1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Management Component Transport Protocol (MCTP) - routing
4 * implementation.
5 *
6 * This is currently based on a simple routing table, with no dst cache. The
7 * number of routes should stay fairly small, so the lookup cost is small.
8 *
9 * Copyright (c) 2021 Code Construct
10 * Copyright (c) 2021 Google
11 */
12
13 #include <linux/idr.h>
14 #include <linux/kconfig.h>
15 #include <linux/mctp.h>
16 #include <linux/netdevice.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/skbuff.h>
19
20 #include <uapi/linux/if_arp.h>
21
22 #include <net/mctp.h>
23 #include <net/mctpdevice.h>
24 #include <net/netlink.h>
25 #include <net/sock.h>
26
27 #include <trace/events/mctp.h>
28
29 static const unsigned int mctp_message_maxlen = 64 * 1024;
30 static const unsigned long mctp_key_lifetime = 6 * CONFIG_HZ;
31
32 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev);
33
34 /* route output callbacks */
mctp_route_discard(struct mctp_route * route,struct sk_buff * skb)35 static int mctp_route_discard(struct mctp_route *route, struct sk_buff *skb)
36 {
37 kfree_skb(skb);
38 return 0;
39 }
40
mctp_lookup_bind(struct net * net,struct sk_buff * skb)41 static struct mctp_sock *mctp_lookup_bind(struct net *net, struct sk_buff *skb)
42 {
43 struct mctp_skb_cb *cb = mctp_cb(skb);
44 struct mctp_hdr *mh;
45 struct sock *sk;
46 u8 type;
47
48 WARN_ON(!rcu_read_lock_held());
49
50 /* TODO: look up in skb->cb? */
51 mh = mctp_hdr(skb);
52
53 if (!skb_headlen(skb))
54 return NULL;
55
56 type = (*(u8 *)skb->data) & 0x7f;
57
58 sk_for_each_rcu(sk, &net->mctp.binds) {
59 struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk);
60
61 if (msk->bind_net != MCTP_NET_ANY && msk->bind_net != cb->net)
62 continue;
63
64 if (msk->bind_type != type)
65 continue;
66
67 if (!mctp_address_matches(msk->bind_addr, mh->dest))
68 continue;
69
70 return msk;
71 }
72
73 return NULL;
74 }
75
76 /* A note on the key allocations.
77 *
78 * struct net->mctp.keys contains our set of currently-allocated keys for
79 * MCTP tag management. The lookup tuple for these is the peer EID,
80 * local EID and MCTP tag.
81 *
82 * In some cases, the peer EID may be MCTP_EID_ANY: for example, when a
83 * broadcast message is sent, we may receive responses from any peer EID.
84 * Because the broadcast dest address is equivalent to ANY, we create
85 * a key with (local = local-eid, peer = ANY). This allows a match on the
86 * incoming broadcast responses from any peer.
87 *
88 * We perform lookups when packets are received, and when tags are allocated
89 * in two scenarios:
90 *
91 * - when a packet is sent, with a locally-owned tag: we need to find an
92 * unused tag value for the (local, peer) EID pair.
93 *
94 * - when a tag is manually allocated: we need to find an unused tag value
95 * for the peer EID, but don't have a specific local EID at that stage.
96 *
97 * in the latter case, on successful allocation, we end up with a tag with
98 * (local = ANY, peer = peer-eid).
99 *
100 * So, the key set allows both a local EID of ANY, as well as a peer EID of
101 * ANY in the lookup tuple. Both may be ANY if we prealloc for a broadcast.
102 * The matching (in mctp_key_match()) during lookup allows the match value to
103 * be ANY in either the dest or source addresses.
104 *
105 * When allocating (+ inserting) a tag, we need to check for conflicts amongst
106 * the existing tag set. This requires macthing either exactly on the local
107 * and peer addresses, or either being ANY.
108 */
109
mctp_key_match(struct mctp_sk_key * key,unsigned int net,mctp_eid_t local,mctp_eid_t peer,u8 tag)110 static bool mctp_key_match(struct mctp_sk_key *key, unsigned int net,
111 mctp_eid_t local, mctp_eid_t peer, u8 tag)
112 {
113 if (key->net != net)
114 return false;
115
116 if (!mctp_address_matches(key->local_addr, local))
117 return false;
118
119 if (!mctp_address_matches(key->peer_addr, peer))
120 return false;
121
122 if (key->tag != tag)
123 return false;
124
125 return true;
126 }
127
128 /* returns a key (with key->lock held, and refcounted), or NULL if no such
129 * key exists.
130 */
mctp_lookup_key(struct net * net,struct sk_buff * skb,unsigned int netid,mctp_eid_t peer,unsigned long * irqflags)131 static struct mctp_sk_key *mctp_lookup_key(struct net *net, struct sk_buff *skb,
132 unsigned int netid, mctp_eid_t peer,
133 unsigned long *irqflags)
134 __acquires(&key->lock)
135 {
136 struct mctp_sk_key *key, *ret;
137 unsigned long flags;
138 struct mctp_hdr *mh;
139 u8 tag;
140
141 mh = mctp_hdr(skb);
142 tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
143
144 ret = NULL;
145 spin_lock_irqsave(&net->mctp.keys_lock, flags);
146
147 hlist_for_each_entry(key, &net->mctp.keys, hlist) {
148 if (!mctp_key_match(key, netid, mh->dest, peer, tag))
149 continue;
150
151 spin_lock(&key->lock);
152 if (key->valid) {
153 refcount_inc(&key->refs);
154 ret = key;
155 break;
156 }
157 spin_unlock(&key->lock);
158 }
159
160 if (ret) {
161 spin_unlock(&net->mctp.keys_lock);
162 *irqflags = flags;
163 } else {
164 spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
165 }
166
167 return ret;
168 }
169
mctp_key_alloc(struct mctp_sock * msk,unsigned int net,mctp_eid_t local,mctp_eid_t peer,u8 tag,gfp_t gfp)170 static struct mctp_sk_key *mctp_key_alloc(struct mctp_sock *msk,
171 unsigned int net,
172 mctp_eid_t local, mctp_eid_t peer,
173 u8 tag, gfp_t gfp)
174 {
175 struct mctp_sk_key *key;
176
177 key = kzalloc(sizeof(*key), gfp);
178 if (!key)
179 return NULL;
180
181 key->net = net;
182 key->peer_addr = peer;
183 key->local_addr = local;
184 key->tag = tag;
185 key->sk = &msk->sk;
186 key->valid = true;
187 spin_lock_init(&key->lock);
188 refcount_set(&key->refs, 1);
189 sock_hold(key->sk);
190
191 return key;
192 }
193
mctp_key_unref(struct mctp_sk_key * key)194 void mctp_key_unref(struct mctp_sk_key *key)
195 {
196 unsigned long flags;
197
198 if (!refcount_dec_and_test(&key->refs))
199 return;
200
201 /* even though no refs exist here, the lock allows us to stay
202 * consistent with the locking requirement of mctp_dev_release_key
203 */
204 spin_lock_irqsave(&key->lock, flags);
205 mctp_dev_release_key(key->dev, key);
206 spin_unlock_irqrestore(&key->lock, flags);
207
208 sock_put(key->sk);
209 kfree(key);
210 }
211
mctp_key_add(struct mctp_sk_key * key,struct mctp_sock * msk)212 static int mctp_key_add(struct mctp_sk_key *key, struct mctp_sock *msk)
213 {
214 struct net *net = sock_net(&msk->sk);
215 struct mctp_sk_key *tmp;
216 unsigned long flags;
217 int rc = 0;
218
219 spin_lock_irqsave(&net->mctp.keys_lock, flags);
220
221 if (sock_flag(&msk->sk, SOCK_DEAD)) {
222 rc = -EINVAL;
223 goto out_unlock;
224 }
225
226 hlist_for_each_entry(tmp, &net->mctp.keys, hlist) {
227 if (mctp_key_match(tmp, key->net, key->local_addr,
228 key->peer_addr, key->tag)) {
229 spin_lock(&tmp->lock);
230 if (tmp->valid)
231 rc = -EEXIST;
232 spin_unlock(&tmp->lock);
233 if (rc)
234 break;
235 }
236 }
237
238 if (!rc) {
239 refcount_inc(&key->refs);
240 key->expiry = jiffies + mctp_key_lifetime;
241 timer_reduce(&msk->key_expiry, key->expiry);
242
243 hlist_add_head(&key->hlist, &net->mctp.keys);
244 hlist_add_head(&key->sklist, &msk->keys);
245 }
246
247 out_unlock:
248 spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
249
250 return rc;
251 }
252
253 /* Helper for mctp_route_input().
