1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 #include <linux/memcontrol.h>
4 #include <linux/swap.h>
5 #include <linux/mm_inline.h>
6 #include <linux/pagewalk.h>
7 #include <linux/backing-dev.h>
8 #include <linux/swap_cgroup.h>
9 #include <linux/eventfd.h>
10 #include <linux/poll.h>
11 #include <linux/sort.h>
12 #include <linux/file.h>
13 #include <linux/seq_buf.h>
14
15 #include "internal.h"
16 #include "swap.h"
17 #include "memcontrol-v1.h"
18
19 /*
20 * Cgroups above their limits are maintained in a RB-Tree, independent of
21 * their hierarchy representation
22 */
23
24 struct mem_cgroup_tree_per_node {
25 struct rb_root rb_root;
26 struct rb_node *rb_rightmost;
27 spinlock_t lock;
28 };
29
30 struct mem_cgroup_tree {
31 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
32 };
33
34 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
35
36 /*
37 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
38 * limit reclaim to prevent infinite loops, if they ever occur.
39 */
40 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
41 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
42
43 /* for OOM */
44 struct mem_cgroup_eventfd_list {
45 struct list_head list;
46 struct eventfd_ctx *eventfd;
47 };
48
49 /*
50 * cgroup_event represents events which userspace want to receive.
51 */
52 struct mem_cgroup_event {
53 /*
54 * memcg which the event belongs to.
55 */
56 struct mem_cgroup *memcg;
57 /*
58 * eventfd to signal userspace about the event.
59 */
60 struct eventfd_ctx *eventfd;
61 /*
62 * Each of these stored in a list by the cgroup.
63 */
64 struct list_head list;
65 /*
66 * register_event() callback will be used to add new userspace
67 * waiter for changes related to this event. Use eventfd_signal()
68 * on eventfd to send notification to userspace.
69 */
70 int (*register_event)(struct mem_cgroup *memcg,
71 struct eventfd_ctx *eventfd, const char *args);
72 /*
73 * unregister_event() callback will be called when userspace closes
74 * the eventfd or on cgroup removing. This callback must be set,
75 * if you want provide notification functionality.
76 */
77 void (*unregister_event)(struct mem_cgroup *memcg,
78 struct eventfd_ctx *eventfd);
79 /*
80 * All fields below needed to unregister event when
81 * userspace closes eventfd.
82 */
83 poll_table pt;
84 wait_queue_head_t *wqh;
85 wait_queue_entry_t wait;
86 struct work_struct remove;
87 };
88
89 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
90 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
91 #define MEMFILE_ATTR(val) ((val) & 0xffff)
92
93 enum {
94 RES_USAGE,
95 RES_LIMIT,
96 RES_MAX_USAGE,
97 RES_FAILCNT,
98 RES_SOFT_LIMIT,
99 };
100
101 #ifdef CONFIG_LOCKDEP
102 static struct lockdep_map memcg_oom_lock_dep_map = {
103 .name = "memcg_oom_lock",
104 };
105 #endif
106
107 DEFINE_SPINLOCK(memcg_oom_lock);
108
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)109 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
110 struct mem_cgroup_tree_per_node *mctz,
111 unsigned long new_usage_in_excess)
112 {
113 struct rb_node **p = &mctz->rb_root.rb_node;
114 struct rb_node *parent = NULL;
115 struct mem_cgroup_per_node *mz_node;
116 bool rightmost = true;
117
118 if (mz->on_tree)
119 return;
120
121 mz->usage_in_excess = new_usage_in_excess;
122 if (!mz->usage_in_excess)
123 return;
124 while (*p) {
125 parent = *p;
126 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
127 tree_node);
128 if (mz->usage_in_excess < mz_node->usage_in_excess) {
129 p = &(*p)->rb_left;
130 rightmost = false;
131 } else {
132 p = &(*p)->rb_right;
133 }
134 }
135
136 if (rightmost)
137 mctz->rb_rightmost = &mz->tree_node;
138
139 rb_link_node(&mz->tree_node, parent, p);
140 rb_insert_color(&mz->tree_node, &mctz->rb_root);
141 mz->on_tree = true;
142 }
143
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)144 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
145 struct mem_cgroup_tree_per_node *mctz)
146 {
147 if (!mz->on_tree)
148 return;
149
150 if (&mz->tree_node == mctz->rb_rightmost)
151 mctz->rb_rightmost = rb_prev(&mz->tree_node);
152
153 rb_erase(&mz->tree_node, &mctz->rb_root);
154 mz->on_tree = false;
155 }
156
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)157 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
158 struct mem_cgroup_tree_per_node *mctz)
159 {
160 unsigned long flags;
161
162 spin_lock_irqsave(&mctz->lock, flags);
163 __mem_cgroup_remove_exceeded(mz, mctz);
164 spin_unlock_irqrestore(&mctz->lock, flags);
165 }
166
soft_limit_excess(struct mem_cgroup * memcg)167 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
168 {
169 unsigned long nr_pages = page_counter_read(&memcg->memory);
170 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
171 unsigned long excess = 0;
172
173 if (nr_pages > soft_limit)
174 excess = nr_pages - soft_limit;
175
176 return excess;
177 }
178
memcg1_update_tree(struct mem_cgroup * memcg,int nid)179 static void memcg1_update_tree(struct mem_cgroup *memcg, int nid)
180 {
181 unsigned long excess;
182 struct mem_cgroup_per_node *mz;
183 struct mem_cgroup_tree_per_node *mctz;
184
185 if (lru_gen_enabled()) {
186 if (soft_limit_excess(memcg))
187 lru_gen_soft_reclaim(memcg, nid);
188 return;
189 }
190
191 mctz = soft_limit_tree.rb_tree_per_node[nid];
192 if (!mctz)
193 return;
194 /*
195 * Necessary to update all ancestors when hierarchy is used.
196 * because their event counter is not touched.
197 */
198 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
199 mz = memcg->nodeinfo[nid];
200 excess = soft_limit_excess(memcg);
201 /*
202 * We have to update the tree if mz is on RB-tree or
203 * mem is over its softlimit.
204 */
205 if (excess || mz->on_tree) {
206 unsigned long flags;
207
208 spin_lock_irqsave(&mctz->lock, flags);
209 /* if on-tree, remove it */
210 if (mz->on_tree)
211 __mem_cgroup_remove_exceeded(mz, mctz);
212 /*
213 * Insert again. mz->usage_in_excess will be updated.
214 * If excess is 0, no tree ops.
215 */
216 __mem_cgroup_insert_exceeded(mz, mctz, excess);
217 spin_unlock_irqrestore(&mctz->lock, flags);
218 }
219 }
220 }
221
memcg1_remove_from_trees(struct mem_cgroup * memcg)222 void memcg1_remove_from_trees(struct mem_cgroup *memcg)
223 {
224 struct mem_cgroup_tree_per_node *mctz;
225 struct mem_cgroup_per_node *mz;
226 int nid;
227
228 for_each_node(nid) {
229 mz = memcg->nodeinfo[nid];
230 mctz = soft_limit_tree.rb_tree_per_node[nid];
231 if (mctz)
232 mem_cgroup_remove_exceeded(mz, mctz);
233 }
234 }
235
236 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)237 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
238 {
239 struct mem_cgroup_per_node *mz;
240
241 retry:
242 mz = NULL;
243 if (!mctz->rb_rightmost)
244 goto done; /* Nothing to reclaim from */
245
246 mz = rb_entry(mctz->rb_rightmost,
247 struct mem_cgroup_per_node, tree_node);
248 /*
249 * Remove the node now but someone else can add it back,
250 * we will to add it back at the end of reclaim to its correct
251 * position in the tree.
252 */
253 __mem_cgroup_remove_exceeded(mz, mctz);
254 if (!soft_limit_excess(mz->memcg) ||
255 !css_tryget(&mz->memcg->css))
256 goto retry;
257 done:
258 return mz;
259 }
260
261 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)262 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
263 {
264 struct mem_cgroup_per_node *mz;
265
266 spin_lock_irq(&mctz->lock);
267 mz = __mem_cgroup_largest_soft_limit_node(mctz);
268 spin_unlock_irq(&mctz->lock);
269 return mz;
270 }
271
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)272 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
273 pg_data_t *pgdat,
274 gfp_t gfp_mask,
275 unsigned long *total_scanned)
276 {
277 struct mem_cgroup *victim = NULL;
278 int total = 0;
279 int loop = 0;
280 unsigned long excess;
281 unsigned long nr_scanned;
282 struct mem_cgroup_reclaim_cookie reclaim = {
283 .pgdat = pgdat,
284 };
285
286 excess = soft_limit_excess(root_memcg);
287
288 while (1) {
289 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
290 if (!victim) {
291 loop++;
292 if (loop >= 2) {
293 /*
294 * If we have not been able to reclaim
295 * anything, it might because there are
296 * no reclaimable pages under this hierarchy
297 */
298 if (!total)
299 break;
300 /*
301 * We want to do more targeted reclaim.
