if (!swap)
438 		t = rcu_dereference(memcg->thresholds.primary);
439 	else
440 		t = rcu_dereference(memcg->memsw_thresholds.primary);
441 
442 	if (!t)
443 		goto unlock;
444 
445 	usage = mem_cgroup_usage(memcg, swap);
446 
447 	/*
448 	 * current_threshold points to threshold just below or equal to usage.
449 	 * If it's not true, a threshold was crossed after last
450 	 * call of __mem_cgroup_threshold().
451 	 */
452 	i = t->current_threshold;
453 
454 	/*
455 	 * Iterate backward over array of thresholds starting from
456 	 * current_threshold and check if a threshold is crossed.
457 	 * If none of thresholds below usage is crossed, we read
458 	 * only one element of the array here.
459 	 */
460 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
461 		eventfd_signal(t->entries[i].eventfd);
462 
463 	/* i = current_threshold + 1 */
464 	i++;
465 
466 	/*
467 	 * Iterate forward over array of thresholds starting from
468 	 * current_threshold+1 and check if a threshold is crossed.
469 	 * If none of thresholds above usage is crossed, we read
470 	 * only one element of the array here.
471 	 */
472 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
473 		eventfd_signal(t->entries[i].eventfd);
474 
475 	/* Update current_threshold */
476 	t->current_threshold = i - 1;
477 unlock:
478 	rcu_read_unlock();
479 }
480 
481 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
482 {
483 	while (memcg) {
484 		__mem_cgroup_threshold(memcg, false);
485 		if (do_memsw_account())
486 			__mem_cgroup_threshold(memcg, true);
487 
488 		memcg = parent_mem_cgroup(memcg);
489 	}
490 }
491 
492 /* Cgroup1: threshold notifications & softlimit tree updates */
493 struct memcg1_events_percpu {
494 	unsigned long nr_page_events;
495 	unsigned long targets[MEM_CGROUP_NTARGETS];
496 };
497 
498 static void memcg1_charge_statistics(struct mem_cgroup *memcg, int nr_pages)
499 {
500 	/* pagein of a big page is an event. So, ignore page size */
501 	if (nr_pages > 0)
502 		__count_memcg_events(memcg, PGPGIN, 1);
503 	else {
504 		__count_memcg_events(memcg, PGPGOUT, 1);
505 		nr_pages = -nr_pages; /* for event */
506 	}
507 
508 	__this_cpu_add(memcg->events_percpu->nr_page_events, nr_pages);
509 }
510 
511 #define THRESHOLDS_EVENTS_TARGET 128
512 #define SOFTLIMIT_EVENTS_TARGET 1024
513 
514 static bool memcg1_event_ratelimit(struct mem_cgroup *memcg,
515 				enum mem_cgroup_events_target target)
516 {
517 	unsigned long val, next;
518 
519 	val = __this_cpu_read(memcg->events_percpu->nr_page_events);
520 	next = __this_cpu_read(memcg->events_percpu->targets[target]);
521 	/* from time_after() in jiffies.h */
522 	if ((long)(next - val) < 0) {
523 		switch (target) {
524 		case MEM_CGROUP_TARGET_THRESH:
525 			next = val + THRESHOLDS_EVENTS_TARGET;
526 			break;
527 		case MEM_CGROUP_TARGET_SOFTLIMIT:
528 			next = val + SOFTLIMIT_EVENTS_TARGET;
529 			break;
530 		default:
531 			break;
532 		}
533 		__this_cpu_write(memcg->events_percpu->targets[target], next);
534 		return true;
535 	}
536 	return false;
537 }
538 
539 /*
540  * Check events in order.
541  *
542  */
543 static void memcg1_check_events(struct mem_cgroup *memcg, int nid)
544 {
545 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
546 		return;
547 
548 	/* threshold event is triggered in finer grain than soft limit */
549 	if (unlikely(memcg1_event_ratelimit(memcg,
550 						MEM_CGROUP_TARGET_THRESH))) {
551 		bool do_softlimit;
552 
553 		do_softlimit = memcg1_event_ratelimit(memcg,
554 						MEM_CGROUP_TARGET_SOFTLIMIT);
555 		mem_cgroup_threshold(memcg);
556 		if (unlikely(do_softlimit))
557 			memcg1_update_tree(memcg, nid);
558 	}
559 }
560 
561 void memcg1_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
562 {
563 	unsigned long flags;
564 
565 	local_irq_save(flags);
566 	memcg1_charge_statistics(memcg, folio_nr_pages(folio));
567 	memcg1_check_events(memcg, folio_nid(folio));
568 	local_irq_restore(flags);
569 }
570 
571 void memcg1_swapout(struct folio *folio, struct mem_cgroup *memcg)
572 {
573 	/*
574 	 * Interrupts should be disabled here because the caller holds the
575 	 * i_pages lock which is taken with interrupts-off. It is
576 	 * important here to have the interrupts disabled because it is the
577 	 * only synchronisation we have for updating the per-CPU variables.
