1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include "md.h" 69 #include "md-bitmap.h" 70 #include "md-cluster.h" 71 72 static const char *action_name[NR_SYNC_ACTIONS] = { 73 [ACTION_RESYNC] = "resync", 74 [ACTION_RECOVER] = "recover", 75 [ACTION_CHECK] = "check", 76 [ACTION_REPAIR] = "repair", 77 [ACTION_RESHAPE] = "reshape", 78 [ACTION_FROZEN] = "frozen", 79 [ACTION_IDLE] = "idle", 80 }; 81 82 static DEFINE_XARRAY(md_submodule); 83 84 static const struct kobj_type md_ktype; 85 86 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 87 static struct workqueue_struct *md_wq; 88 89 /* 90 * This workqueue is used for sync_work to register new sync_thread, and for 91 * del_work to remove rdev, and for event_work that is only set by dm-raid. 92 * 93 * Noted that sync_work will grab reconfig_mutex, hence never flush this 94 * workqueue whith reconfig_mutex grabbed. 95 */ 96 static struct workqueue_struct *md_misc_wq; 97 struct workqueue_struct *md_bitmap_wq; 98 99 static int remove_and_add_spares(struct mddev *mddev, 100 struct md_rdev *this); 101 static void mddev_detach(struct mddev *mddev); 102 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev); 103 static void md_wakeup_thread_directly(struct md_thread __rcu *thread); 104 105 /* 106 * Default number of read corrections we'll attempt on an rdev 107 * before ejecting it from the array. We divide the read error 108 * count by 2 for every hour elapsed between read errors. 109 */ 110 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 111 /* Default safemode delay: 200 msec */ 112 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 113 /* 114 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 115 * is 1000 KB/sec, so the extra system load does not show up that much. 116 * Increase it if you want to have more _guaranteed_ speed. Note that 117 * the RAID driver will use the maximum available bandwidth if the IO 118 * subsystem is idle. There is also an 'absolute maximum' reconstruction 119 * speed limit - in case reconstruction slows down your system despite 120 * idle IO detection. 121 * 122 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 123 * or /sys/block/mdX/md/sync_speed_{min,max} 124 */ 125 126 static int sysctl_speed_limit_min = 1000; 127 static int sysctl_speed_limit_max = 200000; speed_min(struct mddev * mddev)128 static inline int speed_min(struct mddev *mddev) 129 { 130 return mddev->sync_speed_min ? 131 mddev->sync_speed_min : sysctl_speed_limit_min; 132 } 133 speed_max(struct mddev * mddev)134 static inline int speed_max(struct mddev *mddev) 135 { 136 return mddev->sync_speed_max ? 137 mddev->sync_speed_max : sysctl_speed_limit_max; 138 } 139 rdev_uninit_serial(struct md_rdev * rdev)140 static void rdev_uninit_serial(struct md_rdev *rdev) 141 { 142 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 143 return; 144 145 kvfree(rdev->serial); 146 rdev->serial = NULL; 147 } 148 rdevs_uninit_serial(struct mddev * mddev)149 static void rdevs_uninit_serial(struct mddev *mddev) 150 { 151 struct md_rdev *rdev; 152 153 rdev_for_each(rdev, mddev) 154 rdev_uninit_serial(rdev); 155 } 156 rdev_init_serial(struct md_rdev * rdev)157 static int rdev_init_serial(struct md_rdev *rdev) 158 { 159 /* serial_nums equals with BARRIER_BUCKETS_NR */ 160 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 161 struct serial_in_rdev *serial = NULL; 162 163 if (test_bit(CollisionCheck, &rdev->flags)) 164 return 0; 165 166 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 167 GFP_KERNEL); 168 if (!serial) 169 return -ENOMEM; 170 171 for (i = 0; i < serial_nums; i++) { 172 struct serial_in_rdev *serial_tmp = &serial[i]; 173 174 spin_lock_init(&serial_tmp->serial_lock); 175 serial_tmp->serial_rb = RB_ROOT_CACHED; 176 init_waitqueue_head(&serial_tmp->serial_io_wait); 177 } 178 179 rdev->serial = serial; 180 set_bit(CollisionCheck, &rdev->flags); 181 182 return 0; 183 } 184 rdevs_init_serial(struct mddev * mddev)185 static int rdevs_init_serial(struct mddev *mddev) 186 { 187 struct md_rdev *rdev; 188 int ret = 0; 189 190 rdev_for_each(rdev, mddev) { 191 ret = rdev_init_serial(rdev); 192 if (ret) 193 break; 194 } 195 196 /* Free all resources if pool is not existed */ 197 if (ret && !mddev->serial_info_pool) 198 rdevs_uninit_serial(mddev); 199 200 return ret; 201 } 202 203 /* 204 * rdev needs to enable serial stuffs if it meets the conditions: 205 * 1. it is multi-queue device flaged with writemostly. 206 * 2. the write-behind mode is enabled. 207 */ rdev_need_serial(struct md_rdev * rdev)208 static int rdev_need_serial(struct md_rdev *rdev) 209 { 210 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 211 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 212 test_bit(WriteMostly, &rdev->flags)); 213 } 214 215 /* 216 * Init resource for rdev(s), then create serial_info_pool if: 217 * 1. rdev is the first device which return true from rdev_enable_serial. 218 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 219 */ mddev_create_serial_pool(struct mddev * mddev,struct md_rdev * rdev)220 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev) 221 { 222 int ret = 0; 223 224 if (rdev && !rdev_need_serial(rdev) && 225 !test_bit(CollisionCheck, &rdev->flags)) 226 return; 227 228 if (!rdev) 229 ret = rdevs_init_serial(mddev); 230 else 231 ret = rdev_init_serial(rdev); 232 if (ret) 233 return; 234 235 if (mddev->serial_info_pool == NULL) { 236 /* 237 * already in memalloc noio context by 238 * mddev_suspend() 239 */ 240 mddev->serial_info_pool = 241 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 242 sizeof(struct serial_info)); 243 if (!mddev->serial_info_pool) { 244 rdevs_uninit_serial(mddev); 245 pr_err("can't alloc memory pool for serialization\n"); 246 } 247 } 248 } 249 250 /* 251 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 252 * 1. rdev is the last device flaged with CollisionCheck. 253 * 2. when bitmap is destroyed while policy is not enabled. 254 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 255 */ mddev_destroy_serial_pool(struct mddev * mddev,struct md_rdev * rdev)256 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev) 257 { 258 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 259 return; 260 261 if (mddev->serial_info_pool) { 262 struct md_rdev *temp; 263 int num = 0; /* used to track if other rdevs need the pool */ 264 265 rdev_for_each(temp, mddev) { 266 if (!rdev) { 267 if (!mddev->serialize_policy || 268 !rdev_need_serial(temp)) 269 rdev_uninit_serial(temp); 270 else 271 num++; 272 } else if (temp != rdev && 273 test_bit(CollisionCheck, &temp->flags)) 274 num++; 275 } 276 277 if (rdev) 278 rdev_uninit_serial(rdev); 279 280 if (num) 281 pr_info("The mempool could be used by other devices\n"); 282 else { 283 mempool_destroy(mddev->serial_info_pool); 284 mddev->serial_info_pool = NULL; 285 } 286 } 287 } 288 289 static struct ctl_table_header *raid_table_header; 290 291 static const struct ctl_table raid_table[] = { 292 { 293 .procname = "speed_limit_min", 294 .data = &sysctl_speed_limit_min, 295 .maxlen = sizeof(int), 296 .mode = S_IRUGO|S_IWUSR, 297 .proc_handler = proc_dointvec, 298 }, 299 { 300 .procname = "speed_limit_max", 301 .data = &sysctl_speed_limit_max, 302 .maxlen = sizeof(int), 303 .mode = S_IRUGO|S_IWUSR, 304 .proc_handler = proc_dointvec, 305 }, 306 }; 307 308 static int start_readonly; 309 310 /* 311 * The original mechanism for creating an md device is to create 312 * a device node in /dev and to open it. This causes races with device-close. 313 * The preferred method is to write to the "new_array" module parameter. 314 * This can avoid races. 315 * Setting create_on_open to false disables the original mechanism 316 * so all the races disappear. 317 */ 318 static bool create_on_open = true; 319 320 /* 321 * We have a system wide 'event count' that is incremented 322 * on any 'interesting' event, and readers of /proc/mdstat 323 * can use 'poll' or 'select' to find out when the event 324 * count increases. 325 * 326 * Events are: 327 * start array, stop array, error, add device, remove device, 328 * start build, activate spare 329 */ 330 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 331 static atomic_t md_event_count; md_new_event(void)332 void md_new_event(void) 333 { 334 atomic_inc(&md_event_count); 335 wake_up(&md_event_waiters); 336 } 337 EXPORT_SYMBOL_GPL(md_new_event); 338 339 /* 340 * Enables to iterate over all existing md arrays 341 * all_mddevs_lock protects this list. 342 */ 343 static LIST_HEAD(all_mddevs); 344 static DEFINE_SPINLOCK(all_mddevs_lock); 345 is_md_suspended(struct mddev * mddev)346 static bool is_md_suspended(struct mddev *mddev) 347 { 348 return percpu_ref_is_dying(&mddev->active_io); 349 } 350 /* Rather than calling directly into the personality make_request function, 351 * IO requests come here first so that we can check if the device is 352 * being suspended pending a reconfiguration. 353 * We hold a refcount over the call to ->make_request. By the time that 354 * call has finished, the bio has been linked into some internal structure 355 * and so is visible to ->quiesce(), so we don't need the refcount any more. 356 */ is_suspended(struct mddev * mddev,struct bio * bio)357 static bool is_suspended(struct mddev *mddev, struct bio *bio) 358 { 359 if (is_md_suspended(mddev)) 360 return true; 361 if (bio_data_dir(bio) != WRITE) 362 return false; 363 if (READ_ONCE(mddev->suspend_lo) >= READ_ONCE(mddev->suspend_hi)) 364 return false; 365 if (bio->bi_iter.bi_sector >= READ_ONCE(mddev->suspend_hi)) 366 return false; 367 if (bio_end_sector(bio) < READ_ONCE(mddev->suspend_lo)) 368 return false; 369 return true; 370 } 371 md_handle_request(struct mddev * mddev,struct bio * bio)372 bool md_handle_request(struct mddev *mddev, struct bio *bio) 373 { 374 check_suspended: 375 if (is_suspended(mddev, bio)) { 376 DEFINE_WAIT(__wait); 377 /* Bail out if REQ_NOWAIT is set for the bio */ 378 if (bio->bi_opf & REQ_NOWAIT) { 379 bio_wouldblock_error(bio); 380 return true; 381 } 382 for (;;) { 383 prepare_to_wait(&mddev->sb_wait, &__wait, 384 TASK_UNINTERRUPTIBLE); 385 if (!is_suspended(mddev, bio)) 386 break; 387 schedule(); 388 } 389 finish_wait(&mddev->sb_wait, &__wait); 390 } 391 if (!percpu_ref_tryget_live(&mddev->active_io)) 392 goto check_suspended; 393 394 if (!mddev->pers->make_request(mddev, bio)) { 395 percpu_ref_put(&mddev->active_io); 396 if (!mddev->gendisk && mddev->pers->prepare_suspend) 397 return false; 398 goto check_suspended; 399 } 400 401 percpu_ref_put(&mddev->active_io); 402 return true; 403 } 404 EXPORT_SYMBOL(md_handle_request); 405 md_submit_bio(struct bio * bio)406 static void md_submit_bio(struct bio *bio) 407 { 408 const int rw = bio_data_dir(bio); 409 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 410 411 if (mddev == NULL || mddev->pers == NULL) { 412 bio_io_error(bio); 413 return; 414 } 415 416 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 417 bio_io_error(bio); 418 return; 419 } 420 421 bio = bio_split_to_limits(bio); 422 if (!bio) 423 return; 424 425 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) { 426 if (bio_sectors(bio) != 0) 427 bio->bi_status = BLK_STS_IOERR; 428 bio_endio(bio); 429 return; 430 } 431 432 /* bio could be mergeable after passing to underlayer */ 433 bio->bi_opf &= ~REQ_NOMERGE; 434 435 md_handle_request(mddev, bio); 436 } 437 438 /* 439 * Make sure no new requests are submitted to the device, and any requests that 440 * have been submitted are completely handled. 441 */ mddev_suspend(struct mddev * mddev,bool interruptible)442 int mddev_suspend(struct mddev *mddev, bool interruptible) 443 { 444 int err = 0; 445 446 /* 447 * hold reconfig_mutex to wait for normal io will deadlock, because 448 * other context can't update super_block, and normal io can rely on 449 * updating super_block. 450 */ 451 lockdep_assert_not_held(&mddev->reconfig_mutex); 452 453 if (interruptible) 454 err = mutex_lock_interruptible(&mddev->suspend_mutex); 455 else 456 mutex_lock(&mddev->suspend_mutex); 457 if (err) 458 return err; 459 460 if (mddev->suspended) { 461 WRITE_ONCE(mddev->suspended, mddev->suspended + 1); 462 mutex_unlock(&mddev->suspend_mutex); 463 return 0; 464 } 465 466 percpu_ref_kill(&mddev->active_io); 467 if (interruptible) 468 err = wait_event_interruptible(mddev->sb_wait, 469 percpu_ref_is_zero(&mddev->active_io)); 470 else 471 wait_event(mddev->sb_wait, 472 percpu_ref_is_zero(&mddev->active_io)); 473 if (err) { 474 percpu_ref_resurrect(&mddev->active_io); 475 mutex_unlock(&mddev->suspend_mutex); 476 return err; 477 } 478 479 /* 480 * For raid456, io might be waiting for reshape to make progress, 481 * allow new reshape to start while waiting for io to be done to 482 * prevent deadlock. 483 */ 484 WRITE_ONCE(mddev->suspended, mddev->suspended + 1); 485 486 /* restrict memory reclaim I/O during raid array is suspend */ 487 mddev->noio_flag = memalloc_noio_save(); 488 489 mutex_unlock(&mddev->suspend_mutex); 490 return 0; 491 } 492 EXPORT_SYMBOL_GPL(mddev_suspend); 493 __mddev_resume(struct mddev * mddev,bool recovery_needed)494 static void __mddev_resume(struct mddev *mddev, bool recovery_needed) 495 { 496 lockdep_assert_not_held(&mddev->reconfig_mutex); 497 498 mutex_lock(&mddev->suspend_mutex); 499 WRITE_ONCE(mddev->suspended, mddev->suspended - 1); 500 if (mddev->suspended) { 501 mutex_unlock(&mddev->suspend_mutex); 502 return; 503 } 504 505 /* entred the memalloc scope from mddev_suspend() */ 506 memalloc_noio_restore(mddev->noio_flag); 507 508 percpu_ref_resurrect(&mddev->active_io); 509 wake_up(&mddev->sb_wait); 510 511 if (recovery_needed) 512 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 513 md_wakeup_thread(mddev->thread); 514 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 515 516 mutex_unlock(&mddev->suspend_mutex); 517 } 518 mddev_resume(struct mddev * mddev)519 void mddev_resume(struct mddev *mddev) 520 { 521 return __mddev_resume(mddev, true); 522 } 523 EXPORT_SYMBOL_GPL(mddev_resume); 524 525 /* sync bdev before setting device to readonly or stopping raid*/ mddev_set_closing_and_sync_blockdev(struct mddev * mddev,int opener_num)526 static int mddev_set_closing_and_sync_blockdev(struct mddev *mddev, int opener_num) 527 { 528 mutex_lock(&mddev->open_mutex); 529 if (mddev->pers && atomic_read(&mddev->openers) > opener_num) { 530 mutex_unlock(&mddev->open_mutex); 531 return -EBUSY; 532 } 533 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 534 mutex_unlock(&mddev->open_mutex); 535 return -EBUSY; 536 } 537 mutex_unlock(&mddev->open_mutex); 538 539 sync_blockdev(mddev->gendisk->part0); 540 return 0; 541 } 542 543 /* 544 * The only difference from bio_chain_endio() is that the current 545 * bi_status of bio does not affect the bi_status of parent. 546 */ md_end_flush(struct bio * bio)547 static void md_end_flush(struct bio *bio) 548 { 549 struct bio *parent = bio->bi_private; 550 551 /* 552 * If any flush io error before the power failure, 553 * disk data may be lost. 554 */ 555 if (bio->bi_status) 556 pr_err("md: %pg flush io error %d\n", bio->bi_bdev, 557 blk_status_to_errno(bio->bi_status)); 558 559 bio_put(bio); 560 bio_endio(parent); 561 } 562 md_flush_request(struct mddev * mddev,struct bio * bio)563 bool md_flush_request(struct mddev *mddev, struct bio *bio) 564 { 565 struct md_rdev *rdev; 566 struct bio *new; 567 568 /* 569 * md_flush_reqeust() should be called under md_handle_request() and 570 * 'active_io' is already grabbed. Hence it's safe to get rdev directly 571 * without rcu protection. 572 */ 573 WARN_ON(percpu_ref_is_zero(&mddev->active_io)); 574 575 rdev_for_each(rdev, mddev) { 576 if (rdev->raid_disk < 0 || test_bit(Faulty, &rdev->flags)) 577 continue; 578 579 new = bio_alloc_bioset(rdev->bdev, 0, 580 REQ_OP_WRITE | REQ_PREFLUSH, GFP_NOIO, 581 &mddev->bio_set); 582 new->bi_private = bio; 583 new->bi_end_io = md_end_flush; 584 bio_inc_remaining(bio); 585 submit_bio(new); 586 } 587 588 if (bio_sectors(bio) == 0) { 589 bio_endio(bio); 590 return true; 591 } 592 593 bio->bi_opf &= ~REQ_PREFLUSH; 594 return false; 595 } 596 EXPORT_SYMBOL(md_flush_request); 597 mddev_get(struct mddev * mddev)598 static inline struct mddev *mddev_get(struct mddev *mddev) 599 { 600 lockdep_assert_held(&all_mddevs_lock); 601 602 if (test_bit(MD_DELETED, &mddev->flags)) 603 return NULL; 604 atomic_inc(&mddev->active); 605 return mddev; 606 } 607 608 static void mddev_delayed_delete(struct work_struct *ws); 609 __mddev_put(struct mddev * mddev)610 static void __mddev_put(struct mddev *mddev) 611 { 612 if (mddev->raid_disks || !list_empty(&mddev->disks) || 613 mddev->ctime || mddev->hold_active) 614 return; 615 616 /* Array is not configured at all, and not held active, so destroy it */ 617 set_bit(MD_DELETED, &mddev->flags); 618 619 /* 620 * Call queue_work inside the spinlock so that flush_workqueue() after 621 * mddev_find will succeed in waiting for the work to be done. 622 */ 623 queue_work(md_misc_wq, &mddev->del_work); 624 } 625 mddev_put_locked(struct mddev * mddev)626 static void mddev_put_locked(struct mddev *mddev) 627 { 628 if (atomic_dec_and_test(&mddev->active)) 629 __mddev_put(mddev); 630 } 631 mddev_put(struct mddev * mddev)632 void mddev_put(struct mddev *mddev) 633 { 634 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 635 return; 636 637 __mddev_put(mddev); 638 spin_unlock(&all_mddevs_lock); 639 } 640 641 static void md_safemode_timeout(struct timer_list *t); 642 static void md_start_sync(struct work_struct *ws); 643 active_io_release(struct percpu_ref * ref)644 static void active_io_release(struct percpu_ref *ref) 645 { 646 struct mddev *mddev = container_of(ref, struct mddev, active_io); 647 648 wake_up(&mddev->sb_wait); 649 } 650 no_op(struct percpu_ref * r)651 static void no_op(struct percpu_ref *r) {} 652 mddev_init(struct mddev * mddev)653 int mddev_init(struct mddev *mddev) 654 { 655 656 if (percpu_ref_init(&mddev->active_io, active_io_release, 657 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) 658 return -ENOMEM; 659 660 if (percpu_ref_init(&mddev->writes_pending, no_op, 661 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) { 662 percpu_ref_exit(&mddev->active_io); 663 return -ENOMEM; 664 } 665 666 /* We want to start with the refcount at zero */ 667 percpu_ref_put(&mddev->writes_pending); 668 669 mutex_init(&mddev->open_mutex); 670 mutex_init(&mddev->reconfig_mutex); 671 mutex_init(&mddev->suspend_mutex); 672 mutex_init(&mddev->bitmap_info.mutex); 673 INIT_LIST_HEAD(&mddev->disks); 674 INIT_LIST_HEAD(&mddev->all_mddevs); 675 INIT_LIST_HEAD(&mddev->deleting); 676 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 677 atomic_set(&mddev->active, 1); 678 atomic_set(&mddev->openers, 0); 679 atomic_set(&mddev->sync_seq, 0); 680 spin_lock_init(&mddev->lock); 681 init_waitqueue_head(&mddev->sb_wait); 682 init_waitqueue_head(&mddev->recovery_wait); 683 mddev->reshape_position = MaxSector; 684 mddev->reshape_backwards = 0; 685 mddev->last_sync_action = ACTION_IDLE; 686 mddev->resync_min = 0; 687 mddev->resync_max = MaxSector; 688 mddev->level = LEVEL_NONE; 689 mddev_set_bitmap_ops(mddev); 690 691 INIT_WORK(&mddev->sync_work, md_start_sync); 692 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 693 694 return 0; 695 } 696 EXPORT_SYMBOL_GPL(mddev_init); 697 mddev_destroy(struct mddev * mddev)698 void mddev_destroy(struct mddev *mddev) 699 { 700 percpu_ref_exit(&mddev->active_io); 701 percpu_ref_exit(&mddev->writes_pending); 702 } 703 EXPORT_SYMBOL_GPL(mddev_destroy); 704 mddev_find_locked(dev_t unit)705 static struct mddev *mddev_find_locked(dev_t unit) 706 { 707 struct mddev *mddev; 708 709 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 710 if (mddev->unit == unit) 711 return mddev; 712 713 return NULL; 714 } 715 716 /* find an unused unit number */ mddev_alloc_unit(void)717 static dev_t mddev_alloc_unit(void) 718 { 719 static int next_minor = 512; 720 int start = next_minor; 721 bool is_free = 0; 722 dev_t dev = 0; 723 724 while (!is_free) { 725 dev = MKDEV(MD_MAJOR, next_minor); 726 next_minor++; 727 if (next_minor > MINORMASK) 728 next_minor = 0; 729 if (next_minor == start) 730 return 0; /* Oh dear, all in use. */ 731 is_free = !mddev_find_locked(dev); 732 } 733 734 return dev; 735 } 736 mddev_alloc(dev_t unit)737 static struct mddev *mddev_alloc(dev_t unit) 738 { 739 struct mddev *new; 740 int error; 741 742 if (unit && MAJOR(unit) != MD_MAJOR) 743 unit &= ~((1 << MdpMinorShift) - 1); 744 745 new = kzalloc(sizeof(*new), GFP_KERNEL); 746 if (!new) 747 return ERR_PTR(-ENOMEM); 748 749 error = mddev_init(new); 750 if (error) 751 goto out_free_new; 752 753 spin_lock(&all_mddevs_lock); 754 if (unit) { 755 error = -EEXIST; 756 if (mddev_find_locked(unit)) 757 goto out_destroy_new; 758 new->unit = unit; 759 if (MAJOR(unit) == MD_MAJOR) 760 new->md_minor = MINOR(unit); 761 else 762 new->md_minor = MINOR(unit) >> MdpMinorShift; 763 new->hold_active = UNTIL_IOCTL; 764 } else { 765 error = -ENODEV; 766 new->unit = mddev_alloc_unit(); 767 if (!new->unit) 768 goto out_destroy_new; 769 new->md_minor = MINOR(new->unit); 770 new->hold_active = UNTIL_STOP; 771 } 772 773 list_add(&new->all_mddevs, &all_mddevs); 774 spin_unlock(&all_mddevs_lock); 775 return new; 776 777 out_destroy_new: 778 spin_unlock(&all_mddevs_lock); 779 mddev_destroy(new); 780 out_free_new: 781 kfree(new); 782 return ERR_PTR(error); 783 } 784 mddev_free(struct mddev * mddev)785 static void mddev_free(struct mddev *mddev) 786 { 787 spin_lock(&all_mddevs_lock); 788 list_del(&mddev->all_mddevs); 789 spin_unlock(&all_mddevs_lock); 790 791 mddev_destroy(mddev); 792 kfree(mddev); 793 } 794 795 static const struct attribute_group md_redundancy_group; 796 mddev_unlock(struct mddev * mddev)797 void mddev_unlock(struct mddev *mddev) 798 { 799 struct md_rdev *rdev; 800 struct md_rdev *tmp; 801 LIST_HEAD(delete); 802 803 if (!list_empty(&mddev->deleting)) 804 list_splice_init(&mddev->deleting, &delete); 805 806 if (mddev->to_remove) { 807 /* These cannot be removed under reconfig_mutex as 808 * an access to the files will try to take reconfig_mutex 809 * while holding the file unremovable, which leads to 810 * a deadlock. 811 * So hold set sysfs_active while the remove in happeing, 812 * and anything else which might set ->to_remove or my 813 * otherwise change the sysfs namespace will fail with 814 * -EBUSY if sysfs_active is still set. 815 * We set sysfs_active under reconfig_mutex and elsewhere 816 * test it under the same mutex to ensure its correct value 817 * is seen. 818 */ 819 const struct attribute_group *to_remove = mddev->to_remove; 820 mddev->to_remove = NULL; 821 mddev->sysfs_active = 1; 822 mutex_unlock(&mddev->reconfig_mutex); 823 824 if (mddev->kobj.sd) { 825 if (to_remove != &md_redundancy_group) 826 sysfs_remove_group(&mddev->kobj, to_remove); 827 if (mddev->pers == NULL || 828 mddev->pers->sync_request == NULL) { 829 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 830 if (mddev->sysfs_action) 831 sysfs_put(mddev->sysfs_action); 832 if (mddev->sysfs_completed) 833 sysfs_put(mddev->sysfs_completed); 834 if (mddev->sysfs_degraded) 835 sysfs_put(mddev->sysfs_degraded); 836 mddev->sysfs_action = NULL; 837 mddev->sysfs_completed = NULL; 838 mddev->sysfs_degraded = NULL; 839 } 840 } 841 mddev->sysfs_active = 0; 842 } else 843 mutex_unlock(&mddev->reconfig_mutex); 844 845 md_wakeup_thread(mddev->thread); 846 wake_up(&mddev->sb_wait); 847 848 list_for_each_entry_safe(rdev, tmp, &delete, same_set) { 849 list_del_init(&rdev->same_set); 850 kobject_del(&rdev->kobj); 851 export_rdev(rdev, mddev); 852 } 853 } 854 EXPORT_SYMBOL_GPL(mddev_unlock); 855 md_find_rdev_nr_rcu(struct mddev * mddev,int nr)856 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 857 { 858 struct md_rdev *rdev; 859 860 rdev_for_each_rcu(rdev, mddev) 861 if (rdev->desc_nr == nr) 862 return rdev; 863 864 return NULL; 865 } 866 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 867 find_rdev(struct mddev * mddev,dev_t dev)868 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 869 { 870 struct md_rdev *rdev; 871 872 rdev_for_each(rdev, mddev) 873 if (rdev->bdev->bd_dev == dev) 874 return rdev; 875 876 return NULL; 877 } 878 md_find_rdev_rcu(struct mddev * mddev,dev_t dev)879 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 880 { 881 struct md_rdev *rdev; 882 883 rdev_for_each_rcu(rdev, mddev) 884 if (rdev->bdev->bd_dev == dev) 885 return rdev; 886 887 return NULL; 888 } 889 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 890 get_pers(int level,char * clevel)891 static struct md_personality *get_pers(int level, char *clevel) 892 { 893 struct md_personality *ret = NULL; 894 struct md_submodule_head *head; 895 unsigned long i; 896 897 xa_lock(&md_submodule); 898 xa_for_each(&md_submodule, i, head) { 899 if (head->type != MD_PERSONALITY) 900 continue; 901 if ((level != LEVEL_NONE && head->id == level) || 902 !strcmp(head->name, clevel)) { 903 if (try_module_get(head->owner)) 904 ret = (void *)head; 905 break; 906 } 907 } 908 xa_unlock(&md_submodule); 909 910 if (!ret) { 911 if (level != LEVEL_NONE) 912 pr_warn("md: personality for level %d is not loaded!\n", 913 level); 914 else 915 pr_warn("md: personality for level %s is not loaded!\n", 916 clevel); 917 } 918 919 return ret; 920 } 921 put_pers(struct md_personality * pers)922 static void put_pers(struct md_personality *pers) 923 { 924 module_put(pers->head.owner); 925 } 926 927 /* return the offset of the super block in 512byte sectors */ calc_dev_sboffset(struct md_rdev * rdev)928 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 929 { 930 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 931 } 932 alloc_disk_sb(struct md_rdev * rdev)933 static int alloc_disk_sb(struct md_rdev *rdev) 934 { 935 rdev->sb_page = alloc_page(GFP_KERNEL); 936 if (!rdev->sb_page) 937 return -ENOMEM; 938 return 0; 939 } 940 md_rdev_clear(struct md_rdev * rdev)941 void md_rdev_clear(struct md_rdev *rdev) 942 { 943 if (rdev->sb_page) { 944 put_page(rdev->sb_page); 945 rdev->sb_loaded = 0; 946 rdev->sb_page = NULL; 947 rdev->sb_start = 0; 948 rdev->sectors = 0; 949 } 950 if (rdev->bb_page) { 951 put_page(rdev->bb_page); 952 rdev->bb_page = NULL; 953 } 954 badblocks_exit(&rdev->badblocks); 955 } 956 EXPORT_SYMBOL_GPL(md_rdev_clear); 957 super_written(struct bio * bio)958 static void super_written(struct bio *bio) 959 { 960 struct md_rdev *rdev = bio->bi_private; 961 struct mddev *mddev = rdev->mddev; 962 963 if (bio->bi_status) { 964 pr_err("md: %s gets error=%d\n", __func__, 965 blk_status_to_errno(bio->bi_status)); 966 md_error(mddev, rdev); 967 if (!test_bit(Faulty, &rdev->flags) 968 && (bio->bi_opf & MD_FAILFAST)) { 969 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 970 set_bit(LastDev, &rdev->flags); 971 } 972 } else 973 clear_bit(LastDev, &rdev->flags); 974 975 bio_put(bio); 976 977 rdev_dec_pending(rdev, mddev); 978 979 if (atomic_dec_and_test(&mddev->pending_writes)) 980 wake_up(&mddev->sb_wait); 981 } 982 md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)983 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 984 sector_t sector, int size, struct page *page) 985 { 986 /* write first size bytes of page to sector of rdev 987 * Increment mddev->pending_writes before returning 988 * and decrement it on completion, waking up sb_wait 989 * if zero is reached. 990 * If an error occurred, call md_error 991 */ 992 struct bio *bio; 993 994 if (!page) 995 return; 996 997 if (test_bit(Faulty, &rdev->flags)) 998 return; 999 1000 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 1001 1, 1002 REQ_OP_WRITE | REQ_SYNC | REQ_IDLE | REQ_META 1003 | REQ_PREFLUSH | REQ_FUA, 1004 GFP_NOIO, &mddev->sync_set); 1005 1006 atomic_inc(&rdev->nr_pending); 1007 1008 bio->bi_iter.bi_sector = sector; 1009 __bio_add_page(bio, page, size, 0); 1010 bio->bi_private = rdev; 1011 bio->bi_end_io = super_written; 1012 1013 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 1014 test_bit(FailFast, &rdev->flags) && 1015 !test_bit(LastDev, &rdev->flags)) 1016 bio->bi_opf |= MD_FAILFAST; 1017 1018 atomic_inc(&mddev->pending_writes); 1019 submit_bio(bio); 1020 } 1021 md_super_wait(struct mddev * mddev)1022 int md_super_wait(struct mddev *mddev) 1023 { 1024 /* wait for all superblock writes that were scheduled to complete */ 1025 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 1026 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 1027 return -EAGAIN; 1028 return 0; 1029 } 1030 sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,blk_opf_t opf,bool metadata_op)1031 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 1032 struct page *page, blk_opf_t opf, bool metadata_op) 1033 { 1034 struct bio bio; 1035 struct bio_vec bvec; 1036 1037 if (metadata_op && rdev->meta_bdev) 1038 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf); 1039 else 1040 bio_init(&bio, rdev->bdev, &bvec, 1, opf); 1041 1042 if (metadata_op) 1043 bio.bi_iter.bi_sector = sector + rdev->sb_start; 1044 else if (rdev->mddev->reshape_position != MaxSector && 1045 (rdev->mddev->reshape_backwards == 1046 (sector >= rdev->mddev->reshape_position))) 1047 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 1048 else 1049 bio.bi_iter.bi_sector = sector + rdev->data_offset; 1050 __bio_add_page(&bio, page, size, 0); 1051 1052 submit_bio_wait(&bio); 1053 1054 return !bio.bi_status; 1055 } 1056 EXPORT_SYMBOL_GPL(sync_page_io); 1057 read_disk_sb(struct md_rdev * rdev,int size)1058 static int read_disk_sb(struct md_rdev *rdev, int size) 1059 { 1060 if (rdev->sb_loaded) 1061 return 0; 1062 1063 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) 1064 goto fail; 1065 rdev->sb_loaded = 1; 1066 return 0; 1067 1068 fail: 1069 pr_err("md: disabled device %pg, could not read superblock.\n", 1070 rdev->bdev); 1071 return -EINVAL; 1072 } 1073 md_uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)1074 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1075 { 1076 return sb1->set_uuid0 == sb2->set_uuid0 && 1077 sb1->set_uuid1 == sb2->set_uuid1 && 1078 sb1->set_uuid2 == sb2->set_uuid2 && 1079 sb1->set_uuid3 == sb2->set_uuid3; 1080 } 1081 md_sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)1082 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1083 { 1084 int ret; 1085 mdp_super_t *tmp1, *tmp2; 1086 1087 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1088 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1089 1090 if (!tmp1 || !tmp2) { 1091 ret = 0; 1092 goto abort; 1093 } 1094 1095 *tmp1 = *sb1; 1096 *tmp2 = *sb2; 1097 1098 /* 1099 * nr_disks is not constant 1100 */ 1101 tmp1->nr_disks = 0; 1102 tmp2->nr_disks = 0; 1103 1104 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1105 abort: 1106 kfree(tmp1); 1107 kfree(tmp2); 1108 return ret; 1109 } 1110 md_csum_fold(u32 csum)1111 static u32 md_csum_fold(u32 csum) 1112 { 1113 csum = (csum & 0xffff) + (csum >> 16); 1114 return (csum & 0xffff) + (csum >> 16); 1115 } 1116 calc_sb_csum(mdp_super_t * sb)1117 static unsigned int calc_sb_csum(mdp_super_t *sb) 1118 { 1119 u64 newcsum = 0; 1120 u32 *sb32 = (u32*)sb; 1121 int i; 1122 unsigned int disk_csum, csum; 1123 1124 disk_csum = sb->sb_csum; 1125 sb->sb_csum = 0; 1126 1127 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1128 newcsum += sb32[i]; 1129 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1130 1131 #ifdef CONFIG_ALPHA 1132 /* This used to use csum_partial, which was wrong for several 1133 * reasons including that different results are returned on 1134 * different architectures. It isn't critical that we get exactly 1135 * the same return value as before (we always csum_fold before 1136 * testing, and that removes any differences). However as we 1137 * know that csum_partial always returned a 16bit value on 1138 * alphas, do a fold to maximise conformity to previous behaviour. 1139 */ 1140 sb->sb_csum = md_csum_fold(disk_csum); 1141 #else 1142 sb->sb_csum = disk_csum; 1143 #endif 1144 return csum; 1145 } 1146 1147 /* 1148 * Handle superblock details. 1149 * We want to be able to handle multiple superblock formats 1150 * so we have a common interface to them all, and an array of 1151 * different handlers. 1152 * We rely on user-space to write the initial superblock, and support 1153 * reading and updating of superblocks. 1154 * Interface methods are: 1155 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1156 * loads and validates a superblock on dev. 1157 * if refdev != NULL, compare superblocks on both devices 1158 * Return: 1159 * 0 - dev has a superblock that is compatible with refdev 1160 * 1 - dev has a superblock that is compatible and newer than refdev 1161 * so dev should be used as the refdev in future 1162 * -EINVAL superblock incompatible or invalid 1163 * -othererror e.g. -EIO 1164 * 1165 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1166 * Verify that dev is acceptable into mddev. 1167 * The first time, mddev->raid_disks will be 0, and data from 1168 * dev should be merged in. Subsequent calls check that dev 1169 * is new enough. Return 0 or -EINVAL 1170 * 1171 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1172 * Update the superblock for rdev with data in mddev 1173 * This does not write to disc. 1174 * 1175 */ 1176 1177 struct super_type { 1178 char *name; 1179 struct module *owner; 1180 int (*load_super)(struct md_rdev *rdev, 1181 struct md_rdev *refdev, 1182 int minor_version); 1183 int (*validate_super)(struct mddev *mddev, 1184 struct md_rdev *freshest, 1185 struct md_rdev *rdev); 1186 void (*sync_super)(struct mddev *mddev, 1187 struct md_rdev *rdev); 1188 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1189 sector_t num_sectors); 1190 int (*allow_new_offset)(struct md_rdev *rdev, 1191 unsigned long long new_offset); 1192 }; 1193 1194 /* 1195 * Check that the given mddev has no bitmap. 1196 * 1197 * This function is called from the run method of all personalities that do not 1198 * support bitmaps. It prints an error message and returns non-zero if mddev 1199 * has a bitmap. Otherwise, it returns 0. 1200 * 1201 */ md_check_no_bitmap(struct mddev * mddev)1202 int md_check_no_bitmap(struct mddev *mddev) 1203 { 1204 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1205 return 0; 1206 pr_warn("%s: bitmaps are not supported for %s\n", 1207 mdname(mddev), mddev->pers->head.name); 1208 return 1; 1209 } 1210 EXPORT_SYMBOL(md_check_no_bitmap); 1211 1212 /* 1213 * load_super for 0.90.0 1214 */ super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1215 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1216 { 1217 mdp_super_t *sb; 1218 int ret; 1219 bool spare_disk = true; 1220 1221 /* 1222 * Calculate the position of the superblock (512byte sectors), 1223 * it's at the end of the disk. 1224 * 1225 * It also happens to be a multiple of 4Kb. 1226 */ 1227 rdev->sb_start = calc_dev_sboffset(rdev); 1228 1229 ret = read_disk_sb(rdev, MD_SB_BYTES); 1230 if (ret) 1231 return ret; 1232 1233 ret = -EINVAL; 1234 1235 sb = page_address(rdev->sb_page); 1236 1237 if (sb->md_magic != MD_SB_MAGIC) { 1238 pr_warn("md: invalid raid superblock magic on %pg\n", 1239 rdev->bdev); 1240 goto abort; 1241 } 1242 1243 if (sb->major_version != 0 || 1244 sb->minor_version < 90 || 1245 sb->minor_version > 91) { 1246 pr_warn("Bad version number %d.