302 * excess >> 2 is not to excessive so as to
303 * reclaim too much, nor too less that we keep
304 * coming back to reclaim from this cgroup
305 */
306 if (total >= (excess >> 2) ||
307 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
308 break;
309 }
310 continue;
311 }
312 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
313 pgdat, &nr_scanned);
314 *total_scanned += nr_scanned;
315 if (!soft_limit_excess(root_memcg))
316 break;
317 }
318 mem_cgroup_iter_break(root_memcg, victim);
319 return total;
320 }
321
memcg1_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)322 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
323 gfp_t gfp_mask,
324 unsigned long *total_scanned)
325 {
326 unsigned long nr_reclaimed = 0;
327 struct mem_cgroup_per_node *mz, *next_mz = NULL;
328 unsigned long reclaimed;
329 int loop = 0;
330 struct mem_cgroup_tree_per_node *mctz;
331 unsigned long excess;
332
333 if (lru_gen_enabled())
334 return 0;
335
336 if (order > 0)
337 return 0;
338
339 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
340
341 /*
342 * Do not even bother to check the largest node if the root
343 * is empty. Do it lockless to prevent lock bouncing. Races
344 * are acceptable as soft limit is best effort anyway.
345 */
346 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
347 return 0;
348
349 /*
350 * This loop can run a while, specially if mem_cgroup's continuously
351 * keep exceeding their soft limit and putting the system under
352 * pressure
353 */
354 do {
355 if (next_mz)
356 mz = next_mz;
357 else
358 mz = mem_cgroup_largest_soft_limit_node(mctz);
359 if (!mz)
360 break;
361
362 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
363 gfp_mask, total_scanned);
364 nr_reclaimed += reclaimed;
365 spin_lock_irq(&mctz->lock);
366
367 /*
368 * If we failed to reclaim anything from this memory cgroup
369 * it is time to move on to the next cgroup
370 */
371 next_mz = NULL;
372 if (!reclaimed)
373 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
374
375 excess = soft_limit_excess(mz->memcg);
376 /*
377 * One school of thought says that we should not add
378 * back the node to the tree if reclaim returns 0.
379 * But our reclaim could return 0, simply because due
380 * to priority we are exposing a smaller subset of
381 * memory to reclaim from. Consider this as a longer
382 * term TODO.
383 */
384 /* If excess == 0, no tree ops */
385 __mem_cgroup_insert_exceeded(mz, mctz, excess);
386 spin_unlock_irq(&mctz->lock);
387 css_put(&mz->memcg->css);
388 loop++;
389 /*
390 * Could not reclaim anything and there are no more
391 * mem cgroups to try or we seem to be looping without
392 * reclaiming anything.
393 */
394 if (!nr_reclaimed &&
395 (next_mz == NULL ||
396 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
397 break;
398 } while (!nr_reclaimed);
399 if (next_mz)
400 css_put(&next_mz->memcg->css);
401 return nr_reclaimed;
402 }
403
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)404 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
405 struct cftype *cft)
406 {
407 return 0;
408 }
409
410 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)411 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
412 struct cftype *cft, u64 val)
413 {
414 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
415 "Please report your usecase to linux-mm@kvack.org if you "
416 "depend on this functionality.\n");
417
418 if (val != 0)
419 return -EINVAL;
420 return 0;
421 }
422 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)423 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
424 struct cftype *cft, u64 val)
425 {
426 return -ENOSYS;
427 }
428 #endif
429
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)430 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
431 {
432 struct mem_cgroup_threshold_ary *t;
433 unsigned long usage;
434 int i;
435
436 rcu_read_lock();
437 if (!swap)
438 t = rcu_dereference(memcg->thresholds.primary);
439 else
440 t = rcu_dereference(memcg->memsw_thresholds.primary);
441
442 if (!t)
443 goto unlock;
444
445 usage = mem_cgroup_usage(memcg, swap);
446
447 /*
448 * current_threshold points to threshold just below or equal to usage.
449 * If it's not true, a threshold was crossed after last
450 * call of __mem_cgroup_threshold().
451 */
452 i = t->current_threshold;
453
454 /*
455 * Iterate backward over array of thresholds starting from
456 * current_threshold and check if a threshold is crossed.
457 * If none of thresholds below usage is crossed, we read
458 * only one element of the array here.
459 */
460 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
461 eventfd_signal(t->entries[i].eventfd);
462
463 /* i = current_threshold + 1 */
464 i++;
465
466 /*
467 * Iterate forward over array of thresholds starting from
468 * current_threshold+1 and check if a threshold is crossed.
469 * If none of thresholds above usage is crossed, we read
470 * only one element of the array here.
471 */
472 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
473 eventfd_signal(t->entries[i].eventfd);
474
475 /* Update current_threshold */
476 t->current_threshold = i - 1;
477 unlock:
478 rcu_read_unlock();
479 }
480
mem_cgroup_threshold(struct mem_cgroup * memcg)481 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
482 {
483 while (memcg) {
484 __mem_cgroup_threshold(memcg, false);
485 if (do_memsw_account())
486 __mem_cgroup_threshold(memcg, true);
487
488 memcg = parent_mem_cgroup(memcg);
489 }
490 }
491
492 /* Cgroup1: threshold notifications & softlimit tree updates */
493
494 /*
495 * Per memcg event counter is incremented at every pagein/pageout. With THP,
496 * it will be incremented by the number of pages. This counter is used
497 * to trigger some periodic events. This is straightforward and better
498 * than using jiffies etc. to handle periodic memcg event.
499 */
500 enum mem_cgroup_events_target {
501 MEM_CGROUP_TARGET_THRESH,
502 MEM_CGROUP_TARGET_SOFTLIMIT,
503 MEM_CGROUP_NTARGETS,
504 };
505
506 struct memcg1_events_percpu {
507 unsigned long nr_page_events;
508 unsigned long targets[MEM_CGROUP_NTARGETS];
509 };
510
memcg1_charge_statistics(struct mem_cgroup * memcg,int nr_pages)511 static void memcg1_charge_statistics(struct mem_cgroup *memcg, int nr_pages)
512 {
513 /* pagein of a big page is an event. So, ignore page size */
514 if (nr_pages > 0)
515 count_memcg_events(memcg, PGPGIN, 1);
516 else {
517 count_memcg_events(memcg, PGPGOUT, 1);
518 nr_pages = -nr_pages; /* for event */
519 }
520
521 __this_cpu_add(memcg->events_percpu->nr_page_events, nr_pages);
522 }
523
524 #define THRESHOLDS_EVENTS_TARGET 128
525 #define SOFTLIMIT_EVENTS_TARGET 1024
526
memcg1_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)527 static bool memcg1_event_ratelimit(struct mem_cgroup *memcg,
528 enum mem_cgroup_events_target target)
529 {
530 unsigned long val, next;
531
532 val = __this_cpu_read(memcg->events_percpu->nr_page_events);
533 next = __this_cpu_read(memcg->events_percpu->targets[target]);
534 /* from time_after() in jiffies.h */
535 if ((long)(next - val) < 0) {
536 switch (target) {
537 case MEM_CGROUP_TARGET_THRESH:
538 next = val + THRESHOLDS_EVENTS_TARGET;
539 break;
540 case MEM_CGROUP_TARGET_SOFTLIMIT:
541 next = val + SOFTLIMIT_EVENTS_TARGET;
542 break;
543 default:
544 break;
545 }
546 __this_cpu_write(memcg->events_percpu->targets[target], next);
547 return true;
548 }
549 return false;
550 }
551
552 /*
553 * Check events in order.
