xref: /linux/drivers/net/can/spi/mcp251xfd/mcp251xfd-core.c (revision 8f7aa3d3c7323f4ca2768a9e74ebbe359c4f8f88)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // mcp251xfd - Microchip MCP251xFD Family CAN controller driver
4 //
5 // Copyright (c) 2019, 2020, 2021, 2023 Pengutronix,
6 //               Marc Kleine-Budde <kernel@pengutronix.de>
7 //
8 // Based on:
9 //
10 // CAN bus driver for Microchip 25XXFD CAN Controller with SPI Interface
11 //
12 // Copyright (c) 2019 Martin Sperl <kernel@martin.sperl.org>
13 //
14 
15 #include <linux/unaligned.h>
16 #include <linux/bitfield.h>
17 #include <linux/clk.h>
18 #include <linux/device.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/property.h>
23 
24 #include "mcp251xfd.h"
25 
26 #define DEVICE_NAME "mcp251xfd"
27 
28 static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp2517fd = {
29 	.quirks = MCP251XFD_QUIRK_MAB_NO_WARN | MCP251XFD_QUIRK_CRC_REG |
30 		MCP251XFD_QUIRK_CRC_RX | MCP251XFD_QUIRK_CRC_TX |
31 		MCP251XFD_QUIRK_ECC,
32 	.model = MCP251XFD_MODEL_MCP2517FD,
33 };
34 
35 static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp2518fd = {
36 	.quirks = MCP251XFD_QUIRK_CRC_REG | MCP251XFD_QUIRK_CRC_RX |
37 		MCP251XFD_QUIRK_CRC_TX | MCP251XFD_QUIRK_ECC,
38 	.model = MCP251XFD_MODEL_MCP2518FD,
39 };
40 
41 static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp251863 = {
42 	.quirks = MCP251XFD_QUIRK_CRC_REG | MCP251XFD_QUIRK_CRC_RX |
43 		MCP251XFD_QUIRK_CRC_TX | MCP251XFD_QUIRK_ECC,
44 	.model = MCP251XFD_MODEL_MCP251863,
45 };
46 
47 /* Autodetect model, start with CRC enabled. */
48 static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp251xfd = {
49 	.quirks = MCP251XFD_QUIRK_CRC_REG | MCP251XFD_QUIRK_CRC_RX |
50 		MCP251XFD_QUIRK_CRC_TX | MCP251XFD_QUIRK_ECC,
51 	.model = MCP251XFD_MODEL_MCP251XFD,
52 };
53 
54 static const struct can_bittiming_const mcp251xfd_bittiming_const = {
55 	.name = DEVICE_NAME,
56 	.tseg1_min = 2,
57 	.tseg1_max = 256,
58 	.tseg2_min = 1,
59 	.tseg2_max = 128,
60 	.sjw_max = 128,
61 	.brp_min = 1,
62 	.brp_max = 256,
63 	.brp_inc = 1,
64 };
65 
66 static const struct can_bittiming_const mcp251xfd_data_bittiming_const = {
67 	.name = DEVICE_NAME,
68 	.tseg1_min = 1,
69 	.tseg1_max = 32,
70 	.tseg2_min = 1,
71 	.tseg2_max = 16,
72 	.sjw_max = 16,
73 	.brp_min = 1,
74 	.brp_max = 256,
75 	.brp_inc = 1,
76 };
77 
78 /* The datasheet of the mcp2518fd (DS20006027B) specifies a range of
79  * [-64,63] for TDCO, indicating a relative TDCO.
80  *
81  * Manual tests have shown, that using a relative TDCO configuration
82  * results in bus off, while an absolute configuration works.
83  *
84  * For TDCO use the max value (63) from the data sheet, but 0 as the
85  * minimum.
86  */
87 static const struct can_tdc_const mcp251xfd_tdc_const = {
88 	.tdcv_min = 0,
89 	.tdcv_max = 63,
90 	.tdco_min = 0,
91 	.tdco_max = 63,
92 	.tdcf_min = 0,
93 	.tdcf_max = 0,
94 };
95 
96 static const char *__mcp251xfd_get_model_str(enum mcp251xfd_model model)
97 {
98 	switch (model) {
99 	case MCP251XFD_MODEL_MCP2517FD:
100 		return "MCP2517FD";
101 	case MCP251XFD_MODEL_MCP2518FD:
102 		return "MCP2518FD";
103 	case MCP251XFD_MODEL_MCP251863:
104 		return "MCP251863";
105 	case MCP251XFD_MODEL_MCP251XFD:
106 		return "MCP251xFD";
107 	}
108 
109 	return "<unknown>";
110 }
111 
112 static inline const char *
113 mcp251xfd_get_model_str(const struct mcp251xfd_priv *priv)
114 {
115 	return __mcp251xfd_get_model_str(priv->devtype_data.model);
116 }
117 
118 static const char *mcp251xfd_get_mode_str(const u8 mode)
119 {
120 	switch (mode) {
121 	case MCP251XFD_REG_CON_MODE_MIXED:
122 		return "Mixed (CAN FD/CAN 2.0)";
123 	case MCP251XFD_REG_CON_MODE_SLEEP:
124 		return "Sleep";
125 	case MCP251XFD_REG_CON_MODE_INT_LOOPBACK:
126 		return "Internal Loopback";
127 	case MCP251XFD_REG_CON_MODE_LISTENONLY:
128 		return "Listen Only";
129 	case MCP251XFD_REG_CON_MODE_CONFIG:
130 		return "Configuration";
131 	case MCP251XFD_REG_CON_MODE_EXT_LOOPBACK:
132 		return "External Loopback";
133 	case MCP251XFD_REG_CON_MODE_CAN2_0:
134 		return "CAN 2.0";
135 	case MCP251XFD_REG_CON_MODE_RESTRICTED:
136 		return "Restricted Operation";
137 	}
138 
139 	return "<unknown>";
140 }
141 
142 static const char *
143 mcp251xfd_get_osc_str(const u32 osc, const u32 osc_reference)
144 {
145 	switch (~osc & osc_reference &
146 		(MCP251XFD_REG_OSC_OSCRDY | MCP251XFD_REG_OSC_PLLRDY)) {
147 	case MCP251XFD_REG_OSC_PLLRDY:
148 		return "PLL";
149 	case MCP251XFD_REG_OSC_OSCRDY:
150 		return "Oscillator";
151 	case MCP251XFD_REG_OSC_PLLRDY | MCP251XFD_REG_OSC_OSCRDY:
152 		return "Oscillator/PLL";
153 	}
154 
155 	return "<unknown>";
156 }
157 
158 static inline int mcp251xfd_vdd_enable(const struct mcp251xfd_priv *priv)
159 {
160 	if (!priv->reg_vdd)
161 		return 0;
162 
163 	return regulator_enable(priv->reg_vdd);
164 }
165 
166 static inline int mcp251xfd_vdd_disable(const struct mcp251xfd_priv *priv)
167 {
168 	if (!priv->reg_vdd)
169 		return 0;
170 
171 	return regulator_disable(priv->reg_vdd);
172 }
173 
174 static inline int
175 mcp251xfd_transceiver_enable(const struct mcp251xfd_priv *priv)
176 {
177 	if (!priv->reg_xceiver)
178 		return 0;
179 
180 	return regulator_enable(priv->reg_xceiver);
181 }
182 
183 static inline int
184 mcp251xfd_transceiver_disable(const struct mcp251xfd_priv *priv)
185 {
186 	if (!priv->reg_xceiver)
187 		return 0;
188 
189 	return regulator_disable(priv->reg_xceiver);
190 }
191 
192 static int mcp251xfd_clks_and_vdd_enable(const struct mcp251xfd_priv *priv)
193 {
194 	int err;
195 
196 	err = clk_prepare_enable(priv->clk);
197 	if (err)
198 		return err;
199 
200 	err = mcp251xfd_vdd_enable(priv);
201 	if (err)
202 		clk_disable_unprepare(priv->clk);
203 
204 	/* Wait for oscillator stabilisation time after power up */
205 	usleep_range(MCP251XFD_OSC_STAB_SLEEP_US,
206 		     2 * MCP251XFD_OSC_STAB_SLEEP_US);
207 
208 	return err;
209 }
210 
211 static int mcp251xfd_clks_and_vdd_disable(const struct mcp251xfd_priv *priv)
212 {
213 	int err;
214 
215 	err = mcp251xfd_vdd_disable(priv);
216 	if (err)
217 		return err;
218 
219 	clk_disable_unprepare(priv->clk);
220 
221 	return 0;
222 }
223 
224 static inline bool mcp251xfd_reg_invalid(u32 reg)
225 {
226 	return reg == 0x0 || reg == 0xffffffff;
227 }
228 
229 static inline int
230 mcp251xfd_chip_get_mode(const struct mcp251xfd_priv *priv, u8 *mode)
231 {
232 	u32 val;
233 	int err;
234 
235 	err = regmap_read(priv->map_reg, MCP251XFD_REG_CON, &val);
236 	if (err)
237 		return err;
238 
239 	*mode = FIELD_GET(MCP251XFD_REG_CON_OPMOD_MASK, val);
240 
241 	return 0;
242 }
243 
244 static int
245 __mcp251xfd_chip_set_mode(const struct mcp251xfd_priv *priv,
246 			  const u8 mode_req, bool nowait)
247 {
248 	const struct can_bittiming *bt = &priv->can.bittiming;
249 	unsigned long timeout_us = MCP251XFD_POLL_TIMEOUT_US;
250 	u32 con = 0, con_reqop, osc = 0;
251 	u8 mode;
252 	int err;
253 
254 	con_reqop = FIELD_PREP(MCP251XFD_REG_CON_REQOP_MASK, mode_req);
255 	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_CON,
256 				 MCP251XFD_REG_CON_REQOP_MASK, con_reqop);
257 	if (err == -EBADMSG) {
258 		netdev_err(priv->ndev,
259 			   "Failed to set Requested Operation Mode.\n");
260 
261 		return -ENODEV;
262 	} else if (err) {
263 		return err;
264 	}
265 
266 	if (mode_req == MCP251XFD_REG_CON_MODE_SLEEP || nowait)
267 		return 0;
268 
269 	if (bt->bitrate)
270 		timeout_us = max_t(unsigned long, timeout_us,
271 				   MCP251XFD_FRAME_LEN_MAX_BITS * USEC_PER_SEC /
272 				   bt->bitrate);
273 
274 	err = regmap_read_poll_timeout(priv->map_reg, MCP251XFD_REG_CON, con,
275 				       !mcp251xfd_reg_invalid(con) &&
276 				       FIELD_GET(MCP251XFD_REG_CON_OPMOD_MASK,
277 						 con) == mode_req,
278 				       MCP251XFD_POLL_SLEEP_US, timeout_us);
279 	if (err != -ETIMEDOUT && err != -EBADMSG)
280 		return err;
281 
282 	/* Ignore return value.
283 	 * Print below error messages, even if this fails.
