1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Management Component Transport Protocol (MCTP) - routing
4 * implementation.
5 *
6 * This is currently based on a simple routing table, with no dst cache. The
7 * number of routes should stay fairly small, so the lookup cost is small.
8 *
9 * Copyright (c) 2021 Code Construct
10 * Copyright (c) 2021 Google
11 */
12
13 #include <linux/idr.h>
14 #include <linux/kconfig.h>
15 #include <linux/mctp.h>
16 #include <linux/netdevice.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/skbuff.h>
19
20 #include <kunit/static_stub.h>
21
22 #include <uapi/linux/if_arp.h>
23
24 #include <net/mctp.h>
25 #include <net/mctpdevice.h>
26 #include <net/netlink.h>
27 #include <net/sock.h>
28
29 #include <trace/events/mctp.h>
30
31 static const unsigned int mctp_message_maxlen = 64 * 1024;
32 static const unsigned long mctp_key_lifetime = 6 * CONFIG_HZ;
33
34 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev);
35
36 /* route output callbacks */
mctp_dst_discard(struct mctp_dst * dst,struct sk_buff * skb)37 static int mctp_dst_discard(struct mctp_dst *dst, struct sk_buff *skb)
38 {
39 kfree_skb(skb);
40 return 0;
41 }
42
mctp_lookup_bind_details(struct net * net,struct sk_buff * skb,u8 type,u8 dest,u8 src,bool allow_net_any)43 static struct mctp_sock *mctp_lookup_bind_details(struct net *net,
44 struct sk_buff *skb,
45 u8 type, u8 dest,
46 u8 src, bool allow_net_any)
47 {
48 struct mctp_skb_cb *cb = mctp_cb(skb);
49 struct sock *sk;
50 u8 hash;
51
52 WARN_ON_ONCE(!rcu_read_lock_held());
53
54 hash = mctp_bind_hash(type, dest, src);
55
56 sk_for_each_rcu(sk, &net->mctp.binds[hash]) {
57 struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk);
58
59 if (!allow_net_any && msk->bind_net == MCTP_NET_ANY)
60 continue;
61
62 if (msk->bind_net != MCTP_NET_ANY && msk->bind_net != cb->net)
63 continue;
64
65 if (msk->bind_type != type)
66 continue;
67
68 if (msk->bind_peer_set &&
69 !mctp_address_matches(msk->bind_peer_addr, src))
70 continue;
71
72 if (!mctp_address_matches(msk->bind_local_addr, dest))
73 continue;
74
75 return msk;
76 }
77
78 return NULL;
79 }
80
mctp_lookup_bind(struct net * net,struct sk_buff * skb)81 static struct mctp_sock *mctp_lookup_bind(struct net *net, struct sk_buff *skb)
82 {
83 struct mctp_sock *msk;
84 struct mctp_hdr *mh;
85 u8 type;
86
87 /* TODO: look up in skb->cb? */
88 mh = mctp_hdr(skb);
89
90 if (!skb_headlen(skb))
91 return NULL;
92
93 type = (*(u8 *)skb->data) & 0x7f;
94
95 /* Look for binds in order of widening scope. A given destination or
96 * source address also implies matching on a particular network.
97 *
98 * - Matching destination and source
99 * - Matching destination
100 * - Matching source
101 * - Matching network, any address
102 * - Any network or address
103 */
104
105 msk = mctp_lookup_bind_details(net, skb, type, mh->dest, mh->src,
106 false);
107 if (msk)
108 return msk;
109 msk = mctp_lookup_bind_details(net, skb, type, MCTP_ADDR_ANY, mh->src,
110 false);
111 if (msk)
112 return msk;
113 msk = mctp_lookup_bind_details(net, skb, type, mh->dest, MCTP_ADDR_ANY,
114 false);
115 if (msk)
116 return msk;
117 msk = mctp_lookup_bind_details(net, skb, type, MCTP_ADDR_ANY,
118 MCTP_ADDR_ANY, false);
119 if (msk)
120 return msk;
121 msk = mctp_lookup_bind_details(net, skb, type, MCTP_ADDR_ANY,
122 MCTP_ADDR_ANY, true);
123 if (msk)
124 return msk;
125
126 return NULL;
127 }
128
129 /* A note on the key allocations.
130 *
131 * struct net->mctp.keys contains our set of currently-allocated keys for
132 * MCTP tag management. The lookup tuple for these is the peer EID,
133 * local EID and MCTP tag.
134 *
135 * In some cases, the peer EID may be MCTP_EID_ANY: for example, when a
136 * broadcast message is sent, we may receive responses from any peer EID.
137 * Because the broadcast dest address is equivalent to ANY, we create
138 * a key with (local = local-eid, peer = ANY). This allows a match on the
139 * incoming broadcast responses from any peer.
140 *
141 * We perform lookups when packets are received, and when tags are allocated
142 * in two scenarios:
143 *
144 * - when a packet is sent, with a locally-owned tag: we need to find an
145 * unused tag value for the (local, peer) EID pair.
146 *
147 * - when a tag is manually allocated: we need to find an unused tag value
148 * for the peer EID, but don't have a specific local EID at that stage.
149 *
150 * in the latter case, on successful allocation, we end up with a tag with
151 * (local = ANY, peer = peer-eid).
152 *
153 * So, the key set allows both a local EID of ANY, as well as a peer EID of
154 * ANY in the lookup tuple. Both may be ANY if we prealloc for a broadcast.
155 * The matching (in mctp_key_match()) during lookup allows the match value to
156 * be ANY in either the dest or source addresses.
157 *
158 * When allocating (+ inserting) a tag, we need to check for conflicts amongst
159 * the existing tag set. This requires macthing either exactly on the local
160 * and peer addresses, or either being ANY.
161 */
162
mctp_key_match(struct mctp_sk_key * key,unsigned int net,mctp_eid_t local,mctp_eid_t peer,u8 tag)163 static bool mctp_key_match(struct mctp_sk_key *key, unsigned int net,
164 mctp_eid_t local, mctp_eid_t peer, u8 tag)
165 {
166 if (key->net != net)
167 return false;
168
169 if (!mctp_address_matches(key->local_addr, local))
170 return false;
171
172 if (!mctp_address_matches(key->peer_addr, peer))
173 return false;
174
175 if (key->tag != tag)
176 return false;
177
178 return true;
179 }
180
181 /* returns a key (with key->lock held, and refcounted), or NULL if no such
182 * key exists.