254 * We're done with the key; unlock and unref the key.
255 * For the usual case of automatic expiry we remove the key from lists.
256 * In the case that manual allocation is set on a key we release the lock
257 * and local ref, reset reassembly, but don't remove from lists.
258 */
__mctp_key_done_in(struct mctp_sk_key * key,struct net * net,unsigned long flags,unsigned long reason)259 static void __mctp_key_done_in(struct mctp_sk_key *key, struct net *net,
260 unsigned long flags, unsigned long reason)
261 __releases(&key->lock)
262 {
263 struct sk_buff *skb;
264
265 trace_mctp_key_release(key, reason);
266 skb = key->reasm_head;
267 key->reasm_head = NULL;
268
269 if (!key->manual_alloc) {
270 key->reasm_dead = true;
271 key->valid = false;
272 mctp_dev_release_key(key->dev, key);
273 }
274 spin_unlock_irqrestore(&key->lock, flags);
275
276 if (!key->manual_alloc) {
277 spin_lock_irqsave(&net->mctp.keys_lock, flags);
278 if (!hlist_unhashed(&key->hlist)) {
279 hlist_del_init(&key->hlist);
280 hlist_del_init(&key->sklist);
281 mctp_key_unref(key);
282 }
283 spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
284 }
285
286 /* and one for the local reference */
287 mctp_key_unref(key);
288
289 kfree_skb(skb);
290 }
291
292 #ifdef CONFIG_MCTP_FLOWS
mctp_skb_set_flow(struct sk_buff * skb,struct mctp_sk_key * key)293 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key)
294 {
295 struct mctp_flow *flow;
296
297 flow = skb_ext_add(skb, SKB_EXT_MCTP);
298 if (!flow)
299 return;
300
301 refcount_inc(&key->refs);
302 flow->key = key;
303 }
304
mctp_flow_prepare_output(struct sk_buff * skb,struct mctp_dev * dev)305 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev)
306 {
307 struct mctp_sk_key *key;
308 struct mctp_flow *flow;
309
310 flow = skb_ext_find(skb, SKB_EXT_MCTP);
311 if (!flow)
312 return;
313
314 key = flow->key;
315
316 if (key->dev) {
317 WARN_ON(key->dev != dev);
318 return;
319 }
320
321 mctp_dev_set_key(dev, key);
322 }
323 #else
mctp_skb_set_flow(struct sk_buff * skb,struct mctp_sk_key * key)324 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key) {}
mctp_flow_prepare_output(struct sk_buff * skb,struct mctp_dev * dev)325 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev) {}
326 #endif
327
mctp_frag_queue(struct mctp_sk_key * key,struct sk_buff * skb)328 static int mctp_frag_queue(struct mctp_sk_key *key, struct sk_buff *skb)
329 {
330 struct mctp_hdr *hdr = mctp_hdr(skb);
331 u8 exp_seq, this_seq;
332
333 this_seq = (hdr->flags_seq_tag >> MCTP_HDR_SEQ_SHIFT)
334 & MCTP_HDR_SEQ_MASK;
335
336 if (!key->reasm_head) {
337 /* Since we're manipulating the shared frag_list, ensure it isn't
338 * shared with any other SKBs.
339 */
340 key->reasm_head = skb_unshare(skb, GFP_ATOMIC);
341 if (!key->reasm_head)
342 return -ENOMEM;
343
344 key->reasm_tailp = &(skb_shinfo(key->reasm_head)->frag_list);
345 key->last_seq = this_seq;
346 return 0;
347 }
348
349 exp_seq = (key->last_seq + 1) & MCTP_HDR_SEQ_MASK;
350
351 if (this_seq != exp_seq)
352 return -EINVAL;
353
354 if (key->reasm_head->len + skb->len > mctp_message_maxlen)
355 return -EINVAL;
356
357 skb->next = NULL;
358 skb->sk = NULL;
359 *key->reasm_tailp = skb;
360 key->reasm_tailp = &skb->next;
361
362 key->last_seq = this_seq;
363
364 key->reasm_head->data_len += skb->len;
365 key->reasm_head->len += skb->len;
366 key->reasm_head->truesize += skb->truesize;
367
368 return 0;
369 }
370
mctp_route_input(struct mctp_route * route,struct sk_buff * skb)371 static int mctp_route_input(struct mctp_route *route, struct sk_buff *skb)
372 {
373 struct mctp_sk_key *key, *any_key = NULL;
374 struct net *net = dev_net(skb->dev);
375 struct mctp_sock *msk;
376 struct mctp_hdr *mh;
377 unsigned int netid;
378 unsigned long f;
379 u8 tag, flags;
380 int rc;
381
382 msk = NULL;
383 rc = -EINVAL;
384
385 /* We may be receiving a locally-routed packet; drop source sk
386 * accounting.
387 *
388 * From here, we will either queue the skb - either to a frag_queue, or
389 * to a receiving socket. When that succeeds, we clear the skb pointer;
390 * a non-NULL skb on exit will be otherwise unowned, and hence
391 * kfree_skb()-ed.
