xref: /linux/mm/memcontrol.c (revision 6aee5aed2edd0a156bf060abce1bdbbc38171c10)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/cgroup-defs.h>
29 #include <linux/page_counter.h>
30 #include <linux/memcontrol.h>
31 #include <linux/cgroup.h>
32 #include <linux/cpuset.h>
33 #include <linux/sched/mm.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/hugetlb.h>
36 #include <linux/pagemap.h>
37 #include <linux/pagevec.h>
38 #include <linux/vm_event_item.h>
39 #include <linux/smp.h>
40 #include <linux/page-flags.h>
41 #include <linux/backing-dev.h>
42 #include <linux/bit_spinlock.h>
43 #include <linux/rcupdate.h>
44 #include <linux/limits.h>
45 #include <linux/export.h>
46 #include <linux/list.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swapops.h>
51 #include <linux/spinlock.h>
52 #include <linux/fs.h>
53 #include <linux/seq_file.h>
54 #include <linux/vmpressure.h>
55 #include <linux/memremap.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/resume_user_mode.h>
62 #include <linux/psi.h>
63 #include <linux/seq_buf.h>
64 #include <linux/sched/isolation.h>
65 #include <linux/kmemleak.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "memcontrol-v1.h"
71 
72 #include <linux/uaccess.h>
73 
74 #define CREATE_TRACE_POINTS
75 #include <trace/events/memcg.h>
76 #undef CREATE_TRACE_POINTS
77 
78 #include <trace/events/vmscan.h>
79 
80 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
81 EXPORT_SYMBOL(memory_cgrp_subsys);
82 
83 struct mem_cgroup *root_mem_cgroup __read_mostly;
84 
85 /* Active memory cgroup to use from an interrupt context */
86 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
87 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
88 
89 /* Socket memory accounting disabled? */
90 static bool cgroup_memory_nosocket __ro_after_init;
91 
92 /* Kernel memory accounting disabled? */
93 static bool cgroup_memory_nokmem __ro_after_init;
94 
95 /* BPF memory accounting disabled? */
96 static bool cgroup_memory_nobpf __ro_after_init;
97 
98 static struct kmem_cache *memcg_cachep;
99 static struct kmem_cache *memcg_pn_cachep;
100 
101 #ifdef CONFIG_CGROUP_WRITEBACK
102 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
103 #endif
104 
105 static inline bool task_is_dying(void)
106 {
107 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
108 		(current->flags & PF_EXITING);
109 }
110 
111 /* Some nice accessors for the vmpressure. */
112 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
113 {
114 	if (!memcg)
115 		memcg = root_mem_cgroup;
116 	return &memcg->vmpressure;
117 }
118 
119 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
120 {
121 	return container_of(vmpr, struct mem_cgroup, vmpressure);
122 }
123 
124 #define SEQ_BUF_SIZE SZ_4K
125 #define CURRENT_OBJCG_UPDATE_BIT 0
126 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
127 
128 static DEFINE_SPINLOCK(objcg_lock);
129 
130 bool mem_cgroup_kmem_disabled(void)
131 {
132 	return cgroup_memory_nokmem;
133 }
134 
135 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
136 
137 static void obj_cgroup_release(struct percpu_ref *ref)
138 {
139 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
140 	unsigned int nr_bytes;
141 	unsigned int nr_pages;
142 	unsigned long flags;
143 
144 	/*
145 	 * At this point all allocated objects are freed, and
146 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
147 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
148 	 *
149 	 * The following sequence can lead to it:
150 	 * 1) CPU0: objcg == stock->cached_objcg
151 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
152 	 *          PAGE_SIZE bytes are charged
153 	 * 3) CPU1: a process from another memcg is allocating something,
154 	 *          the stock if flushed,
155 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
156 	 * 5) CPU0: we do release this object,
157 	 *          92 bytes are added to stock->nr_bytes
158 	 * 6) CPU0: stock is flushed,
159 	 *          92 bytes are added to objcg->nr_charged_bytes
160 	 *
161 	 * In the result, nr_charged_bytes == PAGE_SIZE.
162 	 * This page will be uncharged in obj_cgroup_release().
163 	 */
164 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
165 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
166 	nr_pages = nr_bytes >> PAGE_SHIFT;
167 
168 	if (nr_pages) {
169 		struct mem_cgroup *memcg;
170 
171 		memcg = get_mem_cgroup_from_objcg(objcg);
172 		mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
173 		memcg1_account_kmem(memcg, -nr_pages);
174 		if (!mem_cgroup_is_root(memcg))
175 			memcg_uncharge(memcg, nr_pages);
176 		mem_cgroup_put(memcg);
177 	}
178 
179 	spin_lock_irqsave(&objcg_lock, flags);
180 	list_del(&objcg->list);
181 	spin_unlock_irqrestore(&objcg_lock, flags);
182 
183 	percpu_ref_exit(ref);
184 	kfree_rcu(objcg, rcu);
185 }
186 
187 static struct obj_cgroup *obj_cgroup_alloc(void)
188 {
189 	struct obj_cgroup *objcg;
190 	int ret;
191 
192 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
193 	if (!objcg)
194 		return NULL;
195 
196 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
197 			      GFP_KERNEL);
198 	if (ret) {
199 		kfree(objcg);
200 		return NULL;
201 	}
202 	INIT_LIST_HEAD(&objcg->list);
203 	return objcg;
204 }
205 
206 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
207 				  struct mem_cgroup *parent)
208 {
209 	struct obj_cgroup *objcg, *iter;
210 
211 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
212 
213 	spin_lock_irq(&objcg_lock);
214 
215 	/* 1) Ready to reparent active objcg. */
216 	list_add(&objcg->list, &memcg->objcg_list);
217 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
218 	list_for_each_entry(iter, &memcg->objcg_list, list)
219 		WRITE_ONCE(iter->memcg, parent);
220 	/* 3) Move already reparented objcgs to the parent's list */
221 	list_splice(&memcg->objcg_list, &parent->objcg_list);
222 
223 	spin_unlock_irq(&objcg_lock);
224 
225 	percpu_ref_kill(&objcg->refcnt);
226 }
227 
228 /*
229  * A lot of the calls to the cache allocation functions are expected to be
230  * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
231  * conditional to this static branch, we'll have to allow modules that does
232  * kmem_cache_alloc and the such to see this symbol as well
233  */
234 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
235 EXPORT_SYMBOL(memcg_kmem_online_key);
236 
237 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
238 EXPORT_SYMBOL(memcg_bpf_enabled_key);
239 
240 /**
241  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
242  * @folio: folio of interest
243  *
244  * If memcg is bound to the default hierarchy, css of the memcg associated
245  * with @folio is returned.  The returned css remains associated with @folio
246  * until it is released.
247  *
248  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
249  * is returned.
250  */
251 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
252 {
253 	struct mem_cgroup *memcg = folio_memcg(folio);
254 
255 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
256 		memcg = root_mem_cgroup;
257 
258 	return &memcg->css;
259 }
260 
261 /**
262  * page_cgroup_ino - return inode number of the memcg a page is charged to
263  * @page: the page
264  *
265  * Look up the closest online ancestor of the memory cgroup @page is charged to
266  * and return its inode number or 0 if @page is not charged to any cgroup. It
267  * is safe to call this function without holding a reference to @page.
268  *
269  * Note, this function is inherently racy, because there is nothing to prevent
270  * the cgroup inode from getting torn down and potentially reallocated a moment
271  * after page_cgroup_ino() returns, so it only should be used by callers that
272  * do not care (such as procfs interfaces).
273  */
274 ino_t page_cgroup_ino(struct page *page)
275 {
276 	struct mem_cgroup *memcg;
277 	unsigned long ino = 0;
278 
279 	rcu_read_lock();
280 	/* page_folio() is racy here, but the entire function is racy anyway */
281 	memcg = folio_memcg_check(page_folio(page));
282 
283 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
284 		memcg = parent_mem_cgroup(memcg);
285 	if (memcg)
286 		ino = cgroup_ino(memcg->css.cgroup);
287 	rcu_read_unlock();
288 	return ino;
289 }
290 
291 /* Subset of node_stat_item for memcg stats */
292 static const unsigned int memcg_node_stat_items[] = {
293 	NR_INACTIVE_ANON,
294 	NR_ACTIVE_ANON,
295 	NR_INACTIVE_FILE,
296 	NR_ACTIVE_FILE,
297 	NR_UNEVICTABLE,
298 	NR_SLAB_RECLAIMABLE_B,
299 	NR_SLAB_UNRECLAIMABLE_B,
300 	WORKINGSET_REFAULT_ANON,
301 	WORKINGSET_REFAULT_FILE,
302 	WORKINGSET_ACTIVATE_ANON,
303 	WORKINGSET_ACTIVATE_FILE,
304 	WORKINGSET_RESTORE_ANON,
305 	WORKINGSET_RESTORE_FILE,
306 	WORKINGSET_NODERECLAIM,
307 	NR_ANON_MAPPED,
308 	NR_FILE_MAPPED,
309 	NR_FILE_PAGES,
310 	NR_FILE_DIRTY,
311 	NR_WRITEBACK,
312 	NR_SHMEM,
313 	NR_SHMEM_THPS,
314 	NR_FILE_THPS,
315 	NR_ANON_THPS,
316 	NR_KERNEL_STACK_KB,
317 	NR_PAGETABLE,
318 	NR_SECONDARY_PAGETABLE,
319 #ifdef CONFIG_SWAP
320 	NR_SWAPCACHE,
321 #endif
322 #ifdef CONFIG_NUMA_BALANCING
323 	PGPROMOTE_SUCCESS,
324 #endif
325 	PGDEMOTE_KSWAPD,
326 	PGDEMOTE_DIRECT,
327 	PGDEMOTE_KHUGEPAGED,
328 	PGDEMOTE_PROACTIVE,
329 #ifdef CONFIG_HUGETLB_PAGE
330 	NR_HUGETLB,
331 #endif
332 };
333 
334 static const unsigned int memcg_stat_items[] = {
335 	MEMCG_SWAP,
336 	MEMCG_SOCK,
337 	MEMCG_PERCPU_B,
338 	MEMCG_VMALLOC,
339 	MEMCG_KMEM,
340 	MEMCG_ZSWAP_B,
341 	MEMCG_ZSWAPPED,
342 };
343 
344 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
345 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
346 			   ARRAY_SIZE(memcg_stat_items))
347 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
348 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
349 
350 static void init_memcg_stats(void)
351 {
352 	u8 i, j = 0;
353 
354 	BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
355 
356 	memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
357 
358 	for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
359 		mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
360 
361 	for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
362 		mem_cgroup_stats_index[memcg_stat_items[i]] = j;
363 }
364 
365 static inline int memcg_stats_index(int idx)
366 {
367 	return mem_cgroup_stats_index[idx];
368 }
369 
370 struct lruvec_stats_percpu {
371 	/* Local (CPU and cgroup) state */
372 	long state[NR_MEMCG_NODE_STAT_ITEMS];
373 
374 	/* Delta calculation for lockless upward propagation */
375 	long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
376 };
377 
378 struct lruvec_stats {
379 	/* Aggregated (CPU and subtree) state */
380 	long state[NR_MEMCG_NODE_STAT_ITEMS];
381 
382 	/* Non-hierarchical (CPU aggregated) state */
383 	long state_local[NR_MEMCG_NODE_STAT_ITEMS];
384 
385 	/* Pending child counts during tree propagation */
386 	long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
387 };
388 
389 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
390 {
391 	struct mem_cgroup_per_node *pn;
392 	long x;
393 	int i;
394 
395 	if (mem_cgroup_disabled())
396 		return node_page_state(lruvec_pgdat(lruvec), idx);
397 
398 	i = memcg_stats_index(idx);
399 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
400 		return 0;
401 
402 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
403 	x = READ_ONCE(pn->lruvec_stats->state[i]);
404 #ifdef CONFIG_SMP
405 	if (x < 0)
406 		x = 0;
407 #endif
408 	return x;
409 }
410 
411 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
412 				      enum node_stat_item idx)
413 {
414 	struct mem_cgroup_per_node *pn;
415 	long x;
416 	int i;
417 
418 	if (mem_cgroup_disabled())
419 		return node_page_state(lruvec_pgdat(lruvec), idx);
420 
421 	i = memcg_stats_index(idx);
422 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
423 		return 0;
424 
425 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
426 	x = READ_ONCE(pn->lruvec_stats->state_local[i]);
427 #ifdef CONFIG_SMP
428 	if (x < 0)
429 		x = 0;
430 #endif
431 	return x;
432 }
433 
434 /* Subset of vm_event_item to report for memcg event stats */
435 static const unsigned int memcg_vm_event_stat[] = {
436 #ifdef CONFIG_MEMCG_V1
437 	PGPGIN,
438 	PGPGOUT,
439 #endif
440 	PSWPIN,
441 	PSWPOUT,
442 	PGSCAN_KSWAPD,
443 	PGSCAN_DIRECT,
444 	PGSCAN_KHUGEPAGED,
445 	PGSCAN_PROACTIVE,
446 	PGSTEAL_KSWAPD,
447 	PGSTEAL_DIRECT,
448 	PGSTEAL_KHUGEPAGED,
449 	PGSTEAL_PROACTIVE,
450 	PGFAULT,
451 	PGMAJFAULT,
452 	PGREFILL,
453 	PGACTIVATE,
454 	PGDEACTIVATE,
455 	PGLAZYFREE,
456 	PGLAZYFREED,
457 #ifdef CONFIG_SWAP
458 	SWPIN_ZERO,
459 	SWPOUT_ZERO,
460 #endif
461 #ifdef CONFIG_ZSWAP
462 	ZSWPIN,
463 	ZSWPOUT,
464 	ZSWPWB,
465 #endif
466 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
467 	THP_FAULT_ALLOC,
468 	THP_COLLAPSE_ALLOC,
469 	THP_SWPOUT,
470 	THP_SWPOUT_FALLBACK,
471 #endif
472 #ifdef CONFIG_NUMA_BALANCING
473 	NUMA_PAGE_MIGRATE,
474 	NUMA_PTE_UPDATES,
475 	NUMA_HINT_FAULTS,
476 #endif
477 };
478 
479 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
480 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
481 
482 static void init_memcg_events(void)
483 {
484 	u8 i;
485 
486 	BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
487 
488 	memset(mem_cgroup_events_index, U8_MAX,
489 	       sizeof(mem_cgroup_events_index));
490 
491 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
492 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
493 }
494 
495 static inline int memcg_events_index(enum vm_event_item idx)
496 {
497 	return mem_cgroup_events_index[idx];
498 }
499 
500 struct memcg_vmstats_percpu {
501 	/* Stats updates since the last flush */
502 	unsigned int			stats_updates;
503 
504 	/* Cached pointers for fast iteration in memcg_rstat_updated() */
505 	struct memcg_vmstats_percpu __percpu	*parent_pcpu;
506 	struct memcg_vmstats			*vmstats;
507 
508 	/* The above should fit a single cacheline for memcg_rstat_updated() */
509 
510 	/* Local (CPU and cgroup) page state & events */
511 	long			state[MEMCG_VMSTAT_SIZE];
512 	unsigned long		events[NR_MEMCG_EVENTS];
513 
514 	/* Delta calculation for lockless upward propagation */
515 	long			state_prev[MEMCG_VMSTAT_SIZE];
516 	unsigned long		events_prev[NR_MEMCG_EVENTS];
517 } ____cacheline_aligned;
518 
519 struct memcg_vmstats {
520 	/* Aggregated (CPU and subtree) page state & events */
521 	long			state[MEMCG_VMSTAT_SIZE];
522 	unsigned long		events[NR_MEMCG_EVENTS];
523 
524 	/* Non-hierarchical (CPU aggregated) page state & events */
525 	long			state_local[MEMCG_VMSTAT_SIZE];
526 	unsigned long		events_local[NR_MEMCG_EVENTS];
527 
528 	/* Pending child counts during tree propagation */
529 	long			state_pending[MEMCG_VMSTAT_SIZE];
530 	unsigned long		events_pending[NR_MEMCG_EVENTS];
531 
532 	/* Stats updates since the last flush */
533 	atomic_t		stats_updates;
534 };
535 
536 /*
537  * memcg and lruvec stats flushing
538  *
539  * Many codepaths leading to stats update or read are performance sensitive and
540  * adding stats flushing in such codepaths is not desirable. So, to optimize the
541  * flushing the kernel does:
542  *
543  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
544  *    rstat update tree grow unbounded.
545  *
546  * 2) Flush the stats synchronously on reader side only when there are more than
547  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
548  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
549  *    only for 2 seconds due to (1).
550  */
551 static void flush_memcg_stats_dwork(struct work_struct *w);
552 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
553 static u64 flush_last_time;
554 
555 #define FLUSH_TIME (2UL*HZ)
556 
557 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
558 {
559 	return atomic_read(&vmstats->stats_updates) >
560 		MEMCG_CHARGE_BATCH * num_online_cpus();
561 }
562 
563 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val,
564 				       int cpu)
565 {
566 	struct memcg_vmstats_percpu __percpu *statc_pcpu;
567 	struct memcg_vmstats_percpu *statc;
568 	unsigned int stats_updates;
569 
570 	if (!val)
571 		return;
572 
573 	css_rstat_updated(&memcg->css, cpu);
574 	statc_pcpu = memcg->vmstats_percpu;
575 	for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) {
576 		statc = this_cpu_ptr(statc_pcpu);
577 		/*
578 		 * If @memcg is already flushable then all its ancestors are
579 		 * flushable as well and also there is no need to increase
580 		 * stats_updates.
581 		 */
582 		if (memcg_vmstats_needs_flush(statc->vmstats))
583 			break;
584 
585 		stats_updates = this_cpu_add_return(statc_pcpu->stats_updates,
586 						    abs(val));
587 		if (stats_updates < MEMCG_CHARGE_BATCH)
588 			continue;
589 
590 		stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0);
591 		atomic_add(stats_updates, &statc->vmstats->stats_updates);
592 	}
593 }
594 
595 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
596 {
597 	bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
598 
599 	trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates),
600 		force, needs_flush);
601 
602 	if (!force && !needs_flush)
603 		return;
604 
605 	if (mem_cgroup_is_root(memcg))
606 		WRITE_ONCE(flush_last_time, jiffies_64);
607 
608 	css_rstat_flush(&memcg->css);
609 }
610 
611 /*
612  * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
613  * @memcg: root of the subtree to flush
614  *
615  * Flushing is serialized by the underlying global rstat lock. There is also a
616  * minimum amount of work to be done even if there are no stat updates to flush.
617  * Hence, we only flush the stats if the updates delta exceeds a threshold. This
618  * avoids unnecessary work and contention on the underlying lock.
619  */
620 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
621 {
622 	if (mem_cgroup_disabled())
623 		return;
624 
625 	if (!memcg)
626 		memcg = root_mem_cgroup;
627 
628 	__mem_cgroup_flush_stats(memcg, false);
629 }
630 
631 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
632 {
633 	/* Only flush if the periodic flusher is one full cycle late */
634 	if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
635 		mem_cgroup_flush_stats(memcg);
636 }
637 
638 static void flush_memcg_stats_dwork(struct work_struct *w)
639 {
640 	/*
641 	 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
642 	 * in latency-sensitive paths is as cheap as possible.
643 	 */
644 	__mem_cgroup_flush_stats(root_mem_cgroup, true);
645 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
646 }
647 
648 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
649 {
650 	long x;
651 	int i = memcg_stats_index(idx);
652 
653 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
654 		return 0;
655 
656 	x = READ_ONCE(memcg->vmstats->state[i]);
657 #ifdef CONFIG_SMP
658 	if (x < 0)
659 		x = 0;
660 #endif
661 	return x;
662 }
663 
664 static int memcg_page_state_unit(int item);
665 
666 /*
667  * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
668  * up non-zero sub-page updates to 1 page as zero page updates are ignored.
669  */
670 static int memcg_state_val_in_pages(int idx, int val)
671 {
672 	int unit = memcg_page_state_unit(idx);
673 
674 	if (!val || unit == PAGE_SIZE)
675 		return val;
676 	else
677 		return max(val * unit / PAGE_SIZE, 1UL);
678 }
679 
680 /**
681  * mod_memcg_state - update cgroup memory statistics
682  * @memcg: the memory cgroup
683  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
684  * @val: delta to add to the counter, can be negative
685  */
686 void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
687 		       int val)
688 {
689 	int i = memcg_stats_index(idx);
690 	int cpu;
691 
692 	if (mem_cgroup_disabled())
693 		return;
694 
695 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
696 		return;
697 
698 	cpu = get_cpu();
699 
700 	this_cpu_add(memcg->vmstats_percpu->state[i], val);
701 	val = memcg_state_val_in_pages(idx, val);
702 	memcg_rstat_updated(memcg, val, cpu);
703 	trace_mod_memcg_state(memcg, idx, val);
704 
705 	put_cpu();
706 }
707 
708 #ifdef CONFIG_MEMCG_V1
709 /* idx can be of type enum memcg_stat_item or node_stat_item. */
710 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
711 {
712 	long x;
713 	int i = memcg_stats_index(idx);
714 
715 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
716 		return 0;
717 
718 	x = READ_ONCE(memcg->vmstats->state_local[i]);
719 #ifdef CONFIG_SMP
720 	if (x < 0)
721 		x = 0;
722 #endif
723 	return x;
724 }
725 #endif
726 
727 static void mod_memcg_lruvec_state(struct lruvec *lruvec,
728 				     enum node_stat_item idx,
729 				     int val)
730 {
731 	struct mem_cgroup_per_node *pn;
732 	struct mem_cgroup *memcg;
733 	int i = memcg_stats_index(idx);
734 	int cpu;
735 
736 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
737 		return;
738 
739 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
740 	memcg = pn->memcg;
741 
742 	cpu = get_cpu();
743 
744 	/* Update memcg */
745 	this_cpu_add(memcg->vmstats_percpu->state[i], val);
746 
747 	/* Update lruvec */
748 	this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
749 
750 	val = memcg_state_val_in_pages(idx, val);
751 	memcg_rstat_updated(memcg, val, cpu);
752 	trace_mod_memcg_lruvec_state(memcg, idx, val);
753 
754 	put_cpu();
755 }
756 
757 /**
758  * __mod_lruvec_state - update lruvec memory statistics
759  * @lruvec: the lruvec
760  * @idx: the stat item
761  * @val: delta to add to the counter, can be negative
762  *
763  * The lruvec is the intersection of the NUMA node and a cgroup. This
764  * function updates the all three counters that are affected by a
765  * change of state at this level: per-node, per-cgroup, per-lruvec.