284 	 */
285 	regmap_read(priv->map_reg, MCP251XFD_REG_OSC, &osc);
286 
287 	if (mcp251xfd_reg_invalid(con)) {
288 		netdev_err(priv->ndev,
289 			   "Failed to read CAN Control Register (con=0x%08x, osc=0x%08x).\n",
290 			   con, osc);
291 
292 		return -ENODEV;
293 	}
294 
295 	mode = FIELD_GET(MCP251XFD_REG_CON_OPMOD_MASK, con);
296 	netdev_err(priv->ndev,
297 		   "Controller failed to enter mode %s Mode (%u) and stays in %s Mode (%u) (con=0x%08x, osc=0x%08x).\n",
298 		   mcp251xfd_get_mode_str(mode_req), mode_req,
299 		   mcp251xfd_get_mode_str(mode), mode,
300 		   con, osc);
301 
302 	return -ETIMEDOUT;
303 }
304 
305 static inline int
306 mcp251xfd_chip_set_mode(const struct mcp251xfd_priv *priv,
307 			const u8 mode_req)
308 {
309 	return __mcp251xfd_chip_set_mode(priv, mode_req, false);
310 }
311 
312 static inline int __maybe_unused
313 mcp251xfd_chip_set_mode_nowait(const struct mcp251xfd_priv *priv,
314 			       const u8 mode_req)
315 {
316 	return __mcp251xfd_chip_set_mode(priv, mode_req, true);
317 }
318 
319 static int
320 mcp251xfd_chip_wait_for_osc_ready(const struct mcp251xfd_priv *priv,
321 				  u32 osc_reference, u32 osc_mask)
322 {
323 	u32 osc;
324 	int err;
325 
326 	err = regmap_read_poll_timeout(priv->map_reg, MCP251XFD_REG_OSC, osc,
327 				       !mcp251xfd_reg_invalid(osc) &&
328 				       (osc & osc_mask) == osc_reference,
329 				       MCP251XFD_OSC_STAB_SLEEP_US,
330 				       MCP251XFD_OSC_STAB_TIMEOUT_US);
331 	if (err != -ETIMEDOUT)
332 		return err;
333 
334 	if (mcp251xfd_reg_invalid(osc)) {
335 		netdev_err(priv->ndev,
336 			   "Failed to read Oscillator Configuration Register (osc=0x%08x).\n",
337 			   osc);
338 		return -ENODEV;
339 	}
340 
341 	netdev_err(priv->ndev,
342 		   "Timeout waiting for %s ready (osc=0x%08x, osc_reference=0x%08x, osc_mask=0x%08x).\n",
343 		   mcp251xfd_get_osc_str(osc, osc_reference),
344 		   osc, osc_reference, osc_mask);
345 
346 	return -ETIMEDOUT;
347 }
348 
349 static int mcp251xfd_chip_wake(const struct mcp251xfd_priv *priv)
350 {
351 	u32 osc, osc_reference, osc_mask;
352 	int err;
353 
354 	/* For normal sleep on MCP2517FD and MCP2518FD, clearing
355 	 * "Oscillator Disable" will wake the chip. For low power mode
356 	 * on MCP2518FD, asserting the chip select will wake the
357 	 * chip. Writing to the Oscillator register will wake it in
358 	 * both cases.
359 	 */
360 	osc = FIELD_PREP(MCP251XFD_REG_OSC_CLKODIV_MASK,
361 			 MCP251XFD_REG_OSC_CLKODIV_10);
362 
363 	/* We cannot check for the PLL ready bit (either set or
364 	 * unset), as the PLL might be enabled. This can happen if the
365 	 * system reboots, while the mcp251xfd stays powered.
366 	 */
367 	osc_reference = MCP251XFD_REG_OSC_OSCRDY;
368 	osc_mask = MCP251XFD_REG_OSC_OSCRDY;
369 
370 	/* If the controller is in Sleep Mode the following write only
371 	 * removes the "Oscillator Disable" bit and powers it up. All
372 	 * other bits are unaffected.
373 	 */
374 	err = regmap_write(priv->map_reg, MCP251XFD_REG_OSC, osc);
375 	if (err)
376 		return err;
377 
378 	/* Sometimes the PLL is stuck enabled, the controller never
379 	 * sets the OSC Ready bit, and we get an -ETIMEDOUT. Our
380 	 * caller takes care of retry.
381 	 */
382 	return mcp251xfd_chip_wait_for_osc_ready(priv, osc_reference, osc_mask);
383 }
384 
385 static inline int mcp251xfd_chip_sleep(const struct mcp251xfd_priv *priv)
386 {
387 	if (priv->pll_enable) {
388 		u32 osc;
389 		int err;
390 
391 		/* Turn off PLL */
392 		osc = FIELD_PREP(MCP251XFD_REG_OSC_CLKODIV_MASK,
393 				 MCP251XFD_REG_OSC_CLKODIV_10);
394 		err = regmap_write(priv->map_reg, MCP251XFD_REG_OSC, osc);
395 		if (err)
396 			netdev_err(priv->ndev,
397 				   "Failed to disable PLL.\n");
398 
399 		priv->spi->max_speed_hz = priv->spi_max_speed_hz_slow;
400 	}
401 
402 	return mcp251xfd_chip_set_mode(priv, MCP251XFD_REG_CON_MODE_SLEEP);
403 }
404 
405 static int mcp251xfd_chip_softreset_do(const struct mcp251xfd_priv *priv)
406 {
407 	const __be16 cmd = mcp251xfd_cmd_reset();
408 	int err;
409 
410 	/* The Set Mode and SPI Reset command only works if the
411 	 * controller is not in Sleep Mode.
412 	 */
413 	err = mcp251xfd_chip_wake(priv);
414 	if (err)
415 		return err;
416 
417 	err = mcp251xfd_chip_set_mode(priv, MCP251XFD_REG_CON_MODE_CONFIG);
418 	if (err)
419 		return err;
420 
421 	/* spi_write_then_read() works with non DMA-safe buffers */
422 	return spi_write_then_read(priv->spi, &cmd, sizeof(cmd), NULL, 0);
423 }
424 
425 static int mcp251xfd_chip_softreset_check(const struct mcp251xfd_priv *priv)
426 {
427 	u32 osc_reference, osc_mask;
428 	u8 mode;
429 	int err;
430 
431 	/* Check for reset defaults of OSC reg.
432 	 * This will take care of stabilization period.