392 */
393 skb_orphan(skb);
394
395 /* ensure we have enough data for a header and a type */
396 if (skb->len < sizeof(struct mctp_hdr) + 1)
397 goto out;
398
399 /* grab header, advance data ptr */
400 mh = mctp_hdr(skb);
401 netid = mctp_cb(skb)->net;
402 skb_pull(skb, sizeof(struct mctp_hdr));
403
404 if (mh->ver != 1)
405 goto out;
406
407 flags = mh->flags_seq_tag & (MCTP_HDR_FLAG_SOM | MCTP_HDR_FLAG_EOM);
408 tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
409
410 rcu_read_lock();
411
412 /* lookup socket / reasm context, exactly matching (src,dest,tag).
413 * we hold a ref on the key, and key->lock held.
414 */
415 key = mctp_lookup_key(net, skb, netid, mh->src, &f);
416
417 if (flags & MCTP_HDR_FLAG_SOM) {
418 if (key) {
419 msk = container_of(key->sk, struct mctp_sock, sk);
420 } else {
421 /* first response to a broadcast? do a more general
422 * key lookup to find the socket, but don't use this
423 * key for reassembly - we'll create a more specific
424 * one for future packets if required (ie, !EOM).
425 *
426 * this lookup requires key->peer to be MCTP_ADDR_ANY,
427 * it doesn't match just any key->peer.
428 */
429 any_key = mctp_lookup_key(net, skb, netid,
430 MCTP_ADDR_ANY, &f);
431 if (any_key) {
432 msk = container_of(any_key->sk,
433 struct mctp_sock, sk);
434 spin_unlock_irqrestore(&any_key->lock, f);
435 }
436 }
437
438 if (!key && !msk && (tag & MCTP_HDR_FLAG_TO))
439 msk = mctp_lookup_bind(net, skb);
440
441 if (!msk) {
442 rc = -ENOENT;
443 goto out_unlock;
444 }
445
446 /* single-packet message? deliver to socket, clean up any
447 * pending key.
448 */
449 if (flags & MCTP_HDR_FLAG_EOM) {
450 rc = sock_queue_rcv_skb(&msk->sk, skb);
451 if (!rc)
452 skb = NULL;
453 if (key) {
454 /* we've hit a pending reassembly; not much we
455 * can do but drop it
456 */
457 __mctp_key_done_in(key, net, f,
458 MCTP_TRACE_KEY_REPLIED);
459 key = NULL;
460 }
461 goto out_unlock;
462 }
463
464 /* broadcast response or a bind() - create a key for further
465 * packets for this message
466 */
467 if (!key) {
468 key = mctp_key_alloc(msk, netid, mh->dest, mh->src,
469 tag, GFP_ATOMIC);
470 if (!key) {
471 rc = -ENOMEM;
472 goto out_unlock;
473 }
474
475 /* we can queue without the key lock here, as the
476 * key isn't observable yet
477 */
478 mctp_frag_queue(key, skb);
479
480 /* if the key_add fails, we've raced with another
481 * SOM packet with the same src, dest and tag. There's
482 * no way to distinguish future packets, so all we
483 * can do is drop; we'll free the skb on exit from
484 * this function.
485 */
486 rc = mctp_key_add(key, msk);
487 if (!rc) {
488 trace_mctp_key_acquire(key);
489 skb = NULL;
490 }
491
492 /* we don't need to release key->lock on exit, so
493 * clean up here and suppress the unlock via
494 * setting to NULL
495 */
496 mctp_key_unref(key);
497 key = NULL;
498
499 } else {
500 if (key->reasm_head || key->reasm_dead) {
501 /* duplicate start? drop everything */
502 __mctp_key_done_in(key, net, f,
503 MCTP_TRACE_KEY_INVALIDATED);
504 rc = -EEXIST;
505 key = NULL;
506 } else {
507 rc = mctp_frag_queue(key, skb);
508 if (!rc)
509 skb = NULL;
510 }
511 }
512
513 } else if (key) {
514 /* this packet continues a previous message; reassemble
515 * using the message-specific key
516 */
517
518 /* we need to be continuing an existing reassembly... */
519 if (!key->reasm_head)
520 rc = -EINVAL;
521 else
522 rc = mctp_frag_queue(key, skb);
523
524 if (rc)
525 goto out_unlock;
526
527 /* we've queued; the queue owns the skb now */
528 skb = NULL;
529
530 /* end of message? deliver to socket, and we're done with
531 * the reassembly/response key
532 */
533 if (flags & MCTP_HDR_FLAG_EOM) {
534 rc = sock_queue_rcv_skb(key->sk, key->reasm_head);
535 if (!rc)
536 key->reasm_head = NULL;
537 __mctp_key_done_in(key, net, f, MCTP_TRACE_KEY_REPLIED);
538 key = NULL;
539 }
540
541 } else {
542 /* not a start, no matching key */
543 rc = -ENOENT;
544 }
545
546 out_unlock:
547 rcu_read_unlock();
548 if (key) {
549 spin_unlock_irqrestore(&key->lock, f);
550 mctp_key_unref(key);
551 }
552 if (any_key)
553 mctp_key_unref(any_key);
554 out:
555 kfree_skb(skb);
556 return rc;
557 }
558
mctp_route_mtu(struct mctp_route * rt)559 static unsigned int mctp_route_mtu(struct mctp_route *rt)
560 {
561 return rt->mtu ?: READ_ONCE(rt->dev->dev->mtu);
562 }
563
mctp_route_output(struct mctp_route * route,struct sk_buff * skb)564 static int mctp_route_output(struct mctp_route *route, struct sk_buff *skb)
565 {
566 struct mctp_skb_cb *cb = mctp_cb(skb);
567 struct mctp_hdr *hdr = mctp_hdr(skb);
568 char daddr_buf[MAX_ADDR_LEN];
569 char *daddr = NULL;
570 unsigned int mtu;
571 int rc;
572
573 skb->protocol = htons(ETH_P_MCTP);
574
575 mtu = READ_ONCE(skb->dev->mtu);
576 if (skb->len > mtu) {
577 kfree_skb(skb);
578 return -EMSGSIZE;
579 }
580
581 if (cb->ifindex) {
582 /* direct route; use the hwaddr we stashed in sendmsg */
583 if (cb->halen != skb->dev->addr_len) {
584 /* sanity check, sendmsg should have already caught this */
585 kfree_skb(skb);
586 return -EMSGSIZE;
587 }
588 daddr = cb->haddr;
589 } else {
590 /* If lookup fails let the device handle daddr==NULL */
