1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/cgroup-defs.h> 29 #include <linux/page_counter.h> 30 #include <linux/memcontrol.h> 31 #include <linux/cgroup.h> 32 #include <linux/cpuset.h> 33 #include <linux/sched/mm.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/hugetlb.h> 36 #include <linux/pagemap.h> 37 #include <linux/pagevec.h> 38 #include <linux/vm_event_item.h> 39 #include <linux/smp.h> 40 #include <linux/page-flags.h> 41 #include <linux/backing-dev.h> 42 #include <linux/bit_spinlock.h> 43 #include <linux/rcupdate.h> 44 #include <linux/limits.h> 45 #include <linux/export.h> 46 #include <linux/list.h> 47 #include <linux/mutex.h> 48 #include <linux/rbtree.h> 49 #include <linux/slab.h> 50 #include <linux/swapops.h> 51 #include <linux/spinlock.h> 52 #include <linux/fs.h> 53 #include <linux/seq_file.h> 54 #include <linux/vmpressure.h> 55 #include <linux/memremap.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/resume_user_mode.h> 62 #include <linux/psi.h> 63 #include <linux/seq_buf.h> 64 #include <linux/sched/isolation.h> 65 #include <linux/kmemleak.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "memcontrol-v1.h" 71 72 #include <linux/uaccess.h> 73 74 #define CREATE_TRACE_POINTS 75 #include <trace/events/memcg.h> 76 #undef CREATE_TRACE_POINTS 77 78 #include <trace/events/vmscan.h> 79 80 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 81 EXPORT_SYMBOL(memory_cgrp_subsys); 82 83 struct mem_cgroup *root_mem_cgroup __read_mostly; 84 EXPORT_SYMBOL(root_mem_cgroup); 85 86 /* Active memory cgroup to use from an interrupt context */ 87 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 88 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 89 90 /* Socket memory accounting disabled? */ 91 static bool cgroup_memory_nosocket __ro_after_init; 92 93 /* Kernel memory accounting disabled? */ 94 static bool cgroup_memory_nokmem __ro_after_init; 95 96 /* BPF memory accounting disabled? */ 97 static bool cgroup_memory_nobpf __ro_after_init; 98 99 static struct workqueue_struct *memcg_wq __ro_after_init; 100 101 static struct kmem_cache *memcg_cachep; 102 static struct kmem_cache *memcg_pn_cachep; 103 104 #ifdef CONFIG_CGROUP_WRITEBACK 105 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 106 #endif 107 108 static inline bool task_is_dying(void) 109 { 110 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 111 (current->flags & PF_EXITING); 112 } 113 114 /* Some nice accessors for the vmpressure. */ 115 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 116 { 117 if (!memcg) 118 memcg = root_mem_cgroup; 119 return &memcg->vmpressure; 120 } 121 122 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 123 { 124 return container_of(vmpr, struct mem_cgroup, vmpressure); 125 } 126 127 #define SEQ_BUF_SIZE SZ_4K 128 #define CURRENT_OBJCG_UPDATE_BIT 0 129 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 130 131 static DEFINE_SPINLOCK(objcg_lock); 132 133 bool mem_cgroup_kmem_disabled(void) 134 { 135 return cgroup_memory_nokmem; 136 } 137 138 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); 139 140 static void obj_cgroup_release(struct percpu_ref *ref) 141 { 142 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 143 unsigned int nr_bytes; 144 unsigned int nr_pages; 145 unsigned long flags; 146 147 /* 148 * At this point all allocated objects are freed, and 149 * objcg->nr_charged_bytes can't have an arbitrary byte value. 150 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 151 * 152 * The following sequence can lead to it: 153 * 1) CPU0: objcg == stock->cached_objcg 154 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 155 * PAGE_SIZE bytes are charged 156 * 3) CPU1: a process from another memcg is allocating something, 157 * the stock if flushed, 158 * objcg->nr_charged_bytes = PAGE_SIZE - 92 159 * 5) CPU0: we do release this object, 160 * 92 bytes are added to stock->nr_bytes 161 * 6) CPU0: stock is flushed, 162 * 92 bytes are added to objcg->nr_charged_bytes 163 * 164 * In the result, nr_charged_bytes == PAGE_SIZE. 165 * This page will be uncharged in obj_cgroup_release(). 166 */ 167 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 168 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 169 nr_pages = nr_bytes >> PAGE_SHIFT; 170 171 if (nr_pages) { 172 struct mem_cgroup *memcg; 173 174 memcg = get_mem_cgroup_from_objcg(objcg); 175 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 176 memcg1_account_kmem(memcg, -nr_pages); 177 if (!mem_cgroup_is_root(memcg)) 178 memcg_uncharge(memcg, nr_pages); 179 mem_cgroup_put(memcg); 180 } 181 182 spin_lock_irqsave(&objcg_lock, flags); 183 list_del(&objcg->list); 184 spin_unlock_irqrestore(&objcg_lock, flags); 185 186 percpu_ref_exit(ref); 187 kfree_rcu(objcg, rcu); 188 } 189 190 static struct obj_cgroup *obj_cgroup_alloc(void) 191 { 192 struct obj_cgroup *objcg; 193 int ret; 194 195 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 196 if (!objcg) 197 return NULL; 198 199 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 200 GFP_KERNEL); 201 if (ret) { 202 kfree(objcg); 203 return NULL; 204 } 205 INIT_LIST_HEAD(&objcg->list); 206 return objcg; 207 } 208 209 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 210 struct mem_cgroup *parent) 211 { 212 struct obj_cgroup *objcg, *iter; 213 214 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 215 216 spin_lock_irq(&objcg_lock); 217 218 /* 1) Ready to reparent active objcg. */ 219 list_add(&objcg->list, &memcg->objcg_list); 220 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 221 list_for_each_entry(iter, &memcg->objcg_list, list) 222 WRITE_ONCE(iter->memcg, parent); 223 /* 3) Move already reparented objcgs to the parent's list */ 224 list_splice(&memcg->objcg_list, &parent->objcg_list); 225 226 spin_unlock_irq(&objcg_lock); 227 228 percpu_ref_kill(&objcg->refcnt); 229 } 230 231 /* 232 * A lot of the calls to the cache allocation functions are expected to be 233 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 234 * conditional to this static branch, we'll have to allow modules that does 235 * kmem_cache_alloc and the such to see this symbol as well 236 */ 237 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 238 EXPORT_SYMBOL(memcg_kmem_online_key); 239 240 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 241 EXPORT_SYMBOL(memcg_bpf_enabled_key); 242 243 /** 244 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 245 * @folio: folio of interest 246 * 247 * If memcg is bound to the default hierarchy, css of the memcg associated 248 * with @folio is returned. The returned css remains associated with @folio 249 * until it is released. 250 * 251 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 252 * is returned. 253 */ 254 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 255 { 256 struct mem_cgroup *memcg = folio_memcg(folio); 257 258 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 259 memcg = root_mem_cgroup; 260 261 return &memcg->css; 262 } 263 264 /** 265 * page_cgroup_ino - return inode number of the memcg a page is charged to 266 * @page: the page 267 * 268 * Look up the closest online ancestor of the memory cgroup @page is charged to 269 * and return its inode number or 0 if @page is not charged to any cgroup. It 270 * is safe to call this function without holding a reference to @page. 271 * 272 * Note, this function is inherently racy, because there is nothing to prevent 273 * the cgroup inode from getting torn down and potentially reallocated a moment 274 * after page_cgroup_ino() returns, so it only should be used by callers that 275 * do not care (such as procfs interfaces). 276 */ 277 ino_t page_cgroup_ino(struct page *page) 278 { 279 struct mem_cgroup *memcg; 280 unsigned long ino = 0; 281 282 rcu_read_lock(); 283 /* page_folio() is racy here, but the entire function is racy anyway */ 284 memcg = folio_memcg_check(page_folio(page)); 285 286 while (memcg && !css_is_online(&memcg->css)) 287 memcg = parent_mem_cgroup(memcg); 288 if (memcg) 289 ino = cgroup_ino(memcg->css.cgroup); 290 rcu_read_unlock(); 291 return ino; 292 } 293 EXPORT_SYMBOL_GPL(page_cgroup_ino); 294 295 /* Subset of node_stat_item for memcg stats */ 296 static const unsigned int memcg_node_stat_items[] = { 297 NR_INACTIVE_ANON, 298 NR_ACTIVE_ANON, 299 NR_INACTIVE_FILE, 300 NR_ACTIVE_FILE, 301 NR_UNEVICTABLE, 302 NR_SLAB_RECLAIMABLE_B, 303 NR_SLAB_UNRECLAIMABLE_B, 304 WORKINGSET_REFAULT_ANON, 305 WORKINGSET_REFAULT_FILE, 306 WORKINGSET_ACTIVATE_ANON, 307 WORKINGSET_ACTIVATE_FILE, 308 WORKINGSET_RESTORE_ANON, 309 WORKINGSET_RESTORE_FILE, 310 WORKINGSET_NODERECLAIM, 311 NR_ANON_MAPPED, 312 NR_FILE_MAPPED, 313 NR_FILE_PAGES, 314 NR_FILE_DIRTY, 315 NR_WRITEBACK, 316 NR_SHMEM, 317 NR_SHMEM_THPS, 318 NR_FILE_THPS, 319 NR_ANON_THPS, 320 NR_KERNEL_STACK_KB, 321 NR_PAGETABLE, 322 NR_SECONDARY_PAGETABLE, 323 #ifdef CONFIG_SWAP 324 NR_SWAPCACHE, 325 #endif 326 #ifdef CONFIG_NUMA_BALANCING 327 PGPROMOTE_SUCCESS, 328 #endif 329 PGDEMOTE_KSWAPD, 330 PGDEMOTE_DIRECT, 331 PGDEMOTE_KHUGEPAGED, 332 PGDEMOTE_PROACTIVE, 333 #ifdef CONFIG_HUGETLB_PAGE 334 NR_HUGETLB, 335 #endif 336 }; 337 338 static const unsigned int memcg_stat_items[] = { 339 MEMCG_SWAP, 340 MEMCG_SOCK, 341 MEMCG_PERCPU_B, 342 MEMCG_VMALLOC, 343 MEMCG_KMEM, 344 MEMCG_ZSWAP_B, 345 MEMCG_ZSWAPPED, 346 }; 347 348 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 349 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 350 ARRAY_SIZE(memcg_stat_items)) 351 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 352 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 353 354 static void init_memcg_stats(void) 355 { 356 u8 i, j = 0; 357 358 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 359 360 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 361 362 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 363 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 364 365 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 366 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 367 } 368 369 static inline int memcg_stats_index(int idx) 370 { 371 return mem_cgroup_stats_index[idx]; 372 } 373 374 struct lruvec_stats_percpu { 375 /* Local (CPU and cgroup) state */ 376 long state[NR_MEMCG_NODE_STAT_ITEMS]; 377 378 /* Delta calculation for lockless upward propagation */ 379 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 380 }; 381 382 struct lruvec_stats { 383 /* Aggregated (CPU and subtree) state */ 384 long state[NR_MEMCG_NODE_STAT_ITEMS]; 385 386 /* Non-hierarchical (CPU aggregated) state */ 387 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 388 389 /* Pending child counts during tree propagation */ 390 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 391 }; 392 393 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 394 { 395 struct mem_cgroup_per_node *pn; 396 long x; 397 int i; 398 399 if (mem_cgroup_disabled()) 400 return node_page_state(lruvec_pgdat(lruvec), idx); 401 402 i = memcg_stats_index(idx); 403 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 404 return 0; 405 406 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 407 x = READ_ONCE(pn->lruvec_stats->state[i]); 408 #ifdef CONFIG_SMP 409 if (x < 0) 410 x = 0; 411 #endif 412 return x; 413 } 414 415 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 416 enum node_stat_item idx) 417 { 418 struct mem_cgroup_per_node *pn; 419 long x; 420 int i; 421 422 if (mem_cgroup_disabled()) 423 return node_page_state(lruvec_pgdat(lruvec), idx); 424 425 i = memcg_stats_index(idx); 426 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 427 return 0; 428 429 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 430 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 431 #ifdef CONFIG_SMP 432 if (x < 0) 433 x = 0; 434 #endif 435 return x; 436 } 437 438 /* Subset of vm_event_item to report for memcg event stats */ 439 static const unsigned int memcg_vm_event_stat[] = { 440 #ifdef CONFIG_MEMCG_V1 441 PGPGIN, 442 PGPGOUT, 443 #endif 444 PSWPIN, 445 PSWPOUT, 446 PGSCAN_KSWAPD, 447 PGSCAN_DIRECT, 448 PGSCAN_KHUGEPAGED, 449 PGSCAN_PROACTIVE, 450 PGSTEAL_KSWAPD, 451 PGSTEAL_DIRECT, 452 PGSTEAL_KHUGEPAGED, 453 PGSTEAL_PROACTIVE, 454 PGFAULT, 455 PGMAJFAULT, 456 PGREFILL, 457 PGACTIVATE, 458 PGDEACTIVATE, 459 PGLAZYFREE, 460 PGLAZYFREED, 461 #ifdef CONFIG_SWAP 462 SWPIN_ZERO, 463 SWPOUT_ZERO, 464 #endif 465 #ifdef CONFIG_ZSWAP 466 ZSWPIN, 467 ZSWPOUT, 468 ZSWPWB, 469 #endif 470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 471 THP_FAULT_ALLOC, 472 THP_COLLAPSE_ALLOC, 473 THP_SWPOUT, 474 THP_SWPOUT_FALLBACK, 475 #endif 476 #ifdef CONFIG_NUMA_BALANCING 477 NUMA_PAGE_MIGRATE, 478 NUMA_PTE_UPDATES, 479 NUMA_HINT_FAULTS, 480 #endif 481 }; 482 483 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 484 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 485 486 static void init_memcg_events(void) 487 { 488 u8 i; 489 490 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 491 492 memset(mem_cgroup_events_index, U8_MAX, 493 sizeof(mem_cgroup_events_index)); 494 495 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 496 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 497 } 498 499 static inline int memcg_events_index(enum vm_event_item idx) 500 { 501 return mem_cgroup_events_index[idx]; 502 } 503 504 struct memcg_vmstats_percpu { 505 /* Stats updates since the last flush */ 506 unsigned int stats_updates; 507 508 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 509 struct memcg_vmstats_percpu __percpu *parent_pcpu; 510 struct memcg_vmstats *vmstats; 511 512 /* The above should fit a single cacheline for memcg_rstat_updated() */ 513 514 /* Local (CPU and cgroup) page state & events */ 515 long state[MEMCG_VMSTAT_SIZE]; 516 unsigned long events[NR_MEMCG_EVENTS]; 517 518 /* Delta calculation for lockless upward propagation */ 519 long state_prev[MEMCG_VMSTAT_SIZE]; 520 unsigned long events_prev[NR_MEMCG_EVENTS]; 521 } ____cacheline_aligned; 522 523 struct memcg_vmstats { 524 /* Aggregated (CPU and subtree) page state & events */ 525 long state[MEMCG_VMSTAT_SIZE]; 526 unsigned long events[NR_MEMCG_EVENTS]; 527 528 /* Non-hierarchical (CPU aggregated) page state & events */ 529 long state_local[MEMCG_VMSTAT_SIZE]; 530 unsigned long events_local[NR_MEMCG_EVENTS]; 531 532 /* Pending child counts during tree propagation */ 533 long state_pending[MEMCG_VMSTAT_SIZE]; 534 unsigned long events_pending[NR_MEMCG_EVENTS]; 535 536 /* Stats updates since the last flush */ 537 atomic_t stats_updates; 538 }; 539 540 /* 541 * memcg and lruvec stats flushing 542 * 543 * Many codepaths leading to stats update or read are performance sensitive and 544 * adding stats flushing in such codepaths is not desirable. So, to optimize the 545 * flushing the kernel does: 546 * 547 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 548 * rstat update tree grow unbounded. 549 * 550 * 2) Flush the stats synchronously on reader side only when there are more than 551 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 552 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 553 * only for 2 seconds due to (1). 554 */ 555 static void flush_memcg_stats_dwork(struct work_struct *w); 556 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 557 static u64 flush_last_time; 558 559 #define FLUSH_TIME (2UL*HZ) 560 561 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 562 { 563 return atomic_read(&vmstats->stats_updates) > 564 MEMCG_CHARGE_BATCH * num_online_cpus(); 565 } 566 567 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val, 568 int cpu) 569 { 570 struct memcg_vmstats_percpu __percpu *statc_pcpu; 571 struct memcg_vmstats_percpu *statc; 572 unsigned int stats_updates; 573 574 if (!val) 575 return; 576 577 css_rstat_updated(&memcg->css, cpu); 578 statc_pcpu = memcg->vmstats_percpu; 579 for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) { 580 statc = this_cpu_ptr(statc_pcpu); 581 /* 582 * If @memcg is already flushable then all its ancestors are 583 * flushable as well and also there is no need to increase 584 * stats_updates. 585 */ 586 if (memcg_vmstats_needs_flush(statc->vmstats)) 587 break; 588 589 stats_updates = this_cpu_add_return(statc_pcpu->stats_updates, 590 abs(val)); 591 if (stats_updates < MEMCG_CHARGE_BATCH) 592 continue; 593 594 stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0); 595 atomic_add(stats_updates, &statc->vmstats->stats_updates); 596 } 597 } 598 599 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force) 600 { 601 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats); 602 603 trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates), 604 force, needs_flush); 605 606 if (!force && !needs_flush) 607 return; 608 609 if (mem_cgroup_is_root(memcg)) 610 WRITE_ONCE(flush_last_time, jiffies_64); 611 612 css_rstat_flush(&memcg->css); 613 } 614 615 /* 616 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 617 * @memcg: root of the subtree to flush 618 * 619 * Flushing is serialized by the underlying global rstat lock. There is also a 620 * minimum amount of work to be done even if there are no stat updates to flush. 621 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 622 * avoids unnecessary work and contention on the underlying lock. 623 */ 624 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 625 { 626 if (mem_cgroup_disabled()) 627 return; 628 629 if (!memcg) 630 memcg = root_mem_cgroup; 631 632 __mem_cgroup_flush_stats(memcg, false); 633 } 634 635 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 636 { 637 /* Only flush if the periodic flusher is one full cycle late */ 638 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 639 mem_cgroup_flush_stats(memcg); 640 } 641 642 static void flush_memcg_stats_dwork(struct work_struct *w) 643 { 644 /* 645 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 646 * in latency-sensitive paths is as cheap as possible. 647 */ 648 __mem_cgroup_flush_stats(root_mem_cgroup, true); 649 queue_delayed_work(system_dfl_wq, &stats_flush_dwork, FLUSH_TIME); 650 } 651 652 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 653 { 654 long x; 655 int i = memcg_stats_index(idx); 656 657 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 658 return 0; 659 660 x = READ_ONCE(memcg->vmstats->state[i]); 661 #ifdef CONFIG_SMP 662 if (x < 0) 663 x = 0; 664 #endif 665 return x; 666 } 667 668 bool memcg_stat_item_valid(int idx) 669 { 670 if ((u32)idx >= MEMCG_NR_STAT) 671 return false; 672 673 return !BAD_STAT_IDX(memcg_stats_index(idx)); 674 } 675 676 static int memcg_page_state_unit(int item); 677 678 /* 679 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 680 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 681 */ 682 static int memcg_state_val_in_pages(int idx, int val) 683 { 684 int unit = memcg_page_state_unit(idx); 685 686 if (!val || unit == PAGE_SIZE) 687 return val; 688 else 689 return max(val * unit / PAGE_SIZE, 1UL); 690 } 691 692 /** 693 * mod_memcg_state - update cgroup memory statistics 694 * @memcg: the memory cgroup 695 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 696 * @val: delta to add to the counter, can be negative 697 */ 698 void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 699 int val) 700 { 701 int i = memcg_stats_index(idx); 702 int cpu; 703 704 if (mem_cgroup_disabled()) 705 return; 706 707 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 708 return; 709 710 cpu = get_cpu(); 711 712 this_cpu_add(memcg->vmstats_percpu->state[i], val); 713 val = memcg_state_val_in_pages(idx, val); 714 memcg_rstat_updated(memcg, val, cpu); 715 trace_mod_memcg_state(memcg, idx, val); 716 717 put_cpu(); 718 } 719 720 #ifdef CONFIG_MEMCG_V1 721 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 722 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 723 { 724 long x; 725 int i = memcg_stats_index(idx); 726 727 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 728 return 0; 729 730 x = READ_ONCE(memcg->vmstats->state_local[i]); 731 #ifdef CONFIG_SMP 732 if (x < 0) 733 x = 0; 734 #endif 735 return x; 736 } 737 #endif 738 739 static void mod_memcg_lruvec_state(struct lruvec *lruvec, 740 enum node_stat_item idx, 741 int val) 742 { 743 struct mem_cgroup_per_node *pn; 744 struct mem_cgroup *memcg; 745 int i = memcg_stats_index(idx); 746 int cpu; 747 748 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 749 return; 750 751 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 752 memcg = pn->memcg; 753 754 cpu = get_cpu(); 755 756 /* Update memcg */ 757 this_cpu_add(memcg->vmstats_percpu->state[i], val); 758 759 /* Update lruvec */ 760 this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 761 762 val = memcg_state_val_in_pages(idx, val); 763 memcg_rstat_updated(memcg, val, cpu); 764 trace_mod_memcg_lruvec_state(memcg, idx, val); 765 766 put_cpu(); 767 } 768 769 /** 770 * mod_lruvec_state - update lruvec memory statistics 771 * @lruvec: the lruvec 772 * @idx: the stat item 773 * @val: delta to add to the counter, can be negative 774 * 775 * The lruvec is the intersection of the NUMA node and a cgroup. This 776 * function updates the all three counters that are affected by a 777 * change of state at this level: per-node, per-cgroup, per-lruvec. 