766  */
767 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
768 			int val)
769 {
770 	/* Update node */
771 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
772 
773 	/* Update memcg and lruvec */
774 	if (!mem_cgroup_disabled())
775 		mod_memcg_lruvec_state(lruvec, idx, val);
776 }
777 
778 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
779 			     int val)
780 {
781 	struct mem_cgroup *memcg;
782 	pg_data_t *pgdat = folio_pgdat(folio);
783 	struct lruvec *lruvec;
784 
785 	rcu_read_lock();
786 	memcg = folio_memcg(folio);
787 	/* Untracked pages have no memcg, no lruvec. Update only the node */
788 	if (!memcg) {
789 		rcu_read_unlock();
790 		__mod_node_page_state(pgdat, idx, val);
791 		return;
792 	}
793 
794 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
795 	__mod_lruvec_state(lruvec, idx, val);
796 	rcu_read_unlock();
797 }
798 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
799 
800 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
801 {
802 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
803 	struct mem_cgroup *memcg;
804 	struct lruvec *lruvec;
805 
806 	rcu_read_lock();
807 	memcg = mem_cgroup_from_slab_obj(p);
808 
809 	/*
810 	 * Untracked pages have no memcg, no lruvec. Update only the
811 	 * node. If we reparent the slab objects to the root memcg,
812 	 * when we free the slab object, we need to update the per-memcg
813 	 * vmstats to keep it correct for the root memcg.
814 	 */
815 	if (!memcg) {
816 		__mod_node_page_state(pgdat, idx, val);
817 	} else {
818 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
819 		__mod_lruvec_state(lruvec, idx, val);
820 	}
821 	rcu_read_unlock();
822 }
823 
824 /**
825  * count_memcg_events - account VM events in a cgroup
826  * @memcg: the memory cgroup
827  * @idx: the event item
828  * @count: the number of events that occurred
829  */
830 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
831 			  unsigned long count)
832 {
833 	int i = memcg_events_index(idx);
834 	int cpu;
835 
836 	if (mem_cgroup_disabled())
837 		return;
838 
839 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
840 		return;
841 
842 	cpu = get_cpu();
843 
844 	this_cpu_add(memcg->vmstats_percpu->events[i], count);
845 	memcg_rstat_updated(memcg, count, cpu);
846 	trace_count_memcg_events(memcg, idx, count);
847 
848 	put_cpu();
849 }
850 
851 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
852 {
853 	int i = memcg_events_index(event);
854 
855 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
856 		return 0;
857 
858 	return READ_ONCE(memcg->vmstats->events[i]);
859 }
860 
861 #ifdef CONFIG_MEMCG_V1
862 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
863 {
864 	int i = memcg_events_index(event);
865 
866 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
867 		return 0;
868 
869 	return READ_ONCE(memcg->vmstats->events_local[i]);
870 }
871 #endif
872 
873 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
874 {
875 	/*
876 	 * mm_update_next_owner() may clear mm->owner to NULL
877 	 * if it races with swapoff, page migration, etc.
878 	 * So this can be called with p == NULL.
879 	 */
880 	if (unlikely(!p))
881 		return NULL;
882 
883 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
884 }
885 EXPORT_SYMBOL(mem_cgroup_from_task);
886 
887 static __always_inline struct mem_cgroup *active_memcg(void)
888 {
889 	if (!in_task())
890 		return this_cpu_read(int_active_memcg);
891 	else
892 		return current->active_memcg;
893 }
894 
895 /**
896  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
897  * @mm: mm from which memcg should be extracted. It can be NULL.
898  *
899  * Obtain a reference on mm->memcg and returns it if successful. If mm
900  * is NULL, then the memcg is chosen as follows:
901  * 1) The active memcg, if set.
902  * 2) current->mm->memcg, if available
903  * 3) root memcg
904  * If mem_cgroup is disabled, NULL is returned.
905  */
906 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
907 {
908 	struct mem_cgroup *memcg;
909 
910 	if (mem_cgroup_disabled())
911 		return NULL;
912 
913 	/*
914 	 * Page cache insertions can happen without an
915 	 * actual mm context, e.g. during disk probing
916 	 * on boot, loopback IO, acct() writes etc.
917 	 *
918 	 * No need to css_get on root memcg as the reference
919 	 * counting is disabled on the root level in the
920 	 * cgroup core. See CSS_NO_REF.
921 	 */
922 	if (unlikely(!mm)) {
923 		memcg = active_memcg();
924 		if (unlikely(memcg)) {
925 			/* remote memcg must hold a ref */
926 			css_get(&memcg->css);
927 			return memcg;
928 		}
929 		mm = current->mm;
930 		if (unlikely(!mm))
931 			return root_mem_cgroup;
932 	}
933 
934 	rcu_read_lock();
935 	do {
936 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
937 		if (unlikely(!memcg))
938 			memcg = root_mem_cgroup;
939 	} while (!css_tryget(&memcg->css));
940 	rcu_read_unlock();
941 	return memcg;
942 }
943 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
944 
945 /**
946  * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
947  */
948 struct mem_cgroup *get_mem_cgroup_from_current(void)
949 {
950 	struct mem_cgroup *memcg;
951 
952 	if (mem_cgroup_disabled())
953 		return NULL;
954 
955 again:
956 	rcu_read_lock();
957 	memcg = mem_cgroup_from_task(current);
958 	if (!css_tryget(&memcg->css)) {
959 		rcu_read_unlock();
960 		goto again;
961 	}
962 	rcu_read_unlock();
963 	return memcg;
964 }
965 
966 /**
967  * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
968  * @folio: folio from which memcg should be extracted.
969  */
970 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
971 {
972 	struct mem_cgroup *memcg = folio_memcg(folio);
973 
974 	if (mem_cgroup_disabled())
975 		return NULL;
976 
977 	rcu_read_lock();
978 	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
979 		memcg = root_mem_cgroup;
980 	rcu_read_unlock();
981 	return memcg;
982 }
983 
984 /**
985  * mem_cgroup_iter - iterate over memory cgroup hierarchy
986  * @root: hierarchy root
987  * @prev: previously returned memcg, NULL on first invocation
988  * @reclaim: cookie for shared reclaim walks, NULL for full walks
989  *
990  * Returns references to children of the hierarchy below @root, or
991  * @root itself, or %NULL after a full round-trip.
992  *
993  * Caller must pass the return value in @prev on subsequent
994  * invocations for reference counting, or use mem_cgroup_iter_break()
995  * to cancel a hierarchy walk before the round-trip is complete.
996  *
997  * Reclaimers can specify a node in @reclaim to divide up the memcgs
998  * in the hierarchy among all concurrent reclaimers operating on the
999  * same node.
1000  */
1001 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1002 				   struct mem_cgroup *prev,
1003 				   struct mem_cgroup_reclaim_cookie *reclaim)
1004 {
1005 	struct mem_cgroup_reclaim_iter *iter;
1006 	struct cgroup_subsys_state *css;
1007 	struct mem_cgroup *pos;
1008 	struct mem_cgroup *next;
1009 
1010 	if (mem_cgroup_disabled())
1011 		return NULL;
1012 
1013 	if (!root)
1014 		root = root_mem_cgroup;
1015 
1016 	rcu_read_lock();
1017 restart:
1018 	next = NULL;
1019 
1020 	if (reclaim) {
1021 		int gen;
1022 		int nid = reclaim->pgdat->node_id;
1023 
1024 		iter = &root->nodeinfo[nid]->iter;
1025 		gen = atomic_read(&iter->generation);
1026 
1027 		/*
1028 		 * On start, join the current reclaim iteration cycle.
1029 		 * Exit when a concurrent walker completes it.
1030 		 */
1031 		if (!prev)
1032 			reclaim->generation = gen;
1033 		else if (reclaim->generation != gen)
1034 			goto out_unlock;
1035 
1036 		pos = READ_ONCE(iter->position);
1037 	} else
1038 		pos = prev;
1039 
1040 	css = pos ? &pos->css : NULL;
1041 
1042 	while ((css = css_next_descendant_pre(css, &root->css))) {
1043 		/*
1044 		 * Verify the css and acquire a reference.  The root
1045 		 * is provided by the caller, so we know it's alive
1046 		 * and kicking, and don't take an extra reference.
1047 		 */
1048 		if (css == &root->css || css_tryget(css))
1049 			break;
1050 	}
1051 
1052 	next = mem_cgroup_from_css(css);
1053 
1054 	if (reclaim) {
1055 		/*
1056 		 * The position could have already been updated by a competing
1057 		 * thread, so check that the value hasn't changed since we read
1058 		 * it to avoid reclaiming from the same cgroup twice.
1059 		 */
1060 		if (cmpxchg(&iter->position, pos, next) != pos) {
1061 			if (css && css != &root->css)
1062 				css_put(css);
1063 			goto restart;
1064 		}
1065 
1066 		if (!next) {
1067 			atomic_inc(&iter->generation);
1068 
1069 			/*
1070 			 * Reclaimers share the hierarchy walk, and a
1071 			 * new one might jump in right at the end of
1072 			 * the hierarchy - make sure they see at least
1073 			 * one group and restart from the beginning.
1074 			 */
1075 			if (!prev)
1076 				goto restart;
1077 		}
1078 	}
1079 
1080 out_unlock:
1081 	rcu_read_unlock();
1082 	if (prev && prev != root)
1083 		css_put(&prev->css);
1084 
1085 	return next;
1086 }
1087 
1088 /**
1089  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1090  * @root: hierarchy root
1091  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1092  */
1093 void mem_cgroup_iter_break(struct mem_cgroup *root,
1094 			   struct mem_cgroup *prev)
1095 {
1096 	if (!root)
1097 		root = root_mem_cgroup;
1098 	if (prev && prev != root)
1099 		css_put(&prev->css);
1100 }
1101 
1102 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1103 					struct mem_cgroup *dead_memcg)
1104 {
1105 	struct mem_cgroup_reclaim_iter *iter;
1106 	struct mem_cgroup_per_node *mz;
1107 	int nid;
1108 
1109 	for_each_node(nid) {
1110 		mz = from->nodeinfo[nid];
1111 		iter = &mz->iter;
1112 		cmpxchg(&iter->position, dead_memcg, NULL);
1113 	}
1114 }
1115 
1116 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1117 {
1118 	struct mem_cgroup *memcg = dead_memcg;
1119 	struct mem_cgroup *last;
1120 
1121 	do {
1122 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1123 		last = memcg;
1124 	} while ((memcg = parent_mem_cgroup(memcg)));
1125 
1126 	/*
1127 	 * When cgroup1 non-hierarchy mode is used,
1128 	 * parent_mem_cgroup() does not walk all the way up to the
1129 	 * cgroup root (root_mem_cgroup). So we have to handle
1130 	 * dead_memcg from cgroup root separately.
1131 	 */
1132 	if (!mem_cgroup_is_root(last))
1133 		__invalidate_reclaim_iterators(root_mem_cgroup,
1134 						dead_memcg);
1135 }
1136 
1137 /**
1138  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1139  * @memcg: hierarchy root
1140  * @fn: function to call for each task
1141  * @arg: argument passed to @fn
1142  *
1143  * This function iterates over tasks attached to @memcg or to any of its
1144  * descendants and calls @fn for each task. If @fn returns a non-zero
1145  * value, the function breaks the iteration loop. Otherwise, it will iterate
1146  * over all tasks and return 0.
1147  *
1148  * This function must not be called for the root memory cgroup.
1149  */
1150 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1151 			   int (*fn)(struct task_struct *, void *), void *arg)
1152 {
1153 	struct mem_cgroup *iter;
1154 	int ret = 0;
1155 
1156 	BUG_ON(mem_cgroup_is_root(memcg));
1157 
1158 	for_each_mem_cgroup_tree(iter, memcg) {
1159 		struct css_task_iter it;
1160 		struct task_struct *task;
1161 
1162 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1163 		while (!ret && (task = css_task_iter_next(&it))) {
1164 			ret = fn(task, arg);
1165 			/* Avoid potential softlockup warning */
1166 			cond_resched();
1167 		}
1168 		css_task_iter_end(&it);
1169 		if (ret) {
1170 			mem_cgroup_iter_break(memcg, iter);
1171 			break;
1172 		}
1173 	}
1174 }
1175 
1176 #ifdef CONFIG_DEBUG_VM
1177 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1178 {
1179 	struct mem_cgroup *memcg;
1180 
1181 	if (mem_cgroup_disabled())
1182 		return;
1183 
1184 	memcg = folio_memcg(folio);
1185 
1186 	if (!memcg)
1187 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1188 	else
1189 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1190 }
1191 #endif
1192 
1193 /**
1194  * folio_lruvec_lock - Lock the lruvec for a folio.
1195  * @folio: Pointer to the folio.
1196  *
1197  * These functions are safe to use under any of the following conditions:
1198  * - folio locked
1199  * - folio_test_lru false
1200  * - folio frozen (refcount of 0)
1201  *
1202  * Return: The lruvec this folio is on with its lock held.
1203  */
1204 struct lruvec *folio_lruvec_lock(struct folio *folio)
1205 {
1206 	struct lruvec *lruvec = folio_lruvec(folio);
1207 
1208 	spin_lock(&lruvec->lru_lock);
1209 	lruvec_memcg_debug(lruvec, folio);
1210 
1211 	return lruvec;
1212 }
1213 
1214 /**
1215  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1216  * @folio: Pointer to the folio.
1217  *
1218  * These functions are safe to use under any of the following conditions:
1219  * - folio locked
1220  * - folio_test_lru false
1221  * - folio frozen (refcount of 0)
1222  *
1223  * Return: The lruvec this folio is on with its lock held and interrupts
1224  * disabled.
1225  */
1226 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1227 {
1228 	struct lruvec *lruvec = folio_lruvec(folio);
1229 
1230 	spin_lock_irq(&lruvec->lru_lock);
1231 	lruvec_memcg_debug(lruvec, folio);
1232 
1233 	return lruvec;
1234 }
1235 
1236 /**
1237  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1238  * @folio: Pointer to the folio.
1239  * @flags: Pointer to irqsave flags.
1240  *
1241  * These functions are safe to use under any of the following conditions:
1242  * - folio locked
1243  * - folio_test_lru false
1244  * - folio frozen (refcount of 0)
1245  *
1246  * Return: The lruvec this folio is on with its lock held and interrupts
1247  * disabled.
1248  */
1249 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1250 		unsigned long *flags)
1251 {
1252 	struct lruvec *lruvec = folio_lruvec(folio);
1253 
1254 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1255 	lruvec_memcg_debug(lruvec, folio);
1256 
1257 	return lruvec;
1258 }
1259 
1260 /**
1261  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1262  * @lruvec: mem_cgroup per zone lru vector
1263  * @lru: index of lru list the page is sitting on
1264  * @zid: zone id of the accounted pages
1265  * @nr_pages: positive when adding or negative when removing
1266  *
1267  * This function must be called under lru_lock, just before a page is added
1268  * to or just after a page is removed from an lru list.
1269  */
1270 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1271 				int zid, int nr_pages)
1272 {
1273 	struct mem_cgroup_per_node *mz;
1274 	unsigned long *lru_size;
1275 	long size;
1276 
1277 	if (mem_cgroup_disabled())
1278 		return;
1279 
1280 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1281 	lru_size = &mz->lru_zone_size[zid][lru];
1282 
1283 	if (nr_pages < 0)
1284 		*lru_size += nr_pages;
1285 
1286 	size = *lru_size;
1287 	if (WARN_ONCE(size < 0,
1288 		"%s(%p, %d, %d): lru_size %ld\n",
1289 		__func__, lruvec, lru, nr_pages, size)) {
1290 		VM_BUG_ON(1);
1291 		*lru_size = 0;
1292 	}
1293 
1294 	if (nr_pages > 0)
1295 		*lru_size += nr_pages;
1296 }
1297 
1298 /**
1299  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1300  * @memcg: the memory cgroup
1301  *
1302  * Returns the maximum amount of memory @mem can be charged with, in
1303  * pages.
1304  */
1305 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1306 {
1307 	unsigned long margin = 0;
1308 	unsigned long count;
1309 	unsigned long limit;
1310 
1311 	count = page_counter_read(&memcg->memory);
1312 	limit = READ_ONCE(memcg->memory.max);
1313 	if (count < limit)
1314 		margin = limit - count;
1315 
1316 	if (do_memsw_account()) {
1317 		count = page_counter_read(&memcg->memsw);
1318 		limit = READ_ONCE(memcg->memsw.max);
1319 		if (count < limit)
1320 			margin = min(margin, limit - count);
1321 		else
1322 			margin = 0;
1323 	}
1324 
1325 	return margin;
1326 }
1327 
1328 struct memory_stat {
1329 	const char *name;
1330 	unsigned int idx;
1331 };
1332 
1333 static const struct memory_stat memory_stats[] = {
1334 	{ "anon",			NR_ANON_MAPPED			},
1335 	{ "file",			NR_FILE_PAGES			},
1336 	{ "kernel",			MEMCG_KMEM			},
1337 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1338 	{ "pagetables",			NR_PAGETABLE			},
1339 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1340 	{ "percpu",			MEMCG_PERCPU_B			},
1341 	{ "sock",			MEMCG_SOCK			},
1342 	{ "vmalloc",			MEMCG_VMALLOC			},
1343 	{ "shmem",			NR_SHMEM			},
1344 #ifdef CONFIG_ZSWAP
1345 	{ "zswap",			MEMCG_ZSWAP_B			},
1346 	{ "zswapped",			MEMCG_ZSWAPPED			},
1347 #endif
1348 	{ "file_mapped",		NR_FILE_MAPPED			},
1349 	{ "file_dirty",			NR_FILE_DIRTY			},
1350 	{ "file_writeback",		NR_WRITEBACK			},
1351 #ifdef CONFIG_SWAP
1352 	{ "swapcached",			NR_SWAPCACHE			},
1353 #endif
1354 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1355 	{ "anon_thp",			NR_ANON_THPS			},
1356 	{ "file_thp",			NR_FILE_THPS			},
1357 	{ "shmem_thp",			NR_SHMEM_THPS			},
1358 #endif
1359 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1360 	{ "active_anon",		NR_ACTIVE_ANON			},
1361 	{ "inactive_file",		NR_INACTIVE_FILE		},
1362 	{ "active_file",		NR_ACTIVE_FILE			},
1363 	{ "unevictable",		NR_UNEVICTABLE			},
1364 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1365 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1366 #ifdef CONFIG_HUGETLB_PAGE
1367 	{ "hugetlb",			NR_HUGETLB			},
1368 #endif
1369 
1370 	/* The memory events */
1371 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1372 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1373 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1374 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1375 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1376 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1377 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1378 
1379 	{ "pgdemote_kswapd",		PGDEMOTE_KSWAPD		},
1380 	{ "pgdemote_direct",		PGDEMOTE_DIRECT		},
1381 	{ "pgdemote_khugepaged",	PGDEMOTE_KHUGEPAGED	},
1382 	{ "pgdemote_proactive",		PGDEMOTE_PROACTIVE	},
1383 #ifdef CONFIG_NUMA_BALANCING
1384 	{ "pgpromote_success",		PGPROMOTE_SUCCESS	},
1385 #endif
1386 };
1387 
1388 /* The actual unit of the state item, not the same as the output unit */
1389 static int memcg_page_state_unit(int item)
1390 {
1391 	switch (item) {
1392 	case MEMCG_PERCPU_B:
1393 	case MEMCG_ZSWAP_B:
1394 	case NR_SLAB_RECLAIMABLE_B:
1395 	case NR_SLAB_UNRECLAIMABLE_B:
1396 		return 1;
1397 	case NR_KERNEL_STACK_KB:
1398 		return SZ_1K;
1399 	default:
1400 		return PAGE_SIZE;
1401 	}
1402 }
1403 
1404 /* Translate stat items to the correct unit for memory.stat output */
1405 static int memcg_page_state_output_unit(int item)
1406 {
1407 	/*
1408 	 * Workingset state is actually in pages, but we export it to userspace
1409 	 * as a scalar count of events, so special case it here.
1410 	 *
1411 	 * Demotion and promotion activities are exported in pages, consistent
1412 	 * with their global counterparts.