554 *
555 */
memcg1_check_events(struct mem_cgroup * memcg,int nid)556 static void memcg1_check_events(struct mem_cgroup *memcg, int nid)
557 {
558 if (IS_ENABLED(CONFIG_PREEMPT_RT))
559 return;
560
561 /* threshold event is triggered in finer grain than soft limit */
562 if (unlikely(memcg1_event_ratelimit(memcg,
563 MEM_CGROUP_TARGET_THRESH))) {
564 bool do_softlimit;
565
566 do_softlimit = memcg1_event_ratelimit(memcg,
567 MEM_CGROUP_TARGET_SOFTLIMIT);
568 mem_cgroup_threshold(memcg);
569 if (unlikely(do_softlimit))
570 memcg1_update_tree(memcg, nid);
571 }
572 }
573
memcg1_commit_charge(struct folio * folio,struct mem_cgroup * memcg)574 void memcg1_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
575 {
576 unsigned long flags;
577
578 local_irq_save(flags);
579 memcg1_charge_statistics(memcg, folio_nr_pages(folio));
580 memcg1_check_events(memcg, folio_nid(folio));
581 local_irq_restore(flags);
582 }
583
584 /**
585 * memcg1_swapout - transfer a memsw charge to swap
586 * @folio: folio whose memsw charge to transfer
587 * @entry: swap entry to move the charge to
588 *
589 * Transfer the memsw charge of @folio to @entry.
590 */
memcg1_swapout(struct folio * folio,swp_entry_t entry)591 void memcg1_swapout(struct folio *folio, swp_entry_t entry)
592 {
593 struct mem_cgroup *memcg, *swap_memcg;
594 unsigned int nr_entries;
595
596 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
597 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
598
599 if (mem_cgroup_disabled())
600 return;
601
602 if (!do_memsw_account())
603 return;
604
605 memcg = folio_memcg(folio);
606
607 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
608 if (!memcg)
609 return;
610
611 /*
612 * In case the memcg owning these pages has been offlined and doesn't
613 * have an ID allocated to it anymore, charge the closest online
614 * ancestor for the swap instead and transfer the memory+swap charge.
615 */
616 swap_memcg = mem_cgroup_id_get_online(memcg);
617 nr_entries = folio_nr_pages(folio);
618 /* Get references for the tail pages, too */
619 if (nr_entries > 1)
620 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
621 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
622
623 swap_cgroup_record(folio, mem_cgroup_id(swap_memcg), entry);
624
625 folio_unqueue_deferred_split(folio);
626 folio->memcg_data = 0;
627
628 if (!mem_cgroup_is_root(memcg))
629 page_counter_uncharge(&memcg->memory, nr_entries);
630
631 if (memcg != swap_memcg) {
632 if (!mem_cgroup_is_root(swap_memcg))
633 page_counter_charge(&swap_memcg->memsw, nr_entries);
634 page_counter_uncharge(&memcg->memsw, nr_entries);
635 }
636
637 /*
638 * Interrupts should be disabled here because the caller holds the
639 * i_pages lock which is taken with interrupts-off. It is
640 * important here to have the interrupts disabled because it is the
641 * only synchronisation we have for updating the per-CPU variables.
642 */
643 preempt_disable_nested();
644 VM_WARN_ON_IRQS_ENABLED();
645 memcg1_charge_statistics(memcg, -folio_nr_pages(folio));
646 preempt_enable_nested();
647 memcg1_check_events(memcg, folio_nid(folio));
648
649 css_put(&memcg->css);
650 }
651
652 /*
653 * memcg1_swapin - uncharge swap slot
654 * @entry: the first swap entry for which the pages are charged
655 * @nr_pages: number of pages which will be uncharged
656 *
657 * Call this function after successfully adding the charged page to swapcache.
658 *
659 * Note: This function assumes the page for which swap slot is being uncharged
660 * is order 0 page.
661 */
memcg1_swapin(swp_entry_t entry,unsigned int nr_pages)662 void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages)
663 {
664 /*
665 * Cgroup1's unified memory+swap counter has been charged with the
666 * new swapcache page, finish the transfer by uncharging the swap
667 * slot. The swap slot would also get uncharged when it dies, but
668 * it can stick around indefinitely and we'd count the page twice
669 * the entire time.
670 *
671 * Cgroup2 has separate resource counters for memory and swap,
672 * so this is a non-issue here. Memory and swap charge lifetimes
673 * correspond 1:1 to page and swap slot lifetimes: we charge the
674 * page to memory here, and uncharge swap when the slot is freed.
675 */
676 if (do_memsw_account()) {
677 /*
678 * The swap entry might not get freed for a long time,
679 * let's not wait for it. The page already received a
680 * memory+swap charge, drop the swap entry duplicate.
681 */
682 mem_cgroup_uncharge_swap(entry, nr_pages);
683 }
684 }
685
memcg1_uncharge_batch(struct mem_cgroup * memcg,unsigned long pgpgout,unsigned long nr_memory,int nid)686 void memcg1_uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
687 unsigned long nr_memory, int nid)
688 {
689 unsigned long flags;
690
691 local_irq_save(flags);
692 count_memcg_events(memcg, PGPGOUT, pgpgout);
693 __this_cpu_add(memcg->events_percpu->nr_page_events, nr_memory);
694 memcg1_check_events(memcg, nid);
695 local_irq_restore(flags);
696 }
697
compare_thresholds(const void * a,const void * b)698 static int compare_thresholds(const void *a, const void *b)
699 {
700 const struct mem_cgroup_threshold *_a = a;
701 const struct mem_cgroup_threshold *_b = b;
702
703 if (_a->threshold > _b->threshold)
704 return 1;
705
706 if (_a->threshold < _b->threshold)
707 return -1;
708
709 return 0;
710 }
711
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)712 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
713 {
714 struct mem_cgroup_eventfd_list *ev;
715
716 spin_lock(&memcg_oom_lock);
717
718 list_for_each_entry(ev, &memcg->oom_notify, list)
719 eventfd_signal(ev->eventfd);
720
721 spin_unlock(&memcg_oom_lock);
722 return 0;
723 }
724
mem_cgroup_oom_notify(struct mem_cgroup * memcg)725 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
726 {
727 struct mem_cgroup *iter;
728
729 for_each_mem_cgroup_tree(iter, memcg)
730 mem_cgroup_oom_notify_cb(iter);
731 }
732
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)733 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
734 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
735 {
736 struct mem_cgroup_thresholds *thresholds;
737 struct mem_cgroup_threshold_ary *new;
738 unsigned long threshold;
739 unsigned long usage;
740 int i, size, ret;
741
742 ret = page_counter_memparse(args, "-1", &threshold);
743 if (ret)
744 return ret;
745
746 mutex_lock(&memcg->thresholds_lock);
747
748 if (type == _MEM) {
749 thresholds = &memcg->thresholds;
750 usage = mem_cgroup_usage(memcg, false);
751 } else if (type == _MEMSWAP) {
752 thresholds = &memcg->memsw_thresholds;
753 usage = mem_cgroup_usage(memcg, true);
754 } else
755 BUG();
756
757 /* Check if a threshold crossed before adding a new one */
758 if (thresholds->primary)
759 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
760
761 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
762
763 /* Allocate memory for new array of thresholds */
764 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
765 if (!new) {
766 ret = -ENOMEM;
767 goto unlock;
768 }
769 new->size = size;
770
771 /* Copy thresholds (if any) to new array */
772 if (thresholds->primary)
773 memcpy(new->entries, thresholds->primary->entries,
774 flex_array_size(new, entries, size - 1));
775
776 /* Add new threshold */
777 new->entries[size - 1].eventfd = eventfd;
778 new->entries[size - 1].threshold = threshold;
779
780 /* Sort thresholds. Registering of new threshold isn't time-critical */
781 sort(new->entries, size, sizeof(*new->entries),
782 compare_thresholds, NULL);
783
784 /* Find current threshold */
785 new->current_threshold = -1;
786 for (i = 0; i < size; i++) {
787 if (new->entries[i].threshold <= usage) {
788 /*
789 * new->current_threshold will not be used until
790 * rcu_assign_pointer(), so it's safe to increment
791 * it here.