778 */ 779 void mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 780 int val) 781 { 782 /* Update node */ 783 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 784 785 /* Update memcg and lruvec */ 786 if (!mem_cgroup_disabled()) 787 mod_memcg_lruvec_state(lruvec, idx, val); 788 } 789 790 void lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 791 int val) 792 { 793 struct mem_cgroup *memcg; 794 pg_data_t *pgdat = folio_pgdat(folio); 795 struct lruvec *lruvec; 796 797 rcu_read_lock(); 798 memcg = folio_memcg(folio); 799 /* Untracked pages have no memcg, no lruvec. Update only the node */ 800 if (!memcg) { 801 rcu_read_unlock(); 802 mod_node_page_state(pgdat, idx, val); 803 return; 804 } 805 806 lruvec = mem_cgroup_lruvec(memcg, pgdat); 807 mod_lruvec_state(lruvec, idx, val); 808 rcu_read_unlock(); 809 } 810 EXPORT_SYMBOL(lruvec_stat_mod_folio); 811 812 void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 813 { 814 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 815 struct mem_cgroup *memcg; 816 struct lruvec *lruvec; 817 818 rcu_read_lock(); 819 memcg = mem_cgroup_from_virt(p); 820 821 /* 822 * Untracked pages have no memcg, no lruvec. Update only the 823 * node. If we reparent the slab objects to the root memcg, 824 * when we free the slab object, we need to update the per-memcg 825 * vmstats to keep it correct for the root memcg. 826 */ 827 if (!memcg) { 828 mod_node_page_state(pgdat, idx, val); 829 } else { 830 lruvec = mem_cgroup_lruvec(memcg, pgdat); 831 mod_lruvec_state(lruvec, idx, val); 832 } 833 rcu_read_unlock(); 834 } 835 836 /** 837 * count_memcg_events - account VM events in a cgroup 838 * @memcg: the memory cgroup 839 * @idx: the event item 840 * @count: the number of events that occurred 841 */ 842 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 843 unsigned long count) 844 { 845 int i = memcg_events_index(idx); 846 int cpu; 847 848 if (mem_cgroup_disabled()) 849 return; 850 851 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 852 return; 853 854 cpu = get_cpu(); 855 856 this_cpu_add(memcg->vmstats_percpu->events[i], count); 857 memcg_rstat_updated(memcg, count, cpu); 858 trace_count_memcg_events(memcg, idx, count); 859 860 put_cpu(); 861 } 862 863 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 864 { 865 int i = memcg_events_index(event); 866 867 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 868 return 0; 869 870 return READ_ONCE(memcg->vmstats->events[i]); 871 } 872 873 bool memcg_vm_event_item_valid(enum vm_event_item idx) 874 { 875 if (idx >= NR_VM_EVENT_ITEMS) 876 return false; 877 878 return !BAD_STAT_IDX(memcg_events_index(idx)); 879 } 880 881 #ifdef CONFIG_MEMCG_V1 882 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 883 { 884 int i = memcg_events_index(event); 885 886 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 887 return 0; 888 889 return READ_ONCE(memcg->vmstats->events_local[i]); 890 } 891 #endif 892 893 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 894 { 895 /* 896 * mm_update_next_owner() may clear mm->owner to NULL 897 * if it races with swapoff, page migration, etc. 898 * So this can be called with p == NULL. 899 */ 900 if (unlikely(!p)) 901 return NULL; 902 903 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 904 } 905 EXPORT_SYMBOL(mem_cgroup_from_task); 906 907 static __always_inline struct mem_cgroup *active_memcg(void) 908 { 909 if (!in_task()) 910 return this_cpu_read(int_active_memcg); 911 else 912 return current->active_memcg; 913 } 914 915 /** 916 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 917 * @mm: mm from which memcg should be extracted. It can be NULL. 918 * 919 * Obtain a reference on mm->memcg and returns it if successful. If mm 920 * is NULL, then the memcg is chosen as follows: 921 * 1) The active memcg, if set. 922 * 2) current->mm->memcg, if available 923 * 3) root memcg 924 * If mem_cgroup is disabled, NULL is returned. 925 */ 926 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 927 { 928 struct mem_cgroup *memcg; 929 930 if (mem_cgroup_disabled()) 931 return NULL; 932 933 /* 934 * Page cache insertions can happen without an 935 * actual mm context, e.g. during disk probing 936 * on boot, loopback IO, acct() writes etc. 937 * 938 * No need to css_get on root memcg as the reference 939 * counting is disabled on the root level in the 940 * cgroup core. See CSS_NO_REF. 941 */ 942 if (unlikely(!mm)) { 943 memcg = active_memcg(); 944 if (unlikely(memcg)) { 945 /* remote memcg must hold a ref */ 946 css_get(&memcg->css); 947 return memcg; 948 } 949 mm = current->mm; 950 if (unlikely(!mm)) 951 return root_mem_cgroup; 952 } 953 954 rcu_read_lock(); 955 do { 956 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 957 if (unlikely(!memcg)) 958 memcg = root_mem_cgroup; 959 } while (!css_tryget(&memcg->css)); 960 rcu_read_unlock(); 961 return memcg; 962 } 963 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 964 965 /** 966 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 967 */ 968 struct mem_cgroup *get_mem_cgroup_from_current(void) 969 { 970 struct mem_cgroup *memcg; 971 972 if (mem_cgroup_disabled()) 973 return NULL; 974 975 again: 976 rcu_read_lock(); 977 memcg = mem_cgroup_from_task(current); 978 if (!css_tryget(&memcg->css)) { 979 rcu_read_unlock(); 980 goto again; 981 } 982 rcu_read_unlock(); 983 return memcg; 984 } 985 986 /** 987 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. 988 * @folio: folio from which memcg should be extracted. 989 */ 990 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 991 { 992 struct mem_cgroup *memcg = folio_memcg(folio); 993 994 if (mem_cgroup_disabled()) 995 return NULL; 996 997 rcu_read_lock(); 998 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 999 memcg = root_mem_cgroup; 1000 rcu_read_unlock(); 1001 return memcg; 1002 } 1003 1004 /** 1005 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1006 * @root: hierarchy root 1007 * @prev: previously returned memcg, NULL on first invocation 1008 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1009 * 1010 * Returns references to children of the hierarchy below @root, or 1011 * @root itself, or %NULL after a full round-trip. 1012 * 1013 * Caller must pass the return value in @prev on subsequent 1014 * invocations for reference counting, or use mem_cgroup_iter_break() 1015 * to cancel a hierarchy walk before the round-trip is complete. 1016 * 1017 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1018 * in the hierarchy among all concurrent reclaimers operating on the 1019 * same node. 1020 */ 1021 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1022 struct mem_cgroup *prev, 1023 struct mem_cgroup_reclaim_cookie *reclaim) 1024 { 1025 struct mem_cgroup_reclaim_iter *iter; 1026 struct cgroup_subsys_state *css; 1027 struct mem_cgroup *pos; 1028 struct mem_cgroup *next; 1029 1030 if (mem_cgroup_disabled()) 1031 return NULL; 1032 1033 if (!root) 1034 root = root_mem_cgroup; 1035 1036 rcu_read_lock(); 1037 restart: 1038 next = NULL; 1039 1040 if (reclaim) { 1041 int gen; 1042 int nid = reclaim->pgdat->node_id; 1043 1044 iter = &root->nodeinfo[nid]->iter; 1045 gen = atomic_read(&iter->generation); 1046 1047 /* 1048 * On start, join the current reclaim iteration cycle. 1049 * Exit when a concurrent walker completes it. 1050 */ 1051 if (!prev) 1052 reclaim->generation = gen; 1053 else if (reclaim->generation != gen) 1054 goto out_unlock; 1055 1056 pos = READ_ONCE(iter->position); 1057 } else 1058 pos = prev; 1059 1060 css = pos ? &pos->css : NULL; 1061 1062 while ((css = css_next_descendant_pre(css, &root->css))) { 1063 /* 1064 * Verify the css and acquire a reference. The root 1065 * is provided by the caller, so we know it's alive 1066 * and kicking, and don't take an extra reference. 1067 */ 1068 if (css == &root->css || css_tryget(css)) 1069 break; 1070 } 1071 1072 next = mem_cgroup_from_css(css); 1073 1074 if (reclaim) { 1075 /* 1076 * The position could have already been updated by a competing 1077 * thread, so check that the value hasn't changed since we read 1078 * it to avoid reclaiming from the same cgroup twice. 1079 */ 1080 if (cmpxchg(&iter->position, pos, next) != pos) { 1081 if (css && css != &root->css) 1082 css_put(css); 1083 goto restart; 1084 } 1085 1086 if (!next) { 1087 atomic_inc(&iter->generation); 1088 1089 /* 1090 * Reclaimers share the hierarchy walk, and a 1091 * new one might jump in right at the end of 1092 * the hierarchy - make sure they see at least 1093 * one group and restart from the beginning. 1094 */ 1095 if (!prev) 1096 goto restart; 1097 } 1098 } 1099 1100 out_unlock: 1101 rcu_read_unlock(); 1102 if (prev && prev != root) 1103 css_put(&prev->css); 1104 1105 return next; 1106 } 1107 1108 /** 1109 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1110 * @root: hierarchy root 1111 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1112 */ 1113 void mem_cgroup_iter_break(struct mem_cgroup *root, 1114 struct mem_cgroup *prev) 1115 { 1116 if (!root) 1117 root = root_mem_cgroup; 1118 if (prev && prev != root) 1119 css_put(&prev->css); 1120 } 1121 1122 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1123 struct mem_cgroup *dead_memcg) 1124 { 1125 struct mem_cgroup_reclaim_iter *iter; 1126 struct mem_cgroup_per_node *mz; 1127 int nid; 1128 1129 for_each_node(nid) { 1130 mz = from->nodeinfo[nid]; 1131 iter = &mz->iter; 1132 cmpxchg(&iter->position, dead_memcg, NULL); 1133 } 1134 } 1135 1136 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1137 { 1138 struct mem_cgroup *memcg = dead_memcg; 1139 struct mem_cgroup *last; 1140 1141 do { 1142 __invalidate_reclaim_iterators(memcg, dead_memcg); 1143 last = memcg; 1144 } while ((memcg = parent_mem_cgroup(memcg))); 1145 1146 /* 1147 * When cgroup1 non-hierarchy mode is used, 1148 * parent_mem_cgroup() does not walk all the way up to the 1149 * cgroup root (root_mem_cgroup). So we have to handle 1150 * dead_memcg from cgroup root separately. 1151 */ 1152 if (!mem_cgroup_is_root(last)) 1153 __invalidate_reclaim_iterators(root_mem_cgroup, 1154 dead_memcg); 1155 } 1156 1157 /** 1158 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1159 * @memcg: hierarchy root 1160 * @fn: function to call for each task 1161 * @arg: argument passed to @fn 1162 * 1163 * This function iterates over tasks attached to @memcg or to any of its 1164 * descendants and calls @fn for each task. If @fn returns a non-zero 1165 * value, the function breaks the iteration loop. Otherwise, it will iterate 1166 * over all tasks and return 0. 1167 * 1168 * This function must not be called for the root memory cgroup. 1169 */ 1170 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1171 int (*fn)(struct task_struct *, void *), void *arg) 1172 { 1173 struct mem_cgroup *iter; 1174 int ret = 0; 1175 1176 BUG_ON(mem_cgroup_is_root(memcg)); 1177 1178 for_each_mem_cgroup_tree(iter, memcg) { 1179 struct css_task_iter it; 1180 struct task_struct *task; 1181 1182 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1183 while (!ret && (task = css_task_iter_next(&it))) { 1184 ret = fn(task, arg); 1185 /* Avoid potential softlockup warning */ 1186 cond_resched(); 1187 } 1188 css_task_iter_end(&it); 1189 if (ret) { 1190 mem_cgroup_iter_break(memcg, iter); 1191 break; 1192 } 1193 } 1194 } 1195 1196 #ifdef CONFIG_DEBUG_VM 1197 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1198 { 1199 struct mem_cgroup *memcg; 1200 1201 if (mem_cgroup_disabled()) 1202 return; 1203 1204 memcg = folio_memcg(folio); 1205 1206 if (!memcg) 1207 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1208 else 1209 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1210 } 1211 #endif 1212 1213 /** 1214 * folio_lruvec_lock - Lock the lruvec for a folio. 1215 * @folio: Pointer to the folio. 1216 * 1217 * These functions are safe to use under any of the following conditions: 1218 * - folio locked 1219 * - folio_test_lru false 1220 * - folio frozen (refcount of 0) 1221 * 1222 * Return: The lruvec this folio is on with its lock held. 1223 */ 1224 struct lruvec *folio_lruvec_lock(struct folio *folio) 1225 { 1226 struct lruvec *lruvec = folio_lruvec(folio); 1227 1228 spin_lock(&lruvec->lru_lock); 1229 lruvec_memcg_debug(lruvec, folio); 1230 1231 return lruvec; 1232 } 1233 1234 /** 1235 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1236 * @folio: Pointer to the folio. 1237 * 1238 * These functions are safe to use under any of the following conditions: 1239 * - folio locked 1240 * - folio_test_lru false 1241 * - folio frozen (refcount of 0) 1242 * 1243 * Return: The lruvec this folio is on with its lock held and interrupts 1244 * disabled. 1245 */ 1246 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1247 { 1248 struct lruvec *lruvec = folio_lruvec(folio); 1249 1250 spin_lock_irq(&lruvec->lru_lock); 1251 lruvec_memcg_debug(lruvec, folio); 1252 1253 return lruvec; 1254 } 1255 1256 /** 1257 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1258 * @folio: Pointer to the folio. 1259 * @flags: Pointer to irqsave flags. 1260 * 1261 * These functions are safe to use under any of the following conditions: 1262 * - folio locked 1263 * - folio_test_lru false 1264 * - folio frozen (refcount of 0) 1265 * 1266 * Return: The lruvec this folio is on with its lock held and interrupts 1267 * disabled. 1268 */ 1269 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1270 unsigned long *flags) 1271 { 1272 struct lruvec *lruvec = folio_lruvec(folio); 1273 1274 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1275 lruvec_memcg_debug(lruvec, folio); 1276 1277 return lruvec; 1278 } 1279 1280 /** 1281 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1282 * @lruvec: mem_cgroup per zone lru vector 1283 * @lru: index of lru list the page is sitting on 1284 * @zid: zone id of the accounted pages 1285 * @nr_pages: positive when adding or negative when removing 1286 * 1287 * This function must be called under lru_lock, just before a page is added 1288 * to or just after a page is removed from an lru list. 1289 */ 1290 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1291 int zid, int nr_pages) 1292 { 1293 struct mem_cgroup_per_node *mz; 1294 unsigned long *lru_size; 1295 long size; 1296 1297 if (mem_cgroup_disabled()) 1298 return; 1299 1300 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1301 lru_size = &mz->lru_zone_size[zid][lru]; 1302 1303 if (nr_pages < 0) 1304 *lru_size += nr_pages; 1305 1306 size = *lru_size; 1307 if (WARN_ONCE(size < 0, 1308 "%s(%p, %d, %d): lru_size %ld\n", 1309 __func__, lruvec, lru, nr_pages, size)) { 1310 VM_BUG_ON(1); 1311 *lru_size = 0; 1312 } 1313 1314 if (nr_pages > 0) 1315 *lru_size += nr_pages; 1316 } 1317 1318 /** 1319 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1320 * @memcg: the memory cgroup 1321 * 1322 * Returns the maximum amount of memory @mem can be charged with, in 1323 * pages. 1324 */ 1325 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1326 { 1327 unsigned long margin = 0; 1328 unsigned long count; 1329 unsigned long limit; 1330 1331 count = page_counter_read(&memcg->memory); 1332 limit = READ_ONCE(memcg->memory.max); 1333 if (count < limit) 1334 margin = limit - count; 1335 1336 if (do_memsw_account()) { 1337 count = page_counter_read(&memcg->memsw); 1338 limit = READ_ONCE(memcg->memsw.max); 1339 if (count < limit) 1340 margin = min(margin, limit - count); 1341 else 1342 margin = 0; 1343 } 1344 1345 return margin; 1346 } 1347 1348 struct memory_stat { 1349 const char *name; 1350 unsigned int idx; 1351 }; 1352 1353 static const struct memory_stat memory_stats[] = { 1354 { "anon", NR_ANON_MAPPED }, 1355 { "file", NR_FILE_PAGES }, 1356 { "kernel", MEMCG_KMEM }, 1357 { "kernel_stack", NR_KERNEL_STACK_KB }, 1358 { "pagetables", NR_PAGETABLE }, 1359 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1360 { "percpu", MEMCG_PERCPU_B }, 1361 { "sock", MEMCG_SOCK }, 1362 { "vmalloc", MEMCG_VMALLOC }, 1363 { "shmem", NR_SHMEM }, 1364 #ifdef CONFIG_ZSWAP 1365 { "zswap", MEMCG_ZSWAP_B }, 1366 { "zswapped", MEMCG_ZSWAPPED }, 1367 #endif 1368 { "file_mapped", NR_FILE_MAPPED }, 1369 { "file_dirty", NR_FILE_DIRTY }, 1370 { "file_writeback", NR_WRITEBACK }, 1371 #ifdef CONFIG_SWAP 1372 { "swapcached", NR_SWAPCACHE }, 1373 #endif 1374 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1375 { "anon_thp", NR_ANON_THPS }, 1376 { "file_thp", NR_FILE_THPS }, 1377 { "shmem_thp", NR_SHMEM_THPS }, 1378 #endif 1379 { "inactive_anon", NR_INACTIVE_ANON }, 1380 { "active_anon", NR_ACTIVE_ANON }, 1381 { "inactive_file", NR_INACTIVE_FILE }, 1382 { "active_file", NR_ACTIVE_FILE }, 1383 { "unevictable", NR_UNEVICTABLE }, 1384 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1385 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1386 #ifdef CONFIG_HUGETLB_PAGE 1387 { "hugetlb", NR_HUGETLB }, 1388 #endif 1389 1390 /* The memory events */ 1391 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1392 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1393 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1394 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1395 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1396 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1397 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1398 1399 { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, 1400 { "pgdemote_direct", PGDEMOTE_DIRECT }, 1401 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, 1402 { "pgdemote_proactive", PGDEMOTE_PROACTIVE }, 1403 #ifdef CONFIG_NUMA_BALANCING 1404 { "pgpromote_success", PGPROMOTE_SUCCESS }, 1405 #endif 1406 }; 1407 1408 /* The actual unit of the state item, not the same as the output unit */ 1409 static int memcg_page_state_unit(int item) 1410 { 1411 switch (item) { 1412 case MEMCG_PERCPU_B: 1413 case MEMCG_ZSWAP_B: 1414 case NR_SLAB_RECLAIMABLE_B: 1415 case NR_SLAB_UNRECLAIMABLE_B: 1416 return 1; 1417 case NR_KERNEL_STACK_KB: 1418 return SZ_1K; 1419 default: 1420 return PAGE_SIZE; 1421 } 1422 } 1423 1424 /* Translate stat items to the correct unit for memory.stat output */ 1425 static int memcg_page_state_output_unit(int item) 1426 { 1427 /* 1428 * Workingset state is actually in pages, but we export it to userspace 1429 * as a scalar count of events, so special case it here. 1430 * 1431 * Demotion and promotion activities are exported in pages, consistent 1432 * with their global counterparts. 1433 */ 1434 switch (item) { 1435 case WORKINGSET_REFAULT_ANON: 1436 case WORKINGSET_REFAULT_FILE: 1437 case WORKINGSET_ACTIVATE_ANON: 1438 case WORKINGSET_ACTIVATE_FILE: 1439 case WORKINGSET_RESTORE_ANON: 1440 case WORKINGSET_RESTORE_FILE: 1441 case WORKINGSET_NODERECLAIM: 1442 case PGDEMOTE_KSWAPD: 1443 case PGDEMOTE_DIRECT: 1444 case PGDEMOTE_KHUGEPAGED: 1445 case PGDEMOTE_PROACTIVE: 1446 #ifdef CONFIG_NUMA_BALANCING 1447 case PGPROMOTE_SUCCESS: 1448 #endif 1449 return 1; 1450 default: 1451 return memcg_page_state_unit(item); 1452 } 1453 } 1454 1455 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1456 { 1457 return memcg_page_state(memcg, item) * 1458 memcg_page_state_output_unit(item); 1459 } 1460 1461 #ifdef CONFIG_MEMCG_V1 1462 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1463 { 1464 return memcg_page_state_local(memcg, item) * 1465 memcg_page_state_output_unit(item); 1466 } 1467 #endif 1468 1469 #ifdef CONFIG_HUGETLB_PAGE 1470 static bool memcg_accounts_hugetlb(void) 1471 { 1472 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1473 } 1474 #else /* CONFIG_HUGETLB_PAGE */ 1475 static bool memcg_accounts_hugetlb(void) 1476 { 1477 return false; 1478 } 1479 #endif /* CONFIG_HUGETLB_PAGE */ 1480 1481 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1482 { 1483 int i; 1484 1485 /* 1486 * Provide statistics on the state of the memory subsystem as 1487 * well as cumulative event counters that show past behavior. 