183 */
mctp_lookup_key(struct net * net,struct sk_buff * skb,unsigned int netid,mctp_eid_t peer,unsigned long * irqflags)184 static struct mctp_sk_key *mctp_lookup_key(struct net *net, struct sk_buff *skb,
185 unsigned int netid, mctp_eid_t peer,
186 unsigned long *irqflags)
187 __acquires(&key->lock)
188 {
189 struct mctp_sk_key *key, *ret;
190 unsigned long flags;
191 struct mctp_hdr *mh;
192 u8 tag;
193
194 mh = mctp_hdr(skb);
195 tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
196
197 ret = NULL;
198 spin_lock_irqsave(&net->mctp.keys_lock, flags);
199
200 hlist_for_each_entry(key, &net->mctp.keys, hlist) {
201 if (!mctp_key_match(key, netid, mh->dest, peer, tag))
202 continue;
203
204 spin_lock(&key->lock);
205 if (key->valid) {
206 refcount_inc(&key->refs);
207 ret = key;
208 break;
209 }
210 spin_unlock(&key->lock);
211 }
212
213 if (ret) {
214 spin_unlock(&net->mctp.keys_lock);
215 *irqflags = flags;
216 } else {
217 spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
218 }
219
220 return ret;
221 }
222
mctp_key_alloc(struct mctp_sock * msk,unsigned int net,mctp_eid_t local,mctp_eid_t peer,u8 tag,gfp_t gfp)223 static struct mctp_sk_key *mctp_key_alloc(struct mctp_sock *msk,
224 unsigned int net,
225 mctp_eid_t local, mctp_eid_t peer,
226 u8 tag, gfp_t gfp)
227 {
228 struct mctp_sk_key *key;
229
230 key = kzalloc(sizeof(*key), gfp);
231 if (!key)
232 return NULL;
233
234 key->net = net;
235 key->peer_addr = peer;
236 key->local_addr = local;
237 key->tag = tag;
238 key->sk = &msk->sk;
239 key->valid = true;
240 spin_lock_init(&key->lock);
241 refcount_set(&key->refs, 1);
242 sock_hold(key->sk);
243
244 return key;
245 }
246
mctp_key_unref(struct mctp_sk_key * key)247 void mctp_key_unref(struct mctp_sk_key *key)
248 {
249 unsigned long flags;
250
251 if (!refcount_dec_and_test(&key->refs))
252 return;
253
254 /* even though no refs exist here, the lock allows us to stay
255 * consistent with the locking requirement of mctp_dev_release_key
256 */
257 spin_lock_irqsave(&key->lock, flags);
258 mctp_dev_release_key(key->dev, key);
259 spin_unlock_irqrestore(&key->lock, flags);
260
261 sock_put(key->sk);
262 kfree(key);
263 }
264
mctp_key_add(struct mctp_sk_key * key,struct mctp_sock * msk)265 static int mctp_key_add(struct mctp_sk_key *key, struct mctp_sock *msk)
266 {
267 struct net *net = sock_net(&msk->sk);
268 struct mctp_sk_key *tmp;
269 unsigned long flags;
270 int rc = 0;
271
272 spin_lock_irqsave(&net->mctp.keys_lock, flags);
273
274 if (sock_flag(&msk->sk, SOCK_DEAD)) {
275 rc = -EINVAL;
276 goto out_unlock;
277 }
278
279 hlist_for_each_entry(tmp, &net->mctp.keys, hlist) {
280 if (mctp_key_match(tmp, key->net, key->local_addr,
281 key->peer_addr, key->tag)) {
282 spin_lock(&tmp->lock);
283 if (tmp->valid)
284 rc = -EEXIST;
285 spin_unlock(&tmp->lock);
286 if (rc)
287 break;
288 }
289 }
290
291 if (!rc) {
292 refcount_inc(&key->refs);
293 key->expiry = jiffies + mctp_key_lifetime;
294 timer_reduce(&msk->key_expiry, key->expiry);
295
296 hlist_add_head(&key->hlist, &net->mctp.keys);
297 hlist_add_head(&key->sklist, &msk->keys);
298 }
299
300 out_unlock:
301 spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
302
303 return rc;
304 }
305
306 /* Helper for mctp_route_input().
307 * We're done with the key; unlock and unref the key.
308 * For the usual case of automatic expiry we remove the key from lists.
309 * In the case that manual allocation is set on a key we release the lock
310 * and local ref, reset reassembly, but don't remove from lists.
311 */
__mctp_key_done_in(struct mctp_sk_key * key,struct net * net,unsigned long flags,unsigned long reason)312 static void __mctp_key_done_in(struct mctp_sk_key *key, struct net *net,
313 unsigned long flags, unsigned long reason)
314 __releases(&key->lock)
315 {
316 struct sk_buff *skb;
317
318 trace_mctp_key_release(key, reason);
319 skb = key->reasm_head;
320 key->reasm_head = NULL;
321
322 if (!key->manual_alloc) {
323 key->reasm_dead = true;
324 key->valid = false;
325 mctp_dev_release_key(key->dev, key);
326 }
327 spin_unlock_irqrestore(&key->lock, flags);
328
329 if (!key->manual_alloc) {
330 spin_lock_irqsave(&net->mctp.keys_lock, flags);
331 if (!hlist_unhashed(&key->hlist)) {
332 hlist_del_init(&key->hlist);
333 hlist_del_init(&key->sklist);
334 mctp_key_unref(key);
335 }
336 spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
337 }
338
339 /* and one for the local reference */
340 mctp_key_unref(key);
341
342 kfree_skb(skb);
343 }
344
345 #ifdef CONFIG_MCTP_FLOWS
mctp_skb_set_flow(struct sk_buff * skb,struct mctp_sk_key * key)346 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key)
347 {
348 struct mctp_flow *flow;
349
350 flow = skb_ext_add(skb, SKB_EXT_MCTP);
351 if (!flow)
352 return;
353
354 refcount_inc(&key->refs);
355 flow->key = key;
356 }
357
mctp_flow_prepare_output(struct sk_buff * skb,struct mctp_dev * dev)358 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev)
359 {
360 struct mctp_sk_key *key;
361 struct mctp_flow *flow;
362
363 flow = skb_ext_find(skb, SKB_EXT_MCTP);
364 if (!flow)
365 return;
366
367 key = flow->key;
368
369 if (key->dev) {
370 WARN_ON(key->dev != dev);
371 return;
372 }
373
374 mctp_dev_set_key(dev, key);
375 }
376 #else
mctp_skb_set_flow(struct sk_buff * skb,struct mctp_sk_key * key)377 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key) {}
mctp_flow_prepare_output(struct sk_buff * skb,struct mctp_dev * dev)378 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev) {}
379 #endif
380
mctp_frag_queue(struct mctp_sk_key * key,struct sk_buff * skb)381 static int mctp_frag_queue(struct mctp_sk_key *key, struct sk_buff *skb)
382 {
383 struct mctp_hdr *hdr = mctp_hdr(skb);
384 u8 exp_seq, this_seq;
385
386 this_seq = (hdr->flags_seq_tag >> MCTP_HDR_SEQ_SHIFT)
387 & MCTP_HDR_SEQ_MASK;
388
389 if (!key->reasm_head) {
390 /* Since we're manipulating the shared frag_list, ensure it isn't
391 * shared with any other SKBs.
392 */
393 key->reasm_head = skb_unshare(skb, GFP_ATOMIC);
394 if (!key->reasm_head)
395 return -ENOMEM;
396
397 key->reasm_tailp = &(skb_shinfo(key->reasm_head)->frag_list);
398 key->last_seq = this_seq;
399 return 0;
400 }
401
402 exp_seq = (key->last_seq + 1) & MCTP_HDR_SEQ_MASK;
403
404 if (this_seq != exp_seq)
405 return -EINVAL;
406
407 if (key->reasm_head->len + skb->len > mctp_message_maxlen)
408 return -EINVAL;
409
410 skb->next = NULL;
411 skb->sk = NULL;
412 *key->reasm_tailp = skb;
413 key->reasm_tailp = &skb->next;
414
415 key->last_seq = this_seq;
416
417 key->reasm_head->data_len += skb->len;
418 key->reasm_head->len += skb->len;
419 key->reasm_head->truesize += skb->truesize;
420
421 return 0;
422 }
423
mctp_dst_input(struct mctp_dst * dst,struct sk_buff * skb)424 static int mctp_dst_input(struct mctp_dst *dst, struct sk_buff *skb)
425 {
426 struct mctp_sk_key *key, *any_key = NULL;
427 struct net *net = dev_net(skb->dev);
428 struct mctp_sock *msk;
429 struct mctp_hdr *mh;
430 unsigned int netid;
431 unsigned long f;
432 u8 tag, flags;
433 int rc;
434
435 msk = NULL;
436 rc = -EINVAL;
437
438 /* We may be receiving a locally-routed packet; drop source sk
439 * accounting.
440 *
441 * From here, we will either queue the skb - either to a frag_queue, or
442 * to a receiving socket. When that succeeds, we clear the skb pointer;
443 * a non-NULL skb on exit will be otherwise unowned, and hence
444 * kfree_skb()-ed.
445 */
446 skb_orphan(skb);
447
448 if (skb->pkt_type == PACKET_OUTGOING)
449 skb->pkt_type = PACKET_LOOPBACK;
450
451 /* ensure we have enough data for a header and a type */
452 if (skb->len < sizeof(struct mctp_hdr) + 1)
453 goto out;
454
455 /* grab header, advance data ptr */
456 mh = mctp_hdr(skb);
457 netid = mctp_cb(skb)->net;
458 skb_pull(skb, sizeof(struct mctp_hdr));
459
460 if (mh->ver != 1)
461 goto out;
462
463 flags = mh->flags_seq_tag & (MCTP_HDR_FLAG_SOM | MCTP_HDR_FLAG_EOM);
464 tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
465
466 rcu_read_lock();
467
468 /* lookup socket / reasm context, exactly matching (src,dest,tag).
469 * we hold a ref on the key, and key->lock held.
