xref: /linux/mm/memcontrol.c (revision 4b49c0ba4eeb31b44462303cac4162476b72c831)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/cgroup-defs.h>
29 #include <linux/page_counter.h>
30 #include <linux/memcontrol.h>
31 #include <linux/cgroup.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/pagevec.h>
37 #include <linux/vm_event_item.h>
38 #include <linux/smp.h>
39 #include <linux/page-flags.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bit_spinlock.h>
42 #include <linux/rcupdate.h>
43 #include <linux/limits.h>
44 #include <linux/export.h>
45 #include <linux/list.h>
46 #include <linux/mutex.h>
47 #include <linux/rbtree.h>
48 #include <linux/slab.h>
49 #include <linux/swapops.h>
50 #include <linux/spinlock.h>
51 #include <linux/fs.h>
52 #include <linux/seq_file.h>
53 #include <linux/parser.h>
54 #include <linux/vmpressure.h>
55 #include <linux/memremap.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/resume_user_mode.h>
62 #include <linux/psi.h>
63 #include <linux/seq_buf.h>
64 #include <linux/sched/isolation.h>
65 #include <linux/kmemleak.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "memcontrol-v1.h"
71 
72 #include <linux/uaccess.h>
73 
74 #include <trace/events/vmscan.h>
75 
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78 
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80 
81 /* Active memory cgroup to use from an interrupt context */
82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84 
85 /* Socket memory accounting disabled? */
86 static bool cgroup_memory_nosocket __ro_after_init;
87 
88 /* Kernel memory accounting disabled? */
89 static bool cgroup_memory_nokmem __ro_after_init;
90 
91 /* BPF memory accounting disabled? */
92 static bool cgroup_memory_nobpf __ro_after_init;
93 
94 #ifdef CONFIG_CGROUP_WRITEBACK
95 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
96 #endif
97 
task_is_dying(void)98 static inline bool task_is_dying(void)
99 {
100 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
101 		(current->flags & PF_EXITING);
102 }
103 
104 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)105 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
106 {
107 	if (!memcg)
108 		memcg = root_mem_cgroup;
109 	return &memcg->vmpressure;
110 }
111 
vmpressure_to_memcg(struct vmpressure * vmpr)112 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
113 {
114 	return container_of(vmpr, struct mem_cgroup, vmpressure);
115 }
116 
117 #define CURRENT_OBJCG_UPDATE_BIT 0
118 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
119 
120 static DEFINE_SPINLOCK(objcg_lock);
121 
mem_cgroup_kmem_disabled(void)122 bool mem_cgroup_kmem_disabled(void)
123 {
124 	return cgroup_memory_nokmem;
125 }
126 
127 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
128 				      unsigned int nr_pages);
129 
obj_cgroup_release(struct percpu_ref * ref)130 static void obj_cgroup_release(struct percpu_ref *ref)
131 {
132 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
133 	unsigned int nr_bytes;
134 	unsigned int nr_pages;
135 	unsigned long flags;
136 
137 	/*
138 	 * At this point all allocated objects are freed, and
139 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
140 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
141 	 *
142 	 * The following sequence can lead to it:
143 	 * 1) CPU0: objcg == stock->cached_objcg
144 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
145 	 *          PAGE_SIZE bytes are charged
146 	 * 3) CPU1: a process from another memcg is allocating something,
147 	 *          the stock if flushed,
148 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
149 	 * 5) CPU0: we do release this object,
150 	 *          92 bytes are added to stock->nr_bytes
151 	 * 6) CPU0: stock is flushed,
152 	 *          92 bytes are added to objcg->nr_charged_bytes
153 	 *
154 	 * In the result, nr_charged_bytes == PAGE_SIZE.
155 	 * This page will be uncharged in obj_cgroup_release().
156 	 */
157 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
158 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
159 	nr_pages = nr_bytes >> PAGE_SHIFT;
160 
161 	if (nr_pages)
162 		obj_cgroup_uncharge_pages(objcg, nr_pages);
163 
164 	spin_lock_irqsave(&objcg_lock, flags);
165 	list_del(&objcg->list);
166 	spin_unlock_irqrestore(&objcg_lock, flags);
167 
168 	percpu_ref_exit(ref);
169 	kfree_rcu(objcg, rcu);
170 }
171 
obj_cgroup_alloc(void)172 static struct obj_cgroup *obj_cgroup_alloc(void)
173 {
174 	struct obj_cgroup *objcg;
175 	int ret;
176 
177 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
178 	if (!objcg)
179 		return NULL;
180 
181 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
182 			      GFP_KERNEL);
183 	if (ret) {
184 		kfree(objcg);
185 		return NULL;
186 	}
187 	INIT_LIST_HEAD(&objcg->list);
188 	return objcg;
189 }
190 
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)191 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
192 				  struct mem_cgroup *parent)
193 {
194 	struct obj_cgroup *objcg, *iter;
195 
196 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
197 
198 	spin_lock_irq(&objcg_lock);
199 
200 	/* 1) Ready to reparent active objcg. */
201 	list_add(&objcg->list, &memcg->objcg_list);
202 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
203 	list_for_each_entry(iter, &memcg->objcg_list, list)
204 		WRITE_ONCE(iter->memcg, parent);
205 	/* 3) Move already reparented objcgs to the parent's list */
206 	list_splice(&memcg->objcg_list, &parent->objcg_list);
207 
208 	spin_unlock_irq(&objcg_lock);
209 
210 	percpu_ref_kill(&objcg->refcnt);
211 }
212 
213 /*
214  * A lot of the calls to the cache allocation functions are expected to be
215  * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
216  * conditional to this static branch, we'll have to allow modules that does
217  * kmem_cache_alloc and the such to see this symbol as well
218  */
219 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
220 EXPORT_SYMBOL(memcg_kmem_online_key);
221 
222 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
223 EXPORT_SYMBOL(memcg_bpf_enabled_key);
224 
225 /**
226  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
227  * @folio: folio of interest
228  *
229  * If memcg is bound to the default hierarchy, css of the memcg associated
230  * with @folio is returned.  The returned css remains associated with @folio
231  * until it is released.
232  *
233  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
234  * is returned.
235  */
mem_cgroup_css_from_folio(struct folio * folio)236 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
237 {
238 	struct mem_cgroup *memcg = folio_memcg(folio);
239 
240 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
241 		memcg = root_mem_cgroup;
242 
243 	return &memcg->css;
244 }
245 
246 /**
247  * page_cgroup_ino - return inode number of the memcg a page is charged to
248  * @page: the page
249  *
250  * Look up the closest online ancestor of the memory cgroup @page is charged to
251  * and return its inode number or 0 if @page is not charged to any cgroup. It
252  * is safe to call this function without holding a reference to @page.
253  *
254  * Note, this function is inherently racy, because there is nothing to prevent
255  * the cgroup inode from getting torn down and potentially reallocated a moment
256  * after page_cgroup_ino() returns, so it only should be used by callers that
257  * do not care (such as procfs interfaces).
258  */
page_cgroup_ino(struct page * page)259 ino_t page_cgroup_ino(struct page *page)
260 {
261 	struct mem_cgroup *memcg;
262 	unsigned long ino = 0;
263 
264 	rcu_read_lock();
265 	/* page_folio() is racy here, but the entire function is racy anyway */
266 	memcg = folio_memcg_check(page_folio(page));
267 
268 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
269 		memcg = parent_mem_cgroup(memcg);
270 	if (memcg)
271 		ino = cgroup_ino(memcg->css.cgroup);
272 	rcu_read_unlock();
273 	return ino;
274 }
275 
276 /* Subset of node_stat_item for memcg stats */
277 static const unsigned int memcg_node_stat_items[] = {
278 	NR_INACTIVE_ANON,
279 	NR_ACTIVE_ANON,
280 	NR_INACTIVE_FILE,
281 	NR_ACTIVE_FILE,
282 	NR_UNEVICTABLE,
283 	NR_SLAB_RECLAIMABLE_B,
284 	NR_SLAB_UNRECLAIMABLE_B,
285 	WORKINGSET_REFAULT_ANON,
286 	WORKINGSET_REFAULT_FILE,
287 	WORKINGSET_ACTIVATE_ANON,
288 	WORKINGSET_ACTIVATE_FILE,
289 	WORKINGSET_RESTORE_ANON,
290 	WORKINGSET_RESTORE_FILE,
291 	WORKINGSET_NODERECLAIM,
292 	NR_ANON_MAPPED,
293 	NR_FILE_MAPPED,
294 	NR_FILE_PAGES,
295 	NR_FILE_DIRTY,
296 	NR_WRITEBACK,
297 	NR_SHMEM,
298 	NR_SHMEM_THPS,
299 	NR_FILE_THPS,
300 	NR_ANON_THPS,
301 	NR_KERNEL_STACK_KB,
302 	NR_PAGETABLE,
303 	NR_SECONDARY_PAGETABLE,
304 #ifdef CONFIG_SWAP
305 	NR_SWAPCACHE,
306 #endif
307 #ifdef CONFIG_NUMA_BALANCING
308 	PGPROMOTE_SUCCESS,
309 #endif
310 	PGDEMOTE_KSWAPD,
311 	PGDEMOTE_DIRECT,
312 	PGDEMOTE_KHUGEPAGED,
313 };
314 
315 static const unsigned int memcg_stat_items[] = {
316 	MEMCG_SWAP,
317 	MEMCG_SOCK,
318 	MEMCG_PERCPU_B,
319 	MEMCG_VMALLOC,
320 	MEMCG_KMEM,
321 	MEMCG_ZSWAP_B,
322 	MEMCG_ZSWAPPED,
323 };
324 
325 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
326 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
327 			   ARRAY_SIZE(memcg_stat_items))
328 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
329 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
330 
init_memcg_stats(void)331 static void init_memcg_stats(void)
332 {
333 	u8 i, j = 0;
334 
335 	BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
336 
337 	memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
338 
339 	for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
340 		mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
341 
342 	for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
343 		mem_cgroup_stats_index[memcg_stat_items[i]] = j;
344 }
345 
memcg_stats_index(int idx)346 static inline int memcg_stats_index(int idx)
347 {
348 	return mem_cgroup_stats_index[idx];
349 }
350 
351 struct lruvec_stats_percpu {
352 	/* Local (CPU and cgroup) state */
353 	long state[NR_MEMCG_NODE_STAT_ITEMS];
354 
355 	/* Delta calculation for lockless upward propagation */
356 	long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
357 };
358 
359 struct lruvec_stats {
360 	/* Aggregated (CPU and subtree) state */
361 	long state[NR_MEMCG_NODE_STAT_ITEMS];
362 
363 	/* Non-hierarchical (CPU aggregated) state */
364 	long state_local[NR_MEMCG_NODE_STAT_ITEMS];
365 
366 	/* Pending child counts during tree propagation */
367 	long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
368 };
369 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)370 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
371 {
372 	struct mem_cgroup_per_node *pn;
373 	long x;
374 	int i;
375 
376 	if (mem_cgroup_disabled())
377 		return node_page_state(lruvec_pgdat(lruvec), idx);
378 
379 	i = memcg_stats_index(idx);
380 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
381 		return 0;
382 
383 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
384 	x = READ_ONCE(pn->lruvec_stats->state[i]);
385 #ifdef CONFIG_SMP
386 	if (x < 0)
387 		x = 0;
388 #endif
389 	return x;
390 }
391 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)392 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
393 				      enum node_stat_item idx)
394 {
395 	struct mem_cgroup_per_node *pn;
396 	long x;
397 	int i;
398 
399 	if (mem_cgroup_disabled())
400 		return node_page_state(lruvec_pgdat(lruvec), idx);
401 
402 	i = memcg_stats_index(idx);
403 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
404 		return 0;
405 
406 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
407 	x = READ_ONCE(pn->lruvec_stats->state_local[i]);
408 #ifdef CONFIG_SMP
409 	if (x < 0)
410 		x = 0;
411 #endif
412 	return x;
413 }
414 
415 /* Subset of vm_event_item to report for memcg event stats */
416 static const unsigned int memcg_vm_event_stat[] = {
417 #ifdef CONFIG_MEMCG_V1
418 	PGPGIN,
419 	PGPGOUT,
420 #endif
421 	PGSCAN_KSWAPD,
422 	PGSCAN_DIRECT,
423 	PGSCAN_KHUGEPAGED,
424 	PGSTEAL_KSWAPD,
425 	PGSTEAL_DIRECT,
426 	PGSTEAL_KHUGEPAGED,
427 	PGFAULT,
428 	PGMAJFAULT,
429 	PGREFILL,
430 	PGACTIVATE,
431 	PGDEACTIVATE,
432 	PGLAZYFREE,
433 	PGLAZYFREED,
434 #ifdef CONFIG_SWAP
435 	SWPIN_ZERO,
436 	SWPOUT_ZERO,
437 #endif
438 #ifdef CONFIG_ZSWAP
439 	ZSWPIN,
440 	ZSWPOUT,
441 	ZSWPWB,
442 #endif
443 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
444 	THP_FAULT_ALLOC,
445 	THP_COLLAPSE_ALLOC,
446 	THP_SWPOUT,
447 	THP_SWPOUT_FALLBACK,
448 #endif
449 #ifdef CONFIG_NUMA_BALANCING
450 	NUMA_PAGE_MIGRATE,
451 	NUMA_PTE_UPDATES,
452 	NUMA_HINT_FAULTS,
453 #endif
454 };
455 
456 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
457 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
458 
init_memcg_events(void)459 static void init_memcg_events(void)
460 {
461 	u8 i;
462 
463 	BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
464 
465 	memset(mem_cgroup_events_index, U8_MAX,
466 	       sizeof(mem_cgroup_events_index));
467 
468 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
469 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
470 }
471 
memcg_events_index(enum vm_event_item idx)472 static inline int memcg_events_index(enum vm_event_item idx)
473 {
474 	return mem_cgroup_events_index[idx];
475 }
476 
477 struct memcg_vmstats_percpu {
478 	/* Stats updates since the last flush */
479 	unsigned int			stats_updates;
480 
481 	/* Cached pointers for fast iteration in memcg_rstat_updated() */
482 	struct memcg_vmstats_percpu	*parent;
483 	struct memcg_vmstats		*vmstats;
484 
485 	/* The above should fit a single cacheline for memcg_rstat_updated() */
486 
487 	/* Local (CPU and cgroup) page state & events */
488 	long			state[MEMCG_VMSTAT_SIZE];
489 	unsigned long		events[NR_MEMCG_EVENTS];
490 
491 	/* Delta calculation for lockless upward propagation */
492 	long			state_prev[MEMCG_VMSTAT_SIZE];
493 	unsigned long		events_prev[NR_MEMCG_EVENTS];
494 } ____cacheline_aligned;
495 
496 struct memcg_vmstats {
497 	/* Aggregated (CPU and subtree) page state & events */
498 	long			state[MEMCG_VMSTAT_SIZE];
499 	unsigned long		events[NR_MEMCG_EVENTS];
500 
501 	/* Non-hierarchical (CPU aggregated) page state & events */
502 	long			state_local[MEMCG_VMSTAT_SIZE];
503 	unsigned long		events_local[NR_MEMCG_EVENTS];
504 
505 	/* Pending child counts during tree propagation */
506 	long			state_pending[MEMCG_VMSTAT_SIZE];
507 	unsigned long		events_pending[NR_MEMCG_EVENTS];
508 
509 	/* Stats updates since the last flush */
510 	atomic64_t		stats_updates;
511 };
512 
513 /*
514  * memcg and lruvec stats flushing
515  *
516  * Many codepaths leading to stats update or read are performance sensitive and
517  * adding stats flushing in such codepaths is not desirable. So, to optimize the
518  * flushing the kernel does:
519  *
520  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
521  *    rstat update tree grow unbounded.
522  *
523  * 2) Flush the stats synchronously on reader side only when there are more than
524  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
525  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
526  *    only for 2 seconds due to (1).
527  */
528 static void flush_memcg_stats_dwork(struct work_struct *w);
529 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
530 static u64 flush_last_time;
531 
532 #define FLUSH_TIME (2UL*HZ)
533 
534 /*
535  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
536  * not rely on this as part of an acquired spinlock_t lock. These functions are
537  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
538  * is sufficient.
539  */
memcg_stats_lock(void)540 static void memcg_stats_lock(void)
541 {
542 	preempt_disable_nested();
543 	VM_WARN_ON_IRQS_ENABLED();
544 }
545 
__memcg_stats_lock(void)546 static void __memcg_stats_lock(void)
547 {
548 	preempt_disable_nested();
549 }
550 
memcg_stats_unlock(void)551 static void memcg_stats_unlock(void)
552 {
553 	preempt_enable_nested();
554 }
555 
556 
memcg_vmstats_needs_flush(struct memcg_vmstats * vmstats)557 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
558 {
559 	return atomic64_read(&vmstats->stats_updates) >
560 		MEMCG_CHARGE_BATCH * num_online_cpus();
561 }
562 
memcg_rstat_updated(struct mem_cgroup * memcg,int val)563 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
564 {
565 	struct memcg_vmstats_percpu *statc;
566 	int cpu = smp_processor_id();
567 	unsigned int stats_updates;
568 
569 	if (!val)
570 		return;
571 
572 	cgroup_rstat_updated(memcg->css.cgroup, cpu);
573 	statc = this_cpu_ptr(memcg->vmstats_percpu);
574 	for (; statc; statc = statc->parent) {
575 		stats_updates = READ_ONCE(statc->stats_updates) + abs(val);
576 		WRITE_ONCE(statc->stats_updates, stats_updates);
577 		if (stats_updates < MEMCG_CHARGE_BATCH)
578 			continue;
579 
580 		/*
581 		 * If @memcg is already flush-able, increasing stats_updates is
582 		 * redundant. Avoid the overhead of the atomic update.
583 		 */
584 		if (!memcg_vmstats_needs_flush(statc->vmstats))
585 			atomic64_add(stats_updates,
586 				     &statc->vmstats->stats_updates);
587 		WRITE_ONCE(statc->stats_updates, 0);
588 	}
589 }
590 
do_flush_stats(struct mem_cgroup * memcg)591 static void do_flush_stats(struct mem_cgroup *memcg)
592 {
593 	if (mem_cgroup_is_root(memcg))
594 		WRITE_ONCE(flush_last_time, jiffies_64);
595 
596 	cgroup_rstat_flush(memcg->css.cgroup);
597 }
598 
599 /*
600  * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
601  * @memcg: root of the subtree to flush
602  *
603  * Flushing is serialized by the underlying global rstat lock. There is also a
604  * minimum amount of work to be done even if there are no stat updates to flush.
605  * Hence, we only flush the stats if the updates delta exceeds a threshold. This
606  * avoids unnecessary work and contention on the underlying lock.
607  */
mem_cgroup_flush_stats(struct mem_cgroup * memcg)608 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
609 {
610 	if (mem_cgroup_disabled())
611 		return;
612 
613 	if (!memcg)
614 		memcg = root_mem_cgroup;
615 
616 	if (memcg_vmstats_needs_flush(memcg->vmstats))
617 		do_flush_stats(memcg);
618 }
619 
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)620 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
621 {
622 	/* Only flush if the periodic flusher is one full cycle late */
623 	if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
624 		mem_cgroup_flush_stats(memcg);
625 }
626 
flush_memcg_stats_dwork(struct work_struct * w)627 static void flush_memcg_stats_dwork(struct work_struct *w)
628 {
629 	/*
630 	 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
631 	 * in latency-sensitive paths is as cheap as possible.
632 	 */
633 	do_flush_stats(root_mem_cgroup);
634 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
635 }
636 
memcg_page_state(struct mem_cgroup * memcg,int idx)637 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
638 {
639 	long x;
640 	int i = memcg_stats_index(idx);
641 
642 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
643 		return 0;
644 
645 	x = READ_ONCE(memcg->vmstats->state[i]);
646 #ifdef CONFIG_SMP
647 	if (x < 0)
648 		x = 0;
649 #endif
650 	return x;
651 }
652 
653 static int memcg_page_state_unit(int item);
654 
655 /*
656  * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
657  * up non-zero sub-page updates to 1 page as zero page updates are ignored.
658  */
memcg_state_val_in_pages(int idx,int val)659 static int memcg_state_val_in_pages(int idx, int val)
660 {
661 	int unit = memcg_page_state_unit(idx);
662 
663 	if (!val || unit == PAGE_SIZE)
664 		return val;
665 	else
666 		return max(val * unit / PAGE_SIZE, 1UL);
667 }
668 
669 /**
670  * __mod_memcg_state - update cgroup memory statistics
671  * @memcg: the memory cgroup
672  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
673  * @val: delta to add to the counter, can be negative
674  */
__mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int val)675 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
676 		       int val)
677 {
678 	int i = memcg_stats_index(idx);
679 
680 	if (mem_cgroup_disabled())
681 		return;
682 
683 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
684 		return;
685 
686 	__this_cpu_add(memcg->vmstats_percpu->state[i], val);
687 	memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
688 }
689 
690 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)691 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
692 {
693 	long x;
694 	int i = memcg_stats_index(idx);
695 
696 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
697 		return 0;
698 
699 	x = READ_ONCE(memcg->vmstats->state_local[i]);
700 #ifdef CONFIG_SMP
701 	if (x < 0)
702 		x = 0;
703 #endif
704 	return x;
705 }
706 
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)707 static void __mod_memcg_lruvec_state(struct lruvec *lruvec,
708 				     enum node_stat_item idx,
709 				     int val)
710 {
711 	struct mem_cgroup_per_node *pn;
712 	struct mem_cgroup *memcg;
713 	int i = memcg_stats_index(idx);
714 
715 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
716 		return;
717 
718 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
719 	memcg = pn->memcg;
720 
721 	/*
722 	 * The caller from rmap relies on disabled preemption because they never
723 	 * update their counter from in-interrupt context. For these two
724 	 * counters we check that the update is never performed from an
725 	 * interrupt context while other caller need to have disabled interrupt.