1488 * 1489 * This list is ordered following a combination of these gradients: 1490 * 1) generic big picture -> specifics and details 1491 * 2) reflecting userspace activity -> reflecting kernel heuristics 1492 * 1493 * Current memory state: 1494 */ 1495 mem_cgroup_flush_stats(memcg); 1496 1497 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1498 u64 size; 1499 1500 #ifdef CONFIG_HUGETLB_PAGE 1501 if (unlikely(memory_stats[i].idx == NR_HUGETLB) && 1502 !memcg_accounts_hugetlb()) 1503 continue; 1504 #endif 1505 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1506 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1507 1508 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1509 size += memcg_page_state_output(memcg, 1510 NR_SLAB_RECLAIMABLE_B); 1511 seq_buf_printf(s, "slab %llu\n", size); 1512 } 1513 } 1514 1515 /* Accumulated memory events */ 1516 seq_buf_printf(s, "pgscan %lu\n", 1517 memcg_events(memcg, PGSCAN_KSWAPD) + 1518 memcg_events(memcg, PGSCAN_DIRECT) + 1519 memcg_events(memcg, PGSCAN_PROACTIVE) + 1520 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1521 seq_buf_printf(s, "pgsteal %lu\n", 1522 memcg_events(memcg, PGSTEAL_KSWAPD) + 1523 memcg_events(memcg, PGSTEAL_DIRECT) + 1524 memcg_events(memcg, PGSTEAL_PROACTIVE) + 1525 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1526 1527 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1528 #ifdef CONFIG_MEMCG_V1 1529 if (memcg_vm_event_stat[i] == PGPGIN || 1530 memcg_vm_event_stat[i] == PGPGOUT) 1531 continue; 1532 #endif 1533 seq_buf_printf(s, "%s %lu\n", 1534 vm_event_name(memcg_vm_event_stat[i]), 1535 memcg_events(memcg, memcg_vm_event_stat[i])); 1536 } 1537 } 1538 1539 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1540 { 1541 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1542 memcg_stat_format(memcg, s); 1543 else 1544 memcg1_stat_format(memcg, s); 1545 if (seq_buf_has_overflowed(s)) 1546 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1547 } 1548 1549 /** 1550 * mem_cgroup_print_oom_context: Print OOM information relevant to 1551 * memory controller. 1552 * @memcg: The memory cgroup that went over limit 1553 * @p: Task that is going to be killed 1554 * 1555 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1556 * enabled 1557 */ 1558 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1559 { 1560 rcu_read_lock(); 1561 1562 if (memcg) { 1563 pr_cont(",oom_memcg="); 1564 pr_cont_cgroup_path(memcg->css.cgroup); 1565 } else 1566 pr_cont(",global_oom"); 1567 if (p) { 1568 pr_cont(",task_memcg="); 1569 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1570 } 1571 rcu_read_unlock(); 1572 } 1573 1574 /** 1575 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1576 * memory controller. 1577 * @memcg: The memory cgroup that went over limit 1578 */ 1579 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1580 { 1581 /* Use static buffer, for the caller is holding oom_lock. */ 1582 static char buf[SEQ_BUF_SIZE]; 1583 struct seq_buf s; 1584 unsigned long memory_failcnt; 1585 1586 lockdep_assert_held(&oom_lock); 1587 1588 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1589 memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]); 1590 else 1591 memory_failcnt = memcg->memory.failcnt; 1592 1593 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1594 K((u64)page_counter_read(&memcg->memory)), 1595 K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt); 1596 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1597 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1598 K((u64)page_counter_read(&memcg->swap)), 1599 K((u64)READ_ONCE(memcg->swap.max)), 1600 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 1601 #ifdef CONFIG_MEMCG_V1 1602 else { 1603 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1604 K((u64)page_counter_read(&memcg->memsw)), 1605 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1606 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1607 K((u64)page_counter_read(&memcg->kmem)), 1608 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1609 } 1610 #endif 1611 1612 pr_info("Memory cgroup stats for "); 1613 pr_cont_cgroup_path(memcg->css.cgroup); 1614 pr_cont(":"); 1615 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 1616 memory_stat_format(memcg, &s); 1617 seq_buf_do_printk(&s, KERN_INFO); 1618 } 1619 1620 /* 1621 * Return the memory (and swap, if configured) limit for a memcg. 1622 */ 1623 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1624 { 1625 unsigned long max = READ_ONCE(memcg->memory.max); 1626 1627 if (do_memsw_account()) { 1628 if (mem_cgroup_swappiness(memcg)) { 1629 /* Calculate swap excess capacity from memsw limit */ 1630 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1631 1632 max += min(swap, (unsigned long)total_swap_pages); 1633 } 1634 } else { 1635 if (mem_cgroup_swappiness(memcg)) 1636 max += min(READ_ONCE(memcg->swap.max), 1637 (unsigned long)total_swap_pages); 1638 } 1639 return max; 1640 } 1641 1642 void __memcg_memory_event(struct mem_cgroup *memcg, 1643 enum memcg_memory_event event, bool allow_spinning) 1644 { 1645 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1646 event == MEMCG_SWAP_FAIL; 1647 1648 /* For now only MEMCG_MAX can happen with !allow_spinning context. */ 1649 VM_WARN_ON_ONCE(!allow_spinning && event != MEMCG_MAX); 1650 1651 atomic_long_inc(&memcg->memory_events_local[event]); 1652 if (!swap_event && allow_spinning) 1653 cgroup_file_notify(&memcg->events_local_file); 1654 1655 do { 1656 atomic_long_inc(&memcg->memory_events[event]); 1657 if (allow_spinning) { 1658 if (swap_event) 1659 cgroup_file_notify(&memcg->swap_events_file); 1660 else 1661 cgroup_file_notify(&memcg->events_file); 1662 } 1663 1664 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1665 break; 1666 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1667 break; 1668 } while ((memcg = parent_mem_cgroup(memcg)) && 1669 !mem_cgroup_is_root(memcg)); 1670 } 1671 EXPORT_SYMBOL_GPL(__memcg_memory_event); 1672 1673 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1674 int order) 1675 { 1676 struct oom_control oc = { 1677 .zonelist = NULL, 1678 .nodemask = NULL, 1679 .memcg = memcg, 1680 .gfp_mask = gfp_mask, 1681 .order = order, 1682 }; 1683 bool ret = true; 1684 1685 if (mutex_lock_killable(&oom_lock)) 1686 return true; 1687 1688 if (mem_cgroup_margin(memcg) >= (1 << order)) 1689 goto unlock; 1690 1691 /* 1692 * A few threads which were not waiting at mutex_lock_killable() can 1693 * fail to bail out. Therefore, check again after holding oom_lock. 1694 */ 1695 ret = out_of_memory(&oc); 1696 1697 unlock: 1698 mutex_unlock(&oom_lock); 1699 return ret; 1700 } 1701 1702 /* 1703 * Returns true if successfully killed one or more processes. Though in some 1704 * corner cases it can return true even without killing any process. 1705 */ 1706 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1707 { 1708 bool locked, ret; 1709 1710 if (order > PAGE_ALLOC_COSTLY_ORDER) 1711 return false; 1712 1713 memcg_memory_event(memcg, MEMCG_OOM); 1714 1715 if (!memcg1_oom_prepare(memcg, &locked)) 1716 return false; 1717 1718 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1719 1720 memcg1_oom_finish(memcg, locked); 1721 1722 return ret; 1723 } 1724 1725 /** 1726 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1727 * @victim: task to be killed by the OOM killer 1728 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1729 * 1730 * Returns a pointer to a memory cgroup, which has to be cleaned up 1731 * by killing all belonging OOM-killable tasks. 1732 * 1733 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1734 */ 1735 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1736 struct mem_cgroup *oom_domain) 1737 { 1738 struct mem_cgroup *oom_group = NULL; 1739 struct mem_cgroup *memcg; 1740 1741 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1742 return NULL; 1743 1744 if (!oom_domain) 1745 oom_domain = root_mem_cgroup; 1746 1747 rcu_read_lock(); 1748 1749 memcg = mem_cgroup_from_task(victim); 1750 if (mem_cgroup_is_root(memcg)) 1751 goto out; 1752 1753 /* 1754 * If the victim task has been asynchronously moved to a different 1755 * memory cgroup, we might end up killing tasks outside oom_domain. 1756 * In this case it's better to ignore memory.group.oom. 1757 */ 1758 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1759 goto out; 1760 1761 /* 1762 * Traverse the memory cgroup hierarchy from the victim task's 1763 * cgroup up to the OOMing cgroup (or root) to find the 1764 * highest-level memory cgroup with oom.group set. 1765 */ 1766 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1767 if (READ_ONCE(memcg->oom_group)) 1768 oom_group = memcg; 1769 1770 if (memcg == oom_domain) 1771 break; 1772 } 1773 1774 if (oom_group) 1775 css_get(&oom_group->css); 1776 out: 1777 rcu_read_unlock(); 1778 1779 return oom_group; 1780 } 1781 1782 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1783 { 1784 pr_info("Tasks in "); 1785 pr_cont_cgroup_path(memcg->css.cgroup); 1786 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1787 } 1788 1789 /* 1790 * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their 1791 * nr_pages in a single cacheline. This may change in future. 1792 */ 1793 #define NR_MEMCG_STOCK 7 1794 #define FLUSHING_CACHED_CHARGE 0 1795 struct memcg_stock_pcp { 1796 local_trylock_t lock; 1797 uint8_t nr_pages[NR_MEMCG_STOCK]; 1798 struct mem_cgroup *cached[NR_MEMCG_STOCK]; 1799 1800 struct work_struct work; 1801 unsigned long flags; 1802 }; 1803 1804 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = { 1805 .lock = INIT_LOCAL_TRYLOCK(lock), 1806 }; 1807 1808 struct obj_stock_pcp { 1809 local_trylock_t lock; 1810 unsigned int nr_bytes; 1811 struct obj_cgroup *cached_objcg; 1812 struct pglist_data *cached_pgdat; 1813 int nr_slab_reclaimable_b; 1814 int nr_slab_unreclaimable_b; 1815 1816 struct work_struct work; 1817 unsigned long flags; 1818 }; 1819 1820 static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = { 1821 .lock = INIT_LOCAL_TRYLOCK(lock), 1822 }; 1823 1824 static DEFINE_MUTEX(percpu_charge_mutex); 1825 1826 static void drain_obj_stock(struct obj_stock_pcp *stock); 1827 static bool obj_stock_flush_required(struct obj_stock_pcp *stock, 1828 struct mem_cgroup *root_memcg); 1829 1830 /** 1831 * consume_stock: Try to consume stocked charge on this cpu. 1832 * @memcg: memcg to consume from. 1833 * @nr_pages: how many pages to charge. 1834 * 1835 * Consume the cached charge if enough nr_pages are present otherwise return 1836 * failure. Also return failure for charge request larger than 1837 * MEMCG_CHARGE_BATCH or if the local lock is already taken. 1838 * 1839 * returns true if successful, false otherwise. 1840 */ 1841 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1842 { 1843 struct memcg_stock_pcp *stock; 1844 uint8_t stock_pages; 1845 bool ret = false; 1846 int i; 1847 1848 if (nr_pages > MEMCG_CHARGE_BATCH || 1849 !local_trylock(&memcg_stock.lock)) 1850 return ret; 1851 1852 stock = this_cpu_ptr(&memcg_stock); 1853 1854 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1855 if (memcg != READ_ONCE(stock->cached[i])) 1856 continue; 1857 1858 stock_pages = READ_ONCE(stock->nr_pages[i]); 1859 if (stock_pages >= nr_pages) { 1860 WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages); 1861 ret = true; 1862 } 1863 break; 1864 } 1865 1866 local_unlock(&memcg_stock.lock); 1867 1868 return ret; 1869 } 1870 1871 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 1872 { 1873 page_counter_uncharge(&memcg->memory, nr_pages); 1874 if (do_memsw_account()) 1875 page_counter_uncharge(&memcg->memsw, nr_pages); 1876 } 1877 1878 /* 1879 * Returns stocks cached in percpu and reset cached information. 1880 */ 1881 static void drain_stock(struct memcg_stock_pcp *stock, int i) 1882 { 1883 struct mem_cgroup *old = READ_ONCE(stock->cached[i]); 1884 uint8_t stock_pages; 1885 1886 if (!old) 1887 return; 1888 1889 stock_pages = READ_ONCE(stock->nr_pages[i]); 1890 if (stock_pages) { 1891 memcg_uncharge(old, stock_pages); 1892 WRITE_ONCE(stock->nr_pages[i], 0); 1893 } 1894 1895 css_put(&old->css); 1896 WRITE_ONCE(stock->cached[i], NULL); 1897 } 1898 1899 static void drain_stock_fully(struct memcg_stock_pcp *stock) 1900 { 1901 int i; 1902 1903 for (i = 0; i < NR_MEMCG_STOCK; ++i) 1904 drain_stock(stock, i); 1905 } 1906 1907 static void drain_local_memcg_stock(struct work_struct *dummy) 1908 { 1909 struct memcg_stock_pcp *stock; 1910 1911 if (WARN_ONCE(!in_task(), "drain in non-task context")) 1912 return; 1913 1914 local_lock(&memcg_stock.lock); 1915 1916 stock = this_cpu_ptr(&memcg_stock); 1917 drain_stock_fully(stock); 1918 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1919 1920 local_unlock(&memcg_stock.lock); 1921 } 1922 1923 static void drain_local_obj_stock(struct work_struct *dummy) 1924 { 1925 struct obj_stock_pcp *stock; 1926 1927 if (WARN_ONCE(!in_task(), "drain in non-task context")) 1928 return; 1929 1930 local_lock(&obj_stock.lock); 1931 1932 stock = this_cpu_ptr(&obj_stock); 1933 drain_obj_stock(stock); 1934 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1935 1936 local_unlock(&obj_stock.lock); 1937 } 1938 1939 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1940 { 1941 struct memcg_stock_pcp *stock; 1942 struct mem_cgroup *cached; 1943 uint8_t stock_pages; 1944 bool success = false; 1945 int empty_slot = -1; 1946 int i; 1947 1948 /* 1949 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we 1950 * decide to increase it more than 127 then we will need more careful 1951 * handling of nr_pages[] in struct memcg_stock_pcp. 1952 */ 1953 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX); 1954 1955 VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg)); 1956 1957 if (nr_pages > MEMCG_CHARGE_BATCH || 1958 !local_trylock(&memcg_stock.lock)) { 1959 /* 1960 * In case of larger than batch refill or unlikely failure to 1961 * lock the percpu memcg_stock.lock, uncharge memcg directly. 1962 */ 1963 memcg_uncharge(memcg, nr_pages); 1964 return; 1965 } 1966 1967 stock = this_cpu_ptr(&memcg_stock); 1968 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1969 cached = READ_ONCE(stock->cached[i]); 1970 if (!cached && empty_slot == -1) 1971 empty_slot = i; 1972 if (memcg == READ_ONCE(stock->cached[i])) { 1973 stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages; 1974 WRITE_ONCE(stock->nr_pages[i], stock_pages); 1975 if (stock_pages > MEMCG_CHARGE_BATCH) 1976 drain_stock(stock, i); 1977 success = true; 1978 break; 1979 } 1980 } 1981 1982 if (!success) { 1983 i = empty_slot; 1984 if (i == -1) { 1985 i = get_random_u32_below(NR_MEMCG_STOCK); 1986 drain_stock(stock, i); 1987 } 1988 css_get(&memcg->css); 1989 WRITE_ONCE(stock->cached[i], memcg); 1990 WRITE_ONCE(stock->nr_pages[i], nr_pages); 1991 } 1992 1993 local_unlock(&memcg_stock.lock); 1994 } 1995 1996 static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock, 1997 struct mem_cgroup *root_memcg) 1998 { 1999 struct mem_cgroup *memcg; 2000 bool flush = false; 2001 int i; 2002 2003 rcu_read_lock(); 2004 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 2005 memcg = READ_ONCE(stock->cached[i]); 2006 if (!memcg) 2007 continue; 2008 2009 if (READ_ONCE(stock->nr_pages[i]) && 2010 mem_cgroup_is_descendant(memcg, root_memcg)) { 2011 flush = true; 2012 break; 2013 } 2014 } 2015 rcu_read_unlock(); 2016 return flush; 2017 } 2018 2019 static void schedule_drain_work(int cpu, struct work_struct *work) 2020 { 2021 /* 2022 * Protect housekeeping cpumask read and work enqueue together 2023 * in the same RCU critical section so that later cpuset isolated 2024 * partition update only need to wait for an RCU GP and flush the 2025 * pending work on newly isolated CPUs. 2026 */ 2027 guard(rcu)(); 2028 if (!cpu_is_isolated(cpu)) 2029 queue_work_on(cpu, memcg_wq, work); 2030 } 2031 2032 /* 2033 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2034 * of the hierarchy under it. 2035 */ 2036 void drain_all_stock(struct mem_cgroup *root_memcg) 2037 { 2038 int cpu, curcpu; 2039 2040 /* If someone's already draining, avoid adding running more workers. */ 2041 if (!mutex_trylock(&percpu_charge_mutex)) 2042 return; 2043 /* 2044 * Notify other cpus that system-wide "drain" is running 2045 * We do not care about races with the cpu hotplug because cpu down 2046 * as well as workers from this path always operate on the local 2047 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2048 */ 2049 migrate_disable(); 2050 curcpu = smp_processor_id(); 2051 for_each_online_cpu(cpu) { 2052 struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu); 2053 struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu); 2054 2055 if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) && 2056 is_memcg_drain_needed(memcg_st, root_memcg) && 2057 !test_and_set_bit(FLUSHING_CACHED_CHARGE, 2058 &memcg_st->flags)) { 2059 if (cpu == curcpu) 2060 drain_local_memcg_stock(&memcg_st->work); 2061 else 2062 schedule_drain_work(cpu, &memcg_st->work); 2063 } 2064 2065 if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) && 2066 obj_stock_flush_required(obj_st, root_memcg) && 2067 !test_and_set_bit(FLUSHING_CACHED_CHARGE, 2068 &obj_st->flags)) { 2069 if (cpu == curcpu) 2070 drain_local_obj_stock(&obj_st->work); 2071 else 2072 schedule_drain_work(cpu, &obj_st->work); 2073 } 2074 } 2075 migrate_enable(); 2076 mutex_unlock(&percpu_charge_mutex); 2077 } 2078 2079 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2080 { 2081 /* no need for the local lock */ 2082 drain_obj_stock(&per_cpu(obj_stock, cpu)); 2083 drain_stock_fully(&per_cpu(memcg_stock, cpu)); 2084 2085 return 0; 2086 } 2087 2088 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2089 unsigned int nr_pages, 2090 gfp_t gfp_mask) 2091 { 2092 unsigned long nr_reclaimed = 0; 2093 2094 do { 2095 unsigned long pflags; 2096 2097 if (page_counter_read(&memcg->memory) <= 2098 READ_ONCE(memcg->memory.high)) 2099 continue; 2100 2101 memcg_memory_event(memcg, MEMCG_HIGH); 2102 2103 psi_memstall_enter(&pflags); 2104 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2105 gfp_mask, 2106 MEMCG_RECLAIM_MAY_SWAP, 2107 NULL); 2108 psi_memstall_leave(&pflags); 2109 } while ((memcg = parent_mem_cgroup(memcg)) && 2110 !mem_cgroup_is_root(memcg)); 2111 2112 return nr_reclaimed; 2113 } 2114 2115 static void high_work_func(struct work_struct *work) 2116 { 2117 struct mem_cgroup *memcg; 2118 2119 memcg = container_of(work, struct mem_cgroup, high_work); 2120 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2121 } 2122 2123 /* 2124 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2125 * enough to still cause a significant slowdown in most cases, while still 2126 * allowing diagnostics and tracing to proceed without becoming stuck. 2127 */ 2128 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2129 2130 /* 2131 * When calculating the delay, we use these either side of the exponentiation to 2132 * maintain precision and scale to a reasonable number of jiffies (see the table 2133 * below. 2134 * 2135 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2136 * overage ratio to a delay. 2137 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2138 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2139 * to produce a reasonable delay curve. 