470 */
471 key = mctp_lookup_key(net, skb, netid, mh->src, &f);
472
473 if (flags & MCTP_HDR_FLAG_SOM) {
474 if (key) {
475 msk = container_of(key->sk, struct mctp_sock, sk);
476 } else {
477 /* first response to a broadcast? do a more general
478 * key lookup to find the socket, but don't use this
479 * key for reassembly - we'll create a more specific
480 * one for future packets if required (ie, !EOM).
481 *
482 * this lookup requires key->peer to be MCTP_ADDR_ANY,
483 * it doesn't match just any key->peer.
484 */
485 any_key = mctp_lookup_key(net, skb, netid,
486 MCTP_ADDR_ANY, &f);
487 if (any_key) {
488 msk = container_of(any_key->sk,
489 struct mctp_sock, sk);
490 spin_unlock_irqrestore(&any_key->lock, f);
491 }
492 }
493
494 if (!key && !msk && (tag & MCTP_HDR_FLAG_TO))
495 msk = mctp_lookup_bind(net, skb);
496
497 if (!msk) {
498 rc = -ENOENT;
499 goto out_unlock;
500 }
501
502 /* single-packet message? deliver to socket, clean up any
503 * pending key.
504 */
505 if (flags & MCTP_HDR_FLAG_EOM) {
506 rc = sock_queue_rcv_skb(&msk->sk, skb);
507 if (!rc)
508 skb = NULL;
509 if (key) {
510 /* we've hit a pending reassembly; not much we
511 * can do but drop it
512 */
513 __mctp_key_done_in(key, net, f,
514 MCTP_TRACE_KEY_REPLIED);
515 key = NULL;
516 }
517 goto out_unlock;
518 }
519
520 /* broadcast response or a bind() - create a key for further
521 * packets for this message
522 */
523 if (!key) {
524 key = mctp_key_alloc(msk, netid, mh->dest, mh->src,
525 tag, GFP_ATOMIC);
526 if (!key) {
527 rc = -ENOMEM;
528 goto out_unlock;
529 }
530
531 /* we can queue without the key lock here, as the
532 * key isn't observable yet
533 */
534 mctp_frag_queue(key, skb);
535
536 /* if the key_add fails, we've raced with another
537 * SOM packet with the same src, dest and tag. There's
538 * no way to distinguish future packets, so all we
539 * can do is drop; we'll free the skb on exit from
540 * this function.
541 */
542 rc = mctp_key_add(key, msk);
543 if (!rc) {
544 trace_mctp_key_acquire(key);
545 skb = NULL;
546 }
547
548 /* we don't need to release key->lock on exit, so
549 * clean up here and suppress the unlock via
550 * setting to NULL
551 */
552 mctp_key_unref(key);
553 key = NULL;
554
555 } else {
556 if (key->reasm_head || key->reasm_dead) {
557 /* duplicate start? drop everything */
558 __mctp_key_done_in(key, net, f,
559 MCTP_TRACE_KEY_INVALIDATED);
560 rc = -EEXIST;
561 key = NULL;
562 } else {
563 rc = mctp_frag_queue(key, skb);
564 if (!rc)
565 skb = NULL;
566 }
567 }
568
569 } else if (key) {
570 /* this packet continues a previous message; reassemble
571 * using the message-specific key
572 */
573
574 /* we need to be continuing an existing reassembly... */
575 if (!key->reasm_head)
576 rc = -EINVAL;
577 else
578 rc = mctp_frag_queue(key, skb);
579
580 if (rc)
581 goto out_unlock;
582
583 /* we've queued; the queue owns the skb now */
584 skb = NULL;
585
586 /* end of message? deliver to socket, and we're done with
587 * the reassembly/response key
588 */
589 if (flags & MCTP_HDR_FLAG_EOM) {
590 rc = sock_queue_rcv_skb(key->sk, key->reasm_head);
591 if (!rc)
592 key->reasm_head = NULL;
593 __mctp_key_done_in(key, net, f, MCTP_TRACE_KEY_REPLIED);
594 key = NULL;
595 }
596
597 } else {
598 /* not a start, no matching key */
599 rc = -ENOENT;
600 }
601
602 out_unlock:
603 rcu_read_unlock();
604 if (key) {
605 spin_unlock_irqrestore(&key->lock, f);
606 mctp_key_unref(key);
607 }
608 if (any_key)
609 mctp_key_unref(any_key);
610 out:
611 kfree_skb(skb);
612 return rc;
613 }
614
mctp_dst_output(struct mctp_dst * dst,struct sk_buff * skb)615 static int mctp_dst_output(struct mctp_dst *dst, struct sk_buff *skb)
616 {
617 char daddr_buf[MAX_ADDR_LEN];
618 char *daddr = NULL;
619 int rc;
620
621 skb->protocol = htons(ETH_P_MCTP);
622 skb->pkt_type = PACKET_OUTGOING;
623
624 if (skb->len > dst->mtu) {
625 kfree_skb(skb);
626 return -EMSGSIZE;
627 }
628
629 /* direct route; use the hwaddr we stashed in sendmsg */
630 if (dst->halen) {
631 if (dst->halen != skb->dev->addr_len) {
632 /* sanity check, sendmsg should have already caught this */
633 kfree_skb(skb);
634 return -EMSGSIZE;
635 }
636 daddr = dst->haddr;
637 } else {
638 /* If lookup fails let the device handle daddr==NULL */
639 if (mctp_neigh_lookup(dst->dev, dst->nexthop, daddr_buf) == 0)
640 daddr = daddr_buf;
641 }
642
643 rc = dev_hard_header(skb, skb->dev, ntohs(skb->protocol),
644 daddr, skb->dev->dev_addr, skb->len);
645 if (rc < 0) {
646 kfree_skb(skb);
647 return -EHOSTUNREACH;
648 }
649
650 mctp_flow_prepare_output(skb, dst->dev);
651
652 rc = dev_queue_xmit(skb);
653 if (rc)
654 rc = net_xmit_errno(rc);
655
656 return rc;
657 }
658
659 /* route alloc/release */
mctp_route_release(struct mctp_route * rt)660 static void mctp_route_release(struct mctp_route *rt)
661 {
662 if (refcount_dec_and_test(&rt->refs)) {
663 if (rt->dst_type == MCTP_ROUTE_DIRECT)
664 mctp_dev_put(rt->dev);
665 kfree_rcu(rt, rcu);
666 }
667 }
668
669 /* returns a route with the refcount at 1 */
mctp_route_alloc(void)670 static struct mctp_route *mctp_route_alloc(void)
671 {
672 struct mctp_route *rt;
673
674 rt = kzalloc(sizeof(*rt), GFP_KERNEL);
675 if (!rt)
676 return NULL;
677
678 INIT_LIST_HEAD(&rt->list);
679 refcount_set(&rt->refs, 1);
680 rt->output = mctp_dst_discard;
681
682 return rt;
683 }
684
mctp_default_net(struct net * net)685 unsigned int mctp_default_net(struct net *net)
686 {
687 return READ_ONCE(net->mctp.default_net);
688 }
689
mctp_default_net_set(struct net * net,unsigned int index)690 int mctp_default_net_set(struct net *net, unsigned int index)
691 {
692 if (index == 0)
693 return -EINVAL;
694 WRITE_ONCE(net->mctp.default_net, index);
695 return 0;
696 }
697
698 /* tag management */
mctp_reserve_tag(struct net * net,struct mctp_sk_key * key,struct mctp_sock * msk)699 static void mctp_reserve_tag(struct net *net, struct mctp_sk_key *key,
700 struct mctp_sock *msk)
701 {
702 struct netns_mctp *mns = &net->mctp;
703
704 lockdep_assert_held(&mns->keys_lock);
705
706 key->expiry = jiffies + mctp_key_lifetime;
707 timer_reduce(&msk->key_expiry, key->expiry);
708
709 /* we hold the net->key_lock here, allowing updates to both
710 * then net and sk
711 */
712 hlist_add_head_rcu(&key->hlist, &mns->keys);
713 hlist_add_head_rcu(&key->sklist, &msk->keys);
714 refcount_inc(&key->refs);
715 }
716
717 /* Allocate a locally-owned tag value for (local, peer), and reserve
718 * it for the socket msk
719 */
mctp_alloc_local_tag(struct mctp_sock * msk,unsigned int netid,mctp_eid_t local,mctp_eid_t peer,bool manual,u8 * tagp)720 struct mctp_sk_key *mctp_alloc_local_tag(struct mctp_sock *msk,
721 unsigned int netid,
722 mctp_eid_t local, mctp_eid_t peer,
723 bool manual, u8 *tagp)
724 {
725 struct net *net = sock_net(&msk->sk);
726 struct netns_mctp *mns = &net->mctp;
727 struct mctp_sk_key *key, *tmp;
728 unsigned long flags;
729 u8 tagbits;
730
731 /* for NULL destination EIDs, we may get a response from any peer */
732 if (peer == MCTP_ADDR_NULL)
733 peer = MCTP_ADDR_ANY;
734
735 /* be optimistic, alloc now */
736 key = mctp_key_alloc(msk, netid, local, peer, 0, GFP_KERNEL);
737 if (!key)
738 return ERR_PTR(-ENOMEM);
739
740 /* 8 possible tag values */
741 tagbits = 0xff;
742
743 spin_lock_irqsave(&mns->keys_lock, flags);
744
745 /* Walk through the existing keys, looking for potential conflicting
746 * tags. If we find a conflict, clear that bit from tagbits
747 */
748 hlist_for_each_entry(tmp, &mns->keys, hlist) {
749 /* We can check the lookup fields (*_addr, tag) without the
750 * lock held, they don't change over the lifetime of the key.