726 	 */
727 	__memcg_stats_lock();
728 	if (IS_ENABLED(CONFIG_DEBUG_VM)) {
729 		switch (idx) {
730 		case NR_ANON_MAPPED:
731 		case NR_FILE_MAPPED:
732 		case NR_ANON_THPS:
733 			WARN_ON_ONCE(!in_task());
734 			break;
735 		default:
736 			VM_WARN_ON_IRQS_ENABLED();
737 		}
738 	}
739 
740 	/* Update memcg */
741 	__this_cpu_add(memcg->vmstats_percpu->state[i], val);
742 
743 	/* Update lruvec */
744 	__this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
745 
746 	memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
747 	memcg_stats_unlock();
748 }
749 
750 /**
751  * __mod_lruvec_state - update lruvec memory statistics
752  * @lruvec: the lruvec
753  * @idx: the stat item
754  * @val: delta to add to the counter, can be negative
755  *
756  * The lruvec is the intersection of the NUMA node and a cgroup. This
757  * function updates the all three counters that are affected by a
758  * change of state at this level: per-node, per-cgroup, per-lruvec.
759  */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)760 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
761 			int val)
762 {
763 	/* Update node */
764 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
765 
766 	/* Update memcg and lruvec */
767 	if (!mem_cgroup_disabled())
768 		__mod_memcg_lruvec_state(lruvec, idx, val);
769 }
770 
__lruvec_stat_mod_folio(struct folio * folio,enum node_stat_item idx,int val)771 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
772 			     int val)
773 {
774 	struct mem_cgroup *memcg;
775 	pg_data_t *pgdat = folio_pgdat(folio);
776 	struct lruvec *lruvec;
777 
778 	rcu_read_lock();
779 	memcg = folio_memcg(folio);
780 	/* Untracked pages have no memcg, no lruvec. Update only the node */
781 	if (!memcg) {
782 		rcu_read_unlock();
783 		__mod_node_page_state(pgdat, idx, val);
784 		return;
785 	}
786 
787 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
788 	__mod_lruvec_state(lruvec, idx, val);
789 	rcu_read_unlock();
790 }
791 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
792 
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)793 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
794 {
795 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
796 	struct mem_cgroup *memcg;
797 	struct lruvec *lruvec;
798 
799 	rcu_read_lock();
800 	memcg = mem_cgroup_from_slab_obj(p);
801 
802 	/*
803 	 * Untracked pages have no memcg, no lruvec. Update only the
804 	 * node. If we reparent the slab objects to the root memcg,
805 	 * when we free the slab object, we need to update the per-memcg
806 	 * vmstats to keep it correct for the root memcg.
807 	 */
808 	if (!memcg) {
809 		__mod_node_page_state(pgdat, idx, val);
810 	} else {
811 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
812 		__mod_lruvec_state(lruvec, idx, val);
813 	}
814 	rcu_read_unlock();
815 }
816 
817 /**
818  * __count_memcg_events - account VM events in a cgroup
819  * @memcg: the memory cgroup
820  * @idx: the event item
821  * @count: the number of events that occurred
822  */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)823 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
824 			  unsigned long count)
825 {
826 	int i = memcg_events_index(idx);
827 
828 	if (mem_cgroup_disabled())
829 		return;
830 
831 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
832 		return;
833 
834 	memcg_stats_lock();
835 	__this_cpu_add(memcg->vmstats_percpu->events[i], count);
836 	memcg_rstat_updated(memcg, count);
837 	memcg_stats_unlock();
838 }
839 
memcg_events(struct mem_cgroup * memcg,int event)840 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
841 {
842 	int i = memcg_events_index(event);
843 
844 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
845 		return 0;
846 
847 	return READ_ONCE(memcg->vmstats->events[i]);
848 }
849 
memcg_events_local(struct mem_cgroup * memcg,int event)850 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
851 {
852 	int i = memcg_events_index(event);
853 
854 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
855 		return 0;
856 
857 	return READ_ONCE(memcg->vmstats->events_local[i]);
858 }
859 
mem_cgroup_from_task(struct task_struct * p)860 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
861 {
862 	/*
863 	 * mm_update_next_owner() may clear mm->owner to NULL
864 	 * if it races with swapoff, page migration, etc.
865 	 * So this can be called with p == NULL.
866 	 */
867 	if (unlikely(!p))
868 		return NULL;
869 
870 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
871 }
872 EXPORT_SYMBOL(mem_cgroup_from_task);
873 
active_memcg(void)874 static __always_inline struct mem_cgroup *active_memcg(void)
875 {
876 	if (!in_task())
877 		return this_cpu_read(int_active_memcg);
878 	else
879 		return current->active_memcg;
880 }
881 
882 /**
883  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
884  * @mm: mm from which memcg should be extracted. It can be NULL.
885  *
886  * Obtain a reference on mm->memcg and returns it if successful. If mm
887  * is NULL, then the memcg is chosen as follows:
888  * 1) The active memcg, if set.
889  * 2) current->mm->memcg, if available
890  * 3) root memcg
891  * If mem_cgroup is disabled, NULL is returned.
892  */
get_mem_cgroup_from_mm(struct mm_struct * mm)893 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
894 {
895 	struct mem_cgroup *memcg;
896 
897 	if (mem_cgroup_disabled())
898 		return NULL;
899 
900 	/*
901 	 * Page cache insertions can happen without an
902 	 * actual mm context, e.g. during disk probing
903 	 * on boot, loopback IO, acct() writes etc.
904 	 *
905 	 * No need to css_get on root memcg as the reference
906 	 * counting is disabled on the root level in the
907 	 * cgroup core. See CSS_NO_REF.
908 	 */
909 	if (unlikely(!mm)) {
910 		memcg = active_memcg();
911 		if (unlikely(memcg)) {
912 			/* remote memcg must hold a ref */
913 			css_get(&memcg->css);
914 			return memcg;
915 		}
916 		mm = current->mm;
917 		if (unlikely(!mm))
918 			return root_mem_cgroup;
919 	}
920 
921 	rcu_read_lock();
922 	do {
923 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
924 		if (unlikely(!memcg))
925 			memcg = root_mem_cgroup;
926 	} while (!css_tryget(&memcg->css));
927 	rcu_read_unlock();
928 	return memcg;
929 }
930 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
931 
932 /**
933  * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
934  */
get_mem_cgroup_from_current(void)935 struct mem_cgroup *get_mem_cgroup_from_current(void)
936 {
937 	struct mem_cgroup *memcg;
938 
939 	if (mem_cgroup_disabled())
940 		return NULL;
941 
942 again:
943 	rcu_read_lock();
944 	memcg = mem_cgroup_from_task(current);
945 	if (!css_tryget(&memcg->css)) {
946 		rcu_read_unlock();
947 		goto again;
948 	}
949 	rcu_read_unlock();
950 	return memcg;
951 }
952 
953 /**
954  * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
955  * @folio: folio from which memcg should be extracted.
956  */
get_mem_cgroup_from_folio(struct folio * folio)957 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
958 {
959 	struct mem_cgroup *memcg = folio_memcg(folio);
960 
961 	if (mem_cgroup_disabled())
962 		return NULL;
963 
964 	rcu_read_lock();
965 	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
966 		memcg = root_mem_cgroup;
967 	rcu_read_unlock();
968 	return memcg;
969 }
970 
971 /**
972  * mem_cgroup_iter - iterate over memory cgroup hierarchy
973  * @root: hierarchy root
974  * @prev: previously returned memcg, NULL on first invocation
975  * @reclaim: cookie for shared reclaim walks, NULL for full walks
976  *
977  * Returns references to children of the hierarchy below @root, or
978  * @root itself, or %NULL after a full round-trip.
979  *
980  * Caller must pass the return value in @prev on subsequent
981  * invocations for reference counting, or use mem_cgroup_iter_break()
982  * to cancel a hierarchy walk before the round-trip is complete.
983  *
984  * Reclaimers can specify a node in @reclaim to divide up the memcgs
985  * in the hierarchy among all concurrent reclaimers operating on the
986  * same node.
987  */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)988 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
989 				   struct mem_cgroup *prev,
990 				   struct mem_cgroup_reclaim_cookie *reclaim)
991 {
992 	struct mem_cgroup_reclaim_iter *iter;
993 	struct cgroup_subsys_state *css;
994 	struct mem_cgroup *pos;
995 	struct mem_cgroup *next;
996 
997 	if (mem_cgroup_disabled())
998 		return NULL;
999 
1000 	if (!root)
1001 		root = root_mem_cgroup;
1002 
1003 	rcu_read_lock();
1004 restart:
1005 	next = NULL;
1006 
1007 	if (reclaim) {
1008 		int gen;
1009 		int nid = reclaim->pgdat->node_id;
1010 
1011 		iter = &root->nodeinfo[nid]->iter;
1012 		gen = atomic_read(&iter->generation);
1013 
1014 		/*
1015 		 * On start, join the current reclaim iteration cycle.
1016 		 * Exit when a concurrent walker completes it.
1017 		 */
1018 		if (!prev)
1019 			reclaim->generation = gen;
1020 		else if (reclaim->generation != gen)
1021 			goto out_unlock;
1022 
1023 		pos = READ_ONCE(iter->position);
1024 	} else
1025 		pos = prev;
1026 
1027 	css = pos ? &pos->css : NULL;
1028 
1029 	while ((css = css_next_descendant_pre(css, &root->css))) {
1030 		/*
1031 		 * Verify the css and acquire a reference.  The root
1032 		 * is provided by the caller, so we know it's alive
1033 		 * and kicking, and don't take an extra reference.
1034 		 */
1035 		if (css == &root->css || css_tryget(css))
1036 			break;
1037 	}
1038 
1039 	next = mem_cgroup_from_css(css);
1040 
1041 	if (reclaim) {
1042 		/*
1043 		 * The position could have already been updated by a competing
1044 		 * thread, so check that the value hasn't changed since we read
1045 		 * it to avoid reclaiming from the same cgroup twice.
1046 		 */
1047 		if (cmpxchg(&iter->position, pos, next) != pos) {
1048 			if (css && css != &root->css)
1049 				css_put(css);
1050 			goto restart;
1051 		}
1052 
1053 		if (!next) {
1054 			atomic_inc(&iter->generation);
1055 
1056 			/*
1057 			 * Reclaimers share the hierarchy walk, and a
1058 			 * new one might jump in right at the end of
1059 			 * the hierarchy - make sure they see at least
1060 			 * one group and restart from the beginning.
1061 			 */
1062 			if (!prev)
1063 				goto restart;
1064 		}
1065 	}
1066 
1067 out_unlock:
1068 	rcu_read_unlock();
1069 	if (prev && prev != root)
1070 		css_put(&prev->css);
1071 
1072 	return next;
1073 }
1074 
1075 /**
1076  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1077  * @root: hierarchy root
1078  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1079  */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1080 void mem_cgroup_iter_break(struct mem_cgroup *root,
1081 			   struct mem_cgroup *prev)
1082 {
1083 	if (!root)
1084 		root = root_mem_cgroup;
1085 	if (prev && prev != root)
1086 		css_put(&prev->css);
1087 }
1088 
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1089 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1090 					struct mem_cgroup *dead_memcg)
1091 {
1092 	struct mem_cgroup_reclaim_iter *iter;
1093 	struct mem_cgroup_per_node *mz;
1094 	int nid;
1095 
1096 	for_each_node(nid) {
1097 		mz = from->nodeinfo[nid];
1098 		iter = &mz->iter;
1099 		cmpxchg(&iter->position, dead_memcg, NULL);
1100 	}
1101 }
1102 
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1103 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1104 {
1105 	struct mem_cgroup *memcg = dead_memcg;
1106 	struct mem_cgroup *last;
1107 
1108 	do {
1109 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1110 		last = memcg;
1111 	} while ((memcg = parent_mem_cgroup(memcg)));
1112 
1113 	/*
1114 	 * When cgroup1 non-hierarchy mode is used,
1115 	 * parent_mem_cgroup() does not walk all the way up to the
1116 	 * cgroup root (root_mem_cgroup). So we have to handle
1117 	 * dead_memcg from cgroup root separately.
1118 	 */
1119 	if (!mem_cgroup_is_root(last))
1120 		__invalidate_reclaim_iterators(root_mem_cgroup,
1121 						dead_memcg);
1122 }
1123 
1124 /**
1125  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1126  * @memcg: hierarchy root
1127  * @fn: function to call for each task
1128  * @arg: argument passed to @fn
1129  *
1130  * This function iterates over tasks attached to @memcg or to any of its
1131  * descendants and calls @fn for each task. If @fn returns a non-zero
1132  * value, the function breaks the iteration loop. Otherwise, it will iterate
1133  * over all tasks and return 0.
1134  *
1135  * This function must not be called for the root memory cgroup.
1136  */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1137 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1138 			   int (*fn)(struct task_struct *, void *), void *arg)
1139 {
1140 	struct mem_cgroup *iter;
1141 	int ret = 0;
1142 
1143 	BUG_ON(mem_cgroup_is_root(memcg));
1144 
1145 	for_each_mem_cgroup_tree(iter, memcg) {
1146 		struct css_task_iter it;
1147 		struct task_struct *task;
1148 
1149 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1150 		while (!ret && (task = css_task_iter_next(&it)))
1151 			ret = fn(task, arg);
1152 		css_task_iter_end(&it);
1153 		if (ret) {
1154 			mem_cgroup_iter_break(memcg, iter);
1155 			break;
1156 		}
1157 	}
1158 }
1159 
1160 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1161 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1162 {
1163 	struct mem_cgroup *memcg;
1164 
1165 	if (mem_cgroup_disabled())
1166 		return;
1167 
1168 	memcg = folio_memcg(folio);
1169 
1170 	if (!memcg)
1171 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1172 	else
1173 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1174 }
1175 #endif
1176 
1177 /**
1178  * folio_lruvec_lock - Lock the lruvec for a folio.
1179  * @folio: Pointer to the folio.
1180  *
1181  * These functions are safe to use under any of the following conditions:
1182  * - folio locked
1183  * - folio_test_lru false
1184  * - folio_memcg_lock()
1185  * - folio frozen (refcount of 0)
1186  *
1187  * Return: The lruvec this folio is on with its lock held.
1188  */
folio_lruvec_lock(struct folio * folio)1189 struct lruvec *folio_lruvec_lock(struct folio *folio)
1190 {
1191 	struct lruvec *lruvec = folio_lruvec(folio);
1192 
1193 	spin_lock(&lruvec->lru_lock);
1194 	lruvec_memcg_debug(lruvec, folio);
1195 
1196 	return lruvec;
1197 }
1198 
1199 /**
1200  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1201  * @folio: Pointer to the folio.
1202  *
1203  * These functions are safe to use under any of the following conditions:
1204  * - folio locked
1205  * - folio_test_lru false
1206  * - folio_memcg_lock()
1207  * - folio frozen (refcount of 0)
1208  *
1209  * Return: The lruvec this folio is on with its lock held and interrupts
1210  * disabled.
1211  */
folio_lruvec_lock_irq(struct folio * folio)1212 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1213 {
1214 	struct lruvec *lruvec = folio_lruvec(folio);
1215 
1216 	spin_lock_irq(&lruvec->lru_lock);
1217 	lruvec_memcg_debug(lruvec, folio);
1218 
1219 	return lruvec;
1220 }
1221 
1222 /**
1223  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1224  * @folio: Pointer to the folio.
1225  * @flags: Pointer to irqsave flags.
1226  *
1227  * These functions are safe to use under any of the following conditions:
1228  * - folio locked
1229  * - folio_test_lru false
1230  * - folio_memcg_lock()
1231  * - folio frozen (refcount of 0)
1232  *
1233  * Return: The lruvec this folio is on with its lock held and interrupts
1234  * disabled.
1235  */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1236 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1237 		unsigned long *flags)
1238 {
1239 	struct lruvec *lruvec = folio_lruvec(folio);
1240 
1241 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1242 	lruvec_memcg_debug(lruvec, folio);
1243 
1244 	return lruvec;
1245 }
1246 
1247 /**
1248  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1249  * @lruvec: mem_cgroup per zone lru vector
1250  * @lru: index of lru list the page is sitting on
1251  * @zid: zone id of the accounted pages
1252  * @nr_pages: positive when adding or negative when removing
1253  *
1254  * This function must be called under lru_lock, just before a page is added
1255  * to or just after a page is removed from an lru list.
1256  */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1257 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1258 				int zid, int nr_pages)
1259 {
1260 	struct mem_cgroup_per_node *mz;
1261 	unsigned long *lru_size;
1262 	long size;
1263 
1264 	if (mem_cgroup_disabled())
1265 		return;
1266 
1267 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1268 	lru_size = &mz->lru_zone_size[zid][lru];
1269 
1270 	if (nr_pages < 0)
1271 		*lru_size += nr_pages;
1272 
1273 	size = *lru_size;
1274 	if (WARN_ONCE(size < 0,
1275 		"%s(%p, %d, %d): lru_size %ld\n",
1276 		__func__, lruvec, lru, nr_pages, size)) {
1277 		VM_BUG_ON(1);
1278 		*lru_size = 0;
1279 	}
1280 
1281 	if (nr_pages > 0)
1282 		*lru_size += nr_pages;
1283 }
1284 
1285 /**
1286  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1287  * @memcg: the memory cgroup
1288  *
1289  * Returns the maximum amount of memory @mem can be charged with, in
1290  * pages.
1291  */
mem_cgroup_margin(struct mem_cgroup * memcg)1292 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1293 {
1294 	unsigned long margin = 0;
1295 	unsigned long count;
1296 	unsigned long limit;
1297 
1298 	count = page_counter_read(&memcg->memory);
1299 	limit = READ_ONCE(memcg->memory.max);
1300 	if (count < limit)
1301 		margin = limit - count;
1302 
1303 	if (do_memsw_account()) {
1304 		count = page_counter_read(&memcg->memsw);
1305 		limit = READ_ONCE(memcg->memsw.max);
1306 		if (count < limit)
1307 			margin = min(margin, limit - count);
1308 		else
1309 			margin = 0;
1310 	}
1311 
1312 	return margin;
1313 }
1314 
1315 struct memory_stat {
1316 	const char *name;
1317 	unsigned int idx;
1318 };
1319 
1320 static const struct memory_stat memory_stats[] = {
1321 	{ "anon",			NR_ANON_MAPPED			},
1322 	{ "file",			NR_FILE_PAGES			},
1323 	{ "kernel",			MEMCG_KMEM			},
1324 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1325 	{ "pagetables",			NR_PAGETABLE			},
1326 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1327 	{ "percpu",			MEMCG_PERCPU_B			},
1328 	{ "sock",			MEMCG_SOCK			},
1329 	{ "vmalloc",			MEMCG_VMALLOC			},
1330 	{ "shmem",			NR_SHMEM			},
1331 #ifdef CONFIG_ZSWAP
1332 	{ "zswap",			MEMCG_ZSWAP_B			},
1333 	{ "zswapped",			MEMCG_ZSWAPPED			},
1334 #endif
1335 	{ "file_mapped",		NR_FILE_MAPPED			},
1336 	{ "file_dirty",			NR_FILE_DIRTY			},
1337 	{ "file_writeback",		NR_WRITEBACK			},
1338 #ifdef CONFIG_SWAP
1339 	{ "swapcached",			NR_SWAPCACHE			},
1340 #endif
1341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1342 	{ "anon_thp",			NR_ANON_THPS			},
1343 	{ "file_thp",			NR_FILE_THPS			},
1344 	{ "shmem_thp",			NR_SHMEM_THPS			},
1345 #endif
1346 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1347 	{ "active_anon",		NR_ACTIVE_ANON			},
1348 	{ "inactive_file",		NR_INACTIVE_FILE		},
1349 	{ "active_file",		NR_ACTIVE_FILE			},
1350 	{ "unevictable",		NR_UNEVICTABLE			},
1351 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1352 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1353 
1354 	/* The memory events */
1355 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1356 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1357 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1358 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1359 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1360 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1361 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1362 
1363 	{ "pgdemote_kswapd",		PGDEMOTE_KSWAPD		},
1364 	{ "pgdemote_direct",		PGDEMOTE_DIRECT		},
1365 	{ "pgdemote_khugepaged",	PGDEMOTE_KHUGEPAGED	},
1366 #ifdef CONFIG_NUMA_BALANCING
1367 	{ "pgpromote_success",		PGPROMOTE_SUCCESS	},
1368 #endif
1369 };
1370 
1371 /* The actual unit of the state item, not the same as the output unit */
memcg_page_state_unit(int item)1372 static int memcg_page_state_unit(int item)
1373 {
1374 	switch (item) {
1375 	case MEMCG_PERCPU_B:
1376 	case MEMCG_ZSWAP_B:
1377 	case NR_SLAB_RECLAIMABLE_B:
1378 	case NR_SLAB_UNRECLAIMABLE_B:
1379 		return 1;
1380 	case NR_KERNEL_STACK_KB:
1381 		return SZ_1K;
1382 	default:
1383 		return PAGE_SIZE;
1384 	}
1385 }
1386 
1387 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_output_unit(int item)1388 static int memcg_page_state_output_unit(int item)
1389 {
1390 	/*
1391 	 * Workingset state is actually in pages, but we export it to userspace
1392 	 * as a scalar count of events, so special case it here.
1393 	 *
1394 	 * Demotion and promotion activities are exported in pages, consistent
1395 	 * with their global counterparts.