591 if (mctp_neigh_lookup(route->dev, hdr->dest, daddr_buf) == 0)
592 daddr = daddr_buf;
593 }
594
595 rc = dev_hard_header(skb, skb->dev, ntohs(skb->protocol),
596 daddr, skb->dev->dev_addr, skb->len);
597 if (rc < 0) {
598 kfree_skb(skb);
599 return -EHOSTUNREACH;
600 }
601
602 mctp_flow_prepare_output(skb, route->dev);
603
604 rc = dev_queue_xmit(skb);
605 if (rc)
606 rc = net_xmit_errno(rc);
607
608 return rc;
609 }
610
611 /* route alloc/release */
mctp_route_release(struct mctp_route * rt)612 static void mctp_route_release(struct mctp_route *rt)
613 {
614 if (refcount_dec_and_test(&rt->refs)) {
615 mctp_dev_put(rt->dev);
616 kfree_rcu(rt, rcu);
617 }
618 }
619
620 /* returns a route with the refcount at 1 */
mctp_route_alloc(void)621 static struct mctp_route *mctp_route_alloc(void)
622 {
623 struct mctp_route *rt;
624
625 rt = kzalloc(sizeof(*rt), GFP_KERNEL);
626 if (!rt)
627 return NULL;
628
629 INIT_LIST_HEAD(&rt->list);
630 refcount_set(&rt->refs, 1);
631 rt->output = mctp_route_discard;
632
633 return rt;
634 }
635
mctp_default_net(struct net * net)636 unsigned int mctp_default_net(struct net *net)
637 {
638 return READ_ONCE(net->mctp.default_net);
639 }
640
mctp_default_net_set(struct net * net,unsigned int index)641 int mctp_default_net_set(struct net *net, unsigned int index)
642 {
643 if (index == 0)
644 return -EINVAL;
645 WRITE_ONCE(net->mctp.default_net, index);
646 return 0;
647 }
648
649 /* tag management */
mctp_reserve_tag(struct net * net,struct mctp_sk_key * key,struct mctp_sock * msk)650 static void mctp_reserve_tag(struct net *net, struct mctp_sk_key *key,
651 struct mctp_sock *msk)
652 {
653 struct netns_mctp *mns = &net->mctp;
654
655 lockdep_assert_held(&mns->keys_lock);
656
657 key->expiry = jiffies + mctp_key_lifetime;
658 timer_reduce(&msk->key_expiry, key->expiry);
659
660 /* we hold the net->key_lock here, allowing updates to both
661 * then net and sk
662 */
663 hlist_add_head_rcu(&key->hlist, &mns->keys);
664 hlist_add_head_rcu(&key->sklist, &msk->keys);
665 refcount_inc(&key->refs);
666 }
667
668 /* Allocate a locally-owned tag value for (local, peer), and reserve
669 * it for the socket msk
670 */
mctp_alloc_local_tag(struct mctp_sock * msk,unsigned int netid,mctp_eid_t local,mctp_eid_t peer,bool manual,u8 * tagp)671 struct mctp_sk_key *mctp_alloc_local_tag(struct mctp_sock *msk,
672 unsigned int netid,
673 mctp_eid_t local, mctp_eid_t peer,
674 bool manual, u8 *tagp)
675 {
676 struct net *net = sock_net(&msk->sk);
677 struct netns_mctp *mns = &net->mctp;
678 struct mctp_sk_key *key, *tmp;
679 unsigned long flags;
680 u8 tagbits;
681
682 /* for NULL destination EIDs, we may get a response from any peer */
683 if (peer == MCTP_ADDR_NULL)
684 peer = MCTP_ADDR_ANY;
685
686 /* be optimistic, alloc now */
687 key = mctp_key_alloc(msk, netid, local, peer, 0, GFP_KERNEL);
688 if (!key)
689 return ERR_PTR(-ENOMEM);
690
691 /* 8 possible tag values */
692 tagbits = 0xff;
693
694 spin_lock_irqsave(&mns->keys_lock, flags);
695
696 /* Walk through the existing keys, looking for potential conflicting
697 * tags. If we find a conflict, clear that bit from tagbits
698 */
699 hlist_for_each_entry(tmp, &mns->keys, hlist) {
700 /* We can check the lookup fields (*_addr, tag) without the
701 * lock held, they don't change over the lifetime of the key.
702 */
703
704 /* tags are net-specific */
705 if (tmp->net != netid)
706 continue;
707
708 /* if we don't own the tag, it can't conflict */
709 if (tmp->tag & MCTP_HDR_FLAG_TO)
710 continue;
711
712 /* Since we're avoiding conflicting entries, match peer and
713 * local addresses, including with a wildcard on ANY. See
714 * 'A note on key allocations' for background.
715 */
716 if (peer != MCTP_ADDR_ANY &&
717 !mctp_address_matches(tmp->peer_addr, peer))
718 continue;
719
720 if (local != MCTP_ADDR_ANY &&
721 !mctp_address_matches(tmp->local_addr, local))
722 continue;
723
724 spin_lock(&tmp->lock);
725 /* key must still be valid. If we find a match, clear the
726 * potential tag value
727 */
728 if (tmp->valid)
729 tagbits &= ~(1 << tmp->tag);
730 spin_unlock(&tmp->lock);
731
732 if (!tagbits)
733 break;
734 }
735
736 if (tagbits) {
737 key->tag = __ffs(tagbits);
738 mctp_reserve_tag(net, key, msk);
739 trace_mctp_key_acquire(key);
740
741 key->manual_alloc = manual;
742 *tagp = key->tag;
743 }
744
745 spin_unlock_irqrestore(&mns->keys_lock, flags);
746
747 if (!tagbits) {
748 mctp_key_unref(key);
749 return ERR_PTR(-EBUSY);
750 }
751
752 return key;
753 }
754
mctp_lookup_prealloc_tag(struct mctp_sock * msk,unsigned int netid,mctp_eid_t daddr,u8 req_tag,u8 * tagp)755 static struct mctp_sk_key *mctp_lookup_prealloc_tag(struct mctp_sock *msk,
756 unsigned int netid,
757 mctp_eid_t daddr,
758 u8 req_tag, u8 *tagp)
759 {
760 struct net *net = sock_net(&msk->sk);
761 struct netns_mctp *mns = &net->mctp;
762 struct mctp_sk_key *key, *tmp;
763 unsigned long flags;
764
765 req_tag &= ~(MCTP_TAG_PREALLOC | MCTP_TAG_OWNER);
766 key = NULL;
767
768 spin_lock_irqsave(&mns->keys_lock, flags);
769
770 hlist_for_each_entry(tmp, &mns->keys, hlist) {
771 if (tmp->net != netid)
772 continue;
773
774 if (tmp->tag != req_tag)
775 continue;
776
