xref: /linux/drivers/gpu/drm/nouveau/nvkm/subdev/clk/mcp77.c (revision d0034a7a4ac7fae708146ac0059b9c47a1543f0d)
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #define mcp77_clk(p) container_of((p), struct mcp77_clk, base)
25 #include "gt215.h"
26 #include "pll.h"
27 
28 #include <subdev/bios.h>
29 #include <subdev/bios/pll.h>
30 #include <subdev/timer.h>
31 
32 struct mcp77_clk {
33 	struct nvkm_clk base;
34 	enum nv_clk_src csrc, ssrc, vsrc;
35 	u32 cctrl, sctrl;
36 	u32 ccoef, scoef;
37 	u32 cpost, spost;
38 	u32 vdiv;
39 };
40 
41 static u32
read_div(struct mcp77_clk * clk)42 read_div(struct mcp77_clk *clk)
43 {
44 	struct nvkm_device *device = clk->base.subdev.device;
45 	return nvkm_rd32(device, 0x004600);
46 }
47 
48 static u32
read_pll(struct mcp77_clk * clk,u32 base)49 read_pll(struct mcp77_clk *clk, u32 base)
50 {
51 	struct nvkm_device *device = clk->base.subdev.device;
52 	u32 ctrl = nvkm_rd32(device, base + 0);
53 	u32 coef = nvkm_rd32(device, base + 4);
54 	u32 ref = nvkm_clk_read(&clk->base, nv_clk_src_href);
55 	u32 post_div = 0;
56 	u32 clock = 0;
57 	int N1, M1;
58 
59 	switch (base){
60 	case 0x4020:
61 		post_div = 1 << ((nvkm_rd32(device, 0x4070) & 0x000f0000) >> 16);
62 		break;
63 	case 0x4028:
64 		post_div = (nvkm_rd32(device, 0x4040) & 0x000f0000) >> 16;
65 		break;
66 	default:
67 		break;
68 	}
69 
70 	N1 = (coef & 0x0000ff00) >> 8;
71 	M1 = (coef & 0x000000ff);
72 	if ((ctrl & 0x80000000) && M1) {
73 		clock = ref * N1 / M1;
74 		clock = clock / post_div;
75 	}
76 
77 	return clock;
78 }
79 
80 static int
mcp77_clk_read(struct nvkm_clk * base,enum nv_clk_src src)81 mcp77_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
82 {
83 	struct mcp77_clk *clk = mcp77_clk(base);
84 	struct nvkm_subdev *subdev = &clk->base.subdev;
85 	struct nvkm_device *device = subdev->device;
86 	u32 mast = nvkm_rd32(device, 0x00c054);
87 	u32 P = 0;
88 
89 	switch (src) {
90 	case nv_clk_src_crystal:
91 		return device->crystal;
92 	case nv_clk_src_href:
93 		return 100000; /* PCIE reference clock */
94 	case nv_clk_src_hclkm4:
95 		return nvkm_clk_read(&clk->base, nv_clk_src_href) * 4;
96 	case nv_clk_src_hclkm2d3:
97 		return nvkm_clk_read(&clk->base, nv_clk_src_href) * 2 / 3;
98 	case nv_clk_src_host:
99 		switch (mast & 0x000c0000) {
100 		case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclkm2d3);
101 		case 0x00040000: break;
102 		case 0x00080000: return nvkm_clk_read(&clk->base, nv_clk_src_hclkm4);
103 		case 0x000c0000: return nvkm_clk_read(&clk->base, nv_clk_src_cclk);
104 		}
105 		break;
106 	case nv_clk_src_core:
107 		P = (nvkm_rd32(device, 0x004028) & 0x00070000) >> 16;
108 
109 		switch (mast & 0x00000003) {
110 		case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
111 		case 0x00000001: return 0;
112 		case 0x00000002: return nvkm_clk_read(&clk->base, nv_clk_src_hclkm4) >> P;
113 		case 0x00000003: return read_pll(clk, 0x004028) >> P;
114 		}
115 		break;
116 	case nv_clk_src_cclk:
117 		if ((mast & 0x03000000) != 0x03000000)