433 	 */
434 	osc_reference = MCP251XFD_REG_OSC_OSCRDY |
435 		FIELD_PREP(MCP251XFD_REG_OSC_CLKODIV_MASK,
436 			   MCP251XFD_REG_OSC_CLKODIV_10);
437 	osc_mask = osc_reference | MCP251XFD_REG_OSC_PLLRDY;
438 	err = mcp251xfd_chip_wait_for_osc_ready(priv, osc_reference, osc_mask);
439 	if (err)
440 		return err;
441 
442 	err = mcp251xfd_chip_get_mode(priv, &mode);
443 	if (err)
444 		return err;
445 
446 	if (mode != MCP251XFD_REG_CON_MODE_CONFIG) {
447 		netdev_info(priv->ndev,
448 			    "Controller not in Config Mode after reset, but in %s Mode (%u).\n",
449 			    mcp251xfd_get_mode_str(mode), mode);
450 		return -ETIMEDOUT;
451 	}
452 
453 	return 0;
454 }
455 
456 static int mcp251xfd_chip_softreset(const struct mcp251xfd_priv *priv)
457 {
458 	int err, i;
459 
460 	for (i = 0; i < MCP251XFD_SOFTRESET_RETRIES_MAX; i++) {
461 		if (i)
462 			netdev_info(priv->ndev,
463 				    "Retrying to reset controller.\n");
464 
465 		err = mcp251xfd_chip_softreset_do(priv);
466 		if (err == -ETIMEDOUT)
467 			continue;
468 		if (err)
469 			return err;
470 
471 		err = mcp251xfd_chip_softreset_check(priv);
472 		if (err == -ETIMEDOUT)
473 			continue;
474 		if (err)
475 			return err;
476 
477 		return 0;
478 	}
479 
480 	return err;
481 }
482 
483 static int mcp251xfd_chip_clock_init(const struct mcp251xfd_priv *priv)
484 {
485 	u32 osc, osc_reference, osc_mask;
486 	int err;
487 
488 	/* Activate Low Power Mode on Oscillator Disable. This only
489 	 * works on the MCP2518FD. The MCP2517FD will go into normal
490 	 * Sleep Mode instead.
491 	 */
492 	osc = MCP251XFD_REG_OSC_LPMEN |
493 		FIELD_PREP(MCP251XFD_REG_OSC_CLKODIV_MASK,
494 			   MCP251XFD_REG_OSC_CLKODIV_10);
495 	osc_reference = MCP251XFD_REG_OSC_OSCRDY;
496 	osc_mask = MCP251XFD_REG_OSC_OSCRDY | MCP251XFD_REG_OSC_PLLRDY;
497 
498 	if (priv->pll_enable) {
499 		osc |= MCP251XFD_REG_OSC_PLLEN;
500 		osc_reference |= MCP251XFD_REG_OSC_PLLRDY;
501 	}
502 
503 	err = regmap_write(priv->map_reg, MCP251XFD_REG_OSC, osc);
504 	if (err)
505 		return err;
506 
507 	err = mcp251xfd_chip_wait_for_osc_ready(priv, osc_reference, osc_mask);
508 	if (err)
509 		return err;
510 
511 	priv->spi->max_speed_hz = priv->spi_max_speed_hz_fast;
512 
513 	return 0;
514 }
515 
516 static int mcp251xfd_chip_timestamp_init(const struct mcp251xfd_priv *priv)
517 {
518 	/* Set Time Base Counter Prescaler to 1.
519 	 *
520 	 * This means an overflow of the 32 bit Time Base Counter
521 	 * register at 40 MHz every 107 seconds.
522 	 */
523 	return regmap_write(priv->map_reg, MCP251XFD_REG_TSCON,
524 			    MCP251XFD_REG_TSCON_TBCEN);
525 }
526 
527 static int mcp251xfd_set_bittiming(const struct mcp251xfd_priv *priv)
528 {
529 	const struct can_bittiming *bt = &priv->can.bittiming;
530 	const struct can_bittiming *dbt = &priv->can.fd.data_bittiming;
531 	u32 tdcmod, val = 0;
532 	int err;
533 
534 	/* CAN Control Register
535 	 *
536 	 * - no transmit bandwidth sharing
537 	 * - config mode
538 	 * - disable transmit queue
539 	 * - store in transmit FIFO event
540 	 * - transition to restricted operation mode on system error
541 	 * - ESI is transmitted recessive when ESI of message is high or
542 	 *   CAN controller error passive
543 	 * - restricted retransmission attempts,
544 	 *   use TQXCON_TXAT and FIFOCON_TXAT
545 	 * - wake-up filter bits T11FILTER
546 	 * - use CAN bus line filter for wakeup
547 	 * - protocol exception is treated as a form error
548 	 * - Do not compare data bytes
549 	 */
550 	val = FIELD_PREP(MCP251XFD_REG_CON_REQOP_MASK,
551 			 MCP251XFD_REG_CON_MODE_CONFIG) |
552 		MCP251XFD_REG_CON_STEF |
553 		MCP251XFD_REG_CON_ESIGM |
554 		MCP251XFD_REG_CON_RTXAT |
555 		FIELD_PREP(MCP251XFD_REG_CON_WFT_MASK,
556 			   MCP251XFD_REG_CON_WFT_T11FILTER) |
557 		MCP251XFD_REG_CON_WAKFIL |
558 		MCP251XFD_REG_CON_PXEDIS;
559 
560 	if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO))
561 		val |= MCP251XFD_REG_CON_ISOCRCEN;
562 
563 	err = regmap_write(priv->map_reg, MCP251XFD_REG_CON, val);
564 	if (err)
565 		return err;
566 
567 	/* Nominal Bit Time */
568 	val = FIELD_PREP(MCP251XFD_REG_NBTCFG_BRP_MASK, bt->brp - 1) |
569 		FIELD_PREP(MCP251XFD_REG_NBTCFG_TSEG1_MASK,
570 			   bt->prop_seg + bt->phase_seg1 - 1) |