%d on %pg\n", 1247 sb->major_version, sb->minor_version, rdev->bdev); 1248 goto abort; 1249 } 1250 1251 if (sb->raid_disks <= 0) 1252 goto abort; 1253 1254 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1255 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev); 1256 goto abort; 1257 } 1258 1259 rdev->preferred_minor = sb->md_minor; 1260 rdev->data_offset = 0; 1261 rdev->new_data_offset = 0; 1262 rdev->sb_size = MD_SB_BYTES; 1263 rdev->badblocks.shift = -1; 1264 1265 rdev->desc_nr = sb->this_disk.number; 1266 1267 /* not spare disk */ 1268 if (rdev->desc_nr >= 0 && rdev->desc_nr < MD_SB_DISKS && 1269 sb->disks[rdev->desc_nr].state & ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1270 spare_disk = false; 1271 1272 if (!refdev) { 1273 if (!spare_disk) 1274 ret = 1; 1275 else 1276 ret = 0; 1277 } else { 1278 __u64 ev1, ev2; 1279 mdp_super_t *refsb = page_address(refdev->sb_page); 1280 if (!md_uuid_equal(refsb, sb)) { 1281 pr_warn("md: %pg has different UUID to %pg\n", 1282 rdev->bdev, refdev->bdev); 1283 goto abort; 1284 } 1285 if (!md_sb_equal(refsb, sb)) { 1286 pr_warn("md: %pg has same UUID but different superblock to %pg\n", 1287 rdev->bdev, refdev->bdev); 1288 goto abort; 1289 } 1290 ev1 = md_event(sb); 1291 ev2 = md_event(refsb); 1292 1293 if (!spare_disk && ev1 > ev2) 1294 ret = 1; 1295 else 1296 ret = 0; 1297 } 1298 rdev->sectors = rdev->sb_start; 1299 /* Limit to 4TB as metadata cannot record more than that. 1300 * (not needed for Linear and RAID0 as metadata doesn't 1301 * record this size) 1302 */ 1303 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1304 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1305 1306 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1307 /* "this cannot possibly happen" ... */ 1308 ret = -EINVAL; 1309 1310 abort: 1311 return ret; 1312 } 1313 md_bitmap_events_cleared(struct mddev * mddev)1314 static u64 md_bitmap_events_cleared(struct mddev *mddev) 1315 { 1316 struct md_bitmap_stats stats; 1317 int err; 1318 1319 err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats); 1320 if (err) 1321 return 0; 1322 1323 return stats.events_cleared; 1324 } 1325 1326 /* 1327 * validate_super for 0.90.0 1328 * note: we are not using "freshest" for 0.9 superblock 1329 */ super_90_validate(struct mddev * mddev,struct md_rdev * freshest,struct md_rdev * rdev)1330 static int super_90_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev) 1331 { 1332 mdp_disk_t *desc; 1333 mdp_super_t *sb = page_address(rdev->sb_page); 1334 __u64 ev1 = md_event(sb); 1335 1336 rdev->raid_disk = -1; 1337 clear_bit(Faulty, &rdev->flags); 1338 clear_bit(In_sync, &rdev->flags); 1339 clear_bit(Bitmap_sync, &rdev->flags); 1340 clear_bit(WriteMostly, &rdev->flags); 1341 1342 if (mddev->raid_disks == 0) { 1343 mddev->major_version = 0; 1344 mddev->minor_version = sb->minor_version; 1345 mddev->patch_version = sb->patch_version; 1346 mddev->external = 0; 1347 mddev->chunk_sectors = sb->chunk_size >> 9; 1348 mddev->ctime = sb->ctime; 1349 mddev->utime = sb->utime; 1350 mddev->level = sb->level; 1351 mddev->clevel[0] = 0; 1352 mddev->layout = sb->layout; 1353 mddev->raid_disks = sb->raid_disks; 1354 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1355 mddev->events = ev1; 1356 mddev->bitmap_info.offset = 0; 1357 mddev->bitmap_info.space = 0; 1358 /* bitmap can use 60 K after the 4K superblocks */ 1359 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1360 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1361 mddev->reshape_backwards = 0; 1362 1363 if (mddev->minor_version >= 91) { 1364 mddev->reshape_position = sb->reshape_position; 1365 mddev->delta_disks = sb->delta_disks; 1366 mddev->new_level = sb->new_level; 1367 mddev->new_layout = sb->new_layout; 1368 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1369 if (mddev->delta_disks < 0) 1370 mddev->reshape_backwards = 1; 1371 } else { 1372 mddev->reshape_position = MaxSector; 1373 mddev->delta_disks = 0; 1374 mddev->new_level = mddev->level; 1375 mddev->new_layout = mddev->layout; 1376 mddev->new_chunk_sectors = mddev->chunk_sectors; 1377 } 1378 if (mddev->level == 0) 1379 mddev->layout = -1; 1380 1381 if (sb->state & (1<<MD_SB_CLEAN)) 1382 mddev->recovery_cp = MaxSector; 1383 else { 1384 if (sb->events_hi == sb->cp_events_hi && 1385 sb->events_lo == sb->cp_events_lo) { 1386 mddev->recovery_cp = sb->recovery_cp; 1387 } else 1388 mddev->recovery_cp = 0; 1389 } 1390 1391 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1392 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1393 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1394 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1395 1396 mddev->max_disks = MD_SB_DISKS; 1397 1398 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1399 mddev->bitmap_info.file == NULL) { 1400 mddev->bitmap_info.offset = 1401 mddev->bitmap_info.default_offset; 1402 mddev->bitmap_info.space = 1403 mddev->bitmap_info.default_space; 1404 } 1405 1406 } else if (mddev->pers == NULL) { 1407 /* Insist on good event counter while assembling, except 1408 * for spares (which don't need an event count) */ 1409 ++ev1; 1410 if (sb->disks[rdev->desc_nr].state & ( 1411 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1412 if (ev1 < mddev->events) 1413 return -EINVAL; 1414 } else if (mddev->bitmap) { 1415 /* if adding to array with a bitmap, then we can accept an 1416 * older device ... but not too old. 1417 */ 1418 if (ev1 < md_bitmap_events_cleared(mddev)) 1419 return 0; 1420 if (ev1 < mddev->events) 1421 set_bit(Bitmap_sync, &rdev->flags); 1422 } else { 1423 if (ev1 < mddev->events) 1424 /* just a hot-add of a new device, leave raid_disk at -1 */ 1425 return 0; 1426 } 1427 1428 desc = sb->disks + rdev->desc_nr; 1429 1430 if (desc->state & (1<<MD_DISK_FAULTY)) 1431 set_bit(Faulty, &rdev->flags); 1432 else if (desc->state & (1<<MD_DISK_SYNC)) { 1433 set_bit(In_sync, &rdev->flags); 1434 rdev->raid_disk = desc->raid_disk; 1435 rdev->saved_raid_disk = desc->raid_disk; 1436 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1437 /* active but not in sync implies recovery up to 1438 * reshape position. We don't know exactly where 1439 * that is, so set to zero for now 1440 */ 1441 if (mddev->minor_version >= 91) { 1442 rdev->recovery_offset = 0; 1443 rdev->raid_disk = desc->raid_disk; 1444 } 1445 } 1446 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1447 set_bit(WriteMostly, &rdev->flags); 1448 if (desc->state & (1<<MD_DISK_FAILFAST)) 1449 set_bit(FailFast, &rdev->flags); 1450 return 0; 1451 } 1452 1453 /* 1454 * sync_super for 0.90.0 1455 */ super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1456 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1457 { 1458 mdp_super_t *sb; 1459 struct md_rdev *rdev2; 1460 int next_spare = mddev->raid_disks; 1461 1462 /* make rdev->sb match mddev data.. 1463 * 1464 * 1/ zero out disks 1465 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1466 * 3/ any empty disks < next_spare become removed 1467 * 1468 * disks[0] gets initialised to REMOVED because 1469 * we cannot be sure from other fields if it has 1470 * been initialised or not. 1471 */ 1472 int i; 1473 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1474 1475 rdev->sb_size = MD_SB_BYTES; 1476 1477 sb = page_address(rdev->sb_page); 1478 1479 memset(sb, 0, sizeof(*sb)); 1480 1481 sb->md_magic = MD_SB_MAGIC; 1482 sb->major_version = mddev->major_version; 1483 sb->patch_version = mddev->patch_version; 1484 sb->gvalid_words = 0; /* ignored */ 1485 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1486 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1487 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1488 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1489 1490 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1491 sb->level = mddev->level; 1492 sb->size = mddev->dev_sectors / 2; 1493 sb->raid_disks = mddev->raid_disks; 1494 sb->md_minor = mddev->md_minor; 1495 sb->not_persistent = 0; 1496 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1497 sb->state = 0; 1498 sb->events_hi = (mddev->events>>32); 1499 sb->events_lo = (u32)mddev->events; 1500 1501 if (mddev->reshape_position == MaxSector) 1502 sb->minor_version = 90; 1503 else { 1504 sb->minor_version = 91; 1505 sb->reshape_position = mddev->reshape_position; 1506 sb->new_level = mddev->new_level; 1507 sb->delta_disks = mddev->delta_disks; 1508 sb->new_layout = mddev->new_layout; 1509 sb->new_chunk = mddev->new_chunk_sectors << 9; 1510 } 1511 mddev->minor_version = sb->minor_version; 1512 if (mddev->in_sync) 1513 { 1514 sb->recovery_cp = mddev->recovery_cp; 1515 sb->cp_events_hi = (mddev->events>>32); 1516 sb->cp_events_lo = (u32)mddev->events; 1517 if (mddev->recovery_cp == MaxSector) 1518 sb->state = (1<< MD_SB_CLEAN); 1519 } else 1520 sb->recovery_cp = 0; 1521 1522 sb->layout = mddev->layout; 1523 sb->chunk_size = mddev->chunk_sectors << 9; 1524 1525 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1526 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1527 1528 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1529 rdev_for_each(rdev2, mddev) { 1530 mdp_disk_t *d; 1531 int desc_nr; 1532 int is_active = test_bit(In_sync, &rdev2->flags); 1533 1534 if (rdev2->raid_disk >= 0 && 1535 sb->minor_version >= 91) 1536 /* we have nowhere to store the recovery_offset, 1537 * but if it is not below the reshape_position, 1538 * we can piggy-back on that. 1539 */ 1540 is_active = 1; 1541 if (rdev2->raid_disk < 0 || 1542 test_bit(Faulty, &rdev2->flags)) 1543 is_active = 0; 1544 if (is_active) 1545 desc_nr = rdev2->raid_disk; 1546 else 1547 desc_nr = next_spare++; 1548 rdev2->desc_nr = desc_nr; 1549 d = &sb->disks[rdev2->desc_nr]; 1550 nr_disks++; 1551 d->number = rdev2->desc_nr; 1552 d->major = MAJOR(rdev2->bdev->bd_dev); 1553 d->minor = MINOR(rdev2->bdev->bd_dev); 1554 if (is_active) 1555 d->raid_disk = rdev2->raid_disk; 1556 else 1557 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1558 if (test_bit(Faulty, &rdev2->flags)) 1559 d->state = (1<<MD_DISK_FAULTY); 1560 else if (is_active) { 1561 d->state = (1<<MD_DISK_ACTIVE); 1562 if (test_bit(In_sync, &rdev2->flags)) 1563 d->state |= (1<<MD_DISK_SYNC); 1564 active++; 1565 working++; 1566 } else { 1567 d->state = 0; 1568 spare++; 1569 working++; 1570 } 1571 if (test_bit(WriteMostly, &rdev2->flags)) 1572 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1573 if (test_bit(FailFast, &rdev2->flags)) 1574 d->state |= (1<<MD_DISK_FAILFAST); 1575 } 1576 /* now set the "removed" and "faulty" bits on any missing devices */ 1577 for (i=0 ; i < mddev->raid_disks ; i++) { 1578 mdp_disk_t *d = &sb->disks[i]; 1579 if (d->state == 0 && d->number == 0) { 1580 d->number = i; 1581 d->raid_disk = i; 1582 d->state = (1<<MD_DISK_REMOVED); 1583 d->state |= (1<<MD_DISK_FAULTY); 1584 failed++; 1585 } 1586 } 1587 sb->nr_disks = nr_disks; 1588 sb->active_disks = active; 1589 sb->working_disks = working; 1590 sb->failed_disks = failed; 1591 sb->spare_disks = spare; 1592 1593 sb->this_disk = sb->disks[rdev->desc_nr]; 1594 sb->sb_csum = calc_sb_csum(sb); 1595 } 1596 1597 /* 1598 * rdev_size_change for 0.90.0 1599 */ 1600 static unsigned long long super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1601 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1602 { 1603 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1604 return 0; /* component must fit device */ 1605 if (rdev->mddev->bitmap_info.offset) 1606 return 0; /* can't move bitmap */ 1607 rdev->sb_start = calc_dev_sboffset(rdev); 1608 if (!num_sectors || num_sectors > rdev->sb_start) 1609 num_sectors = rdev->sb_start; 1610 /* Limit to 4TB as metadata cannot record more than that. 1611 * 4TB == 2^32 KB, or 2*2^32 sectors. 1612 */ 1613 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1614 num_sectors = (sector_t)(2ULL << 32) - 2; 1615 do { 1616 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1617 rdev->sb_page); 1618 } while (md_super_wait(rdev->mddev) < 0); 1619 return num_sectors; 1620 } 1621 1622 static int super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1623 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1624 { 1625 /* non-zero offset changes not possible with v0.90 */ 1626 return new_offset == 0; 1627 } 1628 1629 /* 1630 * version 1 superblock 1631 */ 1632 calc_sb_1_csum(struct mdp_superblock_1 * sb)1633 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1634 { 1635 __le32 disk_csum; 1636 u32 csum; 1637 unsigned long long newcsum; 1638 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1639 __le32 *isuper = (__le32*)sb; 1640 1641 disk_csum = sb->sb_csum; 1642 sb->sb_csum = 0; 1643 newcsum = 0; 1644 for (; size >= 4; size -= 4) 1645 newcsum += le32_to_cpu(*isuper++); 1646 1647 if (size == 2) 1648 newcsum += le16_to_cpu(*(__le16*) isuper); 1649 1650 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1651 sb->sb_csum = disk_csum; 1652 return cpu_to_le32(csum); 1653 } 1654 super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1655 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1656 { 1657 struct mdp_superblock_1 *sb; 1658 int ret; 1659 sector_t sb_start; 1660 sector_t sectors; 1661 int bmask; 1662 bool spare_disk = true; 1663 1664 /* 1665 * Calculate the position of the superblock in 512byte sectors. 1666 * It is always aligned to a 4K boundary and 1667 * depeding on minor_version, it can be: 1668 * 0: At least 8K, but less than 12K, from end of device 1669 * 1: At start of device 1670 * 2: 4K from start of device. 1671 */ 1672 switch(minor_version) { 1673 case 0: 1674 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1675 sb_start &= ~(sector_t)(4*2-1); 1676 break; 1677 case 1: 1678 sb_start = 0; 1679 break; 1680 case 2: 1681 sb_start = 8; 1682 break; 1683 default: 1684 return -EINVAL; 1685 } 1686 rdev->sb_start = sb_start; 1687 1688 /* superblock is rarely larger than 1K, but it can be larger, 1689 * and it is safe to read 4k, so we do that 1690 */ 1691 ret = read_disk_sb(rdev, 4096); 1692 if (ret) return ret; 1693 1694 sb = page_address(rdev->sb_page); 1695 1696 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1697 sb->major_version != cpu_to_le32(1) || 1698 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1699 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1700 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1701 return -EINVAL; 1702 1703 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1704 pr_warn("md: invalid superblock checksum on %pg\n", 1705 rdev->bdev); 1706 return -EINVAL; 1707 } 1708 if (le64_to_cpu(sb->data_size) < 10) { 1709 pr_warn("md: data_size too small on %pg\n", 1710 rdev->bdev); 1711 return -EINVAL; 1712 } 1713 if (sb->pad0 || 1714 sb->pad3[0] || 1715 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1716 /* Some padding is non-zero, might be a new feature */ 1717 return -EINVAL; 1718 1719 rdev->preferred_minor = 0xffff; 1720 rdev->data_offset = le64_to_cpu(sb->data_offset); 1721 rdev->new_data_offset = rdev->data_offset; 1722 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1723 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1724 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1725 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1726 1727 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1728 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1729 if (rdev->sb_size & bmask) 1730 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1731 1732 if (minor_version 1733 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1734 return -EINVAL; 1735 if (minor_version 1736 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1737 return -EINVAL; 1738 1739 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1740 1741 if (!rdev->bb_page) { 1742 rdev->bb_page = alloc_page(GFP_KERNEL); 1743 if (!rdev->bb_page) 1744 return -ENOMEM; 1745 } 1746 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1747 rdev->badblocks.count == 0) { 1748 /* need to load the bad block list. 1749 * Currently we limit it to one page. 1750 */ 1751 s32 offset; 1752 sector_t bb_sector; 1753 __le64 *bbp; 1754 int i; 1755 int sectors = le16_to_cpu(sb->bblog_size); 1756 if (sectors > (PAGE_SIZE / 512)) 1757 return -EINVAL; 1758 offset = le32_to_cpu(sb->bblog_offset); 1759 if (offset == 0) 1760 return -EINVAL; 1761 bb_sector = (long long)offset; 1762 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1763 rdev->bb_page, REQ_OP_READ, true)) 1764 return -EIO; 1765 bbp = (__le64 *)page_address(rdev->bb_page); 1766 rdev->badblocks.shift = sb->bblog_shift; 1767 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1768 u64 bb = le64_to_cpu(*bbp); 1769 int count = bb & (0x3ff); 1770 u64 sector = bb >> 10; 1771 sector <<= sb->bblog_shift; 1772 count <<= sb->bblog_shift; 1773 if (bb + 1 == 0) 1774 break; 1775 if (!badblocks_set(&rdev->badblocks, sector, count, 1)) 1776 return -EINVAL; 1777 } 1778 } else if (sb->bblog_offset != 0) 1779 rdev->badblocks.shift = 0; 1780 1781 if ((le32_to_cpu(sb->feature_map) & 1782 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1783 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1784 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1785 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1786 } 1787 1788 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1789 sb->level != 0) 1790 return -EINVAL; 1791 1792 /* not spare disk */ 1793 if (rdev->desc_nr >= 0 && rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1794 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1795 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1796 spare_disk = false; 1797 1798 if (!refdev) { 1799 if (!spare_disk) 1800 ret = 1; 1801 else 1802 ret = 0; 1803 } else { 1804 __u64 ev1, ev2; 1805 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1806 1807 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1808 sb->level != refsb->level || 1809 sb->layout != refsb->layout || 1810 sb->chunksize != refsb->chunksize) { 1811 pr_warn("md: %pg has strangely different superblock to %pg\n", 1812 rdev->bdev, 1813 refdev->bdev); 1814 return -EINVAL; 1815 } 1816 ev1 = le64_to_cpu(sb->events); 1817 ev2 = le64_to_cpu(refsb->events); 1818 1819 if (!spare_disk && ev1 > ev2) 1820 ret = 1; 1821 else 1822 ret = 0; 1823 } 1824 if (minor_version) 1825 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1826 else 1827 sectors = rdev->sb_start; 1828 if (sectors < le64_to_cpu(sb->data_size)) 1829 return -EINVAL; 1830 rdev->sectors = le64_to_cpu(sb->data_size); 1831 return ret; 1832 } 1833 super_1_validate(struct mddev * mddev,struct md_rdev * freshest,struct md_rdev * rdev)1834 static int super_1_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev) 1835 { 1836 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1837 __u64 ev1 = le64_to_cpu(sb->events); 1838 int role; 1839 1840 rdev->raid_disk = -1; 1841 clear_bit(Faulty, &rdev->flags); 1842 clear_bit(In_sync, &rdev->flags); 1843 clear_bit(Bitmap_sync, &rdev->flags); 1844 clear_bit(WriteMostly, &rdev->flags); 1845 1846 if (mddev->raid_disks == 0) { 1847 mddev->major_version = 1; 1848 mddev->patch_version = 0; 1849 mddev->external = 0; 1850 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1851 mddev->ctime = le64_to_cpu(sb->ctime); 1852 mddev->utime = le64_to_cpu(sb->utime); 1853 mddev->level = le32_to_cpu(sb->level); 1854 mddev->clevel[0] = 0; 1855 mddev->layout = le32_to_cpu(sb->layout); 1856 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1857 mddev->dev_sectors = le64_to_cpu(sb->size); 1858 mddev->events = ev1; 1859 mddev->bitmap_info.offset = 0; 1860 mddev->bitmap_info.space = 0; 1861 /* Default location for bitmap is 1K after superblock 1862 * using 3K - total of 4K 1863 */ 1864 mddev->bitmap_info.default_offset = 1024 >> 9; 1865 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1866 mddev->reshape_backwards = 0; 1867 1868 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1869 memcpy(mddev->uuid, sb->set_uuid, 16); 1870 1871 mddev->max_disks = (4096-256)/2; 1872 1873 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1874 mddev->bitmap_info.file == NULL) { 1875 mddev->bitmap_info.offset = 1876 (__s32)le32_to_cpu(sb->bitmap_offset); 1877 /* Metadata doesn't record how much space is available. 1878 * For 1.0, we assume we can use up to the superblock 1879 * if before, else to 4K beyond superblock. 1880 * For others, assume no change is possible. 1881 */ 1882 if (mddev->minor_version > 0) 1883 mddev->bitmap_info.space = 0; 1884 else if (mddev->bitmap_info.offset > 0) 1885 mddev->bitmap_info.space = 1886 8 - mddev->bitmap_info.offset; 1887 else 1888 mddev->bitmap_info.space = 1889 -mddev->bitmap_info.offset; 1890 } 1891 1892 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1893 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1894 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1895 mddev->new_level = le32_to_cpu(sb->new_level); 1896 mddev->new_layout = le32_to_cpu(sb->new_layout); 1897 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1898 if (mddev->delta_disks < 0 || 1899 (mddev->delta_disks == 0 && 1900 (le32_to_cpu(sb->feature_map) 1901 & MD_FEATURE_RESHAPE_BACKWARDS))) 1902 mddev->reshape_backwards = 1; 1903 } else { 1904 mddev->reshape_position = MaxSector; 1905 mddev->delta_disks = 0; 1906 mddev->new_level = mddev->level; 1907 mddev->new_layout = mddev->layout; 1908 mddev->new_chunk_sectors = mddev->chunk_sectors; 1909 } 1910 1911 if (mddev->level == 0 && 1912 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1913 mddev->layout = -1; 1914 1915 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1916 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1917 1918 if (le32_to_cpu(sb->feature_map) & 1919 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1920 if (le32_to_cpu(sb->feature_map) & 1921 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1922 return -EINVAL; 1923 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1924 (le32_to_cpu(sb->feature_map) & 1925 MD_FEATURE_MULTIPLE_PPLS)) 1926 return -EINVAL; 1927 set_bit(MD_HAS_PPL, &mddev->flags); 1928 } 1929 } else if (mddev->pers == NULL) { 1930 /* Insist of good event counter while assembling, except for 1931 * spares (which don't need an event count). 1932 * Similar to mdadm, we allow event counter difference of 1 1933 * from the freshest device. 1934 */ 1935 if (rdev->desc_nr >= 0 && 1936 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1937 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1938 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1939 if (ev1 + 1 < mddev->events) 1940 return -EINVAL; 1941 } else if (mddev->bitmap) { 1942 /* If adding to array with a bitmap, then we can accept an 1943 * older device, but not too old. 1944 */ 1945 if (ev1 < md_bitmap_events_cleared(mddev)) 1946 return 0; 1947 if (ev1 < mddev->events) 1948 set_bit(Bitmap_sync, &rdev->flags); 1949 } else { 1950 if (ev1 < mddev->events) 1951 /* just a hot-add of a new device, leave raid_disk at -1 */ 1952 return 0; 1953 } 1954 1955 if (rdev->desc_nr < 0 || 1956 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1957 role = MD_DISK_ROLE_SPARE; 1958 rdev->desc_nr = -1; 1959 } else if (mddev->pers == NULL && freshest && ev1 < mddev->events) { 1960 /* 1961 * If we are assembling, and our event counter is smaller than the 1962 * highest event counter, we cannot trust our superblock about the role. 1963 * It could happen that our rdev was marked as Faulty, and all other 1964 * superblocks were updated with +1 event counter. 1965 * Then, before the next superblock update, which typically happens when 1966 * remove_and_add_spares() removes the device from the array, there was 1967 * a crash or reboot. 1968 * If we allow current rdev without consulting the freshest superblock, 1969 * we could cause data corruption. 1970 * Note that in this case our event counter is smaller by 1 than the 1971 * highest, otherwise, this rdev would not be allowed into array; 1972 * both kernel and mdadm allow event counter difference of 1. 1973 */ 1974 struct mdp_superblock_1 *freshest_sb = page_address(freshest->sb_page); 1975 u32 freshest_max_dev = le32_to_cpu(freshest_sb->max_dev); 1976 1977 if (rdev->desc_nr >= freshest_max_dev) { 1978 /* this is unexpected, better not proceed */ 1979 pr_warn("md: %s: rdev[%pg]: desc_nr(%d) >= freshest(%pg)->sb->max_dev(%u)\n", 1980 mdname(mddev), rdev->bdev, rdev->desc_nr, 1981 freshest->bdev, freshest_max_dev); 1982 return -EUCLEAN; 1983 } 1984 1985 role = le16_to_cpu(freshest_sb->dev_roles[rdev->desc_nr]); 1986 pr_debug("md: %s: rdev[%pg]: role=%d(0x%x) according to freshest %pg\n", 1987 mdname(mddev), rdev->bdev, role, role, freshest->bdev); 1988 } else { 1989 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1990 } 1991 switch (role) { 1992 case MD_DISK_ROLE_SPARE: /* spare */ 1993 break; 1994 case MD_DISK_ROLE_FAULTY: /* faulty */ 1995 set_bit(Faulty, &rdev->flags); 1996 break; 1997 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1998 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1999 /* journal device without journal feature */ 2000 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 2001 return -EINVAL; 2002 } 2003 set_bit(Journal, &rdev->flags); 2004 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 2005 rdev->raid_disk = 0; 2006 break; 2007 default: 2008 rdev->saved_raid_disk = role; 2009 if ((le32_to_cpu(sb->feature_map) & 2010 MD_FEATURE_RECOVERY_OFFSET)) { 2011 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 2012 if (!(le32_to_cpu(sb->feature_map) & 2013 MD_FEATURE_RECOVERY_BITMAP)) 2014 rdev->saved_raid_disk = -1; 2015 } else { 2016 /* 2017 * If the array is FROZEN, then the device can't 2018 * be in_sync with rest of array. 2019 */ 2020 if (!test_bit(MD_RECOVERY_FROZEN, 2021 &mddev->recovery)) 2022 set_bit(In_sync, &rdev->flags); 2023 } 2024 rdev->raid_disk = role; 2025 break; 2026 } 2027 if (sb->devflags & WriteMostly1) 2028 set_bit(WriteMostly, &rdev->flags); 2029 if (sb->devflags & FailFast1) 2030 set_bit(FailFast, &rdev->flags); 2031 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 2032 set_bit(Replacement, &rdev->flags); 2033 2034 return 0; 2035 } 2036 super_1_sync(struct mddev * mddev,struct md_rdev * rdev)2037 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 2038 { 2039 struct mdp_superblock_1 *sb; 2040 struct md_rdev *rdev2; 2041 int max_dev, i; 2042 /* make rdev->sb match mddev and rdev data. */ 2043 2044 sb = page_address(rdev->sb_page); 2045 2046 sb->feature_map = 0; 2047 sb->pad0 = 0; 2048 sb->recovery_offset = cpu_to_le64(0); 2049 memset(sb->pad3, 0, sizeof(sb->pad3)); 2050 2051 sb->utime = cpu_to_le64((__u64)mddev->utime); 2052 sb->events = cpu_to_le64(mddev->events); 2053 if (mddev->in_sync) 2054 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 2055 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 2056 sb->resync_offset = cpu_to_le64(MaxSector); 2057 else 2058 sb->resync_offset = cpu_to_le64(0); 2059 2060 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 2061 2062 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2063 sb->size = cpu_to_le64(mddev->dev_sectors); 2064 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2065 sb->level = cpu_to_le32(mddev->level); 2066 sb->layout = cpu_to_le32(mddev->layout); 2067 if (test_bit(FailFast, &rdev->flags)) 2068 sb->devflags |= FailFast1; 2069 else 2070 sb->devflags &= ~FailFast1; 2071 2072 if (test_bit(WriteMostly, &rdev->flags)) 2073 sb->devflags |= WriteMostly1; 2074 else 2075 sb->devflags &= ~WriteMostly1; 2076 sb->data_offset = cpu_to_le64(rdev->data_offset); 2077 sb->data_size = cpu_to_le64(rdev->sectors); 2078 2079 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2080 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2081 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2082 } 2083 2084 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2085 !test_bit(In_sync, &rdev->flags)) { 2086 sb->feature_map |= 2087 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2088 sb->recovery_offset = 2089 cpu_to_le64(rdev->recovery_offset); 2090 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2091 sb->feature_map |= 2092 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2093 } 2094 /* Note: recovery_offset and journal_tail share space */ 2095 if (test_bit(Journal, &rdev->flags)) 2096 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2097 if (test_bit(Replacement, &rdev->flags)) 2098 sb->feature_map |= 2099 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2100 2101 if (mddev->reshape_position != MaxSector) { 2102 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2103 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2104 sb->new_layout = cpu_to_le32(mddev->new_layout); 2105 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2106 sb->new_level = cpu_to_le32(mddev->new_level); 2107 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2108 if (mddev->delta_disks == 0 && 2109 mddev->reshape_backwards) 2110 sb->feature_map 2111 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2112 if (rdev->new_data_offset != rdev->data_offset) { 2113 sb->feature_map 2114 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2115 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2116 - rdev->data_offset)); 2117 } 2118 } 2119 2120 if (mddev_is_clustered(mddev)) 2121 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2122 2123 if (rdev->badblocks.count == 0) 2124 /* Nothing to do for bad blocks*/ ; 2125 else if (sb->bblog_offset == 0) 2126 /* Cannot record bad blocks on this device */ 2127 md_error(mddev, rdev); 2128 else { 2129 struct badblocks *bb = &rdev->badblocks; 2130 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2131 u64 *p = bb->page; 2132 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2133 if (bb->changed) { 2134 unsigned seq; 2135 2136 retry: 2137 seq = read_seqbegin(&bb->lock); 2138 2139 memset(bbp, 0xff, PAGE_SIZE); 2140 2141 for (i = 0 ; i < bb->count ; i++) { 2142 u64 internal_bb = p[i]; 2143 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2144 | BB_LEN(internal_bb)); 2145 bbp[i] = cpu_to_le64(store_bb); 2146 } 2147 bb->changed = 0; 2148 if (read_seqretry(&bb->lock, seq)) 2149 goto retry; 2150 2151 bb->sector = (rdev->sb_start + 2152 (int)le32_to_cpu(sb->bblog_offset)); 2153 bb->size = le16_to_cpu(sb->bblog_size); 2154 } 2155 } 2156 2157 max_dev = 0; 2158 rdev_for_each(rdev2, mddev) 2159 if (rdev2->desc_nr+1 > max_dev) 2160 max_dev = rdev2->desc_nr+1; 2161 2162 if (max_dev > le32_to_cpu(sb->max_dev)) { 2163 int bmask; 2164 sb->max_dev = cpu_to_le32(max_dev); 2165 rdev->sb_size = max_dev * 2 + 256; 2166 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2167 if (rdev->sb_size & bmask) 2168 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2169 } else 2170 max_dev = le32_to_cpu(sb->max_dev); 2171 2172 for (i=0; i<max_dev;i++) 2173 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2174 2175 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2176 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2177 2178 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2179 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2180 sb->feature_map |= 2181 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2182 else 2183 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2184 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2185 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2186 } 2187 2188 rdev_for_each(rdev2, mddev) { 2189 i = rdev2->desc_nr; 2190 if (test_bit(Faulty, &rdev2->flags)) 2191 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2192 else if (test_bit(In_sync, &rdev2->flags)) 2193 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2194 else if (test_bit(Journal, &rdev2->flags)) 2195 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2196 else if (rdev2->raid_disk >= 0) 2197 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2198 else 2199 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2200 } 2201 2202 sb->sb_csum = calc_sb_1_csum(sb); 2203 } 2204 super_1_choose_bm_space(sector_t dev_size)2205 static sector_t super_1_choose_bm_space(sector_t dev_size) 2206 { 2207 sector_t bm_space; 2208 2209 /* if the device is bigger than 8Gig, save 64k for bitmap 2210 * usage, if bigger than 200Gig, save 128k 2211 */ 2212 if (dev_size < 64*2) 2213 bm_space = 0; 2214 else if (dev_size - 64*2 >= 200*1024*1024*2) 2215 bm_space = 128*2; 2216 else if (dev_size - 4*2 > 8*1024*1024*2) 2217 bm_space = 64*2; 2218 else 2219 bm_space = 4*2; 2220 return bm_space; 2221 } 2222 2223 static unsigned long long super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)2224 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2225 { 2226 struct mdp_superblock_1 *sb; 2227 sector_t max_sectors; 2228 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2229 return 0; /* component must fit device */ 2230 if (rdev->data_offset != rdev->new_data_offset) 2231 return 0; /* too confusing */ 2232 if (rdev->sb_start < rdev->data_offset) { 2233 /* minor versions 1 and 2; superblock before data */ 2234 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2235 if (!num_sectors || num_sectors > max_sectors) 2236 num_sectors = max_sectors; 2237 } else if (rdev->mddev->bitmap_info.offset) { 2238 /* minor version 0 with bitmap we can't move */ 2239 return 0; 2240 } else { 2241 /* minor version 0; superblock after data */ 2242 sector_t sb_start, bm_space; 2243 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2244 2245 /* 8K is for superblock */ 2246 sb_start = dev_size - 8*2; 2247 sb_start &= ~(sector_t)(4*2 - 1); 2248 2249 bm_space = super_1_choose_bm_space(dev_size); 2250 2251 /* Space that can be used to store date needs to decrease 2252 * superblock bitmap space and bad block space(4K) 2253 */ 2254 max_sectors = sb_start - bm_space - 4*2; 2255 2256 if (!num_sectors || num_sectors > max_sectors) 2257 num_sectors = max_sectors; 2258 rdev->sb_start = sb_start; 2259 } 2260 sb = page_address(rdev->sb_page); 2261 sb->data_size = cpu_to_le64(num_sectors); 2262 sb->super_offset = cpu_to_le64(rdev->sb_start); 2263 sb->sb_csum = calc_sb_1_csum(sb); 2264 do { 2265 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2266 rdev->sb_page); 2267 } while (md_super_wait(rdev->mddev) < 0); 2268 return num_sectors; 2269 2270 } 2271 2272 static int super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)2273 super_1_allow_new_offset(struct md_rdev *rdev, 2274 unsigned long long new_offset) 2275 { 2276 /* All necessary checks on new >= old have been done */ 2277 if (new_offset >= rdev->data_offset) 2278 return 1; 2279 2280 /* with 1.0 metadata, there is no metadata to tread on 2281 * so we can always move back */ 2282 if (rdev->mddev->minor_version == 0) 2283 return 1; 2284 2285 /* otherwise we must be sure not to step on 2286 * any metadata, so stay: 2287 * 36K beyond start of superblock 2288 * beyond end of badblocks 2289 * beyond write-intent bitmap 2290 */ 2291 if (rdev->sb_start + (32+4)*2 > new_offset) 2292 return 0; 2293 2294 if (!rdev->mddev->bitmap_info.file) { 2295 struct mddev *mddev = rdev->mddev; 2296 struct md_bitmap_stats stats; 2297 int err; 2298 2299 err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats); 2300 if (!err && rdev->sb_start + mddev->bitmap_info.offset + 2301 stats.file_pages * (PAGE_SIZE >> 9) > new_offset) 2302 return 0; 2303 } 2304 2305 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2306 return 0; 2307 2308 return 1; 2309 } 2310 2311 static struct super_type super_types[] = { 2312 [0] = { 2313 .name = "0.90.0", 2314 .owner = THIS_MODULE, 2315 .load_super = super_90_load, 2316 .validate_super = super_90_validate, 2317 .sync_super = super_90_sync, 2318 .rdev_size_change = super_90_rdev_size_change, 2319 .allow_new_offset = super_90_allow_new_offset, 2320 }, 2321 [1] = { 2322 .name = "md-1", 2323 .owner = THIS_MODULE, 2324 .load_super = super_1_load, 2325 .validate_super = super_1_validate, 2326 .sync_super = super_1_sync, 2327 .rdev_size_change = super_1_rdev_size_change, 2328 .allow_new_offset = super_1_allow_new_offset, 2329 }, 2330 }; 2331 sync_super(struct mddev * mddev,struct md_rdev * rdev)2332 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2333 { 2334 if (mddev->sync_super) { 2335 mddev->sync_super(mddev, rdev); 2336 return; 2337 } 2338 2339 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2340 2341 super_types[mddev->major_version].sync_super(mddev, rdev); 2342 } 2343 match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)2344 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2345 { 2346 struct md_rdev *rdev, *rdev2; 2347 2348 rcu_read_lock(); 2349 rdev_for_each_rcu(rdev, mddev1) { 2350 if (test_bit(Faulty, &rdev->flags) || 2351 test_bit(Journal, &rdev->flags) || 2352 rdev->raid_disk == -1) 2353 continue; 2354 rdev_for_each_rcu(rdev2, mddev2) { 2355 if (test_bit(Faulty, &rdev2->flags) || 2356 test_bit(Journal, &rdev2->flags) || 2357 rdev2->raid_disk == -1) 2358 continue; 2359 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2360 rcu_read_unlock(); 2361 return 1; 2362 } 2363 } 2364 } 2365 rcu_read_unlock(); 2366 return 0; 2367 } 2368 2369 static LIST_HEAD(pending_raid_disks); 2370 2371 /* 2372 * Try to register data integrity profile for an mddev 2373 * 2374 * This is called when an array is started and after a disk has been kicked 2375 * from the array. It only succeeds if all working and active component devices 2376 * are integrity capable with matching profiles. 2377 */ md_integrity_register(struct mddev * mddev)2378 int md_integrity_register(struct mddev *mddev) 2379 { 2380 if (list_empty(&mddev->disks)) 2381 return 0; /* nothing to do */ 2382 if (mddev_is_dm(mddev) || !blk_get_integrity(mddev->gendisk)) 2383 return 0; /* shouldn't register */ 2384 2385 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2386 return 0; 2387 } 2388 EXPORT_SYMBOL(md_integrity_register); 2389 rdev_read_only(struct md_rdev * rdev)2390 static bool rdev_read_only(struct md_rdev *rdev) 2391 { 2392 return bdev_read_only(rdev->bdev) || 2393 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2394 } 2395 bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2396 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2397 { 2398 char b[BDEVNAME_SIZE]; 2399 int err; 2400 2401 /* prevent duplicates */ 2402 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2403 return -EEXIST; 2404 2405 if (rdev_read_only(rdev) && mddev->pers) 2406 return -EROFS; 2407 2408 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2409 if (!test_bit(Journal, &rdev->flags) && 2410 rdev->sectors && 2411 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2412 if (mddev->pers) { 2413 /* Cannot change size, so fail 2414 * If mddev->level <= 0, then we don't care 2415 * about aligning sizes (e.g. linear) 2416 */ 2417 if (mddev->level > 0) 2418 return -ENOSPC; 2419 } else 2420 mddev->dev_sectors = rdev->sectors; 2421 } 2422 2423 /* Verify rdev->desc_nr is unique. 2424 * If it is -1, assign a free number, else 2425 * check number is not in use 2426 */ 2427 rcu_read_lock(); 2428 if (rdev->desc_nr < 0) { 2429 int choice = 0; 2430 if (mddev->pers) 2431 choice = mddev->raid_disks; 2432 while (md_find_rdev_nr_rcu(mddev, choice)) 2433 choice++; 2434 rdev->desc_nr = choice; 2435 } else { 2436 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2437 rcu_read_unlock(); 2438 return -EBUSY; 2439 } 2440 } 2441 rcu_read_unlock(); 2442 if (!test_bit(Journal, &rdev->flags) && 2443 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2444 pr_warn("md: %s: array is limited to %d devices\n", 2445 mdname(mddev), mddev->max_disks); 2446 return -EBUSY; 2447 } 2448 snprintf(b, sizeof(b), "%pg", rdev->bdev); 2449 strreplace(b, '/', '!'); 2450 2451 rdev->mddev = mddev; 2452 pr_debug("md: bind<%s>\n", b); 2453 2454 if (mddev->raid_disks) 2455 mddev_create_serial_pool(mddev, rdev); 2456 2457 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2458 goto fail; 2459 2460 /* failure here is OK */ 2461 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2462 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2463 rdev->sysfs_unack_badblocks = 2464 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2465 rdev->sysfs_badblocks = 2466 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2467 2468 list_add_rcu(&rdev->same_set, &mddev->disks); 2469 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2470 2471 /* May as well allow recovery to be retried once */ 2472 mddev->recovery_disabled++; 2473 2474 return 0; 2475 2476 fail: 2477 pr_warn("md: failed to register dev-%s for %s\n", 2478 b, mdname(mddev)); 2479 mddev_destroy_serial_pool(mddev, rdev); 2480 return err; 2481 } 2482 2483 void md_autodetect_dev(dev_t dev); 2484 2485 /* just for claiming the bdev */ 2486 static struct md_rdev claim_rdev; 2487 export_rdev(struct md_rdev * rdev,struct mddev * mddev)2488 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev) 2489 { 2490 pr_debug("md: export_rdev(%pg)\n", rdev->bdev); 2491 md_rdev_clear(rdev); 2492 #ifndef MODULE 2493 if (test_bit(AutoDetected, &rdev->flags)) 2494 md_autodetect_dev(rdev->bdev->bd_dev); 2495 #endif 2496 fput(rdev->bdev_file); 2497 rdev->bdev = NULL; 2498 kobject_put(&rdev->kobj); 2499 } 2500 md_kick_rdev_from_array(struct md_rdev * rdev)2501 static void md_kick_rdev_from_array(struct md_rdev *rdev) 2502 { 2503 struct mddev *mddev = rdev->mddev; 2504 2505 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2506 list_del_rcu(&rdev->same_set); 2507 pr_debug("md: unbind<%pg>\n", rdev->bdev); 2508 mddev_destroy_serial_pool(rdev->mddev, rdev); 2509 WRITE_ONCE(rdev->mddev, NULL); 2510 sysfs_remove_link(&rdev->kobj, "block"); 2511 sysfs_put(rdev->sysfs_state); 2512 sysfs_put(rdev->sysfs_unack_badblocks); 2513 sysfs_put(rdev->sysfs_badblocks); 2514 rdev->sysfs_state = NULL; 2515 rdev->sysfs_unack_badblocks = NULL; 2516 rdev->sysfs_badblocks = NULL; 2517 rdev->badblocks.count = 0; 2518 2519 synchronize_rcu(); 2520 2521 /* 2522 * kobject_del() will wait for all in progress writers to be done, where 2523 * reconfig_mutex is held, hence it can't be called under 2524 * reconfig_mutex and it's delayed to mddev_unlock(). 2525 */ 2526 list_add(&rdev->same_set, &mddev->deleting); 2527 } 2528 export_array(struct mddev * mddev)2529 static void export_array(struct mddev *mddev) 2530 { 2531 struct md_rdev *rdev; 2532 2533 while (!list_empty(&mddev->disks)) { 2534 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2535 same_set); 2536 md_kick_rdev_from_array(rdev); 2537 } 2538 mddev->raid_disks = 0; 2539 mddev->major_version = 0; 2540 } 2541 set_in_sync(struct mddev * mddev)2542 static bool set_in_sync(struct mddev *mddev) 2543 { 2544 lockdep_assert_held(&mddev->lock); 2545 if (!mddev->in_sync) { 2546 mddev->sync_checkers++; 2547 spin_unlock(&mddev->lock); 2548 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2549 spin_lock(&mddev->lock); 2550 if (!mddev->in_sync && 2551 percpu_ref_is_zero(&mddev->writes_pending)) { 2552 mddev->in_sync = 1; 2553 /* 2554 * Ensure ->in_sync is visible before we clear 2555 * ->sync_checkers. 