118 			return nvkm_clk_read(&clk->base, nv_clk_src_core);
119 
120 		if ((mast & 0x00000200) == 0x00000000)
121 			return nvkm_clk_read(&clk->base, nv_clk_src_core);
122 
123 		switch (mast & 0x00000c00) {
124 		case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
125 		case 0x00000400: return nvkm_clk_read(&clk->base, nv_clk_src_hclkm4);
126 		case 0x00000800: return nvkm_clk_read(&clk->base, nv_clk_src_hclkm2d3);
127 		default: return 0;
128 		}
129 	case nv_clk_src_shader:
130 		P = (nvkm_rd32(device, 0x004020) & 0x00070000) >> 16;
131 		switch (mast & 0x00000030) {
132 		case 0x00000000:
133 			if (mast & 0x00000040)
134 				return nvkm_clk_read(&clk->base, nv_clk_src_href) >> P;
135 			return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
136 		case 0x00000010: break;
137 		case 0x00000020: return read_pll(clk, 0x004028) >> P;
138 		case 0x00000030: return read_pll(clk, 0x004020) >> P;
139 		}
140 		break;
141 	case nv_clk_src_mem:
142 		return 0;
143 	case nv_clk_src_vdec:
144 		P = (read_div(clk) & 0x00000700) >> 8;
145 
146 		switch (mast & 0x00400000) {
147 		case 0x00400000:
148 			return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
149 		default:
150 			return 500000 >> P;
151 		}
152 		break;
153 	default:
154 		break;
155 	}
156 
157 	nvkm_debug(subdev, "unknown clock source %d %08x\n", src, mast);
158 	return 0;
159 }
160 
161 static u32
calc_pll(struct mcp77_clk * clk,u32 reg,u32 clock,int * N,int * M,int * P)162 calc_pll(struct mcp77_clk *clk, u32 reg,
163 	 u32 clock, int *N, int *M, int *P)
164 {
165 	struct nvkm_subdev *subdev = &clk->base.subdev;
166 	struct nvbios_pll pll;
167 	int ret;
168 
169 	ret = nvbios_pll_parse(subdev->device->bios, reg, &pll);
170 	if (ret)
171 		return 0;
172 
173 	pll.vco2.max_freq = 0;
174 	pll.refclk = nvkm_clk_read(&clk->base, nv_clk_src_href);
175 	if (!pll.refclk)
176 		return 0;
177 
178 	return nv04_pll_calc(subdev, &pll, clock, N, M, NULL, NULL, P);
179 }
180 
181 static inline u32
calc_P(u32 src,u32 target,int * div)182 calc_P(u32 src, u32 target, int *div)
183 {
184 	u32 clk0 = src, clk1 = src;
185 	for (*div = 0; *div <= 7; (*div)++) {
186 		if (clk0 <= target) {
187 			clk1 = clk0 << (*div ? 1 : 0);
188 			break;
189 		}
190 		clk0 >>= 1;
191 	}
192 
193 	if (target - clk0 <= clk1 - target)
194 		return clk0;
195 	(*div)--;
196 	return clk1;
197 }
198 
199 static int
mcp77_clk_calc(struct nvkm_clk * base,struct nvkm_cstate * cstate)200 mcp77_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
201 {
202 	struct mcp77_clk *clk = mcp77_clk(base);
203 	const int shader = cstate->domain[nv_clk_src_shader];
204 	const int core = cstate->domain[nv_clk_src_core];
205 	const int vdec = cstate->domain[nv_clk_src_vdec];
206 	struct nvkm_subdev *subdev = &clk->base.subdev;
207 	u32 out = 0, clock = 0;
208 	int N, M, P1, P2 = 0;
209 	int divs = 0;
210 
211 	/* cclk: find suitable source, disable PLL if we can */
212 	if (core < nvkm_clk_read(&clk->base, nv_clk_src_hclkm4))
213 		out = calc_P(nvkm_clk_read(&clk->base, nv_clk_src_hclkm4), core, &divs);