578 	 */
579 	preempt_disable_nested();
580 	VM_WARN_ON_IRQS_ENABLED();
581 	memcg1_charge_statistics(memcg, -folio_nr_pages(folio));
582 	preempt_enable_nested();
583 	memcg1_check_events(memcg, folio_nid(folio));
584 }
585 
586 void memcg1_uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
587 			   unsigned long nr_memory, int nid)
588 {
589 	unsigned long flags;
590 
591 	local_irq_save(flags);
592 	__count_memcg_events(memcg, PGPGOUT, pgpgout);
593 	__this_cpu_add(memcg->events_percpu->nr_page_events, nr_memory);
594 	memcg1_check_events(memcg, nid);
595 	local_irq_restore(flags);
596 }
597 
598 static int compare_thresholds(const void *a, const void *b)
599 {
600 	const struct mem_cgroup_threshold *_a = a;
601 	const struct mem_cgroup_threshold *_b = b;
602 
603 	if (_a->threshold > _b->threshold)
604 		return 1;
605 
606 	if (_a->threshold < _b->threshold)
607 		return -1;
608 
609 	return 0;
610 }
611 
612 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
613 {
614 	struct mem_cgroup_eventfd_list *ev;
615 
616 	spin_lock(&memcg_oom_lock);
617 
618 	list_for_each_entry(ev, &memcg->oom_notify, list)
619 		eventfd_signal(ev->eventfd);
620 
621 	spin_unlock(&memcg_oom_lock);
622 	return 0;
623 }
624 
625 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
626 {
627 	struct mem_cgroup *iter;
628 
629 	for_each_mem_cgroup_tree(iter, memcg)
630 		mem_cgroup_oom_notify_cb(iter);
631 }
632 
633 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
634 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
635 {
636 	struct mem_cgroup_thresholds *thresholds;
637 	struct mem_cgroup_threshold_ary *new;
638 	unsigned long threshold;
639 	unsigned long usage;
640 	int i, size, ret;
641 
642 	ret = page_counter_memparse(args, "-1", &threshold);
643 	if (ret)
644 		return ret;
645 
646 	mutex_lock(&memcg->thresholds_lock);
647 
648 	if (type == _MEM) {
649 		thresholds = &memcg->thresholds;
650 		usage = mem_cgroup_usage(memcg, false);
651 	} else if (type == _MEMSWAP) {
652 		thresholds = &memcg->memsw_thresholds;
653 		usage = mem_cgroup_usage(memcg, true);
654 	} else
655 		BUG();
656 
657 	/* Check if a threshold crossed before adding a new one */
658 	if (thresholds->primary)
659 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
660 
661 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
662 
663 	/* Allocate memory for new array of thresholds */
664 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
665 	if (!new) {
666 		ret = -ENOMEM;
667 		goto unlock;
668 	}
669 	new->size = size;
670 
671 	/* Copy thresholds (if any) to new array */
672 	if (thresholds->primary)
673 		memcpy(new->entries, thresholds->primary->entries,
674 		       flex_array_size(new, entries, size - 1));
675 
676 	/* Add new threshold */
677 	new->entries[size - 1].eventfd = eventfd;
678 	new->entries[size - 1].threshold = threshold;
679 
680 	/* Sort thresholds. Registering of new threshold isn't time-critical */
681 	sort(new->entries, size, sizeof(*new->entries),
682 			compare_thresholds, NULL);
683 
684 	/* Find current threshold */
685 	new->current_threshold = -1;
686 	for (i = 0; i < size; i++) {
687 		if (new->entries[i].threshold <= usage) {
688 			/*
689 			 * new->current_threshold will not be used until
690 			 * rcu_assign_pointer(), so it's safe to increment
691 			 * it here.
692 			 */
693 			++new->current_threshold;
694 		} else
695 			break;
696 	}
697 
698 	/* Free old spare buffer and save old primary buffer as spare */
699 	kfree(thresholds->spare);
700 	thresholds->spare = thresholds->primary;
701 
702 	rcu_assign_pointer(thresholds->primary, new);
703 
704 	/* To be sure that nobody uses thresholds */
705 	synchronize_rcu();
706 
707 unlock:
708 	mutex_unlock(&memcg->thresholds_lock);
709 
710 	return ret;
711 }
712 
713 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
714 	struct eventfd_ctx *eventfd, const char *args)
715 {
716 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
717 }
718 
719 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
720 	struct eventfd_ctx *eventfd, const char *args)
721 {
722 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
723 }
724 
725 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
726 	struct eventfd_ctx *eventfd, enum res_type type)
727 {
728 	struct mem_cgroup_thresholds *thresholds;
729 	struct mem_cgroup_threshold_ary *new;
730 	unsigned long usage;
731 	int i, j, size, entries;
732 
733 	mutex_lock(&memcg->thresholds_lock);
734 
735 	if (type == _MEM) {
736 		thresholds = &memcg->thresholds;
737 		usage = mem_cgroup_usage(memcg, false);
738 	} else if (type == _MEMSWAP) {
739 		thresholds = &memcg->memsw_thresholds;
740 		usage = mem_cgroup_usage(memcg, true);
741 	} else
742 		BUG();
743 
744 	if (!thresholds->primary)
745 		goto unlock;
746 
747 	/* Check if a threshold crossed before removing */
748 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
749 
750 	/* Calculate new number of threshold */
751 	size = entries = 0;
752 	for (i = 0; i < thresholds->primary->size; i++) {
753 		if (thresholds->primary->entries[i].eventfd != eventfd)
754 			size++;
755 		else
756 			entries++;
757 	}
758 
759 	new = thresholds->spare;
760 
761 	/* If no items related to eventfd have been cleared, nothing to do */
762 	if (!entries)
763 		goto unlock;
764 
765 	/* Set thresholds array to NULL if we don't have thresholds */
766 	if (!size) {
767 		kfree(new);
768 		new = NULL;
769 		goto swap_buffers;
770 	}
771 
772 	new->size = size;
773 
774 	/* Copy thresholds and find current threshold */
775 	new->current_threshold = -1;
776 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
777 		if (thresholds->primary->entries[i].eventfd == eventfd)
778 			continue;
779 
780 		new->entries[j] = thresholds->primary->entries[i];
781 		if (new->entries[j].threshold <= usage) {
782 			/*
783 			 * new->current_threshold will not be used
784 			 * until rcu_assign_pointer(), so it's safe to increment
785 			 * it here.
786 			 */
787 			++new->current_threshold;
788 		}
789 		j++;
790 	}
791 
792 swap_buffers:
793 	/* Swap primary and spare array */
794 	thresholds->spare = thresholds->primary;
795 
796 	rcu_assign_pointer(thresholds->primary, new);
797 
798 	/* To be sure that nobody uses thresholds */
799 	synchronize_rcu();
800 
801 	/* If all events are unregistered, free the spare array */
802 	if (!new) {
803 		kfree(thresholds->spare);
804 		thresholds->spare = NULL;
805 	}
806 unlock:
807 	mutex_unlock(&memcg->thresholds_lock);
808 }
809 
810 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
811 	struct eventfd_ctx *eventfd)
812 {
813 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
814 }
815 
816 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
817 	struct eventfd_ctx *eventfd)
818 {
819 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
820 }
821 
822 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
823 	struct eventfd_ctx *eventfd, const char *args)
824 {
825 	struct mem_cgroup_eventfd_list *event;
826 
827 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
828 	if (!event)
829 		return -ENOMEM;
830 
831 	spin_lock(&memcg_oom_lock);
832 
833 	event->eventfd = eventfd;
834 	list_add(&event->list, &memcg->oom_notify);
835 
836 	/* already in OOM ? */
837 	if (memcg->under_oom)
838 		eventfd_signal(eventfd);
839 	spin_unlock(&memcg_oom_lock);
840 
841 	return 0;
842 }
843 
844 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
845 	struct eventfd_ctx *eventfd)
846 {
847 	struct mem_cgroup_eventfd_list *ev, *tmp;
848 
849 	spin_lock(&memcg_oom_lock);
850 
851 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
852 		if (ev->eventfd == eventfd) {
853 			list_del(&ev->list);
854 			kfree(ev);
855 		}
856 	}
857 
858 	spin_unlock(&memcg_oom_lock);
859 }
860 
861 /*
862  * DO NOT USE IN NEW FILES.
863  *
864  * "cgroup.event_control" implementation.