1413 	 */
1414 	switch (item) {
1415 	case WORKINGSET_REFAULT_ANON:
1416 	case WORKINGSET_REFAULT_FILE:
1417 	case WORKINGSET_ACTIVATE_ANON:
1418 	case WORKINGSET_ACTIVATE_FILE:
1419 	case WORKINGSET_RESTORE_ANON:
1420 	case WORKINGSET_RESTORE_FILE:
1421 	case WORKINGSET_NODERECLAIM:
1422 	case PGDEMOTE_KSWAPD:
1423 	case PGDEMOTE_DIRECT:
1424 	case PGDEMOTE_KHUGEPAGED:
1425 	case PGDEMOTE_PROACTIVE:
1426 #ifdef CONFIG_NUMA_BALANCING
1427 	case PGPROMOTE_SUCCESS:
1428 #endif
1429 		return 1;
1430 	default:
1431 		return memcg_page_state_unit(item);
1432 	}
1433 }
1434 
1435 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1436 {
1437 	return memcg_page_state(memcg, item) *
1438 		memcg_page_state_output_unit(item);
1439 }
1440 
1441 #ifdef CONFIG_MEMCG_V1
1442 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1443 {
1444 	return memcg_page_state_local(memcg, item) *
1445 		memcg_page_state_output_unit(item);
1446 }
1447 #endif
1448 
1449 #ifdef CONFIG_HUGETLB_PAGE
1450 static bool memcg_accounts_hugetlb(void)
1451 {
1452 	return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1453 }
1454 #else /* CONFIG_HUGETLB_PAGE */
1455 static bool memcg_accounts_hugetlb(void)
1456 {
1457 	return false;
1458 }
1459 #endif /* CONFIG_HUGETLB_PAGE */
1460 
1461 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1462 {
1463 	int i;
1464 
1465 	/*
1466 	 * Provide statistics on the state of the memory subsystem as
1467 	 * well as cumulative event counters that show past behavior.
1468 	 *
1469 	 * This list is ordered following a combination of these gradients:
1470 	 * 1) generic big picture -> specifics and details
1471 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1472 	 *
1473 	 * Current memory state:
1474 	 */
1475 	mem_cgroup_flush_stats(memcg);
1476 
1477 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1478 		u64 size;
1479 
1480 #ifdef CONFIG_HUGETLB_PAGE
1481 		if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1482 			!memcg_accounts_hugetlb())
1483 			continue;
1484 #endif
1485 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1486 		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1487 
1488 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1489 			size += memcg_page_state_output(memcg,
1490 							NR_SLAB_RECLAIMABLE_B);
1491 			seq_buf_printf(s, "slab %llu\n", size);
1492 		}
1493 	}
1494 
1495 	/* Accumulated memory events */
1496 	seq_buf_printf(s, "pgscan %lu\n",
1497 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1498 		       memcg_events(memcg, PGSCAN_DIRECT) +
1499 		       memcg_events(memcg, PGSCAN_PROACTIVE) +
1500 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1501 	seq_buf_printf(s, "pgsteal %lu\n",
1502 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1503 		       memcg_events(memcg, PGSTEAL_DIRECT) +
1504 		       memcg_events(memcg, PGSTEAL_PROACTIVE) +
1505 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1506 
1507 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1508 #ifdef CONFIG_MEMCG_V1
1509 		if (memcg_vm_event_stat[i] == PGPGIN ||
1510 		    memcg_vm_event_stat[i] == PGPGOUT)
1511 			continue;
1512 #endif
1513 		seq_buf_printf(s, "%s %lu\n",
1514 			       vm_event_name(memcg_vm_event_stat[i]),
1515 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1516 	}
1517 }
1518 
1519 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1520 {
1521 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1522 		memcg_stat_format(memcg, s);
1523 	else
1524 		memcg1_stat_format(memcg, s);
1525 	if (seq_buf_has_overflowed(s))
1526 		pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1527 }
1528 
1529 /**
1530  * mem_cgroup_print_oom_context: Print OOM information relevant to
1531  * memory controller.
1532  * @memcg: The memory cgroup that went over limit
1533  * @p: Task that is going to be killed
1534  *
1535  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1536  * enabled
1537  */
1538 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1539 {
1540 	rcu_read_lock();
1541 
1542 	if (memcg) {
1543 		pr_cont(",oom_memcg=");
1544 		pr_cont_cgroup_path(memcg->css.cgroup);
1545 	} else
1546 		pr_cont(",global_oom");
1547 	if (p) {
1548 		pr_cont(",task_memcg=");
1549 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1550 	}
1551 	rcu_read_unlock();
1552 }
1553 
1554 /**
1555  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1556  * memory controller.
1557  * @memcg: The memory cgroup that went over limit
1558  */
1559 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1560 {
1561 	/* Use static buffer, for the caller is holding oom_lock. */
1562 	static char buf[SEQ_BUF_SIZE];
1563 	struct seq_buf s;
1564 	unsigned long memory_failcnt;
1565 
1566 	lockdep_assert_held(&oom_lock);
1567 
1568 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1569 		memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]);
1570 	else
1571 		memory_failcnt = memcg->memory.failcnt;
1572 
1573 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1574 		K((u64)page_counter_read(&memcg->memory)),
1575 		K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt);
1576 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1577 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1578 			K((u64)page_counter_read(&memcg->swap)),
1579 			K((u64)READ_ONCE(memcg->swap.max)),
1580 			atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
1581 #ifdef CONFIG_MEMCG_V1
1582 	else {
1583 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1584 			K((u64)page_counter_read(&memcg->memsw)),
1585 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1586 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1587 			K((u64)page_counter_read(&memcg->kmem)),
1588 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1589 	}
1590 #endif
1591 
1592 	pr_info("Memory cgroup stats for ");
1593 	pr_cont_cgroup_path(memcg->css.cgroup);
1594 	pr_cont(":");
1595 	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1596 	memory_stat_format(memcg, &s);
1597 	seq_buf_do_printk(&s, KERN_INFO);
1598 }
1599 
1600 /*
1601  * Return the memory (and swap, if configured) limit for a memcg.
1602  */
1603 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1604 {
1605 	unsigned long max = READ_ONCE(memcg->memory.max);
1606 
1607 	if (do_memsw_account()) {
1608 		if (mem_cgroup_swappiness(memcg)) {
1609 			/* Calculate swap excess capacity from memsw limit */
1610 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1611 
1612 			max += min(swap, (unsigned long)total_swap_pages);
1613 		}
1614 	} else {
1615 		if (mem_cgroup_swappiness(memcg))
1616 			max += min(READ_ONCE(memcg->swap.max),
1617 				   (unsigned long)total_swap_pages);
1618 	}
1619 	return max;
1620 }
1621 
1622 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1623 {
1624 	return page_counter_read(&memcg->memory);
1625 }
1626 
1627 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1628 				     int order)
1629 {
1630 	struct oom_control oc = {
1631 		.zonelist = NULL,
1632 		.nodemask = NULL,
1633 		.memcg = memcg,
1634 		.gfp_mask = gfp_mask,
1635 		.order = order,
1636 	};
1637 	bool ret = true;
1638 
1639 	if (mutex_lock_killable(&oom_lock))
1640 		return true;
1641 
1642 	if (mem_cgroup_margin(memcg) >= (1 << order))
1643 		goto unlock;
1644 
1645 	/*
1646 	 * A few threads which were not waiting at mutex_lock_killable() can
1647 	 * fail to bail out. Therefore, check again after holding oom_lock.
1648 	 */
1649 	ret = out_of_memory(&oc);
1650 
1651 unlock:
1652 	mutex_unlock(&oom_lock);
1653 	return ret;
1654 }
1655 
1656 /*
1657  * Returns true if successfully killed one or more processes. Though in some
1658  * corner cases it can return true even without killing any process.
1659  */
1660 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1661 {
1662 	bool locked, ret;
1663 
1664 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1665 		return false;
1666 
1667 	memcg_memory_event(memcg, MEMCG_OOM);
1668 
1669 	if (!memcg1_oom_prepare(memcg, &locked))
1670 		return false;
1671 
1672 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1673 
1674 	memcg1_oom_finish(memcg, locked);
1675 
1676 	return ret;
1677 }
1678 
1679 /**
1680  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1681  * @victim: task to be killed by the OOM killer
1682  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1683  *
1684  * Returns a pointer to a memory cgroup, which has to be cleaned up
1685  * by killing all belonging OOM-killable tasks.
1686  *
1687  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1688  */
1689 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1690 					    struct mem_cgroup *oom_domain)
1691 {
1692 	struct mem_cgroup *oom_group = NULL;
1693 	struct mem_cgroup *memcg;
1694 
1695 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1696 		return NULL;
1697 
1698 	if (!oom_domain)
1699 		oom_domain = root_mem_cgroup;
1700 
1701 	rcu_read_lock();
1702 
1703 	memcg = mem_cgroup_from_task(victim);
1704 	if (mem_cgroup_is_root(memcg))
1705 		goto out;
1706 
1707 	/*
1708 	 * If the victim task has been asynchronously moved to a different
1709 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1710 	 * In this case it's better to ignore memory.group.oom.
1711 	 */
1712 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1713 		goto out;
1714 
1715 	/*
1716 	 * Traverse the memory cgroup hierarchy from the victim task's
1717 	 * cgroup up to the OOMing cgroup (or root) to find the
1718 	 * highest-level memory cgroup with oom.group set.
1719 	 */
1720 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1721 		if (READ_ONCE(memcg->oom_group))
1722 			oom_group = memcg;
1723 
1724 		if (memcg == oom_domain)
1725 			break;
1726 	}
1727 
1728 	if (oom_group)
1729 		css_get(&oom_group->css);
1730 out:
1731 	rcu_read_unlock();
1732 
1733 	return oom_group;
1734 }
1735 
1736 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1737 {
1738 	pr_info("Tasks in ");
1739 	pr_cont_cgroup_path(memcg->css.cgroup);
1740 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1741 }
1742 
1743 /*
1744  * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their
1745  * nr_pages in a single cacheline. This may change in future.
1746  */
1747 #define NR_MEMCG_STOCK 7
1748 #define FLUSHING_CACHED_CHARGE	0
1749 struct memcg_stock_pcp {
1750 	local_trylock_t lock;
1751 	uint8_t nr_pages[NR_MEMCG_STOCK];
1752 	struct mem_cgroup *cached[NR_MEMCG_STOCK];
1753 
1754 	struct work_struct work;
1755 	unsigned long flags;
1756 };
1757 
1758 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = {
1759 	.lock = INIT_LOCAL_TRYLOCK(lock),
1760 };
1761 
1762 struct obj_stock_pcp {
1763 	local_trylock_t lock;
1764 	unsigned int nr_bytes;
1765 	struct obj_cgroup *cached_objcg;
1766 	struct pglist_data *cached_pgdat;
1767 	int nr_slab_reclaimable_b;
1768 	int nr_slab_unreclaimable_b;
1769 
1770 	struct work_struct work;
1771 	unsigned long flags;
1772 };
1773 
1774 static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = {
1775 	.lock = INIT_LOCAL_TRYLOCK(lock),
1776 };
1777 
1778 static DEFINE_MUTEX(percpu_charge_mutex);
1779 
1780 static void drain_obj_stock(struct obj_stock_pcp *stock);
1781 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
1782 				     struct mem_cgroup *root_memcg);
1783 
1784 /**
1785  * consume_stock: Try to consume stocked charge on this cpu.
1786  * @memcg: memcg to consume from.
1787  * @nr_pages: how many pages to charge.
1788  *
1789  * Consume the cached charge if enough nr_pages are present otherwise return
1790  * failure. Also return failure for charge request larger than
1791  * MEMCG_CHARGE_BATCH or if the local lock is already taken.
1792  *
1793  * returns true if successful, false otherwise.
1794  */
1795 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1796 {
1797 	struct memcg_stock_pcp *stock;
1798 	uint8_t stock_pages;
1799 	bool ret = false;
1800 	int i;
1801 
1802 	if (nr_pages > MEMCG_CHARGE_BATCH ||
1803 	    !local_trylock(&memcg_stock.lock))
1804 		return ret;
1805 
1806 	stock = this_cpu_ptr(&memcg_stock);
1807 
1808 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1809 		if (memcg != READ_ONCE(stock->cached[i]))
1810 			continue;
1811 
1812 		stock_pages = READ_ONCE(stock->nr_pages[i]);
1813 		if (stock_pages >= nr_pages) {
1814 			WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages);
1815 			ret = true;
1816 		}
1817 		break;
1818 	}
1819 
1820 	local_unlock(&memcg_stock.lock);
1821 
1822 	return ret;
1823 }
1824 
1825 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
1826 {
1827 	page_counter_uncharge(&memcg->memory, nr_pages);
1828 	if (do_memsw_account())
1829 		page_counter_uncharge(&memcg->memsw, nr_pages);
1830 }
1831 
1832 /*
1833  * Returns stocks cached in percpu and reset cached information.
1834  */
1835 static void drain_stock(struct memcg_stock_pcp *stock, int i)
1836 {
1837 	struct mem_cgroup *old = READ_ONCE(stock->cached[i]);
1838 	uint8_t stock_pages;
1839 
1840 	if (!old)
1841 		return;
1842 
1843 	stock_pages = READ_ONCE(stock->nr_pages[i]);
1844 	if (stock_pages) {
1845 		memcg_uncharge(old, stock_pages);
1846 		WRITE_ONCE(stock->nr_pages[i], 0);
1847 	}
1848 
1849 	css_put(&old->css);
1850 	WRITE_ONCE(stock->cached[i], NULL);
1851 }
1852 
1853 static void drain_stock_fully(struct memcg_stock_pcp *stock)
1854 {
1855 	int i;
1856 
1857 	for (i = 0; i < NR_MEMCG_STOCK; ++i)
1858 		drain_stock(stock, i);
1859 }
1860 
1861 static void drain_local_memcg_stock(struct work_struct *dummy)
1862 {
1863 	struct memcg_stock_pcp *stock;
1864 
1865 	if (WARN_ONCE(!in_task(), "drain in non-task context"))
1866 		return;
1867 
1868 	local_lock(&memcg_stock.lock);
1869 
1870 	stock = this_cpu_ptr(&memcg_stock);
1871 	drain_stock_fully(stock);
1872 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1873 
1874 	local_unlock(&memcg_stock.lock);
1875 }
1876 
1877 static void drain_local_obj_stock(struct work_struct *dummy)
1878 {
1879 	struct obj_stock_pcp *stock;
1880 
1881 	if (WARN_ONCE(!in_task(), "drain in non-task context"))
1882 		return;
1883 
1884 	local_lock(&obj_stock.lock);
1885 
1886 	stock = this_cpu_ptr(&obj_stock);
1887 	drain_obj_stock(stock);
1888 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1889 
1890 	local_unlock(&obj_stock.lock);
1891 }
1892 
1893 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1894 {
1895 	struct memcg_stock_pcp *stock;
1896 	struct mem_cgroup *cached;
1897 	uint8_t stock_pages;
1898 	bool success = false;
1899 	int empty_slot = -1;
1900 	int i;
1901 
1902 	/*
1903 	 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we
1904 	 * decide to increase it more than 127 then we will need more careful
1905 	 * handling of nr_pages[] in struct memcg_stock_pcp.
1906 	 */
1907 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX);
1908 
1909 	VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg));
1910 
1911 	if (nr_pages > MEMCG_CHARGE_BATCH ||
1912 	    !local_trylock(&memcg_stock.lock)) {
1913 		/*
1914 		 * In case of larger than batch refill or unlikely failure to
1915 		 * lock the percpu memcg_stock.lock, uncharge memcg directly.
1916 		 */
1917 		memcg_uncharge(memcg, nr_pages);
1918 		return;
1919 	}
1920 
1921 	stock = this_cpu_ptr(&memcg_stock);
1922 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1923 		cached = READ_ONCE(stock->cached[i]);
1924 		if (!cached && empty_slot == -1)
1925 			empty_slot = i;
1926 		if (memcg == READ_ONCE(stock->cached[i])) {
1927 			stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages;
1928 			WRITE_ONCE(stock->nr_pages[i], stock_pages);
1929 			if (stock_pages > MEMCG_CHARGE_BATCH)
1930 				drain_stock(stock, i);
1931 			success = true;
1932 			break;
1933 		}
1934 	}
1935 
1936 	if (!success) {
1937 		i = empty_slot;
1938 		if (i == -1) {
1939 			i = get_random_u32_below(NR_MEMCG_STOCK);
1940 			drain_stock(stock, i);
1941 		}
1942 		css_get(&memcg->css);
1943 		WRITE_ONCE(stock->cached[i], memcg);
1944 		WRITE_ONCE(stock->nr_pages[i], nr_pages);
1945 	}
1946 
1947 	local_unlock(&memcg_stock.lock);
1948 }
1949 
1950 static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock,
1951 				  struct mem_cgroup *root_memcg)
1952 {
1953 	struct mem_cgroup *memcg;
1954 	bool flush = false;
1955 	int i;
1956 
1957 	rcu_read_lock();
1958 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1959 		memcg = READ_ONCE(stock->cached[i]);
1960 		if (!memcg)
1961 			continue;
1962 
1963 		if (READ_ONCE(stock->nr_pages[i]) &&
1964 		    mem_cgroup_is_descendant(memcg, root_memcg)) {
1965 			flush = true;
1966 			break;
1967 		}
1968 	}
1969 	rcu_read_unlock();
1970 	return flush;
1971 }
1972 
1973 /*
1974  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1975  * of the hierarchy under it.
1976  */
1977 void drain_all_stock(struct mem_cgroup *root_memcg)
1978 {
1979 	int cpu, curcpu;
1980 
1981 	/* If someone's already draining, avoid adding running more workers. */
1982 	if (!mutex_trylock(&percpu_charge_mutex))
1983 		return;
1984 	/*
1985 	 * Notify other cpus that system-wide "drain" is running
1986 	 * We do not care about races with the cpu hotplug because cpu down
1987 	 * as well as workers from this path always operate on the local
1988 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1989 	 */
1990 	migrate_disable();
1991 	curcpu = smp_processor_id();
1992 	for_each_online_cpu(cpu) {
1993 		struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu);
1994 		struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu);
1995 
1996 		if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) &&
1997 		    is_memcg_drain_needed(memcg_st, root_memcg) &&
1998 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE,
1999 				      &memcg_st->flags)) {
2000 			if (cpu == curcpu)
2001 				drain_local_memcg_stock(&memcg_st->work);
2002 			else if (!cpu_is_isolated(cpu))
2003 				schedule_work_on(cpu, &memcg_st->work);
2004 		}
2005 
2006 		if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) &&
2007 		    obj_stock_flush_required(obj_st, root_memcg) &&
2008 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2009 				      &obj_st->flags)) {
2010 			if (cpu == curcpu)
2011 				drain_local_obj_stock(&obj_st->work);
2012 			else if (!cpu_is_isolated(cpu))
2013 				schedule_work_on(cpu, &obj_st->work);
2014 		}
2015 	}
2016 	migrate_enable();
2017 	mutex_unlock(&percpu_charge_mutex);
2018 }
2019 
2020 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2021 {
2022 	/* no need for the local lock */
2023 	drain_obj_stock(&per_cpu(obj_stock, cpu));
2024 	drain_stock_fully(&per_cpu(memcg_stock, cpu));
2025 
2026 	return 0;
2027 }
2028 
2029 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2030 				  unsigned int nr_pages,
2031 				  gfp_t gfp_mask)
2032 {
2033 	unsigned long nr_reclaimed = 0;
2034 
2035 	do {
2036 		unsigned long pflags;
2037 
2038 		if (page_counter_read(&memcg->memory) <=
2039 		    READ_ONCE(memcg->memory.high))
2040 			continue;
2041 
2042 		memcg_memory_event(memcg, MEMCG_HIGH);
2043 
2044 		psi_memstall_enter(&pflags);
2045 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2046 							gfp_mask,
2047 							MEMCG_RECLAIM_MAY_SWAP,
2048 							NULL);
2049 		psi_memstall_leave(&pflags);
2050 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2051 		 !mem_cgroup_is_root(memcg));
2052 
2053 	return nr_reclaimed;
2054 }
2055 
2056 static void high_work_func(struct work_struct *work)
2057 {
2058 	struct mem_cgroup *memcg;
2059 
2060 	memcg = container_of(work, struct mem_cgroup, high_work);
2061 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2062 }
2063 
2064 /*
2065  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2066  * enough to still cause a significant slowdown in most cases, while still
2067  * allowing diagnostics and tracing to proceed without becoming stuck.
2068  */
2069 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2070 
2071 /*
2072  * When calculating the delay, we use these either side of the exponentiation to
2073  * maintain precision and scale to a reasonable number of jiffies (see the table
2074  * below.
2075  *
2076  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2077  *   overage ratio to a delay.
2078  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2079  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2080  *   to produce a reasonable delay curve.