571 		FIELD_PREP(MCP251XFD_REG_NBTCFG_TSEG2_MASK,
572 			   bt->phase_seg2 - 1) |
573 		FIELD_PREP(MCP251XFD_REG_NBTCFG_SJW_MASK, bt->sjw - 1);
574 
575 	err = regmap_write(priv->map_reg, MCP251XFD_REG_NBTCFG, val);
576 	if (err)
577 		return err;
578 
579 	if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD))
580 		return 0;
581 
582 	/* Data Bit Time */
583 	val = FIELD_PREP(MCP251XFD_REG_DBTCFG_BRP_MASK, dbt->brp - 1) |
584 		FIELD_PREP(MCP251XFD_REG_DBTCFG_TSEG1_MASK,
585 			   dbt->prop_seg + dbt->phase_seg1 - 1) |
586 		FIELD_PREP(MCP251XFD_REG_DBTCFG_TSEG2_MASK,
587 			   dbt->phase_seg2 - 1) |
588 		FIELD_PREP(MCP251XFD_REG_DBTCFG_SJW_MASK, dbt->sjw - 1);
589 
590 	err = regmap_write(priv->map_reg, MCP251XFD_REG_DBTCFG, val);
591 	if (err)
592 		return err;
593 
594 	/* Transmitter Delay Compensation */
595 	if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_AUTO)
596 		tdcmod = MCP251XFD_REG_TDC_TDCMOD_AUTO;
597 	else if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_MANUAL)
598 		tdcmod = MCP251XFD_REG_TDC_TDCMOD_MANUAL;
599 	else
600 		tdcmod = MCP251XFD_REG_TDC_TDCMOD_DISABLED;
601 
602 	val = FIELD_PREP(MCP251XFD_REG_TDC_TDCMOD_MASK, tdcmod) |
603 	      FIELD_PREP(MCP251XFD_REG_TDC_TDCV_MASK, priv->can.fd.tdc.tdcv) |
604 	      FIELD_PREP(MCP251XFD_REG_TDC_TDCO_MASK, priv->can.fd.tdc.tdco);
605 
606 	return regmap_write(priv->map_reg, MCP251XFD_REG_TDC, val);
607 }
608 
609 static int mcp251xfd_chip_rx_int_enable(const struct mcp251xfd_priv *priv)
610 {
611 	u32 val, mask;
612 
613 	if (!priv->rx_int)
614 		return 0;
615 
616 	/* Configure PIN1 as RX Interrupt:
617 	 *
618 	 * PIN1 must be Input, otherwise there is a glitch on the
619 	 * rx-INT line. It happens between setting the PIN as output
620 	 * (in the first byte of the SPI transfer) and configuring the
621 	 * PIN as interrupt (in the last byte of the SPI transfer).
622 	 */
623 	val = MCP251XFD_REG_IOCON_TRIS(1);
624 	mask = MCP251XFD_REG_IOCON_TRIS(1) | MCP251XFD_REG_IOCON_PM(1);
625 	return regmap_update_bits(priv->map_reg, MCP251XFD_REG_IOCON, mask, val);
626 }
627 
628 static int mcp251xfd_chip_rx_int_disable(const struct mcp251xfd_priv *priv)
629 {
630 	u32 val;
631 
632 	if (!priv->rx_int)
633 		return 0;
634 
635 	/* Configure PIN1 as GPIO Input */
636 	val = MCP251XFD_REG_IOCON_PM(1) | MCP251XFD_REG_IOCON_TRIS(1);
637 	return regmap_update_bits(priv->map_reg, MCP251XFD_REG_IOCON, val, val);
638 }
639 
640 static int mcp251xfd_chip_ecc_init(struct mcp251xfd_priv *priv)
641 {
642 	struct mcp251xfd_ecc *ecc = &priv->ecc;
643 	void *ram;
644 	u32 val = 0;
645 	int err;
646 
647 	ecc->ecc_stat = 0;
648 
649 	if (priv->devtype_data.quirks & MCP251XFD_QUIRK_ECC)
650 		val = MCP251XFD_REG_ECCCON_ECCEN;
651 
652 	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCCON,
653 				 MCP251XFD_REG_ECCCON_ECCEN, val);
654 	if (err)
655 		return err;
656 
657 	ram = kzalloc(MCP251XFD_RAM_SIZE, GFP_KERNEL);
658 	if (!ram)
659 		return -ENOMEM;
660 
661 	err = regmap_raw_write(priv->map_reg, MCP251XFD_RAM_START, ram,
662 			       MCP251XFD_RAM_SIZE);
663 	kfree(ram);
664 
665 	return err;
666 }
667 
668 static u8 mcp251xfd_get_normal_mode(const struct mcp251xfd_priv *priv)
669 {
670 	u8 mode;
671 
672 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
673 		mode = MCP251XFD_REG_CON_MODE_INT_LOOPBACK;
674 	else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
675 		mode = MCP251XFD_REG_CON_MODE_LISTENONLY;
676 	else if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
677 		mode = MCP251XFD_REG_CON_MODE_MIXED;
678 	else
679 		mode = MCP251XFD_REG_CON_MODE_CAN2_0;
680 
681 	return mode;
682 }
683 
684 static int
685 __mcp251xfd_chip_set_normal_mode(const struct mcp251xfd_priv *priv,
686 				 bool nowait)
687 {
688 	u8 mode;
689 
690 	mode = mcp251xfd_get_normal_mode(priv);
691 
692 	return __mcp251xfd_chip_set_mode(priv, mode, nowait);
693 }
694 
695 static inline int
696 mcp251xfd_chip_set_normal_mode(const struct mcp251xfd_priv *priv)
697 {
698 	return __mcp251xfd_chip_set_normal_mode(priv, false);
699 }
700 
701 static inline int
702 mcp251xfd_chip_set_normal_mode_nowait(const struct mcp251xfd_priv *priv)
703 {
704 	return __mcp251xfd_chip_set_normal_mode(priv, true);
705 }
706 