865  *
866  * This is way over-engineered.  It tries to support fully configurable
867  * events for each user.  Such level of flexibility is completely
868  * unnecessary especially in the light of the planned unified hierarchy.
869  *
870  * Please deprecate this and replace with something simpler if at all
871  * possible.
872  */
873 
874 /*
875  * Unregister event and free resources.
876  *
877  * Gets called from workqueue.
878  */
879 static void memcg_event_remove(struct work_struct *work)
880 {
881 	struct mem_cgroup_event *event =
882 		container_of(work, struct mem_cgroup_event, remove);
883 	struct mem_cgroup *memcg = event->memcg;
884 
885 	remove_wait_queue(event->wqh, &event->wait);
886 
887 	event->unregister_event(memcg, event->eventfd);
888 
889 	/* Notify userspace the event is going away. */
890 	eventfd_signal(event->eventfd);
891 
892 	eventfd_ctx_put(event->eventfd);
893 	kfree(event);
894 	css_put(&memcg->css);
895 }
896 
897 /*
898  * Gets called on EPOLLHUP on eventfd when user closes it.
899  *
900  * Called with wqh->lock held and interrupts disabled.
901  */
902 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
903 			    int sync, void *key)
904 {
905 	struct mem_cgroup_event *event =
906 		container_of(wait, struct mem_cgroup_event, wait);
907 	struct mem_cgroup *memcg = event->memcg;
908 	__poll_t flags = key_to_poll(key);
909 
910 	if (flags & EPOLLHUP) {
911 		/*
912 		 * If the event has been detached at cgroup removal, we
913 		 * can simply return knowing the other side will cleanup
914 		 * for us.
915 		 *
916 		 * We can't race against event freeing since the other
917 		 * side will require wqh->lock via remove_wait_queue(),
918 		 * which we hold.
919 		 */
920 		spin_lock(&memcg->event_list_lock);
921 		if (!list_empty(&event->list)) {
922 			list_del_init(&event->list);
923 			/*
924 			 * We are in atomic context, but cgroup_event_remove()
925 			 * may sleep, so we have to call it in workqueue.
926 			 */
927 			schedule_work(&event->remove);
928 		}
929 		spin_unlock(&memcg->event_list_lock);
930 	}
931 
932 	return 0;
933 }
934 
935 static void memcg_event_ptable_queue_proc(struct file *file,
936 		wait_queue_head_t *wqh, poll_table *pt)
937 {
938 	struct mem_cgroup_event *event =
939 		container_of(pt, struct mem_cgroup_event, pt);
940 
941 	event->wqh = wqh;
942 	add_wait_queue(wqh, &event->wait);
943 }
944 
945 /*
946  * DO NOT USE IN NEW FILES.
947  *
948  * Parse input and register new cgroup event handler.
949  *
950  * Input must be in format '<event_fd> <control_fd> <args>'.
951  * Interpretation of args is defined by control file implementation.
952  */
953 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
954 					 char *buf, size_t nbytes, loff_t off)
955 {
956 	struct cgroup_subsys_state *css = of_css(of);
957 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
958 	struct mem_cgroup_event *event;
959 	struct cgroup_subsys_state *cfile_css;
960 	unsigned int efd, cfd;
961 	struct dentry *cdentry;
962 	const char *name;
963 	char *endp;
964 	int ret;
965 
966 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
967 		return -EOPNOTSUPP;
968 
969 	buf = strstrip(buf);
970 
971 	efd = simple_strtoul(buf, &endp, 10);
972 	if (*endp != ' ')
973 		return -EINVAL;
974 	buf = endp + 1;
975 
976 	cfd = simple_strtoul(buf, &endp, 10);
977 	if (*endp == '\0')
978 		buf = endp;
979 	else if (*endp == ' ')
980 		buf = endp + 1;
981 	else
982 		return -EINVAL;
983 
984 	CLASS(fd, efile)(efd);
985 	if (fd_empty(efile))
986 		return -EBADF;
987 
988 	CLASS(fd, cfile)(cfd);
989 
990 	event = kzalloc(sizeof(*event), GFP_KERNEL);
991 	if (!event)
992 		return -ENOMEM;
993 
994 	event->memcg = memcg;
995 	INIT_LIST_HEAD(&event->list);
996 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
997 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
998 	INIT_WORK(&event->remove, memcg_event_remove);
999 
1000 	event->eventfd = eventfd_ctx_fileget(fd_file(efile));
1001 	if (IS_ERR(event->eventfd)) {
1002 		ret = PTR_ERR(event->eventfd);
1003 		goto out_kfree;
1004 	}
1005 
1006 	if (fd_empty(cfile)) {
1007 		ret = -EBADF;
1008 		goto out_put_eventfd;
1009 	}
1010 
1011 	/* the process need read permission on control file */
1012 	/* AV: shouldn't we check that it's been opened for read instead? */
1013 	ret = file_permission(fd_file(cfile), MAY_READ);
1014 	if (ret < 0)
1015 		goto out_put_eventfd;
1016 
1017 	/*
1018 	 * The control file must be a regular cgroup1 file. As a regular cgroup
1019 	 * file can't be renamed, it's safe to access its name afterwards.
1020 	 */
1021 	cdentry = fd_file(cfile)->f_path.dentry;
1022 	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
1023 		ret = -EINVAL;
1024 		goto out_put_eventfd;
1025 	}
1026 
1027 	/*
1028 	 * Determine the event callbacks and set them in @event.  This used
1029 	 * to be done via struct cftype but cgroup core no longer knows
1030 	 * about these events.  The following is crude but the whole thing
1031 	 * is for compatibility anyway.
1032 	 *
1033 	 * DO NOT ADD NEW FILES.
1034 	 */
1035 	name = cdentry->d_name.name;
1036 
1037 	if (!strcmp(name, "memory.usage_in_bytes")) {
1038 		event->register_event = mem_cgroup_usage_register_event;
1039 		event->unregister_event = mem_cgroup_usage_unregister_event;
1040 	} else if (!strcmp(name, "memory.oom_control")) {
1041 		pr_warn_once("oom_control is deprecated and will be removed. "
1042 			     "Please report your usecase to linux-mm-@kvack.org"
1043 			     " if you depend on this functionality. \n");
1044 		event->register_event = mem_cgroup_oom_register_event;
1045 		event->unregister_event = mem_cgroup_oom_unregister_event;
1046 	} else if (!strcmp(name, "memory.pressure_level")) {
1047 		pr_warn_once("pressure_level is deprecated and will be removed. "
1048 			     "Please report your usecase to linux-mm-@kvack.org "
1049 			     "if you depend on this functionality. \n");
1050 		event->register_event = vmpressure_register_event;
1051 		event->unregister_event = vmpressure_unregister_event;
1052 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
1053 		event->register_event = memsw_cgroup_usage_register_event;
1054 		event->unregister_event = memsw_cgroup_usage_unregister_event;
1055 	} else {
1056 		ret = -EINVAL;
1057 		goto out_put_eventfd;
1058 	}
1059 
1060 	/*
1061 	 * Verify @cfile should belong to @css.  Also, remaining events are
1062 	 * automatically removed on cgroup destruction but the removal is
1063 	 * asynchronous, so take an extra ref on @css.