792 */
793 ++new->current_threshold;
794 } else
795 break;
796 }
797
798 /* Free old spare buffer and save old primary buffer as spare */
799 kfree(thresholds->spare);
800 thresholds->spare = thresholds->primary;
801
802 rcu_assign_pointer(thresholds->primary, new);
803
804 /* To be sure that nobody uses thresholds */
805 synchronize_rcu();
806
807 unlock:
808 mutex_unlock(&memcg->thresholds_lock);
809
810 return ret;
811 }
812
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)813 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
814 struct eventfd_ctx *eventfd, const char *args)
815 {
816 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
817 }
818
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)819 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
820 struct eventfd_ctx *eventfd, const char *args)
821 {
822 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
823 }
824
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)825 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
826 struct eventfd_ctx *eventfd, enum res_type type)
827 {
828 struct mem_cgroup_thresholds *thresholds;
829 struct mem_cgroup_threshold_ary *new;
830 unsigned long usage;
831 int i, j, size, entries;
832
833 mutex_lock(&memcg->thresholds_lock);
834
835 if (type == _MEM) {
836 thresholds = &memcg->thresholds;
837 usage = mem_cgroup_usage(memcg, false);
838 } else if (type == _MEMSWAP) {
839 thresholds = &memcg->memsw_thresholds;
840 usage = mem_cgroup_usage(memcg, true);
841 } else
842 BUG();
843
844 if (!thresholds->primary)
845 goto unlock;
846
847 /* Check if a threshold crossed before removing */
848 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
849
850 /* Calculate new number of threshold */
851 size = entries = 0;
852 for (i = 0; i < thresholds->primary->size; i++) {
853 if (thresholds->primary->entries[i].eventfd != eventfd)
854 size++;
855 else
856 entries++;
857 }
858
859 new = thresholds->spare;
860
861 /* If no items related to eventfd have been cleared, nothing to do */
862 if (!entries)
863 goto unlock;
864
865 /* Set thresholds array to NULL if we don't have thresholds */
866 if (!size) {
867 kfree(new);
868 new = NULL;
869 goto swap_buffers;
870 }
871
872 new->size = size;
873
874 /* Copy thresholds and find current threshold */
875 new->current_threshold = -1;
876 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
877 if (thresholds->primary->entries[i].eventfd == eventfd)
878 continue;
879
880 new->entries[j] = thresholds->primary->entries[i];
881 if (new->entries[j].threshold <= usage) {
882 /*
883 * new->current_threshold will not be used
884 * until rcu_assign_pointer(), so it's safe to increment
885 * it here.
886 */
887 ++new->current_threshold;
888 }
889 j++;
890 }
891
892 swap_buffers:
893 /* Swap primary and spare array */
894 thresholds->spare = thresholds->primary;
895
896 rcu_assign_pointer(thresholds->primary, new);
897
898 /* To be sure that nobody uses thresholds */
899 synchronize_rcu();
900
901 /* If all events are unregistered, free the spare array */
902 if (!new) {
903 kfree(thresholds->spare);
904 thresholds->spare = NULL;
905 }
906 unlock:
907 mutex_unlock(&memcg->thresholds_lock);
908 }
909
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)910 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
911 struct eventfd_ctx *eventfd)
912 {
913 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
914 }
915
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)916 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
917 struct eventfd_ctx *eventfd)
918 {
919 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
920 }
921
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)922 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
923 struct eventfd_ctx *eventfd, const char *args)
924 {
925 struct mem_cgroup_eventfd_list *event;
926
927 event = kmalloc(sizeof(*event), GFP_KERNEL);
928 if (!event)
929 return -ENOMEM;
930
931 spin_lock(&memcg_oom_lock);
932
933 event->eventfd = eventfd;
934 list_add(&event->list, &memcg->oom_notify);
935
936 /* already in OOM ? */
937 if (memcg->under_oom)
938 eventfd_signal(eventfd);
939 spin_unlock(&memcg_oom_lock);
940
941 return 0;
942 }
943
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)944 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
945 struct eventfd_ctx *eventfd)
946 {
947 struct mem_cgroup_eventfd_list *ev, *tmp;
948
949 spin_lock(&memcg_oom_lock);
950
951 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
952 if (ev->eventfd == eventfd) {
953 list_del(&ev->list);
954 kfree(ev);
955 }
956 }
957
958 spin_unlock(&memcg_oom_lock);
959 }
960
961 /*
962 * DO NOT USE IN NEW FILES.
963 *
964 * "cgroup.event_control" implementation.
965 *
966 * This is way over-engineered. It tries to support fully configurable
967 * events for each user. Such level of flexibility is completely
968 * unnecessary especially in the light of the planned unified hierarchy.
969 *
970 * Please deprecate this and replace with something simpler if at all
971 * possible.
972 */
973
974 /*
975 * Unregister event and free resources.
976 *
977 * Gets called from workqueue.
978 */
memcg_event_remove(struct work_struct * work)979 static void memcg_event_remove(struct work_struct *work)
980 {
981 struct mem_cgroup_event *event =
982 container_of(work, struct mem_cgroup_event, remove);
983 struct mem_cgroup *memcg = event->memcg;
984
985 remove_wait_queue(event->wqh, &event->wait);
986
987 event->unregister_event(memcg, event->eventfd);
988
989 /* Notify userspace the event is going away. */
990 eventfd_signal(event->eventfd);
991
992 eventfd_ctx_put(event->eventfd);
993 kfree(event);
994 css_put(&memcg->css);
995 }
996
997 /*
998 * Gets called on EPOLLHUP on eventfd when user closes it.
999 *
1000 * Called with wqh->lock held and interrupts disabled.
1001 */
memcg_event_wake(wait_queue_entry_t * wait,unsigned int mode,int sync,void * key)1002 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned int mode,
1003 int sync, void *key)
1004 {
1005 struct mem_cgroup_event *event =
1006 container_of(wait, struct mem_cgroup_event, wait);
1007 struct mem_cgroup *memcg = event->memcg;
1008 __poll_t flags = key_to_poll(key);
1009
1010 if (flags & EPOLLHUP) {
1011 /*
1012 * If the event has been detached at cgroup removal, we
1013 * can simply return knowing the other side will cleanup
1014 * for us.
1015 *
1016 * We can't race against event freeing since the other
1017 * side will require wqh->lock via remove_wait_queue(),
1018 * which we hold.
1019 */
1020 spin_lock(&memcg->event_list_lock);
1021 if (!list_empty(&event->list)) {
1022 list_del_init(&event->list);
1023 /*
1024 * We are in atomic context, but cgroup_event_remove()
1025 * may sleep, so we have to call it in workqueue.
1026 */
1027 schedule_work(&event->remove);
1028 }
1029 spin_unlock(&memcg->event_list_lock);
1030 }
1031
1032 return 0;
1033 }
1034
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)1035 static void memcg_event_ptable_queue_proc(struct file *file,
1036 wait_queue_head_t *wqh, poll_table *pt)
1037 {
1038 struct mem_cgroup_event *event =
1039 container_of(pt, struct mem_cgroup_event, pt);
1040
1041 event->wqh = wqh;
1042 add_wait_queue(wqh, &event->wait);
1043 }
1044
1045 /*
1046 * DO NOT USE IN NEW FILES.
1047 *
1048 * Parse input and register new cgroup event handler.
1049 *
1050 * Input must be in format '<event_fd> <control_fd> <args>'.
1051 * Interpretation of args is defined by control file implementation.
1052 */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1053 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
1054 char *buf, size_t nbytes, loff_t off)
1055 {
1056 struct cgroup_subsys_state *css = of_css(of);
1057 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1058 struct mem_cgroup_event *event;
1059 struct cgroup_subsys_state *cfile_css;
1060 unsigned int efd, cfd;
1061 struct dentry *cdentry;
1062 const char *name;
1063 char *endp;
1064 int ret;
1065
1066 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1067 return -EOPNOTSUPP;
1068
1069 buf = strstrip(buf);
1070
1071 efd = simple_strtoul(buf, &endp, 10);
1072 if (*endp != ' ')
1073 return -EINVAL;
1074 buf = endp + 1;
1075
1076 cfd = simple_strtoul(buf, &endp, 10);
1077 if (*endp == '\0')
1078 buf = endp;
1079 else if (*endp == ' ')
1080 buf = endp + 1;
1081 else
1082 return -EINVAL;
1083
1084 CLASS(fd, efile)(efd);
1085 if (fd_empty(efile))
1086 return -EBADF;
1087
1088 CLASS(fd, cfile)(cfd);
1089
1090 event = kzalloc(sizeof(*event), GFP_KERNEL);
1091 if (!event)
1092 return -ENOMEM;
1093
1094 event->memcg = memcg;
1095 INIT_LIST_HEAD(&event->list);
1096 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
1097 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
1098 INIT_WORK(&event->remove, memcg_event_remove);
1099
1100 event->eventfd = eventfd_ctx_fileget(fd_file(efile));
1101 if (IS_ERR(event->eventfd)) {
1102 ret = PTR_ERR(event->eventfd);
1103 goto out_kfree;
1104 }
1105
1106 if (fd_empty(cfile)) {
1107 ret = -EBADF;
1108 goto out_put_eventfd;
1109 }
1110
1111 /* the process need read permission on control file */
1112 /* AV: shouldn't we check that it's been opened for read instead? */
1113 ret = file_permission(fd_file(cfile), MAY_READ);
1114 if (ret < 0)
1115 goto out_put_eventfd;
1116
1117 /*
1118 * The control file must be a regular cgroup1 file. As a regular cgroup
1119 * file can't be renamed, it's safe to access its name afterwards.