2081  *
2082  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2083  * reasonable delay curve compared to precision-adjusted overage, not
2084  * penalising heavily at first, but still making sure that growth beyond the
2085  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2086  * example, with a high of 100 megabytes:
2087  *
2088  *  +-------+------------------------+
2089  *  | usage | time to allocate in ms |
2090  *  +-------+------------------------+
2091  *  | 100M  |                      0 |
2092  *  | 101M  |                      6 |
2093  *  | 102M  |                     25 |
2094  *  | 103M  |                     57 |
2095  *  | 104M  |                    102 |
2096  *  | 105M  |                    159 |
2097  *  | 106M  |                    230 |
2098  *  | 107M  |                    313 |
2099  *  | 108M  |                    409 |
2100  *  | 109M  |                    518 |
2101  *  | 110M  |                    639 |
2102  *  | 111M  |                    774 |
2103  *  | 112M  |                    921 |
2104  *  | 113M  |                   1081 |
2105  *  | 114M  |                   1254 |
2106  *  | 115M  |                   1439 |
2107  *  | 116M  |                   1638 |
2108  *  | 117M  |                   1849 |
2109  *  | 118M  |                   2000 |
2110  *  | 119M  |                   2000 |
2111  *  | 120M  |                   2000 |
2112  *  +-------+------------------------+
2113  */
2114  #define MEMCG_DELAY_PRECISION_SHIFT 20
2115  #define MEMCG_DELAY_SCALING_SHIFT 14
2116 
2117 static u64 calculate_overage(unsigned long usage, unsigned long high)
2118 {
2119 	u64 overage;
2120 
2121 	if (usage <= high)
2122 		return 0;
2123 
2124 	/*
2125 	 * Prevent division by 0 in overage calculation by acting as if
2126 	 * it was a threshold of 1 page
2127 	 */
2128 	high = max(high, 1UL);
2129 
2130 	overage = usage - high;
2131 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2132 	return div64_u64(overage, high);
2133 }
2134 
2135 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2136 {
2137 	u64 overage, max_overage = 0;
2138 
2139 	do {
2140 		overage = calculate_overage(page_counter_read(&memcg->memory),
2141 					    READ_ONCE(memcg->memory.high));
2142 		max_overage = max(overage, max_overage);
2143 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2144 		 !mem_cgroup_is_root(memcg));
2145 
2146 	return max_overage;
2147 }
2148 
2149 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2150 {
2151 	u64 overage, max_overage = 0;
2152 
2153 	do {
2154 		overage = calculate_overage(page_counter_read(&memcg->swap),
2155 					    READ_ONCE(memcg->swap.high));
2156 		if (overage)
2157 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2158 		max_overage = max(overage, max_overage);
2159 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2160 		 !mem_cgroup_is_root(memcg));
2161 
2162 	return max_overage;
2163 }
2164 
2165 /*
2166  * Get the number of jiffies that we should penalise a mischievous cgroup which
2167  * is exceeding its memory.high by checking both it and its ancestors.
2168  */
2169 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2170 					  unsigned int nr_pages,
2171 					  u64 max_overage)
2172 {
2173 	unsigned long penalty_jiffies;
2174 
2175 	if (!max_overage)
2176 		return 0;
2177 
2178 	/*
2179 	 * We use overage compared to memory.high to calculate the number of
2180 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2181 	 * fairly lenient on small overages, and increasingly harsh when the
2182 	 * memcg in question makes it clear that it has no intention of stopping
2183 	 * its crazy behaviour, so we exponentially increase the delay based on
2184 	 * overage amount.
2185 	 */
2186 	penalty_jiffies = max_overage * max_overage * HZ;
2187 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2188 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2189 
2190 	/*
2191 	 * Factor in the task's own contribution to the overage, such that four
2192 	 * N-sized allocations are throttled approximately the same as one
2193 	 * 4N-sized allocation.
2194 	 *
2195 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2196 	 * larger the current charge patch is than that.
2197 	 */
2198 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2199 }
2200 
2201 /*
2202  * Reclaims memory over the high limit. Called directly from
2203  * try_charge() (context permitting), as well as from the userland
2204  * return path where reclaim is always able to block.
2205  */
2206 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2207 {
2208 	unsigned long penalty_jiffies;
2209 	unsigned long pflags;
2210 	unsigned long nr_reclaimed;
2211 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2212 	int nr_retries = MAX_RECLAIM_RETRIES;
2213 	struct mem_cgroup *memcg;
2214 	bool in_retry = false;
2215 
2216 	if (likely(!nr_pages))
2217 		return;
2218 
2219 	memcg = get_mem_cgroup_from_mm(current->mm);
2220 	current->memcg_nr_pages_over_high = 0;
2221 
2222 retry_reclaim:
2223 	/*
2224 	 * Bail if the task is already exiting. Unlike memory.max,
2225 	 * memory.high enforcement isn't as strict, and there is no
2226 	 * OOM killer involved, which means the excess could already
2227 	 * be much bigger (and still growing) than it could for
2228 	 * memory.max; the dying task could get stuck in fruitless
2229 	 * reclaim for a long time, which isn't desirable.
2230 	 */
2231 	if (task_is_dying())
2232 		goto out;
2233 
2234 	/*
2235 	 * The allocating task should reclaim at least the batch size, but for
2236 	 * subsequent retries we only want to do what's necessary to prevent oom
2237 	 * or breaching resource isolation.
2238 	 *
2239 	 * This is distinct from memory.max or page allocator behaviour because
2240 	 * memory.high is currently batched, whereas memory.max and the page
2241 	 * allocator run every time an allocation is made.
2242 	 */
2243 	nr_reclaimed = reclaim_high(memcg,
2244 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2245 				    gfp_mask);
2246 
2247 	/*
2248 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2249 	 * allocators proactively to slow down excessive growth.
2250 	 */
2251 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2252 					       mem_find_max_overage(memcg));
2253 
2254 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2255 						swap_find_max_overage(memcg));
2256 
2257 	/*
2258 	 * Clamp the max delay per usermode return so as to still keep the
2259 	 * application moving forwards and also permit diagnostics, albeit
2260 	 * extremely slowly.
2261 	 */
2262 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2263 
2264 	/*
2265 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2266 	 * that it's not even worth doing, in an attempt to be nice to those who
2267 	 * go only a small amount over their memory.high value and maybe haven't
2268 	 * been aggressively reclaimed enough yet.
2269 	 */
2270 	if (penalty_jiffies <= HZ / 100)
2271 		goto out;
2272 
2273 	/*
2274 	 * If reclaim is making forward progress but we're still over
2275 	 * memory.high, we want to encourage that rather than doing allocator
2276 	 * throttling.
2277 	 */
2278 	if (nr_reclaimed || nr_retries--) {
2279 		in_retry = true;
2280 		goto retry_reclaim;
2281 	}
2282 
2283 	/*
2284 	 * Reclaim didn't manage to push usage below the limit, slow
2285 	 * this allocating task down.
2286 	 *
2287 	 * If we exit early, we're guaranteed to die (since
2288 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2289 	 * need to account for any ill-begotten jiffies to pay them off later.
2290 	 */
2291 	psi_memstall_enter(&pflags);
2292 	schedule_timeout_killable(penalty_jiffies);
2293 	psi_memstall_leave(&pflags);
2294 
2295 out:
2296 	css_put(&memcg->css);
2297 }
2298 
2299 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2300 			    unsigned int nr_pages)
2301 {
2302 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2303 	int nr_retries = MAX_RECLAIM_RETRIES;
2304 	struct mem_cgroup *mem_over_limit;
2305 	struct page_counter *counter;
2306 	unsigned long nr_reclaimed;
2307 	bool passed_oom = false;
2308 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2309 	bool drained = false;
2310 	bool raised_max_event = false;
2311 	unsigned long pflags;
2312 
2313 retry:
2314 	if (consume_stock(memcg, nr_pages))
2315 		return 0;
2316 
2317 	if (!gfpflags_allow_spinning(gfp_mask))
2318 		/* Avoid the refill and flush of the older stock */
2319 		batch = nr_pages;
2320 
2321 	if (!do_memsw_account() ||
2322 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2323 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2324 			goto done_restock;
2325 		if (do_memsw_account())
2326 			page_counter_uncharge(&memcg->memsw, batch);
2327 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2328 	} else {
2329 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2330 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2331 	}
2332 
2333 	if (batch > nr_pages) {
2334 		batch = nr_pages;
2335 		goto retry;
2336 	}
2337 
2338 	/*
2339 	 * Prevent unbounded recursion when reclaim operations need to
2340 	 * allocate memory. This might exceed the limits temporarily,
2341 	 * but we prefer facilitating memory reclaim and getting back
2342 	 * under the limit over triggering OOM kills in these cases.
2343 	 */
2344 	if (unlikely(current->flags & PF_MEMALLOC))
2345 		goto force;
2346 
2347 	if (unlikely(task_in_memcg_oom(current)))
2348 		goto nomem;
2349 
2350 	if (!gfpflags_allow_blocking(gfp_mask))
2351 		goto nomem;
2352 
2353 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2354 	raised_max_event = true;
2355 
2356 	psi_memstall_enter(&pflags);
2357 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2358 						    gfp_mask, reclaim_options, NULL);
2359 	psi_memstall_leave(&pflags);
2360 
2361 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2362 		goto retry;
2363 
2364 	if (!drained) {
2365 		drain_all_stock(mem_over_limit);
2366 		drained = true;
2367 		goto retry;
2368 	}
2369 
2370 	if (gfp_mask & __GFP_NORETRY)
2371 		goto nomem;
2372 	/*
2373 	 * Even though the limit is exceeded at this point, reclaim
2374 	 * may have been able to free some pages.  Retry the charge
2375 	 * before killing the task.
2376 	 *
2377 	 * Only for regular pages, though: huge pages are rather
2378 	 * unlikely to succeed so close to the limit, and we fall back
2379 	 * to regular pages anyway in case of failure.
2380 	 */
2381 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2382 		goto retry;
2383 
2384 	if (nr_retries--)
2385 		goto retry;
2386 
2387 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2388 		goto nomem;
2389 
2390 	/* Avoid endless loop for tasks bypassed by the oom killer */
2391 	if (passed_oom && task_is_dying())
2392 		goto nomem;
2393 
2394 	/*
2395 	 * keep retrying as long as the memcg oom killer is able to make
2396 	 * a forward progress or bypass the charge if the oom killer
2397 	 * couldn't make any progress.
2398 	 */
2399 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2400 			   get_order(nr_pages * PAGE_SIZE))) {
2401 		passed_oom = true;
2402 		nr_retries = MAX_RECLAIM_RETRIES;
2403 		goto retry;
2404 	}
2405 nomem:
2406 	/*
2407 	 * Memcg doesn't have a dedicated reserve for atomic
2408 	 * allocations. But like the global atomic pool, we need to
2409 	 * put the burden of reclaim on regular allocation requests
2410 	 * and let these go through as privileged allocations.
2411 	 */
2412 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2413 		return -ENOMEM;
2414 force:
2415 	/*
2416 	 * If the allocation has to be enforced, don't forget to raise
2417 	 * a MEMCG_MAX event.
2418 	 */
2419 	if (!raised_max_event)
2420 		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2421 
2422 	/*
2423 	 * The allocation either can't fail or will lead to more memory
2424 	 * being freed very soon.  Allow memory usage go over the limit
2425 	 * temporarily by force charging it.
2426 	 */
2427 	page_counter_charge(&memcg->memory, nr_pages);
2428 	if (do_memsw_account())
2429 		page_counter_charge(&memcg->memsw, nr_pages);
2430 
2431 	return 0;
2432 
2433 done_restock:
2434 	if (batch > nr_pages)
2435 		refill_stock(memcg, batch - nr_pages);
2436 
2437 	/*
2438 	 * If the hierarchy is above the normal consumption range, schedule
2439 	 * reclaim on returning to userland.  We can perform reclaim here
2440 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2441 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2442 	 * not recorded as it most likely matches current's and won't
2443 	 * change in the meantime.  As high limit is checked again before
2444 	 * reclaim, the cost of mismatch is negligible.
2445 	 */
2446 	do {
2447 		bool mem_high, swap_high;
2448 
2449 		mem_high = page_counter_read(&memcg->memory) >
2450 			READ_ONCE(memcg->memory.high);
2451 		swap_high = page_counter_read(&memcg->swap) >
2452 			READ_ONCE(memcg->swap.high);
2453 
2454 		/* Don't bother a random interrupted task */
2455 		if (!in_task()) {
2456 			if (mem_high) {
2457 				schedule_work(&memcg->high_work);
2458 				break;
2459 			}
2460 			continue;
2461 		}
2462 
2463 		if (mem_high || swap_high) {
2464 			/*
2465 			 * The allocating tasks in this cgroup will need to do
2466 			 * reclaim or be throttled to prevent further growth
2467 			 * of the memory or swap footprints.
2468 			 *
2469 			 * Target some best-effort fairness between the tasks,
2470 			 * and distribute reclaim work and delay penalties
2471 			 * based on how much each task is actually allocating.
2472 			 */
2473 			current->memcg_nr_pages_over_high += batch;
2474 			set_notify_resume(current);
2475 			break;
2476 		}
2477 	} while ((memcg = parent_mem_cgroup(memcg)));
2478 
2479 	/*
2480 	 * Reclaim is set up above to be called from the userland
2481 	 * return path. But also attempt synchronous reclaim to avoid
2482 	 * excessive overrun while the task is still inside the
2483 	 * kernel. If this is successful, the return path will see it
2484 	 * when it rechecks the overage and simply bail out.
2485 	 */
2486 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2487 	    !(current->flags & PF_MEMALLOC) &&
2488 	    gfpflags_allow_blocking(gfp_mask))
2489 		mem_cgroup_handle_over_high(gfp_mask);
2490 	return 0;
2491 }
2492 
2493 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2494 			     unsigned int nr_pages)
2495 {
2496 	if (mem_cgroup_is_root(memcg))
2497 		return 0;
2498 
2499 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2500 }
2501 
2502 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2503 {
2504 	VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2505 	/*
2506 	 * Any of the following ensures page's memcg stability:
2507 	 *
2508 	 * - the page lock
2509 	 * - LRU isolation
2510 	 * - exclusive reference
2511 	 */
2512 	folio->memcg_data = (unsigned long)memcg;
2513 }
2514 
2515 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
2516 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2517 					 struct pglist_data *pgdat,
2518 					 enum node_stat_item idx, int nr)
2519 {
2520 	struct lruvec *lruvec;
2521 
2522 	if (likely(!in_nmi())) {
2523 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
2524 		mod_memcg_lruvec_state(lruvec, idx, nr);
2525 	} else {
2526 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id];
2527 
2528 		/* preemption is disabled in_nmi(). */
2529 		css_rstat_updated(&memcg->css, smp_processor_id());
2530 		if (idx == NR_SLAB_RECLAIMABLE_B)
2531 			atomic_add(nr, &pn->slab_reclaimable);
2532 		else
2533 			atomic_add(nr, &pn->slab_unreclaimable);
2534 	}
2535 }
2536 #else
2537 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2538 					 struct pglist_data *pgdat,
2539 					 enum node_stat_item idx, int nr)
2540 {
2541 	struct lruvec *lruvec;
2542 
2543 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2544 	mod_memcg_lruvec_state(lruvec, idx, nr);
2545 }
2546 #endif
2547 
2548 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2549 				       struct pglist_data *pgdat,
2550 				       enum node_stat_item idx, int nr)
2551 {
2552 	struct mem_cgroup *memcg;
2553 
2554 	rcu_read_lock();
2555 	memcg = obj_cgroup_memcg(objcg);
2556 	account_slab_nmi_safe(memcg, pgdat, idx, nr);
2557 	rcu_read_unlock();
2558 }
2559 
2560 static __always_inline
2561 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2562 {
2563 	/*
2564 	 * Slab objects are accounted individually, not per-page.
2565 	 * Memcg membership data for each individual object is saved in
2566 	 * slab->obj_exts.
2567 	 */
2568 	if (folio_test_slab(folio)) {
2569 		struct slabobj_ext *obj_exts;
2570 		struct slab *slab;
2571 		unsigned int off;
2572 
2573 		slab = folio_slab(folio);
2574 		obj_exts = slab_obj_exts(slab);
2575 		if (!obj_exts)
2576 			return NULL;
2577 
2578 		off = obj_to_index(slab->slab_cache, slab, p);
2579 		if (obj_exts[off].objcg)
2580 			return obj_cgroup_memcg(obj_exts[off].objcg);
2581 
2582 		return NULL;
2583 	}
2584 
2585 	/*
2586 	 * folio_memcg_check() is used here, because in theory we can encounter
2587 	 * a folio where the slab flag has been cleared already, but
2588 	 * slab->obj_exts has not been freed yet
2589 	 * folio_memcg_check() will guarantee that a proper memory
2590 	 * cgroup pointer or NULL will be returned.
2591 	 */
2592 	return folio_memcg_check(folio);
2593 }
2594 
2595 /*
2596  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2597  * It is not suitable for objects allocated using vmalloc().
2598  *
2599  * A passed kernel object must be a slab object or a generic kernel page.
2600  *
2601  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2602  * cgroup_mutex, etc.
2603  */
2604 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2605 {
2606 	if (mem_cgroup_disabled())
2607 		return NULL;
2608 
2609 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2610 }
2611 
2612 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2613 {
2614 	struct obj_cgroup *objcg = NULL;
2615 
2616 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2617 		objcg = rcu_dereference(memcg->objcg);
2618 		if (likely(objcg && obj_cgroup_tryget(objcg)))
2619 			break;
2620 		objcg = NULL;
2621 	}
2622 	return objcg;
2623 }
2624 
2625 static struct obj_cgroup *current_objcg_update(void)
2626 {
2627 	struct mem_cgroup *memcg;
2628 	struct obj_cgroup *old, *objcg = NULL;
2629 
2630 	do {
2631 		/* Atomically drop the update bit. */
2632 		old = xchg(&current->objcg, NULL);
2633 		if (old) {
2634 			old = (struct obj_cgroup *)
2635 				((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2636 			obj_cgroup_put(old);
2637 
2638 			old = NULL;
2639 		}
2640 
2641 		/* If new objcg is NULL, no reason for the second atomic update. */
2642 		if (!current->mm || (current->flags & PF_KTHREAD))
2643 			return NULL;
2644 
2645 		/*
2646 		 * Release the objcg pointer from the previous iteration,
2647 		 * if try_cmpxcg() below fails.
2648 		 */
2649 		if (unlikely(objcg)) {
2650 			obj_cgroup_put(objcg);
2651 			objcg = NULL;
2652 		}
2653 
2654 		/*
2655 		 * Obtain the new objcg pointer. The current task can be
2656 		 * asynchronously moved to another memcg and the previous
2657 		 * memcg can be offlined. So let's get the memcg pointer
2658 		 * and try get a reference to objcg under a rcu read lock.
2659 		 */
2660 
2661 		rcu_read_lock();
2662 		memcg = mem_cgroup_from_task(current);
2663 		objcg = __get_obj_cgroup_from_memcg(memcg);
2664 		rcu_read_unlock();
2665 
2666 		/*
2667 		 * Try set up a new objcg pointer atomically. If it
2668 		 * fails, it means the update flag was set concurrently, so
2669 		 * the whole procedure should be repeated.
2670 		 */
2671 	} while (!try_cmpxchg(&current->objcg, &old, objcg));
2672 
2673 	return objcg;
2674 }
2675 
2676 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2677 {
2678 	struct mem_cgroup *memcg;
2679 	struct obj_cgroup *objcg;
2680 
2681 	if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi())
2682 		return NULL;
2683 
2684 	if (in_task()) {
2685 		memcg = current->active_memcg;
2686 		if (unlikely(memcg))
2687 			goto from_memcg;
2688 
2689 		objcg = READ_ONCE(current->objcg);
2690 		if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2691 			objcg = current_objcg_update();
2692 		/*
2693 		 * Objcg reference is kept by the task, so it's safe
2694 		 * to use the objcg by the current task.
2695 		 */
2696 		return objcg;
2697 	}
2698 
2699 	memcg = this_cpu_read(int_active_memcg);
2700 	if (unlikely(memcg))
2701 		goto from_memcg;
2702 
2703 	return NULL;
2704 
2705 from_memcg:
2706 	objcg = NULL;
2707 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2708 		/*
2709 		 * Memcg pointer is protected by scope (see set_active_memcg())
2710 		 * and is pinning the corresponding objcg, so objcg can't go
2711 		 * away and can be used within the scope without any additional
2712 		 * protection.
2713 		 */
2714 		objcg = rcu_dereference_check(memcg->objcg, 1);
2715 		if (likely(objcg))
2716 			break;
2717 	}
2718 
2719 	return objcg;
2720 }
2721 
2722 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2723 {
2724 	struct obj_cgroup *objcg;
2725 
2726 	if (!memcg_kmem_online())
2727 		return NULL;
2728 
2729 	if (folio_memcg_kmem(folio)) {
2730 		objcg = __folio_objcg(folio);
2731 		obj_cgroup_get(objcg);
2732 	} else {
2733 		struct mem_cgroup *memcg;
2734 
2735 		rcu_read_lock();
2736 		memcg = __folio_memcg(folio);
2737 		if (memcg)
2738 			objcg = __get_obj_cgroup_from_memcg(memcg);
2739 		else
2740 			objcg = NULL;
2741 		rcu_read_unlock();
2742 	}
2743 	return objcg;
2744 }
2745 
2746 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
2747 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2748 {
2749 	if (likely(!in_nmi())) {
2750 		mod_memcg_state(memcg, MEMCG_KMEM, val);
2751 	} else {
2752 		/* preemption is disabled in_nmi(). */
2753 		css_rstat_updated(&memcg->css, smp_processor_id());
2754 		atomic_add(val, &memcg->kmem_stat);
2755 	}
2756 }
2757 #else
2758 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2759 {
2760 	mod_memcg_state(memcg, MEMCG_KMEM, val);
2761 }
2762 #endif
2763 
2764 /*
2765  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2766  * @objcg: object cgroup to uncharge
2767  * @nr_pages: number of pages to uncharge
2768  */
2769 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2770 				      unsigned int nr_pages)
2771 {
2772 	struct mem_cgroup *memcg;
2773 
2774 	memcg = get_mem_cgroup_from_objcg(objcg);
2775 
2776 	account_kmem_nmi_safe(memcg, -nr_pages);
2777 	memcg1_account_kmem(memcg, -nr_pages);
2778 	if (!mem_cgroup_is_root(memcg))
2779 		refill_stock(memcg, nr_pages);
2780 
2781 	css_put(&memcg->css);
2782 }
2783 
2784 /*
2785  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2786  * @objcg: object cgroup to charge
2787  * @gfp: reclaim mode
2788  * @nr_pages: number of pages to charge
2789  *
2790  * Returns 0 on success, an error code on failure.