1064 	 */
1065 	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
1066 					       &memory_cgrp_subsys);
1067 	ret = -EINVAL;
1068 	if (IS_ERR(cfile_css))
1069 		goto out_put_eventfd;
1070 	if (cfile_css != css)
1071 		goto out_put_css;
1072 
1073 	ret = event->register_event(memcg, event->eventfd, buf);
1074 	if (ret)
1075 		goto out_put_css;
1076 
1077 	vfs_poll(fd_file(efile), &event->pt);
1078 
1079 	spin_lock_irq(&memcg->event_list_lock);
1080 	list_add(&event->list, &memcg->event_list);
1081 	spin_unlock_irq(&memcg->event_list_lock);
1082 	return nbytes;
1083 
1084 out_put_css:
1085 	css_put(cfile_css);
1086 out_put_eventfd:
1087 	eventfd_ctx_put(event->eventfd);
1088 out_kfree:
1089 	kfree(event);
1090 	return ret;
1091 }
1092 
1093 void memcg1_memcg_init(struct mem_cgroup *memcg)
1094 {
1095 	INIT_LIST_HEAD(&memcg->oom_notify);
1096 	mutex_init(&memcg->thresholds_lock);
1097 	INIT_LIST_HEAD(&memcg->event_list);
1098 	spin_lock_init(&memcg->event_list_lock);
1099 }
1100 
1101 void memcg1_css_offline(struct mem_cgroup *memcg)
1102 {
1103 	struct mem_cgroup_event *event, *tmp;
1104 
1105 	/*
1106 	 * Unregister events and notify userspace.
1107 	 * Notify userspace about cgroup removing only after rmdir of cgroup
1108 	 * directory to avoid race between userspace and kernelspace.
1109 	 */
1110 	spin_lock_irq(&memcg->event_list_lock);
1111 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
1112 		list_del_init(&event->list);
1113 		schedule_work(&event->remove);
1114 	}
1115 	spin_unlock_irq(&memcg->event_list_lock);
1116 }
1117 
1118 /*
1119  * Check OOM-Killer is already running under our hierarchy.
1120  * If someone is running, return false.
1121  */
1122 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1123 {
1124 	struct mem_cgroup *iter, *failed = NULL;
1125 
1126 	spin_lock(&memcg_oom_lock);
1127 
1128 	for_each_mem_cgroup_tree(iter, memcg) {
1129 		if (iter->oom_lock) {
1130 			/*
1131 			 * this subtree of our hierarchy is already locked
1132 			 * so we cannot give a lock.
1133 			 */
1134 			failed = iter;
1135 			mem_cgroup_iter_break(memcg, iter);
1136 			break;
1137 		} else
1138 			iter->oom_lock = true;
1139 	}
1140 
1141 	if (failed) {
1142 		/*
1143 		 * OK, we failed to lock the whole subtree so we have
1144 		 * to clean up what we set up to the failing subtree
1145 		 */
1146 		for_each_mem_cgroup_tree(iter, memcg) {
1147 			if (iter == failed) {
1148 				mem_cgroup_iter_break(memcg, iter);
1149 				break;
1150 			}
1151 			iter->oom_lock = false;
1152 		}
1153 	} else
1154 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1155 
1156 	spin_unlock(&memcg_oom_lock);
1157 
1158 	return !failed;
1159 }
1160 
1161 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1162 {
1163 	struct mem_cgroup *iter;
1164 
1165 	spin_lock(&memcg_oom_lock);
1166 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1167 	for_each_mem_cgroup_tree(iter, memcg)
1168 		iter->oom_lock = false;
1169 	spin_unlock(&memcg_oom_lock);
1170 }
1171 
1172 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1173 {
1174 	struct mem_cgroup *iter;
1175 
1176 	spin_lock(&memcg_oom_lock);
1177 	for_each_mem_cgroup_tree(iter, memcg)
1178 		iter->under_oom++;
1179 	spin_unlock(&memcg_oom_lock);
1180 }
1181 
1182 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1183 {
1184 	struct mem_cgroup *iter;
1185 
1186 	/*
1187 	 * Be careful about under_oom underflows because a child memcg
1188 	 * could have been added after mem_cgroup_mark_under_oom.
1189 	 */
1190 	spin_lock(&memcg_oom_lock);
1191 	for_each_mem_cgroup_tree(iter, memcg)
1192 		if (iter->under_oom > 0)
1193 			iter->under_oom--;
1194 	spin_unlock(&memcg_oom_lock);
1195 }
1196 
1197 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1198 
1199 struct oom_wait_info {
1200 	struct mem_cgroup *memcg;
1201 	wait_queue_entry_t	wait;
1202 };
1203 
1204 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1205 	unsigned mode, int sync, void *arg)
1206 {
1207 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1208 	struct mem_cgroup *oom_wait_memcg;
1209 	struct oom_wait_info *oom_wait_info;
1210 
1211 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1212 	oom_wait_memcg = oom_wait_info->memcg;
1213 
1214 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1215 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1216 		return 0;
1217 	return autoremove_wake_function(wait, mode, sync, arg);
1218 }
1219 
1220 void memcg1_oom_recover(struct mem_cgroup *memcg)
1221 {
1222 	/*
1223 	 * For the following lockless ->under_oom test, the only required
1224 	 * guarantee is that it must see the state asserted by an OOM when
1225 	 * this function is called as a result of userland actions
1226 	 * triggered by the notification of the OOM.  This is trivially
1227 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1228 	 * triggering notification.
1229 	 */
1230 	if (memcg && memcg->under_oom)
1231 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1232 }
1233 
1234 /**
1235  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1236  * @handle: actually kill/wait or just clean up the OOM state
1237  *
1238  * This has to be called at the end of a page fault if the memcg OOM
1239  * handler was enabled.
1240  *
1241  * Memcg supports userspace OOM handling where failed allocations must
1242  * sleep on a waitqueue until the userspace task resolves the
1243  * situation.  Sleeping directly in the charge context with all kinds
1244  * of locks held is not a good idea, instead we remember an OOM state
1245  * in the task and mem_cgroup_oom_synchronize() has to be called at
1246  * the end of the page fault to complete the OOM handling.