751 */
752
753 /* tags are net-specific */
754 if (tmp->net != netid)
755 continue;
756
757 /* if we don't own the tag, it can't conflict */
758 if (tmp->tag & MCTP_HDR_FLAG_TO)
759 continue;
760
761 /* Since we're avoiding conflicting entries, match peer and
762 * local addresses, including with a wildcard on ANY. See
763 * 'A note on key allocations' for background.
764 */
765 if (peer != MCTP_ADDR_ANY &&
766 !mctp_address_matches(tmp->peer_addr, peer))
767 continue;
768
769 if (local != MCTP_ADDR_ANY &&
770 !mctp_address_matches(tmp->local_addr, local))
771 continue;
772
773 spin_lock(&tmp->lock);
774 /* key must still be valid. If we find a match, clear the
775 * potential tag value
776 */
777 if (tmp->valid)
778 tagbits &= ~(1 << tmp->tag);
779 spin_unlock(&tmp->lock);
780
781 if (!tagbits)
782 break;
783 }
784
785 if (tagbits) {
786 key->tag = __ffs(tagbits);
787 mctp_reserve_tag(net, key, msk);
788 trace_mctp_key_acquire(key);
789
790 key->manual_alloc = manual;
791 *tagp = key->tag;
792 }
793
794 spin_unlock_irqrestore(&mns->keys_lock, flags);
795
796 if (!tagbits) {
797 mctp_key_unref(key);
798 return ERR_PTR(-EBUSY);
799 }
800
801 return key;
802 }
803
mctp_lookup_prealloc_tag(struct mctp_sock * msk,unsigned int netid,mctp_eid_t daddr,u8 req_tag,u8 * tagp)804 static struct mctp_sk_key *mctp_lookup_prealloc_tag(struct mctp_sock *msk,
805 unsigned int netid,
806 mctp_eid_t daddr,
807 u8 req_tag, u8 *tagp)
808 {
809 struct net *net = sock_net(&msk->sk);
810 struct netns_mctp *mns = &net->mctp;
811 struct mctp_sk_key *key, *tmp;
812 unsigned long flags;
813
814 req_tag &= ~(MCTP_TAG_PREALLOC | MCTP_TAG_OWNER);
815 key = NULL;
816
817 spin_lock_irqsave(&mns->keys_lock, flags);
818
819 hlist_for_each_entry(tmp, &mns->keys, hlist) {
820 if (tmp->net != netid)
821 continue;
822
823 if (tmp->tag != req_tag)
824 continue;
825
826 if (!mctp_address_matches(tmp->peer_addr, daddr))
827 continue;
828
829 if (!tmp->manual_alloc)
830 continue;
831
832 spin_lock(&tmp->lock);
833 if (tmp->valid) {
834 key = tmp;
835 refcount_inc(&key->refs);
836 spin_unlock(&tmp->lock);
837 break;
838 }
839 spin_unlock(&tmp->lock);
840 }
841 spin_unlock_irqrestore(&mns->keys_lock, flags);
842
843 if (!key)
844 return ERR_PTR(-ENOENT);
845
846 if (tagp)
847 *tagp = key->tag;
848
849 return key;
850 }
851
852 /* routing lookups */
mctp_route_netid(struct mctp_route * rt)853 static unsigned int mctp_route_netid(struct mctp_route *rt)
854 {
855 return rt->dst_type == MCTP_ROUTE_DIRECT ?
856 READ_ONCE(rt->dev->net) : rt->gateway.net;
857 }
858
mctp_rt_match_eid(struct mctp_route * rt,unsigned int net,mctp_eid_t eid)859 static bool mctp_rt_match_eid(struct mctp_route *rt,
860 unsigned int net, mctp_eid_t eid)
861 {
862 return mctp_route_netid(rt) == net &&
863 rt->min <= eid && rt->max >= eid;
864 }
865
866 /* compares match, used for duplicate prevention */
mctp_rt_compare_exact(struct mctp_route * rt1,struct mctp_route * rt2)867 static bool mctp_rt_compare_exact(struct mctp_route *rt1,
868 struct mctp_route *rt2)
869 {
870 ASSERT_RTNL();
871 return mctp_route_netid(rt1) == mctp_route_netid(rt2) &&
872 rt1->min == rt2->min &&
873 rt1->max == rt2->max;
874 }
875
876 /* must only be called on a direct route, as the final output hop */
mctp_dst_from_route(struct mctp_dst * dst,mctp_eid_t eid,unsigned int mtu,struct mctp_route * route)877 static void mctp_dst_from_route(struct mctp_dst *dst, mctp_eid_t eid,
878 unsigned int mtu, struct mctp_route *route)
879 {
880 mctp_dev_hold(route->dev);
881 dst->nexthop = eid;
882 dst->dev = route->dev;
883 dst->mtu = READ_ONCE(dst->dev->dev->mtu);
884 if (mtu)
885 dst->mtu = min(dst->mtu, mtu);
886 dst->halen = 0;
887 dst->output = route->output;
888 }
889
mctp_dst_from_extaddr(struct mctp_dst * dst,struct net * net,int ifindex,unsigned char halen,const unsigned char * haddr)890 int mctp_dst_from_extaddr(struct mctp_dst *dst, struct net *net, int ifindex,
891 unsigned char halen, const unsigned char *haddr)
892 {
893 struct net_device *netdev;
894 struct mctp_dev *dev;
895 int rc = -ENOENT;
896
897 if (halen > sizeof(dst->haddr))
898 return -EINVAL;
899
900 rcu_read_lock();
901
902 netdev = dev_get_by_index_rcu(net, ifindex);
903 if (!netdev)
904 goto out_unlock;
905
906 if (netdev->addr_len != halen) {
907 rc = -EINVAL;
908 goto out_unlock;
909 }
910
911 dev = __mctp_dev_get(netdev);
912 if (!dev)
913 goto out_unlock;
914
915 dst->dev = dev;
916 dst->mtu = READ_ONCE(netdev->mtu);
917 dst->halen = halen;
918 dst->output = mctp_dst_output;
919 dst->nexthop = 0;
920 memcpy(dst->haddr, haddr, halen);
921
922 rc = 0;
923
924 out_unlock:
925 rcu_read_unlock();
926 return rc;
927 }
928
mctp_dst_release(struct mctp_dst * dst)929 void mctp_dst_release(struct mctp_dst *dst)
930 {
931 mctp_dev_put(dst->dev);
932 }
933
mctp_route_lookup_single(struct net * net,unsigned int dnet,mctp_eid_t daddr)934 static struct mctp_route *mctp_route_lookup_single(struct net *net,
935 unsigned int dnet,
936 mctp_eid_t daddr)
937 {
938 struct mctp_route *rt;
939
940 list_for_each_entry_rcu(rt, &net->mctp.routes, list) {
941 if (mctp_rt_match_eid(rt, dnet, daddr))
942 return rt;
943 }
944
945 return NULL;
946 }
947
948 /* populates *dst on successful lookup, if set */
mctp_route_lookup(struct net * net,unsigned int dnet,mctp_eid_t daddr,struct mctp_dst * dst)949 int mctp_route_lookup(struct net *net, unsigned int dnet,
950 mctp_eid_t daddr, struct mctp_dst *dst)
951 {
952 const unsigned int max_depth = 32;
953 unsigned int depth, mtu = 0;
954 int rc = -EHOSTUNREACH;
955
956 rcu_read_lock();
957
958 for (depth = 0; depth < max_depth; depth++) {
959 struct mctp_route *rt;
960
961 rt = mctp_route_lookup_single(net, dnet, daddr);
962 if (!rt)
963 break;
964
965 /* clamp mtu to the smallest in the path, allowing 0
966 * to specify no restrictions
967 */
968 if (mtu && rt->mtu)