1396 	 */
1397 	switch (item) {
1398 	case WORKINGSET_REFAULT_ANON:
1399 	case WORKINGSET_REFAULT_FILE:
1400 	case WORKINGSET_ACTIVATE_ANON:
1401 	case WORKINGSET_ACTIVATE_FILE:
1402 	case WORKINGSET_RESTORE_ANON:
1403 	case WORKINGSET_RESTORE_FILE:
1404 	case WORKINGSET_NODERECLAIM:
1405 	case PGDEMOTE_KSWAPD:
1406 	case PGDEMOTE_DIRECT:
1407 	case PGDEMOTE_KHUGEPAGED:
1408 #ifdef CONFIG_NUMA_BALANCING
1409 	case PGPROMOTE_SUCCESS:
1410 #endif
1411 		return 1;
1412 	default:
1413 		return memcg_page_state_unit(item);
1414 	}
1415 }
1416 
memcg_page_state_output(struct mem_cgroup * memcg,int item)1417 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1418 {
1419 	return memcg_page_state(memcg, item) *
1420 		memcg_page_state_output_unit(item);
1421 }
1422 
memcg_page_state_local_output(struct mem_cgroup * memcg,int item)1423 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1424 {
1425 	return memcg_page_state_local(memcg, item) *
1426 		memcg_page_state_output_unit(item);
1427 }
1428 
memcg_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1429 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1430 {
1431 	int i;
1432 
1433 	/*
1434 	 * Provide statistics on the state of the memory subsystem as
1435 	 * well as cumulative event counters that show past behavior.
1436 	 *
1437 	 * This list is ordered following a combination of these gradients:
1438 	 * 1) generic big picture -> specifics and details
1439 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1440 	 *
1441 	 * Current memory state:
1442 	 */
1443 	mem_cgroup_flush_stats(memcg);
1444 
1445 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1446 		u64 size;
1447 
1448 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1449 		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1450 
1451 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1452 			size += memcg_page_state_output(memcg,
1453 							NR_SLAB_RECLAIMABLE_B);
1454 			seq_buf_printf(s, "slab %llu\n", size);
1455 		}
1456 	}
1457 
1458 	/* Accumulated memory events */
1459 	seq_buf_printf(s, "pgscan %lu\n",
1460 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1461 		       memcg_events(memcg, PGSCAN_DIRECT) +
1462 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1463 	seq_buf_printf(s, "pgsteal %lu\n",
1464 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1465 		       memcg_events(memcg, PGSTEAL_DIRECT) +
1466 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1467 
1468 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1469 #ifdef CONFIG_MEMCG_V1
1470 		if (memcg_vm_event_stat[i] == PGPGIN ||
1471 		    memcg_vm_event_stat[i] == PGPGOUT)
1472 			continue;
1473 #endif
1474 		seq_buf_printf(s, "%s %lu\n",
1475 			       vm_event_name(memcg_vm_event_stat[i]),
1476 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1477 	}
1478 }
1479 
memory_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1480 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1481 {
1482 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1483 		memcg_stat_format(memcg, s);
1484 	else
1485 		memcg1_stat_format(memcg, s);
1486 	if (seq_buf_has_overflowed(s))
1487 		pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1488 }
1489 
1490 /**
1491  * mem_cgroup_print_oom_context: Print OOM information relevant to
1492  * memory controller.
1493  * @memcg: The memory cgroup that went over limit
1494  * @p: Task that is going to be killed
1495  *
1496  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1497  * enabled
1498  */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1499 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1500 {
1501 	rcu_read_lock();
1502 
1503 	if (memcg) {
1504 		pr_cont(",oom_memcg=");
1505 		pr_cont_cgroup_path(memcg->css.cgroup);
1506 	} else
1507 		pr_cont(",global_oom");
1508 	if (p) {
1509 		pr_cont(",task_memcg=");
1510 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1511 	}
1512 	rcu_read_unlock();
1513 }
1514 
1515 /**
1516  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1517  * memory controller.
1518  * @memcg: The memory cgroup that went over limit
1519  */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1520 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1521 {
1522 	/* Use static buffer, for the caller is holding oom_lock. */
1523 	static char buf[PAGE_SIZE];
1524 	struct seq_buf s;
1525 
1526 	lockdep_assert_held(&oom_lock);
1527 
1528 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1529 		K((u64)page_counter_read(&memcg->memory)),
1530 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1531 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1532 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1533 			K((u64)page_counter_read(&memcg->swap)),
1534 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1535 #ifdef CONFIG_MEMCG_V1
1536 	else {
1537 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1538 			K((u64)page_counter_read(&memcg->memsw)),
1539 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1540 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1541 			K((u64)page_counter_read(&memcg->kmem)),
1542 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1543 	}
1544 #endif
1545 
1546 	pr_info("Memory cgroup stats for ");
1547 	pr_cont_cgroup_path(memcg->css.cgroup);
1548 	pr_cont(":");
1549 	seq_buf_init(&s, buf, sizeof(buf));
1550 	memory_stat_format(memcg, &s);
1551 	seq_buf_do_printk(&s, KERN_INFO);
1552 }
1553 
1554 /*
1555  * Return the memory (and swap, if configured) limit for a memcg.
1556  */
mem_cgroup_get_max(struct mem_cgroup * memcg)1557 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1558 {
1559 	unsigned long max = READ_ONCE(memcg->memory.max);
1560 
1561 	if (do_memsw_account()) {
1562 		if (mem_cgroup_swappiness(memcg)) {
1563 			/* Calculate swap excess capacity from memsw limit */
1564 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1565 
1566 			max += min(swap, (unsigned long)total_swap_pages);
1567 		}
1568 	} else {
1569 		if (mem_cgroup_swappiness(memcg))
1570 			max += min(READ_ONCE(memcg->swap.max),
1571 				   (unsigned long)total_swap_pages);
1572 	}
1573 	return max;
1574 }
1575 
mem_cgroup_size(struct mem_cgroup * memcg)1576 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1577 {
1578 	return page_counter_read(&memcg->memory);
1579 }
1580 
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1581 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1582 				     int order)
1583 {
1584 	struct oom_control oc = {
1585 		.zonelist = NULL,
1586 		.nodemask = NULL,
1587 		.memcg = memcg,
1588 		.gfp_mask = gfp_mask,
1589 		.order = order,
1590 	};
1591 	bool ret = true;
1592 
1593 	if (mutex_lock_killable(&oom_lock))
1594 		return true;
1595 
1596 	if (mem_cgroup_margin(memcg) >= (1 << order))
1597 		goto unlock;
1598 
1599 	/*
1600 	 * A few threads which were not waiting at mutex_lock_killable() can
1601 	 * fail to bail out. Therefore, check again after holding oom_lock.
1602 	 */
1603 	ret = task_is_dying() || out_of_memory(&oc);
1604 
1605 unlock:
1606 	mutex_unlock(&oom_lock);
1607 	return ret;
1608 }
1609 
1610 /*
1611  * Returns true if successfully killed one or more processes. Though in some
1612  * corner cases it can return true even without killing any process.
1613  */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1614 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1615 {
1616 	bool locked, ret;
1617 
1618 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1619 		return false;
1620 
1621 	memcg_memory_event(memcg, MEMCG_OOM);
1622 
1623 	if (!memcg1_oom_prepare(memcg, &locked))
1624 		return false;
1625 
1626 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1627 
1628 	memcg1_oom_finish(memcg, locked);
1629 
1630 	return ret;
1631 }
1632 
1633 /**
1634  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1635  * @victim: task to be killed by the OOM killer
1636  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1637  *
1638  * Returns a pointer to a memory cgroup, which has to be cleaned up
1639  * by killing all belonging OOM-killable tasks.
1640  *
1641  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1642  */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1643 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1644 					    struct mem_cgroup *oom_domain)
1645 {
1646 	struct mem_cgroup *oom_group = NULL;
1647 	struct mem_cgroup *memcg;
1648 
1649 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1650 		return NULL;
1651 
1652 	if (!oom_domain)
1653 		oom_domain = root_mem_cgroup;
1654 
1655 	rcu_read_lock();
1656 
1657 	memcg = mem_cgroup_from_task(victim);
1658 	if (mem_cgroup_is_root(memcg))
1659 		goto out;
1660 
1661 	/*
1662 	 * If the victim task has been asynchronously moved to a different
1663 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1664 	 * In this case it's better to ignore memory.group.oom.
1665 	 */
1666 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1667 		goto out;
1668 
1669 	/*
1670 	 * Traverse the memory cgroup hierarchy from the victim task's
1671 	 * cgroup up to the OOMing cgroup (or root) to find the
1672 	 * highest-level memory cgroup with oom.group set.
1673 	 */
1674 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1675 		if (READ_ONCE(memcg->oom_group))
1676 			oom_group = memcg;
1677 
1678 		if (memcg == oom_domain)
1679 			break;
1680 	}
1681 
1682 	if (oom_group)
1683 		css_get(&oom_group->css);
1684 out:
1685 	rcu_read_unlock();
1686 
1687 	return oom_group;
1688 }
1689 
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1690 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1691 {
1692 	pr_info("Tasks in ");
1693 	pr_cont_cgroup_path(memcg->css.cgroup);
1694 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1695 }
1696 
1697 struct memcg_stock_pcp {
1698 	local_lock_t stock_lock;
1699 	struct mem_cgroup *cached; /* this never be root cgroup */
1700 	unsigned int nr_pages;
1701 
1702 	struct obj_cgroup *cached_objcg;
1703 	struct pglist_data *cached_pgdat;
1704 	unsigned int nr_bytes;
1705 	int nr_slab_reclaimable_b;
1706 	int nr_slab_unreclaimable_b;
1707 
1708 	struct work_struct work;
1709 	unsigned long flags;
1710 #define FLUSHING_CACHED_CHARGE	0
1711 };
1712 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
1713 	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
1714 };
1715 static DEFINE_MUTEX(percpu_charge_mutex);
1716 
1717 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
1718 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
1719 				     struct mem_cgroup *root_memcg);
1720 
1721 /**
1722  * consume_stock: Try to consume stocked charge on this cpu.
1723  * @memcg: memcg to consume from.
1724  * @nr_pages: how many pages to charge.
1725  *
1726  * The charges will only happen if @memcg matches the current cpu's memcg
1727  * stock, and at least @nr_pages are available in that stock.  Failure to
1728  * service an allocation will refill the stock.
1729  *
1730  * returns true if successful, false otherwise.
1731  */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1732 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1733 {
1734 	struct memcg_stock_pcp *stock;
1735 	unsigned int stock_pages;
1736 	unsigned long flags;
1737 	bool ret = false;
1738 
1739 	if (nr_pages > MEMCG_CHARGE_BATCH)
1740 		return ret;
1741 
1742 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
1743 
1744 	stock = this_cpu_ptr(&memcg_stock);
1745 	stock_pages = READ_ONCE(stock->nr_pages);
1746 	if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) {
1747 		WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages);
1748 		ret = true;
1749 	}
1750 
1751 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1752 
1753 	return ret;
1754 }
1755 
1756 /*
1757  * Returns stocks cached in percpu and reset cached information.
1758  */
drain_stock(struct memcg_stock_pcp * stock)1759 static void drain_stock(struct memcg_stock_pcp *stock)
1760 {
1761 	unsigned int stock_pages = READ_ONCE(stock->nr_pages);
1762 	struct mem_cgroup *old = READ_ONCE(stock->cached);
1763 
1764 	if (!old)
1765 		return;
1766 
1767 	if (stock_pages) {
1768 		page_counter_uncharge(&old->memory, stock_pages);
1769 		if (do_memsw_account())
1770 			page_counter_uncharge(&old->memsw, stock_pages);
1771 
1772 		WRITE_ONCE(stock->nr_pages, 0);
1773 	}
1774 
1775 	css_put(&old->css);
1776 	WRITE_ONCE(stock->cached, NULL);
1777 }
1778 
drain_local_stock(struct work_struct * dummy)1779 static void drain_local_stock(struct work_struct *dummy)
1780 {
1781 	struct memcg_stock_pcp *stock;
1782 	struct obj_cgroup *old = NULL;
1783 	unsigned long flags;
1784 
1785 	/*
1786 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
1787 	 * drain_stock races is that we always operate on local CPU stock
1788 	 * here with IRQ disabled
1789 	 */
1790 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
1791 
1792 	stock = this_cpu_ptr(&memcg_stock);
1793 	old = drain_obj_stock(stock);
1794 	drain_stock(stock);
1795 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1796 
1797 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1798 	obj_cgroup_put(old);
1799 }
1800 
1801 /*
1802  * Cache charges(val) to local per_cpu area.
1803  * This will be consumed by consume_stock() function, later.
1804  */
__refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1805 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1806 {
1807 	struct memcg_stock_pcp *stock;
1808 	unsigned int stock_pages;
1809 
1810 	stock = this_cpu_ptr(&memcg_stock);
1811 	if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
1812 		drain_stock(stock);
1813 		css_get(&memcg->css);
1814 		WRITE_ONCE(stock->cached, memcg);
1815 	}
1816 	stock_pages = READ_ONCE(stock->nr_pages) + nr_pages;
1817 	WRITE_ONCE(stock->nr_pages, stock_pages);
1818 
1819 	if (stock_pages > MEMCG_CHARGE_BATCH)
1820 		drain_stock(stock);
1821 }
1822 
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1823 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1824 {
1825 	unsigned long flags;
1826 
1827 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
1828 	__refill_stock(memcg, nr_pages);
1829 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1830 }
1831 
1832 /*
1833  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1834  * of the hierarchy under it.
1835  */
drain_all_stock(struct mem_cgroup * root_memcg)1836 void drain_all_stock(struct mem_cgroup *root_memcg)
1837 {
1838 	int cpu, curcpu;
1839 
1840 	/* If someone's already draining, avoid adding running more workers. */
1841 	if (!mutex_trylock(&percpu_charge_mutex))
1842 		return;
1843 	/*
1844 	 * Notify other cpus that system-wide "drain" is running
1845 	 * We do not care about races with the cpu hotplug because cpu down
1846 	 * as well as workers from this path always operate on the local
1847 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1848 	 */
1849 	migrate_disable();
1850 	curcpu = smp_processor_id();
1851 	for_each_online_cpu(cpu) {
1852 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1853 		struct mem_cgroup *memcg;
1854 		bool flush = false;
1855 
1856 		rcu_read_lock();
1857 		memcg = READ_ONCE(stock->cached);
1858 		if (memcg && READ_ONCE(stock->nr_pages) &&
1859 		    mem_cgroup_is_descendant(memcg, root_memcg))
1860 			flush = true;
1861 		else if (obj_stock_flush_required(stock, root_memcg))
1862 			flush = true;
1863 		rcu_read_unlock();
1864 
1865 		if (flush &&
1866 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1867 			if (cpu == curcpu)
1868 				drain_local_stock(&stock->work);
1869 			else if (!cpu_is_isolated(cpu))
1870 				schedule_work_on(cpu, &stock->work);
1871 		}
1872 	}
1873 	migrate_enable();
1874 	mutex_unlock(&percpu_charge_mutex);
1875 }
1876 
memcg_hotplug_cpu_dead(unsigned int cpu)1877 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1878 {
1879 	struct memcg_stock_pcp *stock;
1880 
1881 	stock = &per_cpu(memcg_stock, cpu);
1882 	drain_stock(stock);
1883 
1884 	return 0;
1885 }
1886 
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)1887 static unsigned long reclaim_high(struct mem_cgroup *memcg,
1888 				  unsigned int nr_pages,
1889 				  gfp_t gfp_mask)
1890 {
1891 	unsigned long nr_reclaimed = 0;
1892 
1893 	do {
1894 		unsigned long pflags;
1895 
1896 		if (page_counter_read(&memcg->memory) <=
1897 		    READ_ONCE(memcg->memory.high))
1898 			continue;
1899 
1900 		memcg_memory_event(memcg, MEMCG_HIGH);
1901 
1902 		psi_memstall_enter(&pflags);
1903 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
1904 							gfp_mask,
1905 							MEMCG_RECLAIM_MAY_SWAP,
1906 							NULL);
1907 		psi_memstall_leave(&pflags);
1908 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1909 		 !mem_cgroup_is_root(memcg));
1910 
1911 	return nr_reclaimed;
1912 }
1913 
high_work_func(struct work_struct * work)1914 static void high_work_func(struct work_struct *work)
1915 {
1916 	struct mem_cgroup *memcg;
1917 
1918 	memcg = container_of(work, struct mem_cgroup, high_work);
1919 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1920 }
1921 
1922 /*
1923  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
1924  * enough to still cause a significant slowdown in most cases, while still
1925  * allowing diagnostics and tracing to proceed without becoming stuck.
1926  */
1927 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
1928 
1929 /*
1930  * When calculating the delay, we use these either side of the exponentiation to
1931  * maintain precision and scale to a reasonable number of jiffies (see the table
1932  * below.
1933  *
1934  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
1935  *   overage ratio to a delay.
1936  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
1937  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
1938  *   to produce a reasonable delay curve.
1939  *
1940  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
1941  * reasonable delay curve compared to precision-adjusted overage, not
1942  * penalising heavily at first, but still making sure that growth beyond the
1943  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
1944  * example, with a high of 100 megabytes:
1945  *
1946  *  +-------+------------------------+
1947  *  | usage | time to allocate in ms |
1948  *  +-------+------------------------+
1949  *  | 100M  |                      0 |
1950  *  | 101M  |                      6 |
1951  *  | 102M  |                     25 |
1952  *  | 103M  |                     57 |
1953  *  | 104M  |                    102 |
1954  *  | 105M  |                    159 |
1955  *  | 106M  |                    230 |
1956  *  | 107M  |                    313 |
1957  *  | 108M  |                    409 |
1958  *  | 109M  |                    518 |
1959  *  | 110M  |                    639 |
1960  *  | 111M  |                    774 |
1961  *  | 112M  |                    921 |
1962  *  | 113M  |                   1081 |
1963  *  | 114M  |                   1254 |
1964  *  | 115M  |                   1439 |
1965  *  | 116M  |                   1638 |
1966  *  | 117M  |                   1849 |
1967  *  | 118M  |                   2000 |
1968  *  | 119M  |                   2000 |
1969  *  | 120M  |                   2000 |
1970  *  +-------+------------------------+
1971  */
1972  #define MEMCG_DELAY_PRECISION_SHIFT 20
1973  #define MEMCG_DELAY_SCALING_SHIFT 14
1974 
calculate_overage(unsigned long usage,unsigned long high)1975 static u64 calculate_overage(unsigned long usage, unsigned long high)
1976 {
1977 	u64 overage;
1978 
1979 	if (usage <= high)
1980 		return 0;
1981 
1982 	/*
1983 	 * Prevent division by 0 in overage calculation by acting as if
1984 	 * it was a threshold of 1 page
1985 	 */
1986 	high = max(high, 1UL);
1987 
1988 	overage = usage - high;
1989 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
1990 	return div64_u64(overage, high);
1991 }
1992 
mem_find_max_overage(struct mem_cgroup * memcg)1993 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
1994 {
1995 	u64 overage, max_overage = 0;
1996 
1997 	do {
1998 		overage = calculate_overage(page_counter_read(&memcg->memory),
1999 					    READ_ONCE(memcg->memory.high));
2000 		max_overage = max(overage, max_overage);
2001 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2002 		 !mem_cgroup_is_root(memcg));
2003 
2004 	return max_overage;
2005 }
2006 
swap_find_max_overage(struct mem_cgroup * memcg)2007 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2008 {
2009 	u64 overage, max_overage = 0;
2010 
2011 	do {
2012 		overage = calculate_overage(page_counter_read(&memcg->swap),
2013 					    READ_ONCE(memcg->swap.high));
2014 		if (overage)
2015 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2016 		max_overage = max(overage, max_overage);
2017 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2018 		 !mem_cgroup_is_root(memcg));
2019 
2020 	return max_overage;
2021 }
2022 
2023 /*
2024  * Get the number of jiffies that we should penalise a mischievous cgroup which
2025  * is exceeding its memory.high by checking both it and its ancestors.
2026  */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2027 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2028 					  unsigned int nr_pages,
2029 					  u64 max_overage)
2030 {
2031 	unsigned long penalty_jiffies;
2032 
2033 	if (!max_overage)
2034 		return 0;
2035 
2036 	/*
2037 	 * We use overage compared to memory.high to calculate the number of
2038 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2039 	 * fairly lenient on small overages, and increasingly harsh when the
2040 	 * memcg in question makes it clear that it has no intention of stopping
2041 	 * its crazy behaviour, so we exponentially increase the delay based on
2042 	 * overage amount.
2043 	 */
2044 	penalty_jiffies = max_overage * max_overage * HZ;
2045 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2046 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2047 
2048 	/*
2049 	 * Factor in the task's own contribution to the overage, such that four
2050 	 * N-sized allocations are throttled approximately the same as one
2051 	 * 4N-sized allocation.
2052 	 *
2053 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2054 	 * larger the current charge patch is than that.
2055 	 */
2056 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2057 }
2058 
2059 /*
2060  * Reclaims memory over the high limit. Called directly from
2061  * try_charge() (context permitting), as well as from the userland
2062  * return path where reclaim is always able to block.
2063  */
mem_cgroup_handle_over_high(gfp_t gfp_mask)2064 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2065 {
2066 	unsigned long penalty_jiffies;
2067 	unsigned long pflags;
2068 	unsigned long nr_reclaimed;
2069 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2070 	int nr_retries = MAX_RECLAIM_RETRIES;
2071 	struct mem_cgroup *memcg;
2072 	bool in_retry = false;
2073 
2074 	if (likely(!nr_pages))
2075 		return;
2076 
2077 	memcg = get_mem_cgroup_from_mm(current->mm);
2078 	current->memcg_nr_pages_over_high = 0;
2079 
2080 retry_reclaim:
2081 	/*
2082 	 * Bail if the task is already exiting. Unlike memory.max,
2083 	 * memory.high enforcement isn't as strict, and there is no
2084 	 * OOM killer involved, which means the excess could already
2085 	 * be much bigger (and still growing) than it could for
2086 	 * memory.max; the dying task could get stuck in fruitless
2087 	 * reclaim for a long time, which isn't desirable.