1247  *
1248  * Returns %true if an ongoing memcg OOM situation was detected and
1249  * completed, %false otherwise.
1250  */
1251 bool mem_cgroup_oom_synchronize(bool handle)
1252 {
1253 	struct mem_cgroup *memcg = current->memcg_in_oom;
1254 	struct oom_wait_info owait;
1255 	bool locked;
1256 
1257 	/* OOM is global, do not handle */
1258 	if (!memcg)
1259 		return false;
1260 
1261 	if (!handle)
1262 		goto cleanup;
1263 
1264 	owait.memcg = memcg;
1265 	owait.wait.flags = 0;
1266 	owait.wait.func = memcg_oom_wake_function;
1267 	owait.wait.private = current;
1268 	INIT_LIST_HEAD(&owait.wait.entry);
1269 
1270 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1271 	mem_cgroup_mark_under_oom(memcg);
1272 
1273 	locked = mem_cgroup_oom_trylock(memcg);
1274 
1275 	if (locked)
1276 		mem_cgroup_oom_notify(memcg);
1277 
1278 	schedule();
1279 	mem_cgroup_unmark_under_oom(memcg);
1280 	finish_wait(&memcg_oom_waitq, &owait.wait);
1281 
1282 	if (locked)
1283 		mem_cgroup_oom_unlock(memcg);
1284 cleanup:
1285 	current->memcg_in_oom = NULL;
1286 	css_put(&memcg->css);
1287 	return true;
1288 }
1289 
1290 
1291 bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked)
1292 {
1293 	/*
1294 	 * We are in the middle of the charge context here, so we
1295 	 * don't want to block when potentially sitting on a callstack
1296 	 * that holds all kinds of filesystem and mm locks.
1297 	 *
1298 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1299 	 * handling until the charge can succeed; remember the context and put
1300 	 * the task to sleep at the end of the page fault when all locks are
1301 	 * released.
1302 	 *
1303 	 * On the other hand, in-kernel OOM killer allows for an async victim
1304 	 * memory reclaim (oom_reaper) and that means that we are not solely
1305 	 * relying on the oom victim to make a forward progress and we can
1306 	 * invoke the oom killer here.
1307 	 *
1308 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1309 	 * victim and then we have to bail out from the charge path.
1310 	 */
1311 	if (READ_ONCE(memcg->oom_kill_disable)) {
1312 		if (current->in_user_fault) {
1313 			css_get(&memcg->css);
1314 			current->memcg_in_oom = memcg;
1315 		}
1316 		return false;
1317 	}
1318 
1319 	mem_cgroup_mark_under_oom(memcg);
1320 
1321 	*locked = mem_cgroup_oom_trylock(memcg);
1322 
1323 	if (*locked)
1324 		mem_cgroup_oom_notify(memcg);
1325 
1326 	mem_cgroup_unmark_under_oom(memcg);
1327 
1328 	return true;
1329 }
1330 
1331 void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked)
1332 {
1333 	if (locked)
1334 		mem_cgroup_oom_unlock(memcg);
1335 }
1336 
1337 static DEFINE_MUTEX(memcg_max_mutex);
1338 
1339 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
1340 				 unsigned long max, bool memsw)
1341 {
1342 	bool enlarge = false;
1343 	bool drained = false;
1344 	int ret;
1345 	bool limits_invariant;
1346 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
1347 
1348 	do {
1349 		if (signal_pending(current)) {
1350 			ret = -EINTR;
1351 			break;
1352 		}
1353 
1354 		mutex_lock(&memcg_max_mutex);
1355 		/*
1356 		 * Make sure that the new limit (memsw or memory limit) doesn't
1357 		 * break our basic invariant rule memory.max <= memsw.max.
1358 		 */
1359 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
1360 					   max <= memcg->memsw.max;
1361 		if (!limits_invariant) {
1362 			mutex_unlock(&memcg_max_mutex);
1363 			ret = -EINVAL;
1364 			break;
1365 		}
1366 		if (max > counter->max)
1367 			enlarge = true;
1368 		ret = page_counter_set_max(counter, max);
1369 		mutex_unlock(&memcg_max_mutex);
1370 
1371 		if (!ret)
1372 			break;
1373 
1374 		if (!drained) {
1375 			drain_all_stock(memcg);
1376 			drained = true;
1377 			continue;
1378 		}
1379 
1380 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
1381 				memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) {
1382 			ret = -EBUSY;
1383 			break;
1384 		}
1385 	} while (true);
1386 
1387 	if (!ret && enlarge)
1388 		memcg1_oom_recover(memcg);
1389 
1390 	return ret;
1391 }
1392 
1393 /*
1394  * Reclaims as many pages from the given memcg as possible.
1395  *
1396  * Caller is responsible for holding css reference for memcg.
1397  */
1398 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
1399 {
1400 	int nr_retries = MAX_RECLAIM_RETRIES;
1401 
1402 	/* we call try-to-free pages for make this cgroup empty */
1403 	lru_add_drain_all();
1404 
1405 	drain_all_stock(memcg);
1406 
1407 	/* try to free all pages in this cgroup */
1408 	while (nr_retries && page_counter_read(&memcg->memory)) {
1409 		if (signal_pending(current))
1410 			return -EINTR;
1411 
1412 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
1413 						  MEMCG_RECLAIM_MAY_SWAP, NULL))
1414 			nr_retries--;
1415 	}
1416 
1417 	return 0;
1418 }
1419 
1420 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
1421 					    char *buf, size_t nbytes,
1422 					    loff_t off)
1423 {
1424 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
1425 
1426 	if (mem_cgroup_is_root(memcg))
1427 		return -EINVAL;
1428 	return mem_cgroup_force_empty(memcg) ?: nbytes;
1429 }
1430 
1431 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
1432 				     struct cftype *cft)
1433 {
1434 	return 1;
1435 }
1436 
1437 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
1438 				      struct cftype *cft, u64 val)
1439 {
1440 	if (val == 1)
1441 		return 0;
1442 
1443 	pr_warn_once("Non-hierarchical mode is deprecated. "
1444 		     "Please report your usecase to linux-mm@kvack.org if you "
1445 		     "depend on this functionality.\n");
1446 
1447 	return -EINVAL;
1448 }
1449 
1450 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
1451 			       struct cftype *cft)
1452 {
1453 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1454 	struct page_counter *counter;
1455 
1456 	switch (MEMFILE_TYPE(cft->private)) {
1457 	case _MEM:
1458 		counter = &memcg->memory;
1459 		break;
1460 	case _MEMSWAP:
1461 		counter = &memcg->memsw;
1462 		break;
1463 	case _KMEM:
1464 		counter = &memcg->kmem;
1465 		break;
1466 	case _TCP:
1467 		counter = &memcg->tcpmem;
1468 		break;
1469 	default:
1470 		BUG();
1471 	}
1472 
1473 	switch (MEMFILE_ATTR(cft->private)) {
1474 	case RES_USAGE:
1475 		if (counter == &memcg->memory)
1476 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
1477 		if (counter == &memcg->memsw)
1478 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
1479 		return (u64)page_counter_read(counter) * PAGE_SIZE;
1480 	case RES_LIMIT:
1481 		return (u64)counter->max * PAGE_SIZE;
1482 	case RES_MAX_USAGE:
1483 		return (u64)counter->watermark * PAGE_SIZE;
1484 	case RES_FAILCNT:
1485 		return counter->failcnt;
1486 	case RES_SOFT_LIMIT:
1487 		return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
1488 	default:
1489 		BUG();
1490 	}
1491 }
1492 
1493 /*
1494  * This function doesn't do anything useful. Its only job is to provide a read
1495  * handler for a file so that cgroup_file_mode() will add read permissions.