969 mtu = min(mtu, rt->mtu);
970 else
971 mtu = mtu ?: rt->mtu;
972
973 if (rt->dst_type == MCTP_ROUTE_DIRECT) {
974 if (dst)
975 mctp_dst_from_route(dst, daddr, mtu, rt);
976 rc = 0;
977 break;
978
979 } else if (rt->dst_type == MCTP_ROUTE_GATEWAY) {
980 daddr = rt->gateway.eid;
981 }
982 }
983
984 rcu_read_unlock();
985
986 return rc;
987 }
988
mctp_route_lookup_null(struct net * net,struct net_device * dev,struct mctp_dst * dst)989 static int mctp_route_lookup_null(struct net *net, struct net_device *dev,
990 struct mctp_dst *dst)
991 {
992 int rc = -EHOSTUNREACH;
993 struct mctp_route *rt;
994
995 rcu_read_lock();
996
997 list_for_each_entry_rcu(rt, &net->mctp.routes, list) {
998 if (rt->dst_type != MCTP_ROUTE_DIRECT || rt->type != RTN_LOCAL)
999 continue;
1000
1001 if (rt->dev->dev != dev)
1002 continue;
1003
1004 mctp_dst_from_route(dst, 0, 0, rt);
1005 rc = 0;
1006 break;
1007 }
1008
1009 rcu_read_unlock();
1010
1011 return rc;
1012 }
1013
mctp_do_fragment_route(struct mctp_dst * dst,struct sk_buff * skb,unsigned int mtu,u8 tag)1014 static int mctp_do_fragment_route(struct mctp_dst *dst, struct sk_buff *skb,
1015 unsigned int mtu, u8 tag)
1016 {
1017 const unsigned int hlen = sizeof(struct mctp_hdr);
1018 struct mctp_hdr *hdr, *hdr2;
1019 unsigned int pos, size, headroom;
1020 struct sk_buff *skb2;
1021 int rc;
1022 u8 seq;
1023
1024 hdr = mctp_hdr(skb);
1025 seq = 0;
1026 rc = 0;
1027
1028 if (mtu < hlen + 1) {
1029 kfree_skb(skb);
1030 return -EMSGSIZE;
1031 }
1032
1033 /* keep same headroom as the original skb */
1034 headroom = skb_headroom(skb);
1035
1036 /* we've got the header */
1037 skb_pull(skb, hlen);
1038
1039 for (pos = 0; pos < skb->len;) {
1040 /* size of message payload */
1041 size = min(mtu - hlen, skb->len - pos);
1042
1043 skb2 = alloc_skb(headroom + hlen + size, GFP_KERNEL);
1044 if (!skb2) {
1045 rc = -ENOMEM;
1046 break;
1047 }
1048
1049 /* generic skb copy */
1050 skb2->protocol = skb->protocol;
1051 skb2->priority = skb->priority;
1052 skb2->dev = skb->dev;
1053 memcpy(skb2->cb, skb->cb, sizeof(skb2->cb));
1054
1055 if (skb->sk)
1056 skb_set_owner_w(skb2, skb->sk);
1057
1058 /* establish packet */
1059 skb_reserve(skb2, headroom);
1060 skb_reset_network_header(skb2);
1061 skb_put(skb2, hlen + size);
1062 skb2->transport_header = skb2->network_header + hlen;
1063
1064 /* copy header fields, calculate SOM/EOM flags & seq */
1065 hdr2 = mctp_hdr(skb2);
1066 hdr2->ver = hdr->ver;
1067 hdr2->dest = hdr->dest;
1068 hdr2->src = hdr->src;
1069 hdr2->flags_seq_tag = tag &
1070 (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
1071
1072 if (pos == 0)
1073 hdr2->flags_seq_tag |= MCTP_HDR_FLAG_SOM;
1074
1075 if (pos + size == skb->len)
1076 hdr2->flags_seq_tag |= MCTP_HDR_FLAG_EOM;
1077
1078 hdr2->flags_seq_tag |= seq << MCTP_HDR_SEQ_SHIFT;
1079
1080 /* copy message payload */
1081 skb_copy_bits(skb, pos, skb_transport_header(skb2), size);
1082
1083 /* we need to copy the extensions, for MCTP flow data */
1084 skb_ext_copy(skb2, skb);
1085
1086 /* do route */
1087 rc = dst->output(dst, skb2);
1088 if (rc)
1089 break;
1090
1091 seq = (seq + 1) & MCTP_HDR_SEQ_MASK;
1092 pos += size;
1093 }
1094
1095 consume_skb(skb);
1096 return rc;
1097 }
1098
mctp_local_output(struct sock * sk,struct mctp_dst * dst,struct sk_buff * skb,mctp_eid_t daddr,u8 req_tag)1099 int mctp_local_output(struct sock *sk, struct mctp_dst *dst,
1100 struct sk_buff *skb, mctp_eid_t daddr, u8 req_tag)
1101 {
1102 struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk);
1103 struct mctp_sk_key *key;
1104 struct mctp_hdr *hdr;
1105 unsigned long flags;
1106 unsigned int netid;
1107 unsigned int mtu;
1108 mctp_eid_t saddr;
1109 int rc;
1110 u8 tag;
1111
1112 KUNIT_STATIC_STUB_REDIRECT(mctp_local_output, sk, dst, skb, daddr,
1113 req_tag);
1114
1115 rc = -ENODEV;
1116
1117 spin_lock_irqsave(&dst->dev->addrs_lock, flags);
1118 if (dst->dev->num_addrs == 0) {
1119 rc = -EHOSTUNREACH;
1120 } else {
1121 /* use the outbound interface's first address as our source */
1122 saddr = dst->dev->addrs[0];
1123 rc = 0;
1124 }
1125 spin_unlock_irqrestore(&dst->dev->addrs_lock, flags);
1126 netid = READ_ONCE(dst->dev->net);
1127
1128 if (rc)
1129 goto out_release;
1130
1131 if (req_tag & MCTP_TAG_OWNER) {
1132 if (req_tag & MCTP_TAG_PREALLOC)
1133 key = mctp_lookup_prealloc_tag(msk, netid, daddr,
1134 req_tag, &tag);
1135 else
1136 key = mctp_alloc_local_tag(msk, netid, saddr, daddr,
1137 false, &tag);
1138
1139 if (IS_ERR(key)) {
1140 rc = PTR_ERR(key);
1141 goto out_release;
1142 }
1143 mctp_skb_set_flow(skb, key);
1144 /* done with the key in this scope */
1145 mctp_key_unref(key);
1146 tag |= MCTP_HDR_FLAG_TO;
1147 } else {
1148 key = NULL;
1149 tag = req_tag & MCTP_TAG_MASK;
1150 }
1151
1152 skb->pkt_type = PACKET_OUTGOING;
1153 skb->protocol = htons(ETH_P_MCTP);
1154 skb->priority = 0;
1155 skb_reset_transport_header(skb);
1156 skb_push(skb, sizeof(struct mctp_hdr));
1157 skb_reset_network_header(skb);
1158 skb->dev = dst->dev->dev;
1159
1160 /* set up common header fields */
1161 hdr = mctp_hdr(skb);
1162 hdr->ver = 1;
1163 hdr->dest = daddr;
1164 hdr->src = saddr;
1165
1166 mtu = dst->mtu;
1167
1168 if (skb->len + sizeof(struct mctp_hdr) <= mtu) {
1169 hdr->flags_seq_tag = MCTP_HDR_FLAG_SOM |
1170 MCTP_HDR_FLAG_EOM | tag;
1171 rc = dst->output(dst, skb);
1172 } else {
1173 rc = mctp_do_fragment_route(dst, skb, mtu, tag);
1174 }
1175
1176 /* route output functions consume the skb, even on error */
1177 skb = NULL;
1178
1179 out_release:
1180 kfree_skb(skb);
1181 return rc;
1182 }
1183
1184 /* route management */
1185
1186 /* mctp_route_add(): Add the provided route, previously allocated via
1187 * mctp_route_alloc(). On success, takes ownership of @rt, which includes a
1188 * hold on rt->dev for usage in the route table. On failure a caller will want
1189 * to mctp_route_release().