2140 * 2141 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2142 * reasonable delay curve compared to precision-adjusted overage, not 2143 * penalising heavily at first, but still making sure that growth beyond the 2144 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2145 * example, with a high of 100 megabytes: 2146 * 2147 * +-------+------------------------+ 2148 * | usage | time to allocate in ms | 2149 * +-------+------------------------+ 2150 * | 100M | 0 | 2151 * | 101M | 6 | 2152 * | 102M | 25 | 2153 * | 103M | 57 | 2154 * | 104M | 102 | 2155 * | 105M | 159 | 2156 * | 106M | 230 | 2157 * | 107M | 313 | 2158 * | 108M | 409 | 2159 * | 109M | 518 | 2160 * | 110M | 639 | 2161 * | 111M | 774 | 2162 * | 112M | 921 | 2163 * | 113M | 1081 | 2164 * | 114M | 1254 | 2165 * | 115M | 1439 | 2166 * | 116M | 1638 | 2167 * | 117M | 1849 | 2168 * | 118M | 2000 | 2169 * | 119M | 2000 | 2170 * | 120M | 2000 | 2171 * +-------+------------------------+ 2172 */ 2173 #define MEMCG_DELAY_PRECISION_SHIFT 20 2174 #define MEMCG_DELAY_SCALING_SHIFT 14 2175 2176 static u64 calculate_overage(unsigned long usage, unsigned long high) 2177 { 2178 u64 overage; 2179 2180 if (usage <= high) 2181 return 0; 2182 2183 /* 2184 * Prevent division by 0 in overage calculation by acting as if 2185 * it was a threshold of 1 page 2186 */ 2187 high = max(high, 1UL); 2188 2189 overage = usage - high; 2190 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2191 return div64_u64(overage, high); 2192 } 2193 2194 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2195 { 2196 u64 overage, max_overage = 0; 2197 2198 do { 2199 overage = calculate_overage(page_counter_read(&memcg->memory), 2200 READ_ONCE(memcg->memory.high)); 2201 max_overage = max(overage, max_overage); 2202 } while ((memcg = parent_mem_cgroup(memcg)) && 2203 !mem_cgroup_is_root(memcg)); 2204 2205 return max_overage; 2206 } 2207 2208 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2209 { 2210 u64 overage, max_overage = 0; 2211 2212 do { 2213 overage = calculate_overage(page_counter_read(&memcg->swap), 2214 READ_ONCE(memcg->swap.high)); 2215 if (overage) 2216 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2217 max_overage = max(overage, max_overage); 2218 } while ((memcg = parent_mem_cgroup(memcg)) && 2219 !mem_cgroup_is_root(memcg)); 2220 2221 return max_overage; 2222 } 2223 2224 /* 2225 * Get the number of jiffies that we should penalise a mischievous cgroup which 2226 * is exceeding its memory.high by checking both it and its ancestors. 2227 */ 2228 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2229 unsigned int nr_pages, 2230 u64 max_overage) 2231 { 2232 unsigned long penalty_jiffies; 2233 2234 if (!max_overage) 2235 return 0; 2236 2237 /* 2238 * We use overage compared to memory.high to calculate the number of 2239 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2240 * fairly lenient on small overages, and increasingly harsh when the 2241 * memcg in question makes it clear that it has no intention of stopping 2242 * its crazy behaviour, so we exponentially increase the delay based on 2243 * overage amount. 2244 */ 2245 penalty_jiffies = max_overage * max_overage * HZ; 2246 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2247 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2248 2249 /* 2250 * Factor in the task's own contribution to the overage, such that four 2251 * N-sized allocations are throttled approximately the same as one 2252 * 4N-sized allocation. 2253 * 2254 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2255 * larger the current charge patch is than that. 2256 */ 2257 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2258 } 2259 2260 /* 2261 * Reclaims memory over the high limit. Called directly from 2262 * try_charge() (context permitting), as well as from the userland 2263 * return path where reclaim is always able to block. 2264 */ 2265 void __mem_cgroup_handle_over_high(gfp_t gfp_mask) 2266 { 2267 unsigned long penalty_jiffies; 2268 unsigned long pflags; 2269 unsigned long nr_reclaimed; 2270 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2271 int nr_retries = MAX_RECLAIM_RETRIES; 2272 struct mem_cgroup *memcg; 2273 bool in_retry = false; 2274 2275 memcg = get_mem_cgroup_from_mm(current->mm); 2276 current->memcg_nr_pages_over_high = 0; 2277 2278 retry_reclaim: 2279 /* 2280 * Bail if the task is already exiting. Unlike memory.max, 2281 * memory.high enforcement isn't as strict, and there is no 2282 * OOM killer involved, which means the excess could already 2283 * be much bigger (and still growing) than it could for 2284 * memory.max; the dying task could get stuck in fruitless 2285 * reclaim for a long time, which isn't desirable. 2286 */ 2287 if (task_is_dying()) 2288 goto out; 2289 2290 /* 2291 * The allocating task should reclaim at least the batch size, but for 2292 * subsequent retries we only want to do what's necessary to prevent oom 2293 * or breaching resource isolation. 2294 * 2295 * This is distinct from memory.max or page allocator behaviour because 2296 * memory.high is currently batched, whereas memory.max and the page 2297 * allocator run every time an allocation is made. 2298 */ 2299 nr_reclaimed = reclaim_high(memcg, 2300 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2301 gfp_mask); 2302 2303 /* 2304 * memory.high is breached and reclaim is unable to keep up. Throttle 2305 * allocators proactively to slow down excessive growth. 2306 */ 2307 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2308 mem_find_max_overage(memcg)); 2309 2310 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2311 swap_find_max_overage(memcg)); 2312 2313 /* 2314 * Clamp the max delay per usermode return so as to still keep the 2315 * application moving forwards and also permit diagnostics, albeit 2316 * extremely slowly. 2317 */ 2318 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2319 2320 /* 2321 * Don't sleep if the amount of jiffies this memcg owes us is so low 2322 * that it's not even worth doing, in an attempt to be nice to those who 2323 * go only a small amount over their memory.high value and maybe haven't 2324 * been aggressively reclaimed enough yet. 2325 */ 2326 if (penalty_jiffies <= HZ / 100) 2327 goto out; 2328 2329 /* 2330 * If reclaim is making forward progress but we're still over 2331 * memory.high, we want to encourage that rather than doing allocator 2332 * throttling. 2333 */ 2334 if (nr_reclaimed || nr_retries--) { 2335 in_retry = true; 2336 goto retry_reclaim; 2337 } 2338 2339 /* 2340 * Reclaim didn't manage to push usage below the limit, slow 2341 * this allocating task down. 2342 * 2343 * If we exit early, we're guaranteed to die (since 2344 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2345 * need to account for any ill-begotten jiffies to pay them off later. 2346 */ 2347 psi_memstall_enter(&pflags); 2348 schedule_timeout_killable(penalty_jiffies); 2349 psi_memstall_leave(&pflags); 2350 2351 out: 2352 css_put(&memcg->css); 2353 } 2354 2355 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2356 unsigned int nr_pages) 2357 { 2358 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2359 int nr_retries = MAX_RECLAIM_RETRIES; 2360 struct mem_cgroup *mem_over_limit; 2361 struct page_counter *counter; 2362 unsigned long nr_reclaimed; 2363 bool passed_oom = false; 2364 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2365 bool drained = false; 2366 bool raised_max_event = false; 2367 unsigned long pflags; 2368 bool allow_spinning = gfpflags_allow_spinning(gfp_mask); 2369 2370 retry: 2371 if (consume_stock(memcg, nr_pages)) 2372 return 0; 2373 2374 if (!allow_spinning) 2375 /* Avoid the refill and flush of the older stock */ 2376 batch = nr_pages; 2377 2378 if (!do_memsw_account() || 2379 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2380 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2381 goto done_restock; 2382 if (do_memsw_account()) 2383 page_counter_uncharge(&memcg->memsw, batch); 2384 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2385 } else { 2386 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2387 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2388 } 2389 2390 if (batch > nr_pages) { 2391 batch = nr_pages; 2392 goto retry; 2393 } 2394 2395 /* 2396 * Prevent unbounded recursion when reclaim operations need to 2397 * allocate memory. This might exceed the limits temporarily, 2398 * but we prefer facilitating memory reclaim and getting back 2399 * under the limit over triggering OOM kills in these cases. 2400 */ 2401 if (unlikely(current->flags & PF_MEMALLOC)) 2402 goto force; 2403 2404 if (unlikely(task_in_memcg_oom(current))) 2405 goto nomem; 2406 2407 if (!gfpflags_allow_blocking(gfp_mask)) 2408 goto nomem; 2409 2410 __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning); 2411 raised_max_event = true; 2412 2413 psi_memstall_enter(&pflags); 2414 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2415 gfp_mask, reclaim_options, NULL); 2416 psi_memstall_leave(&pflags); 2417 2418 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2419 goto retry; 2420 2421 if (!drained) { 2422 drain_all_stock(mem_over_limit); 2423 drained = true; 2424 goto retry; 2425 } 2426 2427 if (gfp_mask & __GFP_NORETRY) 2428 goto nomem; 2429 /* 2430 * Even though the limit is exceeded at this point, reclaim 2431 * may have been able to free some pages. Retry the charge 2432 * before killing the task. 2433 * 2434 * Only for regular pages, though: huge pages are rather 2435 * unlikely to succeed so close to the limit, and we fall back 2436 * to regular pages anyway in case of failure. 2437 */ 2438 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2439 goto retry; 2440 2441 if (nr_retries--) 2442 goto retry; 2443 2444 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2445 goto nomem; 2446 2447 /* Avoid endless loop for tasks bypassed by the oom killer */ 2448 if (passed_oom && task_is_dying()) 2449 goto nomem; 2450 2451 /* 2452 * keep retrying as long as the memcg oom killer is able to make 2453 * a forward progress or bypass the charge if the oom killer 2454 * couldn't make any progress. 2455 */ 2456 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2457 get_order(nr_pages * PAGE_SIZE))) { 2458 passed_oom = true; 2459 nr_retries = MAX_RECLAIM_RETRIES; 2460 goto retry; 2461 } 2462 nomem: 2463 /* 2464 * Memcg doesn't have a dedicated reserve for atomic 2465 * allocations. But like the global atomic pool, we need to 2466 * put the burden of reclaim on regular allocation requests 2467 * and let these go through as privileged allocations. 2468 */ 2469 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2470 return -ENOMEM; 2471 force: 2472 /* 2473 * If the allocation has to be enforced, don't forget to raise 2474 * a MEMCG_MAX event. 2475 */ 2476 if (!raised_max_event) 2477 __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning); 2478 2479 /* 2480 * The allocation either can't fail or will lead to more memory 2481 * being freed very soon. Allow memory usage go over the limit 2482 * temporarily by force charging it. 2483 */ 2484 page_counter_charge(&memcg->memory, nr_pages); 2485 if (do_memsw_account()) 2486 page_counter_charge(&memcg->memsw, nr_pages); 2487 2488 return 0; 2489 2490 done_restock: 2491 if (batch > nr_pages) 2492 refill_stock(memcg, batch - nr_pages); 2493 2494 /* 2495 * If the hierarchy is above the normal consumption range, schedule 2496 * reclaim on returning to userland. We can perform reclaim here 2497 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2498 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2499 * not recorded as it most likely matches current's and won't 2500 * change in the meantime. As high limit is checked again before 2501 * reclaim, the cost of mismatch is negligible. 2502 */ 2503 do { 2504 bool mem_high, swap_high; 2505 2506 mem_high = page_counter_read(&memcg->memory) > 2507 READ_ONCE(memcg->memory.high); 2508 swap_high = page_counter_read(&memcg->swap) > 2509 READ_ONCE(memcg->swap.high); 2510 2511 /* Don't bother a random interrupted task */ 2512 if (!in_task()) { 2513 if (mem_high) { 2514 schedule_work(&memcg->high_work); 2515 break; 2516 } 2517 continue; 2518 } 2519 2520 if (mem_high || swap_high) { 2521 /* 2522 * The allocating tasks in this cgroup will need to do 2523 * reclaim or be throttled to prevent further growth 2524 * of the memory or swap footprints. 2525 * 2526 * Target some best-effort fairness between the tasks, 2527 * and distribute reclaim work and delay penalties 2528 * based on how much each task is actually allocating. 2529 */ 2530 current->memcg_nr_pages_over_high += batch; 2531 set_notify_resume(current); 2532 break; 2533 } 2534 } while ((memcg = parent_mem_cgroup(memcg))); 2535 2536 /* 2537 * Reclaim is set up above to be called from the userland 2538 * return path. But also attempt synchronous reclaim to avoid 2539 * excessive overrun while the task is still inside the 2540 * kernel. If this is successful, the return path will see it 2541 * when it rechecks the overage and simply bail out. 2542 */ 2543 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2544 !(current->flags & PF_MEMALLOC) && 2545 gfpflags_allow_blocking(gfp_mask)) 2546 __mem_cgroup_handle_over_high(gfp_mask); 2547 return 0; 2548 } 2549 2550 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2551 unsigned int nr_pages) 2552 { 2553 if (mem_cgroup_is_root(memcg)) 2554 return 0; 2555 2556 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2557 } 2558 2559 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2560 { 2561 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); 2562 /* 2563 * Any of the following ensures page's memcg stability: 2564 * 2565 * - the page lock 2566 * - LRU isolation 2567 * - exclusive reference 2568 */ 2569 folio->memcg_data = (unsigned long)memcg; 2570 } 2571 2572 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC 2573 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg, 2574 struct pglist_data *pgdat, 2575 enum node_stat_item idx, int nr) 2576 { 2577 struct lruvec *lruvec; 2578 2579 if (likely(!in_nmi())) { 2580 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2581 mod_memcg_lruvec_state(lruvec, idx, nr); 2582 } else { 2583 struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id]; 2584 2585 /* preemption is disabled in_nmi(). */ 2586 css_rstat_updated(&memcg->css, smp_processor_id()); 2587 if (idx == NR_SLAB_RECLAIMABLE_B) 2588 atomic_add(nr, &pn->slab_reclaimable); 2589 else 2590 atomic_add(nr, &pn->slab_unreclaimable); 2591 } 2592 } 2593 #else 2594 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg, 2595 struct pglist_data *pgdat, 2596 enum node_stat_item idx, int nr) 2597 { 2598 struct lruvec *lruvec; 2599 2600 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2601 mod_memcg_lruvec_state(lruvec, idx, nr); 2602 } 2603 #endif 2604 2605 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2606 struct pglist_data *pgdat, 2607 enum node_stat_item idx, int nr) 2608 { 2609 struct mem_cgroup *memcg; 2610 2611 rcu_read_lock(); 2612 memcg = obj_cgroup_memcg(objcg); 2613 account_slab_nmi_safe(memcg, pgdat, idx, nr); 2614 rcu_read_unlock(); 2615 } 2616 2617 static __always_inline 2618 struct mem_cgroup *mem_cgroup_from_obj_slab(struct slab *slab, void *p) 2619 { 2620 /* 2621 * Slab objects are accounted individually, not per-page. 2622 * Memcg membership data for each individual object is saved in 2623 * slab->obj_exts. 2624 */ 2625 unsigned long obj_exts; 2626 struct slabobj_ext *obj_ext; 2627 unsigned int off; 2628 2629 obj_exts = slab_obj_exts(slab); 2630 if (!obj_exts) 2631 return NULL; 2632 2633 get_slab_obj_exts(obj_exts); 2634 off = obj_to_index(slab->slab_cache, slab, p); 2635 obj_ext = slab_obj_ext(slab, obj_exts, off); 2636 if (obj_ext->objcg) { 2637 struct obj_cgroup *objcg = obj_ext->objcg; 2638 2639 put_slab_obj_exts(obj_exts); 2640 return obj_cgroup_memcg(objcg); 2641 } 2642 put_slab_obj_exts(obj_exts); 2643 2644 return NULL; 2645 } 2646 2647 /* 2648 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2649 * It is not suitable for objects allocated using vmalloc(). 2650 * 2651 * A passed kernel object must be a slab object or a generic kernel page. 2652 * 2653 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2654 * cgroup_mutex, etc. 2655 */ 2656 struct mem_cgroup *mem_cgroup_from_virt(void *p) 2657 { 2658 struct slab *slab; 2659 2660 if (mem_cgroup_disabled()) 2661 return NULL; 2662 2663 slab = virt_to_slab(p); 2664 if (slab) 2665 return mem_cgroup_from_obj_slab(slab, p); 2666 return folio_memcg_check(virt_to_folio(p)); 2667 } 2668 2669 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2670 { 2671 struct obj_cgroup *objcg = NULL; 2672 2673 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2674 objcg = rcu_dereference(memcg->objcg); 2675 if (likely(objcg && obj_cgroup_tryget(objcg))) 2676 break; 2677 objcg = NULL; 2678 } 2679 return objcg; 2680 } 2681 2682 static struct obj_cgroup *current_objcg_update(void) 2683 { 2684 struct mem_cgroup *memcg; 2685 struct obj_cgroup *old, *objcg = NULL; 2686 2687 do { 2688 /* Atomically drop the update bit. */ 2689 old = xchg(¤t->objcg, NULL); 2690 if (old) { 2691 old = (struct obj_cgroup *) 2692 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2693 obj_cgroup_put(old); 2694 2695 old = NULL; 2696 } 2697 2698 /* If new objcg is NULL, no reason for the second atomic update. */ 2699 if (!current->mm || (current->flags & PF_KTHREAD)) 2700 return NULL; 2701 2702 /* 2703 * Release the objcg pointer from the previous iteration, 2704 * if try_cmpxcg() below fails. 2705 */ 2706 if (unlikely(objcg)) { 2707 obj_cgroup_put(objcg); 2708 objcg = NULL; 2709 } 2710 2711 /* 2712 * Obtain the new objcg pointer. The current task can be 2713 * asynchronously moved to another memcg and the previous 2714 * memcg can be offlined. So let's get the memcg pointer 2715 * and try get a reference to objcg under a rcu read lock. 2716 */ 2717 2718 rcu_read_lock(); 2719 memcg = mem_cgroup_from_task(current); 2720 objcg = __get_obj_cgroup_from_memcg(memcg); 2721 rcu_read_unlock(); 2722 2723 /* 2724 * Try set up a new objcg pointer atomically. If it 2725 * fails, it means the update flag was set concurrently, so 2726 * the whole procedure should be repeated. 2727 */ 2728 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2729 2730 return objcg; 2731 } 2732 2733 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2734 { 2735 struct mem_cgroup *memcg; 2736 struct obj_cgroup *objcg; 2737 2738 if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi()) 2739 return NULL; 2740 2741 if (in_task()) { 2742 memcg = current->active_memcg; 2743 if (unlikely(memcg)) 2744 goto from_memcg; 2745 2746 objcg = READ_ONCE(current->objcg); 2747 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2748 objcg = current_objcg_update(); 2749 /* 2750 * Objcg reference is kept by the task, so it's safe 2751 * to use the objcg by the current task. 2752 */ 2753 return objcg; 2754 } 2755 2756 memcg = this_cpu_read(int_active_memcg); 2757 if (unlikely(memcg)) 2758 goto from_memcg; 2759 2760 return NULL; 2761 2762 from_memcg: 2763 objcg = NULL; 2764 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2765 /* 2766 * Memcg pointer is protected by scope (see set_active_memcg()) 2767 * and is pinning the corresponding objcg, so objcg can't go 2768 * away and can be used within the scope without any additional 2769 * protection. 2770 */ 2771 objcg = rcu_dereference_check(memcg->objcg, 1); 2772 if (likely(objcg)) 2773 break; 2774 } 2775 2776 return objcg; 2777 } 2778 2779 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2780 { 2781 struct obj_cgroup *objcg; 2782 2783 if (!memcg_kmem_online()) 2784 return NULL; 2785 2786 if (folio_memcg_kmem(folio)) { 2787 objcg = __folio_objcg(folio); 2788 obj_cgroup_get(objcg); 2789 } else { 2790 struct mem_cgroup *memcg; 2791 2792 rcu_read_lock(); 2793 memcg = __folio_memcg(folio); 2794 if (memcg) 2795 objcg = __get_obj_cgroup_from_memcg(memcg); 2796 else 2797 objcg = NULL; 2798 rcu_read_unlock(); 2799 } 2800 return objcg; 2801 } 2802 2803 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC 2804 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val) 2805 { 2806 if (likely(!in_nmi())) { 2807 mod_memcg_state(memcg, MEMCG_KMEM, val); 2808 } else { 2809 /* preemption is disabled in_nmi(). */ 2810 css_rstat_updated(&memcg->css, smp_processor_id()); 2811 atomic_add(val, &memcg->kmem_stat); 2812 } 2813 } 2814 #else 2815 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val) 2816 { 2817 mod_memcg_state(memcg, MEMCG_KMEM, val); 2818 } 2819 #endif 2820 2821 /* 2822 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2823 * @objcg: object cgroup to uncharge 2824 * @nr_pages: number of pages to uncharge 2825 */ 2826 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2827 unsigned int nr_pages) 2828 { 2829 struct mem_cgroup *memcg; 2830 2831 memcg = get_mem_cgroup_from_objcg(objcg); 2832 2833 account_kmem_nmi_safe(memcg, -nr_pages); 2834 memcg1_account_kmem(memcg, -nr_pages); 2835 if (!mem_cgroup_is_root(memcg)) 2836 refill_stock(memcg, nr_pages); 2837 2838 css_put(&memcg->css); 2839 } 2840 2841 /* 2842 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2843 * @objcg: object cgroup to charge 2844 * @gfp: reclaim mode 2845 * @nr_pages: number of pages to charge 2846 * 2847 * Returns 0 on success, an error code on failure. 