2791  */
2792 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2793 				   unsigned int nr_pages)
2794 {
2795 	struct mem_cgroup *memcg;
2796 	int ret;
2797 
2798 	memcg = get_mem_cgroup_from_objcg(objcg);
2799 
2800 	ret = try_charge_memcg(memcg, gfp, nr_pages);
2801 	if (ret)
2802 		goto out;
2803 
2804 	account_kmem_nmi_safe(memcg, nr_pages);
2805 	memcg1_account_kmem(memcg, nr_pages);
2806 out:
2807 	css_put(&memcg->css);
2808 
2809 	return ret;
2810 }
2811 
2812 static struct obj_cgroup *page_objcg(const struct page *page)
2813 {
2814 	unsigned long memcg_data = page->memcg_data;
2815 
2816 	if (mem_cgroup_disabled() || !memcg_data)
2817 		return NULL;
2818 
2819 	VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM,
2820 			page);
2821 	return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM);
2822 }
2823 
2824 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg)
2825 {
2826 	page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM;
2827 }
2828 
2829 /**
2830  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2831  * @page: page to charge
2832  * @gfp: reclaim mode
2833  * @order: allocation order
2834  *
2835  * Returns 0 on success, an error code on failure.
2836  */
2837 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2838 {
2839 	struct obj_cgroup *objcg;
2840 	int ret = 0;
2841 
2842 	objcg = current_obj_cgroup();
2843 	if (objcg) {
2844 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2845 		if (!ret) {
2846 			obj_cgroup_get(objcg);
2847 			page_set_objcg(page, objcg);
2848 			return 0;
2849 		}
2850 	}
2851 	return ret;
2852 }
2853 
2854 /**
2855  * __memcg_kmem_uncharge_page: uncharge a kmem page
2856  * @page: page to uncharge
2857  * @order: allocation order
2858  */
2859 void __memcg_kmem_uncharge_page(struct page *page, int order)
2860 {
2861 	struct obj_cgroup *objcg = page_objcg(page);
2862 	unsigned int nr_pages = 1 << order;
2863 
2864 	if (!objcg)
2865 		return;
2866 
2867 	obj_cgroup_uncharge_pages(objcg, nr_pages);
2868 	page->memcg_data = 0;
2869 	obj_cgroup_put(objcg);
2870 }
2871 
2872 static void __account_obj_stock(struct obj_cgroup *objcg,
2873 				struct obj_stock_pcp *stock, int nr,
2874 				struct pglist_data *pgdat, enum node_stat_item idx)
2875 {
2876 	int *bytes;
2877 
2878 	/*
2879 	 * Save vmstat data in stock and skip vmstat array update unless
2880 	 * accumulating over a page of vmstat data or when pgdat changes.
2881 	 */
2882 	if (stock->cached_pgdat != pgdat) {
2883 		/* Flush the existing cached vmstat data */
2884 		struct pglist_data *oldpg = stock->cached_pgdat;
2885 
2886 		if (stock->nr_slab_reclaimable_b) {
2887 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2888 					  stock->nr_slab_reclaimable_b);
2889 			stock->nr_slab_reclaimable_b = 0;
2890 		}
2891 		if (stock->nr_slab_unreclaimable_b) {
2892 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2893 					  stock->nr_slab_unreclaimable_b);
2894 			stock->nr_slab_unreclaimable_b = 0;
2895 		}
2896 		stock->cached_pgdat = pgdat;
2897 	}
2898 
2899 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2900 					       : &stock->nr_slab_unreclaimable_b;
2901 	/*
2902 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2903 	 * cached locally at least once before pushing it out.
2904 	 */
2905 	if (!*bytes) {
2906 		*bytes = nr;
2907 		nr = 0;
2908 	} else {
2909 		*bytes += nr;
2910 		if (abs(*bytes) > PAGE_SIZE) {
2911 			nr = *bytes;
2912 			*bytes = 0;
2913 		} else {
2914 			nr = 0;
2915 		}
2916 	}
2917 	if (nr)
2918 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
2919 }
2920 
2921 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2922 			      struct pglist_data *pgdat, enum node_stat_item idx)
2923 {
2924 	struct obj_stock_pcp *stock;
2925 	bool ret = false;
2926 
2927 	if (!local_trylock(&obj_stock.lock))
2928 		return ret;
2929 
2930 	stock = this_cpu_ptr(&obj_stock);
2931 	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2932 		stock->nr_bytes -= nr_bytes;
2933 		ret = true;
2934 
2935 		if (pgdat)
2936 			__account_obj_stock(objcg, stock, nr_bytes, pgdat, idx);
2937 	}
2938 
2939 	local_unlock(&obj_stock.lock);
2940 
2941 	return ret;
2942 }
2943 
2944 static void drain_obj_stock(struct obj_stock_pcp *stock)
2945 {
2946 	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2947 
2948 	if (!old)
2949 		return;
2950 
2951 	if (stock->nr_bytes) {
2952 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2953 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2954 
2955 		if (nr_pages) {
2956 			struct mem_cgroup *memcg;
2957 
2958 			memcg = get_mem_cgroup_from_objcg(old);
2959 
2960 			mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2961 			memcg1_account_kmem(memcg, -nr_pages);
2962 			if (!mem_cgroup_is_root(memcg))
2963 				memcg_uncharge(memcg, nr_pages);
2964 
2965 			css_put(&memcg->css);
2966 		}
2967 
2968 		/*
2969 		 * The leftover is flushed to the centralized per-memcg value.
2970 		 * On the next attempt to refill obj stock it will be moved
2971 		 * to a per-cpu stock (probably, on an other CPU), see
2972 		 * refill_obj_stock().
2973 		 *
2974 		 * How often it's flushed is a trade-off between the memory
2975 		 * limit enforcement accuracy and potential CPU contention,
2976 		 * so it might be changed in the future.
2977 		 */
2978 		atomic_add(nr_bytes, &old->nr_charged_bytes);
2979 		stock->nr_bytes = 0;
2980 	}
2981 
2982 	/*
2983 	 * Flush the vmstat data in current stock
2984 	 */
2985 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2986 		if (stock->nr_slab_reclaimable_b) {
2987 			mod_objcg_mlstate(old, stock->cached_pgdat,
2988 					  NR_SLAB_RECLAIMABLE_B,
2989 					  stock->nr_slab_reclaimable_b);
2990 			stock->nr_slab_reclaimable_b = 0;
2991 		}
2992 		if (stock->nr_slab_unreclaimable_b) {
2993 			mod_objcg_mlstate(old, stock->cached_pgdat,
2994 					  NR_SLAB_UNRECLAIMABLE_B,
2995 					  stock->nr_slab_unreclaimable_b);
2996 			stock->nr_slab_unreclaimable_b = 0;
2997 		}
2998 		stock->cached_pgdat = NULL;
2999 	}
3000 
3001 	WRITE_ONCE(stock->cached_objcg, NULL);
3002 	obj_cgroup_put(old);
3003 }
3004 
3005 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
3006 				     struct mem_cgroup *root_memcg)
3007 {
3008 	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3009 	struct mem_cgroup *memcg;
3010 	bool flush = false;
3011 
3012 	rcu_read_lock();
3013 	if (objcg) {
3014 		memcg = obj_cgroup_memcg(objcg);
3015 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3016 			flush = true;
3017 	}
3018 	rcu_read_unlock();
3019 
3020 	return flush;
3021 }
3022 
3023 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3024 		bool allow_uncharge, int nr_acct, struct pglist_data *pgdat,
3025 		enum node_stat_item idx)
3026 {
3027 	struct obj_stock_pcp *stock;
3028 	unsigned int nr_pages = 0;
3029 
3030 	if (!local_trylock(&obj_stock.lock)) {
3031 		if (pgdat)
3032 			mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes);
3033 		nr_pages = nr_bytes >> PAGE_SHIFT;
3034 		nr_bytes = nr_bytes & (PAGE_SIZE - 1);
3035 		atomic_add(nr_bytes, &objcg->nr_charged_bytes);
3036 		goto out;
3037 	}
3038 
3039 	stock = this_cpu_ptr(&obj_stock);
3040 	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3041 		drain_obj_stock(stock);
3042 		obj_cgroup_get(objcg);
3043 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3044 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3045 		WRITE_ONCE(stock->cached_objcg, objcg);
3046 
3047 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3048 	}
3049 	stock->nr_bytes += nr_bytes;
3050 
3051 	if (pgdat)
3052 		__account_obj_stock(objcg, stock, nr_acct, pgdat, idx);
3053 
3054 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3055 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3056 		stock->nr_bytes &= (PAGE_SIZE - 1);
3057 	}
3058 
3059 	local_unlock(&obj_stock.lock);
3060 out:
3061 	if (nr_pages)
3062 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3063 }
3064 
3065 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size,
3066 				     struct pglist_data *pgdat, enum node_stat_item idx)
3067 {
3068 	unsigned int nr_pages, nr_bytes;
3069 	int ret;
3070 
3071 	if (likely(consume_obj_stock(objcg, size, pgdat, idx)))
3072 		return 0;
3073 
3074 	/*
3075 	 * In theory, objcg->nr_charged_bytes can have enough
3076 	 * pre-charged bytes to satisfy the allocation. However,
3077 	 * flushing objcg->nr_charged_bytes requires two atomic
3078 	 * operations, and objcg->nr_charged_bytes can't be big.
3079 	 * The shared objcg->nr_charged_bytes can also become a
3080 	 * performance bottleneck if all tasks of the same memcg are
3081 	 * trying to update it. So it's better to ignore it and try
3082 	 * grab some new pages. The stock's nr_bytes will be flushed to
3083 	 * objcg->nr_charged_bytes later on when objcg changes.
3084 	 *
3085 	 * The stock's nr_bytes may contain enough pre-charged bytes
3086 	 * to allow one less page from being charged, but we can't rely
3087 	 * on the pre-charged bytes not being changed outside of
3088 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3089 	 * pre-charged bytes as well when charging pages. To avoid a
3090 	 * page uncharge right after a page charge, we set the
3091 	 * allow_uncharge flag to false when calling refill_obj_stock()
3092 	 * to temporarily allow the pre-charged bytes to exceed the page
3093 	 * size limit. The maximum reachable value of the pre-charged
3094 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3095 	 * race.
3096 	 */
3097 	nr_pages = size >> PAGE_SHIFT;
3098 	nr_bytes = size & (PAGE_SIZE - 1);
3099 
3100 	if (nr_bytes)
3101 		nr_pages += 1;
3102 
3103 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3104 	if (!ret && (nr_bytes || pgdat))
3105 		refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0,
3106 					 false, size, pgdat, idx);
3107 
3108 	return ret;
3109 }
3110 
3111 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3112 {
3113 	return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0);
3114 }
3115 
3116 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3117 {
3118 	refill_obj_stock(objcg, size, true, 0, NULL, 0);
3119 }
3120 
3121 static inline size_t obj_full_size(struct kmem_cache *s)
3122 {
3123 	/*
3124 	 * For each accounted object there is an extra space which is used
3125 	 * to store obj_cgroup membership. Charge it too.
3126 	 */
3127 	return s->size + sizeof(struct obj_cgroup *);
3128 }
3129 
3130 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3131 				  gfp_t flags, size_t size, void **p)
3132 {
3133 	struct obj_cgroup *objcg;
3134 	struct slab *slab;
3135 	unsigned long off;
3136 	size_t i;
3137 
3138 	/*
3139 	 * The obtained objcg pointer is safe to use within the current scope,
3140 	 * defined by current task or set_active_memcg() pair.
3141 	 * obj_cgroup_get() is used to get a permanent reference.
3142 	 */
3143 	objcg = current_obj_cgroup();
3144 	if (!objcg)
3145 		return true;
3146 
3147 	/*
3148 	 * slab_alloc_node() avoids the NULL check, so we might be called with a
3149 	 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
3150 	 * the whole requested size.
3151 	 * return success as there's nothing to free back
3152 	 */
3153 	if (unlikely(*p == NULL))
3154 		return true;
3155 
3156 	flags &= gfp_allowed_mask;
3157 
3158 	if (lru) {
3159 		int ret;
3160 		struct mem_cgroup *memcg;
3161 
3162 		memcg = get_mem_cgroup_from_objcg(objcg);
3163 		ret = memcg_list_lru_alloc(memcg, lru, flags);
3164 		css_put(&memcg->css);
3165 
3166 		if (ret)
3167 			return false;
3168 	}
3169 
3170 	for (i = 0; i < size; i++) {
3171 		slab = virt_to_slab(p[i]);
3172 
3173 		if (!slab_obj_exts(slab) &&
3174 		    alloc_slab_obj_exts(slab, s, flags, false)) {
3175 			continue;
3176 		}
3177 
3178 		/*
3179 		 * if we fail and size is 1, memcg_alloc_abort_single() will
3180 		 * just free the object, which is ok as we have not assigned
3181 		 * objcg to its obj_ext yet
3182 		 *
3183 		 * for larger sizes, kmem_cache_free_bulk() will uncharge
3184 		 * any objects that were already charged and obj_ext assigned
3185 		 *
3186 		 * TODO: we could batch this until slab_pgdat(slab) changes
3187 		 * between iterations, with a more complicated undo
3188 		 */
3189 		if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s),
3190 					slab_pgdat(slab), cache_vmstat_idx(s)))
3191 			return false;
3192 
3193 		off = obj_to_index(s, slab, p[i]);
3194 		obj_cgroup_get(objcg);
3195 		slab_obj_exts(slab)[off].objcg = objcg;
3196 	}
3197 
3198 	return true;
3199 }
3200 
3201 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3202 			    void **p, int objects, struct slabobj_ext *obj_exts)
3203 {
3204 	size_t obj_size = obj_full_size(s);
3205 
3206 	for (int i = 0; i < objects; i++) {
3207 		struct obj_cgroup *objcg;
3208 		unsigned int off;
3209 
3210 		off = obj_to_index(s, slab, p[i]);
3211 		objcg = obj_exts[off].objcg;
3212 		if (!objcg)
3213 			continue;
3214 
3215 		obj_exts[off].objcg = NULL;
3216 		refill_obj_stock(objcg, obj_size, true, -obj_size,
3217 				 slab_pgdat(slab), cache_vmstat_idx(s));
3218 		obj_cgroup_put(objcg);
3219 	}
3220 }
3221 
3222 /*
3223  * The objcg is only set on the first page, so transfer it to all the
3224  * other pages.
3225  */
3226 void split_page_memcg(struct page *page, unsigned order)
3227 {
3228 	struct obj_cgroup *objcg = page_objcg(page);
3229 	unsigned int i, nr = 1 << order;
3230 
3231 	if (!objcg)
3232 		return;
3233 
3234 	for (i = 1; i < nr; i++)
3235 		page_set_objcg(&page[i], objcg);
3236 
3237 	obj_cgroup_get_many(objcg, nr - 1);
3238 }
3239 
3240 void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
3241 		unsigned new_order)
3242 {
3243 	unsigned new_refs;
3244 
3245 	if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3246 		return;
3247 
3248 	new_refs = (1 << (old_order - new_order)) - 1;
3249 	css_get_many(&__folio_memcg(folio)->css, new_refs);
3250 }
3251 
3252 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3253 {
3254 	unsigned long val;
3255 
3256 	if (mem_cgroup_is_root(memcg)) {
3257 		/*
3258 		 * Approximate root's usage from global state. This isn't
3259 		 * perfect, but the root usage was always an approximation.
3260 		 */
3261 		val = global_node_page_state(NR_FILE_PAGES) +
3262 			global_node_page_state(NR_ANON_MAPPED);
3263 		if (swap)
3264 			val += total_swap_pages - get_nr_swap_pages();
3265 	} else {
3266 		if (!swap)
3267 			val = page_counter_read(&memcg->memory);
3268 		else
3269 			val = page_counter_read(&memcg->memsw);
3270 	}
3271 	return val;
3272 }
3273 
3274 static int memcg_online_kmem(struct mem_cgroup *memcg)
3275 {
3276 	struct obj_cgroup *objcg;
3277 
3278 	if (mem_cgroup_kmem_disabled())
3279 		return 0;
3280 
3281 	if (unlikely(mem_cgroup_is_root(memcg)))
3282 		return 0;
3283 
3284 	objcg = obj_cgroup_alloc();
3285 	if (!objcg)
3286 		return -ENOMEM;
3287 
3288 	objcg->memcg = memcg;
3289 	rcu_assign_pointer(memcg->objcg, objcg);
3290 	obj_cgroup_get(objcg);
3291 	memcg->orig_objcg = objcg;
3292 
3293 	static_branch_enable(&memcg_kmem_online_key);
3294 
3295 	memcg->kmemcg_id = memcg->id.id;
3296 
3297 	return 0;
3298 }
3299 
3300 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3301 {
3302 	struct mem_cgroup *parent;
3303 
3304 	if (mem_cgroup_kmem_disabled())
3305 		return;
3306 
3307 	if (unlikely(mem_cgroup_is_root(memcg)))
3308 		return;
3309 
3310 	parent = parent_mem_cgroup(memcg);
3311 	if (!parent)
3312 		parent = root_mem_cgroup;
3313 
3314 	memcg_reparent_list_lrus(memcg, parent);
3315 
3316 	/*
3317 	 * Objcg's reparenting must be after list_lru's, make sure list_lru
3318 	 * helpers won't use parent's list_lru until child is drained.
3319 	 */
3320 	memcg_reparent_objcgs(memcg, parent);
3321 }
3322 
3323 #ifdef CONFIG_CGROUP_WRITEBACK
3324 
3325 #include <trace/events/writeback.h>
3326 
3327 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3328 {
3329 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3330 }
3331 
3332 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3333 {
3334 	wb_domain_exit(&memcg->cgwb_domain);
3335 }
3336 
3337 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3338 {
3339 	wb_domain_size_changed(&memcg->cgwb_domain);
3340 }
3341 
3342 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3343 {
3344 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3345 
3346 	if (!memcg->css.parent)
3347 		return NULL;
3348 
3349 	return &memcg->cgwb_domain;
3350 }
3351 
3352 /**
3353  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3354  * @wb: bdi_writeback in question
3355  * @pfilepages: out parameter for number of file pages
3356  * @pheadroom: out parameter for number of allocatable pages according to memcg
3357  * @pdirty: out parameter for number of dirty pages
3358  * @pwriteback: out parameter for number of pages under writeback
3359  *
3360  * Determine the numbers of file, headroom, dirty, and writeback pages in
3361  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3362  * is a bit more involved.
3363  *
3364  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3365  * headroom is calculated as the lowest headroom of itself and the
3366  * ancestors.  Note that this doesn't consider the actual amount of
3367  * available memory in the system.  The caller should further cap
3368  * *@pheadroom accordingly.
3369  */
3370 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3371 			 unsigned long *pheadroom, unsigned long *pdirty,
3372 			 unsigned long *pwriteback)
3373 {
3374 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3375 	struct mem_cgroup *parent;
3376 
3377 	mem_cgroup_flush_stats_ratelimited(memcg);
3378 
3379 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3380 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3381 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3382 			memcg_page_state(memcg, NR_ACTIVE_FILE);
3383 
3384 	*pheadroom = PAGE_COUNTER_MAX;
3385 	while ((parent = parent_mem_cgroup(memcg))) {
3386 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3387 					    READ_ONCE(memcg->memory.high));
3388 		unsigned long used = page_counter_read(&memcg->memory);
3389 
3390 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3391 		memcg = parent;
3392 	}
3393 }
3394 
3395 /*
3396  * Foreign dirty flushing
3397  *
3398  * There's an inherent mismatch between memcg and writeback.  The former
3399  * tracks ownership per-page while the latter per-inode.  This was a
3400  * deliberate design decision because honoring per-page ownership in the
3401  * writeback path is complicated, may lead to higher CPU and IO overheads
3402  * and deemed unnecessary given that write-sharing an inode across
3403  * different cgroups isn't a common use-case.
3404  *
3405  * Combined with inode majority-writer ownership switching, this works well
3406  * enough in most cases but there are some pathological cases.  For
3407  * example, let's say there are two cgroups A and B which keep writing to
3408  * different but confined parts of the same inode.  B owns the inode and
3409  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
3410  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3411  * triggering background writeback.  A will be slowed down without a way to
3412  * make writeback of the dirty pages happen.
3413  *
3414  * Conditions like the above can lead to a cgroup getting repeatedly and
3415  * severely throttled after making some progress after each
3416  * dirty_expire_interval while the underlying IO device is almost
3417  * completely idle.
3418  *
3419  * Solving this problem completely requires matching the ownership tracking
3420  * granularities between memcg and writeback in either direction.  However,
3421  * the more egregious behaviors can be avoided by simply remembering the
3422  * most recent foreign dirtying events and initiating remote flushes on
3423  * them when local writeback isn't enough to keep the memory clean enough.
3424  *
3425  * The following two functions implement such mechanism.  When a foreign
3426  * page - a page whose memcg and writeback ownerships don't match - is
3427  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3428  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
3429  * decides that the memcg needs to sleep due to high dirty ratio, it calls
3430  * mem_cgroup_flush_foreign() which queues writeback on the recorded
3431  * foreign bdi_writebacks which haven't expired.  Both the numbers of
3432  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3433  * limited to MEMCG_CGWB_FRN_CNT.
3434  *
3435  * The mechanism only remembers IDs and doesn't hold any object references.