1190 *
1191 * We expect that the caller has set rt->type, rt->dst_type, rt->min, rt->max,
1192 * rt->mtu and either rt->dev (with a reference held appropriately) or
1193 * rt->gateway. Other fields will be populated.
1194 */
mctp_route_add(struct net * net,struct mctp_route * rt)1195 static int mctp_route_add(struct net *net, struct mctp_route *rt)
1196 {
1197 struct mctp_route *ert;
1198
1199 if (!mctp_address_unicast(rt->min) || !mctp_address_unicast(rt->max))
1200 return -EINVAL;
1201
1202 if (rt->dst_type == MCTP_ROUTE_DIRECT && !rt->dev)
1203 return -EINVAL;
1204
1205 if (rt->dst_type == MCTP_ROUTE_GATEWAY && !rt->gateway.eid)
1206 return -EINVAL;
1207
1208 switch (rt->type) {
1209 case RTN_LOCAL:
1210 rt->output = mctp_dst_input;
1211 break;
1212 case RTN_UNICAST:
1213 rt->output = mctp_dst_output;
1214 break;
1215 default:
1216 return -EINVAL;
1217 }
1218
1219 ASSERT_RTNL();
1220
1221 /* Prevent duplicate identical routes. */
1222 list_for_each_entry(ert, &net->mctp.routes, list) {
1223 if (mctp_rt_compare_exact(rt, ert)) {
1224 return -EEXIST;
1225 }
1226 }
1227
1228 list_add_rcu(&rt->list, &net->mctp.routes);
1229
1230 return 0;
1231 }
1232
mctp_route_remove(struct net * net,unsigned int netid,mctp_eid_t daddr_start,unsigned int daddr_extent,unsigned char type)1233 static int mctp_route_remove(struct net *net, unsigned int netid,
1234 mctp_eid_t daddr_start, unsigned int daddr_extent,
1235 unsigned char type)
1236 {
1237 struct mctp_route *rt, *tmp;
1238 mctp_eid_t daddr_end;
1239 bool dropped;
1240
1241 if (daddr_extent > 0xff || daddr_start + daddr_extent >= 255)
1242 return -EINVAL;
1243
1244 daddr_end = daddr_start + daddr_extent;
1245 dropped = false;
1246
1247 ASSERT_RTNL();
1248
1249 list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) {
1250 if (mctp_route_netid(rt) == netid &&
1251 rt->min == daddr_start && rt->max == daddr_end &&
1252 rt->type == type) {
1253 list_del_rcu(&rt->list);
1254 /* TODO: immediate RTM_DELROUTE */
1255 mctp_route_release(rt);
1256 dropped = true;
1257 }
1258 }
1259
1260 return dropped ? 0 : -ENOENT;
1261 }
1262
mctp_route_add_local(struct mctp_dev * mdev,mctp_eid_t addr)1263 int mctp_route_add_local(struct mctp_dev *mdev, mctp_eid_t addr)
1264 {
1265 struct mctp_route *rt;
1266 int rc;
1267
1268 rt = mctp_route_alloc();
1269 if (!rt)
1270 return -ENOMEM;
1271
1272 rt->min = addr;
1273 rt->max = addr;
1274 rt->dst_type = MCTP_ROUTE_DIRECT;
1275 rt->dev = mdev;
1276 rt->type = RTN_LOCAL;
1277
1278 mctp_dev_hold(rt->dev);
1279
1280 rc = mctp_route_add(dev_net(mdev->dev), rt);
1281 if (rc)
1282 mctp_route_release(rt);
1283
1284 return rc;
1285 }
1286
mctp_route_remove_local(struct mctp_dev * mdev,mctp_eid_t addr)1287 int mctp_route_remove_local(struct mctp_dev *mdev, mctp_eid_t addr)
1288 {
1289 return mctp_route_remove(dev_net(mdev->dev), mdev->net,
1290 addr, 0, RTN_LOCAL);
1291 }
1292
1293 /* removes all entries for a given device */
mctp_route_remove_dev(struct mctp_dev * mdev)1294 void mctp_route_remove_dev(struct mctp_dev *mdev)
1295 {
1296 struct net *net = dev_net(mdev->dev);
1297 struct mctp_route *rt, *tmp;
1298
1299 ASSERT_RTNL();
1300 list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) {
1301 if (rt->dst_type == MCTP_ROUTE_DIRECT && rt->dev == mdev) {
1302 list_del_rcu(&rt->list);
1303 /* TODO: immediate RTM_DELROUTE */
1304 mctp_route_release(rt);
1305 }
1306 }
1307 }
1308
1309 /* Incoming packet-handling */
1310
mctp_pkttype_receive(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)1311 static int mctp_pkttype_receive(struct sk_buff *skb, struct net_device *dev,
1312 struct packet_type *pt,
1313 struct net_device *orig_dev)
1314 {
1315 struct net *net = dev_net(dev);
1316 struct mctp_dev *mdev;
1317 struct mctp_skb_cb *cb;
1318 struct mctp_dst dst;
1319 struct mctp_hdr *mh;
1320 int rc;
1321
1322 rcu_read_lock();
1323 mdev = __mctp_dev_get(dev);
1324 rcu_read_unlock();
1325 if (!mdev) {
1326 /* basic non-data sanity checks */
1327 goto err_drop;
1328 }
1329
1330 if (!pskb_may_pull(skb, sizeof(struct mctp_hdr)))
1331 goto err_drop;
1332
1333 skb_reset_transport_header(skb);
1334 skb_reset_network_header(skb);
1335
1336 /* We have enough for a header; decode and route */
1337 mh = mctp_hdr(skb);
1338 if (mh->ver < MCTP_VER_MIN || mh->ver > MCTP_VER_MAX)
1339 goto err_drop;
1340
1341 /* source must be valid unicast or null; drop reserved ranges and
1342 * broadcast
1343 */
1344 if (!(mctp_address_unicast(mh->src) || mctp_address_null(mh->src)))
1345 goto err_drop;
1346
1347 /* dest address: as above, but allow broadcast */
1348 if (!(mctp_address_unicast(mh->dest) || mctp_address_null(mh->dest) ||
1349 mctp_address_broadcast(mh->dest)))
1350 goto err_drop;
1351
1352 /* MCTP drivers must populate halen/haddr */
1353 if (dev->type == ARPHRD_MCTP) {
1354 cb = mctp_cb(skb);
1355 } else {
1356 cb = __mctp_cb(skb);
1357 cb->halen = 0;
1358 }
1359 cb->net = READ_ONCE(mdev->net);
1360 cb->ifindex = dev->ifindex;
1361
1362 rc = mctp_route_lookup(net, cb->net, mh->dest, &dst);
1363
1364 /* NULL EID, but addressed to our physical address */
1365 if (rc && mh->dest == MCTP_ADDR_NULL && skb->pkt_type == PACKET_HOST)
1366 rc = mctp_route_lookup_null(net, dev, &dst);
1367
1368 if (rc)
1369 goto err_drop;
1370
1371 dst.output(&dst, skb);
1372 mctp_dst_release(&dst);
1373 mctp_dev_put(mdev);
1374
1375 return NET_RX_SUCCESS;
1376
1377 err_drop:
1378 kfree_skb(skb);
1379 mctp_dev_put(mdev);
1380 return NET_RX_DROP;
1381 }
1382
1383 static struct packet_type mctp_packet_type = {
1384 .type = cpu_to_be16(ETH_P_MCTP),
1385 .func = mctp_pkttype_receive,
1386 };
1387
1388 /* netlink interface */
1389
1390 static const struct nla_policy rta_mctp_policy[RTA_MAX + 1] = {
1391 [RTA_DST] = { .type = NLA_U8 },
1392 [RTA_METRICS] = { .type = NLA_NESTED },
1393 [RTA_OIF] = { .type = NLA_U32 },
1394 [RTA_GATEWAY] = NLA_POLICY_EXACT_LEN(sizeof(struct mctp_fq_addr)),
1395 };
1396
1397 static const struct nla_policy rta_metrics_policy[RTAX_MAX + 1] = {
1398 [RTAX_MTU] = { .type = NLA_U32 },
1399 };
1400
1401 /* base parsing; common to both _lookup and _populate variants.