2848 */ 2849 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2850 unsigned int nr_pages) 2851 { 2852 struct mem_cgroup *memcg; 2853 int ret; 2854 2855 memcg = get_mem_cgroup_from_objcg(objcg); 2856 2857 ret = try_charge_memcg(memcg, gfp, nr_pages); 2858 if (ret) 2859 goto out; 2860 2861 account_kmem_nmi_safe(memcg, nr_pages); 2862 memcg1_account_kmem(memcg, nr_pages); 2863 out: 2864 css_put(&memcg->css); 2865 2866 return ret; 2867 } 2868 2869 static struct obj_cgroup *page_objcg(const struct page *page) 2870 { 2871 unsigned long memcg_data = page->memcg_data; 2872 2873 if (mem_cgroup_disabled() || !memcg_data) 2874 return NULL; 2875 2876 VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM, 2877 page); 2878 return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM); 2879 } 2880 2881 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg) 2882 { 2883 page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM; 2884 } 2885 2886 /** 2887 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2888 * @page: page to charge 2889 * @gfp: reclaim mode 2890 * @order: allocation order 2891 * 2892 * Returns 0 on success, an error code on failure. 2893 */ 2894 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2895 { 2896 struct obj_cgroup *objcg; 2897 int ret = 0; 2898 2899 objcg = current_obj_cgroup(); 2900 if (objcg) { 2901 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2902 if (!ret) { 2903 obj_cgroup_get(objcg); 2904 page_set_objcg(page, objcg); 2905 return 0; 2906 } 2907 } 2908 return ret; 2909 } 2910 2911 /** 2912 * __memcg_kmem_uncharge_page: uncharge a kmem page 2913 * @page: page to uncharge 2914 * @order: allocation order 2915 */ 2916 void __memcg_kmem_uncharge_page(struct page *page, int order) 2917 { 2918 struct obj_cgroup *objcg = page_objcg(page); 2919 unsigned int nr_pages = 1 << order; 2920 2921 if (!objcg) 2922 return; 2923 2924 obj_cgroup_uncharge_pages(objcg, nr_pages); 2925 page->memcg_data = 0; 2926 obj_cgroup_put(objcg); 2927 } 2928 2929 static void __account_obj_stock(struct obj_cgroup *objcg, 2930 struct obj_stock_pcp *stock, int nr, 2931 struct pglist_data *pgdat, enum node_stat_item idx) 2932 { 2933 int *bytes; 2934 2935 /* 2936 * Save vmstat data in stock and skip vmstat array update unless 2937 * accumulating over a page of vmstat data or when pgdat changes. 2938 */ 2939 if (stock->cached_pgdat != pgdat) { 2940 /* Flush the existing cached vmstat data */ 2941 struct pglist_data *oldpg = stock->cached_pgdat; 2942 2943 if (stock->nr_slab_reclaimable_b) { 2944 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2945 stock->nr_slab_reclaimable_b); 2946 stock->nr_slab_reclaimable_b = 0; 2947 } 2948 if (stock->nr_slab_unreclaimable_b) { 2949 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2950 stock->nr_slab_unreclaimable_b); 2951 stock->nr_slab_unreclaimable_b = 0; 2952 } 2953 stock->cached_pgdat = pgdat; 2954 } 2955 2956 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2957 : &stock->nr_slab_unreclaimable_b; 2958 /* 2959 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2960 * cached locally at least once before pushing it out. 2961 */ 2962 if (!*bytes) { 2963 *bytes = nr; 2964 nr = 0; 2965 } else { 2966 *bytes += nr; 2967 if (abs(*bytes) > PAGE_SIZE) { 2968 nr = *bytes; 2969 *bytes = 0; 2970 } else { 2971 nr = 0; 2972 } 2973 } 2974 if (nr) 2975 mod_objcg_mlstate(objcg, pgdat, idx, nr); 2976 } 2977 2978 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2979 struct pglist_data *pgdat, enum node_stat_item idx) 2980 { 2981 struct obj_stock_pcp *stock; 2982 bool ret = false; 2983 2984 if (!local_trylock(&obj_stock.lock)) 2985 return ret; 2986 2987 stock = this_cpu_ptr(&obj_stock); 2988 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2989 stock->nr_bytes -= nr_bytes; 2990 ret = true; 2991 2992 if (pgdat) 2993 __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx); 2994 } 2995 2996 local_unlock(&obj_stock.lock); 2997 2998 return ret; 2999 } 3000 3001 static void drain_obj_stock(struct obj_stock_pcp *stock) 3002 { 3003 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 3004 3005 if (!old) 3006 return; 3007 3008 if (stock->nr_bytes) { 3009 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3010 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3011 3012 if (nr_pages) { 3013 struct mem_cgroup *memcg; 3014 3015 memcg = get_mem_cgroup_from_objcg(old); 3016 3017 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 3018 memcg1_account_kmem(memcg, -nr_pages); 3019 if (!mem_cgroup_is_root(memcg)) 3020 memcg_uncharge(memcg, nr_pages); 3021 3022 css_put(&memcg->css); 3023 } 3024 3025 /* 3026 * The leftover is flushed to the centralized per-memcg value. 3027 * On the next attempt to refill obj stock it will be moved 3028 * to a per-cpu stock (probably, on an other CPU), see 3029 * refill_obj_stock(). 3030 * 3031 * How often it's flushed is a trade-off between the memory 3032 * limit enforcement accuracy and potential CPU contention, 3033 * so it might be changed in the future. 3034 */ 3035 atomic_add(nr_bytes, &old->nr_charged_bytes); 3036 stock->nr_bytes = 0; 3037 } 3038 3039 /* 3040 * Flush the vmstat data in current stock 3041 */ 3042 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3043 if (stock->nr_slab_reclaimable_b) { 3044 mod_objcg_mlstate(old, stock->cached_pgdat, 3045 NR_SLAB_RECLAIMABLE_B, 3046 stock->nr_slab_reclaimable_b); 3047 stock->nr_slab_reclaimable_b = 0; 3048 } 3049 if (stock->nr_slab_unreclaimable_b) { 3050 mod_objcg_mlstate(old, stock->cached_pgdat, 3051 NR_SLAB_UNRECLAIMABLE_B, 3052 stock->nr_slab_unreclaimable_b); 3053 stock->nr_slab_unreclaimable_b = 0; 3054 } 3055 stock->cached_pgdat = NULL; 3056 } 3057 3058 WRITE_ONCE(stock->cached_objcg, NULL); 3059 obj_cgroup_put(old); 3060 } 3061 3062 static bool obj_stock_flush_required(struct obj_stock_pcp *stock, 3063 struct mem_cgroup *root_memcg) 3064 { 3065 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 3066 struct mem_cgroup *memcg; 3067 bool flush = false; 3068 3069 rcu_read_lock(); 3070 if (objcg) { 3071 memcg = obj_cgroup_memcg(objcg); 3072 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3073 flush = true; 3074 } 3075 rcu_read_unlock(); 3076 3077 return flush; 3078 } 3079 3080 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3081 bool allow_uncharge, int nr_acct, struct pglist_data *pgdat, 3082 enum node_stat_item idx) 3083 { 3084 struct obj_stock_pcp *stock; 3085 unsigned int nr_pages = 0; 3086 3087 if (!local_trylock(&obj_stock.lock)) { 3088 if (pgdat) 3089 mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes); 3090 nr_pages = nr_bytes >> PAGE_SHIFT; 3091 nr_bytes = nr_bytes & (PAGE_SIZE - 1); 3092 atomic_add(nr_bytes, &objcg->nr_charged_bytes); 3093 goto out; 3094 } 3095 3096 stock = this_cpu_ptr(&obj_stock); 3097 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 3098 drain_obj_stock(stock); 3099 obj_cgroup_get(objcg); 3100 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3101 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3102 WRITE_ONCE(stock->cached_objcg, objcg); 3103 3104 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3105 } 3106 stock->nr_bytes += nr_bytes; 3107 3108 if (pgdat) 3109 __account_obj_stock(objcg, stock, nr_acct, pgdat, idx); 3110 3111 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3112 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3113 stock->nr_bytes &= (PAGE_SIZE - 1); 3114 } 3115 3116 local_unlock(&obj_stock.lock); 3117 out: 3118 if (nr_pages) 3119 obj_cgroup_uncharge_pages(objcg, nr_pages); 3120 } 3121 3122 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size, 3123 struct pglist_data *pgdat, enum node_stat_item idx) 3124 { 3125 unsigned int nr_pages, nr_bytes; 3126 int ret; 3127 3128 if (likely(consume_obj_stock(objcg, size, pgdat, idx))) 3129 return 0; 3130 3131 /* 3132 * In theory, objcg->nr_charged_bytes can have enough 3133 * pre-charged bytes to satisfy the allocation. However, 3134 * flushing objcg->nr_charged_bytes requires two atomic 3135 * operations, and objcg->nr_charged_bytes can't be big. 3136 * The shared objcg->nr_charged_bytes can also become a 3137 * performance bottleneck if all tasks of the same memcg are 3138 * trying to update it. So it's better to ignore it and try 3139 * grab some new pages. The stock's nr_bytes will be flushed to 3140 * objcg->nr_charged_bytes later on when objcg changes. 3141 * 3142 * The stock's nr_bytes may contain enough pre-charged bytes 3143 * to allow one less page from being charged, but we can't rely 3144 * on the pre-charged bytes not being changed outside of 3145 * consume_obj_stock() or refill_obj_stock(). So ignore those 3146 * pre-charged bytes as well when charging pages. To avoid a 3147 * page uncharge right after a page charge, we set the 3148 * allow_uncharge flag to false when calling refill_obj_stock() 3149 * to temporarily allow the pre-charged bytes to exceed the page 3150 * size limit. The maximum reachable value of the pre-charged 3151 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3152 * race. 3153 */ 3154 nr_pages = size >> PAGE_SHIFT; 3155 nr_bytes = size & (PAGE_SIZE - 1); 3156 3157 if (nr_bytes) 3158 nr_pages += 1; 3159 3160 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3161 if (!ret && (nr_bytes || pgdat)) 3162 refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0, 3163 false, size, pgdat, idx); 3164 3165 return ret; 3166 } 3167 3168 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3169 { 3170 return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0); 3171 } 3172 3173 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3174 { 3175 refill_obj_stock(objcg, size, true, 0, NULL, 0); 3176 } 3177 3178 static inline size_t obj_full_size(struct kmem_cache *s) 3179 { 3180 /* 3181 * For each accounted object there is an extra space which is used 3182 * to store obj_cgroup membership. Charge it too. 3183 */ 3184 return s->size + sizeof(struct obj_cgroup *); 3185 } 3186 3187 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3188 gfp_t flags, size_t size, void **p) 3189 { 3190 struct obj_cgroup *objcg; 3191 struct slab *slab; 3192 unsigned long off; 3193 size_t i; 3194 3195 /* 3196 * The obtained objcg pointer is safe to use within the current scope, 3197 * defined by current task or set_active_memcg() pair. 3198 * obj_cgroup_get() is used to get a permanent reference. 3199 */ 3200 objcg = current_obj_cgroup(); 3201 if (!objcg) 3202 return true; 3203 3204 /* 3205 * slab_alloc_node() avoids the NULL check, so we might be called with a 3206 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 3207 * the whole requested size. 3208 * return success as there's nothing to free back 3209 */ 3210 if (unlikely(*p == NULL)) 3211 return true; 3212 3213 flags &= gfp_allowed_mask; 3214 3215 if (lru) { 3216 int ret; 3217 struct mem_cgroup *memcg; 3218 3219 memcg = get_mem_cgroup_from_objcg(objcg); 3220 ret = memcg_list_lru_alloc(memcg, lru, flags); 3221 css_put(&memcg->css); 3222 3223 if (ret) 3224 return false; 3225 } 3226 3227 for (i = 0; i < size; i++) { 3228 unsigned long obj_exts; 3229 struct slabobj_ext *obj_ext; 3230 3231 slab = virt_to_slab(p[i]); 3232 3233 if (!slab_obj_exts(slab) && 3234 alloc_slab_obj_exts(slab, s, flags, false)) { 3235 continue; 3236 } 3237 3238 /* 3239 * if we fail and size is 1, memcg_alloc_abort_single() will 3240 * just free the object, which is ok as we have not assigned 3241 * objcg to its obj_ext yet 3242 * 3243 * for larger sizes, kmem_cache_free_bulk() will uncharge 3244 * any objects that were already charged and obj_ext assigned 3245 * 3246 * TODO: we could batch this until slab_pgdat(slab) changes 3247 * between iterations, with a more complicated undo 3248 */ 3249 if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s), 3250 slab_pgdat(slab), cache_vmstat_idx(s))) 3251 return false; 3252 3253 obj_exts = slab_obj_exts(slab); 3254 get_slab_obj_exts(obj_exts); 3255 off = obj_to_index(s, slab, p[i]); 3256 obj_ext = slab_obj_ext(slab, obj_exts, off); 3257 obj_cgroup_get(objcg); 3258 obj_ext->objcg = objcg; 3259 put_slab_obj_exts(obj_exts); 3260 } 3261 3262 return true; 3263 } 3264 3265 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3266 void **p, int objects, unsigned long obj_exts) 3267 { 3268 size_t obj_size = obj_full_size(s); 3269 3270 for (int i = 0; i < objects; i++) { 3271 struct obj_cgroup *objcg; 3272 struct slabobj_ext *obj_ext; 3273 unsigned int off; 3274 3275 off = obj_to_index(s, slab, p[i]); 3276 obj_ext = slab_obj_ext(slab, obj_exts, off); 3277 objcg = obj_ext->objcg; 3278 if (!objcg) 3279 continue; 3280 3281 obj_ext->objcg = NULL; 3282 refill_obj_stock(objcg, obj_size, true, -obj_size, 3283 slab_pgdat(slab), cache_vmstat_idx(s)); 3284 obj_cgroup_put(objcg); 3285 } 3286 } 3287 3288 /* 3289 * The objcg is only set on the first page, so transfer it to all the 3290 * other pages. 3291 */ 3292 void split_page_memcg(struct page *page, unsigned order) 3293 { 3294 struct obj_cgroup *objcg = page_objcg(page); 3295 unsigned int i, nr = 1 << order; 3296 3297 if (!objcg) 3298 return; 3299 3300 for (i = 1; i < nr; i++) 3301 page_set_objcg(&page[i], objcg); 3302 3303 obj_cgroup_get_many(objcg, nr - 1); 3304 } 3305 3306 void folio_split_memcg_refs(struct folio *folio, unsigned old_order, 3307 unsigned new_order) 3308 { 3309 unsigned new_refs; 3310 3311 if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) 3312 return; 3313 3314 new_refs = (1 << (old_order - new_order)) - 1; 3315 css_get_many(&__folio_memcg(folio)->css, new_refs); 3316 } 3317 3318 static int memcg_online_kmem(struct mem_cgroup *memcg) 3319 { 3320 struct obj_cgroup *objcg; 3321 3322 if (mem_cgroup_kmem_disabled()) 3323 return 0; 3324 3325 if (unlikely(mem_cgroup_is_root(memcg))) 3326 return 0; 3327 3328 objcg = obj_cgroup_alloc(); 3329 if (!objcg) 3330 return -ENOMEM; 3331 3332 objcg->memcg = memcg; 3333 rcu_assign_pointer(memcg->objcg, objcg); 3334 obj_cgroup_get(objcg); 3335 memcg->orig_objcg = objcg; 3336 3337 static_branch_enable(&memcg_kmem_online_key); 3338 3339 memcg->kmemcg_id = memcg->id.id; 3340 3341 return 0; 3342 } 3343 3344 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3345 { 3346 struct mem_cgroup *parent; 3347 3348 if (mem_cgroup_kmem_disabled()) 3349 return; 3350 3351 if (unlikely(mem_cgroup_is_root(memcg))) 3352 return; 3353 3354 parent = parent_mem_cgroup(memcg); 3355 if (!parent) 3356 parent = root_mem_cgroup; 3357 3358 memcg_reparent_list_lrus(memcg, parent); 3359 3360 /* 3361 * Objcg's reparenting must be after list_lru's, make sure list_lru 3362 * helpers won't use parent's list_lru until child is drained. 3363 */ 3364 memcg_reparent_objcgs(memcg, parent); 3365 } 3366 3367 #ifdef CONFIG_CGROUP_WRITEBACK 3368 3369 #include <trace/events/writeback.h> 3370 3371 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3372 { 3373 return wb_domain_init(&memcg->cgwb_domain, gfp); 3374 } 3375 3376 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3377 { 3378 wb_domain_exit(&memcg->cgwb_domain); 3379 } 3380 3381 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3382 { 3383 wb_domain_size_changed(&memcg->cgwb_domain); 3384 } 3385 3386 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3387 { 3388 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3389 3390 if (!memcg->css.parent) 3391 return NULL; 3392 3393 return &memcg->cgwb_domain; 3394 } 3395 3396 /** 3397 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3398 * @wb: bdi_writeback in question 3399 * @pfilepages: out parameter for number of file pages 3400 * @pheadroom: out parameter for number of allocatable pages according to memcg 3401 * @pdirty: out parameter for number of dirty pages 3402 * @pwriteback: out parameter for number of pages under writeback 3403 * 3404 * Determine the numbers of file, headroom, dirty, and writeback pages in 3405 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3406 * is a bit more involved. 3407 * 3408 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3409 * headroom is calculated as the lowest headroom of itself and the 3410 * ancestors. Note that this doesn't consider the actual amount of 3411 * available memory in the system. The caller should further cap 3412 * *@pheadroom accordingly. 3413 */ 3414 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3415 unsigned long *pheadroom, unsigned long *pdirty, 3416 unsigned long *pwriteback) 3417 { 3418 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3419 struct mem_cgroup *parent; 3420 3421 mem_cgroup_flush_stats_ratelimited(memcg); 3422 3423 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3424 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3425 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3426 memcg_page_state(memcg, NR_ACTIVE_FILE); 3427 3428 *pheadroom = PAGE_COUNTER_MAX; 3429 while ((parent = parent_mem_cgroup(memcg))) { 3430 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3431 READ_ONCE(memcg->memory.high)); 3432 unsigned long used = page_counter_read(&memcg->memory); 3433 3434 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3435 memcg = parent; 3436 } 3437 } 3438 3439 /* 3440 * Foreign dirty flushing 3441 * 3442 * There's an inherent mismatch between memcg and writeback. The former 3443 * tracks ownership per-page while the latter per-inode. This was a 3444 * deliberate design decision because honoring per-page ownership in the 3445 * writeback path is complicated, may lead to higher CPU and IO overheads 3446 * and deemed unnecessary given that write-sharing an inode across 3447 * different cgroups isn't a common use-case. 3448 * 3449 * Combined with inode majority-writer ownership switching, this works well 3450 * enough in most cases but there are some pathological cases. For 3451 * example, let's say there are two cgroups A and B which keep writing to 3452 * different but confined parts of the same inode. B owns the inode and 3453 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3454 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3455 * triggering background writeback. A will be slowed down without a way to 3456 * make writeback of the dirty pages happen. 3457 * 3458 * Conditions like the above can lead to a cgroup getting repeatedly and 3459 * severely throttled after making some progress after each 3460 * dirty_expire_interval while the underlying IO device is almost 3461 * completely idle. 3462 * 3463 * Solving this problem completely requires matching the ownership tracking 3464 * granularities between memcg and writeback in either direction. However, 3465 * the more egregious behaviors can be avoided by simply remembering the 3466 * most recent foreign dirtying events and initiating remote flushes on 3467 * them when local writeback isn't enough to keep the memory clean enough. 3468 * 3469 * The following two functions implement such mechanism. When a foreign 3470 * page - a page whose memcg and writeback ownerships don't match - is 3471 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3472 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3473 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3474 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3475 * foreign bdi_writebacks which haven't expired. Both the numbers of 3476 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3477 * limited to MEMCG_CGWB_FRN_CNT. 3478 * 3479 * The mechanism only remembers IDs and doesn't hold any object references. 3480 * As being wrong occasionally doesn't matter, updates and accesses to the 3481 * records are lockless and racy. 3482 */ 3483 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3484 struct bdi_writeback *wb) 3485 { 3486 struct mem_cgroup *memcg = folio_memcg(folio); 3487 struct memcg_cgwb_frn *frn; 3488 u64 now = get_jiffies_64(); 3489 u64 oldest_at = now; 3490 int oldest = -1; 3491 int i; 3492 3493 trace_track_foreign_dirty(folio, wb); 3494 3495 /* 3496 * Pick the slot to use. If there is already a slot for @wb, keep 3497 * using it. If not replace the oldest one which isn't being 3498 * written out. 3499 */ 3500 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3501 frn = &memcg->cgwb_frn[i]; 3502 if (frn->bdi_id == wb->bdi->id && 3503 frn->memcg_id == wb->memcg_css->id) 3504 break; 3505 if (time_before64(frn->at, oldest_at) && 3506 atomic_read(&frn->done.cnt) == 1) { 3507 oldest = i; 3508 oldest_at = frn->at; 3509 } 3510 } 3511 3512 if (i < MEMCG_CGWB_FRN_CNT) { 3513 /* 3514 * Re-using an existing one. Update timestamp lazily to 3515 * avoid making the cacheline hot. We want them to be 3516 * reasonably up-to-date and significantly shorter than 3517 * dirty_expire_interval as that's what expires the record. 3518 * Use the shorter of 1s and dirty_expire_interval / 8. 