2088 	 */
2089 	if (task_is_dying())
2090 		goto out;
2091 
2092 	/*
2093 	 * The allocating task should reclaim at least the batch size, but for
2094 	 * subsequent retries we only want to do what's necessary to prevent oom
2095 	 * or breaching resource isolation.
2096 	 *
2097 	 * This is distinct from memory.max or page allocator behaviour because
2098 	 * memory.high is currently batched, whereas memory.max and the page
2099 	 * allocator run every time an allocation is made.
2100 	 */
2101 	nr_reclaimed = reclaim_high(memcg,
2102 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2103 				    gfp_mask);
2104 
2105 	/*
2106 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2107 	 * allocators proactively to slow down excessive growth.
2108 	 */
2109 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2110 					       mem_find_max_overage(memcg));
2111 
2112 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2113 						swap_find_max_overage(memcg));
2114 
2115 	/*
2116 	 * Clamp the max delay per usermode return so as to still keep the
2117 	 * application moving forwards and also permit diagnostics, albeit
2118 	 * extremely slowly.
2119 	 */
2120 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2121 
2122 	/*
2123 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2124 	 * that it's not even worth doing, in an attempt to be nice to those who
2125 	 * go only a small amount over their memory.high value and maybe haven't
2126 	 * been aggressively reclaimed enough yet.
2127 	 */
2128 	if (penalty_jiffies <= HZ / 100)
2129 		goto out;
2130 
2131 	/*
2132 	 * If reclaim is making forward progress but we're still over
2133 	 * memory.high, we want to encourage that rather than doing allocator
2134 	 * throttling.
2135 	 */
2136 	if (nr_reclaimed || nr_retries--) {
2137 		in_retry = true;
2138 		goto retry_reclaim;
2139 	}
2140 
2141 	/*
2142 	 * Reclaim didn't manage to push usage below the limit, slow
2143 	 * this allocating task down.
2144 	 *
2145 	 * If we exit early, we're guaranteed to die (since
2146 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2147 	 * need to account for any ill-begotten jiffies to pay them off later.
2148 	 */
2149 	psi_memstall_enter(&pflags);
2150 	schedule_timeout_killable(penalty_jiffies);
2151 	psi_memstall_leave(&pflags);
2152 
2153 out:
2154 	css_put(&memcg->css);
2155 }
2156 
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2157 int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2158 		     unsigned int nr_pages)
2159 {
2160 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2161 	int nr_retries = MAX_RECLAIM_RETRIES;
2162 	struct mem_cgroup *mem_over_limit;
2163 	struct page_counter *counter;
2164 	unsigned long nr_reclaimed;
2165 	bool passed_oom = false;
2166 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2167 	bool drained = false;
2168 	bool raised_max_event = false;
2169 	unsigned long pflags;
2170 
2171 retry:
2172 	if (consume_stock(memcg, nr_pages))
2173 		return 0;
2174 
2175 	if (!do_memsw_account() ||
2176 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2177 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2178 			goto done_restock;
2179 		if (do_memsw_account())
2180 			page_counter_uncharge(&memcg->memsw, batch);
2181 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2182 	} else {
2183 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2184 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2185 	}
2186 
2187 	if (batch > nr_pages) {
2188 		batch = nr_pages;
2189 		goto retry;
2190 	}
2191 
2192 	/*
2193 	 * Prevent unbounded recursion when reclaim operations need to
2194 	 * allocate memory. This might exceed the limits temporarily,
2195 	 * but we prefer facilitating memory reclaim and getting back
2196 	 * under the limit over triggering OOM kills in these cases.
2197 	 */
2198 	if (unlikely(current->flags & PF_MEMALLOC))
2199 		goto force;
2200 
2201 	if (unlikely(task_in_memcg_oom(current)))
2202 		goto nomem;
2203 
2204 	if (!gfpflags_allow_blocking(gfp_mask))
2205 		goto nomem;
2206 
2207 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2208 	raised_max_event = true;
2209 
2210 	psi_memstall_enter(&pflags);
2211 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2212 						    gfp_mask, reclaim_options, NULL);
2213 	psi_memstall_leave(&pflags);
2214 
2215 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2216 		goto retry;
2217 
2218 	if (!drained) {
2219 		drain_all_stock(mem_over_limit);
2220 		drained = true;
2221 		goto retry;
2222 	}
2223 
2224 	if (gfp_mask & __GFP_NORETRY)
2225 		goto nomem;
2226 	/*
2227 	 * Even though the limit is exceeded at this point, reclaim
2228 	 * may have been able to free some pages.  Retry the charge
2229 	 * before killing the task.
2230 	 *
2231 	 * Only for regular pages, though: huge pages are rather
2232 	 * unlikely to succeed so close to the limit, and we fall back
2233 	 * to regular pages anyway in case of failure.
2234 	 */
2235 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2236 		goto retry;
2237 	/*
2238 	 * At task move, charge accounts can be doubly counted. So, it's
2239 	 * better to wait until the end of task_move if something is going on.
2240 	 */
2241 	if (memcg1_wait_acct_move(mem_over_limit))
2242 		goto retry;
2243 
2244 	if (nr_retries--)
2245 		goto retry;
2246 
2247 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2248 		goto nomem;
2249 
2250 	/* Avoid endless loop for tasks bypassed by the oom killer */
2251 	if (passed_oom && task_is_dying())
2252 		goto nomem;
2253 
2254 	/*
2255 	 * keep retrying as long as the memcg oom killer is able to make
2256 	 * a forward progress or bypass the charge if the oom killer
2257 	 * couldn't make any progress.
2258 	 */
2259 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2260 			   get_order(nr_pages * PAGE_SIZE))) {
2261 		passed_oom = true;
2262 		nr_retries = MAX_RECLAIM_RETRIES;
2263 		goto retry;
2264 	}
2265 nomem:
2266 	/*
2267 	 * Memcg doesn't have a dedicated reserve for atomic
2268 	 * allocations. But like the global atomic pool, we need to
2269 	 * put the burden of reclaim on regular allocation requests
2270 	 * and let these go through as privileged allocations.
2271 	 */
2272 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2273 		return -ENOMEM;
2274 force:
2275 	/*
2276 	 * If the allocation has to be enforced, don't forget to raise
2277 	 * a MEMCG_MAX event.
2278 	 */
2279 	if (!raised_max_event)
2280 		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2281 
2282 	/*
2283 	 * The allocation either can't fail or will lead to more memory
2284 	 * being freed very soon.  Allow memory usage go over the limit
2285 	 * temporarily by force charging it.
2286 	 */
2287 	page_counter_charge(&memcg->memory, nr_pages);
2288 	if (do_memsw_account())
2289 		page_counter_charge(&memcg->memsw, nr_pages);
2290 
2291 	return 0;
2292 
2293 done_restock:
2294 	if (batch > nr_pages)
2295 		refill_stock(memcg, batch - nr_pages);
2296 
2297 	/*
2298 	 * If the hierarchy is above the normal consumption range, schedule
2299 	 * reclaim on returning to userland.  We can perform reclaim here
2300 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2301 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2302 	 * not recorded as it most likely matches current's and won't
2303 	 * change in the meantime.  As high limit is checked again before
2304 	 * reclaim, the cost of mismatch is negligible.
2305 	 */
2306 	do {
2307 		bool mem_high, swap_high;
2308 
2309 		mem_high = page_counter_read(&memcg->memory) >
2310 			READ_ONCE(memcg->memory.high);
2311 		swap_high = page_counter_read(&memcg->swap) >
2312 			READ_ONCE(memcg->swap.high);
2313 
2314 		/* Don't bother a random interrupted task */
2315 		if (!in_task()) {
2316 			if (mem_high) {
2317 				schedule_work(&memcg->high_work);
2318 				break;
2319 			}
2320 			continue;
2321 		}
2322 
2323 		if (mem_high || swap_high) {
2324 			/*
2325 			 * The allocating tasks in this cgroup will need to do
2326 			 * reclaim or be throttled to prevent further growth
2327 			 * of the memory or swap footprints.
2328 			 *
2329 			 * Target some best-effort fairness between the tasks,
2330 			 * and distribute reclaim work and delay penalties
2331 			 * based on how much each task is actually allocating.
2332 			 */
2333 			current->memcg_nr_pages_over_high += batch;
2334 			set_notify_resume(current);
2335 			break;
2336 		}
2337 	} while ((memcg = parent_mem_cgroup(memcg)));
2338 
2339 	/*
2340 	 * Reclaim is set up above to be called from the userland
2341 	 * return path. But also attempt synchronous reclaim to avoid
2342 	 * excessive overrun while the task is still inside the
2343 	 * kernel. If this is successful, the return path will see it
2344 	 * when it rechecks the overage and simply bail out.
2345 	 */
2346 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2347 	    !(current->flags & PF_MEMALLOC) &&
2348 	    gfpflags_allow_blocking(gfp_mask))
2349 		mem_cgroup_handle_over_high(gfp_mask);
2350 	return 0;
2351 }
2352 
2353 /**
2354  * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2355  * @memcg: memcg previously charged.
2356  * @nr_pages: number of pages previously charged.
2357  */
mem_cgroup_cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2358 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2359 {
2360 	if (mem_cgroup_is_root(memcg))
2361 		return;
2362 
2363 	page_counter_uncharge(&memcg->memory, nr_pages);
2364 	if (do_memsw_account())
2365 		page_counter_uncharge(&memcg->memsw, nr_pages);
2366 }
2367 
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2368 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2369 {
2370 	VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2371 	/*
2372 	 * Any of the following ensures page's memcg stability:
2373 	 *
2374 	 * - the page lock
2375 	 * - LRU isolation
2376 	 * - folio_memcg_lock()
2377 	 * - exclusive reference
2378 	 * - mem_cgroup_trylock_pages()
2379 	 */
2380 	folio->memcg_data = (unsigned long)memcg;
2381 }
2382 
2383 /**
2384  * mem_cgroup_commit_charge - commit a previously successful try_charge().
2385  * @folio: folio to commit the charge to.
2386  * @memcg: memcg previously charged.
2387  */
mem_cgroup_commit_charge(struct folio * folio,struct mem_cgroup * memcg)2388 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2389 {
2390 	css_get(&memcg->css);
2391 	commit_charge(folio, memcg);
2392 	memcg1_commit_charge(folio, memcg);
2393 }
2394 
__mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2395 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg,
2396 				       struct pglist_data *pgdat,
2397 				       enum node_stat_item idx, int nr)
2398 {
2399 	struct mem_cgroup *memcg;
2400 	struct lruvec *lruvec;
2401 
2402 	rcu_read_lock();
2403 	memcg = obj_cgroup_memcg(objcg);
2404 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2405 	__mod_memcg_lruvec_state(lruvec, idx, nr);
2406 	rcu_read_unlock();
2407 }
2408 
2409 static __always_inline
mem_cgroup_from_obj_folio(struct folio * folio,void * p)2410 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2411 {
2412 	/*
2413 	 * Slab objects are accounted individually, not per-page.
2414 	 * Memcg membership data for each individual object is saved in
2415 	 * slab->obj_exts.
2416 	 */
2417 	if (folio_test_slab(folio)) {
2418 		struct slabobj_ext *obj_exts;
2419 		struct slab *slab;
2420 		unsigned int off;
2421 
2422 		slab = folio_slab(folio);
2423 		obj_exts = slab_obj_exts(slab);
2424 		if (!obj_exts)
2425 			return NULL;
2426 
2427 		off = obj_to_index(slab->slab_cache, slab, p);
2428 		if (obj_exts[off].objcg)
2429 			return obj_cgroup_memcg(obj_exts[off].objcg);
2430 
2431 		return NULL;
2432 	}
2433 
2434 	/*
2435 	 * folio_memcg_check() is used here, because in theory we can encounter
2436 	 * a folio where the slab flag has been cleared already, but
2437 	 * slab->obj_exts has not been freed yet
2438 	 * folio_memcg_check() will guarantee that a proper memory
2439 	 * cgroup pointer or NULL will be returned.
2440 	 */
2441 	return folio_memcg_check(folio);
2442 }
2443 
2444 /*
2445  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2446  * It is not suitable for objects allocated using vmalloc().
2447  *
2448  * A passed kernel object must be a slab object or a generic kernel page.
2449  *
2450  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2451  * cgroup_mutex, etc.
2452  */
mem_cgroup_from_slab_obj(void * p)2453 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2454 {
2455 	if (mem_cgroup_disabled())
2456 		return NULL;
2457 
2458 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2459 }
2460 
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)2461 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2462 {
2463 	struct obj_cgroup *objcg = NULL;
2464 
2465 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2466 		objcg = rcu_dereference(memcg->objcg);
2467 		if (likely(objcg && obj_cgroup_tryget(objcg)))
2468 			break;
2469 		objcg = NULL;
2470 	}
2471 	return objcg;
2472 }
2473 
current_objcg_update(void)2474 static struct obj_cgroup *current_objcg_update(void)
2475 {
2476 	struct mem_cgroup *memcg;
2477 	struct obj_cgroup *old, *objcg = NULL;
2478 
2479 	do {
2480 		/* Atomically drop the update bit. */
2481 		old = xchg(&current->objcg, NULL);
2482 		if (old) {
2483 			old = (struct obj_cgroup *)
2484 				((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2485 			obj_cgroup_put(old);
2486 
2487 			old = NULL;
2488 		}
2489 
2490 		/* If new objcg is NULL, no reason for the second atomic update. */
2491 		if (!current->mm || (current->flags & PF_KTHREAD))
2492 			return NULL;
2493 
2494 		/*
2495 		 * Release the objcg pointer from the previous iteration,
2496 		 * if try_cmpxcg() below fails.
2497 		 */
2498 		if (unlikely(objcg)) {
2499 			obj_cgroup_put(objcg);
2500 			objcg = NULL;
2501 		}
2502 
2503 		/*
2504 		 * Obtain the new objcg pointer. The current task can be
2505 		 * asynchronously moved to another memcg and the previous
2506 		 * memcg can be offlined. So let's get the memcg pointer
2507 		 * and try get a reference to objcg under a rcu read lock.
2508 		 */
2509 
2510 		rcu_read_lock();
2511 		memcg = mem_cgroup_from_task(current);
2512 		objcg = __get_obj_cgroup_from_memcg(memcg);
2513 		rcu_read_unlock();
2514 
2515 		/*
2516 		 * Try set up a new objcg pointer atomically. If it
2517 		 * fails, it means the update flag was set concurrently, so
2518 		 * the whole procedure should be repeated.
2519 		 */
2520 	} while (!try_cmpxchg(&current->objcg, &old, objcg));
2521 
2522 	return objcg;
2523 }
2524 
current_obj_cgroup(void)2525 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2526 {
2527 	struct mem_cgroup *memcg;
2528 	struct obj_cgroup *objcg;
2529 
2530 	if (in_task()) {
2531 		memcg = current->active_memcg;
2532 		if (unlikely(memcg))
2533 			goto from_memcg;
2534 
2535 		objcg = READ_ONCE(current->objcg);
2536 		if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2537 			objcg = current_objcg_update();
2538 		/*
2539 		 * Objcg reference is kept by the task, so it's safe
2540 		 * to use the objcg by the current task.
2541 		 */
2542 		return objcg;
2543 	}
2544 
2545 	memcg = this_cpu_read(int_active_memcg);
2546 	if (unlikely(memcg))
2547 		goto from_memcg;
2548 
2549 	return NULL;
2550 
2551 from_memcg:
2552 	objcg = NULL;
2553 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2554 		/*
2555 		 * Memcg pointer is protected by scope (see set_active_memcg())
2556 		 * and is pinning the corresponding objcg, so objcg can't go
2557 		 * away and can be used within the scope without any additional
2558 		 * protection.
2559 		 */
2560 		objcg = rcu_dereference_check(memcg->objcg, 1);
2561 		if (likely(objcg))
2562 			break;
2563 	}
2564 
2565 	return objcg;
2566 }
2567 
get_obj_cgroup_from_folio(struct folio * folio)2568 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2569 {
2570 	struct obj_cgroup *objcg;
2571 
2572 	if (!memcg_kmem_online())
2573 		return NULL;
2574 
2575 	if (folio_memcg_kmem(folio)) {
2576 		objcg = __folio_objcg(folio);
2577 		obj_cgroup_get(objcg);
2578 	} else {
2579 		struct mem_cgroup *memcg;
2580 
2581 		rcu_read_lock();
2582 		memcg = __folio_memcg(folio);
2583 		if (memcg)
2584 			objcg = __get_obj_cgroup_from_memcg(memcg);
2585 		else
2586 			objcg = NULL;
2587 		rcu_read_unlock();
2588 	}
2589 	return objcg;
2590 }
2591 
2592 /*
2593  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2594  * @objcg: object cgroup to uncharge
2595  * @nr_pages: number of pages to uncharge
2596  */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)2597 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2598 				      unsigned int nr_pages)
2599 {
2600 	struct mem_cgroup *memcg;
2601 
2602 	memcg = get_mem_cgroup_from_objcg(objcg);
2603 
2604 	mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2605 	memcg1_account_kmem(memcg, -nr_pages);
2606 	refill_stock(memcg, nr_pages);
2607 
2608 	css_put(&memcg->css);
2609 }
2610 
2611 /*
2612  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2613  * @objcg: object cgroup to charge
2614  * @gfp: reclaim mode
2615  * @nr_pages: number of pages to charge
2616  *
2617  * Returns 0 on success, an error code on failure.
2618  */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)2619 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2620 				   unsigned int nr_pages)
2621 {
2622 	struct mem_cgroup *memcg;
2623 	int ret;
2624 
2625 	memcg = get_mem_cgroup_from_objcg(objcg);
2626 
2627 	ret = try_charge_memcg(memcg, gfp, nr_pages);
2628 	if (ret)
2629 		goto out;
2630 
2631 	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2632 	memcg1_account_kmem(memcg, nr_pages);
2633 out:
2634 	css_put(&memcg->css);
2635 
2636 	return ret;
2637 }
2638 
2639 /**
2640  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2641  * @page: page to charge
2642  * @gfp: reclaim mode
2643  * @order: allocation order
2644  *
2645  * Returns 0 on success, an error code on failure.
2646  */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)2647 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2648 {
2649 	struct obj_cgroup *objcg;
2650 	int ret = 0;
2651 
2652 	objcg = current_obj_cgroup();
2653 	if (objcg) {
2654 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2655 		if (!ret) {
2656 			obj_cgroup_get(objcg);
2657 			page->memcg_data = (unsigned long)objcg |
2658 				MEMCG_DATA_KMEM;
2659 			return 0;
2660 		}
2661 	}
2662 	return ret;
2663 }
2664 
2665 /**
2666  * __memcg_kmem_uncharge_page: uncharge a kmem page
2667  * @page: page to uncharge
2668  * @order: allocation order
2669  */
__memcg_kmem_uncharge_page(struct page * page,int order)2670 void __memcg_kmem_uncharge_page(struct page *page, int order)
2671 {
2672 	struct folio *folio = page_folio(page);
2673 	struct obj_cgroup *objcg;
2674 	unsigned int nr_pages = 1 << order;
2675 
2676 	if (!folio_memcg_kmem(folio))
2677 		return;
2678 
2679 	objcg = __folio_objcg(folio);
2680 	obj_cgroup_uncharge_pages(objcg, nr_pages);
2681 	folio->memcg_data = 0;
2682 	obj_cgroup_put(objcg);
2683 }
2684 
mod_objcg_state(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2685 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
2686 		     enum node_stat_item idx, int nr)
2687 {
2688 	struct memcg_stock_pcp *stock;
2689 	struct obj_cgroup *old = NULL;
2690 	unsigned long flags;
2691 	int *bytes;
2692 
2693 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2694 	stock = this_cpu_ptr(&memcg_stock);
2695 
2696 	/*
2697 	 * Save vmstat data in stock and skip vmstat array update unless
2698 	 * accumulating over a page of vmstat data or when pgdat or idx
2699 	 * changes.
2700 	 */
2701 	if (READ_ONCE(stock->cached_objcg) != objcg) {
2702 		old = drain_obj_stock(stock);
2703 		obj_cgroup_get(objcg);
2704 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2705 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2706 		WRITE_ONCE(stock->cached_objcg, objcg);
2707 		stock->cached_pgdat = pgdat;
2708 	} else if (stock->cached_pgdat != pgdat) {
2709 		/* Flush the existing cached vmstat data */
2710 		struct pglist_data *oldpg = stock->cached_pgdat;
2711 
2712 		if (stock->nr_slab_reclaimable_b) {
2713 			__mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2714 					  stock->nr_slab_reclaimable_b);
2715 			stock->nr_slab_reclaimable_b = 0;
2716 		}
2717 		if (stock->nr_slab_unreclaimable_b) {
2718 			__mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2719 					  stock->nr_slab_unreclaimable_b);
2720 			stock->nr_slab_unreclaimable_b = 0;
2721 		}
2722 		stock->cached_pgdat = pgdat;
2723 	}
2724 
2725 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2726 					       : &stock->nr_slab_unreclaimable_b;
2727 	/*
2728 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2729 	 * cached locally at least once before pushing it out.