1402 *
1403 * For gateway routes (which have a RTA_GATEWAY, and no RTA_OIF), we populate
1404 * *gatweayp. for direct routes (RTA_OIF, no RTA_GATEWAY), we populate *mdev.
1405 */
mctp_route_nlparse_common(struct net * net,struct nlmsghdr * nlh,struct netlink_ext_ack * extack,struct nlattr ** tb,struct rtmsg ** rtm,struct mctp_dev ** mdev,struct mctp_fq_addr * gatewayp,mctp_eid_t * daddr_start)1406 static int mctp_route_nlparse_common(struct net *net, struct nlmsghdr *nlh,
1407 struct netlink_ext_ack *extack,
1408 struct nlattr **tb, struct rtmsg **rtm,
1409 struct mctp_dev **mdev,
1410 struct mctp_fq_addr *gatewayp,
1411 mctp_eid_t *daddr_start)
1412 {
1413 struct mctp_fq_addr *gateway = NULL;
1414 unsigned int ifindex = 0;
1415 struct net_device *dev;
1416 int rc;
1417
1418 rc = nlmsg_parse(nlh, sizeof(struct rtmsg), tb, RTA_MAX,
1419 rta_mctp_policy, extack);
1420 if (rc < 0) {
1421 NL_SET_ERR_MSG(extack, "incorrect format");
1422 return rc;
1423 }
1424
1425 if (!tb[RTA_DST]) {
1426 NL_SET_ERR_MSG(extack, "dst EID missing");
1427 return -EINVAL;
1428 }
1429 *daddr_start = nla_get_u8(tb[RTA_DST]);
1430
1431 if (tb[RTA_OIF])
1432 ifindex = nla_get_u32(tb[RTA_OIF]);
1433
1434 if (tb[RTA_GATEWAY])
1435 gateway = nla_data(tb[RTA_GATEWAY]);
1436
1437 if (ifindex && gateway) {
1438 NL_SET_ERR_MSG(extack,
1439 "cannot specify both ifindex and gateway");
1440 return -EINVAL;
1441
1442 } else if (ifindex) {
1443 dev = __dev_get_by_index(net, ifindex);
1444 if (!dev) {
1445 NL_SET_ERR_MSG(extack, "bad ifindex");
1446 return -ENODEV;
1447 }
1448 *mdev = mctp_dev_get_rtnl(dev);
1449 if (!*mdev)
1450 return -ENODEV;
1451 gatewayp->eid = 0;
1452
1453 } else if (gateway) {
1454 if (!mctp_address_unicast(gateway->eid)) {
1455 NL_SET_ERR_MSG(extack, "bad gateway");
1456 return -EINVAL;
1457 }
1458
1459 gatewayp->eid = gateway->eid;
1460 gatewayp->net = gateway->net != MCTP_NET_ANY ?
1461 gateway->net :
1462 READ_ONCE(net->mctp.default_net);
1463 *mdev = NULL;
1464
1465 } else {
1466 NL_SET_ERR_MSG(extack, "no route output provided");
1467 return -EINVAL;
1468 }
1469
1470 *rtm = nlmsg_data(nlh);
1471 if ((*rtm)->rtm_family != AF_MCTP) {
1472 NL_SET_ERR_MSG(extack, "route family must be AF_MCTP");
1473 return -EINVAL;
1474 }
1475
1476 if ((*rtm)->rtm_type != RTN_UNICAST) {
1477 NL_SET_ERR_MSG(extack, "rtm_type must be RTN_UNICAST");
1478 return -EINVAL;
1479 }
1480
1481 return 0;
1482 }
1483
1484 /* Route parsing for lookup operations; we only need the "route target"
1485 * components (ie., network and dest-EID range).
1486 */
mctp_route_nlparse_lookup(struct net * net,struct nlmsghdr * nlh,struct netlink_ext_ack * extack,unsigned char * type,unsigned int * netid,mctp_eid_t * daddr_start,unsigned int * daddr_extent)1487 static int mctp_route_nlparse_lookup(struct net *net, struct nlmsghdr *nlh,
1488 struct netlink_ext_ack *extack,
1489 unsigned char *type, unsigned int *netid,
1490 mctp_eid_t *daddr_start,
1491 unsigned int *daddr_extent)
1492 {
1493 struct nlattr *tb[RTA_MAX + 1];
1494 struct mctp_fq_addr gw;
1495 struct mctp_dev *mdev;
1496 struct rtmsg *rtm;
1497 int rc;
1498
1499 rc = mctp_route_nlparse_common(net, nlh, extack, tb, &rtm,
1500 &mdev, &gw, daddr_start);
1501 if (rc)
1502 return rc;
1503
1504 if (mdev) {
1505 *netid = mdev->net;
1506 } else if (gw.eid) {
1507 *netid = gw.net;
1508 } else {
1509 /* bug: _nlparse_common should not allow this */
1510 return -1;
1511 }
1512
1513 *type = rtm->rtm_type;
1514 *daddr_extent = rtm->rtm_dst_len;
1515
1516 return 0;
1517 }
1518
1519 /* Full route parse for RTM_NEWROUTE: populate @rt. On success,
1520 * MCTP_ROUTE_DIRECT routes (ie, those with a direct dev) will hold a reference
1521 * to that dev.