2556 */ 2557 smp_mb(); 2558 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2559 sysfs_notify_dirent_safe(mddev->sysfs_state); 2560 } 2561 if (--mddev->sync_checkers == 0) 2562 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2563 } 2564 if (mddev->safemode == 1) 2565 mddev->safemode = 0; 2566 return mddev->in_sync; 2567 } 2568 sync_sbs(struct mddev * mddev,int nospares)2569 static void sync_sbs(struct mddev *mddev, int nospares) 2570 { 2571 /* Update each superblock (in-memory image), but 2572 * if we are allowed to, skip spares which already 2573 * have the right event counter, or have one earlier 2574 * (which would mean they aren't being marked as dirty 2575 * with the rest of the array) 2576 */ 2577 struct md_rdev *rdev; 2578 rdev_for_each(rdev, mddev) { 2579 if (rdev->sb_events == mddev->events || 2580 (nospares && 2581 rdev->raid_disk < 0 && 2582 rdev->sb_events+1 == mddev->events)) { 2583 /* Don't update this superblock */ 2584 rdev->sb_loaded = 2; 2585 } else { 2586 sync_super(mddev, rdev); 2587 rdev->sb_loaded = 1; 2588 } 2589 } 2590 } 2591 does_sb_need_changing(struct mddev * mddev)2592 static bool does_sb_need_changing(struct mddev *mddev) 2593 { 2594 struct md_rdev *rdev = NULL, *iter; 2595 struct mdp_superblock_1 *sb; 2596 int role; 2597 2598 /* Find a good rdev */ 2599 rdev_for_each(iter, mddev) 2600 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) { 2601 rdev = iter; 2602 break; 2603 } 2604 2605 /* No good device found. */ 2606 if (!rdev) 2607 return false; 2608 2609 sb = page_address(rdev->sb_page); 2610 /* Check if a device has become faulty or a spare become active */ 2611 rdev_for_each(rdev, mddev) { 2612 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2613 /* Device activated? */ 2614 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 && 2615 !test_bit(Faulty, &rdev->flags)) 2616 return true; 2617 /* Device turned faulty? */ 2618 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX)) 2619 return true; 2620 } 2621 2622 /* Check if any mddev parameters have changed */ 2623 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2624 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2625 (mddev->layout != le32_to_cpu(sb->layout)) || 2626 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2627 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2628 return true; 2629 2630 return false; 2631 } 2632 md_update_sb(struct mddev * mddev,int force_change)2633 void md_update_sb(struct mddev *mddev, int force_change) 2634 { 2635 struct md_rdev *rdev; 2636 int sync_req; 2637 int nospares = 0; 2638 int any_badblocks_changed = 0; 2639 int ret = -1; 2640 2641 if (!md_is_rdwr(mddev)) { 2642 if (force_change) 2643 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2644 return; 2645 } 2646 2647 repeat: 2648 if (mddev_is_clustered(mddev)) { 2649 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2650 force_change = 1; 2651 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2652 nospares = 1; 2653 ret = mddev->cluster_ops->metadata_update_start(mddev); 2654 /* Has someone else has updated the sb */ 2655 if (!does_sb_need_changing(mddev)) { 2656 if (ret == 0) 2657 mddev->cluster_ops->metadata_update_cancel(mddev); 2658 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2659 BIT(MD_SB_CHANGE_DEVS) | 2660 BIT(MD_SB_CHANGE_CLEAN)); 2661 return; 2662 } 2663 } 2664 2665 /* 2666 * First make sure individual recovery_offsets are correct 2667 * curr_resync_completed can only be used during recovery. 2668 * During reshape/resync it might use array-addresses rather 2669 * that device addresses. 2670 */ 2671 rdev_for_each(rdev, mddev) { 2672 if (rdev->raid_disk >= 0 && 2673 mddev->delta_disks >= 0 && 2674 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2675 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2676 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2677 !test_bit(Journal, &rdev->flags) && 2678 !test_bit(In_sync, &rdev->flags) && 2679 mddev->curr_resync_completed > rdev->recovery_offset) 2680 rdev->recovery_offset = mddev->curr_resync_completed; 2681 2682 } 2683 if (!mddev->persistent) { 2684 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2685 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2686 if (!mddev->external) { 2687 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2688 rdev_for_each(rdev, mddev) { 2689 if (rdev->badblocks.changed) { 2690 rdev->badblocks.changed = 0; 2691 ack_all_badblocks(&rdev->badblocks); 2692 md_error(mddev, rdev); 2693 } 2694 clear_bit(Blocked, &rdev->flags); 2695 clear_bit(BlockedBadBlocks, &rdev->flags); 2696 wake_up(&rdev->blocked_wait); 2697 } 2698 } 2699 wake_up(&mddev->sb_wait); 2700 return; 2701 } 2702 2703 spin_lock(&mddev->lock); 2704 2705 mddev->utime = ktime_get_real_seconds(); 2706 2707 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2708 force_change = 1; 2709 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2710 /* just a clean<-> dirty transition, possibly leave spares alone, 2711 * though if events isn't the right even/odd, we will have to do 2712 * spares after all 2713 */ 2714 nospares = 1; 2715 if (force_change) 2716 nospares = 0; 2717 if (mddev->degraded) 2718 /* If the array is degraded, then skipping spares is both 2719 * dangerous and fairly pointless. 2720 * Dangerous because a device that was removed from the array 2721 * might have a event_count that still looks up-to-date, 2722 * so it can be re-added without a resync. 2723 * Pointless because if there are any spares to skip, 2724 * then a recovery will happen and soon that array won't 2725 * be degraded any more and the spare can go back to sleep then. 2726 */ 2727 nospares = 0; 2728 2729 sync_req = mddev->in_sync; 2730 2731 /* If this is just a dirty<->clean transition, and the array is clean 2732 * and 'events' is odd, we can roll back to the previous clean state */ 2733 if (nospares 2734 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2735 && mddev->can_decrease_events 2736 && mddev->events != 1) { 2737 mddev->events--; 2738 mddev->can_decrease_events = 0; 2739 } else { 2740 /* otherwise we have to go forward and ... */ 2741 mddev->events ++; 2742 mddev->can_decrease_events = nospares; 2743 } 2744 2745 /* 2746 * This 64-bit counter should never wrap. 2747 * Either we are in around ~1 trillion A.C., assuming 2748 * 1 reboot per second, or we have a bug... 2749 */ 2750 WARN_ON(mddev->events == 0); 2751 2752 rdev_for_each(rdev, mddev) { 2753 if (rdev->badblocks.changed) 2754 any_badblocks_changed++; 2755 if (test_bit(Faulty, &rdev->flags)) 2756 set_bit(FaultRecorded, &rdev->flags); 2757 } 2758 2759 sync_sbs(mddev, nospares); 2760 spin_unlock(&mddev->lock); 2761 2762 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2763 mdname(mddev), mddev->in_sync); 2764 2765 mddev_add_trace_msg(mddev, "md md_update_sb"); 2766 rewrite: 2767 mddev->bitmap_ops->update_sb(mddev->bitmap); 2768 rdev_for_each(rdev, mddev) { 2769 if (rdev->sb_loaded != 1) 2770 continue; /* no noise on spare devices */ 2771 2772 if (!test_bit(Faulty, &rdev->flags)) { 2773 md_super_write(mddev,rdev, 2774 rdev->sb_start, rdev->sb_size, 2775 rdev->sb_page); 2776 pr_debug("md: (write) %pg's sb offset: %llu\n", 2777 rdev->bdev, 2778 (unsigned long long)rdev->sb_start); 2779 rdev->sb_events = mddev->events; 2780 if (rdev->badblocks.size) { 2781 md_super_write(mddev, rdev, 2782 rdev->badblocks.sector, 2783 rdev->badblocks.size << 9, 2784 rdev->bb_page); 2785 rdev->badblocks.size = 0; 2786 } 2787 2788 } else 2789 pr_debug("md: %pg (skipping faulty)\n", 2790 rdev->bdev); 2791 } 2792 if (md_super_wait(mddev) < 0) 2793 goto rewrite; 2794 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2795 2796 if (mddev_is_clustered(mddev) && ret == 0) 2797 mddev->cluster_ops->metadata_update_finish(mddev); 2798 2799 if (mddev->in_sync != sync_req || 2800 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2801 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2802 /* have to write it out again */ 2803 goto repeat; 2804 wake_up(&mddev->sb_wait); 2805 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2806 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2807 2808 rdev_for_each(rdev, mddev) { 2809 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2810 clear_bit(Blocked, &rdev->flags); 2811 2812 if (any_badblocks_changed) 2813 ack_all_badblocks(&rdev->badblocks); 2814 clear_bit(BlockedBadBlocks, &rdev->flags); 2815 wake_up(&rdev->blocked_wait); 2816 } 2817 } 2818 EXPORT_SYMBOL(md_update_sb); 2819 add_bound_rdev(struct md_rdev * rdev)2820 static int add_bound_rdev(struct md_rdev *rdev) 2821 { 2822 struct mddev *mddev = rdev->mddev; 2823 int err = 0; 2824 bool add_journal = test_bit(Journal, &rdev->flags); 2825 2826 if (!mddev->pers->hot_remove_disk || add_journal) { 2827 /* If there is hot_add_disk but no hot_remove_disk 2828 * then added disks for geometry changes, 2829 * and should be added immediately. 2830 */ 2831 super_types[mddev->major_version]. 2832 validate_super(mddev, NULL/*freshest*/, rdev); 2833 err = mddev->pers->hot_add_disk(mddev, rdev); 2834 if (err) { 2835 md_kick_rdev_from_array(rdev); 2836 return err; 2837 } 2838 } 2839 sysfs_notify_dirent_safe(rdev->sysfs_state); 2840 2841 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2842 if (mddev->degraded) 2843 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2844 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2845 md_new_event(); 2846 return 0; 2847 } 2848 2849 /* words written to sysfs files may, or may not, be \n terminated. 2850 * We want to accept with case. For this we use cmd_match. 2851 */ cmd_match(const char * cmd,const char * str)2852 static int cmd_match(const char *cmd, const char *str) 2853 { 2854 /* See if cmd, written into a sysfs file, matches 2855 * str. They must either be the same, or cmd can 2856 * have a trailing newline 2857 */ 2858 while (*cmd && *str && *cmd == *str) { 2859 cmd++; 2860 str++; 2861 } 2862 if (*cmd == '\n') 2863 cmd++; 2864 if (*str || *cmd) 2865 return 0; 2866 return 1; 2867 } 2868 2869 struct rdev_sysfs_entry { 2870 struct attribute attr; 2871 ssize_t (*show)(struct md_rdev *, char *); 2872 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2873 }; 2874 2875 static ssize_t state_show(struct md_rdev * rdev,char * page)2876 state_show(struct md_rdev *rdev, char *page) 2877 { 2878 char *sep = ","; 2879 size_t len = 0; 2880 unsigned long flags = READ_ONCE(rdev->flags); 2881 2882 if (test_bit(Faulty, &flags) || 2883 (!test_bit(ExternalBbl, &flags) && 2884 rdev->badblocks.unacked_exist)) 2885 len += sprintf(page+len, "faulty%s", sep); 2886 if (test_bit(In_sync, &flags)) 2887 len += sprintf(page+len, "in_sync%s", sep); 2888 if (test_bit(Journal, &flags)) 2889 len += sprintf(page+len, "journal%s", sep); 2890 if (test_bit(WriteMostly, &flags)) 2891 len += sprintf(page+len, "write_mostly%s", sep); 2892 if (test_bit(Blocked, &flags) || 2893 (rdev->badblocks.unacked_exist 2894 && !test_bit(Faulty, &flags))) 2895 len += sprintf(page+len, "blocked%s", sep); 2896 if (!test_bit(Faulty, &flags) && 2897 !test_bit(Journal, &flags) && 2898 !test_bit(In_sync, &flags)) 2899 len += sprintf(page+len, "spare%s", sep); 2900 if (test_bit(WriteErrorSeen, &flags)) 2901 len += sprintf(page+len, "write_error%s", sep); 2902 if (test_bit(WantReplacement, &flags)) 2903 len += sprintf(page+len, "want_replacement%s", sep); 2904 if (test_bit(Replacement, &flags)) 2905 len += sprintf(page+len, "replacement%s", sep); 2906 if (test_bit(ExternalBbl, &flags)) 2907 len += sprintf(page+len, "external_bbl%s", sep); 2908 if (test_bit(FailFast, &flags)) 2909 len += sprintf(page+len, "failfast%s", sep); 2910 2911 if (len) 2912 len -= strlen(sep); 2913 2914 return len+sprintf(page+len, "\n"); 2915 } 2916 2917 static ssize_t state_store(struct md_rdev * rdev,const char * buf,size_t len)2918 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2919 { 2920 /* can write 2921 * faulty - simulates an error 2922 * remove - disconnects the device 2923 * writemostly - sets write_mostly 2924 * -writemostly - clears write_mostly 2925 * blocked - sets the Blocked flags 2926 * -blocked - clears the Blocked and possibly simulates an error 2927 * insync - sets Insync providing device isn't active 2928 * -insync - clear Insync for a device with a slot assigned, 2929 * so that it gets rebuilt based on bitmap 2930 * write_error - sets WriteErrorSeen 2931 * -write_error - clears WriteErrorSeen 2932 * {,-}failfast - set/clear FailFast 2933 */ 2934 2935 struct mddev *mddev = rdev->mddev; 2936 int err = -EINVAL; 2937 bool need_update_sb = false; 2938 2939 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2940 md_error(rdev->mddev, rdev); 2941 2942 if (test_bit(MD_BROKEN, &rdev->mddev->flags)) 2943 err = -EBUSY; 2944 else 2945 err = 0; 2946 } else if (cmd_match(buf, "remove")) { 2947 if (rdev->mddev->pers) { 2948 clear_bit(Blocked, &rdev->flags); 2949 remove_and_add_spares(rdev->mddev, rdev); 2950 } 2951 if (rdev->raid_disk >= 0) 2952 err = -EBUSY; 2953 else { 2954 err = 0; 2955 if (mddev_is_clustered(mddev)) 2956 err = mddev->cluster_ops->remove_disk(mddev, rdev); 2957 2958 if (err == 0) { 2959 md_kick_rdev_from_array(rdev); 2960 if (mddev->pers) 2961 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2962 md_new_event(); 2963 } 2964 } 2965 } else if (cmd_match(buf, "writemostly")) { 2966 set_bit(WriteMostly, &rdev->flags); 2967 mddev_create_serial_pool(rdev->mddev, rdev); 2968 need_update_sb = true; 2969 err = 0; 2970 } else if (cmd_match(buf, "-writemostly")) { 2971 mddev_destroy_serial_pool(rdev->mddev, rdev); 2972 clear_bit(WriteMostly, &rdev->flags); 2973 need_update_sb = true; 2974 err = 0; 2975 } else if (cmd_match(buf, "blocked")) { 2976 set_bit(Blocked, &rdev->flags); 2977 err = 0; 2978 } else if (cmd_match(buf, "-blocked")) { 2979 if (!test_bit(Faulty, &rdev->flags) && 2980 !test_bit(ExternalBbl, &rdev->flags) && 2981 rdev->badblocks.unacked_exist) { 2982 /* metadata handler doesn't understand badblocks, 2983 * so we need to fail the device 2984 */ 2985 md_error(rdev->mddev, rdev); 2986 } 2987 clear_bit(Blocked, &rdev->flags); 2988 clear_bit(BlockedBadBlocks, &rdev->flags); 2989 wake_up(&rdev->blocked_wait); 2990 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2991 2992 err = 0; 2993 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2994 set_bit(In_sync, &rdev->flags); 2995 err = 0; 2996 } else if (cmd_match(buf, "failfast")) { 2997 set_bit(FailFast, &rdev->flags); 2998 need_update_sb = true; 2999 err = 0; 3000 } else if (cmd_match(buf, "-failfast")) { 3001 clear_bit(FailFast, &rdev->flags); 3002 need_update_sb = true; 3003 err = 0; 3004 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3005 !test_bit(Journal, &rdev->flags)) { 3006 if (rdev->mddev->pers == NULL) { 3007 clear_bit(In_sync, &rdev->flags); 3008 rdev->saved_raid_disk = rdev->raid_disk; 3009 rdev->raid_disk = -1; 3010 err = 0; 3011 } 3012 } else if (cmd_match(buf, "write_error")) { 3013 set_bit(WriteErrorSeen, &rdev->flags); 3014 err = 0; 3015 } else if (cmd_match(buf, "-write_error")) { 3016 clear_bit(WriteErrorSeen, &rdev->flags); 3017 err = 0; 3018 } else if (cmd_match(buf, "want_replacement")) { 3019 /* Any non-spare device that is not a replacement can 3020 * become want_replacement at any time, but we then need to 3021 * check if recovery is needed. 3022 */ 3023 if (rdev->raid_disk >= 0 && 3024 !test_bit(Journal, &rdev->flags) && 3025 !test_bit(Replacement, &rdev->flags)) 3026 set_bit(WantReplacement, &rdev->flags); 3027 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3028 err = 0; 3029 } else if (cmd_match(buf, "-want_replacement")) { 3030 /* Clearing 'want_replacement' is always allowed. 3031 * Once replacements starts it is too late though. 3032 */ 3033 err = 0; 3034 clear_bit(WantReplacement, &rdev->flags); 3035 } else if (cmd_match(buf, "replacement")) { 3036 /* Can only set a device as a replacement when array has not 3037 * yet been started. Once running, replacement is automatic 3038 * from spares, or by assigning 'slot'. 3039 */ 3040 if (rdev->mddev->pers) 3041 err = -EBUSY; 3042 else { 3043 set_bit(Replacement, &rdev->flags); 3044 err = 0; 3045 } 3046 } else if (cmd_match(buf, "-replacement")) { 3047 /* Similarly, can only clear Replacement before start */ 3048 if (rdev->mddev->pers) 3049 err = -EBUSY; 3050 else { 3051 clear_bit(Replacement, &rdev->flags); 3052 err = 0; 3053 } 3054 } else if (cmd_match(buf, "re-add")) { 3055 if (!rdev->mddev->pers) 3056 err = -EINVAL; 3057 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3058 rdev->saved_raid_disk >= 0) { 3059 /* clear_bit is performed _after_ all the devices 3060 * have their local Faulty bit cleared. If any writes 3061 * happen in the meantime in the local node, they 3062 * will land in the local bitmap, which will be synced 3063 * by this node eventually 3064 */ 3065 if (!mddev_is_clustered(rdev->mddev) || 3066 (err = mddev->cluster_ops->gather_bitmaps(rdev)) == 0) { 3067 clear_bit(Faulty, &rdev->flags); 3068 err = add_bound_rdev(rdev); 3069 } 3070 } else 3071 err = -EBUSY; 3072 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3073 set_bit(ExternalBbl, &rdev->flags); 3074 rdev->badblocks.shift = 0; 3075 err = 0; 3076 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3077 clear_bit(ExternalBbl, &rdev->flags); 3078 err = 0; 3079 } 3080 if (need_update_sb) 3081 md_update_sb(mddev, 1); 3082 if (!err) 3083 sysfs_notify_dirent_safe(rdev->sysfs_state); 3084 return err ? err : len; 3085 } 3086 static struct rdev_sysfs_entry rdev_state = 3087 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3088 3089 static ssize_t errors_show(struct md_rdev * rdev,char * page)3090 errors_show(struct md_rdev *rdev, char *page) 3091 { 3092 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3093 } 3094 3095 static ssize_t errors_store(struct md_rdev * rdev,const char * buf,size_t len)3096 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3097 { 3098 unsigned int n; 3099 int rv; 3100 3101 rv = kstrtouint(buf, 10, &n); 3102 if (rv < 0) 3103 return rv; 3104 atomic_set(&rdev->corrected_errors, n); 3105 return len; 3106 } 3107 static struct rdev_sysfs_entry rdev_errors = 3108 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3109 3110 static ssize_t slot_show(struct md_rdev * rdev,char * page)3111 slot_show(struct md_rdev *rdev, char *page) 3112 { 3113 if (test_bit(Journal, &rdev->flags)) 3114 return sprintf(page, "journal\n"); 3115 else if (rdev->raid_disk < 0) 3116 return sprintf(page, "none\n"); 3117 else 3118 return sprintf(page, "%d\n", rdev->raid_disk); 3119 } 3120 3121 static ssize_t slot_store(struct md_rdev * rdev,const char * buf,size_t len)3122 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3123 { 3124 int slot; 3125 int err; 3126 3127 if (test_bit(Journal, &rdev->flags)) 3128 return -EBUSY; 3129 if (strncmp(buf, "none", 4)==0) 3130 slot = -1; 3131 else { 3132 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3133 if (err < 0) 3134 return err; 3135 if (slot < 0) 3136 /* overflow */ 3137 return -ENOSPC; 3138 } 3139 if (rdev->mddev->pers && slot == -1) { 3140 /* Setting 'slot' on an active array requires also 3141 * updating the 'rd%d' link, and communicating 3142 * with the personality with ->hot_*_disk. 3143 * For now we only support removing 3144 * failed/spare devices. This normally happens automatically, 3145 * but not when the metadata is externally managed. 3146 */ 3147 if (rdev->raid_disk == -1) 3148 return -EEXIST; 3149 /* personality does all needed checks */ 3150 if (rdev->mddev->pers->hot_remove_disk == NULL) 3151 return -EINVAL; 3152 clear_bit(Blocked, &rdev->flags); 3153 remove_and_add_spares(rdev->mddev, rdev); 3154 if (rdev->raid_disk >= 0) 3155 return -EBUSY; 3156 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3157 } else if (rdev->mddev->pers) { 3158 /* Activating a spare .. or possibly reactivating 3159 * if we ever get bitmaps working here. 3160 */ 3161 int err; 3162 3163 if (rdev->raid_disk != -1) 3164 return -EBUSY; 3165 3166 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3167 return -EBUSY; 3168 3169 if (rdev->mddev->pers->hot_add_disk == NULL) 3170 return -EINVAL; 3171 3172 if (slot >= rdev->mddev->raid_disks && 3173 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3174 return -ENOSPC; 3175 3176 rdev->raid_disk = slot; 3177 if (test_bit(In_sync, &rdev->flags)) 3178 rdev->saved_raid_disk = slot; 3179 else 3180 rdev->saved_raid_disk = -1; 3181 clear_bit(In_sync, &rdev->flags); 3182 clear_bit(Bitmap_sync, &rdev->flags); 3183 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3184 if (err) { 3185 rdev->raid_disk = -1; 3186 return err; 3187 } else 3188 sysfs_notify_dirent_safe(rdev->sysfs_state); 3189 /* failure here is OK */; 3190 sysfs_link_rdev(rdev->mddev, rdev); 3191 /* don't wakeup anyone, leave that to userspace. */ 3192 } else { 3193 if (slot >= rdev->mddev->raid_disks && 3194 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3195 return -ENOSPC; 3196 rdev->raid_disk = slot; 3197 /* assume it is working */ 3198 clear_bit(Faulty, &rdev->flags); 3199 clear_bit(WriteMostly, &rdev->flags); 3200 set_bit(In_sync, &rdev->flags); 3201 sysfs_notify_dirent_safe(rdev->sysfs_state); 3202 } 3203 return len; 3204 } 3205 3206 static struct rdev_sysfs_entry rdev_slot = 3207 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3208 3209 static ssize_t offset_show(struct md_rdev * rdev,char * page)3210 offset_show(struct md_rdev *rdev, char *page) 3211 { 3212 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3213 } 3214 3215 static ssize_t offset_store(struct md_rdev * rdev,const char * buf,size_t len)3216 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3217 { 3218 unsigned long long offset; 3219 if (kstrtoull(buf, 10, &offset) < 0) 3220 return -EINVAL; 3221 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3222 return -EBUSY; 3223 if (rdev->sectors && rdev->mddev->external) 3224 /* Must set offset before size, so overlap checks 3225 * can be sane */ 3226 return -EBUSY; 3227 rdev->data_offset = offset; 3228 rdev->new_data_offset = offset; 3229 return len; 3230 } 3231 3232 static struct rdev_sysfs_entry rdev_offset = 3233 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3234 new_offset_show(struct md_rdev * rdev,char * page)3235 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3236 { 3237 return sprintf(page, "%llu\n", 3238 (unsigned long long)rdev->new_data_offset); 3239 } 3240 new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)3241 static ssize_t new_offset_store(struct md_rdev *rdev, 3242 const char *buf, size_t len) 3243 { 3244 unsigned long long new_offset; 3245 struct mddev *mddev = rdev->mddev; 3246 3247 if (kstrtoull(buf, 10, &new_offset) < 0) 3248 return -EINVAL; 3249 3250 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3251 return -EBUSY; 3252 if (new_offset == rdev->data_offset) 3253 /* reset is always permitted */ 3254 ; 3255 else if (new_offset > rdev->data_offset) { 3256 /* must not push array size beyond rdev_sectors */ 3257 if (new_offset - rdev->data_offset 3258 + mddev->dev_sectors > rdev->sectors) 3259 return -E2BIG; 3260 } 3261 /* Metadata worries about other space details. */ 3262 3263 /* decreasing the offset is inconsistent with a backwards 3264 * reshape. 3265 */ 3266 if (new_offset < rdev->data_offset && 3267 mddev->reshape_backwards) 3268 return -EINVAL; 3269 /* Increasing offset is inconsistent with forwards 3270 * reshape. reshape_direction should be set to 3271 * 'backwards' first. 3272 */ 3273 if (new_offset > rdev->data_offset && 3274 !mddev->reshape_backwards) 3275 return -EINVAL; 3276 3277 if (mddev->pers && mddev->persistent && 3278 !super_types[mddev->major_version] 3279 .allow_new_offset(rdev, new_offset)) 3280 return -E2BIG; 3281 rdev->new_data_offset = new_offset; 3282 if (new_offset > rdev->data_offset) 3283 mddev->reshape_backwards = 1; 3284 else if (new_offset < rdev->data_offset) 3285 mddev->reshape_backwards = 0; 3286 3287 return len; 3288 } 3289 static struct rdev_sysfs_entry rdev_new_offset = 3290 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3291 3292 static ssize_t rdev_size_show(struct md_rdev * rdev,char * page)3293 rdev_size_show(struct md_rdev *rdev, char *page) 3294 { 3295 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3296 } 3297 md_rdevs_overlap(struct md_rdev * a,struct md_rdev * b)3298 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b) 3299 { 3300 /* check if two start/length pairs overlap */ 3301 if (a->data_offset + a->sectors <= b->data_offset) 3302 return false; 3303 if (b->data_offset + b->sectors <= a->data_offset) 3304 return false; 3305 return true; 3306 } 3307 md_rdev_overlaps(struct md_rdev * rdev)3308 static bool md_rdev_overlaps(struct md_rdev *rdev) 3309 { 3310 struct mddev *mddev; 3311 struct md_rdev *rdev2; 3312 3313 spin_lock(&all_mddevs_lock); 3314 list_for_each_entry(mddev, &all_mddevs, all_mddevs) { 3315 if (test_bit(MD_DELETED, &mddev->flags)) 3316 continue; 3317 rdev_for_each(rdev2, mddev) { 3318 if (rdev != rdev2 && rdev->bdev == rdev2->bdev && 3319 md_rdevs_overlap(rdev, rdev2)) { 3320 spin_unlock(&all_mddevs_lock); 3321 return true; 3322 } 3323 } 3324 } 3325 spin_unlock(&all_mddevs_lock); 3326 return false; 3327 } 3328 strict_blocks_to_sectors(const char * buf,sector_t * sectors)3329 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3330 { 3331 unsigned long long blocks; 3332 sector_t new; 3333 3334 if (kstrtoull(buf, 10, &blocks) < 0) 3335 return -EINVAL; 3336 3337 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3338 return -EINVAL; /* sector conversion overflow */ 3339 3340 new = blocks * 2; 3341 if (new != blocks * 2) 3342 return -EINVAL; /* unsigned long long to sector_t overflow */ 3343 3344 *sectors = new; 3345 return 0; 3346 } 3347 3348 static ssize_t rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)3349 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3350 { 3351 struct mddev *my_mddev = rdev->mddev; 3352 sector_t oldsectors = rdev->sectors; 3353 sector_t sectors; 3354 3355 if (test_bit(Journal, &rdev->flags)) 3356 return -EBUSY; 3357 if (strict_blocks_to_sectors(buf, §ors) < 0) 3358 return -EINVAL; 3359 if (rdev->data_offset != rdev->new_data_offset) 3360 return -EINVAL; /* too confusing */ 3361 if (my_mddev->pers && rdev->raid_disk >= 0) { 3362 if (my_mddev->persistent) { 3363 sectors = super_types[my_mddev->major_version]. 3364 rdev_size_change(rdev, sectors); 3365 if (!sectors) 3366 return -EBUSY; 3367 } else if (!sectors) 3368 sectors = bdev_nr_sectors(rdev->bdev) - 3369 rdev->data_offset; 3370 if (!my_mddev->pers->resize) 3371 /* Cannot change size for RAID0 or Linear etc */ 3372 return -EINVAL; 3373 } 3374 if (sectors < my_mddev->dev_sectors) 3375 return -EINVAL; /* component must fit device */ 3376 3377 rdev->sectors = sectors; 3378 3379 /* 3380 * Check that all other rdevs with the same bdev do not overlap. This 3381 * check does not provide a hard guarantee, it just helps avoid 3382 * dangerous mistakes. 3383 */ 3384 if (sectors > oldsectors && my_mddev->external && 3385 md_rdev_overlaps(rdev)) { 3386 /* 3387 * Someone else could have slipped in a size change here, but 3388 * doing so is just silly. We put oldsectors back because we 3389 * know it is safe, and trust userspace not to race with itself. 3390 */ 3391 rdev->sectors = oldsectors; 3392 return -EBUSY; 3393 } 3394 return len; 3395 } 3396 3397 static struct rdev_sysfs_entry rdev_size = 3398 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3399 recovery_start_show(struct md_rdev * rdev,char * page)3400 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3401 { 3402 unsigned long long recovery_start = rdev->recovery_offset; 3403 3404 if (test_bit(In_sync, &rdev->flags) || 3405 recovery_start == MaxSector) 3406 return sprintf(page, "none\n"); 3407 3408 return sprintf(page, "%llu\n", recovery_start); 3409 } 3410 recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)3411 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3412 { 3413 unsigned long long recovery_start; 3414 3415 if (cmd_match(buf, "none")) 3416 recovery_start = MaxSector; 3417 else if (kstrtoull(buf, 10, &recovery_start)) 3418 return -EINVAL; 3419 3420 if (rdev->mddev->pers && 3421 rdev->raid_disk >= 0) 3422 return -EBUSY; 3423 3424 rdev->recovery_offset = recovery_start; 3425 if (recovery_start == MaxSector) 3426 set_bit(In_sync, &rdev->flags); 3427 else 3428 clear_bit(In_sync, &rdev->flags); 3429 return len; 3430 } 3431 3432 static struct rdev_sysfs_entry rdev_recovery_start = 3433 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3434 3435 /* sysfs access to bad-blocks list. 3436 * We present two files. 3437 * 'bad-blocks' lists sector numbers and lengths of ranges that 3438 * are recorded as bad. The list is truncated to fit within 3439 * the one-page limit of sysfs. 3440 * Writing "sector length" to this file adds an acknowledged 3441 * bad block list. 3442 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3443 * been acknowledged. Writing to this file adds bad blocks 3444 * without acknowledging them. This is largely for testing. 3445 */ bb_show(struct md_rdev * rdev,char * page)3446 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3447 { 3448 return badblocks_show(&rdev->badblocks, page, 0); 3449 } bb_store(struct md_rdev * rdev,const char * page,size_t len)3450 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3451 { 3452 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3453 /* Maybe that ack was all we needed */ 3454 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3455 wake_up(&rdev->blocked_wait); 3456 return rv; 3457 } 3458 static struct rdev_sysfs_entry rdev_bad_blocks = 3459 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3460 ubb_show(struct md_rdev * rdev,char * page)3461 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3462 { 3463 return badblocks_show(&rdev->badblocks, page, 1); 3464 } ubb_store(struct md_rdev * rdev,const char * page,size_t len)3465 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3466 { 3467 return badblocks_store(&rdev->badblocks, page, len, 1); 3468 } 3469 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3470 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3471 3472 static ssize_t ppl_sector_show(struct md_rdev * rdev,char * page)3473 ppl_sector_show(struct md_rdev *rdev, char *page) 3474 { 3475 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3476 } 3477 3478 static ssize_t ppl_sector_store(struct md_rdev * rdev,const char * buf,size_t len)3479 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3480 { 3481 unsigned long long sector; 3482 3483 if (kstrtoull(buf, 10, §or) < 0) 3484 return -EINVAL; 3485 if (sector != (sector_t)sector) 3486 return -EINVAL; 3487 3488 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3489 rdev->raid_disk >= 0) 3490 return -EBUSY; 3491 3492 if (rdev->mddev->persistent) { 3493 if (rdev->mddev->major_version == 0) 3494 return -EINVAL; 3495 if ((sector > rdev->sb_start && 3496 sector - rdev->sb_start > S16_MAX) || 3497 (sector < rdev->sb_start && 3498 rdev->sb_start - sector > -S16_MIN)) 3499 return -EINVAL; 3500 rdev->ppl.offset = sector - rdev->sb_start; 3501 } else if (!rdev->mddev->external) { 3502 return -EBUSY; 3503 } 3504 rdev->ppl.sector = sector; 3505 return len; 3506 } 3507 3508 static struct rdev_sysfs_entry rdev_ppl_sector = 3509 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3510 3511 static ssize_t ppl_size_show(struct md_rdev * rdev,char * page)3512 ppl_size_show(struct md_rdev *rdev, char *page) 3513 { 3514 return sprintf(page, "%u\n", rdev->ppl.size); 3515 } 3516 3517 static ssize_t ppl_size_store(struct md_rdev * rdev,const char * buf,size_t len)3518 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3519 { 3520 unsigned int size; 3521 3522 if (kstrtouint(buf, 10, &size) < 0) 3523 return -EINVAL; 3524 3525 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3526 rdev->raid_disk >= 0) 3527 return -EBUSY; 3528 3529 if (rdev->mddev->persistent) { 3530 if (rdev->mddev->major_version == 0) 3531 return -EINVAL; 3532 if (size > U16_MAX) 3533 return -EINVAL; 3534 } else if (!rdev->mddev->external) { 3535 return -EBUSY; 3536 } 3537 rdev->ppl.size = size; 3538 return len; 3539 } 3540 3541 static struct rdev_sysfs_entry rdev_ppl_size = 3542 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3543 3544 static struct attribute *rdev_default_attrs[] = { 3545 &rdev_state.attr, 3546 &rdev_errors.attr, 3547 &rdev_slot.attr, 3548 &rdev_offset.attr, 3549 &rdev_new_offset.attr, 3550 &rdev_size.attr, 3551 &rdev_recovery_start.attr, 3552 &rdev_bad_blocks.attr, 3553 &rdev_unack_bad_blocks.attr, 3554 &rdev_ppl_sector.attr, 3555 &rdev_ppl_size.attr, 3556 NULL, 3557 }; 3558 ATTRIBUTE_GROUPS(rdev_default); 3559 static ssize_t rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)3560 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3561 { 3562 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3563 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3564 3565 if (!entry->show) 3566 return -EIO; 3567 if (!rdev->mddev) 3568 return -ENODEV; 3569 return entry->show(rdev, page); 3570 } 3571 3572 static ssize_t rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)3573 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3574 const char *page, size_t length) 3575 { 3576 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3577 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3578 struct kernfs_node *kn = NULL; 3579 bool suspend = false; 3580 ssize_t rv; 3581 struct mddev *mddev = READ_ONCE(rdev->mddev); 3582 3583 if (!entry->store) 3584 return -EIO; 3585 if (!capable(CAP_SYS_ADMIN)) 3586 return -EACCES; 3587 if (!mddev) 3588 return -ENODEV; 3589 3590 if (entry->store == state_store) { 3591 if (cmd_match(page, "remove")) 3592 kn = sysfs_break_active_protection(kobj, attr); 3593 if (cmd_match(page, "remove") || cmd_match(page, "re-add") || 3594 cmd_match(page, "writemostly") || 3595 cmd_match(page, "-writemostly")) 3596 suspend = true; 3597 } 3598 3599 rv = suspend ? mddev_suspend_and_lock(mddev) : mddev_lock(mddev); 3600 if (!rv) { 3601 if (rdev->mddev == NULL) 3602 rv = -ENODEV; 3603 else 3604 rv = entry->store(rdev, page, length); 3605 suspend ? mddev_unlock_and_resume(mddev) : mddev_unlock(mddev); 3606 } 3607 3608 if (kn) 3609 sysfs_unbreak_active_protection(kn); 3610 3611 return rv; 3612 } 3613 rdev_free(struct kobject * ko)3614 static void rdev_free(struct kobject *ko) 3615 { 3616 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3617 kfree(rdev); 3618 } 3619 static const struct sysfs_ops rdev_sysfs_ops = { 3620 .show = rdev_attr_show, 3621 .store = rdev_attr_store, 3622 }; 3623 static const struct kobj_type rdev_ktype = { 3624 .release = rdev_free, 3625 .sysfs_ops = &rdev_sysfs_ops, 3626 .default_groups = rdev_default_groups, 3627 }; 3628 md_rdev_init(struct md_rdev * rdev)3629 int md_rdev_init(struct md_rdev *rdev) 3630 { 3631 rdev->desc_nr = -1; 3632 rdev->saved_raid_disk = -1; 3633 rdev->raid_disk = -1; 3634 rdev->flags = 0; 3635 rdev->data_offset = 0; 3636 rdev->new_data_offset = 0; 3637 rdev->sb_events = 0; 3638 rdev->last_read_error = 0; 3639 rdev->sb_loaded = 0; 3640 rdev->bb_page = NULL; 3641 atomic_set(&rdev->nr_pending, 0); 3642 atomic_set(&rdev->read_errors, 0); 3643 atomic_set(&rdev->corrected_errors, 0); 3644 3645 INIT_LIST_HEAD(&rdev->same_set); 3646 init_waitqueue_head(&rdev->blocked_wait); 3647 3648 /* Add space to store bad block list. 3649 * This reserves the space even on arrays where it cannot 3650 * be used - I wonder if that matters 3651 */ 3652 return badblocks_init(&rdev->badblocks, 0); 3653 } 3654 EXPORT_SYMBOL_GPL(md_rdev_init); 3655 3656 /* 3657 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3658 * 3659 * mark the device faulty if: 3660 * 3661 * - the device is nonexistent (zero size) 3662 * - the device has no valid superblock 3663 * 3664 * a faulty rdev _never_ has rdev->sb set. 3665 */ md_import_device(dev_t newdev,int super_format,int super_minor)3666 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3667 { 3668 struct md_rdev *rdev; 3669 sector_t size; 3670 int err; 3671 3672 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3673 if (!rdev) 3674 return ERR_PTR(-ENOMEM); 3675 3676 err = md_rdev_init(rdev); 3677 if (err) 3678 goto out_free_rdev; 3679 err = alloc_disk_sb(rdev); 3680 if (err) 3681 goto out_clear_rdev; 3682 3683 rdev->bdev_file = bdev_file_open_by_dev(newdev, 3684 BLK_OPEN_READ | BLK_OPEN_WRITE, 3685 super_format == -2 ? &claim_rdev : rdev, NULL); 3686 if (IS_ERR(rdev->bdev_file)) { 3687 pr_warn("md: could not open device unknown-block(%u,%u).\n", 3688 MAJOR(newdev), MINOR(newdev)); 3689 err = PTR_ERR(rdev->bdev_file); 3690 goto out_clear_rdev; 3691 } 3692 rdev->bdev = file_bdev(rdev->bdev_file); 3693 3694 kobject_init(&rdev->kobj, &rdev_ktype); 3695 3696 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3697 if (!size) { 3698 pr_warn("md: %pg has zero or unknown size, marking faulty!\n", 3699 rdev->bdev); 3700 err = -EINVAL; 3701 goto out_blkdev_put; 3702 } 3703 3704 if (super_format >= 0) { 3705 err = super_types[super_format]. 3706 load_super(rdev, NULL, super_minor); 3707 if (err == -EINVAL) { 3708 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n", 3709 rdev->bdev, 3710 super_format, super_minor); 3711 goto out_blkdev_put; 3712 } 3713 if (err < 0) { 3714 pr_warn("md: could not read %pg's sb, not importing!\n", 3715 rdev->bdev); 3716 goto out_blkdev_put; 3717 } 3718 } 3719 3720 return rdev; 3721 3722 out_blkdev_put: 3723 fput(rdev->bdev_file); 3724 out_clear_rdev: 3725 md_rdev_clear(rdev); 3726 out_free_rdev: 3727 kfree(rdev); 3728 return ERR_PTR(err); 3729 } 3730 3731 /* 3732 * Check a full RAID array for plausibility 3733 */ 3734 analyze_sbs(struct mddev * mddev)3735 static int analyze_sbs(struct mddev *mddev) 3736 { 3737 int i; 3738 struct md_rdev *rdev, *freshest, *tmp; 3739 3740 freshest = NULL; 3741 rdev_for_each_safe(rdev, tmp, mddev) 3742 switch (super_types[mddev->major_version]. 3743 load_super(rdev, freshest, mddev->minor_version)) { 3744 case 1: 3745 freshest = rdev; 3746 break; 3747 case 0: 3748 break; 3749 default: 3750 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n", 3751 rdev->bdev); 3752 md_kick_rdev_from_array(rdev); 3753 } 3754 3755 /* Cannot find a valid fresh disk */ 3756 if (!freshest) { 3757 pr_warn("md: cannot find a valid disk\n"); 3758 return -EINVAL; 3759 } 3760 3761 super_types[mddev->major_version]. 3762 validate_super(mddev, NULL/*freshest*/, freshest); 3763 3764 i = 0; 3765 rdev_for_each_safe(rdev, tmp, mddev) { 3766 if (mddev->max_disks && 3767 (rdev->desc_nr >= mddev->max_disks || 3768 i > mddev->max_disks)) { 3769 pr_warn("md: %s: %pg: only %d devices permitted\n", 3770 mdname(mddev), rdev->bdev, 3771 mddev->max_disks); 3772 md_kick_rdev_from_array(rdev); 3773 continue; 3774 } 3775 if (rdev != freshest) { 3776 if (super_types[mddev->major_version]. 3777 validate_super(mddev, freshest, rdev)) { 3778 pr_warn("md: kicking non-fresh %pg from array!\n", 3779 rdev->bdev); 3780 md_kick_rdev_from_array(rdev); 3781 continue; 3782 } 3783 } 3784 if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks)) && 3785 !test_bit(Journal, &rdev->flags)) { 3786 rdev->raid_disk = -1; 3787 clear_bit(In_sync, &rdev->flags); 3788 } 3789 } 3790 3791 return 0; 3792 } 3793 3794 /* Read a fixed-point number. 