2730 	 */
2731 	if (!*bytes) {
2732 		*bytes = nr;
2733 		nr = 0;
2734 	} else {
2735 		*bytes += nr;
2736 		if (abs(*bytes) > PAGE_SIZE) {
2737 			nr = *bytes;
2738 			*bytes = 0;
2739 		} else {
2740 			nr = 0;
2741 		}
2742 	}
2743 	if (nr)
2744 		__mod_objcg_mlstate(objcg, pgdat, idx, nr);
2745 
2746 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2747 	obj_cgroup_put(old);
2748 }
2749 
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)2750 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
2751 {
2752 	struct memcg_stock_pcp *stock;
2753 	unsigned long flags;
2754 	bool ret = false;
2755 
2756 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2757 
2758 	stock = this_cpu_ptr(&memcg_stock);
2759 	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2760 		stock->nr_bytes -= nr_bytes;
2761 		ret = true;
2762 	}
2763 
2764 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2765 
2766 	return ret;
2767 }
2768 
drain_obj_stock(struct memcg_stock_pcp * stock)2769 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2770 {
2771 	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2772 
2773 	if (!old)
2774 		return NULL;
2775 
2776 	if (stock->nr_bytes) {
2777 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2778 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2779 
2780 		if (nr_pages) {
2781 			struct mem_cgroup *memcg;
2782 
2783 			memcg = get_mem_cgroup_from_objcg(old);
2784 
2785 			mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2786 			memcg1_account_kmem(memcg, -nr_pages);
2787 			__refill_stock(memcg, nr_pages);
2788 
2789 			css_put(&memcg->css);
2790 		}
2791 
2792 		/*
2793 		 * The leftover is flushed to the centralized per-memcg value.
2794 		 * On the next attempt to refill obj stock it will be moved
2795 		 * to a per-cpu stock (probably, on an other CPU), see
2796 		 * refill_obj_stock().
2797 		 *
2798 		 * How often it's flushed is a trade-off between the memory
2799 		 * limit enforcement accuracy and potential CPU contention,
2800 		 * so it might be changed in the future.
2801 		 */
2802 		atomic_add(nr_bytes, &old->nr_charged_bytes);
2803 		stock->nr_bytes = 0;
2804 	}
2805 
2806 	/*
2807 	 * Flush the vmstat data in current stock
2808 	 */
2809 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2810 		if (stock->nr_slab_reclaimable_b) {
2811 			__mod_objcg_mlstate(old, stock->cached_pgdat,
2812 					  NR_SLAB_RECLAIMABLE_B,
2813 					  stock->nr_slab_reclaimable_b);
2814 			stock->nr_slab_reclaimable_b = 0;
2815 		}
2816 		if (stock->nr_slab_unreclaimable_b) {
2817 			__mod_objcg_mlstate(old, stock->cached_pgdat,
2818 					  NR_SLAB_UNRECLAIMABLE_B,
2819 					  stock->nr_slab_unreclaimable_b);
2820 			stock->nr_slab_unreclaimable_b = 0;
2821 		}
2822 		stock->cached_pgdat = NULL;
2823 	}
2824 
2825 	WRITE_ONCE(stock->cached_objcg, NULL);
2826 	/*
2827 	 * The `old' objects needs to be released by the caller via
2828 	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
2829 	 */
2830 	return old;
2831 }
2832 
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2833 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2834 				     struct mem_cgroup *root_memcg)
2835 {
2836 	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
2837 	struct mem_cgroup *memcg;
2838 
2839 	if (objcg) {
2840 		memcg = obj_cgroup_memcg(objcg);
2841 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
2842 			return true;
2843 	}
2844 
2845 	return false;
2846 }
2847 
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge)2848 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2849 			     bool allow_uncharge)
2850 {
2851 	struct memcg_stock_pcp *stock;
2852 	struct obj_cgroup *old = NULL;
2853 	unsigned long flags;
2854 	unsigned int nr_pages = 0;
2855 
2856 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2857 
2858 	stock = this_cpu_ptr(&memcg_stock);
2859 	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
2860 		old = drain_obj_stock(stock);
2861 		obj_cgroup_get(objcg);
2862 		WRITE_ONCE(stock->cached_objcg, objcg);
2863 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2864 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2865 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
2866 	}
2867 	stock->nr_bytes += nr_bytes;
2868 
2869 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
2870 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2871 		stock->nr_bytes &= (PAGE_SIZE - 1);
2872 	}
2873 
2874 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2875 	obj_cgroup_put(old);
2876 
2877 	if (nr_pages)
2878 		obj_cgroup_uncharge_pages(objcg, nr_pages);
2879 }
2880 
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)2881 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
2882 {
2883 	unsigned int nr_pages, nr_bytes;
2884 	int ret;
2885 
2886 	if (consume_obj_stock(objcg, size))
2887 		return 0;
2888 
2889 	/*
2890 	 * In theory, objcg->nr_charged_bytes can have enough
2891 	 * pre-charged bytes to satisfy the allocation. However,
2892 	 * flushing objcg->nr_charged_bytes requires two atomic
2893 	 * operations, and objcg->nr_charged_bytes can't be big.
2894 	 * The shared objcg->nr_charged_bytes can also become a
2895 	 * performance bottleneck if all tasks of the same memcg are
2896 	 * trying to update it. So it's better to ignore it and try
2897 	 * grab some new pages. The stock's nr_bytes will be flushed to
2898 	 * objcg->nr_charged_bytes later on when objcg changes.
2899 	 *
2900 	 * The stock's nr_bytes may contain enough pre-charged bytes
2901 	 * to allow one less page from being charged, but we can't rely
2902 	 * on the pre-charged bytes not being changed outside of
2903 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
2904 	 * pre-charged bytes as well when charging pages. To avoid a
2905 	 * page uncharge right after a page charge, we set the
2906 	 * allow_uncharge flag to false when calling refill_obj_stock()
2907 	 * to temporarily allow the pre-charged bytes to exceed the page
2908 	 * size limit. The maximum reachable value of the pre-charged
2909 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
2910 	 * race.
2911 	 */
2912 	nr_pages = size >> PAGE_SHIFT;
2913 	nr_bytes = size & (PAGE_SIZE - 1);
2914 
2915 	if (nr_bytes)
2916 		nr_pages += 1;
2917 
2918 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
2919 	if (!ret && nr_bytes)
2920 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
2921 
2922 	return ret;
2923 }
2924 
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)2925 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
2926 {
2927 	refill_obj_stock(objcg, size, true);
2928 }
2929 
obj_full_size(struct kmem_cache * s)2930 static inline size_t obj_full_size(struct kmem_cache *s)
2931 {
2932 	/*
2933 	 * For each accounted object there is an extra space which is used
2934 	 * to store obj_cgroup membership. Charge it too.
2935 	 */
2936 	return s->size + sizeof(struct obj_cgroup *);
2937 }
2938 
__memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2939 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2940 				  gfp_t flags, size_t size, void **p)
2941 {
2942 	struct obj_cgroup *objcg;
2943 	struct slab *slab;
2944 	unsigned long off;
2945 	size_t i;
2946 
2947 	/*
2948 	 * The obtained objcg pointer is safe to use within the current scope,
2949 	 * defined by current task or set_active_memcg() pair.
2950 	 * obj_cgroup_get() is used to get a permanent reference.
2951 	 */
2952 	objcg = current_obj_cgroup();
2953 	if (!objcg)
2954 		return true;
2955 
2956 	/*
2957 	 * slab_alloc_node() avoids the NULL check, so we might be called with a
2958 	 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
2959 	 * the whole requested size.
2960 	 * return success as there's nothing to free back
2961 	 */
2962 	if (unlikely(*p == NULL))
2963 		return true;
2964 
2965 	flags &= gfp_allowed_mask;
2966 
2967 	if (lru) {
2968 		int ret;
2969 		struct mem_cgroup *memcg;
2970 
2971 		memcg = get_mem_cgroup_from_objcg(objcg);
2972 		ret = memcg_list_lru_alloc(memcg, lru, flags);
2973 		css_put(&memcg->css);
2974 
2975 		if (ret)
2976 			return false;
2977 	}
2978 
2979 	if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s)))
2980 		return false;
2981 
2982 	for (i = 0; i < size; i++) {
2983 		slab = virt_to_slab(p[i]);
2984 
2985 		if (!slab_obj_exts(slab) &&
2986 		    alloc_slab_obj_exts(slab, s, flags, false)) {
2987 			obj_cgroup_uncharge(objcg, obj_full_size(s));
2988 			continue;
2989 		}
2990 
2991 		off = obj_to_index(s, slab, p[i]);
2992 		obj_cgroup_get(objcg);
2993 		slab_obj_exts(slab)[off].objcg = objcg;
2994 		mod_objcg_state(objcg, slab_pgdat(slab),
2995 				cache_vmstat_idx(s), obj_full_size(s));
2996 	}
2997 
2998 	return true;
2999 }
3000 
__memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects,struct slabobj_ext * obj_exts)3001 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3002 			    void **p, int objects, struct slabobj_ext *obj_exts)
3003 {
3004 	for (int i = 0; i < objects; i++) {
3005 		struct obj_cgroup *objcg;
3006 		unsigned int off;
3007 
3008 		off = obj_to_index(s, slab, p[i]);
3009 		objcg = obj_exts[off].objcg;
3010 		if (!objcg)
3011 			continue;
3012 
3013 		obj_exts[off].objcg = NULL;
3014 		obj_cgroup_uncharge(objcg, obj_full_size(s));
3015 		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
3016 				-obj_full_size(s));
3017 		obj_cgroup_put(objcg);
3018 	}
3019 }
3020 
3021 /*
3022  * Because folio_memcg(head) is not set on tails, set it now.
3023  */
split_page_memcg(struct page * head,int old_order,int new_order)3024 void split_page_memcg(struct page *head, int old_order, int new_order)
3025 {
3026 	struct folio *folio = page_folio(head);
3027 	int i;
3028 	unsigned int old_nr = 1 << old_order;
3029 	unsigned int new_nr = 1 << new_order;
3030 
3031 	if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3032 		return;
3033 
3034 	for (i = new_nr; i < old_nr; i += new_nr)
3035 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3036 
3037 	if (folio_memcg_kmem(folio))
3038 		obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3039 	else
3040 		css_get_many(&folio_memcg(folio)->css, old_nr / new_nr - 1);
3041 }
3042 
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3043 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3044 {
3045 	unsigned long val;
3046 
3047 	if (mem_cgroup_is_root(memcg)) {
3048 		/*
3049 		 * Approximate root's usage from global state. This isn't
3050 		 * perfect, but the root usage was always an approximation.
3051 		 */
3052 		val = global_node_page_state(NR_FILE_PAGES) +
3053 			global_node_page_state(NR_ANON_MAPPED);
3054 		if (swap)
3055 			val += total_swap_pages - get_nr_swap_pages();
3056 	} else {
3057 		if (!swap)
3058 			val = page_counter_read(&memcg->memory);
3059 		else
3060 			val = page_counter_read(&memcg->memsw);
3061 	}
3062 	return val;
3063 }
3064 
memcg_online_kmem(struct mem_cgroup * memcg)3065 static int memcg_online_kmem(struct mem_cgroup *memcg)
3066 {
3067 	struct obj_cgroup *objcg;
3068 
3069 	if (mem_cgroup_kmem_disabled())
3070 		return 0;
3071 
3072 	if (unlikely(mem_cgroup_is_root(memcg)))
3073 		return 0;
3074 
3075 	objcg = obj_cgroup_alloc();
3076 	if (!objcg)
3077 		return -ENOMEM;
3078 
3079 	objcg->memcg = memcg;
3080 	rcu_assign_pointer(memcg->objcg, objcg);
3081 	obj_cgroup_get(objcg);
3082 	memcg->orig_objcg = objcg;
3083 
3084 	static_branch_enable(&memcg_kmem_online_key);
3085 
3086 	memcg->kmemcg_id = memcg->id.id;
3087 
3088 	return 0;
3089 }
3090 
memcg_offline_kmem(struct mem_cgroup * memcg)3091 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3092 {
3093 	struct mem_cgroup *parent;
3094 
3095 	if (mem_cgroup_kmem_disabled())
3096 		return;
3097 
3098 	if (unlikely(mem_cgroup_is_root(memcg)))
3099 		return;
3100 
3101 	parent = parent_mem_cgroup(memcg);
3102 	if (!parent)
3103 		parent = root_mem_cgroup;
3104 
3105 	memcg_reparent_objcgs(memcg, parent);
3106 
3107 	/*
3108 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3109 	 * corresponding to this cgroup are guaranteed to remain empty.
3110 	 * The ordering is imposed by list_lru_node->lock taken by
3111 	 * memcg_reparent_list_lrus().
3112 	 */
3113 	memcg_reparent_list_lrus(memcg, parent);
3114 }
3115 
3116 #ifdef CONFIG_CGROUP_WRITEBACK
3117 
3118 #include <trace/events/writeback.h>
3119 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3120 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3121 {
3122 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3123 }
3124 
memcg_wb_domain_exit(struct mem_cgroup * memcg)3125 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3126 {
3127 	wb_domain_exit(&memcg->cgwb_domain);
3128 }
3129 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3130 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3131 {
3132 	wb_domain_size_changed(&memcg->cgwb_domain);
3133 }
3134 
mem_cgroup_wb_domain(struct bdi_writeback * wb)3135 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3136 {
3137 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3138 
3139 	if (!memcg->css.parent)
3140 		return NULL;
3141 
3142 	return &memcg->cgwb_domain;
3143 }
3144 
3145 /**
3146  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3147  * @wb: bdi_writeback in question
3148  * @pfilepages: out parameter for number of file pages
3149  * @pheadroom: out parameter for number of allocatable pages according to memcg
3150  * @pdirty: out parameter for number of dirty pages
3151  * @pwriteback: out parameter for number of pages under writeback
3152  *
3153  * Determine the numbers of file, headroom, dirty, and writeback pages in
3154  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3155  * is a bit more involved.
3156  *
3157  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3158  * headroom is calculated as the lowest headroom of itself and the
3159  * ancestors.  Note that this doesn't consider the actual amount of
3160  * available memory in the system.  The caller should further cap
3161  * *@pheadroom accordingly.
3162  */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3163 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3164 			 unsigned long *pheadroom, unsigned long *pdirty,
3165 			 unsigned long *pwriteback)
3166 {
3167 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3168 	struct mem_cgroup *parent;
3169 
3170 	mem_cgroup_flush_stats_ratelimited(memcg);
3171 
3172 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3173 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3174 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3175 			memcg_page_state(memcg, NR_ACTIVE_FILE);
3176 
3177 	*pheadroom = PAGE_COUNTER_MAX;
3178 	while ((parent = parent_mem_cgroup(memcg))) {
3179 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3180 					    READ_ONCE(memcg->memory.high));
3181 		unsigned long used = page_counter_read(&memcg->memory);
3182 
3183 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3184 		memcg = parent;
3185 	}
3186 }
3187 
3188 /*
3189  * Foreign dirty flushing
3190  *
3191  * There's an inherent mismatch between memcg and writeback.  The former
3192  * tracks ownership per-page while the latter per-inode.  This was a
3193  * deliberate design decision because honoring per-page ownership in the
3194  * writeback path is complicated, may lead to higher CPU and IO overheads
3195  * and deemed unnecessary given that write-sharing an inode across
3196  * different cgroups isn't a common use-case.
3197  *
3198  * Combined with inode majority-writer ownership switching, this works well
3199  * enough in most cases but there are some pathological cases.  For
3200  * example, let's say there are two cgroups A and B which keep writing to
3201  * different but confined parts of the same inode.  B owns the inode and
3202  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
3203  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3204  * triggering background writeback.  A will be slowed down without a way to
3205  * make writeback of the dirty pages happen.
3206  *
3207  * Conditions like the above can lead to a cgroup getting repeatedly and
3208  * severely throttled after making some progress after each
3209  * dirty_expire_interval while the underlying IO device is almost
3210  * completely idle.
3211  *
3212  * Solving this problem completely requires matching the ownership tracking
3213  * granularities between memcg and writeback in either direction.  However,
3214  * the more egregious behaviors can be avoided by simply remembering the
3215  * most recent foreign dirtying events and initiating remote flushes on
3216  * them when local writeback isn't enough to keep the memory clean enough.
3217  *
3218  * The following two functions implement such mechanism.  When a foreign
3219  * page - a page whose memcg and writeback ownerships don't match - is
3220  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3221  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
3222  * decides that the memcg needs to sleep due to high dirty ratio, it calls
3223  * mem_cgroup_flush_foreign() which queues writeback on the recorded
3224  * foreign bdi_writebacks which haven't expired.  Both the numbers of
3225  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3226  * limited to MEMCG_CGWB_FRN_CNT.
3227  *
3228  * The mechanism only remembers IDs and doesn't hold any object references.
3229  * As being wrong occasionally doesn't matter, updates and accesses to the
3230  * records are lockless and racy.
3231  */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)3232 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3233 					     struct bdi_writeback *wb)
3234 {
3235 	struct mem_cgroup *memcg = folio_memcg(folio);
3236 	struct memcg_cgwb_frn *frn;
3237 	u64 now = get_jiffies_64();
3238 	u64 oldest_at = now;
3239 	int oldest = -1;
3240 	int i;
3241 
3242 	trace_track_foreign_dirty(folio, wb);
3243 
3244 	/*
3245 	 * Pick the slot to use.  If there is already a slot for @wb, keep
3246 	 * using it.  If not replace the oldest one which isn't being
3247 	 * written out.
3248 	 */
3249 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3250 		frn = &memcg->cgwb_frn[i];
3251 		if (frn->bdi_id == wb->bdi->id &&
3252 		    frn->memcg_id == wb->memcg_css->id)
3253 			break;
3254 		if (time_before64(frn->at, oldest_at) &&
3255 		    atomic_read(&frn->done.cnt) == 1) {
3256 			oldest = i;
3257 			oldest_at = frn->at;
3258 		}
3259 	}
3260 
3261 	if (i < MEMCG_CGWB_FRN_CNT) {
3262 		/*
3263 		 * Re-using an existing one.  Update timestamp lazily to
3264 		 * avoid making the cacheline hot.  We want them to be
3265 		 * reasonably up-to-date and significantly shorter than
3266 		 * dirty_expire_interval as that's what expires the record.
3267 		 * Use the shorter of 1s and dirty_expire_interval / 8.
3268 		 */
3269 		unsigned long update_intv =
3270 			min_t(unsigned long, HZ,
3271 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3272 
3273 		if (time_before64(frn->at, now - update_intv))
3274 			frn->at = now;
3275 	} else if (oldest >= 0) {
3276 		/* replace the oldest free one */
3277 		frn = &memcg->cgwb_frn[oldest];
3278 		frn->bdi_id = wb->bdi->id;
3279 		frn->memcg_id = wb->memcg_css->id;
3280 		frn->at = now;
3281 	}
3282 }
3283 
3284 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)3285 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3286 {
3287 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3288 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3289 	u64 now = jiffies_64;
3290 	int i;
3291 
3292 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3293 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3294 
3295 		/*
3296 		 * If the record is older than dirty_expire_interval,
3297 		 * writeback on it has already started.  No need to kick it
3298 		 * off again.  Also, don't start a new one if there's
3299 		 * already one in flight.
3300 		 */
3301 		if (time_after64(frn->at, now - intv) &&
3302 		    atomic_read(&frn->done.cnt) == 1) {
3303 			frn->at = 0;
3304 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3305 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3306 					       WB_REASON_FOREIGN_FLUSH,
3307 					       &frn->done);
3308 		}
3309 	}
3310 }
3311 
3312 #else	/* CONFIG_CGROUP_WRITEBACK */
3313 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3314 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3315 {
3316 	return 0;
3317 }
3318 
memcg_wb_domain_exit(struct mem_cgroup * memcg)3319 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3320 {
3321 }
3322 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3323 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3324 {
3325 }
3326 
3327 #endif	/* CONFIG_CGROUP_WRITEBACK */
3328 
3329 /*
3330  * Private memory cgroup IDR
3331  *
3332  * Swap-out records and page cache shadow entries need to store memcg
3333  * references in constrained space, so we maintain an ID space that is
3334  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3335  * memory-controlled cgroups to 64k.
3336  *
3337  * However, there usually are many references to the offline CSS after
3338  * the cgroup has been destroyed, such as page cache or reclaimable
3339  * slab objects, that don't need to hang on to the ID. We want to keep
3340  * those dead CSS from occupying IDs, or we might quickly exhaust the
3341  * relatively small ID space and prevent the creation of new cgroups
3342  * even when there are much fewer than 64k cgroups - possibly none.
3343  *
3344  * Maintain a private 16-bit ID space for memcg, and allow the ID to
3345  * be freed and recycled when it's no longer needed, which is usually
3346  * when the CSS is offlined.
3347  *
3348  * The only exception to that are records of swapped out tmpfs/shmem
3349  * pages that need to be attributed to live ancestors on swapin. But
3350  * those references are manageable from userspace.
3351  */
3352 
3353 #define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3354 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3355 
mem_cgroup_id_remove(struct mem_cgroup * memcg)3356 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3357 {
3358 	if (memcg->id.id > 0) {
3359 		xa_erase(&mem_cgroup_ids, memcg->id.id);
3360 		memcg->id.id = 0;
3361 	}
3362 }
3363 
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)3364 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3365 					   unsigned int n)
3366 {
3367 	refcount_add(n, &memcg->id.ref);
3368 }
3369 
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)3370 void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3371 {
3372 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
3373 		mem_cgroup_id_remove(memcg);
3374 
3375 		/* Memcg ID pins CSS */
3376 		css_put(&memcg->css);
3377 	}
3378 }
3379 
mem_cgroup_id_put(struct mem_cgroup * memcg)3380 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3381 {
3382 	mem_cgroup_id_put_many(memcg, 1);
3383 }
3384 
3385 /**
3386  * mem_cgroup_from_id - look up a memcg from a memcg id
3387  * @id: the memcg id to look up
3388  *
3389  * Caller must hold rcu_read_lock().