3519 */ 3520 unsigned long update_intv = 3521 min_t(unsigned long, HZ, 3522 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3523 3524 if (time_before64(frn->at, now - update_intv)) 3525 frn->at = now; 3526 } else if (oldest >= 0) { 3527 /* replace the oldest free one */ 3528 frn = &memcg->cgwb_frn[oldest]; 3529 frn->bdi_id = wb->bdi->id; 3530 frn->memcg_id = wb->memcg_css->id; 3531 frn->at = now; 3532 } 3533 } 3534 3535 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3536 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3537 { 3538 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3539 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3540 u64 now = jiffies_64; 3541 int i; 3542 3543 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3544 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3545 3546 /* 3547 * If the record is older than dirty_expire_interval, 3548 * writeback on it has already started. No need to kick it 3549 * off again. Also, don't start a new one if there's 3550 * already one in flight. 3551 */ 3552 if (time_after64(frn->at, now - intv) && 3553 atomic_read(&frn->done.cnt) == 1) { 3554 frn->at = 0; 3555 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3556 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3557 WB_REASON_FOREIGN_FLUSH, 3558 &frn->done); 3559 } 3560 } 3561 } 3562 3563 #else /* CONFIG_CGROUP_WRITEBACK */ 3564 3565 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3566 { 3567 return 0; 3568 } 3569 3570 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3571 { 3572 } 3573 3574 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3575 { 3576 } 3577 3578 #endif /* CONFIG_CGROUP_WRITEBACK */ 3579 3580 /* 3581 * Private memory cgroup IDR 3582 * 3583 * Swap-out records and page cache shadow entries need to store memcg 3584 * references in constrained space, so we maintain an ID space that is 3585 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3586 * memory-controlled cgroups to 64k. 3587 * 3588 * However, there usually are many references to the offline CSS after 3589 * the cgroup has been destroyed, such as page cache or reclaimable 3590 * slab objects, that don't need to hang on to the ID. We want to keep 3591 * those dead CSS from occupying IDs, or we might quickly exhaust the 3592 * relatively small ID space and prevent the creation of new cgroups 3593 * even when there are much fewer than 64k cgroups - possibly none. 3594 * 3595 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3596 * be freed and recycled when it's no longer needed, which is usually 3597 * when the CSS is offlined. 3598 * 3599 * The only exception to that are records of swapped out tmpfs/shmem 3600 * pages that need to be attributed to live ancestors on swapin. But 3601 * those references are manageable from userspace. 3602 */ 3603 3604 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3605 static DEFINE_XARRAY_ALLOC1(mem_cgroup_private_ids); 3606 3607 static void mem_cgroup_private_id_remove(struct mem_cgroup *memcg) 3608 { 3609 if (memcg->id.id > 0) { 3610 xa_erase(&mem_cgroup_private_ids, memcg->id.id); 3611 memcg->id.id = 0; 3612 } 3613 } 3614 3615 void __maybe_unused mem_cgroup_private_id_get_many(struct mem_cgroup *memcg, 3616 unsigned int n) 3617 { 3618 refcount_add(n, &memcg->id.ref); 3619 } 3620 3621 static void mem_cgroup_private_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3622 { 3623 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3624 mem_cgroup_private_id_remove(memcg); 3625 3626 /* Memcg ID pins CSS */ 3627 css_put(&memcg->css); 3628 } 3629 } 3630 3631 static inline void mem_cgroup_private_id_put(struct mem_cgroup *memcg) 3632 { 3633 mem_cgroup_private_id_put_many(memcg, 1); 3634 } 3635 3636 struct mem_cgroup *mem_cgroup_private_id_get_online(struct mem_cgroup *memcg) 3637 { 3638 while (!refcount_inc_not_zero(&memcg->id.ref)) { 3639 /* 3640 * The root cgroup cannot be destroyed, so it's refcount must 3641 * always be >= 1. 3642 */ 3643 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 3644 VM_BUG_ON(1); 3645 break; 3646 } 3647 memcg = parent_mem_cgroup(memcg); 3648 if (!memcg) 3649 memcg = root_mem_cgroup; 3650 } 3651 return memcg; 3652 } 3653 3654 /** 3655 * mem_cgroup_from_private_id - look up a memcg from a memcg id 3656 * @id: the memcg id to look up 3657 * 3658 * Caller must hold rcu_read_lock(). 3659 */ 3660 struct mem_cgroup *mem_cgroup_from_private_id(unsigned short id) 3661 { 3662 WARN_ON_ONCE(!rcu_read_lock_held()); 3663 return xa_load(&mem_cgroup_private_ids, id); 3664 } 3665 3666 struct mem_cgroup *mem_cgroup_get_from_id(u64 id) 3667 { 3668 struct cgroup *cgrp; 3669 struct cgroup_subsys_state *css; 3670 struct mem_cgroup *memcg = NULL; 3671 3672 cgrp = cgroup_get_from_id(id); 3673 if (IS_ERR(cgrp)) 3674 return NULL; 3675 3676 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3677 if (css) 3678 memcg = container_of(css, struct mem_cgroup, css); 3679 3680 cgroup_put(cgrp); 3681 3682 return memcg; 3683 } 3684 3685 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn) 3686 { 3687 if (!pn) 3688 return; 3689 3690 free_percpu(pn->lruvec_stats_percpu); 3691 kfree(pn->lruvec_stats); 3692 kfree(pn); 3693 } 3694 3695 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3696 { 3697 struct mem_cgroup_per_node *pn; 3698 3699 pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO, 3700 node); 3701 if (!pn) 3702 return false; 3703 3704 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3705 GFP_KERNEL_ACCOUNT, node); 3706 if (!pn->lruvec_stats) 3707 goto fail; 3708 3709 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3710 GFP_KERNEL_ACCOUNT); 3711 if (!pn->lruvec_stats_percpu) 3712 goto fail; 3713 3714 lruvec_init(&pn->lruvec); 3715 pn->memcg = memcg; 3716 3717 memcg->nodeinfo[node] = pn; 3718 return true; 3719 fail: 3720 free_mem_cgroup_per_node_info(pn); 3721 return false; 3722 } 3723 3724 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3725 { 3726 int node; 3727 3728 obj_cgroup_put(memcg->orig_objcg); 3729 3730 for_each_node(node) 3731 free_mem_cgroup_per_node_info(memcg->nodeinfo[node]); 3732 memcg1_free_events(memcg); 3733 kfree(memcg->vmstats); 3734 free_percpu(memcg->vmstats_percpu); 3735 kfree(memcg); 3736 } 3737 3738 static void mem_cgroup_free(struct mem_cgroup *memcg) 3739 { 3740 lru_gen_exit_memcg(memcg); 3741 memcg_wb_domain_exit(memcg); 3742 __mem_cgroup_free(memcg); 3743 } 3744 3745 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3746 { 3747 struct memcg_vmstats_percpu *statc; 3748 struct memcg_vmstats_percpu __percpu *pstatc_pcpu; 3749 struct mem_cgroup *memcg; 3750 int node, cpu; 3751 int __maybe_unused i; 3752 long error; 3753 3754 memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL); 3755 if (!memcg) 3756 return ERR_PTR(-ENOMEM); 3757 3758 error = xa_alloc(&mem_cgroup_private_ids, &memcg->id.id, NULL, 3759 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); 3760 if (error) 3761 goto fail; 3762 error = -ENOMEM; 3763 3764 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3765 GFP_KERNEL_ACCOUNT); 3766 if (!memcg->vmstats) 3767 goto fail; 3768 3769 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3770 GFP_KERNEL_ACCOUNT); 3771 if (!memcg->vmstats_percpu) 3772 goto fail; 3773 3774 if (!memcg1_alloc_events(memcg)) 3775 goto fail; 3776 3777 for_each_possible_cpu(cpu) { 3778 if (parent) 3779 pstatc_pcpu = parent->vmstats_percpu; 3780 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3781 statc->parent_pcpu = parent ? pstatc_pcpu : NULL; 3782 statc->vmstats = memcg->vmstats; 3783 } 3784 3785 for_each_node(node) 3786 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3787 goto fail; 3788 3789 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3790 goto fail; 3791 3792 INIT_WORK(&memcg->high_work, high_work_func); 3793 vmpressure_init(&memcg->vmpressure); 3794 INIT_LIST_HEAD(&memcg->memory_peaks); 3795 INIT_LIST_HEAD(&memcg->swap_peaks); 3796 spin_lock_init(&memcg->peaks_lock); 3797 memcg->socket_pressure = get_jiffies_64(); 3798 #if BITS_PER_LONG < 64 3799 seqlock_init(&memcg->socket_pressure_seqlock); 3800 #endif 3801 memcg1_memcg_init(memcg); 3802 memcg->kmemcg_id = -1; 3803 INIT_LIST_HEAD(&memcg->objcg_list); 3804 #ifdef CONFIG_CGROUP_WRITEBACK 3805 INIT_LIST_HEAD(&memcg->cgwb_list); 3806 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3807 memcg->cgwb_frn[i].done = 3808 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3809 #endif 3810 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3811 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3812 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3813 memcg->deferred_split_queue.split_queue_len = 0; 3814 #endif 3815 lru_gen_init_memcg(memcg); 3816 return memcg; 3817 fail: 3818 mem_cgroup_private_id_remove(memcg); 3819 __mem_cgroup_free(memcg); 3820 return ERR_PTR(error); 3821 } 3822 3823 static struct cgroup_subsys_state * __ref 3824 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3825 { 3826 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3827 struct mem_cgroup *memcg, *old_memcg; 3828 bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys); 3829 3830 old_memcg = set_active_memcg(parent); 3831 memcg = mem_cgroup_alloc(parent); 3832 set_active_memcg(old_memcg); 3833 if (IS_ERR(memcg)) 3834 return ERR_CAST(memcg); 3835 3836 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3837 memcg1_soft_limit_reset(memcg); 3838 #ifdef CONFIG_ZSWAP 3839 memcg->zswap_max = PAGE_COUNTER_MAX; 3840 WRITE_ONCE(memcg->zswap_writeback, true); 3841 #endif 3842 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3843 if (parent) { 3844 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3845 3846 page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl); 3847 page_counter_init(&memcg->swap, &parent->swap, false); 3848 #ifdef CONFIG_MEMCG_V1 3849 memcg->memory.track_failcnt = !memcg_on_dfl; 3850 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3851 page_counter_init(&memcg->kmem, &parent->kmem, false); 3852 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); 3853 #endif 3854 } else { 3855 init_memcg_stats(); 3856 init_memcg_events(); 3857 page_counter_init(&memcg->memory, NULL, true); 3858 page_counter_init(&memcg->swap, NULL, false); 3859 #ifdef CONFIG_MEMCG_V1 3860 page_counter_init(&memcg->kmem, NULL, false); 3861 page_counter_init(&memcg->tcpmem, NULL, false); 3862 #endif 3863 root_mem_cgroup = memcg; 3864 return &memcg->css; 3865 } 3866 3867 if (memcg_on_dfl && !cgroup_memory_nosocket) 3868 static_branch_inc(&memcg_sockets_enabled_key); 3869 3870 if (!cgroup_memory_nobpf) 3871 static_branch_inc(&memcg_bpf_enabled_key); 3872 3873 return &memcg->css; 3874 } 3875 3876 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3877 { 3878 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3879 3880 if (memcg_online_kmem(memcg)) 3881 goto remove_id; 3882 3883 /* 3884 * A memcg must be visible for expand_shrinker_info() 3885 * by the time the maps are allocated. So, we allocate maps 3886 * here, when for_each_mem_cgroup() can't skip it. 3887 */ 3888 if (alloc_shrinker_info(memcg)) 3889 goto offline_kmem; 3890 3891 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3892 queue_delayed_work(system_dfl_wq, &stats_flush_dwork, 3893 FLUSH_TIME); 3894 lru_gen_online_memcg(memcg); 3895 3896 /* Online state pins memcg ID, memcg ID pins CSS */ 3897 refcount_set(&memcg->id.ref, 1); 3898 css_get(css); 3899 3900 /* 3901 * Ensure mem_cgroup_from_private_id() works once we're fully online. 3902 * 3903 * We could do this earlier and require callers to filter with 3904 * css_tryget_online(). But right now there are no users that 3905 * need earlier access, and the workingset code relies on the 3906 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3907 * publish it here at the end of onlining. This matches the 3908 * regular ID destruction during offlining. 3909 */ 3910 xa_store(&mem_cgroup_private_ids, memcg->id.id, memcg, GFP_KERNEL); 3911 3912 return 0; 3913 offline_kmem: 3914 memcg_offline_kmem(memcg); 3915 remove_id: 3916 mem_cgroup_private_id_remove(memcg); 3917 return -ENOMEM; 3918 } 3919 3920 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3921 { 3922 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3923 3924 memcg1_css_offline(memcg); 3925 3926 page_counter_set_min(&memcg->memory, 0); 3927 page_counter_set_low(&memcg->memory, 0); 3928 3929 zswap_memcg_offline_cleanup(memcg); 3930 3931 memcg_offline_kmem(memcg); 3932 reparent_deferred_split_queue(memcg); 3933 reparent_shrinker_deferred(memcg); 3934 wb_memcg_offline(memcg); 3935 lru_gen_offline_memcg(memcg); 3936 3937 drain_all_stock(memcg); 3938 3939 mem_cgroup_private_id_put(memcg); 3940 } 3941 3942 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3943 { 3944 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3945 3946 invalidate_reclaim_iterators(memcg); 3947 lru_gen_release_memcg(memcg); 3948 } 3949 3950 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3951 { 3952 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3953 int __maybe_unused i; 3954 3955 #ifdef CONFIG_CGROUP_WRITEBACK 3956 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3957 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3958 #endif 3959 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3960 static_branch_dec(&memcg_sockets_enabled_key); 3961 3962 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3963 static_branch_dec(&memcg_sockets_enabled_key); 3964 3965 if (!cgroup_memory_nobpf) 3966 static_branch_dec(&memcg_bpf_enabled_key); 3967 3968 vmpressure_cleanup(&memcg->vmpressure); 3969 cancel_work_sync(&memcg->high_work); 3970 memcg1_remove_from_trees(memcg); 3971 free_shrinker_info(memcg); 3972 mem_cgroup_free(memcg); 3973 } 3974 3975 /** 3976 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3977 * @css: the target css 3978 * 3979 * Reset the states of the mem_cgroup associated with @css. This is 3980 * invoked when the userland requests disabling on the default hierarchy 3981 * but the memcg is pinned through dependency. The memcg should stop 3982 * applying policies and should revert to the vanilla state as it may be 3983 * made visible again. 3984 * 3985 * The current implementation only resets the essential configurations. 3986 * This needs to be expanded to cover all the visible parts. 3987 */ 3988 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3989 { 3990 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3991 3992 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3993 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3994 #ifdef CONFIG_MEMCG_V1 3995 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3996 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3997 #endif 3998 page_counter_set_min(&memcg->memory, 0); 3999 page_counter_set_low(&memcg->memory, 0); 4000 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 4001 memcg1_soft_limit_reset(memcg); 4002 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 4003 memcg_wb_domain_size_changed(memcg); 4004 } 4005 4006 struct aggregate_control { 4007 /* pointer to the aggregated (CPU and subtree aggregated) counters */ 4008 long *aggregate; 4009 /* pointer to the non-hierarchichal (CPU aggregated) counters */ 4010 long *local; 4011 /* pointer to the pending child counters during tree propagation */ 4012 long *pending; 4013 /* pointer to the parent's pending counters, could be NULL */ 4014 long *ppending; 4015 /* pointer to the percpu counters to be aggregated */ 4016 long *cstat; 4017 /* pointer to the percpu counters of the last aggregation*/ 4018 long *cstat_prev; 4019 /* size of the above counters */ 4020 int size; 4021 }; 4022 4023 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac) 4024 { 4025 int i; 4026 long delta, delta_cpu, v; 4027 4028 for (i = 0; i < ac->size; i++) { 4029 /* 4030 * Collect the aggregated propagation counts of groups 4031 * below us. We're in a per-cpu loop here and this is 4032 * a global counter, so the first cycle will get them. 4033 */ 4034 delta = ac->pending[i]; 4035 if (delta) 4036 ac->pending[i] = 0; 4037 4038 /* Add CPU changes on this level since the last flush */ 4039 delta_cpu = 0; 4040 v = READ_ONCE(ac->cstat[i]); 4041 if (v != ac->cstat_prev[i]) { 4042 delta_cpu = v - ac->cstat_prev[i]; 4043 delta += delta_cpu; 4044 ac->cstat_prev[i] = v; 4045 } 4046 4047 /* Aggregate counts on this level and propagate upwards */ 4048 if (delta_cpu) 4049 ac->local[i] += delta_cpu; 4050 4051 if (delta) { 4052 ac->aggregate[i] += delta; 4053 if (ac->ppending) 4054 ac->ppending[i] += delta; 4055 } 4056 } 4057 } 4058 4059 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC 4060 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent, 4061 int cpu) 4062 { 4063 int nid; 4064 4065 if (atomic_read(&memcg->kmem_stat)) { 4066 int kmem = atomic_xchg(&memcg->kmem_stat, 0); 4067 int index = memcg_stats_index(MEMCG_KMEM); 4068 4069 memcg->vmstats->state[index] += kmem; 4070 if (parent) 4071 parent->vmstats->state_pending[index] += kmem; 4072 } 4073 4074 for_each_node_state(nid, N_MEMORY) { 4075 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 4076 struct lruvec_stats *lstats = pn->lruvec_stats; 4077 struct lruvec_stats *plstats = NULL; 4078 4079 if (parent) 4080 plstats = parent->nodeinfo[nid]->lruvec_stats; 4081 4082 if (atomic_read(&pn->slab_reclaimable)) { 4083 int slab = atomic_xchg(&pn->slab_reclaimable, 0); 4084 int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B); 4085 4086 lstats->state[index] += slab; 4087 if (plstats) 4088 plstats->state_pending[index] += slab; 4089 } 4090 if (atomic_read(&pn->slab_unreclaimable)) { 4091 int slab = atomic_xchg(&pn->slab_unreclaimable, 0); 4092 int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B); 4093 4094 lstats->state[index] += slab; 4095 if (plstats) 4096 plstats->state_pending[index] += slab; 4097 } 4098 } 4099 } 4100 #else 4101 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent, 4102 int cpu) 4103 {} 4104 #endif 4105 4106 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 4107 { 4108 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4109 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 4110 struct memcg_vmstats_percpu *statc; 4111 struct aggregate_control ac; 4112 int nid; 4113 4114 flush_nmi_stats(memcg, parent, cpu); 4115 4116 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 4117 4118 ac = (struct aggregate_control) { 4119 .aggregate = memcg->vmstats->state, 4120 .local = memcg->vmstats->state_local, 4121 .pending = memcg->vmstats->state_pending, 4122 .ppending = parent ? parent->vmstats->state_pending : NULL, 4123 .cstat = statc->state, 4124 .cstat_prev = statc->state_prev, 4125 .size = MEMCG_VMSTAT_SIZE, 4126 }; 4127 mem_cgroup_stat_aggregate(&ac); 4128 4129 ac = (struct aggregate_control) { 4130 .aggregate = memcg->vmstats->events, 4131 .local = memcg->vmstats->events_local, 4132 .pending = memcg->vmstats->events_pending, 4133 .ppending = parent ? parent->vmstats->events_pending : NULL, 4134 .cstat = statc->events, 4135 .cstat_prev = statc->events_prev, 4136 .size = NR_MEMCG_EVENTS, 4137 }; 4138 mem_cgroup_stat_aggregate(&ac); 4139 4140 for_each_node_state(nid, N_MEMORY) { 4141 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 4142 struct lruvec_stats *lstats = pn->lruvec_stats; 4143 struct lruvec_stats *plstats = NULL; 4144 struct lruvec_stats_percpu *lstatc; 4145 4146 if (parent) 4147 plstats = parent->nodeinfo[nid]->lruvec_stats; 4148 4149 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 4150 4151 ac = (struct aggregate_control) { 4152 .aggregate = lstats->state, 4153 .local = lstats->state_local, 4154 .pending = lstats->state_pending, 4155 .ppending = plstats ? plstats->state_pending : NULL, 4156 .cstat = lstatc->state, 4157 .cstat_prev = lstatc->state_prev, 4158 .size = NR_MEMCG_NODE_STAT_ITEMS, 4159 }; 4160 mem_cgroup_stat_aggregate(&ac); 4161 4162 } 4163 WRITE_ONCE(statc->stats_updates, 0); 4164 /* We are in a per-cpu loop here, only do the atomic write once */ 4165 if (atomic_read(&memcg->vmstats->stats_updates)) 4166 atomic_set(&memcg->vmstats->stats_updates, 0); 4167 } 4168 4169 static void mem_cgroup_fork(struct task_struct *task) 4170 { 4171 /* 4172 * Set the update flag to cause task->objcg to be initialized lazily 4173 * on the first allocation. It can be done without any synchronization 4174 * because it's always performed on the current task, so does 4175 * current_objcg_update(). 