1120 */
1121 cdentry = fd_file(cfile)->f_path.dentry;
1122 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
1123 ret = -EINVAL;
1124 goto out_put_eventfd;
1125 }
1126
1127 /*
1128 * Determine the event callbacks and set them in @event. This used
1129 * to be done via struct cftype but cgroup core no longer knows
1130 * about these events. The following is crude but the whole thing
1131 * is for compatibility anyway.
1132 *
1133 * DO NOT ADD NEW FILES.
1134 */
1135 name = cdentry->d_name.name;
1136
1137 if (!strcmp(name, "memory.usage_in_bytes")) {
1138 event->register_event = mem_cgroup_usage_register_event;
1139 event->unregister_event = mem_cgroup_usage_unregister_event;
1140 } else if (!strcmp(name, "memory.oom_control")) {
1141 pr_warn_once("oom_control is deprecated and will be removed. "
1142 "Please report your usecase to linux-mm-@kvack.org"
1143 " if you depend on this functionality.\n");
1144 event->register_event = mem_cgroup_oom_register_event;
1145 event->unregister_event = mem_cgroup_oom_unregister_event;
1146 } else if (!strcmp(name, "memory.pressure_level")) {
1147 pr_warn_once("pressure_level is deprecated and will be removed. "
1148 "Please report your usecase to linux-mm-@kvack.org "
1149 "if you depend on this functionality.\n");
1150 event->register_event = vmpressure_register_event;
1151 event->unregister_event = vmpressure_unregister_event;
1152 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
1153 event->register_event = memsw_cgroup_usage_register_event;
1154 event->unregister_event = memsw_cgroup_usage_unregister_event;
1155 } else {
1156 ret = -EINVAL;
1157 goto out_put_eventfd;
1158 }
1159
1160 /*
1161 * Verify @cfile should belong to @css. Also, remaining events are
1162 * automatically removed on cgroup destruction but the removal is
1163 * asynchronous, so take an extra ref on @css.
1164 */
1165 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
1166 &memory_cgrp_subsys);
1167 ret = -EINVAL;
1168 if (IS_ERR(cfile_css))
1169 goto out_put_eventfd;
1170 if (cfile_css != css)
1171 goto out_put_css;
1172
1173 ret = event->register_event(memcg, event->eventfd, buf);
1174 if (ret)
1175 goto out_put_css;
1176
1177 vfs_poll(fd_file(efile), &event->pt);
1178
1179 spin_lock_irq(&memcg->event_list_lock);
1180 list_add(&event->list, &memcg->event_list);
1181 spin_unlock_irq(&memcg->event_list_lock);
1182 return nbytes;
1183
1184 out_put_css:
1185 css_put(cfile_css);
1186 out_put_eventfd:
1187 eventfd_ctx_put(event->eventfd);
1188 out_kfree:
1189 kfree(event);
1190 return ret;
1191 }
1192
memcg1_memcg_init(struct mem_cgroup * memcg)1193 void memcg1_memcg_init(struct mem_cgroup *memcg)
1194 {
1195 INIT_LIST_HEAD(&memcg->oom_notify);
1196 mutex_init(&memcg->thresholds_lock);
1197 INIT_LIST_HEAD(&memcg->event_list);
1198 spin_lock_init(&memcg->event_list_lock);
1199 }
1200
memcg1_css_offline(struct mem_cgroup * memcg)1201 void memcg1_css_offline(struct mem_cgroup *memcg)
1202 {
1203 struct mem_cgroup_event *event, *tmp;
1204
1205 /*
1206 * Unregister events and notify userspace.
1207 * Notify userspace about cgroup removing only after rmdir of cgroup
1208 * directory to avoid race between userspace and kernelspace.
1209 */
1210 spin_lock_irq(&memcg->event_list_lock);
1211 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
1212 list_del_init(&event->list);
1213 schedule_work(&event->remove);
1214 }
1215 spin_unlock_irq(&memcg->event_list_lock);
1216 }
1217
1218 /*
1219 * Check OOM-Killer is already running under our hierarchy.
1220 * If someone is running, return false.
1221 */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1222 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1223 {
1224 struct mem_cgroup *iter, *failed = NULL;
1225
1226 spin_lock(&memcg_oom_lock);
1227
1228 for_each_mem_cgroup_tree(iter, memcg) {
1229 if (iter->oom_lock) {
1230 /*
1231 * this subtree of our hierarchy is already locked
1232 * so we cannot give a lock.
1233 */
1234 failed = iter;
1235 mem_cgroup_iter_break(memcg, iter);
1236 break;
1237 }
1238 iter->oom_lock = true;
1239 }
1240
1241 if (failed) {
1242 /*
1243 * OK, we failed to lock the whole subtree so we have
1244 * to clean up what we set up to the failing subtree
1245 */
1246 for_each_mem_cgroup_tree(iter, memcg) {
1247 if (iter == failed) {
1248 mem_cgroup_iter_break(memcg, iter);
1249 break;
1250 }
1251 iter->oom_lock = false;
1252 }
1253 } else
1254 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1255
1256 spin_unlock(&memcg_oom_lock);
1257
1258 return !failed;
1259 }
1260
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1261 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1262 {
1263 struct mem_cgroup *iter;
1264
1265 spin_lock(&memcg_oom_lock);
1266 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1267 for_each_mem_cgroup_tree(iter, memcg)
1268 iter->oom_lock = false;
1269 spin_unlock(&memcg_oom_lock);
1270 }
1271
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1272 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1273 {
1274 struct mem_cgroup *iter;
1275
1276 spin_lock(&memcg_oom_lock);
1277 for_each_mem_cgroup_tree(iter, memcg)
1278 iter->under_oom++;
1279 spin_unlock(&memcg_oom_lock);
1280 }
1281
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1282 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1283 {
1284 struct mem_cgroup *iter;
1285
1286 /*
1287 * Be careful about under_oom underflows because a child memcg
1288 * could have been added after mem_cgroup_mark_under_oom.
1289 */
1290 spin_lock(&memcg_oom_lock);
1291 for_each_mem_cgroup_tree(iter, memcg)
1292 if (iter->under_oom > 0)
1293 iter->under_oom--;
1294 spin_unlock(&memcg_oom_lock);
1295 }
1296
1297 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1298
1299 struct oom_wait_info {
1300 struct mem_cgroup *memcg;
1301 wait_queue_entry_t wait;
1302 };
1303
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned int mode,int sync,void * arg)1304 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1305 unsigned int mode, int sync, void *arg)
1306 {
1307 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1308 struct mem_cgroup *oom_wait_memcg;
1309 struct oom_wait_info *oom_wait_info;
1310
1311 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1312 oom_wait_memcg = oom_wait_info->memcg;
1313
1314 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1315 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1316 return 0;
1317 return autoremove_wake_function(wait, mode, sync, arg);
1318 }
1319
memcg1_oom_recover(struct mem_cgroup * memcg)1320 void memcg1_oom_recover(struct mem_cgroup *memcg)
1321 {
1322 /*
1323 * For the following lockless ->under_oom test, the only required
1324 * guarantee is that it must see the state asserted by an OOM when
1325 * this function is called as a result of userland actions
1326 * triggered by the notification of the OOM. This is trivially
1327 * achieved by invoking mem_cgroup_mark_under_oom() before
1328 * triggering notification.
1329 */
1330 if (memcg && memcg->under_oom)
1331 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1332 }
1333
1334 /**
1335 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1336 * @handle: actually kill/wait or just clean up the OOM state
1337 *
1338 * This has to be called at the end of a page fault if the memcg OOM
1339 * handler was enabled.
1340 *
1341 * Memcg supports userspace OOM handling where failed allocations must
1342 * sleep on a waitqueue until the userspace task resolves the
1343 * situation. Sleeping directly in the charge context with all kinds
1344 * of locks held is not a good idea, instead we remember an OOM state
1345 * in the task and mem_cgroup_oom_synchronize() has to be called at
1346 * the end of the page fault to complete the OOM handling.
1347 *
1348 * Returns %true if an ongoing memcg OOM situation was detected and
1349 * completed, %false otherwise.