777 if (!mctp_address_matches(tmp->peer_addr, daddr))
778 continue;
779
780 if (!tmp->manual_alloc)
781 continue;
782
783 spin_lock(&tmp->lock);
784 if (tmp->valid) {
785 key = tmp;
786 refcount_inc(&key->refs);
787 spin_unlock(&tmp->lock);
788 break;
789 }
790 spin_unlock(&tmp->lock);
791 }
792 spin_unlock_irqrestore(&mns->keys_lock, flags);
793
794 if (!key)
795 return ERR_PTR(-ENOENT);
796
797 if (tagp)
798 *tagp = key->tag;
799
800 return key;
801 }
802
803 /* routing lookups */
mctp_rt_match_eid(struct mctp_route * rt,unsigned int net,mctp_eid_t eid)804 static bool mctp_rt_match_eid(struct mctp_route *rt,
805 unsigned int net, mctp_eid_t eid)
806 {
807 return READ_ONCE(rt->dev->net) == net &&
808 rt->min <= eid && rt->max >= eid;
809 }
810
811 /* compares match, used for duplicate prevention */
mctp_rt_compare_exact(struct mctp_route * rt1,struct mctp_route * rt2)812 static bool mctp_rt_compare_exact(struct mctp_route *rt1,
813 struct mctp_route *rt2)
814 {
815 ASSERT_RTNL();
816 return rt1->dev->net == rt2->dev->net &&
817 rt1->min == rt2->min &&
818 rt1->max == rt2->max;
819 }
820
mctp_route_lookup(struct net * net,unsigned int dnet,mctp_eid_t daddr)821 struct mctp_route *mctp_route_lookup(struct net *net, unsigned int dnet,
822 mctp_eid_t daddr)
823 {
824 struct mctp_route *tmp, *rt = NULL;
825
826 rcu_read_lock();
827
828 list_for_each_entry_rcu(tmp, &net->mctp.routes, list) {
829 /* TODO: add metrics */
830 if (mctp_rt_match_eid(tmp, dnet, daddr)) {
831 if (refcount_inc_not_zero(&tmp->refs)) {
832 rt = tmp;
833 break;
834 }
835 }
836 }
837
838 rcu_read_unlock();
839
840 return rt;
841 }
842
mctp_route_lookup_null(struct net * net,struct net_device * dev)843 static struct mctp_route *mctp_route_lookup_null(struct net *net,
844 struct net_device *dev)
845 {
846 struct mctp_route *tmp, *rt = NULL;
847
848 rcu_read_lock();
849
850 list_for_each_entry_rcu(tmp, &net->mctp.routes, list) {
851 if (tmp->dev->dev == dev && tmp->type == RTN_LOCAL &&
852 refcount_inc_not_zero(&tmp->refs)) {
853 rt = tmp;
854 break;
855 }
856 }
857
858 rcu_read_unlock();
859
860 return rt;
861 }
862
mctp_do_fragment_route(struct mctp_route * rt,struct sk_buff * skb,unsigned int mtu,u8 tag)863 static int mctp_do_fragment_route(struct mctp_route *rt, struct sk_buff *skb,
864 unsigned int mtu, u8 tag)
865 {
866 const unsigned int hlen = sizeof(struct mctp_hdr);
867 struct mctp_hdr *hdr, *hdr2;
868 unsigned int pos, size, headroom;
869 struct sk_buff *skb2;
870 int rc;
871 u8 seq;
872
873 hdr = mctp_hdr(skb);
874 seq = 0;
875 rc = 0;
876
877 if (mtu < hlen + 1) {
878 kfree_skb(skb);
879 return -EMSGSIZE;
880 }
881
882 /* keep same headroom as the original skb */
883 headroom = skb_headroom(skb);
884
885 /* we've got the header */
886 skb_pull(skb, hlen);
887
888 for (pos = 0; pos < skb->len;) {
889 /* size of message payload */
890 size = min(mtu - hlen, skb->len - pos);
891
892 skb2 = alloc_skb(headroom + hlen + size, GFP_KERNEL);
893 if (!skb2) {
894 rc = -ENOMEM;
895 break;
896 }
897
898 /* generic skb copy */
899 skb2->protocol = skb->protocol;
900 skb2->priority = skb->priority;
901 skb2->dev = skb->dev;
902 memcpy(skb2->cb, skb->cb, sizeof(skb2->cb));
903
904 if (skb->sk)
905 skb_set_owner_w(skb2, skb->sk);
906
907 /* establish packet */
908 skb_reserve(skb2, headroom);
909 skb_reset_network_header(skb2);
910 skb_put(skb2, hlen + size);
911 skb2->transport_header = skb2->network_header + hlen;
912
913 /* copy header fields, calculate SOM/EOM flags & seq */
914 hdr2 = mctp_hdr(skb2);
915 hdr2->ver = hdr->ver;
916 hdr2->dest = hdr->dest;
917 hdr2->src = hdr->src;
918 hdr2->flags_seq_tag = tag &
919 (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
920
921 if (pos == 0)
922 hdr2->flags_seq_tag |= MCTP_HDR_FLAG_SOM;
923
924 if (pos + size == skb->len)
925 hdr2->flags_seq_tag |= MCTP_HDR_FLAG_EOM;
926
927 hdr2->flags_seq_tag |= seq << MCTP_HDR_SEQ_SHIFT;
928
929 /* copy message payload */
930 skb_copy_bits(skb, pos, skb_transport_header(skb2), size);
931
932 /* we need to copy the extensions, for MCTP flow data */
933 skb_ext_copy(skb2, skb);
934
935 /* do route */
936 rc = rt->output(rt, skb2);
937 if (rc)
938 break;
939
940 seq = (seq + 1) & MCTP_HDR_SEQ_MASK;
941 pos += size;
942 }
943
944 consume_skb(skb);
945 return rc;
946 }
947
mctp_local_output(struct sock * sk,struct mctp_route * rt,struct sk_buff * skb,mctp_eid_t daddr,u8 req_tag)948 int mctp_local_output(struct sock *sk, struct mctp_route *rt,
949 struct sk_buff *skb, mctp_eid_t daddr, u8 req_tag)
950 {
951 struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk);
952 struct mctp_skb_cb *cb = mctp_cb(skb);
953 struct mctp_route tmp_rt = {0};
954 struct mctp_sk_key *key;
955 struct mctp_hdr *hdr;
956 unsigned long flags;
957 unsigned int netid;
958 unsigned int mtu;
959 mctp_eid_t saddr;
960 bool ext_rt;
961 int rc;
962 u8 tag;
963
964 rc = -ENODEV;
965
966 if (rt) {
967 ext_rt = false;
968 if (WARN_ON(!rt->dev))
969 goto out_release;
970
971 } else if (cb->ifindex) {
972 struct net_device *dev;
973
974 ext_rt = true;
975 rt = &tmp_rt;
976
977 rcu_read_lock();
978 dev = dev_get_by_index_rcu(sock_net(sk), cb->ifindex);
979 if (!dev) {
980 rcu_read_unlock();
981 goto out_free;