3795 * Numbers in sysfs attributes should be in "standard" units where 3796 * possible, so time should be in seconds. 3797 * However we internally use a a much smaller unit such as 3798 * milliseconds or jiffies. 3799 * This function takes a decimal number with a possible fractional 3800 * component, and produces an integer which is the result of 3801 * multiplying that number by 10^'scale'. 3802 * all without any floating-point arithmetic. 3803 */ strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3804 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3805 { 3806 unsigned long result = 0; 3807 long decimals = -1; 3808 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3809 if (*cp == '.') 3810 decimals = 0; 3811 else if (decimals < scale) { 3812 unsigned int value; 3813 value = *cp - '0'; 3814 result = result * 10 + value; 3815 if (decimals >= 0) 3816 decimals++; 3817 } 3818 cp++; 3819 } 3820 if (*cp == '\n') 3821 cp++; 3822 if (*cp) 3823 return -EINVAL; 3824 if (decimals < 0) 3825 decimals = 0; 3826 *res = result * int_pow(10, scale - decimals); 3827 return 0; 3828 } 3829 3830 static ssize_t safe_delay_show(struct mddev * mddev,char * page)3831 safe_delay_show(struct mddev *mddev, char *page) 3832 { 3833 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ; 3834 3835 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000); 3836 } 3837 static ssize_t safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3838 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3839 { 3840 unsigned long msec; 3841 3842 if (mddev_is_clustered(mddev)) { 3843 pr_warn("md: Safemode is disabled for clustered mode\n"); 3844 return -EINVAL; 3845 } 3846 3847 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ) 3848 return -EINVAL; 3849 if (msec == 0) 3850 mddev->safemode_delay = 0; 3851 else { 3852 unsigned long old_delay = mddev->safemode_delay; 3853 unsigned long new_delay = (msec*HZ)/1000; 3854 3855 if (new_delay == 0) 3856 new_delay = 1; 3857 mddev->safemode_delay = new_delay; 3858 if (new_delay < old_delay || old_delay == 0) 3859 mod_timer(&mddev->safemode_timer, jiffies+1); 3860 } 3861 return len; 3862 } 3863 static struct md_sysfs_entry md_safe_delay = 3864 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3865 3866 static ssize_t level_show(struct mddev * mddev,char * page)3867 level_show(struct mddev *mddev, char *page) 3868 { 3869 struct md_personality *p; 3870 int ret; 3871 spin_lock(&mddev->lock); 3872 p = mddev->pers; 3873 if (p) 3874 ret = sprintf(page, "%s\n", p->head.name); 3875 else if (mddev->clevel[0]) 3876 ret = sprintf(page, "%s\n", mddev->clevel); 3877 else if (mddev->level != LEVEL_NONE) 3878 ret = sprintf(page, "%d\n", mddev->level); 3879 else 3880 ret = 0; 3881 spin_unlock(&mddev->lock); 3882 return ret; 3883 } 3884 3885 static ssize_t level_store(struct mddev * mddev,const char * buf,size_t len)3886 level_store(struct mddev *mddev, const char *buf, size_t len) 3887 { 3888 char clevel[16]; 3889 ssize_t rv; 3890 size_t slen = len; 3891 struct md_personality *pers, *oldpers; 3892 long level; 3893 void *priv, *oldpriv; 3894 struct md_rdev *rdev; 3895 3896 if (slen == 0 || slen >= sizeof(clevel)) 3897 return -EINVAL; 3898 3899 rv = mddev_suspend_and_lock(mddev); 3900 if (rv) 3901 return rv; 3902 3903 if (mddev->pers == NULL) { 3904 memcpy(mddev->clevel, buf, slen); 3905 if (mddev->clevel[slen-1] == '\n') 3906 slen--; 3907 mddev->clevel[slen] = 0; 3908 mddev->level = LEVEL_NONE; 3909 rv = len; 3910 goto out_unlock; 3911 } 3912 rv = -EROFS; 3913 if (!md_is_rdwr(mddev)) 3914 goto out_unlock; 3915 3916 /* request to change the personality. Need to ensure: 3917 * - array is not engaged in resync/recovery/reshape 3918 * - old personality can be suspended 3919 * - new personality will access other array. 3920 */ 3921 3922 rv = -EBUSY; 3923 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3924 mddev->reshape_position != MaxSector || 3925 mddev->sysfs_active) 3926 goto out_unlock; 3927 3928 rv = -EINVAL; 3929 if (!mddev->pers->quiesce) { 3930 pr_warn("md: %s: %s does not support online personality change\n", 3931 mdname(mddev), mddev->pers->head.name); 3932 goto out_unlock; 3933 } 3934 3935 /* Now find the new personality */ 3936 memcpy(clevel, buf, slen); 3937 if (clevel[slen-1] == '\n') 3938 slen--; 3939 clevel[slen] = 0; 3940 if (kstrtol(clevel, 10, &level)) 3941 level = LEVEL_NONE; 3942 3943 if (request_module("md-%s", clevel) != 0) 3944 request_module("md-level-%s", clevel); 3945 pers = get_pers(level, clevel); 3946 if (!pers) { 3947 rv = -EINVAL; 3948 goto out_unlock; 3949 } 3950 3951 if (pers == mddev->pers) { 3952 /* Nothing to do! */ 3953 put_pers(pers); 3954 rv = len; 3955 goto out_unlock; 3956 } 3957 if (!pers->takeover) { 3958 put_pers(pers); 3959 pr_warn("md: %s: %s does not support personality takeover\n", 3960 mdname(mddev), clevel); 3961 rv = -EINVAL; 3962 goto out_unlock; 3963 } 3964 3965 rdev_for_each(rdev, mddev) 3966 rdev->new_raid_disk = rdev->raid_disk; 3967 3968 /* ->takeover must set new_* and/or delta_disks 3969 * if it succeeds, and may set them when it fails. 3970 */ 3971 priv = pers->takeover(mddev); 3972 if (IS_ERR(priv)) { 3973 mddev->new_level = mddev->level; 3974 mddev->new_layout = mddev->layout; 3975 mddev->new_chunk_sectors = mddev->chunk_sectors; 3976 mddev->raid_disks -= mddev->delta_disks; 3977 mddev->delta_disks = 0; 3978 mddev->reshape_backwards = 0; 3979 put_pers(pers); 3980 pr_warn("md: %s: %s would not accept array\n", 3981 mdname(mddev), clevel); 3982 rv = PTR_ERR(priv); 3983 goto out_unlock; 3984 } 3985 3986 /* Looks like we have a winner */ 3987 mddev_detach(mddev); 3988 3989 spin_lock(&mddev->lock); 3990 oldpers = mddev->pers; 3991 oldpriv = mddev->private; 3992 mddev->pers = pers; 3993 mddev->private = priv; 3994 strscpy(mddev->clevel, pers->head.name, sizeof(mddev->clevel)); 3995 mddev->level = mddev->new_level; 3996 mddev->layout = mddev->new_layout; 3997 mddev->chunk_sectors = mddev->new_chunk_sectors; 3998 mddev->delta_disks = 0; 3999 mddev->reshape_backwards = 0; 4000 mddev->degraded = 0; 4001 spin_unlock(&mddev->lock); 4002 4003 if (oldpers->sync_request == NULL && 4004 mddev->external) { 4005 /* We are converting from a no-redundancy array 4006 * to a redundancy array and metadata is managed 4007 * externally so we need to be sure that writes 4008 * won't block due to a need to transition 4009 * clean->dirty 4010 * until external management is started. 4011 */ 4012 mddev->in_sync = 0; 4013 mddev->safemode_delay = 0; 4014 mddev->safemode = 0; 4015 } 4016 4017 oldpers->free(mddev, oldpriv); 4018 4019 if (oldpers->sync_request == NULL && 4020 pers->sync_request != NULL) { 4021 /* need to add the md_redundancy_group */ 4022 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4023 pr_warn("md: cannot register extra attributes for %s\n", 4024 mdname(mddev)); 4025 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4026 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4027 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4028 } 4029 if (oldpers->sync_request != NULL && 4030 pers->sync_request == NULL) { 4031 /* need to remove the md_redundancy_group */ 4032 if (mddev->to_remove == NULL) 4033 mddev->to_remove = &md_redundancy_group; 4034 } 4035 4036 put_pers(oldpers); 4037 4038 rdev_for_each(rdev, mddev) { 4039 if (rdev->raid_disk < 0) 4040 continue; 4041 if (rdev->new_raid_disk >= mddev->raid_disks) 4042 rdev->new_raid_disk = -1; 4043 if (rdev->new_raid_disk == rdev->raid_disk) 4044 continue; 4045 sysfs_unlink_rdev(mddev, rdev); 4046 } 4047 rdev_for_each(rdev, mddev) { 4048 if (rdev->raid_disk < 0) 4049 continue; 4050 if (rdev->new_raid_disk == rdev->raid_disk) 4051 continue; 4052 rdev->raid_disk = rdev->new_raid_disk; 4053 if (rdev->raid_disk < 0) 4054 clear_bit(In_sync, &rdev->flags); 4055 else { 4056 if (sysfs_link_rdev(mddev, rdev)) 4057 pr_warn("md: cannot register rd%d for %s after level change\n", 4058 rdev->raid_disk, mdname(mddev)); 4059 } 4060 } 4061 4062 if (pers->sync_request == NULL) { 4063 /* this is now an array without redundancy, so 4064 * it must always be in_sync 4065 */ 4066 mddev->in_sync = 1; 4067 del_timer_sync(&mddev->safemode_timer); 4068 } 4069 pers->run(mddev); 4070 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4071 if (!mddev->thread) 4072 md_update_sb(mddev, 1); 4073 sysfs_notify_dirent_safe(mddev->sysfs_level); 4074 md_new_event(); 4075 rv = len; 4076 out_unlock: 4077 mddev_unlock_and_resume(mddev); 4078 return rv; 4079 } 4080 4081 static struct md_sysfs_entry md_level = 4082 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4083 4084 static ssize_t new_level_show(struct mddev * mddev,char * page)4085 new_level_show(struct mddev *mddev, char *page) 4086 { 4087 return sprintf(page, "%d\n", mddev->new_level); 4088 } 4089 4090 static ssize_t new_level_store(struct mddev * mddev,const char * buf,size_t len)4091 new_level_store(struct mddev *mddev, const char *buf, size_t len) 4092 { 4093 unsigned int n; 4094 int err; 4095 4096 err = kstrtouint(buf, 10, &n); 4097 if (err < 0) 4098 return err; 4099 err = mddev_lock(mddev); 4100 if (err) 4101 return err; 4102 4103 mddev->new_level = n; 4104 md_update_sb(mddev, 1); 4105 4106 mddev_unlock(mddev); 4107 return len; 4108 } 4109 static struct md_sysfs_entry md_new_level = 4110 __ATTR(new_level, 0664, new_level_show, new_level_store); 4111 4112 static ssize_t layout_show(struct mddev * mddev,char * page)4113 layout_show(struct mddev *mddev, char *page) 4114 { 4115 /* just a number, not meaningful for all levels */ 4116 if (mddev->reshape_position != MaxSector && 4117 mddev->layout != mddev->new_layout) 4118 return sprintf(page, "%d (%d)\n", 4119 mddev->new_layout, mddev->layout); 4120 return sprintf(page, "%d\n", mddev->layout); 4121 } 4122 4123 static ssize_t layout_store(struct mddev * mddev,const char * buf,size_t len)4124 layout_store(struct mddev *mddev, const char *buf, size_t len) 4125 { 4126 unsigned int n; 4127 int err; 4128 4129 err = kstrtouint(buf, 10, &n); 4130 if (err < 0) 4131 return err; 4132 err = mddev_lock(mddev); 4133 if (err) 4134 return err; 4135 4136 if (mddev->pers) { 4137 if (mddev->pers->check_reshape == NULL) 4138 err = -EBUSY; 4139 else if (!md_is_rdwr(mddev)) 4140 err = -EROFS; 4141 else { 4142 mddev->new_layout = n; 4143 err = mddev->pers->check_reshape(mddev); 4144 if (err) 4145 mddev->new_layout = mddev->layout; 4146 } 4147 } else { 4148 mddev->new_layout = n; 4149 if (mddev->reshape_position == MaxSector) 4150 mddev->layout = n; 4151 } 4152 mddev_unlock(mddev); 4153 return err ?: len; 4154 } 4155 static struct md_sysfs_entry md_layout = 4156 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4157 4158 static ssize_t raid_disks_show(struct mddev * mddev,char * page)4159 raid_disks_show(struct mddev *mddev, char *page) 4160 { 4161 if (mddev->raid_disks == 0) 4162 return 0; 4163 if (mddev->reshape_position != MaxSector && 4164 mddev->delta_disks != 0) 4165 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4166 mddev->raid_disks - mddev->delta_disks); 4167 return sprintf(page, "%d\n", mddev->raid_disks); 4168 } 4169 4170 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4171 4172 static ssize_t raid_disks_store(struct mddev * mddev,const char * buf,size_t len)4173 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4174 { 4175 unsigned int n; 4176 int err; 4177 4178 err = kstrtouint(buf, 10, &n); 4179 if (err < 0) 4180 return err; 4181 4182 err = mddev_lock(mddev); 4183 if (err) 4184 return err; 4185 if (mddev->pers) 4186 err = update_raid_disks(mddev, n); 4187 else if (mddev->reshape_position != MaxSector) { 4188 struct md_rdev *rdev; 4189 int olddisks = mddev->raid_disks - mddev->delta_disks; 4190 4191 err = -EINVAL; 4192 rdev_for_each(rdev, mddev) { 4193 if (olddisks < n && 4194 rdev->data_offset < rdev->new_data_offset) 4195 goto out_unlock; 4196 if (olddisks > n && 4197 rdev->data_offset > rdev->new_data_offset) 4198 goto out_unlock; 4199 } 4200 err = 0; 4201 mddev->delta_disks = n - olddisks; 4202 mddev->raid_disks = n; 4203 mddev->reshape_backwards = (mddev->delta_disks < 0); 4204 } else 4205 mddev->raid_disks = n; 4206 out_unlock: 4207 mddev_unlock(mddev); 4208 return err ? err : len; 4209 } 4210 static struct md_sysfs_entry md_raid_disks = 4211 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4212 4213 static ssize_t uuid_show(struct mddev * mddev,char * page)4214 uuid_show(struct mddev *mddev, char *page) 4215 { 4216 return sprintf(page, "%pU\n", mddev->uuid); 4217 } 4218 static struct md_sysfs_entry md_uuid = 4219 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4220 4221 static ssize_t chunk_size_show(struct mddev * mddev,char * page)4222 chunk_size_show(struct mddev *mddev, char *page) 4223 { 4224 if (mddev->reshape_position != MaxSector && 4225 mddev->chunk_sectors != mddev->new_chunk_sectors) 4226 return sprintf(page, "%d (%d)\n", 4227 mddev->new_chunk_sectors << 9, 4228 mddev->chunk_sectors << 9); 4229 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4230 } 4231 4232 static ssize_t chunk_size_store(struct mddev * mddev,const char * buf,size_t len)4233 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4234 { 4235 unsigned long n; 4236 int err; 4237 4238 err = kstrtoul(buf, 10, &n); 4239 if (err < 0) 4240 return err; 4241 4242 err = mddev_lock(mddev); 4243 if (err) 4244 return err; 4245 if (mddev->pers) { 4246 if (mddev->pers->check_reshape == NULL) 4247 err = -EBUSY; 4248 else if (!md_is_rdwr(mddev)) 4249 err = -EROFS; 4250 else { 4251 mddev->new_chunk_sectors = n >> 9; 4252 err = mddev->pers->check_reshape(mddev); 4253 if (err) 4254 mddev->new_chunk_sectors = mddev->chunk_sectors; 4255 } 4256 } else { 4257 mddev->new_chunk_sectors = n >> 9; 4258 if (mddev->reshape_position == MaxSector) 4259 mddev->chunk_sectors = n >> 9; 4260 } 4261 mddev_unlock(mddev); 4262 return err ?: len; 4263 } 4264 static struct md_sysfs_entry md_chunk_size = 4265 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4266 4267 static ssize_t resync_start_show(struct mddev * mddev,char * page)4268 resync_start_show(struct mddev *mddev, char *page) 4269 { 4270 if (mddev->recovery_cp == MaxSector) 4271 return sprintf(page, "none\n"); 4272 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4273 } 4274 4275 static ssize_t resync_start_store(struct mddev * mddev,const char * buf,size_t len)4276 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4277 { 4278 unsigned long long n; 4279 int err; 4280 4281 if (cmd_match(buf, "none")) 4282 n = MaxSector; 4283 else { 4284 err = kstrtoull(buf, 10, &n); 4285 if (err < 0) 4286 return err; 4287 if (n != (sector_t)n) 4288 return -EINVAL; 4289 } 4290 4291 err = mddev_lock(mddev); 4292 if (err) 4293 return err; 4294 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4295 err = -EBUSY; 4296 4297 if (!err) { 4298 mddev->recovery_cp = n; 4299 if (mddev->pers) 4300 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4301 } 4302 mddev_unlock(mddev); 4303 return err ?: len; 4304 } 4305 static struct md_sysfs_entry md_resync_start = 4306 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4307 resync_start_show, resync_start_store); 4308 4309 /* 4310 * The array state can be: 4311 * 4312 * clear 4313 * No devices, no size, no level 4314 * Equivalent to STOP_ARRAY ioctl 4315 * inactive 4316 * May have some settings, but array is not active 4317 * all IO results in error 4318 * When written, doesn't tear down array, but just stops it 4319 * suspended (not supported yet) 4320 * All IO requests will block. The array can be reconfigured. 4321 * Writing this, if accepted, will block until array is quiescent 4322 * readonly 4323 * no resync can happen. no superblocks get written. 4324 * write requests fail 4325 * read-auto 4326 * like readonly, but behaves like 'clean' on a write request. 4327 * 4328 * clean - no pending writes, but otherwise active. 4329 * When written to inactive array, starts without resync 4330 * If a write request arrives then 4331 * if metadata is known, mark 'dirty' and switch to 'active'. 4332 * if not known, block and switch to write-pending 4333 * If written to an active array that has pending writes, then fails. 4334 * active 4335 * fully active: IO and resync can be happening. 4336 * When written to inactive array, starts with resync 4337 * 4338 * write-pending 4339 * clean, but writes are blocked waiting for 'active' to be written. 4340 * 4341 * active-idle 4342 * like active, but no writes have been seen for a while (100msec). 4343 * 4344 * broken 4345 * Array is failed. It's useful because mounted-arrays aren't stopped 4346 * when array is failed, so this state will at least alert the user that 4347 * something is wrong. 4348 */ 4349 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4350 write_pending, active_idle, broken, bad_word}; 4351 static char *array_states[] = { 4352 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4353 "write-pending", "active-idle", "broken", NULL }; 4354 match_word(const char * word,char ** list)4355 static int match_word(const char *word, char **list) 4356 { 4357 int n; 4358 for (n=0; list[n]; n++) 4359 if (cmd_match(word, list[n])) 4360 break; 4361 return n; 4362 } 4363 4364 static ssize_t array_state_show(struct mddev * mddev,char * page)4365 array_state_show(struct mddev *mddev, char *page) 4366 { 4367 enum array_state st = inactive; 4368 4369 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4370 switch(mddev->ro) { 4371 case MD_RDONLY: 4372 st = readonly; 4373 break; 4374 case MD_AUTO_READ: 4375 st = read_auto; 4376 break; 4377 case MD_RDWR: 4378 spin_lock(&mddev->lock); 4379 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4380 st = write_pending; 4381 else if (mddev->in_sync) 4382 st = clean; 4383 else if (mddev->safemode) 4384 st = active_idle; 4385 else 4386 st = active; 4387 spin_unlock(&mddev->lock); 4388 } 4389 4390 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4391 st = broken; 4392 } else { 4393 if (list_empty(&mddev->disks) && 4394 mddev->raid_disks == 0 && 4395 mddev->dev_sectors == 0) 4396 st = clear; 4397 else 4398 st = inactive; 4399 } 4400 return sprintf(page, "%s\n", array_states[st]); 4401 } 4402 4403 static int do_md_stop(struct mddev *mddev, int ro); 4404 static int md_set_readonly(struct mddev *mddev); 4405 static int restart_array(struct mddev *mddev); 4406 4407 static ssize_t array_state_store(struct mddev * mddev,const char * buf,size_t len)4408 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4409 { 4410 int err = 0; 4411 enum array_state st = match_word(buf, array_states); 4412 4413 /* No lock dependent actions */ 4414 switch (st) { 4415 case suspended: /* not supported yet */ 4416 case write_pending: /* cannot be set */ 4417 case active_idle: /* cannot be set */ 4418 case broken: /* cannot be set */ 4419 case bad_word: 4420 return -EINVAL; 4421 case clear: 4422 case readonly: 4423 case inactive: 4424 case read_auto: 4425 if (!mddev->pers || !md_is_rdwr(mddev)) 4426 break; 4427 /* write sysfs will not open mddev and opener should be 0 */ 4428 err = mddev_set_closing_and_sync_blockdev(mddev, 0); 4429 if (err) 4430 return err; 4431 break; 4432 default: 4433 break; 4434 } 4435 4436 if (mddev->pers && (st == active || st == clean) && 4437 mddev->ro != MD_RDONLY) { 4438 /* don't take reconfig_mutex when toggling between 4439 * clean and active 4440 */ 4441 spin_lock(&mddev->lock); 4442 if (st == active) { 4443 restart_array(mddev); 4444 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4445 md_wakeup_thread(mddev->thread); 4446 wake_up(&mddev->sb_wait); 4447 } else /* st == clean */ { 4448 restart_array(mddev); 4449 if (!set_in_sync(mddev)) 4450 err = -EBUSY; 4451 } 4452 if (!err) 4453 sysfs_notify_dirent_safe(mddev->sysfs_state); 4454 spin_unlock(&mddev->lock); 4455 return err ?: len; 4456 } 4457 err = mddev_lock(mddev); 4458 if (err) 4459 return err; 4460 4461 switch (st) { 4462 case inactive: 4463 /* stop an active array, return 0 otherwise */ 4464 if (mddev->pers) 4465 err = do_md_stop(mddev, 2); 4466 break; 4467 case clear: 4468 err = do_md_stop(mddev, 0); 4469 break; 4470 case readonly: 4471 if (mddev->pers) 4472 err = md_set_readonly(mddev); 4473 else { 4474 mddev->ro = MD_RDONLY; 4475 set_disk_ro(mddev->gendisk, 1); 4476 err = do_md_run(mddev); 4477 } 4478 break; 4479 case read_auto: 4480 if (mddev->pers) { 4481 if (md_is_rdwr(mddev)) 4482 err = md_set_readonly(mddev); 4483 else if (mddev->ro == MD_RDONLY) 4484 err = restart_array(mddev); 4485 if (err == 0) { 4486 mddev->ro = MD_AUTO_READ; 4487 set_disk_ro(mddev->gendisk, 0); 4488 } 4489 } else { 4490 mddev->ro = MD_AUTO_READ; 4491 err = do_md_run(mddev); 4492 } 4493 break; 4494 case clean: 4495 if (mddev->pers) { 4496 err = restart_array(mddev); 4497 if (err) 4498 break; 4499 spin_lock(&mddev->lock); 4500 if (!set_in_sync(mddev)) 4501 err = -EBUSY; 4502 spin_unlock(&mddev->lock); 4503 } else 4504 err = -EINVAL; 4505 break; 4506 case active: 4507 if (mddev->pers) { 4508 err = restart_array(mddev); 4509 if (err) 4510 break; 4511 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4512 wake_up(&mddev->sb_wait); 4513 err = 0; 4514 } else { 4515 mddev->ro = MD_RDWR; 4516 set_disk_ro(mddev->gendisk, 0); 4517 err = do_md_run(mddev); 4518 } 4519 break; 4520 default: 4521 err = -EINVAL; 4522 break; 4523 } 4524 4525 if (!err) { 4526 if (mddev->hold_active == UNTIL_IOCTL) 4527 mddev->hold_active = 0; 4528 sysfs_notify_dirent_safe(mddev->sysfs_state); 4529 } 4530 mddev_unlock(mddev); 4531 4532 if (st == readonly || st == read_auto || st == inactive || 4533 (err && st == clear)) 4534 clear_bit(MD_CLOSING, &mddev->flags); 4535 4536 return err ?: len; 4537 } 4538 static struct md_sysfs_entry md_array_state = 4539 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4540 4541 static ssize_t max_corrected_read_errors_show(struct mddev * mddev,char * page)4542 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4543 return sprintf(page, "%d\n", 4544 atomic_read(&mddev->max_corr_read_errors)); 4545 } 4546 4547 static ssize_t max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)4548 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4549 { 4550 unsigned int n; 4551 int rv; 4552 4553 rv = kstrtouint(buf, 10, &n); 4554 if (rv < 0) 4555 return rv; 4556 if (n > INT_MAX) 4557 return -EINVAL; 4558 atomic_set(&mddev->max_corr_read_errors, n); 4559 return len; 4560 } 4561 4562 static struct md_sysfs_entry max_corr_read_errors = 4563 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4564 max_corrected_read_errors_store); 4565 4566 static ssize_t null_show(struct mddev * mddev,char * page)4567 null_show(struct mddev *mddev, char *page) 4568 { 4569 return -EINVAL; 4570 } 4571 4572 static ssize_t new_dev_store(struct mddev * mddev,const char * buf,size_t len)4573 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4574 { 4575 /* buf must be %d:%d\n? giving major and minor numbers */ 4576 /* The new device is added to the array. 4577 * If the array has a persistent superblock, we read the 4578 * superblock to initialise info and check validity. 4579 * Otherwise, only checking done is that in bind_rdev_to_array, 4580 * which mainly checks size. 4581 */ 4582 char *e; 4583 int major = simple_strtoul(buf, &e, 10); 4584 int minor; 4585 dev_t dev; 4586 struct md_rdev *rdev; 4587 int err; 4588 4589 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4590 return -EINVAL; 4591 minor = simple_strtoul(e+1, &e, 10); 4592 if (*e && *e != '\n') 4593 return -EINVAL; 4594 dev = MKDEV(major, minor); 4595 if (major != MAJOR(dev) || 4596 minor != MINOR(dev)) 4597 return -EOVERFLOW; 4598 4599 err = mddev_suspend_and_lock(mddev); 4600 if (err) 4601 return err; 4602 if (mddev->persistent) { 4603 rdev = md_import_device(dev, mddev->major_version, 4604 mddev->minor_version); 4605 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4606 struct md_rdev *rdev0 4607 = list_entry(mddev->disks.next, 4608 struct md_rdev, same_set); 4609 err = super_types[mddev->major_version] 4610 .load_super(rdev, rdev0, mddev->minor_version); 4611 if (err < 0) 4612 goto out; 4613 } 4614 } else if (mddev->external) 4615 rdev = md_import_device(dev, -2, -1); 4616 else 4617 rdev = md_import_device(dev, -1, -1); 4618 4619 if (IS_ERR(rdev)) { 4620 mddev_unlock_and_resume(mddev); 4621 return PTR_ERR(rdev); 4622 } 4623 err = bind_rdev_to_array(rdev, mddev); 4624 out: 4625 if (err) 4626 export_rdev(rdev, mddev); 4627 mddev_unlock_and_resume(mddev); 4628 if (!err) 4629 md_new_event(); 4630 return err ? err : len; 4631 } 4632 4633 static struct md_sysfs_entry md_new_device = 4634 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4635 4636 static ssize_t bitmap_store(struct mddev * mddev,const char * buf,size_t len)4637 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4638 { 4639 char *end; 4640 unsigned long chunk, end_chunk; 4641 int err; 4642 4643 err = mddev_lock(mddev); 4644 if (err) 4645 return err; 4646 if (!mddev->bitmap) 4647 goto out; 4648 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4649 while (*buf) { 4650 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4651 if (buf == end) 4652 break; 4653 4654 if (*end == '-') { /* range */ 4655 buf = end + 1; 4656 end_chunk = simple_strtoul(buf, &end, 0); 4657 if (buf == end) 4658 break; 4659 } 4660 4661 if (*end && !isspace(*end)) 4662 break; 4663 4664 mddev->bitmap_ops->dirty_bits(mddev, chunk, end_chunk); 4665 buf = skip_spaces(end); 4666 } 4667 mddev->bitmap_ops->unplug(mddev, true); /* flush the bits to disk */ 4668 out: 4669 mddev_unlock(mddev); 4670 return len; 4671 } 4672 4673 static struct md_sysfs_entry md_bitmap = 4674 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4675 4676 static ssize_t size_show(struct mddev * mddev,char * page)4677 size_show(struct mddev *mddev, char *page) 4678 { 4679 return sprintf(page, "%llu\n", 4680 (unsigned long long)mddev->dev_sectors / 2); 4681 } 4682 4683 static int update_size(struct mddev *mddev, sector_t num_sectors); 4684 4685 static ssize_t size_store(struct mddev * mddev,const char * buf,size_t len)4686 size_store(struct mddev *mddev, const char *buf, size_t len) 4687 { 4688 /* If array is inactive, we can reduce the component size, but 4689 * not increase it (except from 0). 4690 * If array is active, we can try an on-line resize 4691 */ 4692 sector_t sectors; 4693 int err = strict_blocks_to_sectors(buf, §ors); 4694 4695 if (err < 0) 4696 return err; 4697 err = mddev_lock(mddev); 4698 if (err) 4699 return err; 4700 if (mddev->pers) { 4701 err = update_size(mddev, sectors); 4702 if (err == 0) 4703 md_update_sb(mddev, 1); 4704 } else { 4705 if (mddev->dev_sectors == 0 || 4706 mddev->dev_sectors > sectors) 4707 mddev->dev_sectors = sectors; 4708 else 4709 err = -ENOSPC; 4710 } 4711 mddev_unlock(mddev); 4712 return err ? err : len; 4713 } 4714 4715 static struct md_sysfs_entry md_size = 4716 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4717 4718 /* Metadata version. 4719 * This is one of 4720 * 'none' for arrays with no metadata (good luck...) 4721 * 'external' for arrays with externally managed metadata, 4722 * or N.M for internally known formats 4723 */ 4724 static ssize_t metadata_show(struct mddev * mddev,char * page)4725 metadata_show(struct mddev *mddev, char *page) 4726 { 4727 if (mddev->persistent) 4728 return sprintf(page, "%d.%d\n", 4729 mddev->major_version, mddev->minor_version); 4730 else if (mddev->external) 4731 return sprintf(page, "external:%s\n", mddev->metadata_type); 4732 else 4733 return sprintf(page, "none\n"); 4734 } 4735 4736 static ssize_t metadata_store(struct mddev * mddev,const char * buf,size_t len)4737 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4738 { 4739 int major, minor; 4740 char *e; 4741 int err; 4742 /* Changing the details of 'external' metadata is 4743 * always permitted. Otherwise there must be 4744 * no devices attached to the array. 4745 */ 4746 4747 err = mddev_lock(mddev); 4748 if (err) 4749 return err; 4750 err = -EBUSY; 4751 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4752 ; 4753 else if (!list_empty(&mddev->disks)) 4754 goto out_unlock; 4755 4756 err = 0; 4757 if (cmd_match(buf, "none")) { 4758 mddev->persistent = 0; 4759 mddev->external = 0; 4760 mddev->major_version = 0; 4761 mddev->minor_version = 90; 4762 goto out_unlock; 4763 } 4764 if (strncmp(buf, "external:", 9) == 0) { 4765 size_t namelen = len-9; 4766 if (namelen >= sizeof(mddev->metadata_type)) 4767 namelen = sizeof(mddev->metadata_type)-1; 4768 memcpy(mddev->metadata_type, buf+9, namelen); 4769 mddev->metadata_type[namelen] = 0; 4770 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4771 mddev->metadata_type[--namelen] = 0; 4772 mddev->persistent = 0; 4773 mddev->external = 1; 4774 mddev->major_version = 0; 4775 mddev->minor_version = 90; 4776 goto out_unlock; 4777 } 4778 major = simple_strtoul(buf, &e, 10); 4779 err = -EINVAL; 4780 if (e==buf || *e != '.') 4781 goto out_unlock; 4782 buf = e+1; 4783 minor = simple_strtoul(buf, &e, 10); 4784 if (e==buf || (*e && *e != '\n') ) 4785 goto out_unlock; 4786 err = -ENOENT; 4787 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4788 goto out_unlock; 4789 mddev->major_version = major; 4790 mddev->minor_version = minor; 4791 mddev->persistent = 1; 4792 mddev->external = 0; 4793 err = 0; 4794 out_unlock: 4795 mddev_unlock(mddev); 4796 return err ?: len; 4797 } 4798 4799 static struct md_sysfs_entry md_metadata = 4800 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4801 md_sync_action(struct mddev * mddev)4802 enum sync_action md_sync_action(struct mddev *mddev) 4803 { 4804 unsigned long recovery = mddev->recovery; 4805 4806 /* 4807 * frozen has the highest priority, means running sync_thread will be 4808 * stopped immediately, and no new sync_thread can start. 4809 */ 4810 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4811 return ACTION_FROZEN; 4812 4813 /* 4814 * read-only array can't register sync_thread, and it can only 4815 * add/remove spares. 4816 */ 4817 if (!md_is_rdwr(mddev)) 4818 return ACTION_IDLE; 4819 4820 /* 4821 * idle means no sync_thread is running, and no new sync_thread is 4822 * requested. 4823 */ 4824 if (!test_bit(MD_RECOVERY_RUNNING, &recovery) && 4825 !test_bit(MD_RECOVERY_NEEDED, &recovery)) 4826 return ACTION_IDLE; 4827 4828 if (test_bit(MD_RECOVERY_RESHAPE, &recovery) || 4829 mddev->reshape_position != MaxSector) 4830 return ACTION_RESHAPE; 4831 4832 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4833 return ACTION_RECOVER; 4834 4835 if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4836 /* 4837 * MD_RECOVERY_CHECK must be paired with 4838 * MD_RECOVERY_REQUESTED. 4839 */ 4840 if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4841 return ACTION_CHECK; 4842 if (test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4843 return ACTION_REPAIR; 4844 return ACTION_RESYNC; 4845 } 4846 4847 /* 4848 * MD_RECOVERY_NEEDED or MD_RECOVERY_RUNNING is set, however, no 4849 * sync_action is specified. 4850 */ 4851 return ACTION_IDLE; 4852 } 4853 md_sync_action_by_name(const char * page)4854 enum sync_action md_sync_action_by_name(const char *page) 4855 { 4856 enum sync_action action; 4857 4858 for (action = 0; action < NR_SYNC_ACTIONS; ++action) { 4859 if (cmd_match(page, action_name[action])) 4860 return action; 4861 } 4862 4863 return NR_SYNC_ACTIONS; 4864 } 4865 md_sync_action_name(enum sync_action action)4866 const char *md_sync_action_name(enum sync_action action) 4867 { 4868 return action_name[action]; 4869 } 4870 4871 static ssize_t action_show(struct mddev * mddev,char * page)4872 action_show(struct mddev *mddev, char *page) 4873 { 4874 enum sync_action action = md_sync_action(mddev); 4875 4876 return sprintf(page, "%s\n", md_sync_action_name(action)); 4877 } 4878 4879 /** 4880 * stop_sync_thread() - wait for sync_thread to stop if it's running. 4881 * @mddev: the array. 4882 * @locked: if set, reconfig_mutex will still be held after this function 4883 * return; if not set, reconfig_mutex will be released after this 4884 * function return. 4885 */ stop_sync_thread(struct mddev * mddev,bool locked)4886 static void stop_sync_thread(struct mddev *mddev, bool locked) 4887 { 4888 int sync_seq = atomic_read(&mddev->sync_seq); 4889 4890 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 4891 if (!locked) 4892 mddev_unlock(mddev); 4893 return; 4894 } 4895 4896 mddev_unlock(mddev); 4897 4898 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4899 /* 4900 * Thread might be blocked waiting for metadata update which will now 4901 * never happen 4902 */ 4903 md_wakeup_thread_directly(mddev->sync_thread); 4904 if (work_pending(&mddev->sync_work)) 4905 flush_work(&mddev->sync_work); 4906 4907 wait_event(resync_wait, 4908 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4909 (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery) && 4910 sync_seq != atomic_read(&mddev->sync_seq))); 4911 4912 if (locked) 4913 mddev_lock_nointr(mddev); 4914 } 4915 md_idle_sync_thread(struct mddev * mddev)4916 void md_idle_sync_thread(struct mddev *mddev) 4917 { 4918 lockdep_assert_held(&mddev->reconfig_mutex); 4919 4920 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4921 stop_sync_thread(mddev, true); 4922 } 4923 EXPORT_SYMBOL_GPL(md_idle_sync_thread); 4924 md_frozen_sync_thread(struct mddev * mddev)4925 void md_frozen_sync_thread(struct mddev *mddev) 4926 { 4927 lockdep_assert_held(&mddev->reconfig_mutex); 4928 4929 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4930 stop_sync_thread(mddev, true); 4931 } 4932 EXPORT_SYMBOL_GPL(md_frozen_sync_thread); 4933 md_unfrozen_sync_thread(struct mddev * mddev)4934 void md_unfrozen_sync_thread(struct mddev *mddev) 4935 { 4936 lockdep_assert_held(&mddev->reconfig_mutex); 4937 4938 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4939 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4940 md_wakeup_thread(mddev->thread); 4941 sysfs_notify_dirent_safe(mddev->sysfs_action); 4942 } 4943 EXPORT_SYMBOL_GPL(md_unfrozen_sync_thread); 4944 mddev_start_reshape(struct mddev * mddev)4945 static int mddev_start_reshape(struct mddev *mddev) 4946 { 4947 int ret; 4948 4949 if (mddev->pers->start_reshape == NULL) 4950 return -EINVAL; 4951 4952 if (mddev->reshape_position == MaxSector || 4953 mddev->pers->check_reshape == NULL || 4954 mddev->pers->check_reshape(mddev)) { 4955 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4956 ret = mddev->pers->start_reshape(mddev); 4957 if (ret) 4958 return ret; 4959 } else { 4960 /* 4961 * If reshape is still in progress, and md_check_recovery() can 4962 * continue to reshape, don't restart reshape because data can 4963 * be corrupted for raid456. 