1350 */
mem_cgroup_oom_synchronize(bool handle)1351 bool mem_cgroup_oom_synchronize(bool handle)
1352 {
1353 struct mem_cgroup *memcg = current->memcg_in_oom;
1354 struct oom_wait_info owait;
1355 bool locked;
1356
1357 /* OOM is global, do not handle */
1358 if (!memcg)
1359 return false;
1360
1361 if (!handle)
1362 goto cleanup;
1363
1364 owait.memcg = memcg;
1365 owait.wait.flags = 0;
1366 owait.wait.func = memcg_oom_wake_function;
1367 owait.wait.private = current;
1368 INIT_LIST_HEAD(&owait.wait.entry);
1369
1370 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1371 mem_cgroup_mark_under_oom(memcg);
1372
1373 locked = mem_cgroup_oom_trylock(memcg);
1374
1375 if (locked)
1376 mem_cgroup_oom_notify(memcg);
1377
1378 schedule();
1379 mem_cgroup_unmark_under_oom(memcg);
1380 finish_wait(&memcg_oom_waitq, &owait.wait);
1381
1382 if (locked)
1383 mem_cgroup_oom_unlock(memcg);
1384 cleanup:
1385 current->memcg_in_oom = NULL;
1386 css_put(&memcg->css);
1387 return true;
1388 }
1389
1390
memcg1_oom_prepare(struct mem_cgroup * memcg,bool * locked)1391 bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked)
1392 {
1393 /*
1394 * We are in the middle of the charge context here, so we
1395 * don't want to block when potentially sitting on a callstack
1396 * that holds all kinds of filesystem and mm locks.
1397 *
1398 * cgroup1 allows disabling the OOM killer and waiting for outside
1399 * handling until the charge can succeed; remember the context and put
1400 * the task to sleep at the end of the page fault when all locks are
1401 * released.
1402 *
1403 * On the other hand, in-kernel OOM killer allows for an async victim
1404 * memory reclaim (oom_reaper) and that means that we are not solely
1405 * relying on the oom victim to make a forward progress and we can
1406 * invoke the oom killer here.
1407 *
1408 * Please note that mem_cgroup_out_of_memory might fail to find a
1409 * victim and then we have to bail out from the charge path.
1410 */
1411 if (READ_ONCE(memcg->oom_kill_disable)) {
1412 if (current->in_user_fault) {
1413 css_get(&memcg->css);
1414 current->memcg_in_oom = memcg;
1415 }
1416 return false;
1417 }
1418
1419 mem_cgroup_mark_under_oom(memcg);
1420
1421 *locked = mem_cgroup_oom_trylock(memcg);
1422
1423 if (*locked)
1424 mem_cgroup_oom_notify(memcg);
1425
1426 mem_cgroup_unmark_under_oom(memcg);
1427
1428 return true;
1429 }
1430
memcg1_oom_finish(struct mem_cgroup * memcg,bool locked)1431 void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked)
1432 {
1433 if (locked)
1434 mem_cgroup_oom_unlock(memcg);
1435 }
1436
1437 static DEFINE_MUTEX(memcg_max_mutex);
1438
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)1439 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
1440 unsigned long max, bool memsw)
1441 {
1442 bool enlarge = false;
1443 bool drained = false;
1444 int ret;
1445 bool limits_invariant;
1446 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
1447
1448 do {
1449 if (signal_pending(current)) {
1450 ret = -EINTR;
1451 break;
1452 }
1453
1454 mutex_lock(&memcg_max_mutex);
1455 /*
1456 * Make sure that the new limit (memsw or memory limit) doesn't
1457 * break our basic invariant rule memory.max <= memsw.max.
1458 */
1459 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
1460 max <= memcg->memsw.max;
1461 if (!limits_invariant) {
1462 mutex_unlock(&memcg_max_mutex);
1463 ret = -EINVAL;
1464 break;
1465 }
1466 if (max > counter->max)
1467 enlarge = true;
1468 ret = page_counter_set_max(counter, max);
1469 mutex_unlock(&memcg_max_mutex);
1470
1471 if (!ret)
1472 break;
1473
1474 if (!drained) {
1475 drain_all_stock(memcg);
1476 drained = true;
1477 continue;
1478 }
1479
1480 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
1481 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) {
1482 ret = -EBUSY;
1483 break;
1484 }
1485 } while (true);
1486
1487 if (!ret && enlarge)
1488 memcg1_oom_recover(memcg);
1489
1490 return ret;
1491 }
1492
1493 /*
1494 * Reclaims as many pages from the given memcg as possible.
1495 *
1496 * Caller is responsible for holding css reference for memcg.
1497 */
mem_cgroup_force_empty(struct mem_cgroup * memcg)1498 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
1499 {
1500 int nr_retries = MAX_RECLAIM_RETRIES;
1501
1502 /* we call try-to-free pages for make this cgroup empty */
1503 lru_add_drain_all();
1504
1505 drain_all_stock(memcg);
1506
1507 /* try to free all pages in this cgroup */
1508 while (nr_retries && page_counter_read(&memcg->memory)) {
1509 if (signal_pending(current))
1510 return -EINTR;
1511
1512 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
1513 MEMCG_RECLAIM_MAY_SWAP, NULL))
1514 nr_retries--;
1515 }
1516
1517 return 0;
1518 }
1519
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1520 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
1521 char *buf, size_t nbytes,
1522 loff_t off)
1523 {
1524 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
1525
1526 if (mem_cgroup_is_root(memcg))
1527 return -EINVAL;
1528 return mem_cgroup_force_empty(memcg) ?: nbytes;
1529 }
1530
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)1531 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
1532 struct cftype *cft)
1533 {
1534 return 1;
1535 }
1536
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)1537 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
1538 struct cftype *cft, u64 val)
1539 {
1540 if (val == 1)
1541 return 0;
1542
1543 pr_warn_once("Non-hierarchical mode is deprecated. "
1544 "Please report your usecase to linux-mm@kvack.org if you "
1545 "depend on this functionality.\n");
1546
1547 return -EINVAL;
1548 }
1549
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)1550 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
1551 struct cftype *cft)
1552 {
1553 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1554 struct page_counter *counter;
1555
1556 switch (MEMFILE_TYPE(cft->private)) {
1557 case _MEM:
1558 counter = &memcg->memory;
1559 break;
1560 case _MEMSWAP:
1561 counter = &memcg->memsw;
1562 break;
1563 case _KMEM:
1564 counter = &memcg->kmem;
1565 break;
1566 case _TCP:
1567 counter = &memcg->tcpmem;
1568 break;
1569 default:
1570 BUG();
1571 }
1572
1573 switch (MEMFILE_ATTR(cft->private)) {
1574 case RES_USAGE:
1575 if (counter == &memcg->memory)
1576 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
1577 if (counter == &memcg->memsw)
1578 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
1579 return (u64)page_counter_read(counter) * PAGE_SIZE;
1580 case RES_LIMIT:
1581 return (u64)counter->max * PAGE_SIZE;
1582 case RES_MAX_USAGE:
1583 return (u64)counter->watermark * PAGE_SIZE;
1584 case RES_FAILCNT:
1585 return counter->failcnt;
1586 case RES_SOFT_LIMIT:
1587 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
1588 default:
1589 BUG();
1590 }
1591 }
1592
1593 /*
1594 * This function doesn't do anything useful. Its only job is to provide a read
1595 * handler for a file so that cgroup_file_mode() will add read permissions.
1596 */
mem_cgroup_dummy_seq_show(__always_unused struct seq_file * m,__always_unused void * v)1597 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
1598 __always_unused void *v)
1599 {
1600 return -EINVAL;
1601 }
1602
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)1603 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
1604 {
1605 int ret;
1606
1607 mutex_lock(&memcg_max_mutex);
1608
1609 ret = page_counter_set_max(&memcg->tcpmem, max);
1610 if (ret)
1611 goto out;
1612
1613 if (!memcg->tcpmem_active) {
1614 /*
1615 * The active flag needs to be written after the static_key
1616 * update. This is what guarantees that the socket activation
1617 * function is the last one to run. See mem_cgroup_sk_alloc()
1618 * for details, and note that we don't mark any socket as
1619 * belonging to this memcg until that flag is up.
1620 *
1621 * We need to do this, because static_keys will span multiple
1622 * sites, but we can't control their order. If we mark a socket
1623 * as accounted, but the accounting functions are not patched in
1624 * yet, we'll lose accounting.
1625 *
1626 * We never race with the readers in mem_cgroup_sk_alloc(),
1627 * because when this value change, the code to process it is not
1628 * patched in yet.
1629 */
1630 static_branch_inc(&memcg_sockets_enabled_key);
1631 memcg->tcpmem_active = true;
1632 }
1633 out:
1634 mutex_unlock(&memcg_max_mutex);
1635 return ret;
1636 }
1637
1638 /*
1639 * The user of this function is...
1640 * RES_LIMIT.