982 }
983 rt->dev = __mctp_dev_get(dev);
984 rcu_read_unlock();
985
986 if (!rt->dev)
987 goto out_release;
988
989 /* establish temporary route - we set up enough to keep
990 * mctp_route_output happy
991 */
992 rt->output = mctp_route_output;
993 rt->mtu = 0;
994
995 } else {
996 rc = -EINVAL;
997 goto out_free;
998 }
999
1000 spin_lock_irqsave(&rt->dev->addrs_lock, flags);
1001 if (rt->dev->num_addrs == 0) {
1002 rc = -EHOSTUNREACH;
1003 } else {
1004 /* use the outbound interface's first address as our source */
1005 saddr = rt->dev->addrs[0];
1006 rc = 0;
1007 }
1008 spin_unlock_irqrestore(&rt->dev->addrs_lock, flags);
1009 netid = READ_ONCE(rt->dev->net);
1010
1011 if (rc)
1012 goto out_release;
1013
1014 if (req_tag & MCTP_TAG_OWNER) {
1015 if (req_tag & MCTP_TAG_PREALLOC)
1016 key = mctp_lookup_prealloc_tag(msk, netid, daddr,
1017 req_tag, &tag);
1018 else
1019 key = mctp_alloc_local_tag(msk, netid, saddr, daddr,
1020 false, &tag);
1021
1022 if (IS_ERR(key)) {
1023 rc = PTR_ERR(key);
1024 goto out_release;
1025 }
1026 mctp_skb_set_flow(skb, key);
1027 /* done with the key in this scope */
1028 mctp_key_unref(key);
1029 tag |= MCTP_HDR_FLAG_TO;
1030 } else {
1031 key = NULL;
1032 tag = req_tag & MCTP_TAG_MASK;
1033 }
1034
1035 skb->protocol = htons(ETH_P_MCTP);
1036 skb->priority = 0;
1037 skb_reset_transport_header(skb);
1038 skb_push(skb, sizeof(struct mctp_hdr));
1039 skb_reset_network_header(skb);
1040 skb->dev = rt->dev->dev;
1041
1042 /* cb->net will have been set on initial ingress */
1043 cb->src = saddr;
1044
1045 /* set up common header fields */
1046 hdr = mctp_hdr(skb);
1047 hdr->ver = 1;
1048 hdr->dest = daddr;
1049 hdr->src = saddr;
1050
1051 mtu = mctp_route_mtu(rt);
1052
1053 if (skb->len + sizeof(struct mctp_hdr) <= mtu) {
1054 hdr->flags_seq_tag = MCTP_HDR_FLAG_SOM |
1055 MCTP_HDR_FLAG_EOM | tag;
1056 rc = rt->output(rt, skb);
1057 } else {
1058 rc = mctp_do_fragment_route(rt, skb, mtu, tag);
1059 }
1060
1061 /* route output functions consume the skb, even on error */
1062 skb = NULL;
1063
1064 out_release:
1065 if (!ext_rt)
1066 mctp_route_release(rt);
1067
1068 mctp_dev_put(tmp_rt.dev);
1069
1070 out_free:
1071 kfree_skb(skb);
1072 return rc;
1073 }
1074
1075 /* route management */
mctp_route_add(struct mctp_dev * mdev,mctp_eid_t daddr_start,unsigned int daddr_extent,unsigned int mtu,unsigned char type)1076 static int mctp_route_add(struct mctp_dev *mdev, mctp_eid_t daddr_start,
1077 unsigned int daddr_extent, unsigned int mtu,
1078 unsigned char type)
1079 {
1080 int (*rtfn)(struct mctp_route *rt, struct sk_buff *skb);
1081 struct net *net = dev_net(mdev->dev);
1082 struct mctp_route *rt, *ert;
1083
1084 if (!mctp_address_unicast(daddr_start))
1085 return -EINVAL;
1086
1087 if (daddr_extent > 0xff || daddr_start + daddr_extent >= 255)
1088 return -EINVAL;
1089
1090 switch (type) {
1091 case RTN_LOCAL:
1092 rtfn = mctp_route_input;
1093 break;
1094 case RTN_UNICAST:
1095 rtfn = mctp_route_output;
1096 break;
1097 default:
1098 return -EINVAL;
1099 }
1100
1101 rt = mctp_route_alloc();
1102 if (!rt)
1103 return -ENOMEM;
1104
1105 rt->min = daddr_start;
1106 rt->max = daddr_start + daddr_extent;
1107 rt->mtu = mtu;
1108 rt->dev = mdev;
1109 mctp_dev_hold(rt->dev);
1110 rt->type = type;
1111 rt->output = rtfn;
1112
1113 ASSERT_RTNL();
1114 /* Prevent duplicate identical routes. */
1115 list_for_each_entry(ert, &net->mctp.routes, list) {
1116 if (mctp_rt_compare_exact(rt, ert)) {
1117 mctp_route_release(rt);
1118 return -EEXIST;
1119 }
1120 }
1121
1122 list_add_rcu(&rt->list, &net->mctp.routes);
1123
1124 return 0;
1125 }
1126
mctp_route_remove(struct mctp_dev * mdev,mctp_eid_t daddr_start,unsigned int daddr_extent,unsigned char type)1127 static int mctp_route_remove(struct mctp_dev *mdev, mctp_eid_t daddr_start,
1128 unsigned int daddr_extent, unsigned char type)
1129 {
1130 struct net *net = dev_net(mdev->dev);
1131 struct mctp_route *rt, *tmp;
1132 mctp_eid_t daddr_end;
1133 bool dropped;
1134
1135 if (daddr_extent > 0xff || daddr_start + daddr_extent >= 255)
1136 return -EINVAL;
1137
1138 daddr_end = daddr_start + daddr_extent;
1139 dropped = false;
1140
1141 ASSERT_RTNL();
1142
1143 list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) {
1144 if (rt->dev == mdev &&
1145 rt->min == daddr_start && rt->max == daddr_end &&
1146 rt->type == type) {
1147 list_del_rcu(&rt->list);
1148 /* TODO: immediate RTM_DELROUTE */
1149 mctp_route_release(rt);
1150 dropped = true;
1151 }
1152 }
1153
1154 return dropped ? 0 : -ENOENT;
1155 }
1156
mctp_route_add_local(struct mctp_dev * mdev,mctp_eid_t addr)1157 int mctp_route_add_local(struct mctp_dev *mdev, mctp_eid_t addr)
1158 {
1159 return mctp_route_add(mdev, addr, 0, 0, RTN_LOCAL);
1160 }
1161
mctp_route_remove_local(struct mctp_dev * mdev,mctp_eid_t addr)1162 int mctp_route_remove_local(struct mctp_dev *mdev, mctp_eid_t addr)
1163 {
1164 return mctp_route_remove(mdev, addr, 0, RTN_LOCAL);
1165 }
1166
1167 /* removes all entries for a given device */
mctp_route_remove_dev(struct mctp_dev * mdev)1168 void mctp_route_remove_dev(struct mctp_dev *mdev)
1169 {
1170 struct net *net = dev_net(mdev->dev);
1171 struct mctp_route *rt, *tmp;