1522 */
mctp_route_nlparse_populate(struct net * net,struct nlmsghdr * nlh,struct netlink_ext_ack * extack,struct mctp_route * rt)1523 static int mctp_route_nlparse_populate(struct net *net, struct nlmsghdr *nlh,
1524 struct netlink_ext_ack *extack,
1525 struct mctp_route *rt)
1526 {
1527 struct nlattr *tbx[RTAX_MAX + 1];
1528 struct nlattr *tb[RTA_MAX + 1];
1529 unsigned int daddr_extent;
1530 struct mctp_fq_addr gw;
1531 mctp_eid_t daddr_start;
1532 struct mctp_dev *dev;
1533 struct rtmsg *rtm;
1534 u32 mtu = 0;
1535 int rc;
1536
1537 rc = mctp_route_nlparse_common(net, nlh, extack, tb, &rtm,
1538 &dev, &gw, &daddr_start);
1539 if (rc)
1540 return rc;
1541
1542 daddr_extent = rtm->rtm_dst_len;
1543
1544 if (daddr_extent > 0xff || daddr_extent + daddr_start >= 255) {
1545 NL_SET_ERR_MSG(extack, "invalid eid range");
1546 return -EINVAL;
1547 }
1548
1549 if (tb[RTA_METRICS]) {
1550 rc = nla_parse_nested(tbx, RTAX_MAX, tb[RTA_METRICS],
1551 rta_metrics_policy, NULL);
1552 if (rc < 0) {
1553 NL_SET_ERR_MSG(extack, "incorrect RTA_METRICS format");
1554 return rc;
1555 }
1556 if (tbx[RTAX_MTU])
1557 mtu = nla_get_u32(tbx[RTAX_MTU]);
1558 }
1559
1560 rt->type = rtm->rtm_type;
1561 rt->min = daddr_start;
1562 rt->max = daddr_start + daddr_extent;
1563 rt->mtu = mtu;
1564 if (gw.eid) {
1565 rt->dst_type = MCTP_ROUTE_GATEWAY;
1566 rt->gateway.eid = gw.eid;
1567 rt->gateway.net = gw.net;
1568 } else {
1569 rt->dst_type = MCTP_ROUTE_DIRECT;
1570 rt->dev = dev;
1571 mctp_dev_hold(rt->dev);
1572 }
1573
1574 return 0;
1575 }
1576
mctp_newroute(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)1577 static int mctp_newroute(struct sk_buff *skb, struct nlmsghdr *nlh,
1578 struct netlink_ext_ack *extack)
1579 {
1580 struct net *net = sock_net(skb->sk);
1581 struct mctp_route *rt;
1582 int rc;
1583
1584 rt = mctp_route_alloc();
1585 if (!rt)
1586 return -ENOMEM;
1587
1588 rc = mctp_route_nlparse_populate(net, nlh, extack, rt);
1589 if (rc < 0)
1590 goto err_free;
1591
1592 if (rt->dst_type == MCTP_ROUTE_DIRECT &&
1593 rt->dev->dev->flags & IFF_LOOPBACK) {
1594 NL_SET_ERR_MSG(extack, "no routes to loopback");
1595 rc = -EINVAL;
1596 goto err_free;
1597 }
1598
1599 rc = mctp_route_add(net, rt);
1600 if (!rc)
1601 return 0;
1602
1603 err_free:
1604 mctp_route_release(rt);
1605 return rc;
1606 }
1607
mctp_delroute(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)1608 static int mctp_delroute(struct sk_buff *skb, struct nlmsghdr *nlh,
1609 struct netlink_ext_ack *extack)
1610 {
1611 struct net *net = sock_net(skb->sk);
1612 unsigned int netid, daddr_extent;
1613 unsigned char type = RTN_UNSPEC;
1614 mctp_eid_t daddr_start;
1615 int rc;
1616
1617 rc = mctp_route_nlparse_lookup(net, nlh, extack, &type, &netid,
1618 &daddr_start, &daddr_extent);
1619 if (rc < 0)
1620 return rc;
1621
1622 /* we only have unicast routes */
1623 if (type != RTN_UNICAST)
1624 return -EINVAL;
1625
1626 rc = mctp_route_remove(net, netid, daddr_start, daddr_extent, type);
1627 return rc;
1628 }
1629
mctp_fill_rtinfo(struct sk_buff * skb,struct mctp_route * rt,u32 portid,u32 seq,int event,unsigned int flags)1630 static int mctp_fill_rtinfo(struct sk_buff *skb, struct mctp_route *rt,
1631 u32 portid, u32 seq, int event, unsigned int flags)
1632 {
1633 struct nlmsghdr *nlh;
1634 struct rtmsg *hdr;
1635 void *metrics;
1636
1637 nlh = nlmsg_put(skb, portid, seq, event, sizeof(*hdr), flags);
1638 if (!nlh)
1639 return -EMSGSIZE;
1640
1641 hdr = nlmsg_data(nlh);
1642 hdr->rtm_family = AF_MCTP;
1643
1644 /* we use the _len fields as a number of EIDs, rather than
1645 * a number of bits in the address
1646 */
1647 hdr->rtm_dst_len = rt->max - rt->min;
1648 hdr->rtm_src_len = 0;
1649 hdr->rtm_tos = 0;
1650 hdr->rtm_table = RT_TABLE_DEFAULT;
1651 hdr->rtm_protocol = RTPROT_STATIC; /* everything is user-defined */
1652 hdr->rtm_type = rt->type;
1653
1654 if (nla_put_u8(skb, RTA_DST, rt->min))
1655 goto cancel;
1656
1657 metrics = nla_nest_start_noflag(skb, RTA_METRICS);
1658 if (!metrics)
1659 goto cancel;
1660
1661 if (rt->mtu) {
1662 if (nla_put_u32(skb, RTAX_MTU, rt->mtu))
1663 goto cancel;
1664 }
1665
1666 nla_nest_end(skb, metrics);
1667
1668 if (rt->dst_type == MCTP_ROUTE_DIRECT) {
1669 hdr->rtm_scope = RT_SCOPE_LINK;
1670 if (nla_put_u32(skb, RTA_OIF, rt->dev->dev->ifindex))
1671 goto cancel;
1672 } else if (rt->dst_type == MCTP_ROUTE_GATEWAY) {
1673 hdr->rtm_scope = RT_SCOPE_UNIVERSE;
1674 if (nla_put(skb, RTA_GATEWAY,
1675 sizeof(rt->gateway), &rt->gateway))
1676 goto cancel;
1677 }
1678
1679 nlmsg_end(skb, nlh);
1680
1681 return 0;
1682
1683 cancel:
1684 nlmsg_cancel(skb, nlh);
1685 return -EMSGSIZE;
1686 }
1687
mctp_dump_rtinfo(struct sk_buff * skb,struct netlink_callback * cb)1688 static int mctp_dump_rtinfo(struct sk_buff *skb, struct netlink_callback *cb)
1689 {
1690 struct net *net = sock_net(skb->sk);
1691 struct mctp_route *rt;
1692 int s_idx, idx;
1693
1694 /* TODO: allow filtering on route data, possibly under
1695 * cb->strict_check
1696 */
1697
1698 /* TODO: change to struct overlay */
1699 s_idx = cb->args[0];
1700 idx = 0;
1701
1702 rcu_read_lock();
1703 list_for_each_entry_rcu(rt, &net->mctp.routes, list) {
1704 if (idx++ < s_idx)
1705 continue;
1706 if (mctp_fill_rtinfo(skb, rt,
1707 NETLINK_CB(cb->skb).portid,
1708 cb->nlh->nlmsg_seq,
1709 RTM_NEWROUTE, NLM_F_MULTI) < 0)
1710 break;
1711 }
1712
1713 rcu_read_unlock();
1714 cb->args[0] = idx;
1715
1716 return skb->len;
1717 }
1718
1719 /* net namespace implementation */
mctp_routes_net_init(struct net * net)1720 static int __net_init mctp_routes_net_init(struct net *net)
1721 {
1722 struct netns_mctp *ns = &net->mctp;
1723
1724 INIT_LIST_HEAD(&ns->routes);
1725 hash_init(ns->binds);
1726 mutex_init(&ns->bind_lock);
1727 INIT_HLIST_HEAD(&ns->keys);
1728 spin_lock_init(&ns->keys_lock);
1729 WARN_ON(mctp_default_net_set(net, MCTP_INITIAL_DEFAULT_NET));
1730 return 0;
1731 }
1732
mctp_routes_net_exit(struct net * net)1733 static void __net_exit mctp_routes_net_exit(struct net *net)
1734 {
1735 struct mctp_route *rt;
1736
1737 rcu_read_lock();
1738 list_for_each_entry_rcu(rt, &net->mctp.routes, list)
1739 mctp_route_release(rt);
1740 rcu_read_unlock();
1741 }
1742
1743 static struct pernet_operations mctp_net_ops = {
1744 .init = mctp_routes_net_init,
1745 .exit = mctp_routes_net_exit,
1746 };
1747
1748 static const struct rtnl_msg_handler mctp_route_rtnl_msg_handlers[] = {
1749 {THIS_MODULE, PF_MCTP, RTM_NEWROUTE, mctp_newroute, NULL, 0},
1750 {THIS_MODULE, PF_MCTP, RTM_DELROUTE, mctp_delroute, NULL, 0},
1751 {THIS_MODULE, PF_MCTP, RTM_GETROUTE, NULL, mctp_dump_rtinfo, 0},
1752 };
1753
mctp_routes_init(void)1754 int __init mctp_routes_init(void)
1755 {
1756 int err;
1757
1758 dev_add_pack(&mctp_packet_type);
1759
1760 err = register_pernet_subsys(&mctp_net_ops);
1761 if (err)
1762 goto err_pernet;
1763
1764 err = rtnl_register_many(mctp_route_rtnl_msg_handlers);
1765 if (err)
1766 goto err_rtnl;
1767
1768 return 0;
1769
1770 err_rtnl:
1771 unregister_pernet_subsys(&mctp_net_ops);
1772 err_pernet:
1773 dev_remove_pack(&mctp_packet_type);
1774 return err;
1775 }
1776
mctp_routes_exit(void)1777 void mctp_routes_exit(void)
1778 {
1779 rtnl_unregister_many(mctp_route_rtnl_msg_handlers);
1780 unregister_pernet_subsys(&mctp_net_ops);
1781 dev_remove_pack(&mctp_packet_type);
1782 }
1783
1784 #if IS_ENABLED(CONFIG_MCTP_TEST)
1785 #include "test/route-test.c"
1786 #endif
1787