4176 */ 4177 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 4178 } 4179 4180 static void mem_cgroup_exit(struct task_struct *task) 4181 { 4182 struct obj_cgroup *objcg = task->objcg; 4183 4184 objcg = (struct obj_cgroup *) 4185 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 4186 obj_cgroup_put(objcg); 4187 4188 /* 4189 * Some kernel allocations can happen after this point, 4190 * but let's ignore them. It can be done without any synchronization 4191 * because it's always performed on the current task, so does 4192 * current_objcg_update(). 4193 */ 4194 task->objcg = NULL; 4195 } 4196 4197 #ifdef CONFIG_LRU_GEN 4198 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 4199 { 4200 struct task_struct *task; 4201 struct cgroup_subsys_state *css; 4202 4203 /* find the first leader if there is any */ 4204 cgroup_taskset_for_each_leader(task, css, tset) 4205 break; 4206 4207 if (!task) 4208 return; 4209 4210 task_lock(task); 4211 if (task->mm && READ_ONCE(task->mm->owner) == task) 4212 lru_gen_migrate_mm(task->mm); 4213 task_unlock(task); 4214 } 4215 #else 4216 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 4217 #endif /* CONFIG_LRU_GEN */ 4218 4219 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 4220 { 4221 struct task_struct *task; 4222 struct cgroup_subsys_state *css; 4223 4224 cgroup_taskset_for_each(task, css, tset) { 4225 /* atomically set the update bit */ 4226 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 4227 } 4228 } 4229 4230 static void mem_cgroup_attach(struct cgroup_taskset *tset) 4231 { 4232 mem_cgroup_lru_gen_attach(tset); 4233 mem_cgroup_kmem_attach(tset); 4234 } 4235 4236 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 4237 { 4238 if (value == PAGE_COUNTER_MAX) 4239 seq_puts(m, "max\n"); 4240 else 4241 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 4242 4243 return 0; 4244 } 4245 4246 static u64 memory_current_read(struct cgroup_subsys_state *css, 4247 struct cftype *cft) 4248 { 4249 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4250 4251 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 4252 } 4253 4254 #define OFP_PEAK_UNSET (((-1UL))) 4255 4256 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) 4257 { 4258 struct cgroup_of_peak *ofp = of_peak(sf->private); 4259 u64 fd_peak = READ_ONCE(ofp->value), peak; 4260 4261 /* User wants global or local peak? */ 4262 if (fd_peak == OFP_PEAK_UNSET) 4263 peak = pc->watermark; 4264 else 4265 peak = max(fd_peak, READ_ONCE(pc->local_watermark)); 4266 4267 seq_printf(sf, "%llu\n", peak * PAGE_SIZE); 4268 return 0; 4269 } 4270 4271 static int memory_peak_show(struct seq_file *sf, void *v) 4272 { 4273 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 4274 4275 return peak_show(sf, v, &memcg->memory); 4276 } 4277 4278 static int peak_open(struct kernfs_open_file *of) 4279 { 4280 struct cgroup_of_peak *ofp = of_peak(of); 4281 4282 ofp->value = OFP_PEAK_UNSET; 4283 return 0; 4284 } 4285 4286 static void peak_release(struct kernfs_open_file *of) 4287 { 4288 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4289 struct cgroup_of_peak *ofp = of_peak(of); 4290 4291 if (ofp->value == OFP_PEAK_UNSET) { 4292 /* fast path (no writes on this fd) */ 4293 return; 4294 } 4295 spin_lock(&memcg->peaks_lock); 4296 list_del(&ofp->list); 4297 spin_unlock(&memcg->peaks_lock); 4298 } 4299 4300 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 4301 loff_t off, struct page_counter *pc, 4302 struct list_head *watchers) 4303 { 4304 unsigned long usage; 4305 struct cgroup_of_peak *peer_ctx; 4306 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4307 struct cgroup_of_peak *ofp = of_peak(of); 4308 4309 spin_lock(&memcg->peaks_lock); 4310 4311 usage = page_counter_read(pc); 4312 WRITE_ONCE(pc->local_watermark, usage); 4313 4314 list_for_each_entry(peer_ctx, watchers, list) 4315 if (usage > peer_ctx->value) 4316 WRITE_ONCE(peer_ctx->value, usage); 4317 4318 /* initial write, register watcher */ 4319 if (ofp->value == OFP_PEAK_UNSET) 4320 list_add(&ofp->list, watchers); 4321 4322 WRITE_ONCE(ofp->value, usage); 4323 spin_unlock(&memcg->peaks_lock); 4324 4325 return nbytes; 4326 } 4327 4328 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, 4329 size_t nbytes, loff_t off) 4330 { 4331 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4332 4333 return peak_write(of, buf, nbytes, off, &memcg->memory, 4334 &memcg->memory_peaks); 4335 } 4336 4337 #undef OFP_PEAK_UNSET 4338 4339 static int memory_min_show(struct seq_file *m, void *v) 4340 { 4341 return seq_puts_memcg_tunable(m, 4342 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 4343 } 4344 4345 static ssize_t memory_min_write(struct kernfs_open_file *of, 4346 char *buf, size_t nbytes, loff_t off) 4347 { 4348 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4349 unsigned long min; 4350 int err; 4351 4352 buf = strstrip(buf); 4353 err = page_counter_memparse(buf, "max", &min); 4354 if (err) 4355 return err; 4356 4357 page_counter_set_min(&memcg->memory, min); 4358 4359 return nbytes; 4360 } 4361 4362 static int memory_low_show(struct seq_file *m, void *v) 4363 { 4364 return seq_puts_memcg_tunable(m, 4365 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 4366 } 4367 4368 static ssize_t memory_low_write(struct kernfs_open_file *of, 4369 char *buf, size_t nbytes, loff_t off) 4370 { 4371 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4372 unsigned long low; 4373 int err; 4374 4375 buf = strstrip(buf); 4376 err = page_counter_memparse(buf, "max", &low); 4377 if (err) 4378 return err; 4379 4380 page_counter_set_low(&memcg->memory, low); 4381 4382 return nbytes; 4383 } 4384 4385 static int memory_high_show(struct seq_file *m, void *v) 4386 { 4387 return seq_puts_memcg_tunable(m, 4388 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4389 } 4390 4391 static ssize_t memory_high_write(struct kernfs_open_file *of, 4392 char *buf, size_t nbytes, loff_t off) 4393 { 4394 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4395 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4396 bool drained = false; 4397 unsigned long high; 4398 int err; 4399 4400 buf = strstrip(buf); 4401 err = page_counter_memparse(buf, "max", &high); 4402 if (err) 4403 return err; 4404 4405 page_counter_set_high(&memcg->memory, high); 4406 4407 if (of->file->f_flags & O_NONBLOCK) 4408 goto out; 4409 4410 for (;;) { 4411 unsigned long nr_pages = page_counter_read(&memcg->memory); 4412 unsigned long reclaimed; 4413 4414 if (nr_pages <= high) 4415 break; 4416 4417 if (signal_pending(current)) 4418 break; 4419 4420 if (!drained) { 4421 drain_all_stock(memcg); 4422 drained = true; 4423 continue; 4424 } 4425 4426 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4427 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4428 4429 if (!reclaimed && !nr_retries--) 4430 break; 4431 } 4432 out: 4433 memcg_wb_domain_size_changed(memcg); 4434 return nbytes; 4435 } 4436 4437 static int memory_max_show(struct seq_file *m, void *v) 4438 { 4439 return seq_puts_memcg_tunable(m, 4440 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4441 } 4442 4443 static ssize_t memory_max_write(struct kernfs_open_file *of, 4444 char *buf, size_t nbytes, loff_t off) 4445 { 4446 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4447 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4448 bool drained = false; 4449 unsigned long max; 4450 int err; 4451 4452 buf = strstrip(buf); 4453 err = page_counter_memparse(buf, "max", &max); 4454 if (err) 4455 return err; 4456 4457 xchg(&memcg->memory.max, max); 4458 4459 if (of->file->f_flags & O_NONBLOCK) 4460 goto out; 4461 4462 for (;;) { 4463 unsigned long nr_pages = page_counter_read(&memcg->memory); 4464 4465 if (nr_pages <= max) 4466 break; 4467 4468 if (signal_pending(current)) 4469 break; 4470 4471 if (!drained) { 4472 drain_all_stock(memcg); 4473 drained = true; 4474 continue; 4475 } 4476 4477 if (nr_reclaims) { 4478 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4479 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4480 nr_reclaims--; 4481 continue; 4482 } 4483 4484 memcg_memory_event(memcg, MEMCG_OOM); 4485 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4486 break; 4487 cond_resched(); 4488 } 4489 out: 4490 memcg_wb_domain_size_changed(memcg); 4491 return nbytes; 4492 } 4493 4494 /* 4495 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4496 * if any new events become available. 4497 */ 4498 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4499 { 4500 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4501 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4502 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4503 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4504 seq_printf(m, "oom_kill %lu\n", 4505 atomic_long_read(&events[MEMCG_OOM_KILL])); 4506 seq_printf(m, "oom_group_kill %lu\n", 4507 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4508 seq_printf(m, "sock_throttled %lu\n", 4509 atomic_long_read(&events[MEMCG_SOCK_THROTTLED])); 4510 } 4511 4512 static int memory_events_show(struct seq_file *m, void *v) 4513 { 4514 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4515 4516 __memory_events_show(m, memcg->memory_events); 4517 return 0; 4518 } 4519 4520 static int memory_events_local_show(struct seq_file *m, void *v) 4521 { 4522 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4523 4524 __memory_events_show(m, memcg->memory_events_local); 4525 return 0; 4526 } 4527 4528 int memory_stat_show(struct seq_file *m, void *v) 4529 { 4530 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4531 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL); 4532 struct seq_buf s; 4533 4534 if (!buf) 4535 return -ENOMEM; 4536 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 4537 memory_stat_format(memcg, &s); 4538 seq_puts(m, buf); 4539 kfree(buf); 4540 return 0; 4541 } 4542 4543 #ifdef CONFIG_NUMA 4544 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4545 int item) 4546 { 4547 return lruvec_page_state(lruvec, item) * 4548 memcg_page_state_output_unit(item); 4549 } 4550 4551 static int memory_numa_stat_show(struct seq_file *m, void *v) 4552 { 4553 int i; 4554 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4555 4556 mem_cgroup_flush_stats(memcg); 4557 4558 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4559 int nid; 4560 4561 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4562 continue; 4563 4564 seq_printf(m, "%s", memory_stats[i].name); 4565 for_each_node_state(nid, N_MEMORY) { 4566 u64 size; 4567 struct lruvec *lruvec; 4568 4569 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4570 size = lruvec_page_state_output(lruvec, 4571 memory_stats[i].idx); 4572 seq_printf(m, " N%d=%llu", nid, size); 4573 } 4574 seq_putc(m, '\n'); 4575 } 4576 4577 return 0; 4578 } 4579 #endif 4580 4581 static int memory_oom_group_show(struct seq_file *m, void *v) 4582 { 4583 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4584 4585 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4586 4587 return 0; 4588 } 4589 4590 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4591 char *buf, size_t nbytes, loff_t off) 4592 { 4593 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4594 int ret, oom_group; 4595 4596 buf = strstrip(buf); 4597 if (!buf) 4598 return -EINVAL; 4599 4600 ret = kstrtoint(buf, 0, &oom_group); 4601 if (ret) 4602 return ret; 4603 4604 if (oom_group != 0 && oom_group != 1) 4605 return -EINVAL; 4606 4607 WRITE_ONCE(memcg->oom_group, oom_group); 4608 4609 return nbytes; 4610 } 4611 4612 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4613 size_t nbytes, loff_t off) 4614 { 4615 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4616 int ret; 4617 4618 ret = user_proactive_reclaim(buf, memcg, NULL); 4619 if (ret) 4620 return ret; 4621 4622 return nbytes; 4623 } 4624 4625 static struct cftype memory_files[] = { 4626 { 4627 .name = "current", 4628 .flags = CFTYPE_NOT_ON_ROOT, 4629 .read_u64 = memory_current_read, 4630 }, 4631 { 4632 .name = "peak", 4633 .flags = CFTYPE_NOT_ON_ROOT, 4634 .open = peak_open, 4635 .release = peak_release, 4636 .seq_show = memory_peak_show, 4637 .write = memory_peak_write, 4638 }, 4639 { 4640 .name = "min", 4641 .flags = CFTYPE_NOT_ON_ROOT, 4642 .seq_show = memory_min_show, 4643 .write = memory_min_write, 4644 }, 4645 { 4646 .name = "low", 4647 .flags = CFTYPE_NOT_ON_ROOT, 4648 .seq_show = memory_low_show, 4649 .write = memory_low_write, 4650 }, 4651 { 4652 .name = "high", 4653 .flags = CFTYPE_NOT_ON_ROOT, 4654 .seq_show = memory_high_show, 4655 .write = memory_high_write, 4656 }, 4657 { 4658 .name = "max", 4659 .flags = CFTYPE_NOT_ON_ROOT, 4660 .seq_show = memory_max_show, 4661 .write = memory_max_write, 4662 }, 4663 { 4664 .name = "events", 4665 .flags = CFTYPE_NOT_ON_ROOT, 4666 .file_offset = offsetof(struct mem_cgroup, events_file), 4667 .seq_show = memory_events_show, 4668 }, 4669 { 4670 .name = "events.local", 4671 .flags = CFTYPE_NOT_ON_ROOT, 4672 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4673 .seq_show = memory_events_local_show, 4674 }, 4675 { 4676 .name = "stat", 4677 .seq_show = memory_stat_show, 4678 }, 4679 #ifdef CONFIG_NUMA 4680 { 4681 .name = "numa_stat", 4682 .seq_show = memory_numa_stat_show, 4683 }, 4684 #endif 4685 { 4686 .name = "oom.group", 4687 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4688 .seq_show = memory_oom_group_show, 4689 .write = memory_oom_group_write, 4690 }, 4691 { 4692 .name = "reclaim", 4693 .flags = CFTYPE_NS_DELEGATABLE, 4694 .write = memory_reclaim, 4695 }, 4696 { } /* terminate */ 4697 }; 4698 4699 struct cgroup_subsys memory_cgrp_subsys = { 4700 .css_alloc = mem_cgroup_css_alloc, 4701 .css_online = mem_cgroup_css_online, 4702 .css_offline = mem_cgroup_css_offline, 4703 .css_released = mem_cgroup_css_released, 4704 .css_free = mem_cgroup_css_free, 4705 .css_reset = mem_cgroup_css_reset, 4706 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4707 .attach = mem_cgroup_attach, 4708 .fork = mem_cgroup_fork, 4709 .exit = mem_cgroup_exit, 4710 .dfl_cftypes = memory_files, 4711 #ifdef CONFIG_MEMCG_V1 4712 .legacy_cftypes = mem_cgroup_legacy_files, 4713 #endif 4714 .early_init = 0, 4715 }; 4716 4717 /** 4718 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4719 * @root: the top ancestor of the sub-tree being checked 4720 * @memcg: the memory cgroup to check 4721 * 4722 * WARNING: This function is not stateless! It can only be used as part 4723 * of a top-down tree iteration, not for isolated queries. 4724 */ 4725 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4726 struct mem_cgroup *memcg) 4727 { 4728 bool recursive_protection = 4729 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4730 4731 if (mem_cgroup_disabled()) 4732 return; 4733 4734 if (!root) 4735 root = root_mem_cgroup; 4736 4737 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4738 } 4739 4740 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4741 gfp_t gfp) 4742 { 4743 int ret; 4744 4745 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4746 if (ret) 4747 goto out; 4748 4749 css_get(&memcg->css); 4750 commit_charge(folio, memcg); 4751 memcg1_commit_charge(folio, memcg); 4752 out: 4753 return ret; 4754 } 4755 4756 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4757 { 4758 struct mem_cgroup *memcg; 4759 int ret; 4760 4761 memcg = get_mem_cgroup_from_mm(mm); 4762 ret = charge_memcg(folio, memcg, gfp); 4763 css_put(&memcg->css); 4764 4765 return ret; 4766 } 4767 4768 /** 4769 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio 4770 * @folio: folio being charged 4771 * @gfp: reclaim mode 4772 * 4773 * This function is called when allocating a huge page folio, after the page has 4774 * already been obtained and charged to the appropriate hugetlb cgroup 4775 * controller (if it is enabled). 4776 * 4777 * Returns ENOMEM if the memcg is already full. 4778 * Returns 0 if either the charge was successful, or if we skip the charging. 4779 */ 4780 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp) 4781 { 4782 struct mem_cgroup *memcg = get_mem_cgroup_from_current(); 4783 int ret = 0; 4784 4785 /* 4786 * Even memcg does not account for hugetlb, we still want to update 4787 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip 4788 * charging the memcg. 4789 */ 4790 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() || 4791 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4792 goto out; 4793 4794 if (charge_memcg(folio, memcg, gfp)) 4795 ret = -ENOMEM; 4796 4797 out: 4798 mem_cgroup_put(memcg); 4799 return ret; 4800 } 4801 4802 /** 4803 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4804 * @folio: folio to charge. 4805 * @mm: mm context of the victim 4806 * @gfp: reclaim mode 4807 * @entry: swap entry for which the folio is allocated 4808 * 4809 * This function charges a folio allocated for swapin. Please call this before 4810 * adding the folio to the swapcache. 4811 * 4812 * Returns 0 on success. Otherwise, an error code is returned. 4813 */ 4814 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4815 gfp_t gfp, swp_entry_t entry) 4816 { 4817 struct mem_cgroup *memcg; 4818 unsigned short id; 4819 int ret; 4820 4821 if (mem_cgroup_disabled()) 4822 return 0; 4823 4824 id = lookup_swap_cgroup_id(entry); 4825 rcu_read_lock(); 4826 memcg = mem_cgroup_from_private_id(id); 4827 if (!memcg || !css_tryget_online(&memcg->css)) 4828 memcg = get_mem_cgroup_from_mm(mm); 4829 rcu_read_unlock(); 4830 4831 ret = charge_memcg(folio, memcg, gfp); 4832 4833 css_put(&memcg->css); 4834 return ret; 4835 } 4836 4837 struct uncharge_gather { 4838 struct mem_cgroup *memcg; 4839 unsigned long nr_memory; 4840 unsigned long pgpgout; 4841 unsigned long nr_kmem; 4842 int nid; 4843 }; 4844 4845 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4846 { 4847 memset(ug, 0, sizeof(*ug)); 4848 } 4849 4850 static void uncharge_batch(const struct uncharge_gather *ug) 4851 { 4852 if (ug->nr_memory) { 4853 memcg_uncharge(ug->memcg, ug->nr_memory); 4854 if (ug->nr_kmem) { 4855 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4856 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4857 } 4858 memcg1_oom_recover(ug->memcg); 4859 } 4860 4861 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); 4862 4863 /* drop reference from uncharge_folio */ 4864 css_put(&ug->memcg->css); 4865 } 4866 4867 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4868 { 4869 long nr_pages; 4870 struct mem_cgroup *memcg; 4871 struct obj_cgroup *objcg; 4872 4873 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4874 4875 /* 4876 * Nobody should be changing or seriously looking at 4877 * folio memcg or objcg at this point, we have fully 4878 * exclusive access to the folio. 4879 */ 4880 if (folio_memcg_kmem(folio)) { 4881 objcg = __folio_objcg(folio); 4882 /* 4883 * This get matches the put at the end of the function and 4884 * kmem pages do not hold memcg references anymore. 4885 */ 4886 memcg = get_mem_cgroup_from_objcg(objcg); 4887 } else { 4888 memcg = __folio_memcg(folio); 4889 } 4890 4891 if (!memcg) 4892 return; 4893 4894 if (ug->memcg != memcg) { 4895 if (ug->memcg) { 4896 uncharge_batch(ug); 4897 uncharge_gather_clear(ug); 4898 } 4899 ug->memcg = memcg; 4900 ug->nid = folio_nid(folio); 4901 4902 /* pairs with css_put in uncharge_batch */ 4903 css_get(&memcg->css); 4904 } 4905 4906 nr_pages = folio_nr_pages(folio); 4907 4908 if (folio_memcg_kmem(folio)) { 4909 ug->nr_memory += nr_pages; 4910 ug->nr_kmem += nr_pages; 4911 4912 folio->memcg_data = 0; 4913 obj_cgroup_put(objcg); 4914 } else { 4915 /* LRU pages aren't accounted at the root level */ 4916 if (!mem_cgroup_is_root(memcg)) 4917 ug->nr_memory += nr_pages; 4918 ug->pgpgout++; 4919 4920 WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); 4921 folio->memcg_data = 0; 4922 } 4923 4924 css_put(&memcg->css); 4925 } 4926 4927 void __mem_cgroup_uncharge(struct folio *folio) 4928 { 4929 struct uncharge_gather ug; 4930 4931 /* Don't touch folio->lru of any random page, pre-check: */ 4932 if (!folio_memcg_charged(folio)) 4933 return; 4934 4935 uncharge_gather_clear(&ug); 4936 uncharge_folio(folio, &ug); 4937 uncharge_batch(&ug); 4938 } 4939 4940 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4941 { 4942 struct uncharge_gather ug; 4943 unsigned int i; 4944 4945 uncharge_gather_clear(&ug); 4946 for (i = 0; i < folios->nr; i++) 4947 uncharge_folio(folios->folios[i], &ug); 4948 if (ug.memcg) 4949 uncharge_batch(&ug); 4950 } 4951 4952 /** 4953 * mem_cgroup_replace_folio - Charge a folio's replacement. 