1641 */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1642 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
1643 char *buf, size_t nbytes, loff_t off)
1644 {
1645 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
1646 unsigned long nr_pages;
1647 int ret;
1648
1649 buf = strstrip(buf);
1650 ret = page_counter_memparse(buf, "-1", &nr_pages);
1651 if (ret)
1652 return ret;
1653
1654 switch (MEMFILE_ATTR(of_cft(of)->private)) {
1655 case RES_LIMIT:
1656 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
1657 ret = -EINVAL;
1658 break;
1659 }
1660 switch (MEMFILE_TYPE(of_cft(of)->private)) {
1661 case _MEM:
1662 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
1663 break;
1664 case _MEMSWAP:
1665 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
1666 break;
1667 case _KMEM:
1668 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
1669 "Writing any value to this file has no effect. "
1670 "Please report your usecase to linux-mm@kvack.org if you "
1671 "depend on this functionality.\n");
1672 ret = 0;
1673 break;
1674 case _TCP:
1675 pr_warn_once("kmem.tcp.limit_in_bytes is deprecated and will be removed. "
1676 "Please report your usecase to linux-mm@kvack.org if you "
1677 "depend on this functionality.\n");
1678 ret = memcg_update_tcp_max(memcg, nr_pages);
1679 break;
1680 }
1681 break;
1682 case RES_SOFT_LIMIT:
1683 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1684 ret = -EOPNOTSUPP;
1685 } else {
1686 pr_warn_once("soft_limit_in_bytes is deprecated and will be removed. "
1687 "Please report your usecase to linux-mm@kvack.org if you "
1688 "depend on this functionality.\n");
1689 WRITE_ONCE(memcg->soft_limit, nr_pages);
1690 ret = 0;
1691 }
1692 break;
1693 }
1694 return ret ?: nbytes;
1695 }
1696
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1697 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
1698 size_t nbytes, loff_t off)
1699 {
1700 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
1701 struct page_counter *counter;
1702
1703 switch (MEMFILE_TYPE(of_cft(of)->private)) {
1704 case _MEM:
1705 counter = &memcg->memory;
1706 break;
1707 case _MEMSWAP:
1708 counter = &memcg->memsw;
1709 break;
1710 case _KMEM:
1711 counter = &memcg->kmem;
1712 break;
1713 case _TCP:
1714 counter = &memcg->tcpmem;
1715 break;
1716 default:
1717 BUG();
1718 }
1719
1720 switch (MEMFILE_ATTR(of_cft(of)->private)) {
1721 case RES_MAX_USAGE:
1722 page_counter_reset_watermark(counter);
1723 break;
1724 case RES_FAILCNT:
1725 counter->failcnt = 0;
1726 break;
1727 default:
1728 BUG();
1729 }
1730
1731 return nbytes;
1732 }
1733
1734 #ifdef CONFIG_NUMA
1735
1736 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
1737 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
1738 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
1739
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask,bool tree)1740 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
1741 int nid, unsigned int lru_mask, bool tree)
1742 {
1743 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
1744 unsigned long nr = 0;
1745 enum lru_list lru;
1746
1747 VM_BUG_ON((unsigned int)nid >= nr_node_ids);
1748
1749 for_each_lru(lru) {
1750 if (!(BIT(lru) & lru_mask))
1751 continue;
1752 if (tree)
1753 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
1754 else
1755 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
1756 }
1757 return nr;
1758 }
1759
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask,bool tree)1760 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
1761 unsigned int lru_mask,
1762 bool tree)
1763 {
1764 unsigned long nr = 0;
1765 enum lru_list lru;
1766
1767 for_each_lru(lru) {
1768 if (!(BIT(lru) & lru_mask))
1769 continue;
1770 if (tree)
1771 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
1772 else
1773 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
1774 }
1775 return nr;
1776 }
1777
memcg_numa_stat_show(struct seq_file * m,void * v)1778 static int memcg_numa_stat_show(struct seq_file *m, void *v)
1779 {
1780 struct numa_stat {
1781 const char *name;
1782 unsigned int lru_mask;
1783 };
1784
1785 static const struct numa_stat stats[] = {
1786 { "total", LRU_ALL },
1787 { "file", LRU_ALL_FILE },
1788 { "anon", LRU_ALL_ANON },
1789 { "unevictable", BIT(LRU_UNEVICTABLE) },
1790 };
1791 const struct numa_stat *stat;
1792 int nid;
1793 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1794
1795 mem_cgroup_flush_stats(memcg);
1796
1797 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
1798 seq_printf(m, "%s=%lu", stat->name,
1799 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
1800 false));
1801 for_each_node_state(nid, N_MEMORY)
1802 seq_printf(m, " N%d=%lu", nid,
1803 mem_cgroup_node_nr_lru_pages(memcg, nid,
1804 stat->lru_mask, false));
1805 seq_putc(m, '\n');
1806 }
1807
1808 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
1809
1810 seq_printf(m, "hierarchical_%s=%lu", stat->name,
1811 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
1812 true));
1813 for_each_node_state(nid, N_MEMORY)
1814 seq_printf(m, " N%d=%lu", nid,
1815 mem_cgroup_node_nr_lru_pages(memcg, nid,
1816 stat->lru_mask, true));
1817 seq_putc(m, '\n');
1818 }
1819
1820 return 0;
1821 }
1822 #endif /* CONFIG_NUMA */
1823
1824 static const unsigned int memcg1_stats[] = {
1825 NR_FILE_PAGES,
1826 NR_ANON_MAPPED,
1827 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1828 NR_ANON_THPS,
1829 #endif
1830 NR_SHMEM,
1831 NR_FILE_MAPPED,
1832 NR_FILE_DIRTY,
1833 NR_WRITEBACK,
1834 WORKINGSET_REFAULT_ANON,
1835 WORKINGSET_REFAULT_FILE,
1836 #ifdef CONFIG_SWAP
1837 MEMCG_SWAP,
1838 NR_SWAPCACHE,
1839 #endif
1840 };
1841
1842 static const char *const memcg1_stat_names[] = {
1843 "cache",
1844 "rss",
1845 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1846 "rss_huge",
1847 #endif
1848 "shmem",
1849 "mapped_file",
1850 "dirty",
1851 "writeback",
1852 "workingset_refault_anon",
1853 "workingset_refault_file",
1854 #ifdef CONFIG_SWAP
1855 "swap",
1856 "swapcached",
1857 #endif
1858 };
1859
1860 /* Universal VM events cgroup1 shows, original sort order */
1861 static const unsigned int memcg1_events[] = {
1862 PGPGIN,
1863 PGPGOUT,
1864 PGFAULT,
1865 PGMAJFAULT,
1866 };
1867
memcg1_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1868 void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1869 {
1870 unsigned long memory, memsw;
1871 struct mem_cgroup *mi;
1872 unsigned int i;
1873
1874 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
1875
1876 mem_cgroup_flush_stats(memcg);
1877
1878 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1879 unsigned long nr;
1880
1881 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
1882 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
1883 }
1884
1885 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
1886 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
1887 memcg_events_local(memcg, memcg1_events[i]));
1888
1889 for (i = 0; i < NR_LRU_LISTS; i++)
1890 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
1891 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
1892 PAGE_SIZE);
1893
1894 /* Hierarchical information */
1895 memory = memsw = PAGE_COUNTER_MAX;
1896 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
1897 memory = min(memory, READ_ONCE(mi->memory.max));
1898 memsw = min(memsw, READ_ONCE(mi->memsw.max));
1899 }
1900 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
1901 (u64)memory * PAGE_SIZE);
1902 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
1903 (u64)memsw * PAGE_SIZE);
1904
1905 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1906 unsigned long nr;
1907
1908 nr = memcg_page_state_output(memcg, memcg1_stats[i]);
1909 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
1910 (u64)nr);
1911 }
1912
1913 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
1914 seq_buf_printf(s, "total_%s %llu\n",
1915 vm_event_name(memcg1_events[i]),
1916 (u64)memcg_events(memcg, memcg1_events[i]));
1917
1918 for (i = 0; i < NR_LRU_LISTS; i++)
1919 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
1920 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1921 PAGE_SIZE);
1922
1923 #ifdef CONFIG_DEBUG_VM
1924 {
1925 pg_data_t *pgdat;
1926 struct mem_cgroup_per_node *mz;
1927 unsigned long anon_cost = 0;
1928 unsigned long file_cost = 0;
1929
1930 for_each_online_pgdat(pgdat) {
1931 mz = memcg->nodeinfo[pgdat->node_id];
1932
1933 anon_cost += mz->lruvec.anon_cost;
1934 file_cost += mz->lruvec.file_cost;
1935 }
1936 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
1937 seq_buf_printf(s, "file_cost %lu\n", file_cost);
1938 }
1939 #endif
1940 }
1941
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)1942 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
1943 struct cftype *cft)
1944 {
1945 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1946
1947 return mem_cgroup_swappiness(memcg);
1948 }
1949
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)1950 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
1951 struct cftype *cft, u64 val)
1952 {
1953 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1954
1955 if (val > MAX_SWAPPINESS)
1956 return -EINVAL;
1957
1958 if (!mem_cgroup_is_root(memcg)) {
1959 pr_info_once("Per memcg swappiness does not exist in cgroup v2. "
1960 "See memory.reclaim or memory.swap.max there\n ");
1961 WRITE_ONCE(memcg->swappiness, val);
1962 } else
1963 WRITE_ONCE(vm_swappiness, val);
1964
1965 return 0;
1966 }
1967
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)1968 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
1969 {
1970 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
1971
1972 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
1973 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
1974 seq_printf(sf, "oom_kill %lu\n",
1975 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
1976 return 0;
1977 }
1978
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)1979 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
1980 struct cftype *cft, u64 val)
1981 {
1982 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1983
1984 pr_warn_once("oom_control is deprecated and will be removed. "
1985 "Please report your usecase to linux-mm-@kvack.org if you "
1986 "depend on this functionality.\n");
1987
1988 /* cannot set to root cgroup and only 0 and 1 are allowed */
1989 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
1990 return -EINVAL;
1991
1992 WRITE_ONCE(memcg->oom_kill_disable, val);
1993 if (!val)
1994 memcg1_oom_recover(memcg);
1995
1996 return 0;
1997 }
1998
1999 #ifdef CONFIG_SLUB_DEBUG
mem_cgroup_slab_show(struct seq_file * m,void * p)2000 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
2001 {
2002 /*
2003 * Deprecated.