4964 */ 4965 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4966 } 4967 4968 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4969 return 0; 4970 } 4971 4972 static ssize_t action_store(struct mddev * mddev,const char * page,size_t len)4973 action_store(struct mddev *mddev, const char *page, size_t len) 4974 { 4975 int ret; 4976 enum sync_action action; 4977 4978 if (!mddev->pers || !mddev->pers->sync_request) 4979 return -EINVAL; 4980 4981 retry: 4982 if (work_busy(&mddev->sync_work)) 4983 flush_work(&mddev->sync_work); 4984 4985 ret = mddev_lock(mddev); 4986 if (ret) 4987 return ret; 4988 4989 if (work_busy(&mddev->sync_work)) { 4990 mddev_unlock(mddev); 4991 goto retry; 4992 } 4993 4994 action = md_sync_action_by_name(page); 4995 4996 /* TODO: mdadm rely on "idle" to start sync_thread. */ 4997 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 4998 switch (action) { 4999 case ACTION_FROZEN: 5000 md_frozen_sync_thread(mddev); 5001 ret = len; 5002 goto out; 5003 case ACTION_IDLE: 5004 md_idle_sync_thread(mddev); 5005 break; 5006 case ACTION_RESHAPE: 5007 case ACTION_RECOVER: 5008 case ACTION_CHECK: 5009 case ACTION_REPAIR: 5010 case ACTION_RESYNC: 5011 ret = -EBUSY; 5012 goto out; 5013 default: 5014 ret = -EINVAL; 5015 goto out; 5016 } 5017 } else { 5018 switch (action) { 5019 case ACTION_FROZEN: 5020 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5021 ret = len; 5022 goto out; 5023 case ACTION_RESHAPE: 5024 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5025 ret = mddev_start_reshape(mddev); 5026 if (ret) 5027 goto out; 5028 break; 5029 case ACTION_RECOVER: 5030 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5031 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5032 break; 5033 case ACTION_CHECK: 5034 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 5035 fallthrough; 5036 case ACTION_REPAIR: 5037 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 5038 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5039 fallthrough; 5040 case ACTION_RESYNC: 5041 case ACTION_IDLE: 5042 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5043 break; 5044 default: 5045 ret = -EINVAL; 5046 goto out; 5047 } 5048 } 5049 5050 if (mddev->ro == MD_AUTO_READ) { 5051 /* A write to sync_action is enough to justify 5052 * canceling read-auto mode 5053 */ 5054 mddev->ro = MD_RDWR; 5055 md_wakeup_thread(mddev->sync_thread); 5056 } 5057 5058 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5059 md_wakeup_thread(mddev->thread); 5060 sysfs_notify_dirent_safe(mddev->sysfs_action); 5061 ret = len; 5062 5063 out: 5064 mddev_unlock(mddev); 5065 return ret; 5066 } 5067 5068 static struct md_sysfs_entry md_scan_mode = 5069 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 5070 5071 static ssize_t last_sync_action_show(struct mddev * mddev,char * page)5072 last_sync_action_show(struct mddev *mddev, char *page) 5073 { 5074 return sprintf(page, "%s\n", 5075 md_sync_action_name(mddev->last_sync_action)); 5076 } 5077 5078 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 5079 5080 static ssize_t mismatch_cnt_show(struct mddev * mddev,char * page)5081 mismatch_cnt_show(struct mddev *mddev, char *page) 5082 { 5083 return sprintf(page, "%llu\n", 5084 (unsigned long long) 5085 atomic64_read(&mddev->resync_mismatches)); 5086 } 5087 5088 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 5089 5090 static ssize_t sync_min_show(struct mddev * mddev,char * page)5091 sync_min_show(struct mddev *mddev, char *page) 5092 { 5093 return sprintf(page, "%d (%s)\n", speed_min(mddev), 5094 mddev->sync_speed_min ? "local": "system"); 5095 } 5096 5097 static ssize_t sync_min_store(struct mddev * mddev,const char * buf,size_t len)5098 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 5099 { 5100 unsigned int min; 5101 int rv; 5102 5103 if (strncmp(buf, "system", 6)==0) { 5104 min = 0; 5105 } else { 5106 rv = kstrtouint(buf, 10, &min); 5107 if (rv < 0) 5108 return rv; 5109 if (min == 0) 5110 return -EINVAL; 5111 } 5112 mddev->sync_speed_min = min; 5113 return len; 5114 } 5115 5116 static struct md_sysfs_entry md_sync_min = 5117 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 5118 5119 static ssize_t sync_max_show(struct mddev * mddev,char * page)5120 sync_max_show(struct mddev *mddev, char *page) 5121 { 5122 return sprintf(page, "%d (%s)\n", speed_max(mddev), 5123 mddev->sync_speed_max ? "local": "system"); 5124 } 5125 5126 static ssize_t sync_max_store(struct mddev * mddev,const char * buf,size_t len)5127 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 5128 { 5129 unsigned int max; 5130 int rv; 5131 5132 if (strncmp(buf, "system", 6)==0) { 5133 max = 0; 5134 } else { 5135 rv = kstrtouint(buf, 10, &max); 5136 if (rv < 0) 5137 return rv; 5138 if (max == 0) 5139 return -EINVAL; 5140 } 5141 mddev->sync_speed_max = max; 5142 return len; 5143 } 5144 5145 static struct md_sysfs_entry md_sync_max = 5146 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 5147 5148 static ssize_t degraded_show(struct mddev * mddev,char * page)5149 degraded_show(struct mddev *mddev, char *page) 5150 { 5151 return sprintf(page, "%d\n", mddev->degraded); 5152 } 5153 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 5154 5155 static ssize_t sync_force_parallel_show(struct mddev * mddev,char * page)5156 sync_force_parallel_show(struct mddev *mddev, char *page) 5157 { 5158 return sprintf(page, "%d\n", mddev->parallel_resync); 5159 } 5160 5161 static ssize_t sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)5162 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 5163 { 5164 long n; 5165 5166 if (kstrtol(buf, 10, &n)) 5167 return -EINVAL; 5168 5169 if (n != 0 && n != 1) 5170 return -EINVAL; 5171 5172 mddev->parallel_resync = n; 5173 5174 if (mddev->sync_thread) 5175 wake_up(&resync_wait); 5176 5177 return len; 5178 } 5179 5180 /* force parallel resync, even with shared block devices */ 5181 static struct md_sysfs_entry md_sync_force_parallel = 5182 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 5183 sync_force_parallel_show, sync_force_parallel_store); 5184 5185 static ssize_t sync_speed_show(struct mddev * mddev,char * page)5186 sync_speed_show(struct mddev *mddev, char *page) 5187 { 5188 unsigned long resync, dt, db; 5189 if (mddev->curr_resync == MD_RESYNC_NONE) 5190 return sprintf(page, "none\n"); 5191 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5192 dt = (jiffies - mddev->resync_mark) / HZ; 5193 if (!dt) dt++; 5194 db = resync - mddev->resync_mark_cnt; 5195 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5196 } 5197 5198 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5199 5200 static ssize_t sync_completed_show(struct mddev * mddev,char * page)5201 sync_completed_show(struct mddev *mddev, char *page) 5202 { 5203 unsigned long long max_sectors, resync; 5204 5205 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5206 return sprintf(page, "none\n"); 5207 5208 if (mddev->curr_resync == MD_RESYNC_YIELDED || 5209 mddev->curr_resync == MD_RESYNC_DELAYED) 5210 return sprintf(page, "delayed\n"); 5211 5212 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5213 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5214 max_sectors = mddev->resync_max_sectors; 5215 else 5216 max_sectors = mddev->dev_sectors; 5217 5218 resync = mddev->curr_resync_completed; 5219 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5220 } 5221 5222 static struct md_sysfs_entry md_sync_completed = 5223 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5224 5225 static ssize_t min_sync_show(struct mddev * mddev,char * page)5226 min_sync_show(struct mddev *mddev, char *page) 5227 { 5228 return sprintf(page, "%llu\n", 5229 (unsigned long long)mddev->resync_min); 5230 } 5231 static ssize_t min_sync_store(struct mddev * mddev,const char * buf,size_t len)5232 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5233 { 5234 unsigned long long min; 5235 int err; 5236 5237 if (kstrtoull(buf, 10, &min)) 5238 return -EINVAL; 5239 5240 spin_lock(&mddev->lock); 5241 err = -EINVAL; 5242 if (min > mddev->resync_max) 5243 goto out_unlock; 5244 5245 err = -EBUSY; 5246 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5247 goto out_unlock; 5248 5249 /* Round down to multiple of 4K for safety */ 5250 mddev->resync_min = round_down(min, 8); 5251 err = 0; 5252 5253 out_unlock: 5254 spin_unlock(&mddev->lock); 5255 return err ?: len; 5256 } 5257 5258 static struct md_sysfs_entry md_min_sync = 5259 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5260 5261 static ssize_t max_sync_show(struct mddev * mddev,char * page)5262 max_sync_show(struct mddev *mddev, char *page) 5263 { 5264 if (mddev->resync_max == MaxSector) 5265 return sprintf(page, "max\n"); 5266 else 5267 return sprintf(page, "%llu\n", 5268 (unsigned long long)mddev->resync_max); 5269 } 5270 static ssize_t max_sync_store(struct mddev * mddev,const char * buf,size_t len)5271 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5272 { 5273 int err; 5274 spin_lock(&mddev->lock); 5275 if (strncmp(buf, "max", 3) == 0) 5276 mddev->resync_max = MaxSector; 5277 else { 5278 unsigned long long max; 5279 int chunk; 5280 5281 err = -EINVAL; 5282 if (kstrtoull(buf, 10, &max)) 5283 goto out_unlock; 5284 if (max < mddev->resync_min) 5285 goto out_unlock; 5286 5287 err = -EBUSY; 5288 if (max < mddev->resync_max && md_is_rdwr(mddev) && 5289 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5290 goto out_unlock; 5291 5292 /* Must be a multiple of chunk_size */ 5293 chunk = mddev->chunk_sectors; 5294 if (chunk) { 5295 sector_t temp = max; 5296 5297 err = -EINVAL; 5298 if (sector_div(temp, chunk)) 5299 goto out_unlock; 5300 } 5301 mddev->resync_max = max; 5302 } 5303 wake_up(&mddev->recovery_wait); 5304 err = 0; 5305 out_unlock: 5306 spin_unlock(&mddev->lock); 5307 return err ?: len; 5308 } 5309 5310 static struct md_sysfs_entry md_max_sync = 5311 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5312 5313 static ssize_t suspend_lo_show(struct mddev * mddev,char * page)5314 suspend_lo_show(struct mddev *mddev, char *page) 5315 { 5316 return sprintf(page, "%llu\n", 5317 (unsigned long long)READ_ONCE(mddev->suspend_lo)); 5318 } 5319 5320 static ssize_t suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)5321 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5322 { 5323 unsigned long long new; 5324 int err; 5325 5326 err = kstrtoull(buf, 10, &new); 5327 if (err < 0) 5328 return err; 5329 if (new != (sector_t)new) 5330 return -EINVAL; 5331 5332 err = mddev_suspend(mddev, true); 5333 if (err) 5334 return err; 5335 5336 WRITE_ONCE(mddev->suspend_lo, new); 5337 mddev_resume(mddev); 5338 5339 return len; 5340 } 5341 static struct md_sysfs_entry md_suspend_lo = 5342 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5343 5344 static ssize_t suspend_hi_show(struct mddev * mddev,char * page)5345 suspend_hi_show(struct mddev *mddev, char *page) 5346 { 5347 return sprintf(page, "%llu\n", 5348 (unsigned long long)READ_ONCE(mddev->suspend_hi)); 5349 } 5350 5351 static ssize_t suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)5352 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5353 { 5354 unsigned long long new; 5355 int err; 5356 5357 err = kstrtoull(buf, 10, &new); 5358 if (err < 0) 5359 return err; 5360 if (new != (sector_t)new) 5361 return -EINVAL; 5362 5363 err = mddev_suspend(mddev, true); 5364 if (err) 5365 return err; 5366 5367 WRITE_ONCE(mddev->suspend_hi, new); 5368 mddev_resume(mddev); 5369 5370 return len; 5371 } 5372 static struct md_sysfs_entry md_suspend_hi = 5373 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5374 5375 static ssize_t reshape_position_show(struct mddev * mddev,char * page)5376 reshape_position_show(struct mddev *mddev, char *page) 5377 { 5378 if (mddev->reshape_position != MaxSector) 5379 return sprintf(page, "%llu\n", 5380 (unsigned long long)mddev->reshape_position); 5381 strcpy(page, "none\n"); 5382 return 5; 5383 } 5384 5385 static ssize_t reshape_position_store(struct mddev * mddev,const char * buf,size_t len)5386 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5387 { 5388 struct md_rdev *rdev; 5389 unsigned long long new; 5390 int err; 5391 5392 err = kstrtoull(buf, 10, &new); 5393 if (err < 0) 5394 return err; 5395 if (new != (sector_t)new) 5396 return -EINVAL; 5397 err = mddev_lock(mddev); 5398 if (err) 5399 return err; 5400 err = -EBUSY; 5401 if (mddev->pers) 5402 goto unlock; 5403 mddev->reshape_position = new; 5404 mddev->delta_disks = 0; 5405 mddev->reshape_backwards = 0; 5406 mddev->new_level = mddev->level; 5407 mddev->new_layout = mddev->layout; 5408 mddev->new_chunk_sectors = mddev->chunk_sectors; 5409 rdev_for_each(rdev, mddev) 5410 rdev->new_data_offset = rdev->data_offset; 5411 err = 0; 5412 unlock: 5413 mddev_unlock(mddev); 5414 return err ?: len; 5415 } 5416 5417 static struct md_sysfs_entry md_reshape_position = 5418 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5419 reshape_position_store); 5420 5421 static ssize_t reshape_direction_show(struct mddev * mddev,char * page)5422 reshape_direction_show(struct mddev *mddev, char *page) 5423 { 5424 return sprintf(page, "%s\n", 5425 mddev->reshape_backwards ? "backwards" : "forwards"); 5426 } 5427 5428 static ssize_t reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)5429 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5430 { 5431 int backwards = 0; 5432 int err; 5433 5434 if (cmd_match(buf, "forwards")) 5435 backwards = 0; 5436 else if (cmd_match(buf, "backwards")) 5437 backwards = 1; 5438 else 5439 return -EINVAL; 5440 if (mddev->reshape_backwards == backwards) 5441 return len; 5442 5443 err = mddev_lock(mddev); 5444 if (err) 5445 return err; 5446 /* check if we are allowed to change */ 5447 if (mddev->delta_disks) 5448 err = -EBUSY; 5449 else if (mddev->persistent && 5450 mddev->major_version == 0) 5451 err = -EINVAL; 5452 else 5453 mddev->reshape_backwards = backwards; 5454 mddev_unlock(mddev); 5455 return err ?: len; 5456 } 5457 5458 static struct md_sysfs_entry md_reshape_direction = 5459 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5460 reshape_direction_store); 5461 5462 static ssize_t array_size_show(struct mddev * mddev,char * page)5463 array_size_show(struct mddev *mddev, char *page) 5464 { 5465 if (mddev->external_size) 5466 return sprintf(page, "%llu\n", 5467 (unsigned long long)mddev->array_sectors/2); 5468 else 5469 return sprintf(page, "default\n"); 5470 } 5471 5472 static ssize_t array_size_store(struct mddev * mddev,const char * buf,size_t len)5473 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5474 { 5475 sector_t sectors; 5476 int err; 5477 5478 err = mddev_lock(mddev); 5479 if (err) 5480 return err; 5481 5482 /* cluster raid doesn't support change array_sectors */ 5483 if (mddev_is_clustered(mddev)) { 5484 mddev_unlock(mddev); 5485 return -EINVAL; 5486 } 5487 5488 if (strncmp(buf, "default", 7) == 0) { 5489 if (mddev->pers) 5490 sectors = mddev->pers->size(mddev, 0, 0); 5491 else 5492 sectors = mddev->array_sectors; 5493 5494 mddev->external_size = 0; 5495 } else { 5496 if (strict_blocks_to_sectors(buf, §ors) < 0) 5497 err = -EINVAL; 5498 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5499 err = -E2BIG; 5500 else 5501 mddev->external_size = 1; 5502 } 5503 5504 if (!err) { 5505 mddev->array_sectors = sectors; 5506 if (mddev->pers) 5507 set_capacity_and_notify(mddev->gendisk, 5508 mddev->array_sectors); 5509 } 5510 mddev_unlock(mddev); 5511 return err ?: len; 5512 } 5513 5514 static struct md_sysfs_entry md_array_size = 5515 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5516 array_size_store); 5517 5518 static ssize_t consistency_policy_show(struct mddev * mddev,char * page)5519 consistency_policy_show(struct mddev *mddev, char *page) 5520 { 5521 int ret; 5522 5523 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5524 ret = sprintf(page, "journal\n"); 5525 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5526 ret = sprintf(page, "ppl\n"); 5527 } else if (mddev->bitmap) { 5528 ret = sprintf(page, "bitmap\n"); 5529 } else if (mddev->pers) { 5530 if (mddev->pers->sync_request) 5531 ret = sprintf(page, "resync\n"); 5532 else 5533 ret = sprintf(page, "none\n"); 5534 } else { 5535 ret = sprintf(page, "unknown\n"); 5536 } 5537 5538 return ret; 5539 } 5540 5541 static ssize_t consistency_policy_store(struct mddev * mddev,const char * buf,size_t len)5542 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5543 { 5544 int err = 0; 5545 5546 if (mddev->pers) { 5547 if (mddev->pers->change_consistency_policy) 5548 err = mddev->pers->change_consistency_policy(mddev, buf); 5549 else 5550 err = -EBUSY; 5551 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5552 set_bit(MD_HAS_PPL, &mddev->flags); 5553 } else { 5554 err = -EINVAL; 5555 } 5556 5557 return err ? err : len; 5558 } 5559 5560 static struct md_sysfs_entry md_consistency_policy = 5561 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5562 consistency_policy_store); 5563 fail_last_dev_show(struct mddev * mddev,char * page)5564 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5565 { 5566 return sprintf(page, "%d\n", mddev->fail_last_dev); 5567 } 5568 5569 /* 5570 * Setting fail_last_dev to true to allow last device to be forcibly removed 5571 * from RAID1/RAID10. 5572 */ 5573 static ssize_t fail_last_dev_store(struct mddev * mddev,const char * buf,size_t len)5574 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5575 { 5576 int ret; 5577 bool value; 5578 5579 ret = kstrtobool(buf, &value); 5580 if (ret) 5581 return ret; 5582 5583 if (value != mddev->fail_last_dev) 5584 mddev->fail_last_dev = value; 5585 5586 return len; 5587 } 5588 static struct md_sysfs_entry md_fail_last_dev = 5589 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5590 fail_last_dev_store); 5591 serialize_policy_show(struct mddev * mddev,char * page)5592 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5593 { 5594 if (mddev->pers == NULL || (mddev->pers->head.id != ID_RAID1)) 5595 return sprintf(page, "n/a\n"); 5596 else 5597 return sprintf(page, "%d\n", mddev->serialize_policy); 5598 } 5599 5600 /* 5601 * Setting serialize_policy to true to enforce write IO is not reordered 5602 * for raid1. 5603 */ 5604 static ssize_t serialize_policy_store(struct mddev * mddev,const char * buf,size_t len)5605 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5606 { 5607 int err; 5608 bool value; 5609 5610 err = kstrtobool(buf, &value); 5611 if (err) 5612 return err; 5613 5614 if (value == mddev->serialize_policy) 5615 return len; 5616 5617 err = mddev_suspend_and_lock(mddev); 5618 if (err) 5619 return err; 5620 if (mddev->pers == NULL || (mddev->pers->head.id != ID_RAID1)) { 5621 pr_err("md: serialize_policy is only effective for raid1\n"); 5622 err = -EINVAL; 5623 goto unlock; 5624 } 5625 5626 if (value) 5627 mddev_create_serial_pool(mddev, NULL); 5628 else 5629 mddev_destroy_serial_pool(mddev, NULL); 5630 mddev->serialize_policy = value; 5631 unlock: 5632 mddev_unlock_and_resume(mddev); 5633 return err ?: len; 5634 } 5635 5636 static struct md_sysfs_entry md_serialize_policy = 5637 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5638 serialize_policy_store); 5639 5640 5641 static struct attribute *md_default_attrs[] = { 5642 &md_level.attr, 5643 &md_new_level.attr, 5644 &md_layout.attr, 5645 &md_raid_disks.attr, 5646 &md_uuid.attr, 5647 &md_chunk_size.attr, 5648 &md_size.attr, 5649 &md_resync_start.attr, 5650 &md_metadata.attr, 5651 &md_new_device.attr, 5652 &md_safe_delay.attr, 5653 &md_array_state.attr, 5654 &md_reshape_position.attr, 5655 &md_reshape_direction.attr, 5656 &md_array_size.attr, 5657 &max_corr_read_errors.attr, 5658 &md_consistency_policy.attr, 5659 &md_fail_last_dev.attr, 5660 &md_serialize_policy.attr, 5661 NULL, 5662 }; 5663 5664 static const struct attribute_group md_default_group = { 5665 .attrs = md_default_attrs, 5666 }; 5667 5668 static struct attribute *md_redundancy_attrs[] = { 5669 &md_scan_mode.attr, 5670 &md_last_scan_mode.attr, 5671 &md_mismatches.attr, 5672 &md_sync_min.attr, 5673 &md_sync_max.attr, 5674 &md_sync_speed.attr, 5675 &md_sync_force_parallel.attr, 5676 &md_sync_completed.attr, 5677 &md_min_sync.attr, 5678 &md_max_sync.attr, 5679 &md_suspend_lo.attr, 5680 &md_suspend_hi.attr, 5681 &md_bitmap.attr, 5682 &md_degraded.attr, 5683 NULL, 5684 }; 5685 static const struct attribute_group md_redundancy_group = { 5686 .name = NULL, 5687 .attrs = md_redundancy_attrs, 5688 }; 5689 5690 static const struct attribute_group *md_attr_groups[] = { 5691 &md_default_group, 5692 &md_bitmap_group, 5693 NULL, 5694 }; 5695 5696 static ssize_t md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)5697 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5698 { 5699 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5700 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5701 ssize_t rv; 5702 5703 if (!entry->show) 5704 return -EIO; 5705 spin_lock(&all_mddevs_lock); 5706 if (!mddev_get(mddev)) { 5707 spin_unlock(&all_mddevs_lock); 5708 return -EBUSY; 5709 } 5710 spin_unlock(&all_mddevs_lock); 5711 5712 rv = entry->show(mddev, page); 5713 mddev_put(mddev); 5714 return rv; 5715 } 5716 5717 static ssize_t md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)5718 md_attr_store(struct kobject *kobj, struct attribute *attr, 5719 const char *page, size_t length) 5720 { 5721 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5722 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5723 ssize_t rv; 5724 5725 if (!entry->store) 5726 return -EIO; 5727 if (!capable(CAP_SYS_ADMIN)) 5728 return -EACCES; 5729 spin_lock(&all_mddevs_lock); 5730 if (!mddev_get(mddev)) { 5731 spin_unlock(&all_mddevs_lock); 5732 return -EBUSY; 5733 } 5734 spin_unlock(&all_mddevs_lock); 5735 rv = entry->store(mddev, page, length); 5736 mddev_put(mddev); 5737 return rv; 5738 } 5739 md_kobj_release(struct kobject * ko)5740 static void md_kobj_release(struct kobject *ko) 5741 { 5742 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5743 5744 if (mddev->sysfs_state) 5745 sysfs_put(mddev->sysfs_state); 5746 if (mddev->sysfs_level) 5747 sysfs_put(mddev->sysfs_level); 5748 5749 del_gendisk(mddev->gendisk); 5750 put_disk(mddev->gendisk); 5751 } 5752 5753 static const struct sysfs_ops md_sysfs_ops = { 5754 .show = md_attr_show, 5755 .store = md_attr_store, 5756 }; 5757 static const struct kobj_type md_ktype = { 5758 .release = md_kobj_release, 5759 .sysfs_ops = &md_sysfs_ops, 5760 .default_groups = md_attr_groups, 5761 }; 5762 5763 int mdp_major = 0; 5764 5765 /* stack the limit for all rdevs into lim */ mddev_stack_rdev_limits(struct mddev * mddev,struct queue_limits * lim,unsigned int flags)5766 int mddev_stack_rdev_limits(struct mddev *mddev, struct queue_limits *lim, 5767 unsigned int flags) 5768 { 5769 struct md_rdev *rdev; 5770 5771 rdev_for_each(rdev, mddev) { 5772 queue_limits_stack_bdev(lim, rdev->bdev, rdev->data_offset, 5773 mddev->gendisk->disk_name); 5774 if ((flags & MDDEV_STACK_INTEGRITY) && 5775 !queue_limits_stack_integrity_bdev(lim, rdev->bdev)) 5776 return -EINVAL; 5777 } 5778 5779 return 0; 5780 } 5781 EXPORT_SYMBOL_GPL(mddev_stack_rdev_limits); 5782 5783 /* apply the extra stacking limits from a new rdev into mddev */ mddev_stack_new_rdev(struct mddev * mddev,struct md_rdev * rdev)5784 int mddev_stack_new_rdev(struct mddev *mddev, struct md_rdev *rdev) 5785 { 5786 struct queue_limits lim; 5787 5788 if (mddev_is_dm(mddev)) 5789 return 0; 5790 5791 lim = queue_limits_start_update(mddev->gendisk->queue); 5792 queue_limits_stack_bdev(&lim, rdev->bdev, rdev->data_offset, 5793 mddev->gendisk->disk_name); 5794 5795 if (!queue_limits_stack_integrity_bdev(&lim, rdev->bdev)) { 5796 pr_err("%s: incompatible integrity profile for %pg\n", 5797 mdname(mddev), rdev->bdev); 5798 queue_limits_cancel_update(mddev->gendisk->queue); 5799 return -ENXIO; 5800 } 5801 5802 return queue_limits_commit_update(mddev->gendisk->queue, &lim); 5803 } 5804 EXPORT_SYMBOL_GPL(mddev_stack_new_rdev); 5805 5806 /* update the optimal I/O size after a reshape */ mddev_update_io_opt(struct mddev * mddev,unsigned int nr_stripes)5807 void mddev_update_io_opt(struct mddev *mddev, unsigned int nr_stripes) 5808 { 5809 struct queue_limits lim; 5810 5811 if (mddev_is_dm(mddev)) 5812 return; 5813 5814 /* don't bother updating io_opt if we can't suspend the array */ 5815 if (mddev_suspend(mddev, false) < 0) 5816 return; 5817 lim = queue_limits_start_update(mddev->gendisk->queue); 5818 lim.io_opt = lim.io_min * nr_stripes; 5819 queue_limits_commit_update(mddev->gendisk->queue, &lim); 5820 mddev_resume(mddev); 5821 } 5822 EXPORT_SYMBOL_GPL(mddev_update_io_opt); 5823 mddev_delayed_delete(struct work_struct * ws)5824 static void mddev_delayed_delete(struct work_struct *ws) 5825 { 5826 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5827 5828 kobject_put(&mddev->kobj); 5829 } 5830 md_init_stacking_limits(struct queue_limits * lim)5831 void md_init_stacking_limits(struct queue_limits *lim) 5832 { 5833 blk_set_stacking_limits(lim); 5834 lim->features = BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | 5835 BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT; 5836 } 5837 EXPORT_SYMBOL_GPL(md_init_stacking_limits); 5838 md_alloc(dev_t dev,char * name)5839 struct mddev *md_alloc(dev_t dev, char *name) 5840 { 5841 /* 5842 * If dev is zero, name is the name of a device to allocate with 5843 * an arbitrary minor number. It will be "md_???" 5844 * If dev is non-zero it must be a device number with a MAJOR of 5845 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5846 * the device is being created by opening a node in /dev. 5847 * If "name" is not NULL, the device is being created by 5848 * writing to /sys/module/md_mod/parameters/new_array. 5849 */ 5850 static DEFINE_MUTEX(disks_mutex); 5851 struct mddev *mddev; 5852 struct gendisk *disk; 5853 int partitioned; 5854 int shift; 5855 int unit; 5856 int error; 5857 5858 /* 5859 * Wait for any previous instance of this device to be completely 5860 * removed (mddev_delayed_delete). 5861 */ 5862 flush_workqueue(md_misc_wq); 5863 5864 mutex_lock(&disks_mutex); 5865 mddev = mddev_alloc(dev); 5866 if (IS_ERR(mddev)) { 5867 error = PTR_ERR(mddev); 5868 goto out_unlock; 5869 } 5870 5871 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5872 shift = partitioned ? MdpMinorShift : 0; 5873 unit = MINOR(mddev->unit) >> shift; 5874 5875 if (name && !dev) { 5876 /* Need to ensure that 'name' is not a duplicate. 5877 */ 5878 struct mddev *mddev2; 5879 spin_lock(&all_mddevs_lock); 5880 5881 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5882 if (mddev2->gendisk && 5883 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5884 spin_unlock(&all_mddevs_lock); 5885 error = -EEXIST; 5886 goto out_free_mddev; 5887 } 5888 spin_unlock(&all_mddevs_lock); 5889 } 5890 if (name && dev) 5891 /* 5892 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5893 */ 5894 mddev->hold_active = UNTIL_STOP; 5895 5896 disk = blk_alloc_disk(NULL, NUMA_NO_NODE); 5897 if (IS_ERR(disk)) { 5898 error = PTR_ERR(disk); 5899 goto out_free_mddev; 5900 } 5901 5902 disk->major = MAJOR(mddev->unit); 5903 disk->first_minor = unit << shift; 5904 disk->minors = 1 << shift; 5905 if (name) 5906 strcpy(disk->disk_name, name); 5907 else if (partitioned) 5908 sprintf(disk->disk_name, "md_d%d", unit); 5909 else 5910 sprintf(disk->disk_name, "md%d", unit); 5911 disk->fops = &md_fops; 5912 disk->private_data = mddev; 5913 5914 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5915 mddev->gendisk = disk; 5916 error = add_disk(disk); 5917 if (error) 5918 goto out_put_disk; 5919 5920 kobject_init(&mddev->kobj, &md_ktype); 5921 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5922 if (error) { 5923 /* 5924 * The disk is already live at this point. Clear the hold flag 5925 * and let mddev_put take care of the deletion, as it isn't any 5926 * different from a normal close on last release now. 5927 */ 5928 mddev->hold_active = 0; 5929 mutex_unlock(&disks_mutex); 5930 mddev_put(mddev); 5931 return ERR_PTR(error); 5932 } 5933 5934 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5935 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5936 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5937 mutex_unlock(&disks_mutex); 5938 return mddev; 5939 5940 out_put_disk: 5941 put_disk(disk); 5942 out_free_mddev: 5943 mddev_free(mddev); 5944 out_unlock: 5945 mutex_unlock(&disks_mutex); 5946 return ERR_PTR(error); 5947 } 5948 md_alloc_and_put(dev_t dev,char * name)5949 static int md_alloc_and_put(dev_t dev, char *name) 5950 { 5951 struct mddev *mddev = md_alloc(dev, name); 5952 5953 if (IS_ERR(mddev)) 5954 return PTR_ERR(mddev); 5955 mddev_put(mddev); 5956 return 0; 5957 } 5958 md_probe(dev_t dev)5959 static void md_probe(dev_t dev) 5960 { 5961 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5962 return; 5963 if (create_on_open) 5964 md_alloc_and_put(dev, NULL); 5965 } 5966 add_named_array(const char * val,const struct kernel_param * kp)5967 static int add_named_array(const char *val, const struct kernel_param *kp) 5968 { 5969 /* 5970 * val must be "md_*" or "mdNNN". 5971 * For "md_*" we allocate an array with a large free minor number, and 5972 * set the name to val. val must not already be an active name. 5973 * For "mdNNN" we allocate an array with the minor number NNN 5974 * which must not already be in use. 5975 */ 5976 int len = strlen(val); 5977 char buf[DISK_NAME_LEN]; 5978 unsigned long devnum; 5979 5980 while (len && val[len-1] == '\n') 5981 len--; 5982 if (len >= DISK_NAME_LEN) 5983 return -E2BIG; 5984 strscpy(buf, val, len+1); 5985 if (strncmp(buf, "md_", 3) == 0) 5986 return md_alloc_and_put(0, buf); 5987 if (strncmp(buf, "md", 2) == 0 && 5988 isdigit(buf[2]) && 5989 kstrtoul(buf+2, 10, &devnum) == 0 && 5990 devnum <= MINORMASK) 5991 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL); 5992 5993 return -EINVAL; 5994 } 5995 md_safemode_timeout(struct timer_list * t)5996 static void md_safemode_timeout(struct timer_list *t) 5997 { 5998 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5999 6000 mddev->safemode = 1; 6001 if (mddev->external) 6002 sysfs_notify_dirent_safe(mddev->sysfs_state); 6003 6004 md_wakeup_thread(mddev->thread); 6005 } 6006 6007 static int start_dirty_degraded; 6008 md_run(struct mddev * mddev)6009 int md_run(struct mddev *mddev) 6010 { 6011 int err; 6012 struct md_rdev *rdev; 6013 struct md_personality *pers; 6014 bool nowait = true; 6015 6016 if (list_empty(&mddev->disks)) 6017 /* cannot run an array with no devices.. */ 6018 return -EINVAL; 6019 6020 if (mddev->pers) 6021 return -EBUSY; 6022 /* Cannot run until previous stop completes properly */ 6023 if (mddev->sysfs_active) 6024 return -EBUSY; 6025 6026 /* 6027 * Analyze all RAID superblock(s) 6028 */ 6029 if (!mddev->raid_disks) { 6030 if (!mddev->persistent) 6031 return -EINVAL; 6032 err = analyze_sbs(mddev); 6033 if (err) 6034 return -EINVAL; 6035 } 6036 6037 if (mddev->level != LEVEL_NONE) 6038 request_module("md-level-%d", mddev->level); 6039 else if (mddev->clevel[0]) 6040 request_module("md-%s", mddev->clevel); 6041 6042 /* 6043 * Drop all container device buffers, from now on 6044 * the only valid external interface is through the md 6045 * device. 6046 */ 6047 mddev->has_superblocks = false; 6048 rdev_for_each(rdev, mddev) { 6049 if (test_bit(Faulty, &rdev->flags)) 6050 continue; 6051 sync_blockdev(rdev->bdev); 6052 invalidate_bdev(rdev->bdev); 6053 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) { 6054 mddev->ro = MD_RDONLY; 6055 if (!mddev_is_dm(mddev)) 6056 set_disk_ro(mddev->gendisk, 1); 6057 } 6058 6059 if (rdev->sb_page) 6060 mddev->has_superblocks = true; 6061 6062 /* perform some consistency tests on the device. 6063 * We don't want the data to overlap the metadata, 6064 * Internal Bitmap issues have been handled elsewhere. 6065 */ 6066 if (rdev->meta_bdev) { 6067 /* Nothing to check */; 6068 } else if (rdev->data_offset < rdev->sb_start) { 6069 if (mddev->dev_sectors && 6070 rdev->data_offset + mddev->dev_sectors 6071 > rdev->sb_start) { 6072 pr_warn("md: %s: data overlaps metadata\n", 6073 mdname(mddev)); 6074 return -EINVAL; 6075 } 6076 } else { 6077 if (rdev->sb_start + rdev->sb_size/512 6078 > rdev->data_offset) { 6079 pr_warn("md: %s: metadata overlaps data\n", 6080 mdname(mddev)); 6081 return -EINVAL; 6082 } 6083 } 6084 sysfs_notify_dirent_safe(rdev->sysfs_state); 6085 nowait = nowait && bdev_nowait(rdev->bdev); 6086 } 6087 6088 if (!bioset_initialized(&mddev->bio_set)) { 6089 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 6090 if (err) 6091 return err; 6092 } 6093 if (!bioset_initialized(&mddev->sync_set)) { 6094 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 6095 if (err) 6096 goto exit_bio_set; 6097 } 6098 6099 if (!bioset_initialized(&mddev->io_clone_set)) { 6100 err = bioset_init(&mddev->io_clone_set, BIO_POOL_SIZE, 6101 offsetof(struct md_io_clone, bio_clone), 0); 6102 if (err) 6103 goto exit_sync_set; 6104 } 6105 6106 pers = get_pers(mddev->level, mddev->clevel); 6107 if (!pers) { 6108 err = -EINVAL; 6109 goto abort; 6110 } 6111 if (mddev->level != pers->head.id) { 6112 mddev->level = pers->head.id; 6113 mddev->new_level = pers->head.id; 6114 } 6115 strscpy(mddev->clevel, pers->head.name, sizeof(mddev->clevel)); 6116 6117 if (mddev->reshape_position != MaxSector && 6118 pers->start_reshape == NULL) { 6119 /* This personality cannot handle reshaping... */ 6120 put_pers(pers); 6121 err = -EINVAL; 6122 goto abort; 6123 } 6124 6125 if (pers->sync_request) { 6126 /* Warn if this is a potentially silly 6127 * configuration. 6128 */ 6129 struct md_rdev *rdev2; 6130 int warned = 0; 6131 6132 rdev_for_each(rdev, mddev) 6133 rdev_for_each(rdev2, mddev) { 6134 if (rdev < rdev2 && 6135 rdev->bdev->bd_disk == 6136 rdev2->bdev->bd_disk) { 6137 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n", 6138 mdname(mddev), 6139 rdev->bdev, 6140 rdev2->bdev); 6141 warned = 1; 6142 } 6143 } 6144 6145 if (warned) 6146 pr_warn("True protection against single-disk failure might be compromised.\n"); 6147 } 6148 6149 /* dm-raid expect sync_thread to be frozen until resume */ 6150 if (mddev->gendisk) 6151 mddev->recovery = 0; 6152 6153 /* may be over-ridden by personality */ 6154 mddev->resync_max_sectors = mddev->dev_sectors; 6155 6156 mddev->ok_start_degraded = start_dirty_degraded; 6157 6158 if (start_readonly && md_is_rdwr(mddev)) 6159 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */ 6160 6161 err = pers->run(mddev); 6162 if (err) 6163 pr_warn("md: pers->run() failed ...\n"); 6164 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 6165 WARN_ONCE(!mddev->external_size, 6166 "%s: default size too small, but 'external_size' not in effect?\n", 6167 __func__); 6168 pr_warn("md: invalid array_size %llu > default size %llu\n", 6169 (unsigned long long)mddev->array_sectors / 2, 6170 (unsigned long long)pers->size(mddev, 0, 0) / 2); 6171 err = -EINVAL; 6172 } 6173 if (err == 0 && pers->sync_request && 6174 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 6175 err = mddev->bitmap_ops->create(mddev, -1); 6176 if (err) 6177 pr_warn("%s: failed to create bitmap (%d)\n", 6178 mdname(mddev), err); 6179 } 6180 if (err) 6181 goto bitmap_abort; 6182 6183 if (mddev->bitmap_info.max_write_behind > 0) { 6184 bool create_pool = false; 6185 6186 rdev_for_each(rdev, mddev) { 6187 if (test_bit(WriteMostly, &rdev->flags) && 6188 rdev_init_serial(rdev)) 6189 create_pool = true; 6190 } 6191 if (create_pool && mddev->serial_info_pool == NULL) { 6192 mddev->serial_info_pool = 6193 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 6194 sizeof(struct serial_info)); 6195 if (!mddev->serial_info_pool) { 6196 err = -ENOMEM; 6197 goto bitmap_abort; 6198 } 6199 } 6200 } 6201 6202 if (pers->sync_request) { 6203 if (mddev->kobj.sd && 6204 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6205 pr_warn("md: cannot register extra attributes for %s\n", 6206 mdname(mddev)); 6207 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6208 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6209 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6210 } else if (mddev->ro == MD_AUTO_READ) 6211 mddev->ro = MD_RDWR; 6212 6213 atomic_set(&mddev->max_corr_read_errors, 6214 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6215 mddev->safemode = 0; 6216 if (mddev_is_clustered(mddev)) 6217 mddev->safemode_delay = 0; 6218 else 6219 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6220 mddev->in_sync = 1; 6221 smp_wmb(); 6222 spin_lock(&mddev->lock); 6223 mddev->pers = pers; 6224 spin_unlock(&mddev->lock); 6225 rdev_for_each(rdev, mddev) 6226 if (rdev->raid_disk >= 0) 6227 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6228 6229 if (mddev->degraded && md_is_rdwr(mddev)) 6230 /* This ensures that recovering status is reported immediately 6231 * via sysfs - until a lack of spares is confirmed. 6232 */ 6233 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6234 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6235 6236 if (mddev->sb_flags) 6237 md_update_sb(mddev, 0); 6238 6239 md_new_event(); 6240 return 0; 6241 6242 bitmap_abort: 6243 mddev_detach(mddev); 6244 if (mddev->private) 6245 pers->free(mddev, mddev->private); 6246 mddev->private = NULL; 6247 put_pers(pers); 6248 mddev->bitmap_ops->destroy(mddev); 6249 abort: 6250 bioset_exit(&mddev->io_clone_set); 6251 exit_sync_set: 6252 bioset_exit(&mddev->sync_set); 6253 exit_bio_set: 6254 bioset_exit(&mddev->bio_set); 6255 return err; 6256 } 6257 EXPORT_SYMBOL_GPL(md_run); 6258 do_md_run(struct mddev * mddev)6259 int do_md_run(struct mddev *mddev) 6260 { 6261 int err; 6262 6263 set_bit(MD_NOT_READY, &mddev->flags); 6264 err = md_run(mddev); 6265 if (err) 6266 goto out; 6267 6268 err = mddev->bitmap_ops->load(mddev); 6269 if (err) { 6270 mddev->bitmap_ops->destroy(mddev); 6271 goto out; 6272 } 6273 6274 if (mddev_is_clustered(mddev)) 6275 md_allow_write(mddev); 6276 6277 /* run start up tasks that require md_thread */ 6278 md_start(mddev); 6279 6280 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6281 6282 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6283 clear_bit(MD_NOT_READY, &mddev->flags); 6284 mddev->changed = 1; 6285 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6286 sysfs_notify_dirent_safe(mddev->sysfs_state); 6287 sysfs_notify_dirent_safe(mddev->sysfs_action); 6288 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6289 out: 6290 clear_bit(MD_NOT_READY, &mddev->flags); 6291 return err; 6292 } 6293 md_start(struct mddev * mddev)6294 int md_start(struct mddev *mddev) 6295 { 6296 int ret = 0; 6297 6298 if (mddev->pers->start) { 6299 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6300 ret = mddev->pers->start(mddev); 6301 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6302 md_wakeup_thread(mddev->sync_thread); 6303 } 6304 return ret; 6305 } 6306 EXPORT_SYMBOL_GPL(md_start); 6307 restart_array(struct mddev * mddev)6308 static int restart_array(struct mddev *mddev) 6309 { 6310 struct gendisk *disk = mddev->gendisk; 6311 struct md_rdev *rdev; 6312 bool has_journal = false; 6313 bool has_readonly = false; 6314 6315 /* Complain if it has no devices */ 6316 if (list_empty(&mddev->disks)) 6317 return -ENXIO; 6318 if (!mddev->pers) 6319 return -EINVAL; 6320 if (md_is_rdwr(mddev)) 6321 return -EBUSY; 6322 6323 rcu_read_lock(); 6324 rdev_for_each_rcu(rdev, mddev) { 6325 if (test_bit(Journal, &rdev->flags) && 6326 !test_bit(Faulty, &rdev->flags)) 6327 has_journal = true; 6328 if (rdev_read_only(rdev)) 6329 has_readonly = true; 6330 } 6331 rcu_read_unlock(); 6332 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6333 /* Don't restart rw with journal missing/faulty */ 6334 return -EINVAL; 6335 if (has_readonly) 6336 return -EROFS; 6337 6338 mddev->safemode = 0; 6339 mddev->ro = MD_RDWR; 6340 set_disk_ro(disk, 0); 6341 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6342 /* Kick recovery or resync if necessary */ 6343 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6344 md_wakeup_thread(mddev->sync_thread); 6345 sysfs_notify_dirent_safe(mddev->sysfs_state); 6346 return 0; 6347 } 6348 md_clean(struct mddev * mddev)6349 static void md_clean(struct mddev *mddev) 6350 { 6351 mddev->array_sectors = 0; 6352 mddev->external_size = 0; 6353 mddev->dev_sectors = 0; 6354 mddev->raid_disks = 0; 6355 mddev->recovery_cp = 0; 6356 mddev->resync_min = 0; 6357 mddev->resync_max = MaxSector; 6358 mddev->reshape_position = MaxSector; 6359 /* we still need mddev->external in export_rdev, do not clear it yet */ 6360 mddev->persistent = 0; 6361 mddev->level = LEVEL_NONE; 6362 mddev->clevel[0] = 0; 6363 /* 6364 * Don't clear MD_CLOSING, or mddev can be opened again. 6365 * 'hold_active != 0' means mddev is still in the creation 6366 * process and will be used later. 6367 */ 6368 if (mddev->hold_active) 6369 mddev->flags = 0; 6370 else 6371 mddev->flags &= BIT_ULL_MASK(MD_CLOSING); 6372 mddev->sb_flags = 0; 6373 mddev->ro = MD_RDWR; 6374 mddev->metadata_type[0] = 0; 6375 mddev->chunk_sectors = 0; 6376 mddev->ctime = mddev->utime = 0; 6377 mddev->layout = 0; 6378 mddev->max_disks = 0; 6379 mddev->events = 0; 6380 mddev->can_decrease_events = 0; 6381 mddev->delta_disks = 0; 6382 mddev->reshape_backwards = 0; 6383 mddev->new_level = LEVEL_NONE; 6384 mddev->new_layout = 0; 6385 mddev->new_chunk_sectors = 0; 6386 mddev->curr_resync = MD_RESYNC_NONE; 6387 atomic64_set(&mddev->resync_mismatches, 0); 6388 mddev->suspend_lo = mddev->suspend_hi = 0; 6389 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6390 mddev->recovery = 0; 6391 mddev->in_sync = 0; 6392 mddev->changed = 0; 6393 mddev->degraded = 0; 6394 mddev->safemode = 0; 6395 mddev->private = NULL; 6396 mddev->cluster_info = NULL; 6397 mddev->bitmap_info.offset = 0; 6398 mddev->bitmap_info.default_offset = 0; 6399 mddev->bitmap_info.default_space = 0; 6400 mddev->bitmap_info.chunksize = 0; 6401 mddev->bitmap_info.daemon_sleep = 0; 6402 mddev->bitmap_info.max_write_behind = 0; 6403 mddev->bitmap_info.nodes = 0; 6404 } 6405 __md_stop_writes(struct mddev * mddev)6406 static void __md_stop_writes(struct mddev *mddev) 6407 { 6408 del_timer_sync(&mddev->safemode_timer); 6409 6410 if (mddev->pers && mddev->pers->quiesce) { 6411 mddev->pers->quiesce(mddev, 1); 6412 mddev->pers->quiesce(mddev, 0); 6413 } 6414 6415 mddev->bitmap_ops->flush(mddev); 6416 6417 if (md_is_rdwr(mddev) && 6418 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6419 mddev->sb_flags)) { 6420 /* mark array as shutdown cleanly */ 6421 if (!mddev_is_clustered(mddev)) 6422 mddev->in_sync = 1; 6423 md_update_sb(mddev, 1); 6424 } 6425 /* disable policy to guarantee rdevs free resources for serialization */ 6426 mddev->serialize_policy = 0; 6427 mddev_destroy_serial_pool(mddev, NULL); 6428 } 6429 md_stop_writes(struct mddev * mddev)6430 void md_stop_writes(struct mddev *mddev) 6431 { 6432 mddev_lock_nointr(mddev); 6433 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6434 stop_sync_thread(mddev, true); 6435 __md_stop_writes(mddev); 6436 mddev_unlock(mddev); 6437 } 6438 EXPORT_SYMBOL_GPL(md_stop_writes); 6439 mddev_detach(struct mddev * mddev)6440 static void mddev_detach(struct mddev *mddev) 6441 { 6442 mddev->bitmap_ops->wait_behind_writes(mddev); 6443 if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) { 6444 mddev->pers->quiesce(mddev, 1); 6445 mddev->pers->quiesce(mddev, 0); 6446 } 6447 md_unregister_thread(mddev, &mddev->thread); 6448 6449 /* the unplug fn references 'conf' */ 6450 if (!mddev_is_dm(mddev)) 6451 blk_sync_queue(mddev->gendisk->queue); 6452 } 6453 __md_stop(struct mddev * mddev)6454 static void __md_stop(struct mddev *mddev) 6455 { 6456 struct md_personality *pers = mddev->pers; 6457 6458 mddev->bitmap_ops->destroy(mddev); 6459 mddev_detach(mddev); 6460 spin_lock(&mddev->lock); 6461 mddev->pers = NULL; 6462 spin_unlock(&mddev->lock); 6463 if (mddev->private) 6464 pers->free(mddev, mddev->private); 6465 mddev->private = NULL; 6466 if (pers->sync_request && mddev->to_remove == NULL) 6467 mddev->to_remove = &md_redundancy_group; 6468 put_pers(pers); 6469 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6470 6471 bioset_exit(&mddev->bio_set); 6472 bioset_exit(&mddev->sync_set); 6473 bioset_exit(&mddev->io_clone_set); 6474 } 6475 md_stop(struct mddev * mddev)6476 void md_stop(struct mddev *mddev) 6477 { 6478 lockdep_assert_held(&mddev->reconfig_mutex); 6479 6480 /* stop the array and free an attached data structures. 