1496  */
1497 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
1498 				     __always_unused void *v)
1499 {
1500 	return -EINVAL;
1501 }
1502 
1503 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
1504 {
1505 	int ret;
1506 
1507 	mutex_lock(&memcg_max_mutex);
1508 
1509 	ret = page_counter_set_max(&memcg->tcpmem, max);
1510 	if (ret)
1511 		goto out;
1512 
1513 	if (!memcg->tcpmem_active) {
1514 		/*
1515 		 * The active flag needs to be written after the static_key
1516 		 * update. This is what guarantees that the socket activation
1517 		 * function is the last one to run. See mem_cgroup_sk_alloc()
1518 		 * for details, and note that we don't mark any socket as
1519 		 * belonging to this memcg until that flag is up.
1520 		 *
1521 		 * We need to do this, because static_keys will span multiple
1522 		 * sites, but we can't control their order. If we mark a socket
1523 		 * as accounted, but the accounting functions are not patched in
1524 		 * yet, we'll lose accounting.
1525 		 *
1526 		 * We never race with the readers in mem_cgroup_sk_alloc(),
1527 		 * because when this value change, the code to process it is not
1528 		 * patched in yet.
1529 		 */
1530 		static_branch_inc(&memcg_sockets_enabled_key);
1531 		memcg->tcpmem_active = true;
1532 	}
1533 out:
1534 	mutex_unlock(&memcg_max_mutex);
1535 	return ret;
1536 }
1537 
1538 /*
1539  * The user of this function is...
1540  * RES_LIMIT.
1541  */
1542 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
1543 				char *buf, size_t nbytes, loff_t off)
1544 {
1545 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
1546 	unsigned long nr_pages;
1547 	int ret;
1548 
1549 	buf = strstrip(buf);
1550 	ret = page_counter_memparse(buf, "-1", &nr_pages);
1551 	if (ret)
1552 		return ret;
1553 
1554 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
1555 	case RES_LIMIT:
1556 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
1557 			ret = -EINVAL;
1558 			break;
1559 		}
1560 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
1561 		case _MEM:
1562 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
1563 			break;
1564 		case _MEMSWAP:
1565 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
1566 			break;
1567 		case _KMEM:
1568 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
1569 				     "Writing any value to this file has no effect. "
1570 				     "Please report your usecase to linux-mm@kvack.org if you "
1571 				     "depend on this functionality.\n");
1572 			ret = 0;
1573 			break;
1574 		case _TCP:
1575 			pr_warn_once("kmem.tcp.limit_in_bytes is deprecated and will be removed. "
1576 				     "Please report your usecase to linux-mm@kvack.org if you "
1577 				     "depend on this functionality.\n");
1578 			ret = memcg_update_tcp_max(memcg, nr_pages);
1579 			break;
1580 		}
1581 		break;
1582 	case RES_SOFT_LIMIT:
1583 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1584 			ret = -EOPNOTSUPP;
1585 		} else {
1586 			pr_warn_once("soft_limit_in_bytes is deprecated and will be removed. "
1587 				     "Please report your usecase to linux-mm@kvack.org if you "
1588 				     "depend on this functionality.\n");
1589 			WRITE_ONCE(memcg->soft_limit, nr_pages);
1590 			ret = 0;
1591 		}
1592 		break;
1593 	}
1594 	return ret ?: nbytes;
1595 }
1596 
1597 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
1598 				size_t nbytes, loff_t off)
1599 {
1600 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
1601 	struct page_counter *counter;
1602 
1603 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
1604 	case _MEM:
1605 		counter = &memcg->memory;
1606 		break;
1607 	case _MEMSWAP:
1608 		counter = &memcg->memsw;
1609 		break;
1610 	case _KMEM:
1611 		counter = &memcg->kmem;
1612 		break;
1613 	case _TCP:
1614 		counter = &memcg->tcpmem;
1615 		break;
1616 	default:
1617 		BUG();
1618 	}
1619 
1620 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
1621 	case RES_MAX_USAGE:
1622 		page_counter_reset_watermark(counter);
1623 		break;
1624 	case RES_FAILCNT:
1625 		counter->failcnt = 0;
1626 		break;
1627 	default:
1628 		BUG();
1629 	}
1630 
1631 	return nbytes;
1632 }
1633 
1634 #ifdef CONFIG_NUMA
1635 
1636 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
1637 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
1638 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
1639 
1640 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
1641 				int nid, unsigned int lru_mask, bool tree)
1642 {
1643 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
1644 	unsigned long nr = 0;
1645 	enum lru_list lru;
1646 
1647 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
1648 
1649 	for_each_lru(lru) {
1650 		if (!(BIT(lru) & lru_mask))
1651 			continue;
1652 		if (tree)
1653 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
1654 		else
1655 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
1656 	}
1657 	return nr;
1658 }
1659 
1660 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
1661 					     unsigned int lru_mask,
1662 					     bool tree)
1663 {
1664 	unsigned long nr = 0;
1665 	enum lru_list lru;
1666 
1667 	for_each_lru(lru) {
1668 		if (!(BIT(lru) & lru_mask))
1669 			continue;
1670 		if (tree)
1671 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
1672 		else
1673 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
1674 	}
1675 	return nr;
1676 }
1677 
1678 static int memcg_numa_stat_show(struct seq_file *m, void *v)
1679 {
1680 	struct numa_stat {
1681 		const char *name;
1682 		unsigned int lru_mask;
1683 	};
1684 
1685 	static const struct numa_stat stats[] = {
1686 		{ "total", LRU_ALL },
1687 		{ "file", LRU_ALL_FILE },
1688 		{ "anon", LRU_ALL_ANON },
1689 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
1690 	};
1691 	const struct numa_stat *stat;
1692 	int nid;
1693 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1694 
1695 	mem_cgroup_flush_stats(memcg);
1696 
1697 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
1698 		seq_printf(m, "%s=%lu", stat->name,
1699 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