214 
215 	/* Calculate clock * 2, so shader clock can use it too */
216 	clock = calc_pll(clk, 0x4028, (core << 1), &N, &M, &P1);
217 
218 	if (abs(core - out) <= abs(core - (clock >> 1))) {
219 		clk->csrc = nv_clk_src_hclkm4;
220 		clk->cctrl = divs << 16;
221 	} else {
222 		/* NVCTRL is actually used _after_ NVPOST, and after what we
223 		 * call NVPLL. To make matters worse, NVPOST is an integer
224 		 * divider instead of a right-shift number. */
225 		if(P1 > 2) {
226 			P2 = P1 - 2;
227 			P1 = 2;
228 		}
229 
230 		clk->csrc = nv_clk_src_core;
231 		clk->ccoef = (N << 8) | M;
232 
233 		clk->cctrl = (P2 + 1) << 16;
234 		clk->cpost = (1 << P1) << 16;
235 	}
236 
237 	/* sclk: nvpll + divisor, href or spll */
238 	out = 0;
239 	if (shader == nvkm_clk_read(&clk->base, nv_clk_src_href)) {
240 		clk->ssrc = nv_clk_src_href;
241 	} else {
242 		clock = calc_pll(clk, 0x4020, shader, &N, &M, &P1);
243 		if (clk->csrc == nv_clk_src_core)
244 			out = calc_P((core << 1), shader, &divs);
245 
246 		if (abs(shader - out) <=
247 		    abs(shader - clock) &&
248 		   (divs + P2) <= 7) {
249 			clk->ssrc = nv_clk_src_core;
250 			clk->sctrl = (divs + P2) << 16;
251 		} else {
252 			clk->ssrc = nv_clk_src_shader;
253 			clk->scoef = (N << 8) | M;
254 			clk->sctrl = P1 << 16;
255 		}
256 	}
257 
258 	/* vclk */
259 	out = calc_P(core, vdec, &divs);
260 	clock = calc_P(500000, vdec, &P1);
261 	if(abs(vdec - out) <= abs(vdec - clock)) {
262 		clk->vsrc = nv_clk_src_cclk;
263 		clk->vdiv = divs << 16;
264 	} else {
265 		clk->vsrc = nv_clk_src_vdec;
266 		clk->vdiv = P1 << 16;
267 	}
268 
269 	/* Print strategy! */
270 	nvkm_debug(subdev, "nvpll: %08x %08x %08x\n",
271 		   clk->ccoef, clk->cpost, clk->cctrl);
272 	nvkm_debug(subdev, " spll: %08x %08x %08x\n",
273 		   clk->scoef, clk->spost, clk->sctrl);
274 	nvkm_debug(subdev, " vdiv: %08x\n", clk->vdiv);
275 	if (clk->csrc == nv_clk_src_hclkm4)
276 		nvkm_debug(subdev, "core: hrefm4\n");
277 	else
278 		nvkm_debug(subdev, "core: nvpll\n");
279 
280 	if (clk->ssrc == nv_clk_src_hclkm4)
281 		nvkm_debug(subdev, "shader: hrefm4\n");
282 	else if (clk->ssrc == nv_clk_src_core)
283 		nvkm_debug(subdev, "shader: nvpll\n");
284 	else
285 		nvkm_debug(subdev, "shader: spll\n");
286 
287 	if (clk->vsrc == nv_clk_src_hclkm4)
288 		nvkm_debug(subdev, "vdec: 500MHz\n");
289 	else
290 		nvkm_debug(subdev, "vdec: core\n");
291 
292 	return 0;
293 }
294 
295 static int
mcp77_clk_prog(struct nvkm_clk * base)296 mcp77_clk_prog(struct nvkm_clk *base)
297 {
298 	struct mcp77_clk *clk = mcp77_clk(base);
299 	struct nvkm_subdev *subdev = &clk->base.subdev;
300 	struct nvkm_device *device = subdev->device;
301 	u32 pllmask = 0, mast;
302 	unsigned long flags;
303 	unsigned long *f = &flags;
304 	int ret = 0;
305 
306 	ret = gt215_clk_pre(&clk->base, f);
307 	if (ret)
308 		goto out;
309 
310 	/* First switch to safe clocks: href */
311 	mast = nvkm_mask(device, 0xc054, 0x03400e70, 0x03400640);
312 	mast &= ~0x00400e73;
313 	mast |= 0x03000000;
314 