6481 * This is called from dm-raid 6482 */ 6483 __md_stop_writes(mddev); 6484 __md_stop(mddev); 6485 } 6486 6487 EXPORT_SYMBOL_GPL(md_stop); 6488 6489 /* ensure 'mddev->pers' exist before calling md_set_readonly() */ md_set_readonly(struct mddev * mddev)6490 static int md_set_readonly(struct mddev *mddev) 6491 { 6492 int err = 0; 6493 int did_freeze = 0; 6494 6495 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6496 return -EBUSY; 6497 6498 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6499 did_freeze = 1; 6500 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6501 } 6502 6503 stop_sync_thread(mddev, false); 6504 wait_event(mddev->sb_wait, 6505 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6506 mddev_lock_nointr(mddev); 6507 6508 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6509 pr_warn("md: %s still in use.\n",mdname(mddev)); 6510 err = -EBUSY; 6511 goto out; 6512 } 6513 6514 __md_stop_writes(mddev); 6515 6516 if (mddev->ro == MD_RDONLY) { 6517 err = -ENXIO; 6518 goto out; 6519 } 6520 6521 mddev->ro = MD_RDONLY; 6522 set_disk_ro(mddev->gendisk, 1); 6523 6524 out: 6525 if (!err || did_freeze) { 6526 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6527 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6528 sysfs_notify_dirent_safe(mddev->sysfs_state); 6529 } 6530 6531 return err; 6532 } 6533 6534 /* mode: 6535 * 0 - completely stop and dis-assemble array 6536 * 2 - stop but do not disassemble array 6537 */ do_md_stop(struct mddev * mddev,int mode)6538 static int do_md_stop(struct mddev *mddev, int mode) 6539 { 6540 struct gendisk *disk = mddev->gendisk; 6541 struct md_rdev *rdev; 6542 int did_freeze = 0; 6543 6544 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6545 did_freeze = 1; 6546 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6547 } 6548 6549 stop_sync_thread(mddev, true); 6550 6551 if (mddev->sysfs_active || 6552 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6553 pr_warn("md: %s still in use.\n",mdname(mddev)); 6554 if (did_freeze) { 6555 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6556 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6557 } 6558 return -EBUSY; 6559 } 6560 if (mddev->pers) { 6561 if (!md_is_rdwr(mddev)) 6562 set_disk_ro(disk, 0); 6563 6564 __md_stop_writes(mddev); 6565 __md_stop(mddev); 6566 6567 /* tell userspace to handle 'inactive' */ 6568 sysfs_notify_dirent_safe(mddev->sysfs_state); 6569 6570 rdev_for_each(rdev, mddev) 6571 if (rdev->raid_disk >= 0) 6572 sysfs_unlink_rdev(mddev, rdev); 6573 6574 set_capacity_and_notify(disk, 0); 6575 mddev->changed = 1; 6576 6577 if (!md_is_rdwr(mddev)) 6578 mddev->ro = MD_RDWR; 6579 } 6580 /* 6581 * Free resources if final stop 6582 */ 6583 if (mode == 0) { 6584 pr_info("md: %s stopped.\n", mdname(mddev)); 6585 6586 if (mddev->bitmap_info.file) { 6587 struct file *f = mddev->bitmap_info.file; 6588 spin_lock(&mddev->lock); 6589 mddev->bitmap_info.file = NULL; 6590 spin_unlock(&mddev->lock); 6591 fput(f); 6592 } 6593 mddev->bitmap_info.offset = 0; 6594 6595 export_array(mddev); 6596 6597 md_clean(mddev); 6598 if (mddev->hold_active == UNTIL_STOP) 6599 mddev->hold_active = 0; 6600 } 6601 md_new_event(); 6602 sysfs_notify_dirent_safe(mddev->sysfs_state); 6603 return 0; 6604 } 6605 6606 #ifndef MODULE autorun_array(struct mddev * mddev)6607 static void autorun_array(struct mddev *mddev) 6608 { 6609 struct md_rdev *rdev; 6610 int err; 6611 6612 if (list_empty(&mddev->disks)) 6613 return; 6614 6615 pr_info("md: running: "); 6616 6617 rdev_for_each(rdev, mddev) { 6618 pr_cont("<%pg>", rdev->bdev); 6619 } 6620 pr_cont("\n"); 6621 6622 err = do_md_run(mddev); 6623 if (err) { 6624 pr_warn("md: do_md_run() returned %d\n", err); 6625 do_md_stop(mddev, 0); 6626 } 6627 } 6628 6629 /* 6630 * lets try to run arrays based on all disks that have arrived 6631 * until now. (those are in pending_raid_disks) 6632 * 6633 * the method: pick the first pending disk, collect all disks with 6634 * the same UUID, remove all from the pending list and put them into 6635 * the 'same_array' list. Then order this list based on superblock 6636 * update time (freshest comes first), kick out 'old' disks and 6637 * compare superblocks. If everything's fine then run it. 6638 * 6639 * If "unit" is allocated, then bump its reference count 6640 */ autorun_devices(int part)6641 static void autorun_devices(int part) 6642 { 6643 struct md_rdev *rdev0, *rdev, *tmp; 6644 struct mddev *mddev; 6645 6646 pr_info("md: autorun ...\n"); 6647 while (!list_empty(&pending_raid_disks)) { 6648 int unit; 6649 dev_t dev; 6650 LIST_HEAD(candidates); 6651 rdev0 = list_entry(pending_raid_disks.next, 6652 struct md_rdev, same_set); 6653 6654 pr_debug("md: considering %pg ...\n", rdev0->bdev); 6655 INIT_LIST_HEAD(&candidates); 6656 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6657 if (super_90_load(rdev, rdev0, 0) >= 0) { 6658 pr_debug("md: adding %pg ...\n", 6659 rdev->bdev); 6660 list_move(&rdev->same_set, &candidates); 6661 } 6662 /* 6663 * now we have a set of devices, with all of them having 6664 * mostly sane superblocks. It's time to allocate the 6665 * mddev. 6666 */ 6667 if (part) { 6668 dev = MKDEV(mdp_major, 6669 rdev0->preferred_minor << MdpMinorShift); 6670 unit = MINOR(dev) >> MdpMinorShift; 6671 } else { 6672 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6673 unit = MINOR(dev); 6674 } 6675 if (rdev0->preferred_minor != unit) { 6676 pr_warn("md: unit number in %pg is bad: %d\n", 6677 rdev0->bdev, rdev0->preferred_minor); 6678 break; 6679 } 6680 6681 mddev = md_alloc(dev, NULL); 6682 if (IS_ERR(mddev)) 6683 break; 6684 6685 if (mddev_suspend_and_lock(mddev)) 6686 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6687 else if (mddev->raid_disks || mddev->major_version 6688 || !list_empty(&mddev->disks)) { 6689 pr_warn("md: %s already running, cannot run %pg\n", 6690 mdname(mddev), rdev0->bdev); 6691 mddev_unlock_and_resume(mddev); 6692 } else { 6693 pr_debug("md: created %s\n", mdname(mddev)); 6694 mddev->persistent = 1; 6695 rdev_for_each_list(rdev, tmp, &candidates) { 6696 list_del_init(&rdev->same_set); 6697 if (bind_rdev_to_array(rdev, mddev)) 6698 export_rdev(rdev, mddev); 6699 } 6700 autorun_array(mddev); 6701 mddev_unlock_and_resume(mddev); 6702 } 6703 /* on success, candidates will be empty, on error 6704 * it won't... 6705 */ 6706 rdev_for_each_list(rdev, tmp, &candidates) { 6707 list_del_init(&rdev->same_set); 6708 export_rdev(rdev, mddev); 6709 } 6710 mddev_put(mddev); 6711 } 6712 pr_info("md: ... autorun DONE.\n"); 6713 } 6714 #endif /* !MODULE */ 6715 get_version(void __user * arg)6716 static int get_version(void __user *arg) 6717 { 6718 mdu_version_t ver; 6719 6720 ver.major = MD_MAJOR_VERSION; 6721 ver.minor = MD_MINOR_VERSION; 6722 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6723 6724 if (copy_to_user(arg, &ver, sizeof(ver))) 6725 return -EFAULT; 6726 6727 return 0; 6728 } 6729 get_array_info(struct mddev * mddev,void __user * arg)6730 static int get_array_info(struct mddev *mddev, void __user *arg) 6731 { 6732 mdu_array_info_t info; 6733 int nr,working,insync,failed,spare; 6734 struct md_rdev *rdev; 6735 6736 nr = working = insync = failed = spare = 0; 6737 rcu_read_lock(); 6738 rdev_for_each_rcu(rdev, mddev) { 6739 nr++; 6740 if (test_bit(Faulty, &rdev->flags)) 6741 failed++; 6742 else { 6743 working++; 6744 if (test_bit(In_sync, &rdev->flags)) 6745 insync++; 6746 else if (test_bit(Journal, &rdev->flags)) 6747 /* TODO: add journal count to md_u.h */ 6748 ; 6749 else 6750 spare++; 6751 } 6752 } 6753 rcu_read_unlock(); 6754 6755 info.major_version = mddev->major_version; 6756 info.minor_version = mddev->minor_version; 6757 info.patch_version = MD_PATCHLEVEL_VERSION; 6758 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6759 info.level = mddev->level; 6760 info.size = mddev->dev_sectors / 2; 6761 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6762 info.size = -1; 6763 info.nr_disks = nr; 6764 info.raid_disks = mddev->raid_disks; 6765 info.md_minor = mddev->md_minor; 6766 info.not_persistent= !mddev->persistent; 6767 6768 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6769 info.state = 0; 6770 if (mddev->in_sync) 6771 info.state = (1<<MD_SB_CLEAN); 6772 if (mddev->bitmap && mddev->bitmap_info.offset) 6773 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6774 if (mddev_is_clustered(mddev)) 6775 info.state |= (1<<MD_SB_CLUSTERED); 6776 info.active_disks = insync; 6777 info.working_disks = working; 6778 info.failed_disks = failed; 6779 info.spare_disks = spare; 6780 6781 info.layout = mddev->layout; 6782 info.chunk_size = mddev->chunk_sectors << 9; 6783 6784 if (copy_to_user(arg, &info, sizeof(info))) 6785 return -EFAULT; 6786 6787 return 0; 6788 } 6789 get_bitmap_file(struct mddev * mddev,void __user * arg)6790 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6791 { 6792 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6793 char *ptr; 6794 int err; 6795 6796 file = kzalloc(sizeof(*file), GFP_NOIO); 6797 if (!file) 6798 return -ENOMEM; 6799 6800 err = 0; 6801 spin_lock(&mddev->lock); 6802 /* bitmap enabled */ 6803 if (mddev->bitmap_info.file) { 6804 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6805 sizeof(file->pathname)); 6806 if (IS_ERR(ptr)) 6807 err = PTR_ERR(ptr); 6808 else 6809 memmove(file->pathname, ptr, 6810 sizeof(file->pathname)-(ptr-file->pathname)); 6811 } 6812 spin_unlock(&mddev->lock); 6813 6814 if (err == 0 && 6815 copy_to_user(arg, file, sizeof(*file))) 6816 err = -EFAULT; 6817 6818 kfree(file); 6819 return err; 6820 } 6821 get_disk_info(struct mddev * mddev,void __user * arg)6822 static int get_disk_info(struct mddev *mddev, void __user * arg) 6823 { 6824 mdu_disk_info_t info; 6825 struct md_rdev *rdev; 6826 6827 if (copy_from_user(&info, arg, sizeof(info))) 6828 return -EFAULT; 6829 6830 rcu_read_lock(); 6831 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6832 if (rdev) { 6833 info.major = MAJOR(rdev->bdev->bd_dev); 6834 info.minor = MINOR(rdev->bdev->bd_dev); 6835 info.raid_disk = rdev->raid_disk; 6836 info.state = 0; 6837 if (test_bit(Faulty, &rdev->flags)) 6838 info.state |= (1<<MD_DISK_FAULTY); 6839 else if (test_bit(In_sync, &rdev->flags)) { 6840 info.state |= (1<<MD_DISK_ACTIVE); 6841 info.state |= (1<<MD_DISK_SYNC); 6842 } 6843 if (test_bit(Journal, &rdev->flags)) 6844 info.state |= (1<<MD_DISK_JOURNAL); 6845 if (test_bit(WriteMostly, &rdev->flags)) 6846 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6847 if (test_bit(FailFast, &rdev->flags)) 6848 info.state |= (1<<MD_DISK_FAILFAST); 6849 } else { 6850 info.major = info.minor = 0; 6851 info.raid_disk = -1; 6852 info.state = (1<<MD_DISK_REMOVED); 6853 } 6854 rcu_read_unlock(); 6855 6856 if (copy_to_user(arg, &info, sizeof(info))) 6857 return -EFAULT; 6858 6859 return 0; 6860 } 6861 md_add_new_disk(struct mddev * mddev,struct mdu_disk_info_s * info)6862 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6863 { 6864 struct md_rdev *rdev; 6865 dev_t dev = MKDEV(info->major,info->minor); 6866 6867 if (mddev_is_clustered(mddev) && 6868 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6869 pr_warn("%s: Cannot add to clustered mddev.\n", 6870 mdname(mddev)); 6871 return -EINVAL; 6872 } 6873 6874 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6875 return -EOVERFLOW; 6876 6877 if (!mddev->raid_disks) { 6878 int err; 6879 /* expecting a device which has a superblock */ 6880 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6881 if (IS_ERR(rdev)) { 6882 pr_warn("md: md_import_device returned %ld\n", 6883 PTR_ERR(rdev)); 6884 return PTR_ERR(rdev); 6885 } 6886 if (!list_empty(&mddev->disks)) { 6887 struct md_rdev *rdev0 6888 = list_entry(mddev->disks.next, 6889 struct md_rdev, same_set); 6890 err = super_types[mddev->major_version] 6891 .load_super(rdev, rdev0, mddev->minor_version); 6892 if (err < 0) { 6893 pr_warn("md: %pg has different UUID to %pg\n", 6894 rdev->bdev, 6895 rdev0->bdev); 6896 export_rdev(rdev, mddev); 6897 return -EINVAL; 6898 } 6899 } 6900 err = bind_rdev_to_array(rdev, mddev); 6901 if (err) 6902 export_rdev(rdev, mddev); 6903 return err; 6904 } 6905 6906 /* 6907 * md_add_new_disk can be used once the array is assembled 6908 * to add "hot spares". They must already have a superblock 6909 * written 6910 */ 6911 if (mddev->pers) { 6912 int err; 6913 if (!mddev->pers->hot_add_disk) { 6914 pr_warn("%s: personality does not support diskops!\n", 6915 mdname(mddev)); 6916 return -EINVAL; 6917 } 6918 if (mddev->persistent) 6919 rdev = md_import_device(dev, mddev->major_version, 6920 mddev->minor_version); 6921 else 6922 rdev = md_import_device(dev, -1, -1); 6923 if (IS_ERR(rdev)) { 6924 pr_warn("md: md_import_device returned %ld\n", 6925 PTR_ERR(rdev)); 6926 return PTR_ERR(rdev); 6927 } 6928 /* set saved_raid_disk if appropriate */ 6929 if (!mddev->persistent) { 6930 if (info->state & (1<<MD_DISK_SYNC) && 6931 info->raid_disk < mddev->raid_disks) { 6932 rdev->raid_disk = info->raid_disk; 6933 clear_bit(Bitmap_sync, &rdev->flags); 6934 } else 6935 rdev->raid_disk = -1; 6936 rdev->saved_raid_disk = rdev->raid_disk; 6937 } else 6938 super_types[mddev->major_version]. 6939 validate_super(mddev, NULL/*freshest*/, rdev); 6940 if ((info->state & (1<<MD_DISK_SYNC)) && 6941 rdev->raid_disk != info->raid_disk) { 6942 /* This was a hot-add request, but events doesn't 6943 * match, so reject it. 6944 */ 6945 export_rdev(rdev, mddev); 6946 return -EINVAL; 6947 } 6948 6949 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6950 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6951 set_bit(WriteMostly, &rdev->flags); 6952 else 6953 clear_bit(WriteMostly, &rdev->flags); 6954 if (info->state & (1<<MD_DISK_FAILFAST)) 6955 set_bit(FailFast, &rdev->flags); 6956 else 6957 clear_bit(FailFast, &rdev->flags); 6958 6959 if (info->state & (1<<MD_DISK_JOURNAL)) { 6960 struct md_rdev *rdev2; 6961 bool has_journal = false; 6962 6963 /* make sure no existing journal disk */ 6964 rdev_for_each(rdev2, mddev) { 6965 if (test_bit(Journal, &rdev2->flags)) { 6966 has_journal = true; 6967 break; 6968 } 6969 } 6970 if (has_journal || mddev->bitmap) { 6971 export_rdev(rdev, mddev); 6972 return -EBUSY; 6973 } 6974 set_bit(Journal, &rdev->flags); 6975 } 6976 /* 6977 * check whether the device shows up in other nodes 6978 */ 6979 if (mddev_is_clustered(mddev)) { 6980 if (info->state & (1 << MD_DISK_CANDIDATE)) 6981 set_bit(Candidate, &rdev->flags); 6982 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6983 /* --add initiated by this node */ 6984 err = mddev->cluster_ops->add_new_disk(mddev, rdev); 6985 if (err) { 6986 export_rdev(rdev, mddev); 6987 return err; 6988 } 6989 } 6990 } 6991 6992 rdev->raid_disk = -1; 6993 err = bind_rdev_to_array(rdev, mddev); 6994 6995 if (err) 6996 export_rdev(rdev, mddev); 6997 6998 if (mddev_is_clustered(mddev)) { 6999 if (info->state & (1 << MD_DISK_CANDIDATE)) { 7000 if (!err) { 7001 err = mddev->cluster_ops->new_disk_ack( 7002 mddev, err == 0); 7003 if (err) 7004 md_kick_rdev_from_array(rdev); 7005 } 7006 } else { 7007 if (err) 7008 mddev->cluster_ops->add_new_disk_cancel(mddev); 7009 else 7010 err = add_bound_rdev(rdev); 7011 } 7012 7013 } else if (!err) 7014 err = add_bound_rdev(rdev); 7015 7016 return err; 7017 } 7018 7019 /* otherwise, md_add_new_disk is only allowed 7020 * for major_version==0 superblocks 7021 */ 7022 if (mddev->major_version != 0) { 7023 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 7024 return -EINVAL; 7025 } 7026 7027 if (!(info->state & (1<<MD_DISK_FAULTY))) { 7028 int err; 7029 rdev = md_import_device(dev, -1, 0); 7030 if (IS_ERR(rdev)) { 7031 pr_warn("md: error, md_import_device() returned %ld\n", 7032 PTR_ERR(rdev)); 7033 return PTR_ERR(rdev); 7034 } 7035 rdev->desc_nr = info->number; 7036 if (info->raid_disk < mddev->raid_disks) 7037 rdev->raid_disk = info->raid_disk; 7038 else 7039 rdev->raid_disk = -1; 7040 7041 if (rdev->raid_disk < mddev->raid_disks) 7042 if (info->state & (1<<MD_DISK_SYNC)) 7043 set_bit(In_sync, &rdev->flags); 7044 7045 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 7046 set_bit(WriteMostly, &rdev->flags); 7047 if (info->state & (1<<MD_DISK_FAILFAST)) 7048 set_bit(FailFast, &rdev->flags); 7049 7050 if (!mddev->persistent) { 7051 pr_debug("md: nonpersistent superblock ...\n"); 7052 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 7053 } else 7054 rdev->sb_start = calc_dev_sboffset(rdev); 7055 rdev->sectors = rdev->sb_start; 7056 7057 err = bind_rdev_to_array(rdev, mddev); 7058 if (err) { 7059 export_rdev(rdev, mddev); 7060 return err; 7061 } 7062 } 7063 7064 return 0; 7065 } 7066 hot_remove_disk(struct mddev * mddev,dev_t dev)7067 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 7068 { 7069 struct md_rdev *rdev; 7070 7071 if (!mddev->pers) 7072 return -ENODEV; 7073 7074 rdev = find_rdev(mddev, dev); 7075 if (!rdev) 7076 return -ENXIO; 7077 7078 if (rdev->raid_disk < 0) 7079 goto kick_rdev; 7080 7081 clear_bit(Blocked, &rdev->flags); 7082 remove_and_add_spares(mddev, rdev); 7083 7084 if (rdev->raid_disk >= 0) 7085 goto busy; 7086 7087 kick_rdev: 7088 if (mddev_is_clustered(mddev) && 7089 mddev->cluster_ops->remove_disk(mddev, rdev)) 7090 goto busy; 7091 7092 md_kick_rdev_from_array(rdev); 7093 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7094 if (!mddev->thread) 7095 md_update_sb(mddev, 1); 7096 md_new_event(); 7097 7098 return 0; 7099 busy: 7100 pr_debug("md: cannot remove active disk %pg from %s ...\n", 7101 rdev->bdev, mdname(mddev)); 7102 return -EBUSY; 7103 } 7104 hot_add_disk(struct mddev * mddev,dev_t dev)7105 static int hot_add_disk(struct mddev *mddev, dev_t dev) 7106 { 7107 int err; 7108 struct md_rdev *rdev; 7109 7110 if (!mddev->pers) 7111 return -ENODEV; 7112 7113 if (mddev->major_version != 0) { 7114 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 7115 mdname(mddev)); 7116 return -EINVAL; 7117 } 7118 if (!mddev->pers->hot_add_disk) { 7119 pr_warn("%s: personality does not support diskops!\n", 7120 mdname(mddev)); 7121 return -EINVAL; 7122 } 7123 7124 rdev = md_import_device(dev, -1, 0); 7125 if (IS_ERR(rdev)) { 7126 pr_warn("md: error, md_import_device() returned %ld\n", 7127 PTR_ERR(rdev)); 7128 return -EINVAL; 7129 } 7130 7131 if (mddev->persistent) 7132 rdev->sb_start = calc_dev_sboffset(rdev); 7133 else 7134 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 7135 7136 rdev->sectors = rdev->sb_start; 7137 7138 if (test_bit(Faulty, &rdev->flags)) { 7139 pr_warn("md: can not hot-add faulty %pg disk to %s!\n", 7140 rdev->bdev, mdname(mddev)); 7141 err = -EINVAL; 7142 goto abort_export; 7143 } 7144 7145 clear_bit(In_sync, &rdev->flags); 7146 rdev->desc_nr = -1; 7147 rdev->saved_raid_disk = -1; 7148 err = bind_rdev_to_array(rdev, mddev); 7149 if (err) 7150 goto abort_export; 7151 7152 /* 7153 * The rest should better be atomic, we can have disk failures 7154 * noticed in interrupt contexts ... 7155 */ 7156 7157 rdev->raid_disk = -1; 7158 7159 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7160 if (!mddev->thread) 7161 md_update_sb(mddev, 1); 7162 /* 7163 * Kick recovery, maybe this spare has to be added to the 7164 * array immediately. 7165 */ 7166 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7167 md_new_event(); 7168 return 0; 7169 7170 abort_export: 7171 export_rdev(rdev, mddev); 7172 return err; 7173 } 7174 set_bitmap_file(struct mddev * mddev,int fd)7175 static int set_bitmap_file(struct mddev *mddev, int fd) 7176 { 7177 int err = 0; 7178 7179 if (mddev->pers) { 7180 if (!mddev->pers->quiesce || !mddev->thread) 7181 return -EBUSY; 7182 if (mddev->recovery || mddev->sync_thread) 7183 return -EBUSY; 7184 /* we should be able to change the bitmap.. */ 7185 } 7186 7187 if (fd >= 0) { 7188 struct inode *inode; 7189 struct file *f; 7190 7191 if (mddev->bitmap || mddev->bitmap_info.file) 7192 return -EEXIST; /* cannot add when bitmap is present */ 7193 7194 if (!IS_ENABLED(CONFIG_MD_BITMAP_FILE)) { 7195 pr_warn("%s: bitmap files not supported by this kernel\n", 7196 mdname(mddev)); 7197 return -EINVAL; 7198 } 7199 pr_warn("%s: using deprecated bitmap file support\n", 7200 mdname(mddev)); 7201 7202 f = fget(fd); 7203 7204 if (f == NULL) { 7205 pr_warn("%s: error: failed to get bitmap file\n", 7206 mdname(mddev)); 7207 return -EBADF; 7208 } 7209 7210 inode = f->f_mapping->host; 7211 if (!S_ISREG(inode->i_mode)) { 7212 pr_warn("%s: error: bitmap file must be a regular file\n", 7213 mdname(mddev)); 7214 err = -EBADF; 7215 } else if (!(f->f_mode & FMODE_WRITE)) { 7216 pr_warn("%s: error: bitmap file must open for write\n", 7217 mdname(mddev)); 7218 err = -EBADF; 7219 } else if (atomic_read(&inode->i_writecount) != 1) { 7220 pr_warn("%s: error: bitmap file is already in use\n", 7221 mdname(mddev)); 7222 err = -EBUSY; 7223 } 7224 if (err) { 7225 fput(f); 7226 return err; 7227 } 7228 mddev->bitmap_info.file = f; 7229 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7230 } else if (mddev->bitmap == NULL) 7231 return -ENOENT; /* cannot remove what isn't there */ 7232 err = 0; 7233 if (mddev->pers) { 7234 if (fd >= 0) { 7235 err = mddev->bitmap_ops->create(mddev, -1); 7236 if (!err) 7237 err = mddev->bitmap_ops->load(mddev); 7238 7239 if (err) { 7240 mddev->bitmap_ops->destroy(mddev); 7241 fd = -1; 7242 } 7243 } else if (fd < 0) { 7244 mddev->bitmap_ops->destroy(mddev); 7245 } 7246 } 7247 7248 if (fd < 0) { 7249 struct file *f = mddev->bitmap_info.file; 7250 if (f) { 7251 spin_lock(&mddev->lock); 7252 mddev->bitmap_info.file = NULL; 7253 spin_unlock(&mddev->lock); 7254 fput(f); 7255 } 7256 } 7257 7258 return err; 7259 } 7260 7261 /* 7262 * md_set_array_info is used two different ways 7263 * The original usage is when creating a new array. 7264 * In this usage, raid_disks is > 0 and it together with 7265 * level, size, not_persistent,layout,chunksize determine the 7266 * shape of the array. 7267 * This will always create an array with a type-0.90.0 superblock. 7268 * The newer usage is when assembling an array. 7269 * In this case raid_disks will be 0, and the major_version field is 7270 * use to determine which style super-blocks are to be found on the devices. 7271 * The minor and patch _version numbers are also kept incase the 7272 * super_block handler wishes to interpret them. 7273 */ md_set_array_info(struct mddev * mddev,struct mdu_array_info_s * info)7274 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7275 { 7276 if (info->raid_disks == 0) { 7277 /* just setting version number for superblock loading */ 7278 if (info->major_version < 0 || 7279 info->major_version >= ARRAY_SIZE(super_types) || 7280 super_types[info->major_version].name == NULL) { 7281 /* maybe try to auto-load a module? */ 7282 pr_warn("md: superblock version %d not known\n", 7283 info->major_version); 7284 return -EINVAL; 7285 } 7286 mddev->major_version = info->major_version; 7287 mddev->minor_version = info->minor_version; 7288 mddev->patch_version = info->patch_version; 7289 mddev->persistent = !info->not_persistent; 7290 /* ensure mddev_put doesn't delete this now that there 7291 * is some minimal configuration. 7292 */ 7293 mddev->ctime = ktime_get_real_seconds(); 7294 return 0; 7295 } 7296 mddev->major_version = MD_MAJOR_VERSION; 7297 mddev->minor_version = MD_MINOR_VERSION; 7298 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7299 mddev->ctime = ktime_get_real_seconds(); 7300 7301 mddev->level = info->level; 7302 mddev->clevel[0] = 0; 7303 mddev->dev_sectors = 2 * (sector_t)info->size; 7304 mddev->raid_disks = info->raid_disks; 7305 /* don't set md_minor, it is determined by which /dev/md* was 7306 * openned 7307 */ 7308 if (info->state & (1<<MD_SB_CLEAN)) 7309 mddev->recovery_cp = MaxSector; 7310 else 7311 mddev->recovery_cp = 0; 7312 mddev->persistent = ! info->not_persistent; 7313 mddev->external = 0; 7314 7315 mddev->layout = info->layout; 7316 if (mddev->level == 0) 7317 /* Cannot trust RAID0 layout info here */ 7318 mddev->layout = -1; 7319 mddev->chunk_sectors = info->chunk_size >> 9; 7320 7321 if (mddev->persistent) { 7322 mddev->max_disks = MD_SB_DISKS; 7323 mddev->flags = 0; 7324 mddev->sb_flags = 0; 7325 } 7326 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7327 7328 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7329 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7330 mddev->bitmap_info.offset = 0; 7331 7332 mddev->reshape_position = MaxSector; 7333 7334 /* 7335 * Generate a 128 bit UUID 7336 */ 7337 get_random_bytes(mddev->uuid, 16); 7338 7339 mddev->new_level = mddev->level; 7340 mddev->new_chunk_sectors = mddev->chunk_sectors; 7341 mddev->new_layout = mddev->layout; 7342 mddev->delta_disks = 0; 7343 mddev->reshape_backwards = 0; 7344 7345 return 0; 7346 } 7347 md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)7348 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7349 { 7350 lockdep_assert_held(&mddev->reconfig_mutex); 7351 7352 if (mddev->external_size) 7353 return; 7354 7355 mddev->array_sectors = array_sectors; 7356 } 7357 EXPORT_SYMBOL(md_set_array_sectors); 7358 update_size(struct mddev * mddev,sector_t num_sectors)7359 static int update_size(struct mddev *mddev, sector_t num_sectors) 7360 { 7361 struct md_rdev *rdev; 7362 int rv; 7363 int fit = (num_sectors == 0); 7364 sector_t old_dev_sectors = mddev->dev_sectors; 7365 7366 if (mddev->pers->resize == NULL) 7367 return -EINVAL; 7368 /* The "num_sectors" is the number of sectors of each device that 7369 * is used. This can only make sense for arrays with redundancy. 7370 * linear and raid0 always use whatever space is available. We can only 7371 * consider changing this number if no resync or reconstruction is 7372 * happening, and if the new size is acceptable. It must fit before the 7373 * sb_start or, if that is <data_offset, it must fit before the size 7374 * of each device. If num_sectors is zero, we find the largest size 7375 * that fits. 7376 */ 7377 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 7378 return -EBUSY; 7379 if (!md_is_rdwr(mddev)) 7380 return -EROFS; 7381 7382 rdev_for_each(rdev, mddev) { 7383 sector_t avail = rdev->sectors; 7384 7385 if (fit && (num_sectors == 0 || num_sectors > avail)) 7386 num_sectors = avail; 7387 if (avail < num_sectors) 7388 return -ENOSPC; 7389 } 7390 rv = mddev->pers->resize(mddev, num_sectors); 7391 if (!rv) { 7392 if (mddev_is_clustered(mddev)) 7393 mddev->cluster_ops->update_size(mddev, old_dev_sectors); 7394 else if (!mddev_is_dm(mddev)) 7395 set_capacity_and_notify(mddev->gendisk, 7396 mddev->array_sectors); 7397 } 7398 return rv; 7399 } 7400 update_raid_disks(struct mddev * mddev,int raid_disks)7401 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7402 { 7403 int rv; 7404 struct md_rdev *rdev; 7405 /* change the number of raid disks */ 7406 if (mddev->pers->check_reshape == NULL) 7407 return -EINVAL; 7408 if (!md_is_rdwr(mddev)) 7409 return -EROFS; 7410 if (raid_disks <= 0 || 7411 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7412 return -EINVAL; 7413 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7414 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7415 mddev->reshape_position != MaxSector) 7416 return -EBUSY; 7417 7418 rdev_for_each(rdev, mddev) { 7419 if (mddev->raid_disks < raid_disks && 7420 rdev->data_offset < rdev->new_data_offset) 7421 return -EINVAL; 7422 if (mddev->raid_disks > raid_disks && 7423 rdev->data_offset > rdev->new_data_offset) 7424 return -EINVAL; 7425 } 7426 7427 mddev->delta_disks = raid_disks - mddev->raid_disks; 7428 if (mddev->delta_disks < 0) 7429 mddev->reshape_backwards = 1; 7430 else if (mddev->delta_disks > 0) 7431 mddev->reshape_backwards = 0; 7432 7433 rv = mddev->pers->check_reshape(mddev); 7434 if (rv < 0) { 7435 mddev->delta_disks = 0; 7436 mddev->reshape_backwards = 0; 7437 } 7438 return rv; 7439 } 7440 get_cluster_ops(struct mddev * mddev)7441 static int get_cluster_ops(struct mddev *mddev) 7442 { 7443 xa_lock(&md_submodule); 7444 mddev->cluster_ops = xa_load(&md_submodule, ID_CLUSTER); 7445 if (mddev->cluster_ops && 7446 !try_module_get(mddev->cluster_ops->head.owner)) 7447 mddev->cluster_ops = NULL; 7448 xa_unlock(&md_submodule); 7449 7450 return mddev->cluster_ops == NULL ? -ENOENT : 0; 7451 } 7452 put_cluster_ops(struct mddev * mddev)7453 static void put_cluster_ops(struct mddev *mddev) 7454 { 7455 if (!mddev->cluster_ops) 7456 return; 7457 7458 mddev->cluster_ops->leave(mddev); 7459 module_put(mddev->cluster_ops->head.owner); 7460 mddev->cluster_ops = NULL; 7461 } 7462 7463 /* 7464 * update_array_info is used to change the configuration of an 7465 * on-line array. 7466 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7467 * fields in the info are checked against the array. 7468 * Any differences that cannot be handled will cause an error. 7469 * Normally, only one change can be managed at a time. 7470 */ update_array_info(struct mddev * mddev,mdu_array_info_t * info)7471 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7472 { 7473 int rv = 0; 7474 int cnt = 0; 7475 int state = 0; 7476 7477 /* calculate expected state,ignoring low bits */ 7478 if (mddev->bitmap && mddev->bitmap_info.offset) 7479 state |= (1 << MD_SB_BITMAP_PRESENT); 7480 7481 if (mddev->major_version != info->major_version || 7482 mddev->minor_version != info->minor_version || 7483 /* mddev->patch_version != info->patch_version || */ 7484 mddev->ctime != info->ctime || 7485 mddev->level != info->level || 7486 /* mddev->layout != info->layout || */ 7487 mddev->persistent != !info->not_persistent || 7488 mddev->chunk_sectors != info->chunk_size >> 9 || 7489 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7490 ((state^info->state) & 0xfffffe00) 7491 ) 7492 return -EINVAL; 7493 /* Check there is only one change */ 7494 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7495 cnt++; 7496 if (mddev->raid_disks != info->raid_disks) 7497 cnt++; 7498 if (mddev->layout != info->layout) 7499 cnt++; 7500 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7501 cnt++; 7502 if (cnt == 0) 7503 return 0; 7504 if (cnt > 1) 7505 return -EINVAL; 7506 7507 if (mddev->layout != info->layout) { 7508 /* Change layout 7509 * we don't need to do anything at the md level, the 7510 * personality will take care of it all. 7511 */ 7512 if (mddev->pers->check_reshape == NULL) 7513 return -EINVAL; 7514 else { 7515 mddev->new_layout = info->layout; 7516 rv = mddev->pers->check_reshape(mddev); 7517 if (rv) 7518 mddev->new_layout = mddev->layout; 7519 return rv; 7520 } 7521 } 7522 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7523 rv = update_size(mddev, (sector_t)info->size * 2); 7524 7525 if (mddev->raid_disks != info->raid_disks) 7526 rv = update_raid_disks(mddev, info->raid_disks); 7527 7528 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7529 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7530 rv = -EINVAL; 7531 goto err; 7532 } 7533 if (mddev->recovery || mddev->sync_thread) { 7534 rv = -EBUSY; 7535 goto err; 7536 } 7537 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7538 /* add the bitmap */ 7539 if (mddev->bitmap) { 7540 rv = -EEXIST; 7541 goto err; 7542 } 7543 if (mddev->bitmap_info.default_offset == 0) { 7544 rv = -EINVAL; 7545 goto err; 7546 } 7547 mddev->bitmap_info.offset = 7548 mddev->bitmap_info.default_offset; 7549 mddev->bitmap_info.space = 7550 mddev->bitmap_info.default_space; 7551 rv = mddev->bitmap_ops->create(mddev, -1); 7552 if (!rv) 7553 rv = mddev->bitmap_ops->load(mddev); 7554 7555 if (rv) 7556 mddev->bitmap_ops->destroy(mddev); 7557 } else { 7558 struct md_bitmap_stats stats; 7559 7560 rv = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats); 7561 if (rv) 7562 goto err; 7563 7564 if (stats.file) { 7565 rv = -EINVAL; 7566 goto err; 7567 } 7568 7569 if (mddev->bitmap_info.nodes) { 7570 /* hold PW on all the bitmap lock */ 7571 if (mddev->cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7572 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7573 rv = -EPERM; 7574 mddev->cluster_ops->unlock_all_bitmaps(mddev); 7575 goto err; 7576 } 7577 7578 mddev->bitmap_info.nodes = 0; 7579 put_cluster_ops(mddev); 7580 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7581 } 7582 mddev->bitmap_ops->destroy(mddev); 7583 mddev->bitmap_info.offset = 0; 7584 } 7585 } 7586 md_update_sb(mddev, 1); 7587 return rv; 7588 err: 7589 return rv; 7590 } 7591 set_disk_faulty(struct mddev * mddev,dev_t dev)7592 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7593 { 7594 struct md_rdev *rdev; 7595 int err = 0; 7596 7597 if (mddev->pers == NULL) 7598 return -ENODEV; 7599 7600 rcu_read_lock(); 7601 rdev = md_find_rdev_rcu(mddev, dev); 7602 if (!rdev) 7603 err = -ENODEV; 7604 else { 7605 md_error(mddev, rdev); 7606 if (test_bit(MD_BROKEN, &mddev->flags)) 7607 err = -EBUSY; 7608 } 7609 rcu_read_unlock(); 7610 return err; 7611 } 7612 7613 /* 7614 * We have a problem here : there is no easy way to give a CHS 7615 * virtual geometry. We currently pretend that we have a 2 heads 7616 * 4 sectors (with a BIG number of cylinders...). This drives 7617 * dosfs just mad... ;-) 7618 */ md_getgeo(struct block_device * bdev,struct hd_geometry * geo)7619 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7620 { 7621 struct mddev *mddev = bdev->bd_disk->private_data; 7622 7623 geo->heads = 2; 7624 geo->sectors = 4; 7625 geo->cylinders = mddev->array_sectors / 8; 7626 return 0; 7627 } 7628 md_ioctl_valid(unsigned int cmd)7629 static inline int md_ioctl_valid(unsigned int cmd) 7630 { 7631 switch (cmd) { 7632 case GET_ARRAY_INFO: 7633 case GET_DISK_INFO: 7634 case RAID_VERSION: 7635 return 0; 7636 case ADD_NEW_DISK: 7637 case GET_BITMAP_FILE: 7638 case HOT_ADD_DISK: 7639 case HOT_REMOVE_DISK: 7640 case RESTART_ARRAY_RW: 7641 case RUN_ARRAY: 7642 case SET_ARRAY_INFO: 7643 case SET_BITMAP_FILE: 7644 case SET_DISK_FAULTY: 7645 case STOP_ARRAY: 7646 case STOP_ARRAY_RO: 7647 case CLUSTERED_DISK_NACK: 7648 if (!capable(CAP_SYS_ADMIN)) 7649 return -EACCES; 7650 return 0; 7651 default: 7652 return -ENOTTY; 7653 } 7654 } 7655 md_ioctl_need_suspend(unsigned int cmd)7656 static bool md_ioctl_need_suspend(unsigned int cmd) 7657 { 7658 switch (cmd) { 7659 case ADD_NEW_DISK: 7660 case HOT_ADD_DISK: 7661 case HOT_REMOVE_DISK: 7662 case SET_BITMAP_FILE: 7663 case SET_ARRAY_INFO: 7664 return true; 7665 default: 7666 return false; 7667 } 7668 } 7669 __md_set_array_info(struct mddev * mddev,void __user * argp)7670 static int __md_set_array_info(struct mddev *mddev, void __user *argp) 7671 { 7672 mdu_array_info_t info; 7673 int err; 7674 7675 if (!argp) 7676 memset(&info, 0, sizeof(info)); 7677 else if (copy_from_user(&info, argp, sizeof(info))) 7678 return -EFAULT; 7679 7680 if (mddev->pers) { 7681 err = update_array_info(mddev, &info); 7682 if (err) 7683 pr_warn("md: couldn't update array info. %d\n", err); 7684 return err; 7685 } 7686 7687 if (!list_empty(&mddev->disks)) { 7688 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7689 return -EBUSY; 7690 } 7691 7692 if (mddev->raid_disks) { 7693 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7694 return -EBUSY; 7695 } 7696 7697 err = md_set_array_info(mddev, &info); 7698 if (err) 7699 pr_warn("md: couldn't set array info. %d\n", err); 7700 7701 return err; 7702 } 7703 md_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)7704 static int md_ioctl(struct block_device *bdev, blk_mode_t mode, 7705 unsigned int cmd, unsigned long arg) 7706 { 7707 int err = 0; 7708 void __user *argp = (void __user *)arg; 7709 struct mddev *mddev = NULL; 7710 7711 err = md_ioctl_valid(cmd); 7712 if (err) 7713 return err; 7714 7715 /* 7716 * Commands dealing with the RAID driver but not any 7717 * particular array: 7718 */ 7719 if (cmd == RAID_VERSION) 7720 return get_version(argp); 7721 7722 /* 7723 * Commands creating/starting a new array: 7724 */ 7725 7726 mddev = bdev->bd_disk->private_data; 7727 7728 /* Some actions do not requires the mutex */ 7729 switch (cmd) { 7730 case GET_ARRAY_INFO: 7731 if (!mddev->raid_disks && !mddev->external) 7732 return -ENODEV; 7733 return get_array_info(mddev, argp); 7734 7735 case GET_DISK_INFO: 7736 if (!mddev->raid_disks && !mddev->external) 7737 return -ENODEV; 7738 return get_disk_info(mddev, argp); 7739 7740 case SET_DISK_FAULTY: 7741 return set_disk_faulty(mddev, new_decode_dev(arg)); 7742 7743 case GET_BITMAP_FILE: 7744 return get_bitmap_file(mddev, argp); 7745 } 7746 7747 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7748 /* Need to flush page cache, and ensure no-one else opens 7749 * and writes 7750 */ 7751 err = mddev_set_closing_and_sync_blockdev(mddev, 1); 7752 if (err) 7753 return err; 7754 } 7755 7756 if (!md_is_rdwr(mddev)) 7757 flush_work(&mddev->sync_work); 7758 7759 err = md_ioctl_need_suspend(cmd) ? mddev_suspend_and_lock(mddev) : 7760 mddev_lock(mddev); 7761 if (err) { 7762 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7763 err, cmd); 7764 goto out; 7765 } 7766 7767 if (cmd == SET_ARRAY_INFO) { 7768 err = __md_set_array_info(mddev, argp); 7769 goto unlock; 7770 } 7771 7772 /* 7773 * Commands querying/configuring an existing array: 7774 */ 7775 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7776 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7777 if ((!mddev->raid_disks && !mddev->external) 7778 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7779 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7780 && cmd != GET_BITMAP_FILE) { 7781 err = -ENODEV; 7782 goto unlock; 7783 } 7784 7785 /* 7786 * Commands even a read-only array can execute: 7787 */ 7788 switch (cmd) { 7789 case RESTART_ARRAY_RW: 7790 err = restart_array(mddev); 7791 goto unlock; 7792 7793 case STOP_ARRAY: 7794 err = do_md_stop(mddev, 0); 7795 goto unlock; 7796 7797 case STOP_ARRAY_RO: 7798 if (mddev->pers) 7799 err = md_set_readonly(mddev); 7800 goto unlock; 7801 7802 case HOT_REMOVE_DISK: 7803 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7804 goto unlock; 7805 7806 case ADD_NEW_DISK: 7807 /* We can support ADD_NEW_DISK on read-only arrays 7808 * only if we are re-adding a preexisting device. 7809 * So require mddev->pers and MD_DISK_SYNC. 7810 */ 7811 if (mddev->pers) { 7812 mdu_disk_info_t info; 7813 if (copy_from_user(&info, argp, sizeof(info))) 7814 err = -EFAULT; 7815 else if (!