707 static int mcp251xfd_chip_interrupts_enable(const struct mcp251xfd_priv *priv)
708 {
709 	u32 val;
710 	int err;
711 
712 	val = MCP251XFD_REG_CRC_FERRIE | MCP251XFD_REG_CRC_CRCERRIE;
713 	err = regmap_write(priv->map_reg, MCP251XFD_REG_CRC, val);
714 	if (err)
715 		return err;
716 
717 	val = MCP251XFD_REG_ECCCON_DEDIE | MCP251XFD_REG_ECCCON_SECIE;
718 	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCCON, val, val);
719 	if (err)
720 		return err;
721 
722 	val = MCP251XFD_REG_INT_CERRIE |
723 		MCP251XFD_REG_INT_SERRIE |
724 		MCP251XFD_REG_INT_RXOVIE |
725 		MCP251XFD_REG_INT_TXATIE |
726 		MCP251XFD_REG_INT_SPICRCIE |
727 		MCP251XFD_REG_INT_ECCIE |
728 		MCP251XFD_REG_INT_TEFIE |
729 		MCP251XFD_REG_INT_MODIE |
730 		MCP251XFD_REG_INT_RXIE;
731 
732 	if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
733 		val |= MCP251XFD_REG_INT_IVMIE;
734 
735 	return regmap_write(priv->map_reg, MCP251XFD_REG_INT, val);
736 }
737 
738 static int mcp251xfd_chip_interrupts_disable(const struct mcp251xfd_priv *priv)
739 {
740 	int err;
741 	u32 mask;
742 
743 	err = regmap_write(priv->map_reg, MCP251XFD_REG_INT, 0);
744 	if (err)
745 		return err;
746 
747 	mask = MCP251XFD_REG_ECCCON_DEDIE | MCP251XFD_REG_ECCCON_SECIE;
748 	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCCON,
749 				 mask, 0x0);
750 	if (err)
751 		return err;
752 
753 	return regmap_write(priv->map_reg, MCP251XFD_REG_CRC, 0);
754 }
755 
756 static void mcp251xfd_chip_stop(struct mcp251xfd_priv *priv,
757 				const enum can_state state)
758 {
759 	priv->can.state = state;
760 
761 	mcp251xfd_chip_interrupts_disable(priv);
762 	mcp251xfd_chip_rx_int_disable(priv);
763 	mcp251xfd_timestamp_stop(priv);
764 	mcp251xfd_chip_set_mode(priv, MCP251XFD_REG_CON_MODE_CONFIG);
765 }
766 
767 static int mcp251xfd_chip_start(struct mcp251xfd_priv *priv)
768 {
769 	int err;
770 
771 	err = mcp251xfd_chip_timestamp_init(priv);
772 	if (err)
773 		goto out_chip_stop;
774 
775 	mcp251xfd_timestamp_start(priv);
776 
777 	err = mcp251xfd_set_bittiming(priv);
778 	if (err)
779 		goto out_chip_stop;
780 
781 	err = mcp251xfd_chip_rx_int_enable(priv);
782 	if (err)
783 		goto out_chip_stop;
784 
785 	err = mcp251xfd_chip_ecc_init(priv);
786 	if (err)
787 		goto out_chip_stop;
788 
789 	err = mcp251xfd_ring_init(priv);
790 	if (err)
791 		goto out_chip_stop;
792 
793 	err = mcp251xfd_chip_fifo_init(priv);
794 	if (err)
795 		goto out_chip_stop;
796 
797 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
798 
799 	err = mcp251xfd_chip_set_normal_mode(priv);
800 	if (err)
801 		goto out_chip_stop;
802 
803 	return 0;
804 
805 out_chip_stop:
806 	mcp251xfd_dump(priv);
807 	mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
808 
809 	return err;
810 }
811 
812 static int mcp251xfd_set_mode(struct net_device *ndev, enum can_mode mode)
813 {
814 	struct mcp251xfd_priv *priv = netdev_priv(ndev);
815 	int err;
816 
817 	switch (mode) {
818 	case CAN_MODE_START:
819 		err = mcp251xfd_chip_start(priv);
820 		if (err)
821 			return err;
822 
823 		err = mcp251xfd_chip_interrupts_enable(priv);
824 		if (err) {
825 			mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
826 			return err;
827 		}
828 
829 		netif_wake_queue(ndev);
830 		break;
831 
832 	default:
833 		return -EOPNOTSUPP;
834 	}
835 
836 	return 0;
837 }
838 
839 static int __mcp251xfd_get_berr_counter(const struct net_device *ndev,
840 					struct can_berr_counter *bec)
841 {
842 	const struct mcp251xfd_priv *priv = netdev_priv(ndev);
843 	u32 trec;
844 	int err;
845 
846 	err = regmap_read(priv->map_reg, MCP251XFD_REG_TREC, &trec);
847 	if (err)
848 		return err;
849 
850 	if (trec & MCP251XFD_REG_TREC_TXBO)
851 		bec->txerr = CAN_BUS_OFF_THRESHOLD;
852 	else
853 		bec->txerr = FIELD_GET(MCP251XFD_REG_TREC_TEC_MASK, trec);
854 	bec->rxerr = FIELD_GET(MCP251XFD_REG_TREC_REC_MASK, trec);
855 
856 	return 0;
857 }
858 
859 static int mcp251xfd_get_berr_counter(const struct net_device *ndev,
860 				      struct can_berr_counter *bec)
861 {
862 	const struct mcp251xfd_priv *priv = netdev_priv(ndev);
863 
864 	/* Avoid waking up the controller if the interface is down */
865 	if (!(ndev->flags & IFF_UP))
866 		return 0;
867 
868 	/* The controller is powered down during Bus Off, use saved
869 	 * bec values.