3390  */
mem_cgroup_from_id(unsigned short id)3391 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3392 {
3393 	WARN_ON_ONCE(!rcu_read_lock_held());
3394 	return xa_load(&mem_cgroup_ids, id);
3395 }
3396 
3397 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)3398 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3399 {
3400 	struct cgroup *cgrp;
3401 	struct cgroup_subsys_state *css;
3402 	struct mem_cgroup *memcg;
3403 
3404 	cgrp = cgroup_get_from_id(ino);
3405 	if (IS_ERR(cgrp))
3406 		return ERR_CAST(cgrp);
3407 
3408 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3409 	if (css)
3410 		memcg = container_of(css, struct mem_cgroup, css);
3411 	else
3412 		memcg = ERR_PTR(-ENOENT);
3413 
3414 	cgroup_put(cgrp);
3415 
3416 	return memcg;
3417 }
3418 #endif
3419 
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)3420 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3421 {
3422 	struct mem_cgroup_per_node *pn;
3423 
3424 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
3425 	if (!pn)
3426 		return false;
3427 
3428 	pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3429 					GFP_KERNEL_ACCOUNT, node);
3430 	if (!pn->lruvec_stats)
3431 		goto fail;
3432 
3433 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3434 						   GFP_KERNEL_ACCOUNT);
3435 	if (!pn->lruvec_stats_percpu)
3436 		goto fail;
3437 
3438 	lruvec_init(&pn->lruvec);
3439 	pn->memcg = memcg;
3440 
3441 	memcg->nodeinfo[node] = pn;
3442 	return true;
3443 fail:
3444 	kfree(pn->lruvec_stats);
3445 	kfree(pn);
3446 	return false;
3447 }
3448 
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)3449 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3450 {
3451 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3452 
3453 	if (!pn)
3454 		return;
3455 
3456 	free_percpu(pn->lruvec_stats_percpu);
3457 	kfree(pn->lruvec_stats);
3458 	kfree(pn);
3459 }
3460 
__mem_cgroup_free(struct mem_cgroup * memcg)3461 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3462 {
3463 	int node;
3464 
3465 	obj_cgroup_put(memcg->orig_objcg);
3466 
3467 	for_each_node(node)
3468 		free_mem_cgroup_per_node_info(memcg, node);
3469 	memcg1_free_events(memcg);
3470 	kfree(memcg->vmstats);
3471 	free_percpu(memcg->vmstats_percpu);
3472 	kfree(memcg);
3473 }
3474 
mem_cgroup_free(struct mem_cgroup * memcg)3475 static void mem_cgroup_free(struct mem_cgroup *memcg)
3476 {
3477 	lru_gen_exit_memcg(memcg);
3478 	memcg_wb_domain_exit(memcg);
3479 	__mem_cgroup_free(memcg);
3480 }
3481 
mem_cgroup_alloc(struct mem_cgroup * parent)3482 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3483 {
3484 	struct memcg_vmstats_percpu *statc, *pstatc;
3485 	struct mem_cgroup *memcg;
3486 	int node, cpu;
3487 	int __maybe_unused i;
3488 	long error;
3489 
3490 	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
3491 	if (!memcg)
3492 		return ERR_PTR(-ENOMEM);
3493 
3494 	error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3495 			 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3496 	if (error)
3497 		goto fail;
3498 	error = -ENOMEM;
3499 
3500 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3501 				 GFP_KERNEL_ACCOUNT);
3502 	if (!memcg->vmstats)
3503 		goto fail;
3504 
3505 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3506 						 GFP_KERNEL_ACCOUNT);
3507 	if (!memcg->vmstats_percpu)
3508 		goto fail;
3509 
3510 	if (!memcg1_alloc_events(memcg))
3511 		goto fail;
3512 
3513 	for_each_possible_cpu(cpu) {
3514 		if (parent)
3515 			pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
3516 		statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3517 		statc->parent = parent ? pstatc : NULL;
3518 		statc->vmstats = memcg->vmstats;
3519 	}
3520 
3521 	for_each_node(node)
3522 		if (!alloc_mem_cgroup_per_node_info(memcg, node))
3523 			goto fail;
3524 
3525 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3526 		goto fail;
3527 
3528 	INIT_WORK(&memcg->high_work, high_work_func);
3529 	vmpressure_init(&memcg->vmpressure);
3530 	INIT_LIST_HEAD(&memcg->memory_peaks);
3531 	INIT_LIST_HEAD(&memcg->swap_peaks);
3532 	spin_lock_init(&memcg->peaks_lock);
3533 	memcg->socket_pressure = jiffies;
3534 	memcg1_memcg_init(memcg);
3535 	memcg->kmemcg_id = -1;
3536 	INIT_LIST_HEAD(&memcg->objcg_list);
3537 #ifdef CONFIG_CGROUP_WRITEBACK
3538 	INIT_LIST_HEAD(&memcg->cgwb_list);
3539 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3540 		memcg->cgwb_frn[i].done =
3541 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3542 #endif
3543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3544 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3545 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3546 	memcg->deferred_split_queue.split_queue_len = 0;
3547 #endif
3548 	lru_gen_init_memcg(memcg);
3549 	return memcg;
3550 fail:
3551 	mem_cgroup_id_remove(memcg);
3552 	__mem_cgroup_free(memcg);
3553 	return ERR_PTR(error);
3554 }
3555 
3556 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)3557 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3558 {
3559 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3560 	struct mem_cgroup *memcg, *old_memcg;
3561 
3562 	old_memcg = set_active_memcg(parent);
3563 	memcg = mem_cgroup_alloc(parent);
3564 	set_active_memcg(old_memcg);
3565 	if (IS_ERR(memcg))
3566 		return ERR_CAST(memcg);
3567 
3568 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3569 	memcg1_soft_limit_reset(memcg);
3570 #ifdef CONFIG_ZSWAP
3571 	memcg->zswap_max = PAGE_COUNTER_MAX;
3572 	WRITE_ONCE(memcg->zswap_writeback, true);
3573 #endif
3574 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3575 	if (parent) {
3576 		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3577 
3578 		page_counter_init(&memcg->memory, &parent->memory, true);
3579 		page_counter_init(&memcg->swap, &parent->swap, false);
3580 #ifdef CONFIG_MEMCG_V1
3581 		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3582 		page_counter_init(&memcg->kmem, &parent->kmem, false);
3583 		page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3584 #endif
3585 	} else {
3586 		init_memcg_stats();
3587 		init_memcg_events();
3588 		page_counter_init(&memcg->memory, NULL, true);
3589 		page_counter_init(&memcg->swap, NULL, false);
3590 #ifdef CONFIG_MEMCG_V1
3591 		page_counter_init(&memcg->kmem, NULL, false);
3592 		page_counter_init(&memcg->tcpmem, NULL, false);
3593 #endif
3594 		root_mem_cgroup = memcg;
3595 		return &memcg->css;
3596 	}
3597 
3598 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3599 		static_branch_inc(&memcg_sockets_enabled_key);
3600 
3601 	if (!cgroup_memory_nobpf)
3602 		static_branch_inc(&memcg_bpf_enabled_key);
3603 
3604 	return &memcg->css;
3605 }
3606 
mem_cgroup_css_online(struct cgroup_subsys_state * css)3607 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3608 {
3609 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3610 
3611 	if (memcg_online_kmem(memcg))
3612 		goto remove_id;
3613 
3614 	/*
3615 	 * A memcg must be visible for expand_shrinker_info()
3616 	 * by the time the maps are allocated. So, we allocate maps
3617 	 * here, when for_each_mem_cgroup() can't skip it.
3618 	 */
3619 	if (alloc_shrinker_info(memcg))
3620 		goto offline_kmem;
3621 
3622 	if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3623 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3624 				   FLUSH_TIME);
3625 	lru_gen_online_memcg(memcg);
3626 
3627 	/* Online state pins memcg ID, memcg ID pins CSS */
3628 	refcount_set(&memcg->id.ref, 1);
3629 	css_get(css);
3630 
3631 	/*
3632 	 * Ensure mem_cgroup_from_id() works once we're fully online.
3633 	 *
3634 	 * We could do this earlier and require callers to filter with
3635 	 * css_tryget_online(). But right now there are no users that
3636 	 * need earlier access, and the workingset code relies on the
3637 	 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3638 	 * publish it here at the end of onlining. This matches the
3639 	 * regular ID destruction during offlining.
3640 	 */
3641 	xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3642 
3643 	return 0;
3644 offline_kmem:
3645 	memcg_offline_kmem(memcg);
3646 remove_id:
3647 	mem_cgroup_id_remove(memcg);
3648 	return -ENOMEM;
3649 }
3650 
mem_cgroup_css_offline(struct cgroup_subsys_state * css)3651 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3652 {
3653 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3654 
3655 	memcg1_css_offline(memcg);
3656 
3657 	page_counter_set_min(&memcg->memory, 0);
3658 	page_counter_set_low(&memcg->memory, 0);
3659 
3660 	zswap_memcg_offline_cleanup(memcg);
3661 
3662 	memcg_offline_kmem(memcg);
3663 	reparent_shrinker_deferred(memcg);
3664 	wb_memcg_offline(memcg);
3665 	lru_gen_offline_memcg(memcg);
3666 
3667 	drain_all_stock(memcg);
3668 
3669 	mem_cgroup_id_put(memcg);
3670 }
3671 
mem_cgroup_css_released(struct cgroup_subsys_state * css)3672 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3673 {
3674 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3675 
3676 	invalidate_reclaim_iterators(memcg);
3677 	lru_gen_release_memcg(memcg);
3678 }
3679 
mem_cgroup_css_free(struct cgroup_subsys_state * css)3680 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3681 {
3682 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3683 	int __maybe_unused i;
3684 
3685 #ifdef CONFIG_CGROUP_WRITEBACK
3686 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3687 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3688 #endif
3689 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3690 		static_branch_dec(&memcg_sockets_enabled_key);
3691 
3692 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3693 		static_branch_dec(&memcg_sockets_enabled_key);
3694 
3695 	if (!cgroup_memory_nobpf)
3696 		static_branch_dec(&memcg_bpf_enabled_key);
3697 
3698 	vmpressure_cleanup(&memcg->vmpressure);
3699 	cancel_work_sync(&memcg->high_work);
3700 	memcg1_remove_from_trees(memcg);
3701 	free_shrinker_info(memcg);
3702 	mem_cgroup_free(memcg);
3703 }
3704 
3705 /**
3706  * mem_cgroup_css_reset - reset the states of a mem_cgroup
3707  * @css: the target css
3708  *
3709  * Reset the states of the mem_cgroup associated with @css.  This is
3710  * invoked when the userland requests disabling on the default hierarchy
3711  * but the memcg is pinned through dependency.  The memcg should stop
3712  * applying policies and should revert to the vanilla state as it may be
3713  * made visible again.
3714  *
3715  * The current implementation only resets the essential configurations.
3716  * This needs to be expanded to cover all the visible parts.
3717  */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)3718 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3719 {
3720 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3721 
3722 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3723 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3724 #ifdef CONFIG_MEMCG_V1
3725 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3726 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3727 #endif
3728 	page_counter_set_min(&memcg->memory, 0);
3729 	page_counter_set_low(&memcg->memory, 0);
3730 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3731 	memcg1_soft_limit_reset(memcg);
3732 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3733 	memcg_wb_domain_size_changed(memcg);
3734 }
3735 
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)3736 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
3737 {
3738 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3739 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3740 	struct memcg_vmstats_percpu *statc;
3741 	long delta, delta_cpu, v;
3742 	int i, nid;
3743 
3744 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3745 
3746 	for (i = 0; i < MEMCG_VMSTAT_SIZE; i++) {
3747 		/*
3748 		 * Collect the aggregated propagation counts of groups
3749 		 * below us. We're in a per-cpu loop here and this is
3750 		 * a global counter, so the first cycle will get them.
3751 		 */
3752 		delta = memcg->vmstats->state_pending[i];
3753 		if (delta)
3754 			memcg->vmstats->state_pending[i] = 0;
3755 
3756 		/* Add CPU changes on this level since the last flush */
3757 		delta_cpu = 0;
3758 		v = READ_ONCE(statc->state[i]);
3759 		if (v != statc->state_prev[i]) {
3760 			delta_cpu = v - statc->state_prev[i];
3761 			delta += delta_cpu;
3762 			statc->state_prev[i] = v;
3763 		}
3764 
3765 		/* Aggregate counts on this level and propagate upwards */
3766 		if (delta_cpu)
3767 			memcg->vmstats->state_local[i] += delta_cpu;
3768 
3769 		if (delta) {
3770 			memcg->vmstats->state[i] += delta;
3771 			if (parent)
3772 				parent->vmstats->state_pending[i] += delta;
3773 		}
3774 	}
3775 
3776 	for (i = 0; i < NR_MEMCG_EVENTS; i++) {
3777 		delta = memcg->vmstats->events_pending[i];
3778 		if (delta)
3779 			memcg->vmstats->events_pending[i] = 0;
3780 
3781 		delta_cpu = 0;
3782 		v = READ_ONCE(statc->events[i]);
3783 		if (v != statc->events_prev[i]) {
3784 			delta_cpu = v - statc->events_prev[i];
3785 			delta += delta_cpu;
3786 			statc->events_prev[i] = v;
3787 		}
3788 
3789 		if (delta_cpu)
3790 			memcg->vmstats->events_local[i] += delta_cpu;
3791 
3792 		if (delta) {
3793 			memcg->vmstats->events[i] += delta;
3794 			if (parent)
3795 				parent->vmstats->events_pending[i] += delta;
3796 		}
3797 	}
3798 
3799 	for_each_node_state(nid, N_MEMORY) {
3800 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
3801 		struct lruvec_stats *lstats = pn->lruvec_stats;
3802 		struct lruvec_stats *plstats = NULL;
3803 		struct lruvec_stats_percpu *lstatc;
3804 
3805 		if (parent)
3806 			plstats = parent->nodeinfo[nid]->lruvec_stats;
3807 
3808 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
3809 
3810 		for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; i++) {
3811 			delta = lstats->state_pending[i];
3812 			if (delta)
3813 				lstats->state_pending[i] = 0;
3814 
3815 			delta_cpu = 0;
3816 			v = READ_ONCE(lstatc->state[i]);
3817 			if (v != lstatc->state_prev[i]) {
3818 				delta_cpu = v - lstatc->state_prev[i];
3819 				delta += delta_cpu;
3820 				lstatc->state_prev[i] = v;
3821 			}
3822 
3823 			if (delta_cpu)
3824 				lstats->state_local[i] += delta_cpu;
3825 
3826 			if (delta) {
3827 				lstats->state[i] += delta;
3828 				if (plstats)
3829 					plstats->state_pending[i] += delta;
3830 			}
3831 		}
3832 	}
3833 	WRITE_ONCE(statc->stats_updates, 0);
3834 	/* We are in a per-cpu loop here, only do the atomic write once */
3835 	if (atomic64_read(&memcg->vmstats->stats_updates))
3836 		atomic64_set(&memcg->vmstats->stats_updates, 0);
3837 }
3838 
mem_cgroup_fork(struct task_struct * task)3839 static void mem_cgroup_fork(struct task_struct *task)
3840 {
3841 	/*
3842 	 * Set the update flag to cause task->objcg to be initialized lazily
3843 	 * on the first allocation. It can be done without any synchronization
3844 	 * because it's always performed on the current task, so does
3845 	 * current_objcg_update().
3846 	 */
3847 	task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
3848 }
3849 
mem_cgroup_exit(struct task_struct * task)3850 static void mem_cgroup_exit(struct task_struct *task)
3851 {
3852 	struct obj_cgroup *objcg = task->objcg;
3853 
3854 	objcg = (struct obj_cgroup *)
3855 		((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
3856 	obj_cgroup_put(objcg);
3857 
3858 	/*
3859 	 * Some kernel allocations can happen after this point,
3860 	 * but let's ignore them. It can be done without any synchronization
3861 	 * because it's always performed on the current task, so does
3862 	 * current_objcg_update().
3863 	 */
3864 	task->objcg = NULL;
3865 }
3866 
3867 #ifdef CONFIG_LRU_GEN
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)3868 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
3869 {
3870 	struct task_struct *task;
3871 	struct cgroup_subsys_state *css;
3872 
3873 	/* find the first leader if there is any */
3874 	cgroup_taskset_for_each_leader(task, css, tset)
3875 		break;
3876 
3877 	if (!task)
3878 		return;
3879 
3880 	task_lock(task);
3881 	if (task->mm && READ_ONCE(task->mm->owner) == task)
3882 		lru_gen_migrate_mm(task->mm);
3883 	task_unlock(task);
3884 }
3885 #else
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)3886 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
3887 #endif /* CONFIG_LRU_GEN */
3888 
mem_cgroup_kmem_attach(struct cgroup_taskset * tset)3889 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
3890 {
3891 	struct task_struct *task;
3892 	struct cgroup_subsys_state *css;
3893 
3894 	cgroup_taskset_for_each(task, css, tset) {
3895 		/* atomically set the update bit */
3896 		set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
3897 	}
3898 }
3899 
mem_cgroup_attach(struct cgroup_taskset * tset)3900 static void mem_cgroup_attach(struct cgroup_taskset *tset)
3901 {
3902 	mem_cgroup_lru_gen_attach(tset);
3903 	mem_cgroup_kmem_attach(tset);
3904 }
3905 
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)3906 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
3907 {
3908 	if (value == PAGE_COUNTER_MAX)
3909 		seq_puts(m, "max\n");
3910 	else
3911 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
3912 
3913 	return 0;
3914 }
3915 
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)3916 static u64 memory_current_read(struct cgroup_subsys_state *css,
3917 			       struct cftype *cft)
3918 {
3919 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3920 
3921 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
3922 }
3923 
3924 #define OFP_PEAK_UNSET (((-1UL)))
3925 
peak_show(struct seq_file * sf,void * v,struct page_counter * pc)3926 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
3927 {
3928 	struct cgroup_of_peak *ofp = of_peak(sf->private);
3929 	u64 fd_peak = READ_ONCE(ofp->value), peak;
3930 
3931 	/* User wants global or local peak? */
3932 	if (fd_peak == OFP_PEAK_UNSET)
3933 		peak = pc->watermark;
3934 	else
3935 		peak = max(fd_peak, READ_ONCE(pc->local_watermark));
3936 
3937 	seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
3938 	return 0;
3939 }
3940 
memory_peak_show(struct seq_file * sf,void * v)3941 static int memory_peak_show(struct seq_file *sf, void *v)
3942 {
3943 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3944 
3945 	return peak_show(sf, v, &memcg->memory);
3946 }
3947 
peak_open(struct kernfs_open_file * of)3948 static int peak_open(struct kernfs_open_file *of)
3949 {
3950 	struct cgroup_of_peak *ofp = of_peak(of);
3951 
3952 	ofp->value = OFP_PEAK_UNSET;
3953 	return 0;
3954 }
3955 
peak_release(struct kernfs_open_file * of)3956 static void peak_release(struct kernfs_open_file *of)
3957 {
3958 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3959 	struct cgroup_of_peak *ofp = of_peak(of);
3960 
3961 	if (ofp->value == OFP_PEAK_UNSET) {
3962 		/* fast path (no writes on this fd) */
3963 		return;
3964 	}
3965 	spin_lock(&memcg->peaks_lock);
3966 	list_del(&ofp->list);
3967 	spin_unlock(&memcg->peaks_lock);
3968 }
3969 
peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,struct page_counter * pc,struct list_head * watchers)3970 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
3971 			  loff_t off, struct page_counter *pc,
3972 			  struct list_head *watchers)
3973 {
3974 	unsigned long usage;
3975 	struct cgroup_of_peak *peer_ctx;
3976 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3977 	struct cgroup_of_peak *ofp = of_peak(of);
3978 
3979 	spin_lock(&memcg->peaks_lock);
3980 
3981 	usage = page_counter_read(pc);
3982 	WRITE_ONCE(pc->local_watermark, usage);
3983 
3984 	list_for_each_entry(peer_ctx, watchers, list)
3985 		if (usage > peer_ctx->value)
3986 			WRITE_ONCE(peer_ctx->value, usage);
3987 
3988 	/* initial write, register watcher */
3989 	if (ofp->value == -1)
3990 		list_add(&ofp->list, watchers);
3991 
3992 	WRITE_ONCE(ofp->value, usage);
3993 	spin_unlock(&memcg->peaks_lock);
3994 
3995 	return nbytes;
3996 }
3997 
memory_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3998 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
3999 				 size_t nbytes, loff_t off)
4000 {
4001 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4002 
4003 	return peak_write(of, buf, nbytes, off, &memcg->memory,
4004 			  &memcg->memory_peaks);
4005 }
4006 
4007 #undef OFP_PEAK_UNSET
4008 
memory_min_show(struct seq_file * m,void * v)4009 static int memory_min_show(struct seq_file *m, void *v)
4010 {
4011 	return seq_puts_memcg_tunable(m,
4012 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4013 }
4014 
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4015 static ssize_t memory_min_write(struct kernfs_open_file *of,
4016 				char *buf, size_t nbytes, loff_t off)
4017 {
4018 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4019 	unsigned long min;
4020 	int err;
4021 
4022 	buf = strstrip(buf);
4023 	err = page_counter_memparse(buf, "max", &min);
4024 	if (err)
4025 		return err;
4026 
4027 	page_counter_set_min(&memcg->memory, min);
4028 
4029 	return nbytes;
4030 }
4031 
memory_low_show(struct seq_file * m,void * v)4032 static int memory_low_show(struct seq_file *m, void *v)
4033 {
4034 	return seq_puts_memcg_tunable(m,
4035 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4036 }
4037 
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4038 static ssize_t memory_low_write(struct kernfs_open_file *of,
4039 				char *buf, size_t nbytes, loff_t off)
4040 {
4041 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4042 	unsigned long low;
4043 	int err;
4044 
4045 	buf = strstrip(buf);
4046 	err = page_counter_memparse(buf, "max", &low);
4047 	if (err)
4048 		return err;
4049 
4050 	page_counter_set_low(&memcg->memory, low);
4051 
4052 	return nbytes;
4053 }
4054 
memory_high_show(struct seq_file * m,void * v)4055 static int memory_high_show(struct seq_file *m, void *v)
4056 {
4057 	return seq_puts_memcg_tunable(m,
4058 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4059 }
4060 
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4061 static ssize_t memory_high_write(struct kernfs_open_file *of,
4062 				 char *buf, size_t nbytes, loff_t off)
4063 {
4064 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4065 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4066 	bool drained = false;
4067 	unsigned long high;
4068 	int err;
4069 
4070 	buf = strstrip(buf);
4071 	err = page_counter_memparse(buf, "max", &high);
4072 	if (err)
4073 		return err;
4074 
4075 	page_counter_set_high(&memcg->memory, high);
4076 
4077 	for (;;) {
4078 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4079 		unsigned long reclaimed;
4080 
4081 		if (nr_pages <= high)
4082 			break;
4083 
4084 		if (signal_pending(current))
4085 			break;
4086 
4087 		if (!drained) {
4088 			drain_all_stock(memcg);
4089 			drained = true;
4090 			continue;
4091 		}
4092 
4093 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4094 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4095 
4096 		if (!reclaimed && !nr_retries--)
4097 			break;
4098 	}
4099 
4100 	memcg_wb_domain_size_changed(memcg);
4101 	return nbytes;
4102 }
4103 
memory_max_show(struct seq_file * m,void * v)4104 static int memory_max_show(struct seq_file *m, void *v)
4105 {
4106 	return seq_puts_memcg_tunable(m,
4107 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4108 }
4109 
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4110 static ssize_t memory_max_write(struct kernfs_open_file *of,
4111 				char *buf, size_t nbytes, loff_t off)
4112 {
4113 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4114 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4115 	bool drained = false;
4116 	unsigned long max;
4117 	int err;
4118 
4119 	buf = strstrip(buf);
4120 	err = page_counter_memparse(buf, "max", &max);
4121 	if (err)
4122 		return err;
4123 
4124 	xchg(&memcg->memory.max, max);
4125 
4126 	for (;;) {
4127 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4128 
4129 		if (nr_pages <= max)
4130 			break;
4131 
4132 		if (signal_pending(current))
4133 			break;
4134 
4135 		if (!drained) {
4136 			drain_all_stock(memcg);
4137 			drained = true;
4138 			continue;
4139 		}
4140 
4141 		if (nr_reclaims) {
4142 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4143 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4144 				nr_reclaims--;
4145 			continue;
4146 		}
4147 
4148 		memcg_memory_event(memcg, MEMCG_OOM);
4149 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4150 			break;
4151 	}
4152 
4153 	memcg_wb_domain_size_changed(memcg);
4154 	return nbytes;
4155 }
4156 
4157 /*
4158  * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4159  * if any new events become available.