315 	switch (clk->csrc) {
316 	case nv_clk_src_hclkm4:
317 		nvkm_mask(device, 0x4028, 0x00070000, clk->cctrl);
318 		mast |= 0x00000002;
319 		break;
320 	case nv_clk_src_core:
321 		nvkm_wr32(device, 0x402c, clk->ccoef);
322 		nvkm_wr32(device, 0x4028, 0x80000000 | clk->cctrl);
323 		nvkm_wr32(device, 0x4040, clk->cpost);
324 		pllmask |= (0x3 << 8);
325 		mast |= 0x00000003;
326 		break;
327 	default:
328 		nvkm_warn(subdev, "Reclocking failed: unknown core clock\n");
329 		goto resume;
330 	}
331 
332 	switch (clk->ssrc) {
333 	case nv_clk_src_href:
334 		nvkm_mask(device, 0x4020, 0x00070000, 0x00000000);
335 		/* mast |= 0x00000000; */
336 		break;
337 	case nv_clk_src_core:
338 		nvkm_mask(device, 0x4020, 0x00070000, clk->sctrl);
339 		mast |= 0x00000020;
340 		break;
341 	case nv_clk_src_shader:
342 		nvkm_wr32(device, 0x4024, clk->scoef);
343 		nvkm_wr32(device, 0x4020, 0x80000000 | clk->sctrl);
344 		nvkm_wr32(device, 0x4070, clk->spost);
345 		pllmask |= (0x3 << 12);
346 		mast |= 0x00000030;
347 		break;
348 	default:
349 		nvkm_warn(subdev, "Reclocking failed: unknown sclk clock\n");
350 		goto resume;
351 	}
352 
353 	if (nvkm_msec(device, 2000,
354 		u32 tmp = nvkm_rd32(device, 0x004080) & pllmask;
355 		if (tmp == pllmask)
356 			break;
357 	) < 0)
358 		goto resume;
359 
360 	switch (clk->vsrc) {
361 	case nv_clk_src_cclk:
362 		mast |= 0x00400000;
363 		fallthrough;
364 	default:
365 		nvkm_wr32(device, 0x4600, clk->vdiv);
366 	}
367 
368 	nvkm_wr32(device, 0xc054, mast);
369 
370 resume:
371 	/* Disable some PLLs and dividers when unused */
372 	if (clk->csrc != nv_clk_src_core) {
373 		nvkm_wr32(device, 0x4040, 0x00000000);
374 		nvkm_mask(device, 0x4028, 0x80000000, 0x00000000);
375 	}
376 
377 	if (clk->ssrc != nv_clk_src_shader) {
378 		nvkm_wr32(device, 0x4070, 0x00000000);
379 		nvkm_mask(device, 0x4020, 0x80000000, 0x00000000);
380 	}
381 
382 out:
383 	if (ret == -EBUSY)
384 		f = NULL;
385 
386 	gt215_clk_post(&clk->base, f);
387 	return ret;
388 }
389 
390 static void
mcp77_clk_tidy(struct nvkm_clk * base)391 mcp77_clk_tidy(struct nvkm_clk *base)
392 {
393 }
394 
395 static const struct nvkm_clk_func
396 mcp77_clk = {
397 	.read = mcp77_clk_read,
398 	.calc = mcp77_clk_calc,
399 	.prog = mcp77_clk_prog,
400 	.tidy = mcp77_clk_tidy,
401 	.domains = {
402 		{ nv_clk_src_crystal, 0xff },
403 		{ nv_clk_src_href   , 0xff },
404 		{ nv_clk_src_core   , 0xff, 0, "core", 1000 },
405 		{ nv_clk_src_shader , 0xff, 0, "shader", 1000 },
406 		{ nv_clk_src_vdec   , 0xff, 0, "vdec", 1000 },
407 		{ nv_clk_src_max }
408 	}
409 };
410 
411 int
mcp77_clk_new(struct nvkm_device * device,enum nvkm_subdev_type type,int inst,struct nvkm_clk ** pclk)412 mcp77_clk_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
413 	      struct nvkm_clk **pclk)
414 {
415 	struct mcp77_clk *clk;
416 
417 	if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
418 		return -ENOMEM;
419 	*pclk = &clk->base;
420 
421 	return nvkm_clk_ctor(&mcp77_clk, device, type, inst, true, &clk->base);
422 }
423