870 	 */
871 	if (priv->can.state == CAN_STATE_BUS_OFF) {
872 		*bec = priv->bec;
873 		return 0;
874 	}
875 
876 	return __mcp251xfd_get_berr_counter(ndev, bec);
877 }
878 
879 static struct sk_buff *
880 mcp251xfd_alloc_can_err_skb(struct mcp251xfd_priv *priv,
881 			    struct can_frame **cf, u32 *ts_raw)
882 {
883 	struct sk_buff *skb;
884 	int err;
885 
886 	err = mcp251xfd_get_timestamp_raw(priv, ts_raw);
887 	if (err)
888 		return NULL;
889 
890 	skb = alloc_can_err_skb(priv->ndev, cf);
891 	if (skb)
892 		mcp251xfd_skb_set_timestamp_raw(priv, skb, *ts_raw);
893 
894 	return skb;
895 }
896 
897 static int mcp251xfd_handle_rxovif(struct mcp251xfd_priv *priv)
898 {
899 	struct net_device_stats *stats = &priv->ndev->stats;
900 	struct mcp251xfd_rx_ring *ring;
901 	struct sk_buff *skb;
902 	struct can_frame *cf;
903 	u32 ts_raw, rxovif;
904 	int err, i;
905 
906 	stats->rx_over_errors++;
907 	stats->rx_errors++;
908 
909 	err = regmap_read(priv->map_reg, MCP251XFD_REG_RXOVIF, &rxovif);
910 	if (err)
911 		return err;
912 
913 	mcp251xfd_for_each_rx_ring(priv, ring, i) {
914 		if (!(rxovif & BIT(ring->fifo_nr)))
915 			continue;
916 
917 		/* If SERRIF is active, there was a RX MAB overflow. */
918 		if (priv->regs_status.intf & MCP251XFD_REG_INT_SERRIF) {
919 			if (net_ratelimit())
920 				netdev_dbg(priv->ndev,
921 					   "RX-%d: MAB overflow detected.\n",
922 					   ring->nr);
923 		} else {
924 			if (net_ratelimit())
925 				netdev_dbg(priv->ndev,
926 					   "RX-%d: FIFO overflow.\n",
927 					   ring->nr);
928 		}
929 
930 		err = regmap_update_bits(priv->map_reg,
931 					 MCP251XFD_REG_FIFOSTA(ring->fifo_nr),
932 					 MCP251XFD_REG_FIFOSTA_RXOVIF,
933 					 0x0);
934 		if (err)
935 			return err;
936 	}
937 
938 	skb = mcp251xfd_alloc_can_err_skb(priv, &cf, &ts_raw);
939 	if (!skb)
940 		return 0;
941 
942 	cf->can_id |= CAN_ERR_CRTL;
943 	cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
944 
945 	err = can_rx_offload_queue_timestamp(&priv->offload, skb, ts_raw);
946 	if (err)
947 		stats->rx_fifo_errors++;
948 
949 	return 0;
950 }
951 
952 static int mcp251xfd_handle_txatif(struct mcp251xfd_priv *priv)
953 {
954 	netdev_info(priv->ndev, "%s\n", __func__);
955 
956 	return 0;
957 }
958 
959 static int mcp251xfd_handle_ivmif(struct mcp251xfd_priv *priv)
960 {
961 	struct net_device_stats *stats = &priv->ndev->stats;
962 	u32 bdiag1, ts_raw;
963 	struct sk_buff *skb;
964 	struct can_frame *cf = NULL;
965 	int err;
966 
967 	err = mcp251xfd_get_timestamp_raw(priv, &ts_raw);
968 	if (err)
969 		return err;
970 
971 	err = regmap_read(priv->map_reg, MCP251XFD_REG_BDIAG1, &bdiag1);
972 	if (err)
973 		return err;
974 
975 	/* Write 0s to clear error bits, don't write 1s to non active
976 	 * bits, as they will be set.
977 	 */
978 	err = regmap_write(priv->map_reg, MCP251XFD_REG_BDIAG1, 0x0);
979 	if (err)
980 		return err;
981 
982 	priv->can.can_stats.bus_error++;
983 
984 	skb = alloc_can_err_skb(priv->ndev, &cf);
985 	if (cf)
986 		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
987 
988 	/* Controller misconfiguration */
989 	if (WARN_ON(bdiag1 & MCP251XFD_REG_BDIAG1_DLCMM))
990 		netdev_err(priv->ndev,
991 			   "recv'd DLC is larger than PLSIZE of FIFO element.");
992 
993 	/* RX errors */
994 	if (bdiag1 & (MCP251XFD_REG_BDIAG1_DCRCERR |
995 		      MCP251XFD_REG_BDIAG1_NCRCERR)) {
996 		netdev_dbg(priv->ndev, "CRC error\n");
997 
998 		stats->rx_errors++;
999 		if (cf)
1000 			cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1001 	}
1002 	if (bdiag1 & (MCP251XFD_REG_BDIAG1_DSTUFERR |
1003 		      MCP251XFD_REG_BDIAG1_NSTUFERR)) {
1004 		netdev_dbg(priv->ndev, "Stuff error\n");
1005 
1006 		stats->rx_errors++;
1007 		if (cf)
1008 			cf->data[2] |= CAN_ERR_PROT_STUFF;
1009 	}
1010 	if (bdiag1 & (MCP251XFD_REG_BDIAG1_DFORMERR |
1011 		      MCP251XFD_REG_BDIAG1_NFORMERR)) {
1012 		netdev_dbg(priv->ndev, "Format error\n");
1013 
1014 		stats->rx_errors++;
1015 		if (cf)
1016 			cf->data[2] |= CAN_ERR_PROT_FORM;
1017 	}
1018 
1019 	/* TX errors */
1020 	if (bdiag1 & MCP251XFD_REG_BDIAG1_NACKERR) {
1021 		netdev_dbg(priv->ndev, "NACK error\n");
1022 
1023 		stats->tx_errors++;
1024 		if (cf) {
1025 			cf->can_id |= CAN_ERR_ACK;
1026 			cf->data[2] |= CAN_ERR_PROT_TX;
1027 		}
1028 	}
1029 	if (bdiag1 & (MCP251XFD_REG_BDIAG1_DBIT1ERR |
1030 		      MCP251XFD_REG_BDIAG1_NBIT1ERR)) {
1031 		netdev_dbg(priv->ndev, "Bit1 error\n");
1032 
1033 		stats->tx_errors++;
1034 		if (cf)
1035 			cf->data[2] |= CAN_ERR_PROT_TX | CAN_ERR_PROT_BIT1;
1036 	}
1037 	if (bdiag1 & (MCP251XFD_REG_BDIAG1_DBIT0ERR |
1038 		      MCP251XFD_REG_BDIAG1_NBIT0ERR)) {
1039 		netdev_dbg(priv->ndev, "Bit0 error\n");
1040 
1041 		stats->tx_errors++;
1042 		if (cf)
1043 			cf->data[2] |= CAN_ERR_PROT_TX | CAN_ERR_PROT_BIT0;
1044 	}
1045 
1046 	if (!cf)
1047 		return 0;
1048 
1049 	mcp251xfd_skb_set_timestamp_raw(priv, skb, ts_raw);
1050 	err = can_rx_offload_queue_timestamp(&priv->offload, skb, ts_raw);
1051 	if (err)
1052 		stats->rx_fifo_errors++;
1053 
1054 	return 0;
1055 }
1056 
1057 static int mcp251xfd_handle_cerrif(struct mcp251xfd_priv *priv)
1058 {
1059 	struct net_device_stats *stats = &priv->ndev->stats;
1060 	struct sk_buff *skb;
1061 	struct can_frame *cf = NULL;
1062 	enum can_state new_state, rx_state, tx_state;
1063 	u32 trec, ts_raw;
1064 	int err;
1065 
1066 	err = regmap_read(priv->map_reg, MCP251XFD_REG_TREC, &trec);
1067 	if (err)
1068 		return err;
1069 
1070 	if (trec & MCP251XFD_REG_TREC_TXBO)
1071 		tx_state = CAN_STATE_BUS_OFF;
1072 	else if (trec & MCP251XFD_REG_TREC_TXBP)
1073 		tx_state = CAN_STATE_ERROR_PASSIVE;
1074 	else if (trec & MCP251XFD_REG_TREC_TXWARN)
1075 		tx_state = CAN_STATE_ERROR_WARNING;
1076 	else
1077 		tx_state = CAN_STATE_ERROR_ACTIVE;
1078 
1079 	if (trec & MCP251XFD_REG_TREC_RXBP)
1080 		rx_state = CAN_STATE_ERROR_PASSIVE;
1081 	else if (trec & MCP251XFD_REG_TREC_RXWARN)
1082 		rx_state = CAN_STATE_ERROR_WARNING;
1083 	else
1084 		rx_state = CAN_STATE_ERROR_ACTIVE;
1085 
1086 	new_state = max(tx_state, rx_state);
1087 	if (new_state == priv->can.state)
1088 		return 0;
1089 
1090 	/* The skb allocation might fail, but can_change_state()
1091 	 * handles cf == NULL.