1172
1173 ASSERT_RTNL();
1174 list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) {
1175 if (rt->dev == mdev) {
1176 list_del_rcu(&rt->list);
1177 /* TODO: immediate RTM_DELROUTE */
1178 mctp_route_release(rt);
1179 }
1180 }
1181 }
1182
1183 /* Incoming packet-handling */
1184
mctp_pkttype_receive(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)1185 static int mctp_pkttype_receive(struct sk_buff *skb, struct net_device *dev,
1186 struct packet_type *pt,
1187 struct net_device *orig_dev)
1188 {
1189 struct net *net = dev_net(dev);
1190 struct mctp_dev *mdev;
1191 struct mctp_skb_cb *cb;
1192 struct mctp_route *rt;
1193 struct mctp_hdr *mh;
1194
1195 rcu_read_lock();
1196 mdev = __mctp_dev_get(dev);
1197 rcu_read_unlock();
1198 if (!mdev) {
1199 /* basic non-data sanity checks */
1200 goto err_drop;
1201 }
1202
1203 if (!pskb_may_pull(skb, sizeof(struct mctp_hdr)))
1204 goto err_drop;
1205
1206 skb_reset_transport_header(skb);
1207 skb_reset_network_header(skb);
1208
1209 /* We have enough for a header; decode and route */
1210 mh = mctp_hdr(skb);
1211 if (mh->ver < MCTP_VER_MIN || mh->ver > MCTP_VER_MAX)
1212 goto err_drop;
1213
1214 /* source must be valid unicast or null; drop reserved ranges and
1215 * broadcast
1216 */
1217 if (!(mctp_address_unicast(mh->src) || mctp_address_null(mh->src)))
1218 goto err_drop;
1219
1220 /* dest address: as above, but allow broadcast */
1221 if (!(mctp_address_unicast(mh->dest) || mctp_address_null(mh->dest) ||
1222 mctp_address_broadcast(mh->dest)))
1223 goto err_drop;
1224
1225 /* MCTP drivers must populate halen/haddr */
1226 if (dev->type == ARPHRD_MCTP) {
1227 cb = mctp_cb(skb);
1228 } else {
1229 cb = __mctp_cb(skb);
1230 cb->halen = 0;
1231 }
1232 cb->net = READ_ONCE(mdev->net);
1233 cb->ifindex = dev->ifindex;
1234
1235 rt = mctp_route_lookup(net, cb->net, mh->dest);
1236
1237 /* NULL EID, but addressed to our physical address */
1238 if (!rt && mh->dest == MCTP_ADDR_NULL && skb->pkt_type == PACKET_HOST)
1239 rt = mctp_route_lookup_null(net, dev);
1240
1241 if (!rt)
1242 goto err_drop;
1243
1244 rt->output(rt, skb);
1245 mctp_route_release(rt);
1246 mctp_dev_put(mdev);
1247
1248 return NET_RX_SUCCESS;
1249
1250 err_drop:
1251 kfree_skb(skb);
1252 mctp_dev_put(mdev);
1253 return NET_RX_DROP;
1254 }
1255
1256 static struct packet_type mctp_packet_type = {
1257 .type = cpu_to_be16(ETH_P_MCTP),
1258 .func = mctp_pkttype_receive,
1259 };
1260
1261 /* netlink interface */
1262
1263 static const struct nla_policy rta_mctp_policy[RTA_MAX + 1] = {
1264 [RTA_DST] = { .type = NLA_U8 },
1265 [RTA_METRICS] = { .type = NLA_NESTED },
1266 [RTA_OIF] = { .type = NLA_U32 },
1267 };
1268
1269 /* Common part for RTM_NEWROUTE and RTM_DELROUTE parsing.
1270 * tb must hold RTA_MAX+1 elements.
1271 */
mctp_route_nlparse(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack,struct nlattr ** tb,struct rtmsg ** rtm,struct mctp_dev ** mdev,mctp_eid_t * daddr_start)1272 static int mctp_route_nlparse(struct sk_buff *skb, struct nlmsghdr *nlh,
1273 struct netlink_ext_ack *extack,
1274 struct nlattr **tb, struct rtmsg **rtm,
1275 struct mctp_dev **mdev, mctp_eid_t *daddr_start)
1276 {
1277 struct net *net = sock_net(skb->sk);
1278 struct net_device *dev;
1279 unsigned int ifindex;
1280 int rc;
1281
1282 rc = nlmsg_parse(nlh, sizeof(struct rtmsg), tb, RTA_MAX,
1283 rta_mctp_policy, extack);
1284 if (rc < 0) {
1285 NL_SET_ERR_MSG(extack, "incorrect format");
1286 return rc;
1287 }
1288
1289 if (!tb[RTA_DST]) {
1290 NL_SET_ERR_MSG(extack, "dst EID missing");
1291 return -EINVAL;
1292 }
1293 *daddr_start = nla_get_u8(tb[RTA_DST]);
1294
1295 if (!tb[RTA_OIF]) {
1296 NL_SET_ERR_MSG(extack, "ifindex missing");
1297 return -EINVAL;
1298 }
1299 ifindex = nla_get_u32(tb[RTA_OIF]);
1300
1301 *rtm = nlmsg_data(nlh);
1302 if ((*rtm)->rtm_family != AF_MCTP) {
1303 NL_SET_ERR_MSG(extack, "route family must be AF_MCTP");
1304 return -EINVAL;
1305 }
1306
1307 dev = __dev_get_by_index(net, ifindex);
1308 if (!dev) {
1309 NL_SET_ERR_MSG(extack, "bad ifindex");
1310 return -ENODEV;
1311 }
1312 *mdev = mctp_dev_get_rtnl(dev);
1313 if (!*mdev)
1314 return -ENODEV;
1315
1316 if (dev->flags & IFF_LOOPBACK) {
1317 NL_SET_ERR_MSG(extack, "no routes to loopback");
1318 return -EINVAL;
1319 }
1320
1321 return 0;
1322 }
1323
1324 static const struct nla_policy rta_metrics_policy[RTAX_MAX + 1] = {
1325 [RTAX_MTU] = { .type = NLA_U32 },
1326 };
1327
mctp_newroute(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)1328 static int mctp_newroute(struct sk_buff *skb, struct nlmsghdr *nlh,
1329 struct netlink_ext_ack *extack)
1330 {
1331 struct nlattr *tb[RTA_MAX + 1];
1332 struct nlattr *tbx[RTAX_MAX + 1];
1333 mctp_eid_t daddr_start;
1334 struct mctp_dev *mdev;
1335 struct rtmsg *rtm;
1336 unsigned int mtu;
1337 int rc;
1338
1339 rc = mctp_route_nlparse(skb, nlh, extack, tb,
1340 &rtm, &mdev, &daddr_start);
1341 if (rc < 0)
1342 return rc;
1343
1344 if (rtm->rtm_type != RTN_UNICAST) {
1345 NL_SET_ERR_MSG(extack, "rtm_type must be RTN_UNICAST");
1346 return -EINVAL;
1347 }
1348
1349 mtu = 0;
1350 if (tb[RTA_METRICS]) {
1351 rc = nla_parse_nested(tbx, RTAX_MAX, tb[RTA_METRICS],