1700 						   false));
1701 		for_each_node_state(nid, N_MEMORY)
1702 			seq_printf(m, " N%d=%lu", nid,
1703 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
1704 							stat->lru_mask, false));
1705 		seq_putc(m, '\n');
1706 	}
1707 
1708 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
1709 
1710 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
1711 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
1712 						   true));
1713 		for_each_node_state(nid, N_MEMORY)
1714 			seq_printf(m, " N%d=%lu", nid,
1715 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
1716 							stat->lru_mask, true));
1717 		seq_putc(m, '\n');
1718 	}
1719 
1720 	return 0;
1721 }
1722 #endif /* CONFIG_NUMA */
1723 
1724 static const unsigned int memcg1_stats[] = {
1725 	NR_FILE_PAGES,
1726 	NR_ANON_MAPPED,
1727 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1728 	NR_ANON_THPS,
1729 #endif
1730 	NR_SHMEM,
1731 	NR_FILE_MAPPED,
1732 	NR_FILE_DIRTY,
1733 	NR_WRITEBACK,
1734 	WORKINGSET_REFAULT_ANON,
1735 	WORKINGSET_REFAULT_FILE,
1736 #ifdef CONFIG_SWAP
1737 	MEMCG_SWAP,
1738 	NR_SWAPCACHE,
1739 #endif
1740 };
1741 
1742 static const char *const memcg1_stat_names[] = {
1743 	"cache",
1744 	"rss",
1745 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1746 	"rss_huge",
1747 #endif
1748 	"shmem",
1749 	"mapped_file",
1750 	"dirty",
1751 	"writeback",
1752 	"workingset_refault_anon",
1753 	"workingset_refault_file",
1754 #ifdef CONFIG_SWAP
1755 	"swap",
1756 	"swapcached",
1757 #endif
1758 };
1759 
1760 /* Universal VM events cgroup1 shows, original sort order */
1761 static const unsigned int memcg1_events[] = {
1762 	PGPGIN,
1763 	PGPGOUT,
1764 	PGFAULT,
1765 	PGMAJFAULT,
1766 };
1767 
1768 void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1769 {
1770 	unsigned long memory, memsw;
1771 	struct mem_cgroup *mi;
1772 	unsigned int i;
1773 
1774 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
1775 
1776 	mem_cgroup_flush_stats(memcg);
1777 
1778 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1779 		unsigned long nr;
1780 
1781 		nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
1782 		seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
1783 	}
1784 
1785 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
1786 		seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
1787 			       memcg_events_local(memcg, memcg1_events[i]));
1788 
1789 	for (i = 0; i < NR_LRU_LISTS; i++)
1790 		seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
1791 			       memcg_page_state_local(memcg, NR_LRU_BASE + i) *
1792 			       PAGE_SIZE);
1793 
1794 	/* Hierarchical information */
1795 	memory = memsw = PAGE_COUNTER_MAX;
1796 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
1797 		memory = min(memory, READ_ONCE(mi->memory.max));
1798 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
1799 	}
1800 	seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
1801 		       (u64)memory * PAGE_SIZE);
1802 	seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
1803 		       (u64)memsw * PAGE_SIZE);
1804 
1805 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1806 		unsigned long nr;
1807 
1808 		nr = memcg_page_state_output(memcg, memcg1_stats[i]);
1809 		seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
1810 			       (u64)nr);
1811 	}
1812 
1813 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
1814 		seq_buf_printf(s, "total_%s %llu\n",
1815 			       vm_event_name(memcg1_events[i]),
1816 			       (u64)memcg_events(memcg, memcg1_events[i]));
1817 
1818 	for (i = 0; i < NR_LRU_LISTS; i++)
1819 		seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
1820 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1821 			       PAGE_SIZE);
1822 
1823 #ifdef CONFIG_DEBUG_VM
1824 	{
1825 		pg_data_t *pgdat;
1826 		struct mem_cgroup_per_node *mz;
1827 		unsigned long anon_cost = 0;
1828 		unsigned long file_cost = 0;
1829 
1830 		for_each_online_pgdat(pgdat) {
1831 			mz = memcg->nodeinfo[pgdat->node_id];
1832 
1833 			anon_cost += mz->lruvec.anon_cost;
1834 			file_cost += mz->lruvec.file_cost;
1835 		}
1836 		seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
1837 		seq_buf_printf(s, "file_cost %lu\n", file_cost);
1838 	}
1839 #endif
1840 }
1841 
1842 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
1843 				      struct cftype *cft)
1844 {
1845 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1846 
1847 	return mem_cgroup_swappiness(memcg);
1848 }
1849 
1850 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
1851 				       struct cftype *cft, u64 val)
1852 {
1853 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1854 
1855 	if (val > MAX_SWAPPINESS)
1856 		return -EINVAL;
1857 
1858 	if (!mem_cgroup_is_root(memcg))
1859 		WRITE_ONCE(memcg->swappiness, val);
1860 	else
1861 		WRITE_ONCE(vm_swappiness, val);
1862 
1863 	return 0;
1864 }
1865 
1866 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
1867 {
1868 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
1869 
1870 	seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
1871 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
1872 	seq_printf(sf, "oom_kill %lu\n",
1873 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
1874 	return 0;
1875 }
1876 
1877 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
1878 	struct cftype *cft, u64 val)
1879 {
1880 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1881 
1882 	pr_warn_once("oom_control is deprecated and will be removed. "
1883 		     "Please report your usecase to linux-mm-@kvack.org if you "
1884 		     "depend on this functionality. \n");
1885 
1886 	/* cannot set to root cgroup and only 0 and 1 are allowed */
1887 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
1888 		return -EINVAL;
1889 
1890 	WRITE_ONCE(memcg->oom_kill_disable, val);
1891 	if (!val)
1892 		memcg1_oom_recover(memcg);
1893 
1894 	return 0;
1895 }
1896 
1897 #ifdef CONFIG_SLUB_DEBUG
1898 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
1899 {
1900 	/*
1901 	 * Deprecated.