4160  */
__memory_events_show(struct seq_file * m,atomic_long_t * events)4161 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4162 {
4163 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4164 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4165 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4166 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4167 	seq_printf(m, "oom_kill %lu\n",
4168 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
4169 	seq_printf(m, "oom_group_kill %lu\n",
4170 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4171 }
4172 
memory_events_show(struct seq_file * m,void * v)4173 static int memory_events_show(struct seq_file *m, void *v)
4174 {
4175 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4176 
4177 	__memory_events_show(m, memcg->memory_events);
4178 	return 0;
4179 }
4180 
memory_events_local_show(struct seq_file * m,void * v)4181 static int memory_events_local_show(struct seq_file *m, void *v)
4182 {
4183 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4184 
4185 	__memory_events_show(m, memcg->memory_events_local);
4186 	return 0;
4187 }
4188 
memory_stat_show(struct seq_file * m,void * v)4189 int memory_stat_show(struct seq_file *m, void *v)
4190 {
4191 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4192 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4193 	struct seq_buf s;
4194 
4195 	if (!buf)
4196 		return -ENOMEM;
4197 	seq_buf_init(&s, buf, PAGE_SIZE);
4198 	memory_stat_format(memcg, &s);
4199 	seq_puts(m, buf);
4200 	kfree(buf);
4201 	return 0;
4202 }
4203 
4204 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)4205 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4206 						     int item)
4207 {
4208 	return lruvec_page_state(lruvec, item) *
4209 		memcg_page_state_output_unit(item);
4210 }
4211 
memory_numa_stat_show(struct seq_file * m,void * v)4212 static int memory_numa_stat_show(struct seq_file *m, void *v)
4213 {
4214 	int i;
4215 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4216 
4217 	mem_cgroup_flush_stats(memcg);
4218 
4219 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4220 		int nid;
4221 
4222 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4223 			continue;
4224 
4225 		seq_printf(m, "%s", memory_stats[i].name);
4226 		for_each_node_state(nid, N_MEMORY) {
4227 			u64 size;
4228 			struct lruvec *lruvec;
4229 
4230 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4231 			size = lruvec_page_state_output(lruvec,
4232 							memory_stats[i].idx);
4233 			seq_printf(m, " N%d=%llu", nid, size);
4234 		}
4235 		seq_putc(m, '\n');
4236 	}
4237 
4238 	return 0;
4239 }
4240 #endif
4241 
memory_oom_group_show(struct seq_file * m,void * v)4242 static int memory_oom_group_show(struct seq_file *m, void *v)
4243 {
4244 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4245 
4246 	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4247 
4248 	return 0;
4249 }
4250 
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4251 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4252 				      char *buf, size_t nbytes, loff_t off)
4253 {
4254 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4255 	int ret, oom_group;
4256 
4257 	buf = strstrip(buf);
4258 	if (!buf)
4259 		return -EINVAL;
4260 
4261 	ret = kstrtoint(buf, 0, &oom_group);
4262 	if (ret)
4263 		return ret;
4264 
4265 	if (oom_group != 0 && oom_group != 1)
4266 		return -EINVAL;
4267 
4268 	WRITE_ONCE(memcg->oom_group, oom_group);
4269 
4270 	return nbytes;
4271 }
4272 
4273 enum {
4274 	MEMORY_RECLAIM_SWAPPINESS = 0,
4275 	MEMORY_RECLAIM_NULL,
4276 };
4277 
4278 static const match_table_t tokens = {
4279 	{ MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
4280 	{ MEMORY_RECLAIM_NULL, NULL },
4281 };
4282 
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4283 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4284 			      size_t nbytes, loff_t off)
4285 {
4286 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4287 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4288 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
4289 	int swappiness = -1;
4290 	unsigned int reclaim_options;
4291 	char *old_buf, *start;
4292 	substring_t args[MAX_OPT_ARGS];
4293 
4294 	buf = strstrip(buf);
4295 
4296 	old_buf = buf;
4297 	nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
4298 	if (buf == old_buf)
4299 		return -EINVAL;
4300 
4301 	buf = strstrip(buf);
4302 
4303 	while ((start = strsep(&buf, " ")) != NULL) {
4304 		if (!strlen(start))
4305 			continue;
4306 		switch (match_token(start, tokens, args)) {
4307 		case MEMORY_RECLAIM_SWAPPINESS:
4308 			if (match_int(&args[0], &swappiness))
4309 				return -EINVAL;
4310 			if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS)
4311 				return -EINVAL;
4312 			break;
4313 		default:
4314 			return -EINVAL;
4315 		}
4316 	}
4317 
4318 	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
4319 	while (nr_reclaimed < nr_to_reclaim) {
4320 		/* Will converge on zero, but reclaim enforces a minimum */
4321 		unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
4322 		unsigned long reclaimed;
4323 
4324 		if (signal_pending(current))
4325 			return -EINTR;
4326 
4327 		/*
4328 		 * This is the final attempt, drain percpu lru caches in the
4329 		 * hope of introducing more evictable pages for
4330 		 * try_to_free_mem_cgroup_pages().
4331 		 */
4332 		if (!nr_retries)
4333 			lru_add_drain_all();
4334 
4335 		reclaimed = try_to_free_mem_cgroup_pages(memcg,
4336 					batch_size, GFP_KERNEL,
4337 					reclaim_options,
4338 					swappiness == -1 ? NULL : &swappiness);
4339 
4340 		if (!reclaimed && !nr_retries--)
4341 			return -EAGAIN;
4342 
4343 		nr_reclaimed += reclaimed;
4344 	}
4345 
4346 	return nbytes;
4347 }
4348 
4349 static struct cftype memory_files[] = {
4350 	{
4351 		.name = "current",
4352 		.flags = CFTYPE_NOT_ON_ROOT,
4353 		.read_u64 = memory_current_read,
4354 	},
4355 	{
4356 		.name = "peak",
4357 		.flags = CFTYPE_NOT_ON_ROOT,
4358 		.open = peak_open,
4359 		.release = peak_release,
4360 		.seq_show = memory_peak_show,
4361 		.write = memory_peak_write,
4362 	},
4363 	{
4364 		.name = "min",
4365 		.flags = CFTYPE_NOT_ON_ROOT,
4366 		.seq_show = memory_min_show,
4367 		.write = memory_min_write,
4368 	},
4369 	{
4370 		.name = "low",
4371 		.flags = CFTYPE_NOT_ON_ROOT,
4372 		.seq_show = memory_low_show,
4373 		.write = memory_low_write,
4374 	},
4375 	{
4376 		.name = "high",
4377 		.flags = CFTYPE_NOT_ON_ROOT,
4378 		.seq_show = memory_high_show,
4379 		.write = memory_high_write,
4380 	},
4381 	{
4382 		.name = "max",
4383 		.flags = CFTYPE_NOT_ON_ROOT,
4384 		.seq_show = memory_max_show,
4385 		.write = memory_max_write,
4386 	},
4387 	{
4388 		.name = "events",
4389 		.flags = CFTYPE_NOT_ON_ROOT,
4390 		.file_offset = offsetof(struct mem_cgroup, events_file),
4391 		.seq_show = memory_events_show,
4392 	},
4393 	{
4394 		.name = "events.local",
4395 		.flags = CFTYPE_NOT_ON_ROOT,
4396 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
4397 		.seq_show = memory_events_local_show,
4398 	},
4399 	{
4400 		.name = "stat",
4401 		.seq_show = memory_stat_show,
4402 	},
4403 #ifdef CONFIG_NUMA
4404 	{
4405 		.name = "numa_stat",
4406 		.seq_show = memory_numa_stat_show,
4407 	},
4408 #endif
4409 	{
4410 		.name = "oom.group",
4411 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4412 		.seq_show = memory_oom_group_show,
4413 		.write = memory_oom_group_write,
4414 	},
4415 	{
4416 		.name = "reclaim",
4417 		.flags = CFTYPE_NS_DELEGATABLE,
4418 		.write = memory_reclaim,
4419 	},
4420 	{ }	/* terminate */
4421 };
4422 
4423 struct cgroup_subsys memory_cgrp_subsys = {
4424 	.css_alloc = mem_cgroup_css_alloc,
4425 	.css_online = mem_cgroup_css_online,
4426 	.css_offline = mem_cgroup_css_offline,
4427 	.css_released = mem_cgroup_css_released,
4428 	.css_free = mem_cgroup_css_free,
4429 	.css_reset = mem_cgroup_css_reset,
4430 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
4431 	.attach = mem_cgroup_attach,
4432 	.fork = mem_cgroup_fork,
4433 	.exit = mem_cgroup_exit,
4434 	.dfl_cftypes = memory_files,
4435 #ifdef CONFIG_MEMCG_V1
4436 	.can_attach = memcg1_can_attach,
4437 	.cancel_attach = memcg1_cancel_attach,
4438 	.post_attach = memcg1_move_task,
4439 	.legacy_cftypes = mem_cgroup_legacy_files,
4440 #endif
4441 	.early_init = 0,
4442 };
4443 
4444 /**
4445  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4446  * @root: the top ancestor of the sub-tree being checked
4447  * @memcg: the memory cgroup to check
4448  *
4449  * WARNING: This function is not stateless! It can only be used as part
4450  *          of a top-down tree iteration, not for isolated queries.
4451  */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)4452 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4453 				     struct mem_cgroup *memcg)
4454 {
4455 	bool recursive_protection =
4456 		cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4457 
4458 	if (mem_cgroup_disabled())
4459 		return;
4460 
4461 	if (!root)
4462 		root = root_mem_cgroup;
4463 
4464 	page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4465 }
4466 
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)4467 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4468 			gfp_t gfp)
4469 {
4470 	int ret;
4471 
4472 	ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4473 	if (ret)
4474 		goto out;
4475 
4476 	mem_cgroup_commit_charge(folio, memcg);
4477 out:
4478 	return ret;
4479 }
4480 
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)4481 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4482 {
4483 	struct mem_cgroup *memcg;
4484 	int ret;
4485 
4486 	memcg = get_mem_cgroup_from_mm(mm);
4487 	ret = charge_memcg(folio, memcg, gfp);
4488 	css_put(&memcg->css);
4489 
4490 	return ret;
4491 }
4492 
4493 /**
4494  * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
4495  * @memcg: memcg to charge.
4496  * @gfp: reclaim mode.
4497  * @nr_pages: number of pages to charge.
4498  *
4499  * This function is called when allocating a huge page folio to determine if
4500  * the memcg has the capacity for it. It does not commit the charge yet,
4501  * as the hugetlb folio itself has not been obtained from the hugetlb pool.
4502  *
4503  * Once we have obtained the hugetlb folio, we can call
4504  * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
4505  * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
4506  * of try_charge().
4507  *
4508  * Returns 0 on success. Otherwise, an error code is returned.
4509  */
mem_cgroup_hugetlb_try_charge(struct mem_cgroup * memcg,gfp_t gfp,long nr_pages)4510 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
4511 			long nr_pages)
4512 {
4513 	/*
4514 	 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
4515 	 * but do not attempt to commit charge later (or cancel on error) either.
4516 	 */
4517 	if (mem_cgroup_disabled() || !memcg ||
4518 		!cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
4519 		!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
4520 		return -EOPNOTSUPP;
4521 
4522 	if (try_charge(memcg, gfp, nr_pages))
4523 		return -ENOMEM;
4524 
4525 	return 0;
4526 }
4527 
4528 /**
4529  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4530  * @folio: folio to charge.
4531  * @mm: mm context of the victim
4532  * @gfp: reclaim mode
4533  * @entry: swap entry for which the folio is allocated
4534  *
4535  * This function charges a folio allocated for swapin. Please call this before
4536  * adding the folio to the swapcache.
4537  *
4538  * Returns 0 on success. Otherwise, an error code is returned.
4539  */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)4540 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4541 				  gfp_t gfp, swp_entry_t entry)
4542 {
4543 	struct mem_cgroup *memcg;
4544 	unsigned short id;
4545 	int ret;
4546 
4547 	if (mem_cgroup_disabled())
4548 		return 0;
4549 
4550 	id = lookup_swap_cgroup_id(entry);
4551 	rcu_read_lock();
4552 	memcg = mem_cgroup_from_id(id);
4553 	if (!memcg || !css_tryget_online(&memcg->css))
4554 		memcg = get_mem_cgroup_from_mm(mm);
4555 	rcu_read_unlock();
4556 
4557 	ret = charge_memcg(folio, memcg, gfp);
4558 
4559 	css_put(&memcg->css);
4560 	return ret;
4561 }
4562 
4563 /*
4564  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
4565  * @entry: the first swap entry for which the pages are charged
4566  * @nr_pages: number of pages which will be uncharged
4567  *
4568  * Call this function after successfully adding the charged page to swapcache.
4569  *
4570  * Note: This function assumes the page for which swap slot is being uncharged
4571  * is order 0 page.
4572  */
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)4573 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
4574 {
4575 	/*
4576 	 * Cgroup1's unified memory+swap counter has been charged with the
4577 	 * new swapcache page, finish the transfer by uncharging the swap
4578 	 * slot. The swap slot would also get uncharged when it dies, but
4579 	 * it can stick around indefinitely and we'd count the page twice
4580 	 * the entire time.
4581 	 *
4582 	 * Cgroup2 has separate resource counters for memory and swap,
4583 	 * so this is a non-issue here. Memory and swap charge lifetimes
4584 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
4585 	 * page to memory here, and uncharge swap when the slot is freed.
4586 	 */
4587 	if (!mem_cgroup_disabled() && do_memsw_account()) {
4588 		/*
4589 		 * The swap entry might not get freed for a long time,
4590 		 * let's not wait for it.  The page already received a
4591 		 * memory+swap charge, drop the swap entry duplicate.
4592 		 */
4593 		mem_cgroup_uncharge_swap(entry, nr_pages);
4594 	}
4595 }
4596 
4597 struct uncharge_gather {
4598 	struct mem_cgroup *memcg;
4599 	unsigned long nr_memory;
4600 	unsigned long pgpgout;
4601 	unsigned long nr_kmem;
4602 	int nid;
4603 };
4604 
uncharge_gather_clear(struct uncharge_gather * ug)4605 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4606 {
4607 	memset(ug, 0, sizeof(*ug));
4608 }
4609 
uncharge_batch(const struct uncharge_gather * ug)4610 static void uncharge_batch(const struct uncharge_gather *ug)
4611 {
4612 	if (ug->nr_memory) {
4613 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
4614 		if (do_memsw_account())
4615 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
4616 		if (ug->nr_kmem) {
4617 			mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4618 			memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4619 		}
4620 		memcg1_oom_recover(ug->memcg);
4621 	}
4622 
4623 	memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4624 
4625 	/* drop reference from uncharge_folio */
4626 	css_put(&ug->memcg->css);
4627 }
4628 
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)4629 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4630 {
4631 	long nr_pages;
4632 	struct mem_cgroup *memcg;
4633 	struct obj_cgroup *objcg;
4634 
4635 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4636 
4637 	/*
4638 	 * Nobody should be changing or seriously looking at
4639 	 * folio memcg or objcg at this point, we have fully
4640 	 * exclusive access to the folio.
4641 	 */
4642 	if (folio_memcg_kmem(folio)) {
4643 		objcg = __folio_objcg(folio);
4644 		/*
4645 		 * This get matches the put at the end of the function and
4646 		 * kmem pages do not hold memcg references anymore.
4647 		 */
4648 		memcg = get_mem_cgroup_from_objcg(objcg);
4649 	} else {
4650 		memcg = __folio_memcg(folio);
4651 	}
4652 
4653 	if (!memcg)
4654 		return;
4655 
4656 	if (ug->memcg != memcg) {
4657 		if (ug->memcg) {
4658 			uncharge_batch(ug);
4659 			uncharge_gather_clear(ug);
4660 		}
4661 		ug->memcg = memcg;
4662 		ug->nid = folio_nid(folio);
4663 
4664 		/* pairs with css_put in uncharge_batch */
4665 		css_get(&memcg->css);
4666 	}
4667 
4668 	nr_pages = folio_nr_pages(folio);
4669 
4670 	if (folio_memcg_kmem(folio)) {
4671 		ug->nr_memory += nr_pages;
4672 		ug->nr_kmem += nr_pages;
4673 
4674 		folio->memcg_data = 0;
4675 		obj_cgroup_put(objcg);
4676 	} else {
4677 		/* LRU pages aren't accounted at the root level */
4678 		if (!mem_cgroup_is_root(memcg))
4679 			ug->nr_memory += nr_pages;
4680 		ug->pgpgout++;
4681 
4682 		WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4683 		folio->memcg_data = 0;
4684 	}
4685 
4686 	css_put(&memcg->css);
4687 }
4688 
__mem_cgroup_uncharge(struct folio * folio)4689 void __mem_cgroup_uncharge(struct folio *folio)
4690 {
4691 	struct uncharge_gather ug;
4692 
4693 	/* Don't touch folio->lru of any random page, pre-check: */
4694 	if (!folio_memcg_charged(folio))
4695 		return;
4696 
4697 	uncharge_gather_clear(&ug);
4698 	uncharge_folio(folio, &ug);
4699 	uncharge_batch(&ug);
4700 }
4701 
__mem_cgroup_uncharge_folios(struct folio_batch * folios)4702 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4703 {
4704 	struct uncharge_gather ug;
4705 	unsigned int i;
4706 
4707 	uncharge_gather_clear(&ug);
4708 	for (i = 0; i < folios->nr; i++)
4709 		uncharge_folio(folios->folios[i], &ug);
4710 	if (ug.memcg)
4711 		uncharge_batch(&ug);
4712 }
4713 
4714 /**
4715  * mem_cgroup_replace_folio - Charge a folio's replacement.
4716  * @old: Currently circulating folio.
4717  * @new: Replacement folio.
4718  *
4719  * Charge @new as a replacement folio for @old. @old will
4720  * be uncharged upon free.
4721  *
4722  * Both folios must be locked, @new->mapping must be set up.