1352 rta_metrics_policy, NULL);
1353 if (rc < 0)
1354 return rc;
1355 if (tbx[RTAX_MTU])
1356 mtu = nla_get_u32(tbx[RTAX_MTU]);
1357 }
1358
1359 rc = mctp_route_add(mdev, daddr_start, rtm->rtm_dst_len, mtu,
1360 rtm->rtm_type);
1361 return rc;
1362 }
1363
mctp_delroute(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)1364 static int mctp_delroute(struct sk_buff *skb, struct nlmsghdr *nlh,
1365 struct netlink_ext_ack *extack)
1366 {
1367 struct nlattr *tb[RTA_MAX + 1];
1368 mctp_eid_t daddr_start;
1369 struct mctp_dev *mdev;
1370 struct rtmsg *rtm;
1371 int rc;
1372
1373 rc = mctp_route_nlparse(skb, nlh, extack, tb,
1374 &rtm, &mdev, &daddr_start);
1375 if (rc < 0)
1376 return rc;
1377
1378 /* we only have unicast routes */
1379 if (rtm->rtm_type != RTN_UNICAST)
1380 return -EINVAL;
1381
1382 rc = mctp_route_remove(mdev, daddr_start, rtm->rtm_dst_len, RTN_UNICAST);
1383 return rc;
1384 }
1385
mctp_fill_rtinfo(struct sk_buff * skb,struct mctp_route * rt,u32 portid,u32 seq,int event,unsigned int flags)1386 static int mctp_fill_rtinfo(struct sk_buff *skb, struct mctp_route *rt,
1387 u32 portid, u32 seq, int event, unsigned int flags)
1388 {
1389 struct nlmsghdr *nlh;
1390 struct rtmsg *hdr;
1391 void *metrics;
1392
1393 nlh = nlmsg_put(skb, portid, seq, event, sizeof(*hdr), flags);
1394 if (!nlh)
1395 return -EMSGSIZE;
1396
1397 hdr = nlmsg_data(nlh);
1398 hdr->rtm_family = AF_MCTP;
1399
1400 /* we use the _len fields as a number of EIDs, rather than
1401 * a number of bits in the address
1402 */
1403 hdr->rtm_dst_len = rt->max - rt->min;
1404 hdr->rtm_src_len = 0;
1405 hdr->rtm_tos = 0;
1406 hdr->rtm_table = RT_TABLE_DEFAULT;
1407 hdr->rtm_protocol = RTPROT_STATIC; /* everything is user-defined */
1408 hdr->rtm_scope = RT_SCOPE_LINK; /* TODO: scope in mctp_route? */
1409 hdr->rtm_type = rt->type;
1410
1411 if (nla_put_u8(skb, RTA_DST, rt->min))
1412 goto cancel;
1413
1414 metrics = nla_nest_start_noflag(skb, RTA_METRICS);
1415 if (!metrics)
1416 goto cancel;
1417
1418 if (rt->mtu) {
1419 if (nla_put_u32(skb, RTAX_MTU, rt->mtu))
1420 goto cancel;
1421 }
1422
1423 nla_nest_end(skb, metrics);
1424
1425 if (rt->dev) {
1426 if (nla_put_u32(skb, RTA_OIF, rt->dev->dev->ifindex))
1427 goto cancel;
1428 }
1429
1430 /* TODO: conditional neighbour physaddr? */
1431
1432 nlmsg_end(skb, nlh);
1433
1434 return 0;
1435
1436 cancel:
1437 nlmsg_cancel(skb, nlh);
1438 return -EMSGSIZE;
1439 }
1440
mctp_dump_rtinfo(struct sk_buff * skb,struct netlink_callback * cb)1441 static int mctp_dump_rtinfo(struct sk_buff *skb, struct netlink_callback *cb)
1442 {
1443 struct net *net = sock_net(skb->sk);
1444 struct mctp_route *rt;
1445 int s_idx, idx;
1446
1447 /* TODO: allow filtering on route data, possibly under
1448 * cb->strict_check
1449 */
1450
1451 /* TODO: change to struct overlay */
1452 s_idx = cb->args[0];
1453 idx = 0;
1454
1455 rcu_read_lock();
1456 list_for_each_entry_rcu(rt, &net->mctp.routes, list) {
1457 if (idx++ < s_idx)
1458 continue;
1459 if (mctp_fill_rtinfo(skb, rt,
1460 NETLINK_CB(cb->skb).portid,
1461 cb->nlh->nlmsg_seq,
1462 RTM_NEWROUTE, NLM_F_MULTI) < 0)
1463 break;
1464 }
1465
1466 rcu_read_unlock();
1467 cb->args[0] = idx;
1468
1469 return skb->len;
1470 }
1471
1472 /* net namespace implementation */
mctp_routes_net_init(struct net * net)1473 static int __net_init mctp_routes_net_init(struct net *net)
1474 {
1475 struct netns_mctp *ns = &net->mctp;
1476
1477 INIT_LIST_HEAD(&ns->routes);
1478 INIT_HLIST_HEAD(&ns->binds);
1479 mutex_init(&ns->bind_lock);
1480 INIT_HLIST_HEAD(&ns->keys);
1481 spin_lock_init(&ns->keys_lock);
1482 WARN_ON(mctp_default_net_set(net, MCTP_INITIAL_DEFAULT_NET));
1483 return 0;
1484 }
1485
mctp_routes_net_exit(struct net * net)1486 static void __net_exit mctp_routes_net_exit(struct net *net)
1487 {
1488 struct mctp_route *rt;
1489
1490 rcu_read_lock();
1491 list_for_each_entry_rcu(rt, &net->mctp.routes, list)
1492 mctp_route_release(rt);
1493 rcu_read_unlock();
1494 }
1495
1496 static struct pernet_operations mctp_net_ops = {
1497 .init = mctp_routes_net_init,
1498 .exit = mctp_routes_net_exit,
1499 };
1500
1501 static const struct rtnl_msg_handler mctp_route_rtnl_msg_handlers[] = {
1502 {THIS_MODULE, PF_MCTP, RTM_NEWROUTE, mctp_newroute, NULL, 0},
1503 {THIS_MODULE, PF_MCTP, RTM_DELROUTE, mctp_delroute, NULL, 0},
1504 {THIS_MODULE, PF_MCTP, RTM_GETROUTE, NULL, mctp_dump_rtinfo, 0},
1505 };
1506
mctp_routes_init(void)1507 int __init mctp_routes_init(void)
1508 {
1509 int err;
1510
1511 dev_add_pack(&mctp_packet_type);
1512
1513 err = register_pernet_subsys(&mctp_net_ops);
1514 if (err)
1515 goto err_pernet;
1516
1517 err = rtnl_register_many(mctp_route_rtnl_msg_handlers);
1518 if (err)
1519 goto err_rtnl;
1520
1521 return 0;
1522
1523 err_rtnl:
1524 unregister_pernet_subsys(&mctp_net_ops);
1525 err_pernet:
1526 dev_remove_pack(&mctp_packet_type);
1527 return err;
1528 }
1529
mctp_routes_exit(void)1530 void mctp_routes_exit(void)
1531 {
1532 rtnl_unregister_many(mctp_route_rtnl_msg_handlers);
1533 unregister_pernet_subsys(&mctp_net_ops);
1534 dev_remove_pack(&mctp_packet_type);
1535 }
1536
1537 #if IS_ENABLED(CONFIG_MCTP_TEST)
1538 #include "test/route-test.c"
1539 #endif
1540