3436  * As being wrong occasionally doesn't matter, updates and accesses to the
3437  * records are lockless and racy.
3438  */
3439 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3440 					     struct bdi_writeback *wb)
3441 {
3442 	struct mem_cgroup *memcg = folio_memcg(folio);
3443 	struct memcg_cgwb_frn *frn;
3444 	u64 now = get_jiffies_64();
3445 	u64 oldest_at = now;
3446 	int oldest = -1;
3447 	int i;
3448 
3449 	trace_track_foreign_dirty(folio, wb);
3450 
3451 	/*
3452 	 * Pick the slot to use.  If there is already a slot for @wb, keep
3453 	 * using it.  If not replace the oldest one which isn't being
3454 	 * written out.
3455 	 */
3456 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3457 		frn = &memcg->cgwb_frn[i];
3458 		if (frn->bdi_id == wb->bdi->id &&
3459 		    frn->memcg_id == wb->memcg_css->id)
3460 			break;
3461 		if (time_before64(frn->at, oldest_at) &&
3462 		    atomic_read(&frn->done.cnt) == 1) {
3463 			oldest = i;
3464 			oldest_at = frn->at;
3465 		}
3466 	}
3467 
3468 	if (i < MEMCG_CGWB_FRN_CNT) {
3469 		/*
3470 		 * Re-using an existing one.  Update timestamp lazily to
3471 		 * avoid making the cacheline hot.  We want them to be
3472 		 * reasonably up-to-date and significantly shorter than
3473 		 * dirty_expire_interval as that's what expires the record.
3474 		 * Use the shorter of 1s and dirty_expire_interval / 8.
3475 		 */
3476 		unsigned long update_intv =
3477 			min_t(unsigned long, HZ,
3478 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3479 
3480 		if (time_before64(frn->at, now - update_intv))
3481 			frn->at = now;
3482 	} else if (oldest >= 0) {
3483 		/* replace the oldest free one */
3484 		frn = &memcg->cgwb_frn[oldest];
3485 		frn->bdi_id = wb->bdi->id;
3486 		frn->memcg_id = wb->memcg_css->id;
3487 		frn->at = now;
3488 	}
3489 }
3490 
3491 /* issue foreign writeback flushes for recorded foreign dirtying events */
3492 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3493 {
3494 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3495 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3496 	u64 now = jiffies_64;
3497 	int i;
3498 
3499 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3500 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3501 
3502 		/*
3503 		 * If the record is older than dirty_expire_interval,
3504 		 * writeback on it has already started.  No need to kick it
3505 		 * off again.  Also, don't start a new one if there's
3506 		 * already one in flight.
3507 		 */
3508 		if (time_after64(frn->at, now - intv) &&
3509 		    atomic_read(&frn->done.cnt) == 1) {
3510 			frn->at = 0;
3511 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3512 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3513 					       WB_REASON_FOREIGN_FLUSH,
3514 					       &frn->done);
3515 		}
3516 	}
3517 }
3518 
3519 #else	/* CONFIG_CGROUP_WRITEBACK */
3520 
3521 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3522 {
3523 	return 0;
3524 }
3525 
3526 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3527 {
3528 }
3529 
3530 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3531 {
3532 }
3533 
3534 #endif	/* CONFIG_CGROUP_WRITEBACK */
3535 
3536 /*
3537  * Private memory cgroup IDR
3538  *
3539  * Swap-out records and page cache shadow entries need to store memcg
3540  * references in constrained space, so we maintain an ID space that is
3541  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3542  * memory-controlled cgroups to 64k.
3543  *
3544  * However, there usually are many references to the offline CSS after
3545  * the cgroup has been destroyed, such as page cache or reclaimable
3546  * slab objects, that don't need to hang on to the ID. We want to keep
3547  * those dead CSS from occupying IDs, or we might quickly exhaust the
3548  * relatively small ID space and prevent the creation of new cgroups
3549  * even when there are much fewer than 64k cgroups - possibly none.
3550  *
3551  * Maintain a private 16-bit ID space for memcg, and allow the ID to
3552  * be freed and recycled when it's no longer needed, which is usually
3553  * when the CSS is offlined.
3554  *
3555  * The only exception to that are records of swapped out tmpfs/shmem
3556  * pages that need to be attributed to live ancestors on swapin. But
3557  * those references are manageable from userspace.
3558  */
3559 
3560 #define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3561 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3562 
3563 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3564 {
3565 	if (memcg->id.id > 0) {
3566 		xa_erase(&mem_cgroup_ids, memcg->id.id);
3567 		memcg->id.id = 0;
3568 	}
3569 }
3570 
3571 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3572 					   unsigned int n)
3573 {
3574 	refcount_add(n, &memcg->id.ref);
3575 }
3576 
3577 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3578 {
3579 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
3580 		mem_cgroup_id_remove(memcg);
3581 
3582 		/* Memcg ID pins CSS */
3583 		css_put(&memcg->css);
3584 	}
3585 }
3586 
3587 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3588 {
3589 	mem_cgroup_id_put_many(memcg, 1);
3590 }
3591 
3592 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
3593 {
3594 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
3595 		/*
3596 		 * The root cgroup cannot be destroyed, so it's refcount must
3597 		 * always be >= 1.
3598 		 */
3599 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
3600 			VM_BUG_ON(1);
3601 			break;
3602 		}
3603 		memcg = parent_mem_cgroup(memcg);
3604 		if (!memcg)
3605 			memcg = root_mem_cgroup;
3606 	}
3607 	return memcg;
3608 }
3609 
3610 /**
3611  * mem_cgroup_from_id - look up a memcg from a memcg id
3612  * @id: the memcg id to look up
3613  *
3614  * Caller must hold rcu_read_lock().
3615  */
3616 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3617 {
3618 	WARN_ON_ONCE(!rcu_read_lock_held());
3619 	return xa_load(&mem_cgroup_ids, id);
3620 }
3621 
3622 #ifdef CONFIG_SHRINKER_DEBUG
3623 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3624 {
3625 	struct cgroup *cgrp;
3626 	struct cgroup_subsys_state *css;
3627 	struct mem_cgroup *memcg;
3628 
3629 	cgrp = cgroup_get_from_id(ino);
3630 	if (IS_ERR(cgrp))
3631 		return ERR_CAST(cgrp);
3632 
3633 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3634 	if (css)
3635 		memcg = container_of(css, struct mem_cgroup, css);
3636 	else
3637 		memcg = ERR_PTR(-ENOENT);
3638 
3639 	cgroup_put(cgrp);
3640 
3641 	return memcg;
3642 }
3643 #endif
3644 
3645 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn)
3646 {
3647 	if (!pn)
3648 		return;
3649 
3650 	free_percpu(pn->lruvec_stats_percpu);
3651 	kfree(pn->lruvec_stats);
3652 	kfree(pn);
3653 }
3654 
3655 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3656 {
3657 	struct mem_cgroup_per_node *pn;
3658 
3659 	pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO,
3660 				   node);
3661 	if (!pn)
3662 		return false;
3663 
3664 	pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3665 					GFP_KERNEL_ACCOUNT, node);
3666 	if (!pn->lruvec_stats)
3667 		goto fail;
3668 
3669 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3670 						   GFP_KERNEL_ACCOUNT);
3671 	if (!pn->lruvec_stats_percpu)
3672 		goto fail;
3673 
3674 	lruvec_init(&pn->lruvec);
3675 	pn->memcg = memcg;
3676 
3677 	memcg->nodeinfo[node] = pn;
3678 	return true;
3679 fail:
3680 	free_mem_cgroup_per_node_info(pn);
3681 	return false;
3682 }
3683 
3684 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3685 {
3686 	int node;
3687 
3688 	obj_cgroup_put(memcg->orig_objcg);
3689 
3690 	for_each_node(node)
3691 		free_mem_cgroup_per_node_info(memcg->nodeinfo[node]);
3692 	memcg1_free_events(memcg);
3693 	kfree(memcg->vmstats);
3694 	free_percpu(memcg->vmstats_percpu);
3695 	kfree(memcg);
3696 }
3697 
3698 static void mem_cgroup_free(struct mem_cgroup *memcg)
3699 {
3700 	lru_gen_exit_memcg(memcg);
3701 	memcg_wb_domain_exit(memcg);
3702 	__mem_cgroup_free(memcg);
3703 }
3704 
3705 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3706 {
3707 	struct memcg_vmstats_percpu *statc;
3708 	struct memcg_vmstats_percpu __percpu *pstatc_pcpu;
3709 	struct mem_cgroup *memcg;
3710 	int node, cpu;
3711 	int __maybe_unused i;
3712 	long error;
3713 
3714 	memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL);
3715 	if (!memcg)
3716 		return ERR_PTR(-ENOMEM);
3717 
3718 	error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3719 			 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3720 	if (error)
3721 		goto fail;
3722 	error = -ENOMEM;
3723 
3724 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3725 				 GFP_KERNEL_ACCOUNT);
3726 	if (!memcg->vmstats)
3727 		goto fail;
3728 
3729 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3730 						 GFP_KERNEL_ACCOUNT);
3731 	if (!memcg->vmstats_percpu)
3732 		goto fail;
3733 
3734 	if (!memcg1_alloc_events(memcg))
3735 		goto fail;
3736 
3737 	for_each_possible_cpu(cpu) {
3738 		if (parent)
3739 			pstatc_pcpu = parent->vmstats_percpu;
3740 		statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3741 		statc->parent_pcpu = parent ? pstatc_pcpu : NULL;
3742 		statc->vmstats = memcg->vmstats;
3743 	}
3744 
3745 	for_each_node(node)
3746 		if (!alloc_mem_cgroup_per_node_info(memcg, node))
3747 			goto fail;
3748 
3749 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3750 		goto fail;
3751 
3752 	INIT_WORK(&memcg->high_work, high_work_func);
3753 	vmpressure_init(&memcg->vmpressure);
3754 	INIT_LIST_HEAD(&memcg->memory_peaks);
3755 	INIT_LIST_HEAD(&memcg->swap_peaks);
3756 	spin_lock_init(&memcg->peaks_lock);
3757 	memcg->socket_pressure = get_jiffies_64();
3758 #if BITS_PER_LONG < 64
3759 	seqlock_init(&memcg->socket_pressure_seqlock);
3760 #endif
3761 	memcg1_memcg_init(memcg);
3762 	memcg->kmemcg_id = -1;
3763 	INIT_LIST_HEAD(&memcg->objcg_list);
3764 #ifdef CONFIG_CGROUP_WRITEBACK
3765 	INIT_LIST_HEAD(&memcg->cgwb_list);
3766 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3767 		memcg->cgwb_frn[i].done =
3768 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3769 #endif
3770 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3771 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3772 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3773 	memcg->deferred_split_queue.split_queue_len = 0;
3774 #endif
3775 	lru_gen_init_memcg(memcg);
3776 	return memcg;
3777 fail:
3778 	mem_cgroup_id_remove(memcg);
3779 	__mem_cgroup_free(memcg);
3780 	return ERR_PTR(error);
3781 }
3782 
3783 static struct cgroup_subsys_state * __ref
3784 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3785 {
3786 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3787 	struct mem_cgroup *memcg, *old_memcg;
3788 	bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys);
3789 
3790 	old_memcg = set_active_memcg(parent);
3791 	memcg = mem_cgroup_alloc(parent);
3792 	set_active_memcg(old_memcg);
3793 	if (IS_ERR(memcg))
3794 		return ERR_CAST(memcg);
3795 
3796 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3797 	memcg1_soft_limit_reset(memcg);
3798 #ifdef CONFIG_ZSWAP
3799 	memcg->zswap_max = PAGE_COUNTER_MAX;
3800 	WRITE_ONCE(memcg->zswap_writeback, true);
3801 #endif
3802 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3803 	if (parent) {
3804 		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3805 
3806 		page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl);
3807 		page_counter_init(&memcg->swap, &parent->swap, false);
3808 #ifdef CONFIG_MEMCG_V1
3809 		memcg->memory.track_failcnt = !memcg_on_dfl;
3810 		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3811 		page_counter_init(&memcg->kmem, &parent->kmem, false);
3812 		page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3813 #endif
3814 	} else {
3815 		init_memcg_stats();
3816 		init_memcg_events();
3817 		page_counter_init(&memcg->memory, NULL, true);
3818 		page_counter_init(&memcg->swap, NULL, false);
3819 #ifdef CONFIG_MEMCG_V1
3820 		page_counter_init(&memcg->kmem, NULL, false);
3821 		page_counter_init(&memcg->tcpmem, NULL, false);
3822 #endif
3823 		root_mem_cgroup = memcg;
3824 		return &memcg->css;
3825 	}
3826 
3827 	if (memcg_on_dfl && !cgroup_memory_nosocket)
3828 		static_branch_inc(&memcg_sockets_enabled_key);
3829 
3830 	if (!cgroup_memory_nobpf)
3831 		static_branch_inc(&memcg_bpf_enabled_key);
3832 
3833 	return &memcg->css;
3834 }
3835 
3836 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3837 {
3838 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3839 
3840 	if (memcg_online_kmem(memcg))
3841 		goto remove_id;
3842 
3843 	/*
3844 	 * A memcg must be visible for expand_shrinker_info()
3845 	 * by the time the maps are allocated. So, we allocate maps
3846 	 * here, when for_each_mem_cgroup() can't skip it.
3847 	 */
3848 	if (alloc_shrinker_info(memcg))
3849 		goto offline_kmem;
3850 
3851 	if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3852 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3853 				   FLUSH_TIME);
3854 	lru_gen_online_memcg(memcg);
3855 
3856 	/* Online state pins memcg ID, memcg ID pins CSS */
3857 	refcount_set(&memcg->id.ref, 1);
3858 	css_get(css);
3859 
3860 	/*
3861 	 * Ensure mem_cgroup_from_id() works once we're fully online.
3862 	 *
3863 	 * We could do this earlier and require callers to filter with
3864 	 * css_tryget_online(). But right now there are no users that
3865 	 * need earlier access, and the workingset code relies on the
3866 	 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3867 	 * publish it here at the end of onlining. This matches the
3868 	 * regular ID destruction during offlining.
3869 	 */
3870 	xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3871 
3872 	return 0;
3873 offline_kmem:
3874 	memcg_offline_kmem(memcg);
3875 remove_id:
3876 	mem_cgroup_id_remove(memcg);
3877 	return -ENOMEM;
3878 }
3879 
3880 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3881 {
3882 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3883 
3884 	memcg1_css_offline(memcg);
3885 
3886 	page_counter_set_min(&memcg->memory, 0);
3887 	page_counter_set_low(&memcg->memory, 0);
3888 
3889 	zswap_memcg_offline_cleanup(memcg);
3890 
3891 	memcg_offline_kmem(memcg);
3892 	reparent_shrinker_deferred(memcg);
3893 	wb_memcg_offline(memcg);
3894 	lru_gen_offline_memcg(memcg);
3895 
3896 	drain_all_stock(memcg);
3897 
3898 	mem_cgroup_id_put(memcg);
3899 }
3900 
3901 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3902 {
3903 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3904 
3905 	invalidate_reclaim_iterators(memcg);
3906 	lru_gen_release_memcg(memcg);
3907 }
3908 
3909 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3910 {
3911 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3912 	int __maybe_unused i;
3913 
3914 #ifdef CONFIG_CGROUP_WRITEBACK
3915 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3916 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3917 #endif
3918 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3919 		static_branch_dec(&memcg_sockets_enabled_key);
3920 
3921 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3922 		static_branch_dec(&memcg_sockets_enabled_key);
3923 
3924 	if (!cgroup_memory_nobpf)
3925 		static_branch_dec(&memcg_bpf_enabled_key);
3926 
3927 	vmpressure_cleanup(&memcg->vmpressure);
3928 	cancel_work_sync(&memcg->high_work);
3929 	memcg1_remove_from_trees(memcg);
3930 	free_shrinker_info(memcg);
3931 	mem_cgroup_free(memcg);
3932 }
3933 
3934 /**
3935  * mem_cgroup_css_reset - reset the states of a mem_cgroup
3936  * @css: the target css
3937  *
3938  * Reset the states of the mem_cgroup associated with @css.  This is
3939  * invoked when the userland requests disabling on the default hierarchy
3940  * but the memcg is pinned through dependency.  The memcg should stop
3941  * applying policies and should revert to the vanilla state as it may be
3942  * made visible again.
3943  *
3944  * The current implementation only resets the essential configurations.
3945  * This needs to be expanded to cover all the visible parts.
3946  */
3947 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3948 {
3949 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3950 
3951 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3952 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3953 #ifdef CONFIG_MEMCG_V1
3954 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3955 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3956 #endif
3957 	page_counter_set_min(&memcg->memory, 0);
3958 	page_counter_set_low(&memcg->memory, 0);
3959 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3960 	memcg1_soft_limit_reset(memcg);
3961 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3962 	memcg_wb_domain_size_changed(memcg);
3963 }
3964 
3965 struct aggregate_control {
3966 	/* pointer to the aggregated (CPU and subtree aggregated) counters */
3967 	long *aggregate;
3968 	/* pointer to the non-hierarchichal (CPU aggregated) counters */
3969 	long *local;
3970 	/* pointer to the pending child counters during tree propagation */
3971 	long *pending;
3972 	/* pointer to the parent's pending counters, could be NULL */
3973 	long *ppending;
3974 	/* pointer to the percpu counters to be aggregated */
3975 	long *cstat;
3976 	/* pointer to the percpu counters of the last aggregation*/
3977 	long *cstat_prev;
3978 	/* size of the above counters */
3979 	int size;
3980 };
3981 
3982 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
3983 {
3984 	int i;
3985 	long delta, delta_cpu, v;
3986 
3987 	for (i = 0; i < ac->size; i++) {
3988 		/*
3989 		 * Collect the aggregated propagation counts of groups
3990 		 * below us. We're in a per-cpu loop here and this is
3991 		 * a global counter, so the first cycle will get them.
3992 		 */
3993 		delta = ac->pending[i];
3994 		if (delta)
3995 			ac->pending[i] = 0;
3996 
3997 		/* Add CPU changes on this level since the last flush */
3998 		delta_cpu = 0;
3999 		v = READ_ONCE(ac->cstat[i]);
4000 		if (v != ac->cstat_prev[i]) {
4001 			delta_cpu = v - ac->cstat_prev[i];
4002 			delta += delta_cpu;
4003 			ac->cstat_prev[i] = v;
4004 		}
4005 
4006 		/* Aggregate counts on this level and propagate upwards */
4007 		if (delta_cpu)
4008 			ac->local[i] += delta_cpu;
4009 
4010 		if (delta) {
4011 			ac->aggregate[i] += delta;
4012 			if (ac->ppending)
4013 				ac->ppending[i] += delta;
4014 		}
4015 	}
4016 }
4017 
4018 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
4019 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4020 			    int cpu)
4021 {
4022 	int nid;
4023 
4024 	if (atomic_read(&memcg->kmem_stat)) {
4025 		int kmem = atomic_xchg(&memcg->kmem_stat, 0);
4026 		int index = memcg_stats_index(MEMCG_KMEM);
4027 
4028 		memcg->vmstats->state[index] += kmem;
4029 		if (parent)
4030 			parent->vmstats->state_pending[index] += kmem;
4031 	}
4032 
4033 	for_each_node_state(nid, N_MEMORY) {
4034 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4035 		struct lruvec_stats *lstats = pn->lruvec_stats;
4036 		struct lruvec_stats *plstats = NULL;
4037 
4038 		if (parent)
4039 			plstats = parent->nodeinfo[nid]->lruvec_stats;
4040 
4041 		if (atomic_read(&pn->slab_reclaimable)) {
4042 			int slab = atomic_xchg(&pn->slab_reclaimable, 0);
4043 			int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B);
4044 
4045 			lstats->state[index] += slab;
4046 			if (plstats)
4047 				plstats->state_pending[index] += slab;
4048 		}
4049 		if (atomic_read(&pn->slab_unreclaimable)) {
4050 			int slab = atomic_xchg(&pn->slab_unreclaimable, 0);
4051 			int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B);
4052 
4053 			lstats->state[index] += slab;
4054 			if (plstats)
4055 				plstats->state_pending[index] += slab;
4056 		}
4057 	}
4058 }
4059 #else
4060 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4061 			    int cpu)
4062 {}
4063 #endif
4064 
4065 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
4066 {
4067 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4068 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4069 	struct memcg_vmstats_percpu *statc;
4070 	struct aggregate_control ac;
4071 	int nid;
4072 
4073 	flush_nmi_stats(memcg, parent, cpu);
4074 
4075 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
4076 
4077 	ac = (struct aggregate_control) {
4078 		.aggregate = memcg->vmstats->state,
4079 		.local = memcg->vmstats->state_local,
4080 		.pending = memcg->vmstats->state_pending,
4081 		.ppending = parent ? parent->vmstats->state_pending : NULL,
4082 		.cstat = statc->state,
4083 		.cstat_prev = statc->state_prev,
4084 		.size = MEMCG_VMSTAT_SIZE,
4085 	};
4086 	mem_cgroup_stat_aggregate(&ac);
4087 
4088 	ac = (struct aggregate_control) {
4089 		.aggregate = memcg->vmstats->events,
4090 		.local = memcg->vmstats->events_local,
4091 		.pending = memcg->vmstats->events_pending,
4092 		.ppending = parent ? parent->vmstats->events_pending : NULL,
4093 		.cstat = statc->events,
4094 		.cstat_prev = statc->events_prev,
4095 		.size = NR_MEMCG_EVENTS,
4096 	};
4097 	mem_cgroup_stat_aggregate(&ac);
4098 
4099 	for_each_node_state(nid, N_MEMORY) {
4100 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4101 		struct lruvec_stats *lstats = pn->lruvec_stats;
4102 		struct lruvec_stats *plstats = NULL;
4103 		struct lruvec_stats_percpu *lstatc;
4104 
4105 		if (parent)
4106 			plstats = parent->nodeinfo[nid]->lruvec_stats;
4107 
4108 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
4109 
4110 		ac = (struct aggregate_control) {
4111 			.aggregate = lstats->state,
4112 			.local = lstats->state_local,
4113 			.pending = lstats->state_pending,
4114 			.ppending = plstats ? plstats->state_pending : NULL,
4115 			.cstat = lstatc->state,
4116 			.cstat_prev = lstatc->state_prev,
4117 			.size = NR_MEMCG_NODE_STAT_ITEMS,
4118 		};
4119 		mem_cgroup_stat_aggregate(&ac);
4120 
4121 	}
4122 	WRITE_ONCE(statc->stats_updates, 0);
4123 	/* We are in a per-cpu loop here, only do the atomic write once */
4124 	if (atomic_read(&memcg->vmstats->stats_updates))
4125 		atomic_set(&memcg->vmstats->stats_updates, 0);
4126 }
4127 
4128 static void mem_cgroup_fork(struct task_struct *task)
4129 {
4130 	/*
4131 	 * Set the update flag to cause task->objcg to be initialized lazily
4132 	 * on the first allocation. It can be done without any synchronization
4133 	 * because it's always performed on the current task, so does
4134 	 * current_objcg_update().