1902 	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
1903 	 */
1904 	return 0;
1905 }
1906 #endif
1907 
1908 struct cftype mem_cgroup_legacy_files[] = {
1909 	{
1910 		.name = "usage_in_bytes",
1911 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
1912 		.read_u64 = mem_cgroup_read_u64,
1913 	},
1914 	{
1915 		.name = "max_usage_in_bytes",
1916 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
1917 		.write = mem_cgroup_reset,
1918 		.read_u64 = mem_cgroup_read_u64,
1919 	},
1920 	{
1921 		.name = "limit_in_bytes",
1922 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
1923 		.write = mem_cgroup_write,
1924 		.read_u64 = mem_cgroup_read_u64,
1925 	},
1926 	{
1927 		.name = "soft_limit_in_bytes",
1928 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
1929 		.write = mem_cgroup_write,
1930 		.read_u64 = mem_cgroup_read_u64,
1931 	},
1932 	{
1933 		.name = "failcnt",
1934 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
1935 		.write = mem_cgroup_reset,
1936 		.read_u64 = mem_cgroup_read_u64,
1937 	},
1938 	{
1939 		.name = "stat",
1940 		.seq_show = memory_stat_show,
1941 	},
1942 	{
1943 		.name = "force_empty",
1944 		.write = mem_cgroup_force_empty_write,
1945 	},
1946 	{
1947 		.name = "use_hierarchy",
1948 		.write_u64 = mem_cgroup_hierarchy_write,
1949 		.read_u64 = mem_cgroup_hierarchy_read,
1950 	},
1951 	{
1952 		.name = "cgroup.event_control",		/* XXX: for compat */
1953 		.write = memcg_write_event_control,
1954 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
1955 	},
1956 	{
1957 		.name = "swappiness",
1958 		.read_u64 = mem_cgroup_swappiness_read,
1959 		.write_u64 = mem_cgroup_swappiness_write,
1960 	},
1961 	{
1962 		.name = "move_charge_at_immigrate",
1963 		.read_u64 = mem_cgroup_move_charge_read,
1964 		.write_u64 = mem_cgroup_move_charge_write,
1965 	},
1966 	{
1967 		.name = "oom_control",
1968 		.seq_show = mem_cgroup_oom_control_read,
1969 		.write_u64 = mem_cgroup_oom_control_write,
1970 	},
1971 	{
1972 		.name = "pressure_level",
1973 		.seq_show = mem_cgroup_dummy_seq_show,
1974 	},
1975 #ifdef CONFIG_NUMA
1976 	{
1977 		.name = "numa_stat",
1978 		.seq_show = memcg_numa_stat_show,
1979 	},
1980 #endif
1981 	{
1982 		.name = "kmem.limit_in_bytes",
1983 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
1984 		.write = mem_cgroup_write,
1985 		.read_u64 = mem_cgroup_read_u64,
1986 	},
1987 	{
1988 		.name = "kmem.usage_in_bytes",
1989 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
1990 		.read_u64 = mem_cgroup_read_u64,
1991 	},
1992 	{
1993 		.name = "kmem.failcnt",
1994 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
1995 		.write = mem_cgroup_reset,
1996 		.read_u64 = mem_cgroup_read_u64,
1997 	},
1998 	{
1999 		.name = "kmem.max_usage_in_bytes",
2000 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
2001 		.write = mem_cgroup_reset,
2002 		.read_u64 = mem_cgroup_read_u64,
2003 	},
2004 #ifdef CONFIG_SLUB_DEBUG
2005 	{
2006 		.name = "kmem.slabinfo",
2007 		.seq_show = mem_cgroup_slab_show,
2008 	},
2009 #endif
2010 	{
2011 		.name = "kmem.tcp.limit_in_bytes",
2012 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
2013 		.write = mem_cgroup_write,
2014 		.read_u64 = mem_cgroup_read_u64,
2015 	},
2016 	{
2017 		.name = "kmem.tcp.usage_in_bytes",
2018 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
2019 		.read_u64 = mem_cgroup_read_u64,
2020 	},
2021 	{
2022 		.name = "kmem.tcp.failcnt",
2023 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
2024 		.write = mem_cgroup_reset,
2025 		.read_u64 = mem_cgroup_read_u64,
2026 	},
2027 	{
2028 		.name = "kmem.tcp.max_usage_in_bytes",
2029 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
2030 		.write = mem_cgroup_reset,
2031 		.read_u64 = mem_cgroup_read_u64,
2032 	},
2033 	{ },	/* terminate */
2034 };
2035 
2036 struct cftype memsw_files[] = {
2037 	{
2038 		.name = "memsw.usage_in_bytes",
2039 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2040 		.read_u64 = mem_cgroup_read_u64,
2041 	},
2042 	{
2043 		.name = "memsw.max_usage_in_bytes",
2044 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2045 		.write = mem_cgroup_reset,
2046 		.read_u64 = mem_cgroup_read_u64,
2047 	},
2048 	{
2049 		.name = "memsw.limit_in_bytes",
2050 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2051 		.write = mem_cgroup_write,
2052 		.read_u64 = mem_cgroup_read_u64,
2053 	},
2054 	{
2055 		.name = "memsw.failcnt",
2056 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2057 		.write = mem_cgroup_reset,
2058 		.read_u64 = mem_cgroup_read_u64,
2059 	},
2060 	{ },	/* terminate */
2061 };
2062 
2063 void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2064 {
2065 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2066 		if (nr_pages > 0)
2067 			page_counter_charge(&memcg->kmem, nr_pages);
2068 		else
2069 			page_counter_uncharge(&memcg->kmem, -nr_pages);
2070 	}
2071 }
2072 
2073 bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
2074 			 gfp_t gfp_mask)
2075 {
2076 	struct page_counter *fail;
2077 
2078 	if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
2079 		memcg->tcpmem_pressure = 0;
2080 		return true;
2081 	}
2082 	memcg->tcpmem_pressure = 1;
2083 	if (gfp_mask & __GFP_NOFAIL) {
2084 		page_counter_charge(&memcg->tcpmem, nr_pages);
2085 		return true;
2086 	}
2087 	return false;
2088 }
2089 
2090 bool memcg1_alloc_events(struct mem_cgroup *memcg)
2091 {
2092 	memcg->events_percpu = alloc_percpu_gfp(struct memcg1_events_percpu,
2093 						GFP_KERNEL_ACCOUNT);
2094 	return !!memcg->events_percpu;
2095 }
2096 
2097 void memcg1_free_events(struct mem_cgroup *memcg)
2098 {
2099 	if (memcg->events_percpu)
2100 		free_percpu(memcg->events_percpu);
2101 }
2102 
2103 static int __init memcg1_init(void)
2104 {
2105 	int node;
2106 
2107 	for_each_node(node) {
2108 		struct mem_cgroup_tree_per_node *rtpn;
2109 
2110 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
2111 
2112 		rtpn->rb_root = RB_ROOT;
2113 		rtpn->rb_rightmost = NULL;
2114 		spin_lock_init(&rtpn->lock);
2115 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
2116 	}
2117 
2118 	return 0;
2119 }
2120 subsys_initcall(memcg1_init);
2121