2004 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
2005 */
2006 return 0;
2007 }
2008 #endif
2009
2010 struct cftype mem_cgroup_legacy_files[] = {
2011 {
2012 .name = "usage_in_bytes",
2013 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2014 .read_u64 = mem_cgroup_read_u64,
2015 },
2016 {
2017 .name = "max_usage_in_bytes",
2018 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2019 .write = mem_cgroup_reset,
2020 .read_u64 = mem_cgroup_read_u64,
2021 },
2022 {
2023 .name = "limit_in_bytes",
2024 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2025 .write = mem_cgroup_write,
2026 .read_u64 = mem_cgroup_read_u64,
2027 },
2028 {
2029 .name = "soft_limit_in_bytes",
2030 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
2031 .write = mem_cgroup_write,
2032 .read_u64 = mem_cgroup_read_u64,
2033 },
2034 {
2035 .name = "failcnt",
2036 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2037 .write = mem_cgroup_reset,
2038 .read_u64 = mem_cgroup_read_u64,
2039 },
2040 {
2041 .name = "stat",
2042 .seq_show = memory_stat_show,
2043 },
2044 {
2045 .name = "force_empty",
2046 .write = mem_cgroup_force_empty_write,
2047 },
2048 {
2049 .name = "use_hierarchy",
2050 .write_u64 = mem_cgroup_hierarchy_write,
2051 .read_u64 = mem_cgroup_hierarchy_read,
2052 },
2053 {
2054 .name = "cgroup.event_control", /* XXX: for compat */
2055 .write = memcg_write_event_control,
2056 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
2057 },
2058 {
2059 .name = "swappiness",
2060 .read_u64 = mem_cgroup_swappiness_read,
2061 .write_u64 = mem_cgroup_swappiness_write,
2062 },
2063 {
2064 .name = "move_charge_at_immigrate",
2065 .read_u64 = mem_cgroup_move_charge_read,
2066 .write_u64 = mem_cgroup_move_charge_write,
2067 },
2068 {
2069 .name = "oom_control",
2070 .seq_show = mem_cgroup_oom_control_read,
2071 .write_u64 = mem_cgroup_oom_control_write,
2072 },
2073 {
2074 .name = "pressure_level",
2075 .seq_show = mem_cgroup_dummy_seq_show,
2076 },
2077 #ifdef CONFIG_NUMA
2078 {
2079 .name = "numa_stat",
2080 .seq_show = memcg_numa_stat_show,
2081 },
2082 #endif
2083 {
2084 .name = "kmem.limit_in_bytes",
2085 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
2086 .write = mem_cgroup_write,
2087 .read_u64 = mem_cgroup_read_u64,
2088 },
2089 {
2090 .name = "kmem.usage_in_bytes",
2091 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
2092 .read_u64 = mem_cgroup_read_u64,
2093 },
2094 {
2095 .name = "kmem.failcnt",
2096 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
2097 .write = mem_cgroup_reset,
2098 .read_u64 = mem_cgroup_read_u64,
2099 },
2100 {
2101 .name = "kmem.max_usage_in_bytes",
2102 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
2103 .write = mem_cgroup_reset,
2104 .read_u64 = mem_cgroup_read_u64,
2105 },
2106 #ifdef CONFIG_SLUB_DEBUG
2107 {
2108 .name = "kmem.slabinfo",
2109 .seq_show = mem_cgroup_slab_show,
2110 },
2111 #endif
2112 {
2113 .name = "kmem.tcp.limit_in_bytes",
2114 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
2115 .write = mem_cgroup_write,
2116 .read_u64 = mem_cgroup_read_u64,
2117 },
2118 {
2119 .name = "kmem.tcp.usage_in_bytes",
2120 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
2121 .read_u64 = mem_cgroup_read_u64,
2122 },
2123 {
2124 .name = "kmem.tcp.failcnt",
2125 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
2126 .write = mem_cgroup_reset,
2127 .read_u64 = mem_cgroup_read_u64,
2128 },
2129 {
2130 .name = "kmem.tcp.max_usage_in_bytes",
2131 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
2132 .write = mem_cgroup_reset,
2133 .read_u64 = mem_cgroup_read_u64,
2134 },
2135 { }, /* terminate */
2136 };
2137
2138 struct cftype memsw_files[] = {
2139 {
2140 .name = "memsw.usage_in_bytes",
2141 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2142 .read_u64 = mem_cgroup_read_u64,
2143 },
2144 {
2145 .name = "memsw.max_usage_in_bytes",
2146 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2147 .write = mem_cgroup_reset,
2148 .read_u64 = mem_cgroup_read_u64,
2149 },
2150 {
2151 .name = "memsw.limit_in_bytes",
2152 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2153 .write = mem_cgroup_write,
2154 .read_u64 = mem_cgroup_read_u64,
2155 },
2156 {
2157 .name = "memsw.failcnt",
2158 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2159 .write = mem_cgroup_reset,
2160 .read_u64 = mem_cgroup_read_u64,
2161 },
2162 { }, /* terminate */
2163 };
2164
memcg1_account_kmem(struct mem_cgroup * memcg,int nr_pages)2165 void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2166 {
2167 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2168 if (nr_pages > 0)
2169 page_counter_charge(&memcg->kmem, nr_pages);
2170 else
2171 page_counter_uncharge(&memcg->kmem, -nr_pages);
2172 }
2173 }
2174
memcg1_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2175 bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
2176 gfp_t gfp_mask)
2177 {
2178 struct page_counter *fail;
2179
2180 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
2181 memcg->tcpmem_pressure = 0;
2182 return true;
2183 }
2184 memcg->tcpmem_pressure = 1;
2185 if (gfp_mask & __GFP_NOFAIL) {
2186 page_counter_charge(&memcg->tcpmem, nr_pages);
2187 return true;
2188 }
2189 return false;
2190 }
2191
memcg1_alloc_events(struct mem_cgroup * memcg)2192 bool memcg1_alloc_events(struct mem_cgroup *memcg)
2193 {
2194 memcg->events_percpu = alloc_percpu_gfp(struct memcg1_events_percpu,
2195 GFP_KERNEL_ACCOUNT);
2196 return !!memcg->events_percpu;
2197 }
2198
memcg1_free_events(struct mem_cgroup * memcg)2199 void memcg1_free_events(struct mem_cgroup *memcg)
2200 {
2201 free_percpu(memcg->events_percpu);
2202 }
2203
memcg1_init(void)2204 static int __init memcg1_init(void)
2205 {
2206 int node;
2207
2208 for_each_node(node) {
2209 struct mem_cgroup_tree_per_node *rtpn;
2210
2211 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
2212
2213 rtpn->rb_root = RB_ROOT;
2214 rtpn->rb_rightmost = NULL;
2215 spin_lock_init(&rtpn->lock);
2216 soft_limit_tree.rb_tree_per_node[node] = rtpn;
2217 }
2218
2219 return 0;
2220 }
2221 subsys_initcall(memcg1_init);
2222