4135 	 */
4136 	task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
4137 }
4138 
4139 static void mem_cgroup_exit(struct task_struct *task)
4140 {
4141 	struct obj_cgroup *objcg = task->objcg;
4142 
4143 	objcg = (struct obj_cgroup *)
4144 		((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
4145 	obj_cgroup_put(objcg);
4146 
4147 	/*
4148 	 * Some kernel allocations can happen after this point,
4149 	 * but let's ignore them. It can be done without any synchronization
4150 	 * because it's always performed on the current task, so does
4151 	 * current_objcg_update().
4152 	 */
4153 	task->objcg = NULL;
4154 }
4155 
4156 #ifdef CONFIG_LRU_GEN
4157 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
4158 {
4159 	struct task_struct *task;
4160 	struct cgroup_subsys_state *css;
4161 
4162 	/* find the first leader if there is any */
4163 	cgroup_taskset_for_each_leader(task, css, tset)
4164 		break;
4165 
4166 	if (!task)
4167 		return;
4168 
4169 	task_lock(task);
4170 	if (task->mm && READ_ONCE(task->mm->owner) == task)
4171 		lru_gen_migrate_mm(task->mm);
4172 	task_unlock(task);
4173 }
4174 #else
4175 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
4176 #endif /* CONFIG_LRU_GEN */
4177 
4178 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
4179 {
4180 	struct task_struct *task;
4181 	struct cgroup_subsys_state *css;
4182 
4183 	cgroup_taskset_for_each(task, css, tset) {
4184 		/* atomically set the update bit */
4185 		set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
4186 	}
4187 }
4188 
4189 static void mem_cgroup_attach(struct cgroup_taskset *tset)
4190 {
4191 	mem_cgroup_lru_gen_attach(tset);
4192 	mem_cgroup_kmem_attach(tset);
4193 }
4194 
4195 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
4196 {
4197 	if (value == PAGE_COUNTER_MAX)
4198 		seq_puts(m, "max\n");
4199 	else
4200 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
4201 
4202 	return 0;
4203 }
4204 
4205 static u64 memory_current_read(struct cgroup_subsys_state *css,
4206 			       struct cftype *cft)
4207 {
4208 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4209 
4210 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4211 }
4212 
4213 #define OFP_PEAK_UNSET (((-1UL)))
4214 
4215 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
4216 {
4217 	struct cgroup_of_peak *ofp = of_peak(sf->private);
4218 	u64 fd_peak = READ_ONCE(ofp->value), peak;
4219 
4220 	/* User wants global or local peak? */
4221 	if (fd_peak == OFP_PEAK_UNSET)
4222 		peak = pc->watermark;
4223 	else
4224 		peak = max(fd_peak, READ_ONCE(pc->local_watermark));
4225 
4226 	seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
4227 	return 0;
4228 }
4229 
4230 static int memory_peak_show(struct seq_file *sf, void *v)
4231 {
4232 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4233 
4234 	return peak_show(sf, v, &memcg->memory);
4235 }
4236 
4237 static int peak_open(struct kernfs_open_file *of)
4238 {
4239 	struct cgroup_of_peak *ofp = of_peak(of);
4240 
4241 	ofp->value = OFP_PEAK_UNSET;
4242 	return 0;
4243 }
4244 
4245 static void peak_release(struct kernfs_open_file *of)
4246 {
4247 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4248 	struct cgroup_of_peak *ofp = of_peak(of);
4249 
4250 	if (ofp->value == OFP_PEAK_UNSET) {
4251 		/* fast path (no writes on this fd) */
4252 		return;
4253 	}
4254 	spin_lock(&memcg->peaks_lock);
4255 	list_del(&ofp->list);
4256 	spin_unlock(&memcg->peaks_lock);
4257 }
4258 
4259 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
4260 			  loff_t off, struct page_counter *pc,
4261 			  struct list_head *watchers)
4262 {
4263 	unsigned long usage;
4264 	struct cgroup_of_peak *peer_ctx;
4265 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4266 	struct cgroup_of_peak *ofp = of_peak(of);
4267 
4268 	spin_lock(&memcg->peaks_lock);
4269 
4270 	usage = page_counter_read(pc);
4271 	WRITE_ONCE(pc->local_watermark, usage);
4272 
4273 	list_for_each_entry(peer_ctx, watchers, list)
4274 		if (usage > peer_ctx->value)
4275 			WRITE_ONCE(peer_ctx->value, usage);
4276 
4277 	/* initial write, register watcher */
4278 	if (ofp->value == OFP_PEAK_UNSET)
4279 		list_add(&ofp->list, watchers);
4280 
4281 	WRITE_ONCE(ofp->value, usage);
4282 	spin_unlock(&memcg->peaks_lock);
4283 
4284 	return nbytes;
4285 }
4286 
4287 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4288 				 size_t nbytes, loff_t off)
4289 {
4290 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4291 
4292 	return peak_write(of, buf, nbytes, off, &memcg->memory,
4293 			  &memcg->memory_peaks);
4294 }
4295 
4296 #undef OFP_PEAK_UNSET
4297 
4298 static int memory_min_show(struct seq_file *m, void *v)
4299 {
4300 	return seq_puts_memcg_tunable(m,
4301 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4302 }
4303 
4304 static ssize_t memory_min_write(struct kernfs_open_file *of,
4305 				char *buf, size_t nbytes, loff_t off)
4306 {
4307 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4308 	unsigned long min;
4309 	int err;
4310 
4311 	buf = strstrip(buf);
4312 	err = page_counter_memparse(buf, "max", &min);
4313 	if (err)
4314 		return err;
4315 
4316 	page_counter_set_min(&memcg->memory, min);
4317 
4318 	return nbytes;
4319 }
4320 
4321 static int memory_low_show(struct seq_file *m, void *v)
4322 {
4323 	return seq_puts_memcg_tunable(m,
4324 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4325 }
4326 
4327 static ssize_t memory_low_write(struct kernfs_open_file *of,
4328 				char *buf, size_t nbytes, loff_t off)
4329 {
4330 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4331 	unsigned long low;
4332 	int err;
4333 
4334 	buf = strstrip(buf);
4335 	err = page_counter_memparse(buf, "max", &low);
4336 	if (err)
4337 		return err;
4338 
4339 	page_counter_set_low(&memcg->memory, low);
4340 
4341 	return nbytes;
4342 }
4343 
4344 static int memory_high_show(struct seq_file *m, void *v)
4345 {
4346 	return seq_puts_memcg_tunable(m,
4347 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4348 }
4349 
4350 static ssize_t memory_high_write(struct kernfs_open_file *of,
4351 				 char *buf, size_t nbytes, loff_t off)
4352 {
4353 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4354 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4355 	bool drained = false;
4356 	unsigned long high;
4357 	int err;
4358 
4359 	buf = strstrip(buf);
4360 	err = page_counter_memparse(buf, "max", &high);
4361 	if (err)
4362 		return err;
4363 
4364 	page_counter_set_high(&memcg->memory, high);
4365 
4366 	if (of->file->f_flags & O_NONBLOCK)
4367 		goto out;
4368 
4369 	for (;;) {
4370 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4371 		unsigned long reclaimed;
4372 
4373 		if (nr_pages <= high)
4374 			break;
4375 
4376 		if (signal_pending(current))
4377 			break;
4378 
4379 		if (!drained) {
4380 			drain_all_stock(memcg);
4381 			drained = true;
4382 			continue;
4383 		}
4384 
4385 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4386 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4387 
4388 		if (!reclaimed && !nr_retries--)
4389 			break;
4390 	}
4391 out:
4392 	memcg_wb_domain_size_changed(memcg);
4393 	return nbytes;
4394 }
4395 
4396 static int memory_max_show(struct seq_file *m, void *v)
4397 {
4398 	return seq_puts_memcg_tunable(m,
4399 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4400 }
4401 
4402 static ssize_t memory_max_write(struct kernfs_open_file *of,
4403 				char *buf, size_t nbytes, loff_t off)
4404 {
4405 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4406 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4407 	bool drained = false;
4408 	unsigned long max;
4409 	int err;
4410 
4411 	buf = strstrip(buf);
4412 	err = page_counter_memparse(buf, "max", &max);
4413 	if (err)
4414 		return err;
4415 
4416 	xchg(&memcg->memory.max, max);
4417 
4418 	if (of->file->f_flags & O_NONBLOCK)
4419 		goto out;
4420 
4421 	for (;;) {
4422 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4423 
4424 		if (nr_pages <= max)
4425 			break;
4426 
4427 		if (signal_pending(current))
4428 			break;
4429 
4430 		if (!drained) {
4431 			drain_all_stock(memcg);
4432 			drained = true;
4433 			continue;
4434 		}
4435 
4436 		if (nr_reclaims) {
4437 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4438 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4439 				nr_reclaims--;
4440 			continue;
4441 		}
4442 
4443 		memcg_memory_event(memcg, MEMCG_OOM);
4444 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4445 			break;
4446 		cond_resched();
4447 	}
4448 out:
4449 	memcg_wb_domain_size_changed(memcg);
4450 	return nbytes;
4451 }
4452 
4453 /*
4454  * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4455  * if any new events become available.
4456  */
4457 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4458 {
4459 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4460 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4461 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4462 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4463 	seq_printf(m, "oom_kill %lu\n",
4464 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
4465 	seq_printf(m, "oom_group_kill %lu\n",
4466 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4467 }
4468 
4469 static int memory_events_show(struct seq_file *m, void *v)
4470 {
4471 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4472 
4473 	__memory_events_show(m, memcg->memory_events);
4474 	return 0;
4475 }
4476 
4477 static int memory_events_local_show(struct seq_file *m, void *v)
4478 {
4479 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4480 
4481 	__memory_events_show(m, memcg->memory_events_local);
4482 	return 0;
4483 }
4484 
4485 int memory_stat_show(struct seq_file *m, void *v)
4486 {
4487 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4488 	char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4489 	struct seq_buf s;
4490 
4491 	if (!buf)
4492 		return -ENOMEM;
4493 	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4494 	memory_stat_format(memcg, &s);
4495 	seq_puts(m, buf);
4496 	kfree(buf);
4497 	return 0;
4498 }
4499 
4500 #ifdef CONFIG_NUMA
4501 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4502 						     int item)
4503 {
4504 	return lruvec_page_state(lruvec, item) *
4505 		memcg_page_state_output_unit(item);
4506 }
4507 
4508 static int memory_numa_stat_show(struct seq_file *m, void *v)
4509 {
4510 	int i;
4511 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4512 
4513 	mem_cgroup_flush_stats(memcg);
4514 
4515 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4516 		int nid;
4517 
4518 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4519 			continue;
4520 
4521 		seq_printf(m, "%s", memory_stats[i].name);
4522 		for_each_node_state(nid, N_MEMORY) {
4523 			u64 size;
4524 			struct lruvec *lruvec;
4525 
4526 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4527 			size = lruvec_page_state_output(lruvec,
4528 							memory_stats[i].idx);
4529 			seq_printf(m, " N%d=%llu", nid, size);
4530 		}
4531 		seq_putc(m, '\n');
4532 	}
4533 
4534 	return 0;
4535 }
4536 #endif
4537 
4538 static int memory_oom_group_show(struct seq_file *m, void *v)
4539 {
4540 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4541 
4542 	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4543 
4544 	return 0;
4545 }
4546 
4547 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4548 				      char *buf, size_t nbytes, loff_t off)
4549 {
4550 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4551 	int ret, oom_group;
4552 
4553 	buf = strstrip(buf);
4554 	if (!buf)
4555 		return -EINVAL;
4556 
4557 	ret = kstrtoint(buf, 0, &oom_group);
4558 	if (ret)
4559 		return ret;
4560 
4561 	if (oom_group != 0 && oom_group != 1)
4562 		return -EINVAL;
4563 
4564 	WRITE_ONCE(memcg->oom_group, oom_group);
4565 
4566 	return nbytes;
4567 }
4568 
4569 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4570 			      size_t nbytes, loff_t off)
4571 {
4572 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4573 	int ret;
4574 
4575 	ret = user_proactive_reclaim(buf, memcg, NULL);
4576 	if (ret)
4577 		return ret;
4578 
4579 	return nbytes;
4580 }
4581 
4582 static struct cftype memory_files[] = {
4583 	{
4584 		.name = "current",
4585 		.flags = CFTYPE_NOT_ON_ROOT,
4586 		.read_u64 = memory_current_read,
4587 	},
4588 	{
4589 		.name = "peak",
4590 		.flags = CFTYPE_NOT_ON_ROOT,
4591 		.open = peak_open,
4592 		.release = peak_release,
4593 		.seq_show = memory_peak_show,
4594 		.write = memory_peak_write,
4595 	},
4596 	{
4597 		.name = "min",
4598 		.flags = CFTYPE_NOT_ON_ROOT,
4599 		.seq_show = memory_min_show,
4600 		.write = memory_min_write,
4601 	},
4602 	{
4603 		.name = "low",
4604 		.flags = CFTYPE_NOT_ON_ROOT,
4605 		.seq_show = memory_low_show,
4606 		.write = memory_low_write,
4607 	},
4608 	{
4609 		.name = "high",
4610 		.flags = CFTYPE_NOT_ON_ROOT,
4611 		.seq_show = memory_high_show,
4612 		.write = memory_high_write,
4613 	},
4614 	{
4615 		.name = "max",
4616 		.flags = CFTYPE_NOT_ON_ROOT,
4617 		.seq_show = memory_max_show,
4618 		.write = memory_max_write,
4619 	},
4620 	{
4621 		.name = "events",
4622 		.flags = CFTYPE_NOT_ON_ROOT,
4623 		.file_offset = offsetof(struct mem_cgroup, events_file),
4624 		.seq_show = memory_events_show,
4625 	},
4626 	{
4627 		.name = "events.local",
4628 		.flags = CFTYPE_NOT_ON_ROOT,
4629 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
4630 		.seq_show = memory_events_local_show,
4631 	},
4632 	{
4633 		.name = "stat",
4634 		.seq_show = memory_stat_show,
4635 	},
4636 #ifdef CONFIG_NUMA
4637 	{
4638 		.name = "numa_stat",
4639 		.seq_show = memory_numa_stat_show,
4640 	},
4641 #endif
4642 	{
4643 		.name = "oom.group",
4644 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4645 		.seq_show = memory_oom_group_show,
4646 		.write = memory_oom_group_write,
4647 	},
4648 	{
4649 		.name = "reclaim",
4650 		.flags = CFTYPE_NS_DELEGATABLE,
4651 		.write = memory_reclaim,
4652 	},
4653 	{ }	/* terminate */
4654 };
4655 
4656 struct cgroup_subsys memory_cgrp_subsys = {
4657 	.css_alloc = mem_cgroup_css_alloc,
4658 	.css_online = mem_cgroup_css_online,
4659 	.css_offline = mem_cgroup_css_offline,
4660 	.css_released = mem_cgroup_css_released,
4661 	.css_free = mem_cgroup_css_free,
4662 	.css_reset = mem_cgroup_css_reset,
4663 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
4664 	.attach = mem_cgroup_attach,
4665 	.fork = mem_cgroup_fork,
4666 	.exit = mem_cgroup_exit,
4667 	.dfl_cftypes = memory_files,
4668 #ifdef CONFIG_MEMCG_V1
4669 	.legacy_cftypes = mem_cgroup_legacy_files,
4670 #endif
4671 	.early_init = 0,
4672 };
4673 
4674 /**
4675  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4676  * @root: the top ancestor of the sub-tree being checked
4677  * @memcg: the memory cgroup to check
4678  *
4679  * WARNING: This function is not stateless! It can only be used as part
4680  *          of a top-down tree iteration, not for isolated queries.
4681  */
4682 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4683 				     struct mem_cgroup *memcg)
4684 {
4685 	bool recursive_protection =
4686 		cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4687 
4688 	if (mem_cgroup_disabled())
4689 		return;
4690 
4691 	if (!root)
4692 		root = root_mem_cgroup;
4693 
4694 	page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4695 }
4696 
4697 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4698 			gfp_t gfp)
4699 {
4700 	int ret;
4701 
4702 	ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4703 	if (ret)
4704 		goto out;
4705 
4706 	css_get(&memcg->css);
4707 	commit_charge(folio, memcg);
4708 	memcg1_commit_charge(folio, memcg);
4709 out:
4710 	return ret;
4711 }
4712 
4713 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4714 {
4715 	struct mem_cgroup *memcg;
4716 	int ret;
4717 
4718 	memcg = get_mem_cgroup_from_mm(mm);
4719 	ret = charge_memcg(folio, memcg, gfp);
4720 	css_put(&memcg->css);
4721 
4722 	return ret;
4723 }
4724 
4725 /**
4726  * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio
4727  * @folio: folio being charged
4728  * @gfp: reclaim mode
4729  *
4730  * This function is called when allocating a huge page folio, after the page has
4731  * already been obtained and charged to the appropriate hugetlb cgroup
4732  * controller (if it is enabled).
4733  *
4734  * Returns ENOMEM if the memcg is already full.
4735  * Returns 0 if either the charge was successful, or if we skip the charging.
4736  */
4737 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp)
4738 {
4739 	struct mem_cgroup *memcg = get_mem_cgroup_from_current();
4740 	int ret = 0;
4741 
4742 	/*
4743 	 * Even memcg does not account for hugetlb, we still want to update
4744 	 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip
4745 	 * charging the memcg.
4746 	 */
4747 	if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() ||
4748 		!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
4749 		goto out;
4750 
4751 	if (charge_memcg(folio, memcg, gfp))
4752 		ret = -ENOMEM;
4753 
4754 out:
4755 	mem_cgroup_put(memcg);
4756 	return ret;
4757 }
4758 
4759 /**
4760  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4761  * @folio: folio to charge.
4762  * @mm: mm context of the victim
4763  * @gfp: reclaim mode
4764  * @entry: swap entry for which the folio is allocated
4765  *
4766  * This function charges a folio allocated for swapin. Please call this before
4767  * adding the folio to the swapcache.
4768  *
4769  * Returns 0 on success. Otherwise, an error code is returned.
4770  */
4771 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4772 				  gfp_t gfp, swp_entry_t entry)
4773 {
4774 	struct mem_cgroup *memcg;
4775 	unsigned short id;
4776 	int ret;
4777 
4778 	if (mem_cgroup_disabled())
4779 		return 0;
4780 
4781 	id = lookup_swap_cgroup_id(entry);
4782 	rcu_read_lock();
4783 	memcg = mem_cgroup_from_id(id);
4784 	if (!memcg || !css_tryget_online(&memcg->css))
4785 		memcg = get_mem_cgroup_from_mm(mm);
4786 	rcu_read_unlock();
4787 
4788 	ret = charge_memcg(folio, memcg, gfp);
4789 
4790 	css_put(&memcg->css);
4791 	return ret;
4792 }
4793 
4794 struct uncharge_gather {
4795 	struct mem_cgroup *memcg;
4796 	unsigned long nr_memory;
4797 	unsigned long pgpgout;
4798 	unsigned long nr_kmem;
4799 	int nid;
4800 };
4801 
4802 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4803 {
4804 	memset(ug, 0, sizeof(*ug));
4805 }
4806 
4807 static void uncharge_batch(const struct uncharge_gather *ug)
4808 {
4809 	if (ug->nr_memory) {
4810 		memcg_uncharge(ug->memcg, ug->nr_memory);
4811 		if (ug->nr_kmem) {
4812 			mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4813 			memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4814 		}
4815 		memcg1_oom_recover(ug->memcg);
4816 	}
4817 
4818 	memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4819 
4820 	/* drop reference from uncharge_folio */
4821 	css_put(&ug->memcg->css);
4822 }
4823 
4824 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4825 {
4826 	long nr_pages;
4827 	struct mem_cgroup *memcg;
4828 	struct obj_cgroup *objcg;
4829 
4830 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4831 
4832 	/*
4833 	 * Nobody should be changing or seriously looking at
4834 	 * folio memcg or objcg at this point, we have fully
4835 	 * exclusive access to the folio.