(info.state & (1<<MD_DISK_SYNC))) 7816 /* Need to clear read-only for this */ 7817 break; 7818 else 7819 err = md_add_new_disk(mddev, &info); 7820 goto unlock; 7821 } 7822 break; 7823 } 7824 7825 /* 7826 * The remaining ioctls are changing the state of the 7827 * superblock, so we do not allow them on read-only arrays. 7828 */ 7829 if (!md_is_rdwr(mddev) && mddev->pers) { 7830 if (mddev->ro != MD_AUTO_READ) { 7831 err = -EROFS; 7832 goto unlock; 7833 } 7834 mddev->ro = MD_RDWR; 7835 sysfs_notify_dirent_safe(mddev->sysfs_state); 7836 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7837 /* mddev_unlock will wake thread */ 7838 /* If a device failed while we were read-only, we 7839 * need to make sure the metadata is updated now. 7840 */ 7841 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7842 mddev_unlock(mddev); 7843 wait_event(mddev->sb_wait, 7844 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7845 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7846 mddev_lock_nointr(mddev); 7847 } 7848 } 7849 7850 switch (cmd) { 7851 case ADD_NEW_DISK: 7852 { 7853 mdu_disk_info_t info; 7854 if (copy_from_user(&info, argp, sizeof(info))) 7855 err = -EFAULT; 7856 else 7857 err = md_add_new_disk(mddev, &info); 7858 goto unlock; 7859 } 7860 7861 case CLUSTERED_DISK_NACK: 7862 if (mddev_is_clustered(mddev)) 7863 mddev->cluster_ops->new_disk_ack(mddev, false); 7864 else 7865 err = -EINVAL; 7866 goto unlock; 7867 7868 case HOT_ADD_DISK: 7869 err = hot_add_disk(mddev, new_decode_dev(arg)); 7870 goto unlock; 7871 7872 case RUN_ARRAY: 7873 err = do_md_run(mddev); 7874 goto unlock; 7875 7876 case SET_BITMAP_FILE: 7877 err = set_bitmap_file(mddev, (int)arg); 7878 goto unlock; 7879 7880 default: 7881 err = -EINVAL; 7882 goto unlock; 7883 } 7884 7885 unlock: 7886 if (mddev->hold_active == UNTIL_IOCTL && 7887 err != -EINVAL) 7888 mddev->hold_active = 0; 7889 7890 md_ioctl_need_suspend(cmd) ? mddev_unlock_and_resume(mddev) : 7891 mddev_unlock(mddev); 7892 7893 out: 7894 if (cmd == STOP_ARRAY_RO || (err && cmd == STOP_ARRAY)) 7895 clear_bit(MD_CLOSING, &mddev->flags); 7896 return err; 7897 } 7898 #ifdef CONFIG_COMPAT md_compat_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)7899 static int md_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 7900 unsigned int cmd, unsigned long arg) 7901 { 7902 switch (cmd) { 7903 case HOT_REMOVE_DISK: 7904 case HOT_ADD_DISK: 7905 case SET_DISK_FAULTY: 7906 case SET_BITMAP_FILE: 7907 /* These take in integer arg, do not convert */ 7908 break; 7909 default: 7910 arg = (unsigned long)compat_ptr(arg); 7911 break; 7912 } 7913 7914 return md_ioctl(bdev, mode, cmd, arg); 7915 } 7916 #endif /* CONFIG_COMPAT */ 7917 md_set_read_only(struct block_device * bdev,bool ro)7918 static int md_set_read_only(struct block_device *bdev, bool ro) 7919 { 7920 struct mddev *mddev = bdev->bd_disk->private_data; 7921 int err; 7922 7923 err = mddev_lock(mddev); 7924 if (err) 7925 return err; 7926 7927 if (!mddev->raid_disks && !mddev->external) { 7928 err = -ENODEV; 7929 goto out_unlock; 7930 } 7931 7932 /* 7933 * Transitioning to read-auto need only happen for arrays that call 7934 * md_write_start and which are not ready for writes yet. 7935 */ 7936 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) { 7937 err = restart_array(mddev); 7938 if (err) 7939 goto out_unlock; 7940 mddev->ro = MD_AUTO_READ; 7941 } 7942 7943 out_unlock: 7944 mddev_unlock(mddev); 7945 return err; 7946 } 7947 md_open(struct gendisk * disk,blk_mode_t mode)7948 static int md_open(struct gendisk *disk, blk_mode_t mode) 7949 { 7950 struct mddev *mddev; 7951 int err; 7952 7953 spin_lock(&all_mddevs_lock); 7954 mddev = mddev_get(disk->private_data); 7955 spin_unlock(&all_mddevs_lock); 7956 if (!mddev) 7957 return -ENODEV; 7958 7959 err = mutex_lock_interruptible(&mddev->open_mutex); 7960 if (err) 7961 goto out; 7962 7963 err = -ENODEV; 7964 if (test_bit(MD_CLOSING, &mddev->flags)) 7965 goto out_unlock; 7966 7967 atomic_inc(&mddev->openers); 7968 mutex_unlock(&mddev->open_mutex); 7969 7970 disk_check_media_change(disk); 7971 return 0; 7972 7973 out_unlock: 7974 mutex_unlock(&mddev->open_mutex); 7975 out: 7976 mddev_put(mddev); 7977 return err; 7978 } 7979 md_release(struct gendisk * disk)7980 static void md_release(struct gendisk *disk) 7981 { 7982 struct mddev *mddev = disk->private_data; 7983 7984 BUG_ON(!mddev); 7985 atomic_dec(&mddev->openers); 7986 mddev_put(mddev); 7987 } 7988 md_check_events(struct gendisk * disk,unsigned int clearing)7989 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7990 { 7991 struct mddev *mddev = disk->private_data; 7992 unsigned int ret = 0; 7993 7994 if (mddev->changed) 7995 ret = DISK_EVENT_MEDIA_CHANGE; 7996 mddev->changed = 0; 7997 return ret; 7998 } 7999 md_free_disk(struct gendisk * disk)8000 static void md_free_disk(struct gendisk *disk) 8001 { 8002 struct mddev *mddev = disk->private_data; 8003 8004 mddev_free(mddev); 8005 } 8006 8007 const struct block_device_operations md_fops = 8008 { 8009 .owner = THIS_MODULE, 8010 .submit_bio = md_submit_bio, 8011 .open = md_open, 8012 .release = md_release, 8013 .ioctl = md_ioctl, 8014 #ifdef CONFIG_COMPAT 8015 .compat_ioctl = md_compat_ioctl, 8016 #endif 8017 .getgeo = md_getgeo, 8018 .check_events = md_check_events, 8019 .set_read_only = md_set_read_only, 8020 .free_disk = md_free_disk, 8021 }; 8022 md_thread(void * arg)8023 static int md_thread(void *arg) 8024 { 8025 struct md_thread *thread = arg; 8026 8027 /* 8028 * md_thread is a 'system-thread', it's priority should be very 8029 * high. We avoid resource deadlocks individually in each 8030 * raid personality. (RAID5 does preallocation) We also use RR and 8031 * the very same RT priority as kswapd, thus we will never get 8032 * into a priority inversion deadlock. 8033 * 8034 * we definitely have to have equal or higher priority than 8035 * bdflush, otherwise bdflush will deadlock if there are too 8036 * many dirty RAID5 blocks. 8037 */ 8038 8039 allow_signal(SIGKILL); 8040 while (!kthread_should_stop()) { 8041 8042 /* We need to wait INTERRUPTIBLE so that 8043 * we don't add to the load-average. 8044 * That means we need to be sure no signals are 8045 * pending 8046 */ 8047 if (signal_pending(current)) 8048 flush_signals(current); 8049 8050 wait_event_interruptible_timeout 8051 (thread->wqueue, 8052 test_bit(THREAD_WAKEUP, &thread->flags) 8053 || kthread_should_stop() || kthread_should_park(), 8054 thread->timeout); 8055 8056 clear_bit(THREAD_WAKEUP, &thread->flags); 8057 if (kthread_should_park()) 8058 kthread_parkme(); 8059 if (!kthread_should_stop()) 8060 thread->run(thread); 8061 } 8062 8063 return 0; 8064 } 8065 md_wakeup_thread_directly(struct md_thread __rcu * thread)8066 static void md_wakeup_thread_directly(struct md_thread __rcu *thread) 8067 { 8068 struct md_thread *t; 8069 8070 rcu_read_lock(); 8071 t = rcu_dereference(thread); 8072 if (t) 8073 wake_up_process(t->tsk); 8074 rcu_read_unlock(); 8075 } 8076 md_wakeup_thread(struct md_thread __rcu * thread)8077 void md_wakeup_thread(struct md_thread __rcu *thread) 8078 { 8079 struct md_thread *t; 8080 8081 rcu_read_lock(); 8082 t = rcu_dereference(thread); 8083 if (t) { 8084 pr_debug("md: waking up MD thread %s.\n", t->tsk->comm); 8085 set_bit(THREAD_WAKEUP, &t->flags); 8086 if (wq_has_sleeper(&t->wqueue)) 8087 wake_up(&t->wqueue); 8088 } 8089 rcu_read_unlock(); 8090 } 8091 EXPORT_SYMBOL(md_wakeup_thread); 8092 md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)8093 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 8094 struct mddev *mddev, const char *name) 8095 { 8096 struct md_thread *thread; 8097 8098 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 8099 if (!thread) 8100 return NULL; 8101 8102 init_waitqueue_head(&thread->wqueue); 8103 8104 thread->run = run; 8105 thread->mddev = mddev; 8106 thread->timeout = MAX_SCHEDULE_TIMEOUT; 8107 thread->tsk = kthread_run(md_thread, thread, 8108 "%s_%s", 8109 mdname(thread->mddev), 8110 name); 8111 if (IS_ERR(thread->tsk)) { 8112 kfree(thread); 8113 return NULL; 8114 } 8115 return thread; 8116 } 8117 EXPORT_SYMBOL(md_register_thread); 8118 md_unregister_thread(struct mddev * mddev,struct md_thread __rcu ** threadp)8119 void md_unregister_thread(struct mddev *mddev, struct md_thread __rcu **threadp) 8120 { 8121 struct md_thread *thread = rcu_dereference_protected(*threadp, 8122 lockdep_is_held(&mddev->reconfig_mutex)); 8123 8124 if (!thread) 8125 return; 8126 8127 rcu_assign_pointer(*threadp, NULL); 8128 synchronize_rcu(); 8129 8130 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 8131 kthread_stop(thread->tsk); 8132 kfree(thread); 8133 } 8134 EXPORT_SYMBOL(md_unregister_thread); 8135 md_error(struct mddev * mddev,struct md_rdev * rdev)8136 void md_error(struct mddev *mddev, struct md_rdev *rdev) 8137 { 8138 if (!rdev || test_bit(Faulty, &rdev->flags)) 8139 return; 8140 8141 if (!mddev->pers || !mddev->pers->error_handler) 8142 return; 8143 mddev->pers->error_handler(mddev, rdev); 8144 8145 if (mddev->pers->head.id == ID_RAID0 || 8146 mddev->pers->head.id == ID_LINEAR) 8147 return; 8148 8149 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags)) 8150 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8151 sysfs_notify_dirent_safe(rdev->sysfs_state); 8152 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8153 if (!test_bit(MD_BROKEN, &mddev->flags)) { 8154 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8155 md_wakeup_thread(mddev->thread); 8156 } 8157 if (mddev->event_work.func) 8158 queue_work(md_misc_wq, &mddev->event_work); 8159 md_new_event(); 8160 } 8161 EXPORT_SYMBOL(md_error); 8162 8163 /* seq_file implementation /proc/mdstat */ 8164 status_unused(struct seq_file * seq)8165 static void status_unused(struct seq_file *seq) 8166 { 8167 int i = 0; 8168 struct md_rdev *rdev; 8169 8170 seq_printf(seq, "unused devices: "); 8171 8172 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8173 i++; 8174 seq_printf(seq, "%pg ", rdev->bdev); 8175 } 8176 if (!i) 8177 seq_printf(seq, "<none>"); 8178 8179 seq_printf(seq, "\n"); 8180 } 8181 status_personalities(struct seq_file * seq)8182 static void status_personalities(struct seq_file *seq) 8183 { 8184 struct md_submodule_head *head; 8185 unsigned long i; 8186 8187 seq_puts(seq, "Personalities : "); 8188 8189 xa_lock(&md_submodule); 8190 xa_for_each(&md_submodule, i, head) 8191 if (head->type == MD_PERSONALITY) 8192 seq_printf(seq, "[%s] ", head->name); 8193 xa_unlock(&md_submodule); 8194 8195 seq_puts(seq, "\n"); 8196 } 8197 status_resync(struct seq_file * seq,struct mddev * mddev)8198 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8199 { 8200 sector_t max_sectors, resync, res; 8201 unsigned long dt, db = 0; 8202 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8203 int scale, recovery_active; 8204 unsigned int per_milli; 8205 8206 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8207 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8208 max_sectors = mddev->resync_max_sectors; 8209 else 8210 max_sectors = mddev->dev_sectors; 8211 8212 resync = mddev->curr_resync; 8213 if (resync < MD_RESYNC_ACTIVE) { 8214 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8215 /* Still cleaning up */ 8216 resync = max_sectors; 8217 } else if (resync > max_sectors) { 8218 resync = max_sectors; 8219 } else { 8220 res = atomic_read(&mddev->recovery_active); 8221 /* 8222 * Resync has started, but the subtraction has overflowed or 8223 * yielded one of the special values. Force it to active to 8224 * ensure the status reports an active resync. 8225 */ 8226 if (resync < res || resync - res < MD_RESYNC_ACTIVE) 8227 resync = MD_RESYNC_ACTIVE; 8228 else 8229 resync -= res; 8230 } 8231 8232 if (resync == MD_RESYNC_NONE) { 8233 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8234 struct md_rdev *rdev; 8235 8236 rdev_for_each(rdev, mddev) 8237 if (rdev->raid_disk >= 0 && 8238 !test_bit(Faulty, &rdev->flags) && 8239 rdev->recovery_offset != MaxSector && 8240 rdev->recovery_offset) { 8241 seq_printf(seq, "\trecover=REMOTE"); 8242 return 1; 8243 } 8244 if (mddev->reshape_position != MaxSector) 8245 seq_printf(seq, "\treshape=REMOTE"); 8246 else 8247 seq_printf(seq, "\tresync=REMOTE"); 8248 return 1; 8249 } 8250 if (mddev->recovery_cp < MaxSector) { 8251 seq_printf(seq, "\tresync=PENDING"); 8252 return 1; 8253 } 8254 return 0; 8255 } 8256 if (resync < MD_RESYNC_ACTIVE) { 8257 seq_printf(seq, "\tresync=DELAYED"); 8258 return 1; 8259 } 8260 8261 WARN_ON(max_sectors == 0); 8262 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8263 * in a sector_t, and (max_sectors>>scale) will fit in a 8264 * u32, as those are the requirements for sector_div. 8265 * Thus 'scale' must be at least 10 8266 */ 8267 scale = 10; 8268 if (sizeof(sector_t) > sizeof(unsigned long)) { 8269 while ( max_sectors/2 > (1ULL<<(scale+32))) 8270 scale++; 8271 } 8272 res = (resync>>scale)*1000; 8273 sector_div(res, (u32)((max_sectors>>scale)+1)); 8274 8275 per_milli = res; 8276 { 8277 int i, x = per_milli/50, y = 20-x; 8278 seq_printf(seq, "["); 8279 for (i = 0; i < x; i++) 8280 seq_printf(seq, "="); 8281 seq_printf(seq, ">"); 8282 for (i = 0; i < y; i++) 8283 seq_printf(seq, "."); 8284 seq_printf(seq, "] "); 8285 } 8286 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8287 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8288 "reshape" : 8289 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8290 "check" : 8291 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8292 "resync" : "recovery"))), 8293 per_milli/10, per_milli % 10, 8294 (unsigned long long) resync/2, 8295 (unsigned long long) max_sectors/2); 8296 8297 /* 8298 * dt: time from mark until now 8299 * db: blocks written from mark until now 8300 * rt: remaining time 8301 * 8302 * rt is a sector_t, which is always 64bit now. We are keeping 8303 * the original algorithm, but it is not really necessary. 8304 * 8305 * Original algorithm: 8306 * So we divide before multiply in case it is 32bit and close 8307 * to the limit. 8308 * We scale the divisor (db) by 32 to avoid losing precision 8309 * near the end of resync when the number of remaining sectors 8310 * is close to 'db'. 8311 * We then divide rt by 32 after multiplying by db to compensate. 8312 * The '+1' avoids division by zero if db is very small. 8313 */ 8314 dt = ((jiffies - mddev->resync_mark) / HZ); 8315 if (!dt) dt++; 8316 8317 curr_mark_cnt = mddev->curr_mark_cnt; 8318 recovery_active = atomic_read(&mddev->recovery_active); 8319 resync_mark_cnt = mddev->resync_mark_cnt; 8320 8321 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8322 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8323 8324 rt = max_sectors - resync; /* number of remaining sectors */ 8325 rt = div64_u64(rt, db/32+1); 8326 rt *= dt; 8327 rt >>= 5; 8328 8329 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8330 ((unsigned long)rt % 60)/6); 8331 8332 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8333 return 1; 8334 } 8335 md_seq_start(struct seq_file * seq,loff_t * pos)8336 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8337 __acquires(&all_mddevs_lock) 8338 { 8339 seq->poll_event = atomic_read(&md_event_count); 8340 spin_lock(&all_mddevs_lock); 8341 8342 return seq_list_start_head(&all_mddevs, *pos); 8343 } 8344 md_seq_next(struct seq_file * seq,void * v,loff_t * pos)8345 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8346 { 8347 return seq_list_next(v, &all_mddevs, pos); 8348 } 8349 md_seq_stop(struct seq_file * seq,void * v)8350 static void md_seq_stop(struct seq_file *seq, void *v) 8351 __releases(&all_mddevs_lock) 8352 { 8353 spin_unlock(&all_mddevs_lock); 8354 } 8355 md_bitmap_status(struct seq_file * seq,struct mddev * mddev)8356 static void md_bitmap_status(struct seq_file *seq, struct mddev *mddev) 8357 { 8358 struct md_bitmap_stats stats; 8359 unsigned long used_pages; 8360 unsigned long chunk_kb; 8361 int err; 8362 8363 err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats); 8364 if (err) 8365 return; 8366 8367 chunk_kb = mddev->bitmap_info.chunksize >> 10; 8368 used_pages = stats.pages - stats.missing_pages; 8369 8370 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], %lu%s chunk", 8371 used_pages, stats.pages, used_pages << (PAGE_SHIFT - 10), 8372 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize, 8373 chunk_kb ? "KB" : "B"); 8374 8375 if (stats.file) { 8376 seq_puts(seq, ", file: "); 8377 seq_file_path(seq, stats.file, " \t\n"); 8378 } 8379 8380 seq_putc(seq, '\n'); 8381 } 8382 md_seq_show(struct seq_file * seq,void * v)8383 static int md_seq_show(struct seq_file *seq, void *v) 8384 { 8385 struct mddev *mddev; 8386 sector_t sectors; 8387 struct md_rdev *rdev; 8388 8389 if (v == &all_mddevs) { 8390 status_personalities(seq); 8391 if (list_empty(&all_mddevs)) 8392 status_unused(seq); 8393 return 0; 8394 } 8395 8396 mddev = list_entry(v, struct mddev, all_mddevs); 8397 if (!mddev_get(mddev)) 8398 return 0; 8399 8400 spin_unlock(&all_mddevs_lock); 8401 8402 /* prevent bitmap to be freed after checking */ 8403 mutex_lock(&mddev->bitmap_info.mutex); 8404 8405 spin_lock(&mddev->lock); 8406 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8407 seq_printf(seq, "%s : ", mdname(mddev)); 8408 if (mddev->pers) { 8409 if (test_bit(MD_BROKEN, &mddev->flags)) 8410 seq_printf(seq, "broken"); 8411 else 8412 seq_printf(seq, "active"); 8413 if (mddev->ro == MD_RDONLY) 8414 seq_printf(seq, " (read-only)"); 8415 if (mddev->ro == MD_AUTO_READ) 8416 seq_printf(seq, " (auto-read-only)"); 8417 seq_printf(seq, " %s", mddev->pers->head.name); 8418 } else { 8419 seq_printf(seq, "inactive"); 8420 } 8421 8422 sectors = 0; 8423 rcu_read_lock(); 8424 rdev_for_each_rcu(rdev, mddev) { 8425 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr); 8426 8427 if (test_bit(WriteMostly, &rdev->flags)) 8428 seq_printf(seq, "(W)"); 8429 if (test_bit(Journal, &rdev->flags)) 8430 seq_printf(seq, "(J)"); 8431 if (test_bit(Faulty, &rdev->flags)) { 8432 seq_printf(seq, "(F)"); 8433 continue; 8434 } 8435 if (rdev->raid_disk < 0) 8436 seq_printf(seq, "(S)"); /* spare */ 8437 if (test_bit(Replacement, &rdev->flags)) 8438 seq_printf(seq, "(R)"); 8439 sectors += rdev->sectors; 8440 } 8441 rcu_read_unlock(); 8442 8443 if (!list_empty(&mddev->disks)) { 8444 if (mddev->pers) 8445 seq_printf(seq, "\n %llu blocks", 8446 (unsigned long long) 8447 mddev->array_sectors / 2); 8448 else 8449 seq_printf(seq, "\n %llu blocks", 8450 (unsigned long long)sectors / 2); 8451 } 8452 if (mddev->persistent) { 8453 if (mddev->major_version != 0 || 8454 mddev->minor_version != 90) { 8455 seq_printf(seq," super %d.%d", 8456 mddev->major_version, 8457 mddev->minor_version); 8458 } 8459 } else if (mddev->external) 8460 seq_printf(seq, " super external:%s", 8461 mddev->metadata_type); 8462 else 8463 seq_printf(seq, " super non-persistent"); 8464 8465 if (mddev->pers) { 8466 mddev->pers->status(seq, mddev); 8467 seq_printf(seq, "\n "); 8468 if (mddev->pers->sync_request) { 8469 if (status_resync(seq, mddev)) 8470 seq_printf(seq, "\n "); 8471 } 8472 } else 8473 seq_printf(seq, "\n "); 8474 8475 md_bitmap_status(seq, mddev); 8476 8477 seq_printf(seq, "\n"); 8478 } 8479 spin_unlock(&mddev->lock); 8480 mutex_unlock(&mddev->bitmap_info.mutex); 8481 spin_lock(&all_mddevs_lock); 8482 8483 if (mddev == list_last_entry(&all_mddevs, struct mddev, all_mddevs)) 8484 status_unused(seq); 8485 8486 mddev_put_locked(mddev); 8487 return 0; 8488 } 8489 8490 static const struct seq_operations md_seq_ops = { 8491 .start = md_seq_start, 8492 .next = md_seq_next, 8493 .stop = md_seq_stop, 8494 .show = md_seq_show, 8495 }; 8496 md_seq_open(struct inode * inode,struct file * file)8497 static int md_seq_open(struct inode *inode, struct file *file) 8498 { 8499 struct seq_file *seq; 8500 int error; 8501 8502 error = seq_open(file, &md_seq_ops); 8503 if (error) 8504 return error; 8505 8506 seq = file->private_data; 8507 seq->poll_event = atomic_read(&md_event_count); 8508 return error; 8509 } 8510 8511 static int md_unloading; mdstat_poll(struct file * filp,poll_table * wait)8512 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8513 { 8514 struct seq_file *seq = filp->private_data; 8515 __poll_t mask; 8516 8517 if (md_unloading) 8518 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8519 poll_wait(filp, &md_event_waiters, wait); 8520 8521 /* always allow read */ 8522 mask = EPOLLIN | EPOLLRDNORM; 8523 8524 if (seq->poll_event != atomic_read(&md_event_count)) 8525 mask |= EPOLLERR | EPOLLPRI; 8526 return mask; 8527 } 8528 8529 static const struct proc_ops mdstat_proc_ops = { 8530 .proc_open = md_seq_open, 8531 .proc_read = seq_read, 8532 .proc_lseek = seq_lseek, 8533 .proc_release = seq_release, 8534 .proc_poll = mdstat_poll, 8535 }; 8536 register_md_submodule(struct md_submodule_head * msh)8537 int register_md_submodule(struct md_submodule_head *msh) 8538 { 8539 return xa_insert(&md_submodule, msh->id, msh, GFP_KERNEL); 8540 } 8541 EXPORT_SYMBOL_GPL(register_md_submodule); 8542 unregister_md_submodule(struct md_submodule_head * msh)8543 void unregister_md_submodule(struct md_submodule_head *msh) 8544 { 8545 xa_erase(&md_submodule, msh->id); 8546 } 8547 EXPORT_SYMBOL_GPL(unregister_md_submodule); 8548 md_setup_cluster(struct mddev * mddev,int nodes)8549 int md_setup_cluster(struct mddev *mddev, int nodes) 8550 { 8551 int ret = get_cluster_ops(mddev); 8552 8553 if (ret) { 8554 request_module("md-cluster"); 8555 ret = get_cluster_ops(mddev); 8556 } 8557 8558 /* ensure module won't be unloaded */ 8559 if (ret) { 8560 pr_warn("can't find md-cluster module or get its reference.\n"); 8561 return ret; 8562 } 8563 8564 ret = mddev->cluster_ops->join(mddev, nodes); 8565 if (!ret) 8566 mddev->safemode_delay = 0; 8567 return ret; 8568 } 8569 md_cluster_stop(struct mddev * mddev)8570 void md_cluster_stop(struct mddev *mddev) 8571 { 8572 put_cluster_ops(mddev); 8573 } 8574 is_mddev_idle(struct mddev * mddev,int init)8575 static int is_mddev_idle(struct mddev *mddev, int init) 8576 { 8577 struct md_rdev *rdev; 8578 int idle; 8579 int curr_events; 8580 8581 idle = 1; 8582 rcu_read_lock(); 8583 rdev_for_each_rcu(rdev, mddev) { 8584 struct gendisk *disk = rdev->bdev->bd_disk; 8585 8586 if (!init && !blk_queue_io_stat(disk->queue)) 8587 continue; 8588 8589 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8590 atomic_read(&disk->sync_io); 8591 /* sync IO will cause sync_io to increase before the disk_stats 8592 * as sync_io is counted when a request starts, and 8593 * disk_stats is counted when it completes. 8594 * So resync activity will cause curr_events to be smaller than 8595 * when there was no such activity. 8596 * non-sync IO will cause disk_stat to increase without 8597 * increasing sync_io so curr_events will (eventually) 8598 * be larger than it was before. Once it becomes 8599 * substantially larger, the test below will cause 8600 * the array to appear non-idle, and resync will slow 8601 * down. 8602 * If there is a lot of outstanding resync activity when 8603 * we set last_event to curr_events, then all that activity 8604 * completing might cause the array to appear non-idle 8605 * and resync will be slowed down even though there might 8606 * not have been non-resync activity. This will only 8607 * happen once though. 'last_events' will soon reflect 8608 * the state where there is little or no outstanding 8609 * resync requests, and further resync activity will 8610 * always make curr_events less than last_events. 8611 * 8612 */ 8613 if (init || curr_events - rdev->last_events > 64) { 8614 rdev->last_events = curr_events; 8615 idle = 0; 8616 } 8617 } 8618 rcu_read_unlock(); 8619 return idle; 8620 } 8621 md_done_sync(struct mddev * mddev,int blocks,int ok)8622 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8623 { 8624 /* another "blocks" (512byte) blocks have been synced */ 8625 atomic_sub(blocks, &mddev->recovery_active); 8626 wake_up(&mddev->recovery_wait); 8627 if (!ok) { 8628 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8629 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8630 md_wakeup_thread(mddev->thread); 8631 // stop recovery, signal do_sync .... 8632 } 8633 } 8634 EXPORT_SYMBOL(md_done_sync); 8635 8636 /* md_write_start(mddev, bi) 8637 * If we need to update some array metadata (e.g. 'active' flag 8638 * in superblock) before writing, schedule a superblock update 8639 * and wait for it to complete. 8640 * A return value of 'false' means that the write wasn't recorded 8641 * and cannot proceed as the array is being suspend. 8642 */ md_write_start(struct mddev * mddev,struct bio * bi)8643 void md_write_start(struct mddev *mddev, struct bio *bi) 8644 { 8645 int did_change = 0; 8646 8647 if (bio_data_dir(bi) != WRITE) 8648 return; 8649 8650 BUG_ON(mddev->ro == MD_RDONLY); 8651 if (mddev->ro == MD_AUTO_READ) { 8652 /* need to switch to read/write */ 8653 mddev->ro = MD_RDWR; 8654 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8655 md_wakeup_thread(mddev->thread); 8656 md_wakeup_thread(mddev->sync_thread); 8657 did_change = 1; 8658 } 8659 rcu_read_lock(); 8660 percpu_ref_get(&mddev->writes_pending); 8661 smp_mb(); /* Match smp_mb in set_in_sync() */ 8662 if (mddev->safemode == 1) 8663 mddev->safemode = 0; 8664 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8665 if (mddev->in_sync || mddev->sync_checkers) { 8666 spin_lock(&mddev->lock); 8667 if (mddev->in_sync) { 8668 mddev->in_sync = 0; 8669 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8670 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8671 md_wakeup_thread(mddev->thread); 8672 did_change = 1; 8673 } 8674 spin_unlock(&mddev->lock); 8675 } 8676 rcu_read_unlock(); 8677 if (did_change) 8678 sysfs_notify_dirent_safe(mddev->sysfs_state); 8679 if (!mddev->has_superblocks) 8680 return; 8681 wait_event(mddev->sb_wait, 8682 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8683 } 8684 EXPORT_SYMBOL(md_write_start); 8685 8686 /* md_write_inc can only be called when md_write_start() has 8687 * already been called at least once of the current request. 8688 * It increments the counter and is useful when a single request 8689 * is split into several parts. Each part causes an increment and 8690 * so needs a matching md_write_end(). 8691 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8692 * a spinlocked region. 8693 */ md_write_inc(struct mddev * mddev,struct bio * bi)8694 void md_write_inc(struct mddev *mddev, struct bio *bi) 8695 { 8696 if (bio_data_dir(bi) != WRITE) 8697 return; 8698 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev)); 8699 percpu_ref_get(&mddev->writes_pending); 8700 } 8701 EXPORT_SYMBOL(md_write_inc); 8702 md_write_end(struct mddev * mddev)8703 void md_write_end(struct mddev *mddev) 8704 { 8705 percpu_ref_put(&mddev->writes_pending); 8706 8707 if (mddev->safemode == 2) 8708 md_wakeup_thread(mddev->thread); 8709 else if (mddev->safemode_delay) 8710 /* The roundup() ensures this only performs locking once 8711 * every ->safemode_delay jiffies 8712 */ 8713 mod_timer(&mddev->safemode_timer, 8714 roundup(jiffies, mddev->safemode_delay) + 8715 mddev->safemode_delay); 8716 } 8717 8718 EXPORT_SYMBOL(md_write_end); 8719 8720 /* This is used by raid0 and raid10 */ md_submit_discard_bio(struct mddev * mddev,struct md_rdev * rdev,struct bio * bio,sector_t start,sector_t size)8721 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8722 struct bio *bio, sector_t start, sector_t size) 8723 { 8724 struct bio *discard_bio = NULL; 8725 8726 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 8727 &discard_bio) || !discard_bio) 8728 return; 8729 8730 bio_chain(discard_bio, bio); 8731 bio_clone_blkg_association(discard_bio, bio); 8732 mddev_trace_remap(mddev, discard_bio, bio->bi_iter.bi_sector); 8733 submit_bio_noacct(discard_bio); 8734 } 8735 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8736 md_bitmap_start(struct mddev * mddev,struct md_io_clone * md_io_clone)8737 static void md_bitmap_start(struct mddev *mddev, 8738 struct md_io_clone *md_io_clone) 8739 { 8740 if (mddev->pers->bitmap_sector) 8741 mddev->pers->bitmap_sector(mddev, &md_io_clone->offset, 8742 &md_io_clone->sectors); 8743 8744 mddev->bitmap_ops->startwrite(mddev, md_io_clone->offset, 8745 md_io_clone->sectors); 8746 } 8747 md_bitmap_end(struct mddev * mddev,struct md_io_clone * md_io_clone)8748 static void md_bitmap_end(struct mddev *mddev, struct md_io_clone *md_io_clone) 8749 { 8750 mddev->bitmap_ops->endwrite(mddev, md_io_clone->offset, 8751 md_io_clone->sectors); 8752 } 8753 md_end_clone_io(struct bio * bio)8754 static void md_end_clone_io(struct bio *bio) 8755 { 8756 struct md_io_clone *md_io_clone = bio->bi_private; 8757 struct bio *orig_bio = md_io_clone->orig_bio; 8758 struct mddev *mddev = md_io_clone->mddev; 8759 8760 if (bio_data_dir(orig_bio) == WRITE && mddev->bitmap) 8761 md_bitmap_end(mddev, md_io_clone); 8762 8763 if (bio->bi_status && !orig_bio->bi_status) 8764 orig_bio->bi_status = bio->bi_status; 8765 8766 if (md_io_clone->start_time) 8767 bio_end_io_acct(orig_bio, md_io_clone->start_time); 8768 8769 bio_put(bio); 8770 bio_endio(orig_bio); 8771 percpu_ref_put(&mddev->active_io); 8772 } 8773 md_clone_bio(struct mddev * mddev,struct bio ** bio)8774 static void md_clone_bio(struct mddev *mddev, struct bio **bio) 8775 { 8776 struct block_device *bdev = (*bio)->bi_bdev; 8777 struct md_io_clone *md_io_clone; 8778 struct bio *clone = 8779 bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_clone_set); 8780 8781 md_io_clone = container_of(clone, struct md_io_clone, bio_clone); 8782 md_io_clone->orig_bio = *bio; 8783 md_io_clone->mddev = mddev; 8784 if (blk_queue_io_stat(bdev->bd_disk->queue)) 8785 md_io_clone->start_time = bio_start_io_acct(*bio); 8786 8787 if (bio_data_dir(*bio) == WRITE && mddev->bitmap) { 8788 md_io_clone->offset = (*bio)->bi_iter.bi_sector; 8789 md_io_clone->sectors = bio_sectors(*bio); 8790 md_bitmap_start(mddev, md_io_clone); 8791 } 8792 8793 clone->bi_end_io = md_end_clone_io; 8794 clone->bi_private = md_io_clone; 8795 *bio = clone; 8796 } 8797 md_account_bio(struct mddev * mddev,struct bio ** bio)8798 void md_account_bio(struct mddev *mddev, struct bio **bio) 8799 { 8800 percpu_ref_get(&mddev->active_io); 8801 md_clone_bio(mddev, bio); 8802 } 8803 EXPORT_SYMBOL_GPL(md_account_bio); 8804 md_free_cloned_bio(struct bio * bio)8805 void md_free_cloned_bio(struct bio *bio) 8806 { 8807 struct md_io_clone *md_io_clone = bio->bi_private; 8808 struct bio *orig_bio = md_io_clone->orig_bio; 8809 struct mddev *mddev = md_io_clone->mddev; 8810 8811 if (bio_data_dir(orig_bio) == WRITE && mddev->bitmap) 8812 md_bitmap_end(mddev, md_io_clone); 8813 8814 if (bio->bi_status && !orig_bio->bi_status) 8815 orig_bio->bi_status = bio->bi_status; 8816 8817 if (md_io_clone->start_time) 8818 bio_end_io_acct(orig_bio, md_io_clone->start_time); 8819 8820 bio_put(bio); 8821 percpu_ref_put(&mddev->active_io); 8822 } 8823 EXPORT_SYMBOL_GPL(md_free_cloned_bio); 8824 8825 /* md_allow_write(mddev) 8826 * Calling this ensures that the array is marked 'active' so that writes 8827 * may proceed without blocking. It is important to call this before 8828 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8829 * Must be called with mddev_lock held. 8830 */ md_allow_write(struct mddev * mddev)8831 void md_allow_write(struct mddev *mddev) 8832 { 8833 if (!mddev->pers) 8834 return; 8835 if (!md_is_rdwr(mddev)) 8836 return; 8837 if (!mddev->pers->sync_request) 8838 return; 8839 8840 spin_lock(&mddev->lock); 8841 if (mddev->in_sync) { 8842 mddev->in_sync = 0; 8843 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8844 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8845 if (mddev->safemode_delay && 8846 mddev->safemode == 0) 8847 mddev->safemode = 1; 8848 spin_unlock(&mddev->lock); 8849 md_update_sb(mddev, 0); 8850 sysfs_notify_dirent_safe(mddev->sysfs_state); 8851 /* wait for the dirty state to be recorded in the metadata */ 8852 wait_event(mddev->sb_wait, 8853 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8854 } else 8855 spin_unlock(&mddev->lock); 8856 } 8857 EXPORT_SYMBOL_GPL(md_allow_write); 8858 md_sync_max_sectors(struct mddev * mddev,enum sync_action action)8859 static sector_t md_sync_max_sectors(struct mddev *mddev, 8860 enum sync_action action) 8861 { 8862 switch (action) { 8863 case ACTION_RESYNC: 8864 case ACTION_CHECK: 8865 case ACTION_REPAIR: 8866 atomic64_set(&mddev->resync_mismatches, 0); 8867 fallthrough; 8868 case ACTION_RESHAPE: 8869 return mddev->resync_max_sectors; 8870 case ACTION_RECOVER: 8871 return mddev->dev_sectors; 8872 default: 8873 return 0; 8874 } 8875 } 8876 md_sync_position(struct mddev * mddev,enum sync_action action)8877 static sector_t md_sync_position(struct mddev *mddev, enum sync_action action) 8878 { 8879 sector_t start = 0; 8880 struct md_rdev *rdev; 8881 8882 switch (action) { 8883 case ACTION_CHECK: 8884 case ACTION_REPAIR: 8885 return mddev->resync_min; 8886 case ACTION_RESYNC: 8887 if (!mddev->bitmap) 8888 return mddev->recovery_cp; 8889 return 0; 8890 case ACTION_RESHAPE: 8891 /* 8892 * If the original node aborts reshaping then we continue the 8893 * reshaping, so set again to avoid restart reshape from the 8894 * first beginning 8895 */ 8896 if (mddev_is_clustered(mddev) && 8897 mddev->reshape_position != MaxSector) 8898 return mddev->reshape_position; 8899 return 0; 8900 case ACTION_RECOVER: 8901 start = MaxSector; 8902 rcu_read_lock(); 8903 rdev_for_each_rcu(rdev, mddev) 8904 if (rdev->raid_disk >= 0 && 8905 !test_bit(Journal, &rdev->flags) && 8906 !test_bit(Faulty, &rdev->flags) && 8907 !test_bit(In_sync, &rdev->flags) && 8908 rdev->recovery_offset < start) 8909 start = rdev->recovery_offset; 8910 rcu_read_unlock(); 8911 8912 /* If there is a bitmap, we need to make sure all 8913 * writes that started before we added a spare 8914 * complete before we start doing a recovery. 8915 * Otherwise the write might complete and (via 8916 * bitmap_endwrite) set a bit in the bitmap after the 8917 * recovery has checked that bit and skipped that 8918 * region. 8919 */ 8920 if (mddev->bitmap) { 8921 mddev->pers->quiesce(mddev, 1); 8922 mddev->pers->quiesce(mddev, 0); 8923 } 8924 return start; 8925 default: 8926 return MaxSector; 8927 } 8928 } 8929 8930 #define SYNC_MARKS 10 8931 #define SYNC_MARK_STEP (3*HZ) 8932 #define UPDATE_FREQUENCY (5*60*HZ) md_do_sync(struct md_thread * thread)8933 void md_do_sync(struct md_thread *thread) 8934 { 8935 struct mddev *mddev = thread->mddev; 8936 struct mddev *mddev2; 8937 unsigned int currspeed = 0, window; 8938 sector_t max_sectors,j, io_sectors, recovery_done; 8939 unsigned long mark[SYNC_MARKS]; 8940 unsigned long update_time; 8941 sector_t mark_cnt[SYNC_MARKS]; 8942 int last_mark,m; 8943 sector_t last_check; 8944 int skipped = 0; 8945 struct md_rdev *rdev; 8946 enum sync_action action; 8947 const char *desc; 8948 struct blk_plug plug; 8949 int ret; 8950 8951 /* just incase thread restarts... */ 8952 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8953 return; 8954 8955 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8956 goto skip; 8957 8958 if (test_bit(MD_RECOVERY_WAIT, &mddev->recovery) || 8959 !md_is_rdwr(mddev)) {/* never try to sync a read-only array */ 8960 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8961 goto skip; 8962 } 8963 8964 if (mddev_is_clustered(mddev)) { 8965 ret = mddev->cluster_ops->resync_start(mddev); 8966 if (ret) 8967 goto skip; 8968 8969 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8970 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8971 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8972 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8973 && ((unsigned long long)mddev->curr_resync_completed 8974 < (unsigned long long)mddev->resync_max_sectors)) 8975 goto skip; 8976 } 8977 8978 action = md_sync_action(mddev); 8979 desc = md_sync_action_name(action); 8980 mddev->last_sync_action = action; 8981 8982 /* 8983 * Before starting a resync we must have set curr_resync to 8984 * 2, and then checked that every "conflicting" array has curr_resync 8985 * less than ours. When we find one that is the same or higher 8986 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8987 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8988 * This will mean we have to start checking from the beginning again. 8989 * 8990 */ 8991 if (mddev_is_clustered(mddev)) 8992 mddev->cluster_ops->resync_start_notify(mddev); 8993 do { 8994 int mddev2_minor = -1; 8995 mddev->curr_resync = MD_RESYNC_DELAYED; 8996 8997 try_again: 8998 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8999 goto skip; 9000 spin_lock(&all_mddevs_lock); 9001 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) { 9002 if (test_bit(MD_DELETED, &mddev2->flags)) 9003 continue; 9004 if (mddev2 == mddev) 9005 continue; 9006 if (!mddev->parallel_resync 9007 && mddev2->curr_resync 9008 && match_mddev_units(mddev, mddev2)) { 9009 DEFINE_WAIT(wq); 9010 if (mddev < mddev2 && 9011 mddev->curr_resync == MD_RESYNC_DELAYED) { 9012 /* arbitrarily yield */ 9013 mddev->curr_resync = MD_RESYNC_YIELDED; 9014 wake_up(&resync_wait); 9015 } 9016 if (mddev > mddev2 && 9017 mddev->curr_resync == MD_RESYNC_YIELDED) 9018 /* no need to wait here, we can wait the next 9019 * time 'round when curr_resync == 2 9020 */ 9021 continue; 9022 /* We need to wait 'interruptible' so as not to 9023 * contribute to the load average, and not to 9024 * be caught by 'softlockup' 9025 */ 9026 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 9027 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9028 mddev2->curr_resync >= mddev->curr_resync) { 9029 if (mddev2_minor != mddev2->md_minor) { 9030 mddev2_minor = mddev2->md_minor; 9031 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 9032 desc, mdname(mddev), 9033 mdname(mddev2)); 9034 } 9035 spin_unlock(&all_mddevs_lock); 9036 9037 if (signal_pending(current)) 9038 flush_signals(current); 9039 schedule(); 9040 finish_wait(&resync_wait, &wq); 9041 goto try_again; 9042 } 9043 finish_wait(&resync_wait, &wq); 9044 } 9045 } 9046 spin_unlock(&all_mddevs_lock); 9047 } while (mddev->curr_resync < MD_RESYNC_DELAYED); 9048 9049 max_sectors = md_sync_max_sectors(mddev, action); 9050 j = md_sync_position(mddev, action); 9051 9052 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 9053 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 9054 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 9055 speed_max(mddev), desc); 9056 9057 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 9058 9059 io_sectors = 0; 9060 for (m = 0; m < SYNC_MARKS; m++) { 9061 mark[m] = jiffies; 9062 mark_cnt[m] = io_sectors; 9063 } 9064 last_mark = 0; 9065 mddev->resync_mark = mark[last_mark]; 9066 mddev->resync_mark_cnt = mark_cnt[last_mark]; 9067 9068 /* 9069 * Tune reconstruction: 9070 */ 9071 window = 32 * (PAGE_SIZE / 512); 9072 pr_debug("md: using %dk window, over a total of %lluk.\n", 9073 window/2, (unsigned long long)max_sectors/2); 9074 9075 atomic_set(&mddev->recovery_active, 0); 9076 last_check = 0; 9077 9078 if (j >= MD_RESYNC_ACTIVE) { 9079 pr_debug("md: resuming %s of %s from checkpoint.