4723  */
mem_cgroup_replace_folio(struct folio * old,struct folio * new)4724 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4725 {
4726 	struct mem_cgroup *memcg;
4727 	long nr_pages = folio_nr_pages(new);
4728 
4729 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4730 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4731 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4732 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4733 
4734 	if (mem_cgroup_disabled())
4735 		return;
4736 
4737 	/* Page cache replacement: new folio already charged? */
4738 	if (folio_memcg_charged(new))
4739 		return;
4740 
4741 	memcg = folio_memcg(old);
4742 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4743 	if (!memcg)
4744 		return;
4745 
4746 	/* Force-charge the new page. The old one will be freed soon */
4747 	if (!mem_cgroup_is_root(memcg)) {
4748 		page_counter_charge(&memcg->memory, nr_pages);
4749 		if (do_memsw_account())
4750 			page_counter_charge(&memcg->memsw, nr_pages);
4751 	}
4752 
4753 	css_get(&memcg->css);
4754 	commit_charge(new, memcg);
4755 	memcg1_commit_charge(new, memcg);
4756 }
4757 
4758 /**
4759  * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4760  * @old: Currently circulating folio.
4761  * @new: Replacement folio.
4762  *
4763  * Transfer the memcg data from the old folio to the new folio for migration.
4764  * The old folio's data info will be cleared. Note that the memory counters
4765  * will remain unchanged throughout the process.
4766  *
4767  * Both folios must be locked, @new->mapping must be set up.
4768  */
mem_cgroup_migrate(struct folio * old,struct folio * new)4769 void mem_cgroup_migrate(struct folio *old, struct folio *new)
4770 {
4771 	struct mem_cgroup *memcg;
4772 
4773 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4774 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4775 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4776 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4777 	VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4778 
4779 	if (mem_cgroup_disabled())
4780 		return;
4781 
4782 	memcg = folio_memcg(old);
4783 	/*
4784 	 * Note that it is normal to see !memcg for a hugetlb folio.
4785 	 * For e.g, itt could have been allocated when memory_hugetlb_accounting
4786 	 * was not selected.
4787 	 */
4788 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4789 	if (!memcg)
4790 		return;
4791 
4792 	/* Transfer the charge and the css ref */
4793 	commit_charge(new, memcg);
4794 
4795 	/* Warning should never happen, so don't worry about refcount non-0 */
4796 	WARN_ON_ONCE(folio_unqueue_deferred_split(old));
4797 	old->memcg_data = 0;
4798 }
4799 
4800 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4801 EXPORT_SYMBOL(memcg_sockets_enabled_key);
4802 
mem_cgroup_sk_alloc(struct sock * sk)4803 void mem_cgroup_sk_alloc(struct sock *sk)
4804 {
4805 	struct mem_cgroup *memcg;
4806 
4807 	if (!mem_cgroup_sockets_enabled)
4808 		return;
4809 
4810 	/* Do not associate the sock with unrelated interrupted task's memcg. */
4811 	if (!in_task())
4812 		return;
4813 
4814 	rcu_read_lock();
4815 	memcg = mem_cgroup_from_task(current);
4816 	if (mem_cgroup_is_root(memcg))
4817 		goto out;
4818 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
4819 		goto out;
4820 	if (css_tryget(&memcg->css))
4821 		sk->sk_memcg = memcg;
4822 out:
4823 	rcu_read_unlock();
4824 }
4825 
mem_cgroup_sk_free(struct sock * sk)4826 void mem_cgroup_sk_free(struct sock *sk)
4827 {
4828 	if (sk->sk_memcg)
4829 		css_put(&sk->sk_memcg->css);
4830 }
4831 
4832 /**
4833  * mem_cgroup_charge_skmem - charge socket memory
4834  * @memcg: memcg to charge
4835  * @nr_pages: number of pages to charge
4836  * @gfp_mask: reclaim mode
4837  *
4838  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4839  * @memcg's configured limit, %false if it doesn't.
4840  */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)4841 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
4842 			     gfp_t gfp_mask)
4843 {
4844 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
4845 		return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
4846 
4847 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
4848 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
4849 		return true;
4850 	}
4851 
4852 	return false;
4853 }
4854 
4855 /**
4856  * mem_cgroup_uncharge_skmem - uncharge socket memory
4857  * @memcg: memcg to uncharge
4858  * @nr_pages: number of pages to uncharge
4859  */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)4860 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
4861 {
4862 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
4863 		memcg1_uncharge_skmem(memcg, nr_pages);
4864 		return;
4865 	}
4866 
4867 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
4868 
4869 	refill_stock(memcg, nr_pages);
4870 }
4871 
cgroup_memory(char * s)4872 static int __init cgroup_memory(char *s)
4873 {
4874 	char *token;
4875 
4876 	while ((token = strsep(&s, ",")) != NULL) {
4877 		if (!*token)
4878 			continue;
4879 		if (!strcmp(token, "nosocket"))
4880 			cgroup_memory_nosocket = true;
4881 		if (!strcmp(token, "nokmem"))
4882 			cgroup_memory_nokmem = true;
4883 		if (!strcmp(token, "nobpf"))
4884 			cgroup_memory_nobpf = true;
4885 	}
4886 	return 1;
4887 }
4888 __setup("cgroup.memory=", cgroup_memory);
4889 
4890 /*
4891  * subsys_initcall() for memory controller.
4892  *
4893  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
4894  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
4895  * basically everything that doesn't depend on a specific mem_cgroup structure
4896  * should be initialized from here.
4897  */
mem_cgroup_init(void)4898 static int __init mem_cgroup_init(void)
4899 {
4900 	int cpu;
4901 
4902 	/*
4903 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
4904 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
4905 	 * to work fine, we should make sure that the overfill threshold can't
4906 	 * exceed S32_MAX / PAGE_SIZE.
4907 	 */
4908 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
4909 
4910 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
4911 				  memcg_hotplug_cpu_dead);
4912 
4913 	for_each_possible_cpu(cpu)
4914 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
4915 			  drain_local_stock);
4916 
4917 	return 0;
4918 }
4919 subsys_initcall(mem_cgroup_init);
4920 
4921 #ifdef CONFIG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)4922 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
4923 {
4924 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
4925 		/*
4926 		 * The root cgroup cannot be destroyed, so it's refcount must
4927 		 * always be >= 1.
4928 		 */
4929 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
4930 			VM_BUG_ON(1);
4931 			break;
4932 		}
4933 		memcg = parent_mem_cgroup(memcg);
4934 		if (!memcg)
4935 			memcg = root_mem_cgroup;
4936 	}
4937 	return memcg;
4938 }
4939 
4940 /**
4941  * mem_cgroup_swapout - transfer a memsw charge to swap
4942  * @folio: folio whose memsw charge to transfer
4943  * @entry: swap entry to move the charge to
4944  *
4945  * Transfer the memsw charge of @folio to @entry.
4946  */
mem_cgroup_swapout(struct folio * folio,swp_entry_t entry)4947 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
4948 {
4949 	struct mem_cgroup *memcg, *swap_memcg;
4950 	unsigned int nr_entries;
4951 	unsigned short oldid;
4952 
4953 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4954 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
4955 
4956 	if (mem_cgroup_disabled())
4957 		return;
4958 
4959 	if (!do_memsw_account())
4960 		return;
4961 
4962 	memcg = folio_memcg(folio);
4963 
4964 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
4965 	if (!memcg)
4966 		return;
4967 
4968 	/*
4969 	 * In case the memcg owning these pages has been offlined and doesn't
4970 	 * have an ID allocated to it anymore, charge the closest online
4971 	 * ancestor for the swap instead and transfer the memory+swap charge.
4972 	 */
4973 	swap_memcg = mem_cgroup_id_get_online(memcg);
4974 	nr_entries = folio_nr_pages(folio);
4975 	/* Get references for the tail pages, too */
4976 	if (nr_entries > 1)
4977 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
4978 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
4979 				   nr_entries);
4980 	VM_BUG_ON_FOLIO(oldid, folio);
4981 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
4982 
4983 	folio_unqueue_deferred_split(folio);
4984 	folio->memcg_data = 0;
4985 
4986 	if (!mem_cgroup_is_root(memcg))
4987 		page_counter_uncharge(&memcg->memory, nr_entries);
4988 
4989 	if (memcg != swap_memcg) {
4990 		if (!mem_cgroup_is_root(swap_memcg))
4991 			page_counter_charge(&swap_memcg->memsw, nr_entries);
4992 		page_counter_uncharge(&memcg->memsw, nr_entries);
4993 	}
4994 
4995 	memcg1_swapout(folio, memcg);
4996 	css_put(&memcg->css);
4997 }
4998 
4999 /**
5000  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5001  * @folio: folio being added to swap
5002  * @entry: swap entry to charge
5003  *
5004  * Try to charge @folio's memcg for the swap space at @entry.
5005  *
5006  * Returns 0 on success, -ENOMEM on failure.
5007  */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)5008 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5009 {
5010 	unsigned int nr_pages = folio_nr_pages(folio);
5011 	struct page_counter *counter;
5012 	struct mem_cgroup *memcg;
5013 	unsigned short oldid;
5014 
5015 	if (do_memsw_account())
5016 		return 0;
5017 
5018 	memcg = folio_memcg(folio);
5019 
5020 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5021 	if (!memcg)
5022 		return 0;
5023 
5024 	if (!entry.val) {
5025 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5026 		return 0;
5027 	}
5028 
5029 	memcg = mem_cgroup_id_get_online(memcg);
5030 
5031 	if (!mem_cgroup_is_root(memcg) &&
5032 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5033 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5034 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5035 		mem_cgroup_id_put(memcg);
5036 		return -ENOMEM;
5037 	}
5038 
5039 	/* Get references for the tail pages, too */
5040 	if (nr_pages > 1)
5041 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
5042 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
5043 	VM_BUG_ON_FOLIO(oldid, folio);
5044 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5045 
5046 	return 0;
5047 }
5048 
5049 /**
5050  * __mem_cgroup_uncharge_swap - uncharge swap space
5051  * @entry: swap entry to uncharge
5052  * @nr_pages: the amount of swap space to uncharge
5053  */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)5054 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5055 {
5056 	struct mem_cgroup *memcg;
5057 	unsigned short id;
5058 
5059 	id = swap_cgroup_record(entry, 0, nr_pages);
5060 	rcu_read_lock();
5061 	memcg = mem_cgroup_from_id(id);
5062 	if (memcg) {
5063 		if (!mem_cgroup_is_root(memcg)) {
5064 			if (do_memsw_account())
5065 				page_counter_uncharge(&memcg->memsw, nr_pages);
5066 			else
5067 				page_counter_uncharge(&memcg->swap, nr_pages);
5068 		}
5069 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5070 		mem_cgroup_id_put_many(memcg, nr_pages);
5071 	}
5072 	rcu_read_unlock();
5073 }
5074 
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)5075 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5076 {
5077 	long nr_swap_pages = get_nr_swap_pages();
5078 
5079 	if (mem_cgroup_disabled() || do_memsw_account())
5080 		return nr_swap_pages;
5081 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5082 		nr_swap_pages = min_t(long, nr_swap_pages,
5083 				      READ_ONCE(memcg->swap.max) -
5084 				      page_counter_read(&memcg->swap));
5085 	return nr_swap_pages;
5086 }
5087 
mem_cgroup_swap_full(struct folio * folio)5088 bool mem_cgroup_swap_full(struct folio *folio)
5089 {
5090 	struct mem_cgroup *memcg;
5091 
5092 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5093 
5094 	if (vm_swap_full())
5095 		return true;
5096 	if (do_memsw_account())
5097 		return false;
5098 
5099 	memcg = folio_memcg(folio);
5100 	if (!memcg)
5101 		return false;
5102 
5103 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5104 		unsigned long usage = page_counter_read(&memcg->swap);
5105 
5106 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5107 		    usage * 2 >= READ_ONCE(memcg->swap.max))
5108 			return true;
5109 	}
5110 
5111 	return false;
5112 }
5113 
setup_swap_account(char * s)5114 static int __init setup_swap_account(char *s)
5115 {
5116 	bool res;
5117 
5118 	if (!kstrtobool(s, &res) && !res)
5119 		pr_warn_once("The swapaccount=0 commandline option is deprecated "
5120 			     "in favor of configuring swap control via cgroupfs. "
5121 			     "Please report your usecase to linux-mm@kvack.org if you "
5122 			     "depend on this functionality.\n");
5123 	return 1;
5124 }
5125 __setup("swapaccount=", setup_swap_account);
5126 
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5127 static u64 swap_current_read(struct cgroup_subsys_state *css,
5128 			     struct cftype *cft)
5129 {
5130 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5131 
5132 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5133 }
5134 
swap_peak_show(struct seq_file * sf,void * v)5135 static int swap_peak_show(struct seq_file *sf, void *v)
5136 {
5137 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5138 
5139 	return peak_show(sf, v, &memcg->swap);
5140 }
5141 
swap_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5142 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5143 			       size_t nbytes, loff_t off)
5144 {
5145 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5146 
5147 	return peak_write(of, buf, nbytes, off, &memcg->swap,
5148 			  &memcg->swap_peaks);
5149 }
5150 
swap_high_show(struct seq_file * m,void * v)5151 static int swap_high_show(struct seq_file *m, void *v)
5152 {
5153 	return seq_puts_memcg_tunable(m,
5154 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5155 }
5156 
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5157 static ssize_t swap_high_write(struct kernfs_open_file *of,
5158 			       char *buf, size_t nbytes, loff_t off)
5159 {
5160 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5161 	unsigned long high;
5162 	int err;
5163 
5164 	buf = strstrip(buf);
5165 	err = page_counter_memparse(buf, "max", &high);
5166 	if (err)
5167 		return err;
5168 
5169 	page_counter_set_high(&memcg->swap, high);
5170 
5171 	return nbytes;
5172 }
5173 
swap_max_show(struct seq_file * m,void * v)5174 static int swap_max_show(struct seq_file *m, void *v)
5175 {
5176 	return seq_puts_memcg_tunable(m,
5177 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5178 }
5179 
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5180 static ssize_t swap_max_write(struct kernfs_open_file *of,
5181 			      char *buf, size_t nbytes, loff_t off)
5182 {
5183 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5184 	unsigned long max;
5185 	int err;
5186 
5187 	buf = strstrip(buf);
5188 	err = page_counter_memparse(buf, "max", &max);
5189 	if (err)
5190 		return err;
5191 
5192 	xchg(&memcg->swap.max, max);
5193 
5194 	return nbytes;
5195 }
5196 
swap_events_show(struct seq_file * m,void * v)5197 static int swap_events_show(struct seq_file *m, void *v)
5198 {
5199 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5200 
5201 	seq_printf(m, "high %lu\n",
5202 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5203 	seq_printf(m, "max %lu\n",
5204 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5205 	seq_printf(m, "fail %lu\n",
5206 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5207 
5208 	return 0;
5209 }
5210 
5211 static struct cftype swap_files[] = {
5212 	{
5213 		.name = "swap.current",
5214 		.flags = CFTYPE_NOT_ON_ROOT,
5215 		.read_u64 = swap_current_read,
5216 	},
5217 	{
5218 		.name = "swap.high",
5219 		.flags = CFTYPE_NOT_ON_ROOT,
5220 		.seq_show = swap_high_show,
5221 		.write = swap_high_write,
5222 	},
5223 	{
5224 		.name = "swap.max",
5225 		.flags = CFTYPE_NOT_ON_ROOT,
5226 		.seq_show = swap_max_show,
5227 		.write = swap_max_write,
5228 	},
5229 	{
5230 		.name = "swap.peak",
5231 		.flags = CFTYPE_NOT_ON_ROOT,
5232 		.open = peak_open,
5233 		.release = peak_release,
5234 		.seq_show = swap_peak_show,
5235 		.write = swap_peak_write,
5236 	},
5237 	{
5238 		.name = "swap.events",
5239 		.flags = CFTYPE_NOT_ON_ROOT,
5240 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
5241 		.seq_show = swap_events_show,
5242 	},
5243 	{ }	/* terminate */
5244 };
5245 
5246 #ifdef CONFIG_ZSWAP
5247 /**
5248  * obj_cgroup_may_zswap - check if this cgroup can zswap
5249  * @objcg: the object cgroup
5250  *
5251  * Check if the hierarchical zswap limit has been reached.
5252  *
5253  * This doesn't check for specific headroom, and it is not atomic
5254  * either. But with zswap, the size of the allocation is only known
5255  * once compression has occurred, and this optimistic pre-check avoids
5256  * spending cycles on compression when there is already no room left
5257  * or zswap is disabled altogether somewhere in the hierarchy.
5258  */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)5259 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5260 {
5261 	struct mem_cgroup *memcg, *original_memcg;
5262 	bool ret = true;
5263 
5264 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5265 		return true;
5266 
5267 	original_memcg = get_mem_cgroup_from_objcg(objcg);
5268 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5269 	     memcg = parent_mem_cgroup(memcg)) {
5270 		unsigned long max = READ_ONCE(memcg->zswap_max);
5271 		unsigned long pages;
5272 
5273 		if (max == PAGE_COUNTER_MAX)
5274 			continue;
5275 		if (max == 0) {
5276 			ret = false;
5277 			break;
5278 		}
5279 
5280 		/*
5281 		 * mem_cgroup_flush_stats() ignores small changes. Use
5282 		 * do_flush_stats() directly to get accurate stats for charging.
5283 		 */
5284 		do_flush_stats(memcg);
5285 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5286 		if (pages < max)
5287 			continue;
5288 		ret = false;
5289 		break;
5290 	}
5291 	mem_cgroup_put(original_memcg);
5292 	return ret;
5293 }
5294 
5295 /**
5296  * obj_cgroup_charge_zswap - charge compression backend memory
5297  * @objcg: the object cgroup
5298  * @size: size of compressed object
5299  *
5300  * This forces the charge after obj_cgroup_may_zswap() allowed
5301  * compression and storage in zwap for this cgroup to go ahead.
5302  */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)5303 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5304 {
5305 	struct mem_cgroup *memcg;
5306 
5307 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5308 		return;
5309 
5310 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5311 
5312 	/* PF_MEMALLOC context, charging must succeed */
5313 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5314 		VM_WARN_ON_ONCE(1);
5315 
5316 	rcu_read_lock();
5317 	memcg = obj_cgroup_memcg(objcg);
5318 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5319 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5320 	rcu_read_unlock();
5321 }
5322 
5323 /**
5324  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5325  * @objcg: the object cgroup
5326  * @size: size of compressed object
5327  *
5328  * Uncharges zswap memory on page in.
5329  */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)5330 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5331 {
5332 	struct mem_cgroup *memcg;
5333 
5334 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5335 		return;
5336 
5337 	obj_cgroup_uncharge(objcg, size);
5338 
5339 	rcu_read_lock();
5340 	memcg = obj_cgroup_memcg(objcg);
5341 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5342 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5343 	rcu_read_unlock();
5344 }
5345 
mem_cgroup_zswap_writeback_enabled(struct mem_cgroup * memcg)5346 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5347 {
5348 	/* if zswap is disabled, do not block pages going to the swapping device */
5349 	if (!zswap_is_enabled())
5350 		return true;
5351 
5352 	for (; memcg; memcg = parent_mem_cgroup(memcg))
5353 		if (!READ_ONCE(memcg->zswap_writeback))
5354 			return false;
5355 
5356 	return true;
5357 }
5358 
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5359 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5360 			      struct cftype *cft)
5361 {
5362 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5363 
5364 	mem_cgroup_flush_stats(memcg);
5365 	return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5366 }
5367 
zswap_max_show(struct seq_file * m,void * v)5368 static int zswap_max_show(struct seq_file *m, void *v)
5369 {
5370 	return seq_puts_memcg_tunable(m,
5371 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5372 }
5373 
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5374 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5375 			       char *buf, size_t nbytes, loff_t off)
5376 {
5377 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5378 	unsigned long max;
5379 	int err;
5380 
5381 	buf = strstrip(buf);
5382 	err = page_counter_memparse(buf, "max", &max);
5383 	if (err)
5384 		return err;
5385 
5386 	xchg(&memcg->zswap_max, max);
5387 
5388 	return nbytes;
5389 }
5390 
zswap_writeback_show(struct seq_file * m,void * v)5391 static int zswap_writeback_show(struct seq_file *m, void *v)
5392 {
5393 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5394 
5395 	seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5396 	return 0;
5397 }
5398 
zswap_writeback_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5399 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5400 				char *buf, size_t nbytes, loff_t off)
5401 {
5402 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5403 	int zswap_writeback;
5404 	ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5405 
5406 	if (parse_ret)
5407 		return parse_ret;
5408 
5409 	if (zswap_writeback != 0 && zswap_writeback != 1)
5410 		return -EINVAL;
5411 
5412 	WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5413 	return nbytes;
5414 }
5415 
5416 static struct cftype zswap_files[] = {
5417 	{
5418 		.name = "zswap.current",
5419 		.flags = CFTYPE_NOT_ON_ROOT,
5420 		.read_u64 = zswap_current_read,
5421 	},
5422 	{
5423 		.name = "zswap.max",
5424 		.flags = CFTYPE_NOT_ON_ROOT,
5425 		.seq_show = zswap_max_show,
5426 		.write = zswap_max_write,
5427 	},
5428 	{
5429 		.name = "zswap.writeback",
5430 		.seq_show = zswap_writeback_show,
5431 		.write = zswap_writeback_write,
5432 	},
5433 	{ }	/* terminate */
5434 };
5435 #endif /* CONFIG_ZSWAP */
5436 
mem_cgroup_swap_init(void)5437 static int __init mem_cgroup_swap_init(void)
5438 {
5439 	if (mem_cgroup_disabled())
5440 		return 0;
5441 
5442 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5443 #ifdef CONFIG_MEMCG_V1
5444 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5445 #endif
5446 #ifdef CONFIG_ZSWAP
5447 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5448 #endif
5449 	return 0;
5450 }
5451 subsys_initcall(mem_cgroup_swap_init);
5452 
5453 #endif /* CONFIG_SWAP */
5454