4836 	 */
4837 	if (folio_memcg_kmem(folio)) {
4838 		objcg = __folio_objcg(folio);
4839 		/*
4840 		 * This get matches the put at the end of the function and
4841 		 * kmem pages do not hold memcg references anymore.
4842 		 */
4843 		memcg = get_mem_cgroup_from_objcg(objcg);
4844 	} else {
4845 		memcg = __folio_memcg(folio);
4846 	}
4847 
4848 	if (!memcg)
4849 		return;
4850 
4851 	if (ug->memcg != memcg) {
4852 		if (ug->memcg) {
4853 			uncharge_batch(ug);
4854 			uncharge_gather_clear(ug);
4855 		}
4856 		ug->memcg = memcg;
4857 		ug->nid = folio_nid(folio);
4858 
4859 		/* pairs with css_put in uncharge_batch */
4860 		css_get(&memcg->css);
4861 	}
4862 
4863 	nr_pages = folio_nr_pages(folio);
4864 
4865 	if (folio_memcg_kmem(folio)) {
4866 		ug->nr_memory += nr_pages;
4867 		ug->nr_kmem += nr_pages;
4868 
4869 		folio->memcg_data = 0;
4870 		obj_cgroup_put(objcg);
4871 	} else {
4872 		/* LRU pages aren't accounted at the root level */
4873 		if (!mem_cgroup_is_root(memcg))
4874 			ug->nr_memory += nr_pages;
4875 		ug->pgpgout++;
4876 
4877 		WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4878 		folio->memcg_data = 0;
4879 	}
4880 
4881 	css_put(&memcg->css);
4882 }
4883 
4884 void __mem_cgroup_uncharge(struct folio *folio)
4885 {
4886 	struct uncharge_gather ug;
4887 
4888 	/* Don't touch folio->lru of any random page, pre-check: */
4889 	if (!folio_memcg_charged(folio))
4890 		return;
4891 
4892 	uncharge_gather_clear(&ug);
4893 	uncharge_folio(folio, &ug);
4894 	uncharge_batch(&ug);
4895 }
4896 
4897 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4898 {
4899 	struct uncharge_gather ug;
4900 	unsigned int i;
4901 
4902 	uncharge_gather_clear(&ug);
4903 	for (i = 0; i < folios->nr; i++)
4904 		uncharge_folio(folios->folios[i], &ug);
4905 	if (ug.memcg)
4906 		uncharge_batch(&ug);
4907 }
4908 
4909 /**
4910  * mem_cgroup_replace_folio - Charge a folio's replacement.
4911  * @old: Currently circulating folio.
4912  * @new: Replacement folio.
4913  *
4914  * Charge @new as a replacement folio for @old. @old will
4915  * be uncharged upon free.
4916  *
4917  * Both folios must be locked, @new->mapping must be set up.
4918  */
4919 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4920 {
4921 	struct mem_cgroup *memcg;
4922 	long nr_pages = folio_nr_pages(new);
4923 
4924 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4925 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4926 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4927 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4928 
4929 	if (mem_cgroup_disabled())
4930 		return;
4931 
4932 	/* Page cache replacement: new folio already charged? */
4933 	if (folio_memcg_charged(new))
4934 		return;
4935 
4936 	memcg = folio_memcg(old);
4937 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4938 	if (!memcg)
4939 		return;
4940 
4941 	/* Force-charge the new page. The old one will be freed soon */
4942 	if (!mem_cgroup_is_root(memcg)) {
4943 		page_counter_charge(&memcg->memory, nr_pages);
4944 		if (do_memsw_account())
4945 			page_counter_charge(&memcg->memsw, nr_pages);
4946 	}
4947 
4948 	css_get(&memcg->css);
4949 	commit_charge(new, memcg);
4950 	memcg1_commit_charge(new, memcg);
4951 }
4952 
4953 /**
4954  * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4955  * @old: Currently circulating folio.
4956  * @new: Replacement folio.
4957  *
4958  * Transfer the memcg data from the old folio to the new folio for migration.
4959  * The old folio's data info will be cleared. Note that the memory counters
4960  * will remain unchanged throughout the process.
4961  *
4962  * Both folios must be locked, @new->mapping must be set up.
4963  */
4964 void mem_cgroup_migrate(struct folio *old, struct folio *new)
4965 {
4966 	struct mem_cgroup *memcg;
4967 
4968 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4969 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4970 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4971 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4972 	VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4973 
4974 	if (mem_cgroup_disabled())
4975 		return;
4976 
4977 	memcg = folio_memcg(old);
4978 	/*
4979 	 * Note that it is normal to see !memcg for a hugetlb folio.
4980 	 * For e.g, itt could have been allocated when memory_hugetlb_accounting
4981 	 * was not selected.
4982 	 */
4983 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4984 	if (!memcg)
4985 		return;
4986 
4987 	/* Transfer the charge and the css ref */
4988 	commit_charge(new, memcg);
4989 
4990 	/* Warning should never happen, so don't worry about refcount non-0 */
4991 	WARN_ON_ONCE(folio_unqueue_deferred_split(old));
4992 	old->memcg_data = 0;
4993 }
4994 
4995 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4996 EXPORT_SYMBOL(memcg_sockets_enabled_key);
4997 
4998 void mem_cgroup_sk_alloc(struct sock *sk)
4999 {
5000 	struct mem_cgroup *memcg;
5001 
5002 	if (!mem_cgroup_sockets_enabled)
5003 		return;
5004 
5005 	/* Do not associate the sock with unrelated interrupted task's memcg. */
5006 	if (!in_task())
5007 		return;
5008 
5009 	rcu_read_lock();
5010 	memcg = mem_cgroup_from_task(current);
5011 	if (mem_cgroup_is_root(memcg))
5012 		goto out;
5013 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
5014 		goto out;
5015 	if (css_tryget(&memcg->css))
5016 		sk->sk_memcg = memcg;
5017 out:
5018 	rcu_read_unlock();
5019 }
5020 
5021 void mem_cgroup_sk_free(struct sock *sk)
5022 {
5023 	if (sk->sk_memcg)
5024 		css_put(&sk->sk_memcg->css);
5025 }
5026 
5027 /**
5028  * mem_cgroup_charge_skmem - charge socket memory
5029  * @memcg: memcg to charge
5030  * @nr_pages: number of pages to charge
5031  * @gfp_mask: reclaim mode
5032  *
5033  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5034  * @memcg's configured limit, %false if it doesn't.
5035  */
5036 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
5037 			     gfp_t gfp_mask)
5038 {
5039 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5040 		return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
5041 
5042 	if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) {
5043 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5044 		return true;
5045 	}
5046 
5047 	return false;
5048 }
5049 
5050 /**
5051  * mem_cgroup_uncharge_skmem - uncharge socket memory
5052  * @memcg: memcg to uncharge
5053  * @nr_pages: number of pages to uncharge
5054  */
5055 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5056 {
5057 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5058 		memcg1_uncharge_skmem(memcg, nr_pages);
5059 		return;
5060 	}
5061 
5062 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5063 
5064 	refill_stock(memcg, nr_pages);
5065 }
5066 
5067 static int __init cgroup_memory(char *s)
5068 {
5069 	char *token;
5070 
5071 	while ((token = strsep(&s, ",")) != NULL) {
5072 		if (!*token)
5073 			continue;
5074 		if (!strcmp(token, "nosocket"))
5075 			cgroup_memory_nosocket = true;
5076 		if (!strcmp(token, "nokmem"))
5077 			cgroup_memory_nokmem = true;
5078 		if (!strcmp(token, "nobpf"))
5079 			cgroup_memory_nobpf = true;
5080 	}
5081 	return 1;
5082 }
5083 __setup("cgroup.memory=", cgroup_memory);
5084 
5085 /*
5086  * Memory controller init before cgroup_init() initialize root_mem_cgroup.
5087  *
5088  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5089  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5090  * basically everything that doesn't depend on a specific mem_cgroup structure
5091  * should be initialized from here.
5092  */
5093 int __init mem_cgroup_init(void)
5094 {
5095 	unsigned int memcg_size;
5096 	int cpu;
5097 
5098 	/*
5099 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
5100 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
5101 	 * to work fine, we should make sure that the overfill threshold can't
5102 	 * exceed S32_MAX / PAGE_SIZE.
5103 	 */
5104 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
5105 
5106 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5107 				  memcg_hotplug_cpu_dead);
5108 
5109 	for_each_possible_cpu(cpu) {
5110 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5111 			  drain_local_memcg_stock);
5112 		INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work,
5113 			  drain_local_obj_stock);
5114 	}
5115 
5116 	memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids);
5117 	memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0,
5118 					 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
5119 
5120 	memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node,
5121 				     SLAB_PANIC | SLAB_HWCACHE_ALIGN);
5122 
5123 	return 0;
5124 }
5125 
5126 #ifdef CONFIG_SWAP
5127 /**
5128  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5129  * @folio: folio being added to swap
5130  * @entry: swap entry to charge
5131  *
5132  * Try to charge @folio's memcg for the swap space at @entry.
5133  *
5134  * Returns 0 on success, -ENOMEM on failure.
5135  */
5136 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5137 {
5138 	unsigned int nr_pages = folio_nr_pages(folio);
5139 	struct page_counter *counter;
5140 	struct mem_cgroup *memcg;
5141 
5142 	if (do_memsw_account())
5143 		return 0;
5144 
5145 	memcg = folio_memcg(folio);
5146 
5147 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5148 	if (!memcg)
5149 		return 0;
5150 
5151 	if (!entry.val) {
5152 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5153 		return 0;
5154 	}
5155 
5156 	memcg = mem_cgroup_id_get_online(memcg);
5157 
5158 	if (!mem_cgroup_is_root(memcg) &&
5159 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5160 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5161 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5162 		mem_cgroup_id_put(memcg);
5163 		return -ENOMEM;
5164 	}
5165 
5166 	/* Get references for the tail pages, too */
5167 	if (nr_pages > 1)
5168 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
5169 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5170 
5171 	swap_cgroup_record(folio, mem_cgroup_id(memcg), entry);
5172 
5173 	return 0;
5174 }
5175 
5176 /**
5177  * __mem_cgroup_uncharge_swap - uncharge swap space
5178  * @entry: swap entry to uncharge
5179  * @nr_pages: the amount of swap space to uncharge
5180  */
5181 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5182 {
5183 	struct mem_cgroup *memcg;
5184 	unsigned short id;
5185 
5186 	id = swap_cgroup_clear(entry, nr_pages);
5187 	rcu_read_lock();
5188 	memcg = mem_cgroup_from_id(id);
5189 	if (memcg) {
5190 		if (!mem_cgroup_is_root(memcg)) {
5191 			if (do_memsw_account())
5192 				page_counter_uncharge(&memcg->memsw, nr_pages);
5193 			else
5194 				page_counter_uncharge(&memcg->swap, nr_pages);
5195 		}
5196 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5197 		mem_cgroup_id_put_many(memcg, nr_pages);
5198 	}
5199 	rcu_read_unlock();
5200 }
5201 
5202 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5203 {
5204 	long nr_swap_pages = get_nr_swap_pages();
5205 
5206 	if (mem_cgroup_disabled() || do_memsw_account())
5207 		return nr_swap_pages;
5208 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5209 		nr_swap_pages = min_t(long, nr_swap_pages,
5210 				      READ_ONCE(memcg->swap.max) -
5211 				      page_counter_read(&memcg->swap));
5212 	return nr_swap_pages;
5213 }
5214 
5215 bool mem_cgroup_swap_full(struct folio *folio)
5216 {
5217 	struct mem_cgroup *memcg;
5218 
5219 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5220 
5221 	if (vm_swap_full())
5222 		return true;
5223 	if (do_memsw_account())
5224 		return false;
5225 
5226 	memcg = folio_memcg(folio);
5227 	if (!memcg)
5228 		return false;
5229 
5230 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5231 		unsigned long usage = page_counter_read(&memcg->swap);
5232 
5233 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5234 		    usage * 2 >= READ_ONCE(memcg->swap.max))
5235 			return true;
5236 	}
5237 
5238 	return false;
5239 }
5240 
5241 static int __init setup_swap_account(char *s)
5242 {
5243 	bool res;
5244 
5245 	if (!kstrtobool(s, &res) && !res)
5246 		pr_warn_once("The swapaccount=0 commandline option is deprecated "
5247 			     "in favor of configuring swap control via cgroupfs. "
5248 			     "Please report your usecase to linux-mm@kvack.org if you "
5249 			     "depend on this functionality.\n");
5250 	return 1;
5251 }
5252 __setup("swapaccount=", setup_swap_account);
5253 
5254 static u64 swap_current_read(struct cgroup_subsys_state *css,
5255 			     struct cftype *cft)
5256 {
5257 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5258 
5259 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5260 }
5261 
5262 static int swap_peak_show(struct seq_file *sf, void *v)
5263 {
5264 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5265 
5266 	return peak_show(sf, v, &memcg->swap);
5267 }
5268 
5269 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5270 			       size_t nbytes, loff_t off)
5271 {
5272 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5273 
5274 	return peak_write(of, buf, nbytes, off, &memcg->swap,
5275 			  &memcg->swap_peaks);
5276 }
5277 
5278 static int swap_high_show(struct seq_file *m, void *v)
5279 {
5280 	return seq_puts_memcg_tunable(m,
5281 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5282 }
5283 
5284 static ssize_t swap_high_write(struct kernfs_open_file *of,
5285 			       char *buf, size_t nbytes, loff_t off)
5286 {
5287 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5288 	unsigned long high;
5289 	int err;
5290 
5291 	buf = strstrip(buf);
5292 	err = page_counter_memparse(buf, "max", &high);
5293 	if (err)
5294 		return err;
5295 
5296 	page_counter_set_high(&memcg->swap, high);
5297 
5298 	return nbytes;
5299 }
5300 
5301 static int swap_max_show(struct seq_file *m, void *v)
5302 {
5303 	return seq_puts_memcg_tunable(m,
5304 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5305 }
5306 
5307 static ssize_t swap_max_write(struct kernfs_open_file *of,
5308 			      char *buf, size_t nbytes, loff_t off)
5309 {
5310 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5311 	unsigned long max;
5312 	int err;
5313 
5314 	buf = strstrip(buf);
5315 	err = page_counter_memparse(buf, "max", &max);
5316 	if (err)
5317 		return err;
5318 
5319 	xchg(&memcg->swap.max, max);
5320 
5321 	return nbytes;
5322 }
5323 
5324 static int swap_events_show(struct seq_file *m, void *v)
5325 {
5326 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5327 
5328 	seq_printf(m, "high %lu\n",
5329 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5330 	seq_printf(m, "max %lu\n",
5331 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5332 	seq_printf(m, "fail %lu\n",
5333 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5334 
5335 	return 0;
5336 }
5337 
5338 static struct cftype swap_files[] = {
5339 	{
5340 		.name = "swap.current",
5341 		.flags = CFTYPE_NOT_ON_ROOT,
5342 		.read_u64 = swap_current_read,
5343 	},
5344 	{
5345 		.name = "swap.high",
5346 		.flags = CFTYPE_NOT_ON_ROOT,
5347 		.seq_show = swap_high_show,
5348 		.write = swap_high_write,
5349 	},
5350 	{
5351 		.name = "swap.max",
5352 		.flags = CFTYPE_NOT_ON_ROOT,
5353 		.seq_show = swap_max_show,
5354 		.write = swap_max_write,
5355 	},
5356 	{
5357 		.name = "swap.peak",
5358 		.flags = CFTYPE_NOT_ON_ROOT,
5359 		.open = peak_open,
5360 		.release = peak_release,
5361 		.seq_show = swap_peak_show,
5362 		.write = swap_peak_write,
5363 	},
5364 	{
5365 		.name = "swap.events",
5366 		.flags = CFTYPE_NOT_ON_ROOT,
5367 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
5368 		.seq_show = swap_events_show,
5369 	},
5370 	{ }	/* terminate */
5371 };
5372 
5373 #ifdef CONFIG_ZSWAP
5374 /**
5375  * obj_cgroup_may_zswap - check if this cgroup can zswap
5376  * @objcg: the object cgroup
5377  *
5378  * Check if the hierarchical zswap limit has been reached.
5379  *
5380  * This doesn't check for specific headroom, and it is not atomic
5381  * either. But with zswap, the size of the allocation is only known
5382  * once compression has occurred, and this optimistic pre-check avoids
5383  * spending cycles on compression when there is already no room left
5384  * or zswap is disabled altogether somewhere in the hierarchy.
5385  */
5386 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5387 {
5388 	struct mem_cgroup *memcg, *original_memcg;
5389 	bool ret = true;
5390 
5391 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5392 		return true;
5393 
5394 	original_memcg = get_mem_cgroup_from_objcg(objcg);
5395 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5396 	     memcg = parent_mem_cgroup(memcg)) {
5397 		unsigned long max = READ_ONCE(memcg->zswap_max);
5398 		unsigned long pages;
5399 
5400 		if (max == PAGE_COUNTER_MAX)
5401 			continue;
5402 		if (max == 0) {
5403 			ret = false;
5404 			break;
5405 		}
5406 
5407 		/* Force flush to get accurate stats for charging */
5408 		__mem_cgroup_flush_stats(memcg, true);
5409 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5410 		if (pages < max)
5411 			continue;
5412 		ret = false;
5413 		break;
5414 	}
5415 	mem_cgroup_put(original_memcg);
5416 	return ret;
5417 }
5418 
5419 /**
5420  * obj_cgroup_charge_zswap - charge compression backend memory
5421  * @objcg: the object cgroup
5422  * @size: size of compressed object
5423  *
5424  * This forces the charge after obj_cgroup_may_zswap() allowed
5425  * compression and storage in zwap for this cgroup to go ahead.
5426  */
5427 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5428 {
5429 	struct mem_cgroup *memcg;
5430 
5431 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5432 		return;
5433 
5434 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5435 
5436 	/* PF_MEMALLOC context, charging must succeed */
5437 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5438 		VM_WARN_ON_ONCE(1);
5439 
5440 	rcu_read_lock();
5441 	memcg = obj_cgroup_memcg(objcg);
5442 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5443 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5444 	rcu_read_unlock();
5445 }
5446 
5447 /**
5448  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5449  * @objcg: the object cgroup
5450  * @size: size of compressed object
5451  *
5452  * Uncharges zswap memory on page in.
5453  */
5454 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5455 {
5456 	struct mem_cgroup *memcg;
5457 
5458 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5459 		return;
5460 
5461 	obj_cgroup_uncharge(objcg, size);
5462 
5463 	rcu_read_lock();
5464 	memcg = obj_cgroup_memcg(objcg);
5465 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5466 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5467 	rcu_read_unlock();
5468 }
5469 
5470 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5471 {
5472 	/* if zswap is disabled, do not block pages going to the swapping device */
5473 	if (!zswap_is_enabled())
5474 		return true;
5475 
5476 	for (; memcg; memcg = parent_mem_cgroup(memcg))
5477 		if (!READ_ONCE(memcg->zswap_writeback))
5478 			return false;
5479 
5480 	return true;
5481 }
5482 
5483 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5484 			      struct cftype *cft)
5485 {
5486 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5487 
5488 	mem_cgroup_flush_stats(memcg);
5489 	return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5490 }
5491 
5492 static int zswap_max_show(struct seq_file *m, void *v)
5493 {
5494 	return seq_puts_memcg_tunable(m,
5495 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5496 }
5497 
5498 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5499 			       char *buf, size_t nbytes, loff_t off)
5500 {
5501 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5502 	unsigned long max;
5503 	int err;
5504 
5505 	buf = strstrip(buf);
5506 	err = page_counter_memparse(buf, "max", &max);
5507 	if (err)
5508 		return err;
5509 
5510 	xchg(&memcg->zswap_max, max);
5511 
5512 	return nbytes;
5513 }
5514 
5515 static int zswap_writeback_show(struct seq_file *m, void *v)
5516 {
5517 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5518 
5519 	seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5520 	return 0;
5521 }
5522 
5523 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5524 				char *buf, size_t nbytes, loff_t off)
5525 {
5526 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5527 	int zswap_writeback;
5528 	ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5529 
5530 	if (parse_ret)
5531 		return parse_ret;
5532 
5533 	if (zswap_writeback != 0 && zswap_writeback != 1)
5534 		return -EINVAL;
5535 
5536 	WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5537 	return nbytes;
5538 }
5539 
5540 static struct cftype zswap_files[] = {
5541 	{
5542 		.name = "zswap.current",
5543 		.flags = CFTYPE_NOT_ON_ROOT,
5544 		.read_u64 = zswap_current_read,
5545 	},
5546 	{
5547 		.name = "zswap.max",
5548 		.flags = CFTYPE_NOT_ON_ROOT,
5549 		.seq_show = zswap_max_show,
5550 		.write = zswap_max_write,
5551 	},
5552 	{
5553 		.name = "zswap.writeback",
5554 		.seq_show = zswap_writeback_show,
5555 		.write = zswap_writeback_write,
5556 	},
5557 	{ }	/* terminate */
5558 };
5559 #endif /* CONFIG_ZSWAP */
5560 
5561 static int __init mem_cgroup_swap_init(void)
5562 {
5563 	if (mem_cgroup_disabled())
5564 		return 0;
5565 
5566 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5567 #ifdef CONFIG_MEMCG_V1
5568 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5569 #endif
5570 #ifdef CONFIG_ZSWAP
5571 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5572 #endif
5573 	return 0;
5574 }
5575 subsys_initcall(mem_cgroup_swap_init);
5576 
5577 #endif /* CONFIG_SWAP */
5578 
5579 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
5580 {
5581 	return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true;
5582 }
5583