\n", 9080 desc, mdname(mddev)); 9081 mddev->curr_resync = j; 9082 } else 9083 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */ 9084 mddev->curr_resync_completed = j; 9085 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9086 md_new_event(); 9087 update_time = jiffies; 9088 9089 blk_start_plug(&plug); 9090 while (j < max_sectors) { 9091 sector_t sectors; 9092 9093 skipped = 0; 9094 9095 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9096 ((mddev->curr_resync > mddev->curr_resync_completed && 9097 (mddev->curr_resync - mddev->curr_resync_completed) 9098 > (max_sectors >> 4)) || 9099 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 9100 (j - mddev->curr_resync_completed)*2 9101 >= mddev->resync_max - mddev->curr_resync_completed || 9102 mddev->curr_resync_completed > mddev->resync_max 9103 )) { 9104 /* time to update curr_resync_completed */ 9105 wait_event(mddev->recovery_wait, 9106 atomic_read(&mddev->recovery_active) == 0); 9107 mddev->curr_resync_completed = j; 9108 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 9109 j > mddev->recovery_cp) 9110 mddev->recovery_cp = j; 9111 update_time = jiffies; 9112 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 9113 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9114 } 9115 9116 while (j >= mddev->resync_max && 9117 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9118 /* As this condition is controlled by user-space, 9119 * we can block indefinitely, so use '_interruptible' 9120 * to avoid triggering warnings. 9121 */ 9122 flush_signals(current); /* just in case */ 9123 wait_event_interruptible(mddev->recovery_wait, 9124 mddev->resync_max > j 9125 || test_bit(MD_RECOVERY_INTR, 9126 &mddev->recovery)); 9127 } 9128 9129 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9130 break; 9131 9132 sectors = mddev->pers->sync_request(mddev, j, max_sectors, 9133 &skipped); 9134 if (sectors == 0) { 9135 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9136 break; 9137 } 9138 9139 if (!skipped) { /* actual IO requested */ 9140 io_sectors += sectors; 9141 atomic_add(sectors, &mddev->recovery_active); 9142 } 9143 9144 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9145 break; 9146 9147 j += sectors; 9148 if (j > max_sectors) 9149 /* when skipping, extra large numbers can be returned. */ 9150 j = max_sectors; 9151 if (j >= MD_RESYNC_ACTIVE) 9152 mddev->curr_resync = j; 9153 mddev->curr_mark_cnt = io_sectors; 9154 if (last_check == 0) 9155 /* this is the earliest that rebuild will be 9156 * visible in /proc/mdstat 9157 */ 9158 md_new_event(); 9159 9160 if (last_check + window > io_sectors || j == max_sectors) 9161 continue; 9162 9163 last_check = io_sectors; 9164 repeat: 9165 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 9166 /* step marks */ 9167 int next = (last_mark+1) % SYNC_MARKS; 9168 9169 mddev->resync_mark = mark[next]; 9170 mddev->resync_mark_cnt = mark_cnt[next]; 9171 mark[next] = jiffies; 9172 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 9173 last_mark = next; 9174 } 9175 9176 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9177 break; 9178 9179 /* 9180 * this loop exits only if either when we are slower than 9181 * the 'hard' speed limit, or the system was IO-idle for 9182 * a jiffy. 9183 * the system might be non-idle CPU-wise, but we only care 9184 * about not overloading the IO subsystem. (things like an 9185 * e2fsck being done on the RAID array should execute fast) 9186 */ 9187 cond_resched(); 9188 9189 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 9190 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 9191 /((jiffies-mddev->resync_mark)/HZ +1) +1; 9192 9193 if (currspeed > speed_min(mddev)) { 9194 if (currspeed > speed_max(mddev)) { 9195 msleep(500); 9196 goto repeat; 9197 } 9198 if (!is_mddev_idle(mddev, 0)) { 9199 /* 9200 * Give other IO more of a chance. 9201 * The faster the devices, the less we wait. 9202 */ 9203 wait_event(mddev->recovery_wait, 9204 !atomic_read(&mddev->recovery_active)); 9205 } 9206 } 9207 } 9208 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9209 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9210 ? "interrupted" : "done"); 9211 /* 9212 * this also signals 'finished resyncing' to md_stop 9213 */ 9214 blk_finish_plug(&plug); 9215 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9216 9217 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9218 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9219 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9220 mddev->curr_resync_completed = mddev->curr_resync; 9221 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9222 } 9223 mddev->pers->sync_request(mddev, max_sectors, max_sectors, &skipped); 9224 9225 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9226 mddev->curr_resync > MD_RESYNC_ACTIVE) { 9227 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9228 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9229 if (mddev->curr_resync >= mddev->recovery_cp) { 9230 pr_debug("md: checkpointing %s of %s.\n", 9231 desc, mdname(mddev)); 9232 if (test_bit(MD_RECOVERY_ERROR, 9233 &mddev->recovery)) 9234 mddev->recovery_cp = 9235 mddev->curr_resync_completed; 9236 else 9237 mddev->recovery_cp = 9238 mddev->curr_resync; 9239 } 9240 } else 9241 mddev->recovery_cp = MaxSector; 9242 } else { 9243 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9244 mddev->curr_resync = MaxSector; 9245 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9246 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9247 rcu_read_lock(); 9248 rdev_for_each_rcu(rdev, mddev) 9249 if (rdev->raid_disk >= 0 && 9250 mddev->delta_disks >= 0 && 9251 !test_bit(Journal, &rdev->flags) && 9252 !test_bit(Faulty, &rdev->flags) && 9253 !test_bit(In_sync, &rdev->flags) && 9254 rdev->recovery_offset < mddev->curr_resync) 9255 rdev->recovery_offset = mddev->curr_resync; 9256 rcu_read_unlock(); 9257 } 9258 } 9259 } 9260 skip: 9261 /* set CHANGE_PENDING here since maybe another update is needed, 9262 * so other nodes are informed. It should be harmless for normal 9263 * raid */ 9264 set_mask_bits(&mddev->sb_flags, 0, 9265 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9266 9267 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9268 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9269 mddev->delta_disks > 0 && 9270 mddev->pers->finish_reshape && 9271 mddev->pers->size && 9272 !mddev_is_dm(mddev)) { 9273 mddev_lock_nointr(mddev); 9274 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9275 mddev_unlock(mddev); 9276 if (!mddev_is_clustered(mddev)) 9277 set_capacity_and_notify(mddev->gendisk, 9278 mddev->array_sectors); 9279 } 9280 9281 spin_lock(&mddev->lock); 9282 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9283 /* We completed so min/max setting can be forgotten if used. */ 9284 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9285 mddev->resync_min = 0; 9286 mddev->resync_max = MaxSector; 9287 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9288 mddev->resync_min = mddev->curr_resync_completed; 9289 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9290 mddev->curr_resync = MD_RESYNC_NONE; 9291 spin_unlock(&mddev->lock); 9292 9293 wake_up(&resync_wait); 9294 md_wakeup_thread(mddev->thread); 9295 return; 9296 } 9297 EXPORT_SYMBOL_GPL(md_do_sync); 9298 rdev_removeable(struct md_rdev * rdev)9299 static bool rdev_removeable(struct md_rdev *rdev) 9300 { 9301 /* rdev is not used. */ 9302 if (rdev->raid_disk < 0) 9303 return false; 9304 9305 /* There are still inflight io, don't remove this rdev. */ 9306 if (atomic_read(&rdev->nr_pending)) 9307 return false; 9308 9309 /* 9310 * An error occurred but has not yet been acknowledged by the metadata 9311 * handler, don't remove this rdev. 9312 */ 9313 if (test_bit(Blocked, &rdev->flags)) 9314 return false; 9315 9316 /* Fautly rdev is not used, it's safe to remove it. */ 9317 if (test_bit(Faulty, &rdev->flags)) 9318 return true; 9319 9320 /* Journal disk can only be removed if it's faulty. */ 9321 if (test_bit(Journal, &rdev->flags)) 9322 return false; 9323 9324 /* 9325 * 'In_sync' is cleared while 'raid_disk' is valid, which means 9326 * replacement has just become active from pers->spare_active(), and 9327 * then pers->hot_remove_disk() will replace this rdev with replacement. 9328 */ 9329 if (!test_bit(In_sync, &rdev->flags)) 9330 return true; 9331 9332 return false; 9333 } 9334 rdev_is_spare(struct md_rdev * rdev)9335 static bool rdev_is_spare(struct md_rdev *rdev) 9336 { 9337 return !test_bit(Candidate, &rdev->flags) && rdev->raid_disk >= 0 && 9338 !test_bit(In_sync, &rdev->flags) && 9339 !test_bit(Journal, &rdev->flags) && 9340 !test_bit(Faulty, &rdev->flags); 9341 } 9342 rdev_addable(struct md_rdev * rdev)9343 static bool rdev_addable(struct md_rdev *rdev) 9344 { 9345 /* rdev is already used, don't add it again. */ 9346 if (test_bit(Candidate, &rdev->flags) || rdev->raid_disk >= 0 || 9347 test_bit(Faulty, &rdev->flags)) 9348 return false; 9349 9350 /* Allow to add journal disk. */ 9351 if (test_bit(Journal, &rdev->flags)) 9352 return true; 9353 9354 /* Allow to add if array is read-write. */ 9355 if (md_is_rdwr(rdev->mddev)) 9356 return true; 9357 9358 /* 9359 * For read-only array, only allow to readd a rdev. And if bitmap is 9360 * used, don't allow to readd a rdev that is too old. 9361 */ 9362 if (rdev->saved_raid_disk >= 0 && !test_bit(Bitmap_sync, &rdev->flags)) 9363 return true; 9364 9365 return false; 9366 } 9367 md_spares_need_change(struct mddev * mddev)9368 static bool md_spares_need_change(struct mddev *mddev) 9369 { 9370 struct md_rdev *rdev; 9371 9372 rcu_read_lock(); 9373 rdev_for_each_rcu(rdev, mddev) { 9374 if (rdev_removeable(rdev) || rdev_addable(rdev)) { 9375 rcu_read_unlock(); 9376 return true; 9377 } 9378 } 9379 rcu_read_unlock(); 9380 return false; 9381 } 9382 remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)9383 static int remove_and_add_spares(struct mddev *mddev, 9384 struct md_rdev *this) 9385 { 9386 struct md_rdev *rdev; 9387 int spares = 0; 9388 int removed = 0; 9389 9390 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9391 /* Mustn't remove devices when resync thread is running */ 9392 return 0; 9393 9394 rdev_for_each(rdev, mddev) { 9395 if ((this == NULL || rdev == this) && rdev_removeable(rdev) && 9396 !mddev->pers->hot_remove_disk(mddev, rdev)) { 9397 sysfs_unlink_rdev(mddev, rdev); 9398 rdev->saved_raid_disk = rdev->raid_disk; 9399 rdev->raid_disk = -1; 9400 removed++; 9401 } 9402 } 9403 9404 if (removed && mddev->kobj.sd) 9405 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9406 9407 if (this && removed) 9408 goto no_add; 9409 9410 rdev_for_each(rdev, mddev) { 9411 if (this && this != rdev) 9412 continue; 9413 if (rdev_is_spare(rdev)) 9414 spares++; 9415 if (!rdev_addable(rdev)) 9416 continue; 9417 if (!test_bit(Journal, &rdev->flags)) 9418 rdev->recovery_offset = 0; 9419 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9420 /* failure here is OK */ 9421 sysfs_link_rdev(mddev, rdev); 9422 if (!test_bit(Journal, &rdev->flags)) 9423 spares++; 9424 md_new_event(); 9425 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9426 } 9427 } 9428 no_add: 9429 if (removed) 9430 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9431 return spares; 9432 } 9433 md_choose_sync_action(struct mddev * mddev,int * spares)9434 static bool md_choose_sync_action(struct mddev *mddev, int *spares) 9435 { 9436 /* Check if reshape is in progress first. */ 9437 if (mddev->reshape_position != MaxSector) { 9438 if (mddev->pers->check_reshape == NULL || 9439 mddev->pers->check_reshape(mddev) != 0) 9440 return false; 9441 9442 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9443 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9444 return true; 9445 } 9446 9447 /* Check if resync is in progress. */ 9448 if (mddev->recovery_cp < MaxSector) { 9449 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9450 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9451 return true; 9452 } 9453 9454 /* 9455 * Remove any failed drives, then add spares if possible. Spares are 9456 * also removed and re-added, to allow the personality to fail the 9457 * re-add. 9458 */ 9459 *spares = remove_and_add_spares(mddev, NULL); 9460 if (*spares) { 9461 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9462 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9463 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9464 9465 /* Start new recovery. */ 9466 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9467 return true; 9468 } 9469 9470 /* Delay to choose resync/check/repair in md_do_sync(). */ 9471 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9472 return true; 9473 9474 /* Nothing to be done */ 9475 return false; 9476 } 9477 md_start_sync(struct work_struct * ws)9478 static void md_start_sync(struct work_struct *ws) 9479 { 9480 struct mddev *mddev = container_of(ws, struct mddev, sync_work); 9481 int spares = 0; 9482 bool suspend = false; 9483 char *name; 9484 9485 /* 9486 * If reshape is still in progress, spares won't be added or removed 9487 * from conf until reshape is done. 9488 */ 9489 if (mddev->reshape_position == MaxSector && 9490 md_spares_need_change(mddev)) { 9491 suspend = true; 9492 mddev_suspend(mddev, false); 9493 } 9494 9495 mddev_lock_nointr(mddev); 9496 if (!md_is_rdwr(mddev)) { 9497 /* 9498 * On a read-only array we can: 9499 * - remove failed devices 9500 * - add already-in_sync devices if the array itself is in-sync. 9501 * As we only add devices that are already in-sync, we can 9502 * activate the spares immediately. 9503 */ 9504 remove_and_add_spares(mddev, NULL); 9505 goto not_running; 9506 } 9507 9508 if (!md_choose_sync_action(mddev, &spares)) 9509 goto not_running; 9510 9511 if (!mddev->pers->sync_request) 9512 goto not_running; 9513 9514 /* 9515 * We are adding a device or devices to an array which has the bitmap 9516 * stored on all devices. So make sure all bitmap pages get written. 9517 */ 9518 if (spares) 9519 mddev->bitmap_ops->write_all(mddev); 9520 9521 name = test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ? 9522 "reshape" : "resync"; 9523 rcu_assign_pointer(mddev->sync_thread, 9524 md_register_thread(md_do_sync, mddev, name)); 9525 if (!mddev->sync_thread) { 9526 pr_warn("%s: could not start resync thread...\n", 9527 mdname(mddev)); 9528 /* leave the spares where they are, it shouldn't hurt */ 9529 goto not_running; 9530 } 9531 9532 mddev_unlock(mddev); 9533 /* 9534 * md_start_sync was triggered by MD_RECOVERY_NEEDED, so we should 9535 * not set it again. Otherwise, we may cause issue like this one: 9536 * https://bugzilla.kernel.org/show_bug.cgi?id=218200 9537 * Therefore, use __mddev_resume(mddev, false). 9538 */ 9539 if (suspend) 9540 __mddev_resume(mddev, false); 9541 md_wakeup_thread(mddev->sync_thread); 9542 sysfs_notify_dirent_safe(mddev->sysfs_action); 9543 md_new_event(); 9544 return; 9545 9546 not_running: 9547 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9548 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9549 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9550 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9551 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9552 mddev_unlock(mddev); 9553 /* 9554 * md_start_sync was triggered by MD_RECOVERY_NEEDED, so we should 9555 * not set it again. Otherwise, we may cause issue like this one: 9556 * https://bugzilla.kernel.org/show_bug.cgi?id=218200 9557 * Therefore, use __mddev_resume(mddev, false). 9558 */ 9559 if (suspend) 9560 __mddev_resume(mddev, false); 9561 9562 wake_up(&resync_wait); 9563 if (test_and_clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 9564 mddev->sysfs_action) 9565 sysfs_notify_dirent_safe(mddev->sysfs_action); 9566 } 9567 unregister_sync_thread(struct mddev * mddev)9568 static void unregister_sync_thread(struct mddev *mddev) 9569 { 9570 if (!test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9571 /* resync/recovery still happening */ 9572 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9573 return; 9574 } 9575 9576 if (WARN_ON_ONCE(!mddev->sync_thread)) 9577 return; 9578 9579 md_reap_sync_thread(mddev); 9580 } 9581 9582 /* 9583 * This routine is regularly called by all per-raid-array threads to 9584 * deal with generic issues like resync and super-block update. 9585 * Raid personalities that don't have a thread (linear/raid0) do not 9586 * need this as they never do any recovery or update the superblock. 9587 * 9588 * It does not do any resync itself, but rather "forks" off other threads 9589 * to do that as needed. 9590 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9591 * "->recovery" and create a thread at ->sync_thread. 9592 * When the thread finishes it sets MD_RECOVERY_DONE 9593 * and wakeups up this thread which will reap the thread and finish up. 9594 * This thread also removes any faulty devices (with nr_pending == 0). 9595 * 9596 * The overall approach is: 9597 * 1/ if the superblock needs updating, update it. 9598 * 2/ If a recovery thread is running, don't do anything else. 9599 * 3/ If recovery has finished, clean up, possibly marking spares active. 9600 * 4/ If there are any faulty devices, remove them. 9601 * 5/ If array is degraded, try to add spares devices 9602 * 6/ If array has spares or is not in-sync, start a resync thread. 9603 */ md_check_recovery(struct mddev * mddev)9604 void md_check_recovery(struct mddev *mddev) 9605 { 9606 if (mddev->bitmap) 9607 mddev->bitmap_ops->daemon_work(mddev); 9608 9609 if (signal_pending(current)) { 9610 if (mddev->pers->sync_request && !mddev->external) { 9611 pr_debug("md: %s in immediate safe mode\n", 9612 mdname(mddev)); 9613 mddev->safemode = 2; 9614 } 9615 flush_signals(current); 9616 } 9617 9618 if (!md_is_rdwr(mddev) && 9619 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) && 9620 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 9621 return; 9622 if ( ! ( 9623 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9624 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9625 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9626 (mddev->external == 0 && mddev->safemode == 1) || 9627 (mddev->safemode == 2 9628 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9629 )) 9630 return; 9631 9632 if (mddev_trylock(mddev)) { 9633 bool try_set_sync = mddev->safemode != 0; 9634 9635 if (!mddev->external && mddev->safemode == 1) 9636 mddev->safemode = 0; 9637 9638 if (!md_is_rdwr(mddev)) { 9639 struct md_rdev *rdev; 9640 9641 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 9642 unregister_sync_thread(mddev); 9643 goto unlock; 9644 } 9645 9646 if (!mddev->external && mddev->in_sync) 9647 /* 9648 * 'Blocked' flag not needed as failed devices 9649 * will be recorded if array switched to read/write. 9650 * Leaving it set will prevent the device 9651 * from being removed. 9652 */ 9653 rdev_for_each(rdev, mddev) 9654 clear_bit(Blocked, &rdev->flags); 9655 9656 /* 9657 * There is no thread, but we need to call 9658 * ->spare_active and clear saved_raid_disk 9659 */ 9660 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9661 md_reap_sync_thread(mddev); 9662 9663 /* 9664 * Let md_start_sync() to remove and add rdevs to the 9665 * array. 9666 */ 9667 if (md_spares_need_change(mddev)) { 9668 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9669 queue_work(md_misc_wq, &mddev->sync_work); 9670 } 9671 9672 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9673 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9674 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9675 9676 goto unlock; 9677 } 9678 9679 if (mddev_is_clustered(mddev)) { 9680 struct md_rdev *rdev, *tmp; 9681 /* kick the device if another node issued a 9682 * remove disk. 9683 */ 9684 rdev_for_each_safe(rdev, tmp, mddev) { 9685 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9686 rdev->raid_disk < 0) 9687 md_kick_rdev_from_array(rdev); 9688 } 9689 } 9690 9691 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9692 spin_lock(&mddev->lock); 9693 set_in_sync(mddev); 9694 spin_unlock(&mddev->lock); 9695 } 9696 9697 if (mddev->sb_flags) 9698 md_update_sb(mddev, 0); 9699 9700 /* 9701 * Never start a new sync thread if MD_RECOVERY_RUNNING is 9702 * still set. 9703 */ 9704 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 9705 unregister_sync_thread(mddev); 9706 goto unlock; 9707 } 9708 9709 /* Set RUNNING before clearing NEEDED to avoid 9710 * any transients in the value of "sync_action". 9711 */ 9712 mddev->curr_resync_completed = 0; 9713 spin_lock(&mddev->lock); 9714 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9715 spin_unlock(&mddev->lock); 9716 /* Clear some bits that don't mean anything, but 9717 * might be left set 9718 */ 9719 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9720 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9721 9722 if (test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) && 9723 !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 9724 queue_work(md_misc_wq, &mddev->sync_work); 9725 } else { 9726 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9727 wake_up(&resync_wait); 9728 } 9729 9730 unlock: 9731 wake_up(&mddev->sb_wait); 9732 mddev_unlock(mddev); 9733 } 9734 } 9735 EXPORT_SYMBOL(md_check_recovery); 9736 md_reap_sync_thread(struct mddev * mddev)9737 void md_reap_sync_thread(struct mddev *mddev) 9738 { 9739 struct md_rdev *rdev; 9740 sector_t old_dev_sectors = mddev->dev_sectors; 9741 bool is_reshaped = false; 9742 9743 /* resync has finished, collect result */ 9744 md_unregister_thread(mddev, &mddev->sync_thread); 9745 atomic_inc(&mddev->sync_seq); 9746 9747 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9748 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9749 mddev->degraded != mddev->raid_disks) { 9750 /* success...*/ 9751 /* activate any spares */ 9752 if (mddev->pers->spare_active(mddev)) { 9753 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9754 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9755 } 9756 } 9757 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9758 mddev->pers->finish_reshape) { 9759 mddev->pers->finish_reshape(mddev); 9760 if (mddev_is_clustered(mddev)) 9761 is_reshaped = true; 9762 } 9763 9764 /* If array is no-longer degraded, then any saved_raid_disk 9765 * information must be scrapped. 9766 */ 9767 if (!mddev->degraded) 9768 rdev_for_each(rdev, mddev) 9769 rdev->saved_raid_disk = -1; 9770 9771 md_update_sb(mddev, 1); 9772 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9773 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9774 * clustered raid */ 9775 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9776 mddev->cluster_ops->resync_finish(mddev); 9777 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9778 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9779 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9780 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9781 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9782 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9783 /* 9784 * We call mddev->cluster_ops->update_size here because sync_size could 9785 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9786 * so it is time to update size across cluster. 9787 */ 9788 if (mddev_is_clustered(mddev) && is_reshaped 9789 && !test_bit(MD_CLOSING, &mddev->flags)) 9790 mddev->cluster_ops->update_size(mddev, old_dev_sectors); 9791 /* flag recovery needed just to double check */ 9792 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9793 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9794 sysfs_notify_dirent_safe(mddev->sysfs_action); 9795 md_new_event(); 9796 if (mddev->event_work.func) 9797 queue_work(md_misc_wq, &mddev->event_work); 9798 wake_up(&resync_wait); 9799 } 9800 EXPORT_SYMBOL(md_reap_sync_thread); 9801 md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)9802 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9803 { 9804 sysfs_notify_dirent_safe(rdev->sysfs_state); 9805 wait_event_timeout(rdev->blocked_wait, !rdev_blocked(rdev), 9806 msecs_to_jiffies(5000)); 9807 rdev_dec_pending(rdev, mddev); 9808 } 9809 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9810 md_finish_reshape(struct mddev * mddev)9811 void md_finish_reshape(struct mddev *mddev) 9812 { 9813 /* called be personality module when reshape completes. */ 9814 struct md_rdev *rdev; 9815 9816 rdev_for_each(rdev, mddev) { 9817 if (rdev->data_offset > rdev->new_data_offset) 9818 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9819 else 9820 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9821 rdev->data_offset = rdev->new_data_offset; 9822 } 9823 } 9824 EXPORT_SYMBOL(md_finish_reshape); 9825 9826 /* Bad block management */ 9827 9828 /* Returns true on success, false on failure */ rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9829 bool rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9830 int is_new) 9831 { 9832 struct mddev *mddev = rdev->mddev; 9833 9834 /* 9835 * Recording new badblocks for faulty rdev will force unnecessary 9836 * super block updating. This is fragile for external management because 9837 * userspace daemon may trying to remove this device and deadlock may 9838 * occur. This will be probably solved in the mdadm, but it is safer to 9839 * avoid it. 9840 */ 9841 if (test_bit(Faulty, &rdev->flags)) 9842 return true; 9843 9844 if (is_new) 9845 s += rdev->new_data_offset; 9846 else 9847 s += rdev->data_offset; 9848 9849 if (!badblocks_set(&rdev->badblocks, s, sectors, 0)) 9850 return false; 9851 9852 /* Make sure they get written out promptly */ 9853 if (test_bit(ExternalBbl, &rdev->flags)) 9854 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9855 sysfs_notify_dirent_safe(rdev->sysfs_state); 9856 set_mask_bits(&mddev->sb_flags, 0, 9857 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9858 md_wakeup_thread(rdev->mddev->thread); 9859 return true; 9860 } 9861 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9862 rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9863 void rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9864 int is_new) 9865 { 9866 if (is_new) 9867 s += rdev->new_data_offset; 9868 else 9869 s += rdev->data_offset; 9870 9871 if (!badblocks_clear(&rdev->badblocks, s, sectors)) 9872 return; 9873 9874 if (test_bit(ExternalBbl, &rdev->flags)) 9875 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9876 } 9877 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9878 md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)9879 static int md_notify_reboot(struct notifier_block *this, 9880 unsigned long code, void *x) 9881 { 9882 struct mddev *mddev; 9883 int need_delay = 0; 9884 9885 spin_lock(&all_mddevs_lock); 9886 list_for_each_entry(mddev, &all_mddevs, all_mddevs) { 9887 if (!mddev_get(mddev)) 9888 continue; 9889 spin_unlock(&all_mddevs_lock); 9890 if (mddev_trylock(mddev)) { 9891 if (mddev->pers) 9892 __md_stop_writes(mddev); 9893 if (mddev->persistent) 9894 mddev->safemode = 2; 9895 mddev_unlock(mddev); 9896 } 9897 need_delay = 1; 9898 spin_lock(&all_mddevs_lock); 9899 mddev_put_locked(mddev); 9900 } 9901 spin_unlock(&all_mddevs_lock); 9902 9903 /* 9904 * certain more exotic SCSI devices are known to be 9905 * volatile wrt too early system reboots. While the 9906 * right place to handle this issue is the given 9907 * driver, we do want to have a safe RAID driver ... 9908 */ 9909 if (need_delay) 9910 msleep(1000); 9911 9912 return NOTIFY_DONE; 9913 } 9914 9915 static struct notifier_block md_notifier = { 9916 .notifier_call = md_notify_reboot, 9917 .next = NULL, 9918 .priority = INT_MAX, /* before any real devices */ 9919 }; 9920 md_geninit(void)9921 static void md_geninit(void) 9922 { 9923 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9924 9925 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9926 } 9927 md_init(void)9928 static int __init md_init(void) 9929 { 9930 int ret = -ENOMEM; 9931 9932 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9933 if (!md_wq) 9934 goto err_wq; 9935 9936 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9937 if (!md_misc_wq) 9938 goto err_misc_wq; 9939 9940 md_bitmap_wq = alloc_workqueue("md_bitmap", WQ_MEM_RECLAIM | WQ_UNBOUND, 9941 0); 9942 if (!md_bitmap_wq) 9943 goto err_bitmap_wq; 9944 9945 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9946 if (ret < 0) 9947 goto err_md; 9948 9949 ret = __register_blkdev(0, "mdp", md_probe); 9950 if (ret < 0) 9951 goto err_mdp; 9952 mdp_major = ret; 9953 9954 register_reboot_notifier(&md_notifier); 9955 raid_table_header = register_sysctl("dev/raid", raid_table); 9956 9957 md_geninit(); 9958 return 0; 9959 9960 err_mdp: 9961 unregister_blkdev(MD_MAJOR, "md"); 9962 err_md: 9963 destroy_workqueue(md_bitmap_wq); 9964 err_bitmap_wq: 9965 destroy_workqueue(md_misc_wq); 9966 err_misc_wq: 9967 destroy_workqueue(md_wq); 9968 err_wq: 9969 return ret; 9970 } 9971 check_sb_changes(struct mddev * mddev,struct md_rdev * rdev)9972 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9973 { 9974 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9975 struct md_rdev *rdev2, *tmp; 9976 int role, ret; 9977 9978 /* 9979 * If size is changed in another node then we need to 9980 * do resize as well. 9981 */ 9982 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9983 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9984 if (ret) 9985 pr_info("md-cluster: resize failed\n"); 9986 else 9987 mddev->bitmap_ops->update_sb(mddev->bitmap); 9988 } 9989 9990 /* Check for change of roles in the active devices */ 9991 rdev_for_each_safe(rdev2, tmp, mddev) { 9992 if (test_bit(Faulty, &rdev2->flags)) 9993 continue; 9994 9995 /* Check if the roles changed */ 9996 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9997 9998 if (test_bit(Candidate, &rdev2->flags)) { 9999 if (role == MD_DISK_ROLE_FAULTY) { 10000 pr_info("md: Removing Candidate device %pg because add failed\n", 10001 rdev2->bdev); 10002 md_kick_rdev_from_array(rdev2); 10003 continue; 10004 } 10005 else 10006 clear_bit(Candidate, &rdev2->flags); 10007 } 10008 10009 if (role != rdev2->raid_disk) { 10010 /* 10011 * got activated except reshape is happening. 10012 */ 10013 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE && 10014 !(le32_to_cpu(sb->feature_map) & 10015 MD_FEATURE_RESHAPE_ACTIVE) && 10016 !mddev->cluster_ops->resync_status_get(mddev)) { 10017 /* 10018 * -1 to make raid1_add_disk() set conf->fullsync 10019 * to 1. This could avoid skipping sync when the 10020 * remote node is down during resyncing. 10021 */ 10022 if ((le32_to_cpu(sb->feature_map) 10023 & MD_FEATURE_RECOVERY_OFFSET)) 10024 rdev2->saved_raid_disk = -1; 10025 else 10026 rdev2->saved_raid_disk = role; 10027 ret = remove_and_add_spares(mddev, rdev2); 10028 pr_info("Activated spare: %pg\n", 10029 rdev2->bdev); 10030 /* wakeup mddev->thread here, so array could 10031 * perform resync with the new activated disk */ 10032 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 10033 md_wakeup_thread(mddev->thread); 10034 } 10035 /* device faulty 10036 * We just want to do the minimum to mark the disk 10037 * as faulty. The recovery is performed by the 10038 * one who initiated the error. 10039 */ 10040 if (role == MD_DISK_ROLE_FAULTY || 10041 role == MD_DISK_ROLE_JOURNAL) { 10042 md_error(mddev, rdev2); 10043 clear_bit(Blocked, &rdev2->flags); 10044 } 10045 } 10046 } 10047 10048 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 10049 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 10050 if (ret) 10051 pr_warn("md: updating array disks failed. %d\n", ret); 10052 } 10053 10054 /* 10055 * Since mddev->delta_disks has already updated in update_raid_disks, 10056 * so it is time to check reshape. 10057 */ 10058 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 10059 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 10060 /* 10061 * reshape is happening in the remote node, we need to 10062 * update reshape_position and call start_reshape. 10063 */ 10064 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 10065 if (mddev->pers->update_reshape_pos) 10066 mddev->pers->update_reshape_pos(mddev); 10067 if (mddev->pers->start_reshape) 10068 mddev->pers->start_reshape(mddev); 10069 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 10070 mddev->reshape_position != MaxSector && 10071 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 10072 /* reshape is just done in another node. */ 10073 mddev->reshape_position = MaxSector; 10074 if (mddev->pers->update_reshape_pos) 10075 mddev->pers->update_reshape_pos(mddev); 10076 } 10077 10078 /* Finally set the event to be up to date */ 10079 mddev->events = le64_to_cpu(sb->events); 10080 } 10081 read_rdev(struct mddev * mddev,struct md_rdev * rdev)10082 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 10083 { 10084 int err; 10085 struct page *swapout = rdev->sb_page; 10086 struct mdp_superblock_1 *sb; 10087 10088 /* Store the sb page of the rdev in the swapout temporary 10089 * variable in case we err in the future 10090 */ 10091 rdev->sb_page = NULL; 10092 err = alloc_disk_sb(rdev); 10093 if (err == 0) { 10094 ClearPageUptodate(rdev->sb_page); 10095 rdev->sb_loaded = 0; 10096 err = super_types[mddev->major_version]. 10097 load_super(rdev, NULL, mddev->minor_version); 10098 } 10099 if (err < 0) { 10100 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 10101 __func__, __LINE__, rdev->desc_nr, err); 10102 if (rdev->sb_page) 10103 put_page(rdev->sb_page); 10104 rdev->sb_page = swapout; 10105 rdev->sb_loaded = 1; 10106 return err; 10107 } 10108 10109 sb = page_address(rdev->sb_page); 10110 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 10111 * is not set 10112 */ 10113 10114 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 10115 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 10116 10117 /* The other node finished recovery, call spare_active to set 10118 * device In_sync and mddev->degraded 10119 */ 10120 if (rdev->recovery_offset == MaxSector && 10121 !test_bit(In_sync, &rdev->flags) && 10122 mddev->pers->spare_active(mddev)) 10123 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 10124 10125 put_page(swapout); 10126 return 0; 10127 } 10128 md_reload_sb(struct mddev * mddev,int nr)10129 void md_reload_sb(struct mddev *mddev, int nr) 10130 { 10131 struct md_rdev *rdev = NULL, *iter; 10132 int err; 10133 10134 /* Find the rdev */ 10135 rdev_for_each_rcu(iter, mddev) { 10136 if (iter->desc_nr == nr) { 10137 rdev = iter; 10138 break; 10139 } 10140 } 10141 10142 if (!rdev) { 10143 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 10144 return; 10145 } 10146 10147 err = read_rdev(mddev, rdev); 10148 if (err < 0) 10149 return; 10150 10151 check_sb_changes(mddev, rdev); 10152 10153 /* Read all rdev's to update recovery_offset */ 10154 rdev_for_each_rcu(rdev, mddev) { 10155 if (!test_bit(Faulty, &rdev->flags)) 10156 read_rdev(mddev, rdev); 10157 } 10158 } 10159 EXPORT_SYMBOL(md_reload_sb); 10160 10161 #ifndef MODULE 10162 10163 /* 10164 * Searches all registered partitions for autorun RAID arrays 10165 * at boot time. 10166 */ 10167 10168 static DEFINE_MUTEX(detected_devices_mutex); 10169 static LIST_HEAD(all_detected_devices); 10170 struct detected_devices_node { 10171 struct list_head list; 10172 dev_t dev; 10173 }; 10174 md_autodetect_dev(dev_t dev)10175 void md_autodetect_dev(dev_t dev) 10176 { 10177 struct detected_devices_node *node_detected_dev; 10178 10179 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 10180 if (node_detected_dev) { 10181 node_detected_dev->dev = dev; 10182 mutex_lock(&detected_devices_mutex); 10183 list_add_tail(&node_detected_dev->list, &all_detected_devices); 10184 mutex_unlock(&detected_devices_mutex); 10185 } 10186 } 10187 md_autostart_arrays(int part)10188 void md_autostart_arrays(int part) 10189 { 10190 struct md_rdev *rdev; 10191 struct detected_devices_node *node_detected_dev; 10192 dev_t dev; 10193 int i_scanned, i_passed; 10194 10195 i_scanned = 0; 10196 i_passed = 0; 10197 10198 pr_info("md: Autodetecting RAID arrays.\n"); 10199 10200 mutex_lock(&detected_devices_mutex); 10201 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 10202 i_scanned++; 10203 node_detected_dev = list_entry(all_detected_devices.next, 10204 struct detected_devices_node, list); 10205 list_del(&node_detected_dev->list); 10206 dev = node_detected_dev->dev; 10207 kfree(node_detected_dev); 10208 mutex_unlock(&detected_devices_mutex); 10209 rdev = md_import_device(dev,0, 90); 10210 mutex_lock(&detected_devices_mutex); 10211 if (IS_ERR(rdev)) 10212 continue; 10213 10214 if (test_bit(Faulty, &rdev->flags)) 10215 continue; 10216 10217 set_bit(AutoDetected, &rdev->flags); 10218 list_add(&rdev->same_set, &pending_raid_disks); 10219 i_passed++; 10220 } 10221 mutex_unlock(&detected_devices_mutex); 10222 10223 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 10224 10225 autorun_devices(part); 10226 } 10227 10228 #endif /* !MODULE */ 10229 md_exit(void)10230 static __exit void md_exit(void) 10231 { 10232 struct mddev *mddev; 10233 int delay = 1; 10234 10235 unregister_blkdev(MD_MAJOR,"md"); 10236 unregister_blkdev(mdp_major, "mdp"); 10237 unregister_reboot_notifier(&md_notifier); 10238 unregister_sysctl_table(raid_table_header); 10239 10240 /* We cannot unload the modules while some process is 10241 * waiting for us in select() or poll() - wake them up 10242 */ 10243 md_unloading = 1; 10244 while (waitqueue_active(&md_event_waiters)) { 10245 /* not safe to leave yet */ 10246 wake_up(&md_event_waiters); 10247 msleep(delay); 10248 delay += delay; 10249 } 10250 remove_proc_entry("mdstat", NULL); 10251 10252 spin_lock(&all_mddevs_lock); 10253 list_for_each_entry(mddev, &all_mddevs, all_mddevs) { 10254 if (!mddev_get(mddev)) 10255 continue; 10256 spin_unlock(&all_mddevs_lock); 10257 export_array(mddev); 10258 mddev->ctime = 0; 10259 mddev->hold_active = 0; 10260 /* 10261 * As the mddev is now fully clear, mddev_put will schedule 10262 * the mddev for destruction by a workqueue, and the 10263 * destroy_workqueue() below will wait for that to complete. 10264 */ 10265 spin_lock(&all_mddevs_lock); 10266 mddev_put_locked(mddev); 10267 } 10268 spin_unlock(&all_mddevs_lock); 10269 10270 destroy_workqueue(md_misc_wq); 10271 destroy_workqueue(md_bitmap_wq); 10272 destroy_workqueue(md_wq); 10273 } 10274 10275 subsys_initcall(md_init); module_exit(md_exit)10276 module_exit(md_exit) 10277 10278 static int get_ro(char *buffer, const struct kernel_param *kp) 10279 { 10280 return sprintf(buffer, "%d\n", start_readonly); 10281 } set_ro(const char * val,const struct kernel_param * kp)10282 static int set_ro(const char *val, const struct kernel_param *kp) 10283 { 10284 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 10285 } 10286 10287 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 10288 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 10289 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 10290 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 10291 10292 MODULE_LICENSE("GPL"); 10293 MODULE_DESCRIPTION("MD RAID framework"); 10294 MODULE_ALIAS("md"); 10295 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 10296