4954 * @old: Currently circulating folio. 4955 * @new: Replacement folio. 4956 * 4957 * Charge @new as a replacement folio for @old. @old will 4958 * be uncharged upon free. 4959 * 4960 * Both folios must be locked, @new->mapping must be set up. 4961 */ 4962 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4963 { 4964 struct mem_cgroup *memcg; 4965 long nr_pages = folio_nr_pages(new); 4966 4967 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4968 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4969 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4970 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4971 4972 if (mem_cgroup_disabled()) 4973 return; 4974 4975 /* Page cache replacement: new folio already charged? */ 4976 if (folio_memcg_charged(new)) 4977 return; 4978 4979 memcg = folio_memcg(old); 4980 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 4981 if (!memcg) 4982 return; 4983 4984 /* Force-charge the new page. The old one will be freed soon */ 4985 if (!mem_cgroup_is_root(memcg)) { 4986 page_counter_charge(&memcg->memory, nr_pages); 4987 if (do_memsw_account()) 4988 page_counter_charge(&memcg->memsw, nr_pages); 4989 } 4990 4991 css_get(&memcg->css); 4992 commit_charge(new, memcg); 4993 memcg1_commit_charge(new, memcg); 4994 } 4995 4996 /** 4997 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 4998 * @old: Currently circulating folio. 4999 * @new: Replacement folio. 5000 * 5001 * Transfer the memcg data from the old folio to the new folio for migration. 5002 * The old folio's data info will be cleared. Note that the memory counters 5003 * will remain unchanged throughout the process. 5004 * 5005 * Both folios must be locked, @new->mapping must be set up. 5006 */ 5007 void mem_cgroup_migrate(struct folio *old, struct folio *new) 5008 { 5009 struct mem_cgroup *memcg; 5010 5011 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 5012 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 5013 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 5014 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 5015 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 5016 5017 if (mem_cgroup_disabled()) 5018 return; 5019 5020 memcg = folio_memcg(old); 5021 /* 5022 * Note that it is normal to see !memcg for a hugetlb folio. 5023 * For e.g, it could have been allocated when memory_hugetlb_accounting 5024 * was not selected. 5025 */ 5026 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 5027 if (!memcg) 5028 return; 5029 5030 /* Transfer the charge and the css ref */ 5031 commit_charge(new, memcg); 5032 5033 /* Warning should never happen, so don't worry about refcount non-0 */ 5034 WARN_ON_ONCE(folio_unqueue_deferred_split(old)); 5035 old->memcg_data = 0; 5036 } 5037 5038 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 5039 EXPORT_SYMBOL(memcg_sockets_enabled_key); 5040 5041 void mem_cgroup_sk_alloc(struct sock *sk) 5042 { 5043 struct mem_cgroup *memcg; 5044 5045 if (!mem_cgroup_sockets_enabled) 5046 return; 5047 5048 /* Do not associate the sock with unrelated interrupted task's memcg. */ 5049 if (!in_task()) 5050 return; 5051 5052 rcu_read_lock(); 5053 memcg = mem_cgroup_from_task(current); 5054 if (mem_cgroup_is_root(memcg)) 5055 goto out; 5056 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 5057 goto out; 5058 if (css_tryget(&memcg->css)) 5059 sk->sk_memcg = memcg; 5060 out: 5061 rcu_read_unlock(); 5062 } 5063 5064 void mem_cgroup_sk_free(struct sock *sk) 5065 { 5066 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk); 5067 5068 if (memcg) 5069 css_put(&memcg->css); 5070 } 5071 5072 void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk) 5073 { 5074 struct mem_cgroup *memcg; 5075 5076 if (sk->sk_memcg == newsk->sk_memcg) 5077 return; 5078 5079 mem_cgroup_sk_free(newsk); 5080 5081 memcg = mem_cgroup_from_sk(sk); 5082 if (memcg) 5083 css_get(&memcg->css); 5084 5085 newsk->sk_memcg = sk->sk_memcg; 5086 } 5087 5088 /** 5089 * mem_cgroup_sk_charge - charge socket memory 5090 * @sk: socket in memcg to charge 5091 * @nr_pages: number of pages to charge 5092 * @gfp_mask: reclaim mode 5093 * 5094 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5095 * @memcg's configured limit, %false if it doesn't. 5096 */ 5097 bool mem_cgroup_sk_charge(const struct sock *sk, unsigned int nr_pages, 5098 gfp_t gfp_mask) 5099 { 5100 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk); 5101 5102 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5103 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 5104 5105 if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) { 5106 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 5107 return true; 5108 } 5109 5110 return false; 5111 } 5112 5113 /** 5114 * mem_cgroup_sk_uncharge - uncharge socket memory 5115 * @sk: socket in memcg to uncharge 5116 * @nr_pages: number of pages to uncharge 5117 */ 5118 void mem_cgroup_sk_uncharge(const struct sock *sk, unsigned int nr_pages) 5119 { 5120 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk); 5121 5122 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5123 memcg1_uncharge_skmem(memcg, nr_pages); 5124 return; 5125 } 5126 5127 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 5128 5129 refill_stock(memcg, nr_pages); 5130 } 5131 5132 void mem_cgroup_flush_workqueue(void) 5133 { 5134 flush_workqueue(memcg_wq); 5135 } 5136 5137 static int __init cgroup_memory(char *s) 5138 { 5139 char *token; 5140 5141 while ((token = strsep(&s, ",")) != NULL) { 5142 if (!*token) 5143 continue; 5144 if (!strcmp(token, "nosocket")) 5145 cgroup_memory_nosocket = true; 5146 if (!strcmp(token, "nokmem")) 5147 cgroup_memory_nokmem = true; 5148 if (!strcmp(token, "nobpf")) 5149 cgroup_memory_nobpf = true; 5150 } 5151 return 1; 5152 } 5153 __setup("cgroup.memory=", cgroup_memory); 5154 5155 /* 5156 * Memory controller init before cgroup_init() initialize root_mem_cgroup. 5157 * 5158 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 5159 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 5160 * basically everything that doesn't depend on a specific mem_cgroup structure 5161 * should be initialized from here. 5162 */ 5163 int __init mem_cgroup_init(void) 5164 { 5165 unsigned int memcg_size; 5166 int cpu; 5167 5168 /* 5169 * Currently s32 type (can refer to struct batched_lruvec_stat) is 5170 * used for per-memcg-per-cpu caching of per-node statistics. In order 5171 * to work fine, we should make sure that the overfill threshold can't 5172 * exceed S32_MAX / PAGE_SIZE. 5173 */ 5174 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 5175 5176 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 5177 memcg_hotplug_cpu_dead); 5178 5179 memcg_wq = alloc_workqueue("memcg", WQ_PERCPU, 0); 5180 WARN_ON(!memcg_wq); 5181 5182 for_each_possible_cpu(cpu) { 5183 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5184 drain_local_memcg_stock); 5185 INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work, 5186 drain_local_obj_stock); 5187 } 5188 5189 memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids); 5190 memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0, 5191 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL); 5192 5193 memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node, 5194 SLAB_PANIC | SLAB_HWCACHE_ALIGN); 5195 5196 return 0; 5197 } 5198 5199 #ifdef CONFIG_SWAP 5200 /** 5201 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 5202 * @folio: folio being added to swap 5203 * @entry: swap entry to charge 5204 * 5205 * Try to charge @folio's memcg for the swap space at @entry. 5206 * 5207 * Returns 0 on success, -ENOMEM on failure. 5208 */ 5209 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 5210 { 5211 unsigned int nr_pages = folio_nr_pages(folio); 5212 struct page_counter *counter; 5213 struct mem_cgroup *memcg; 5214 5215 if (do_memsw_account()) 5216 return 0; 5217 5218 memcg = folio_memcg(folio); 5219 5220 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 5221 if (!memcg) 5222 return 0; 5223 5224 if (!entry.val) { 5225 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5226 return 0; 5227 } 5228 5229 memcg = mem_cgroup_private_id_get_online(memcg); 5230 5231 if (!mem_cgroup_is_root(memcg) && 5232 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5233 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 5234 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5235 mem_cgroup_private_id_put(memcg); 5236 return -ENOMEM; 5237 } 5238 5239 /* Get references for the tail pages, too */ 5240 if (nr_pages > 1) 5241 mem_cgroup_private_id_get_many(memcg, nr_pages - 1); 5242 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5243 5244 swap_cgroup_record(folio, mem_cgroup_private_id(memcg), entry); 5245 5246 return 0; 5247 } 5248 5249 /** 5250 * __mem_cgroup_uncharge_swap - uncharge swap space 5251 * @entry: swap entry to uncharge 5252 * @nr_pages: the amount of swap space to uncharge 5253 */ 5254 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5255 { 5256 struct mem_cgroup *memcg; 5257 unsigned short id; 5258 5259 id = swap_cgroup_clear(entry, nr_pages); 5260 rcu_read_lock(); 5261 memcg = mem_cgroup_from_private_id(id); 5262 if (memcg) { 5263 if (!mem_cgroup_is_root(memcg)) { 5264 if (do_memsw_account()) 5265 page_counter_uncharge(&memcg->memsw, nr_pages); 5266 else 5267 page_counter_uncharge(&memcg->swap, nr_pages); 5268 } 5269 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5270 mem_cgroup_private_id_put_many(memcg, nr_pages); 5271 } 5272 rcu_read_unlock(); 5273 } 5274 5275 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5276 { 5277 long nr_swap_pages = get_nr_swap_pages(); 5278 5279 if (mem_cgroup_disabled() || do_memsw_account()) 5280 return nr_swap_pages; 5281 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5282 nr_swap_pages = min_t(long, nr_swap_pages, 5283 READ_ONCE(memcg->swap.max) - 5284 page_counter_read(&memcg->swap)); 5285 return nr_swap_pages; 5286 } 5287 5288 bool mem_cgroup_swap_full(struct folio *folio) 5289 { 5290 struct mem_cgroup *memcg; 5291 5292 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5293 5294 if (vm_swap_full()) 5295 return true; 5296 if (do_memsw_account()) 5297 return false; 5298 5299 memcg = folio_memcg(folio); 5300 if (!memcg) 5301 return false; 5302 5303 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5304 unsigned long usage = page_counter_read(&memcg->swap); 5305 5306 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5307 usage * 2 >= READ_ONCE(memcg->swap.max)) 5308 return true; 5309 } 5310 5311 return false; 5312 } 5313 5314 static int __init setup_swap_account(char *s) 5315 { 5316 bool res; 5317 5318 if (!kstrtobool(s, &res) && !res) 5319 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5320 "in favor of configuring swap control via cgroupfs. " 5321 "Please report your usecase to linux-mm@kvack.org if you " 5322 "depend on this functionality.\n"); 5323 return 1; 5324 } 5325 __setup("swapaccount=", setup_swap_account); 5326 5327 static u64 swap_current_read(struct cgroup_subsys_state *css, 5328 struct cftype *cft) 5329 { 5330 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5331 5332 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5333 } 5334 5335 static int swap_peak_show(struct seq_file *sf, void *v) 5336 { 5337 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5338 5339 return peak_show(sf, v, &memcg->swap); 5340 } 5341 5342 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, 5343 size_t nbytes, loff_t off) 5344 { 5345 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5346 5347 return peak_write(of, buf, nbytes, off, &memcg->swap, 5348 &memcg->swap_peaks); 5349 } 5350 5351 static int swap_high_show(struct seq_file *m, void *v) 5352 { 5353 return seq_puts_memcg_tunable(m, 5354 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5355 } 5356 5357 static ssize_t swap_high_write(struct kernfs_open_file *of, 5358 char *buf, size_t nbytes, loff_t off) 5359 { 5360 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5361 unsigned long high; 5362 int err; 5363 5364 buf = strstrip(buf); 5365 err = page_counter_memparse(buf, "max", &high); 5366 if (err) 5367 return err; 5368 5369 page_counter_set_high(&memcg->swap, high); 5370 5371 return nbytes; 5372 } 5373 5374 static int swap_max_show(struct seq_file *m, void *v) 5375 { 5376 return seq_puts_memcg_tunable(m, 5377 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5378 } 5379 5380 static ssize_t swap_max_write(struct kernfs_open_file *of, 5381 char *buf, size_t nbytes, loff_t off) 5382 { 5383 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5384 unsigned long max; 5385 int err; 5386 5387 buf = strstrip(buf); 5388 err = page_counter_memparse(buf, "max", &max); 5389 if (err) 5390 return err; 5391 5392 xchg(&memcg->swap.max, max); 5393 5394 return nbytes; 5395 } 5396 5397 static int swap_events_show(struct seq_file *m, void *v) 5398 { 5399 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5400 5401 seq_printf(m, "high %lu\n", 5402 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5403 seq_printf(m, "max %lu\n", 5404 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5405 seq_printf(m, "fail %lu\n", 5406 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5407 5408 return 0; 5409 } 5410 5411 static struct cftype swap_files[] = { 5412 { 5413 .name = "swap.current", 5414 .flags = CFTYPE_NOT_ON_ROOT, 5415 .read_u64 = swap_current_read, 5416 }, 5417 { 5418 .name = "swap.high", 5419 .flags = CFTYPE_NOT_ON_ROOT, 5420 .seq_show = swap_high_show, 5421 .write = swap_high_write, 5422 }, 5423 { 5424 .name = "swap.max", 5425 .flags = CFTYPE_NOT_ON_ROOT, 5426 .seq_show = swap_max_show, 5427 .write = swap_max_write, 5428 }, 5429 { 5430 .name = "swap.peak", 5431 .flags = CFTYPE_NOT_ON_ROOT, 5432 .open = peak_open, 5433 .release = peak_release, 5434 .seq_show = swap_peak_show, 5435 .write = swap_peak_write, 5436 }, 5437 { 5438 .name = "swap.events", 5439 .flags = CFTYPE_NOT_ON_ROOT, 5440 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5441 .seq_show = swap_events_show, 5442 }, 5443 { } /* terminate */ 5444 }; 5445 5446 #ifdef CONFIG_ZSWAP 5447 /** 5448 * obj_cgroup_may_zswap - check if this cgroup can zswap 5449 * @objcg: the object cgroup 5450 * 5451 * Check if the hierarchical zswap limit has been reached. 5452 * 5453 * This doesn't check for specific headroom, and it is not atomic 5454 * either. But with zswap, the size of the allocation is only known 5455 * once compression has occurred, and this optimistic pre-check avoids 5456 * spending cycles on compression when there is already no room left 5457 * or zswap is disabled altogether somewhere in the hierarchy. 5458 */ 5459 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5460 { 5461 struct mem_cgroup *memcg, *original_memcg; 5462 bool ret = true; 5463 5464 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5465 return true; 5466 5467 original_memcg = get_mem_cgroup_from_objcg(objcg); 5468 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5469 memcg = parent_mem_cgroup(memcg)) { 5470 unsigned long max = READ_ONCE(memcg->zswap_max); 5471 unsigned long pages; 5472 5473 if (max == PAGE_COUNTER_MAX) 5474 continue; 5475 if (max == 0) { 5476 ret = false; 5477 break; 5478 } 5479 5480 /* Force flush to get accurate stats for charging */ 5481 __mem_cgroup_flush_stats(memcg, true); 5482 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5483 if (pages < max) 5484 continue; 5485 ret = false; 5486 break; 5487 } 5488 mem_cgroup_put(original_memcg); 5489 return ret; 5490 } 5491 5492 /** 5493 * obj_cgroup_charge_zswap - charge compression backend memory 5494 * @objcg: the object cgroup 5495 * @size: size of compressed object 5496 * 5497 * This forces the charge after obj_cgroup_may_zswap() allowed 5498 * compression and storage in zswap for this cgroup to go ahead. 5499 */ 5500 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5501 { 5502 struct mem_cgroup *memcg; 5503 5504 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5505 return; 5506 5507 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5508 5509 /* PF_MEMALLOC context, charging must succeed */ 5510 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5511 VM_WARN_ON_ONCE(1); 5512 5513 rcu_read_lock(); 5514 memcg = obj_cgroup_memcg(objcg); 5515 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5516 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5517 rcu_read_unlock(); 5518 } 5519 5520 /** 5521 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5522 * @objcg: the object cgroup 5523 * @size: size of compressed object 5524 * 5525 * Uncharges zswap memory on page in. 5526 */ 5527 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5528 { 5529 struct mem_cgroup *memcg; 5530 5531 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5532 return; 5533 5534 obj_cgroup_uncharge(objcg, size); 5535 5536 rcu_read_lock(); 5537 memcg = obj_cgroup_memcg(objcg); 5538 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5539 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5540 rcu_read_unlock(); 5541 } 5542 5543 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5544 { 5545 /* if zswap is disabled, do not block pages going to the swapping device */ 5546 if (!zswap_is_enabled()) 5547 return true; 5548 5549 for (; memcg; memcg = parent_mem_cgroup(memcg)) 5550 if (!READ_ONCE(memcg->zswap_writeback)) 5551 return false; 5552 5553 return true; 5554 } 5555 5556 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5557 struct cftype *cft) 5558 { 5559 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5560 5561 mem_cgroup_flush_stats(memcg); 5562 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5563 } 5564 5565 static int zswap_max_show(struct seq_file *m, void *v) 5566 { 5567 return seq_puts_memcg_tunable(m, 5568 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5569 } 5570 5571 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5572 char *buf, size_t nbytes, loff_t off) 5573 { 5574 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5575 unsigned long max; 5576 int err; 5577 5578 buf = strstrip(buf); 5579 err = page_counter_memparse(buf, "max", &max); 5580 if (err) 5581 return err; 5582 5583 xchg(&memcg->zswap_max, max); 5584 5585 return nbytes; 5586 } 5587 5588 static int zswap_writeback_show(struct seq_file *m, void *v) 5589 { 5590 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5591 5592 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5593 return 0; 5594 } 5595 5596 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5597 char *buf, size_t nbytes, loff_t off) 5598 { 5599 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5600 int zswap_writeback; 5601 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5602 5603 if (parse_ret) 5604 return parse_ret; 5605 5606 if (zswap_writeback != 0 && zswap_writeback != 1) 5607 return -EINVAL; 5608 5609 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5610 return nbytes; 5611 } 5612 5613 static struct cftype zswap_files[] = { 5614 { 5615 .name = "zswap.current", 5616 .flags = CFTYPE_NOT_ON_ROOT, 5617 .read_u64 = zswap_current_read, 5618 }, 5619 { 5620 .name = "zswap.max", 5621 .flags = CFTYPE_NOT_ON_ROOT, 5622 .seq_show = zswap_max_show, 5623 .write = zswap_max_write, 5624 }, 5625 { 5626 .name = "zswap.writeback", 5627 .seq_show = zswap_writeback_show, 5628 .write = zswap_writeback_write, 5629 }, 5630 { } /* terminate */ 5631 }; 5632 #endif /* CONFIG_ZSWAP */ 5633 5634 static int __init mem_cgroup_swap_init(void) 5635 { 5636 if (mem_cgroup_disabled()) 5637 return 0; 5638 5639 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5640 #ifdef CONFIG_MEMCG_V1 5641 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5642 #endif 5643 #ifdef CONFIG_ZSWAP 5644 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5645 #endif 5646 return 0; 5647 } 5648 subsys_initcall(mem_cgroup_swap_init); 5649 5650 #endif /* CONFIG_SWAP */ 5651 5652 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid) 5653 { 5654 return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true; 5655 } 5656 5657 void mem_cgroup_show_protected_memory(struct mem_cgroup *memcg) 5658 { 5659 if (mem_cgroup_disabled() || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5660 return; 5661 5662 if (!memcg) 5663 memcg = root_mem_cgroup; 5664 5665 pr_warn("Memory cgroup min protection %lukB -- low protection %lukB", 5666 K(atomic_long_read(&memcg->memory.children_min_usage)), 5667 K(atomic_long_read(&memcg->memory.children_low_usage))); 5668 } 5669