1092 	 */
1093 	skb = mcp251xfd_alloc_can_err_skb(priv, &cf, &ts_raw);
1094 	can_change_state(priv->ndev, cf, tx_state, rx_state);
1095 
1096 	if (new_state == CAN_STATE_BUS_OFF) {
1097 		/* As we're going to switch off the chip now, let's
1098 		 * save the error counters and return them to
1099 		 * userspace, if do_get_berr_counter() is called while
1100 		 * the chip is in Bus Off.
1101 		 */
1102 		err = __mcp251xfd_get_berr_counter(priv->ndev, &priv->bec);
1103 		if (err)
1104 			return err;
1105 
1106 		mcp251xfd_chip_stop(priv, CAN_STATE_BUS_OFF);
1107 		can_bus_off(priv->ndev);
1108 	}
1109 
1110 	if (!skb)
1111 		return 0;
1112 
1113 	if (new_state != CAN_STATE_BUS_OFF) {
1114 		struct can_berr_counter bec;
1115 
1116 		err = mcp251xfd_get_berr_counter(priv->ndev, &bec);
1117 		if (err)
1118 			return err;
1119 		cf->can_id |= CAN_ERR_CNT;
1120 		cf->data[6] = bec.txerr;
1121 		cf->data[7] = bec.rxerr;
1122 	}
1123 
1124 	err = can_rx_offload_queue_timestamp(&priv->offload, skb, ts_raw);
1125 	if (err)
1126 		stats->rx_fifo_errors++;
1127 
1128 	return 0;
1129 }
1130 
1131 static int
1132 mcp251xfd_handle_modif(const struct mcp251xfd_priv *priv, bool *set_normal_mode)
1133 {
1134 	const u8 mode_reference = mcp251xfd_get_normal_mode(priv);
1135 	u8 mode;
1136 	int err;
1137 
1138 	err = mcp251xfd_chip_get_mode(priv, &mode);
1139 	if (err)
1140 		return err;
1141 
1142 	if (mode == mode_reference) {
1143 		netdev_dbg(priv->ndev,
1144 			   "Controller changed into %s Mode (%u).\n",
1145 			   mcp251xfd_get_mode_str(mode), mode);
1146 		return 0;
1147 	}
1148 
1149 	/* According to MCP2517FD errata DS80000792C 1., during a TX
1150 	 * MAB underflow, the controller will transition to Restricted
1151 	 * Operation Mode or Listen Only Mode (depending on SERR2LOM).
1152 	 *
1153 	 * However this is not always the case. If SERR2LOM is
1154 	 * configured for Restricted Operation Mode (SERR2LOM not set)
1155 	 * the MCP2517FD will sometimes transition to Listen Only Mode
1156 	 * first. When polling this bit we see that it will transition
1157 	 * to Restricted Operation Mode shortly after.
1158 	 */
1159 	if ((priv->devtype_data.quirks & MCP251XFD_QUIRK_MAB_NO_WARN) &&
1160 	    (mode == MCP251XFD_REG_CON_MODE_RESTRICTED ||
1161 	     mode == MCP251XFD_REG_CON_MODE_LISTENONLY))
1162 		netdev_dbg(priv->ndev,
1163 			   "Controller changed into %s Mode (%u).\n",
1164 			   mcp251xfd_get_mode_str(mode), mode);
1165 	else
1166 		netdev_err(priv->ndev,
1167 			   "Controller changed into %s Mode (%u).\n",
1168 			   mcp251xfd_get_mode_str(mode), mode);
1169 
1170 	/* After the application requests Normal mode, the controller
1171 	 * will automatically attempt to retransmit the message that
1172 	 * caused the TX MAB underflow.
1173 	 *
1174 	 * However, if there is an ECC error in the TX-RAM, we first
1175 	 * have to reload the tx-object before requesting Normal
1176 	 * mode. This is done later in mcp251xfd_handle_eccif().
1177 	 */
1178 	if (priv->regs_status.intf & MCP251XFD_REG_INT_ECCIF) {
1179 		*set_normal_mode = true;
1180 		return 0;
1181 	}
1182 
1183 	return mcp251xfd_chip_set_normal_mode_nowait(priv);
1184 }
1185 
1186 static int mcp251xfd_handle_serrif(struct mcp251xfd_priv *priv)
1187 {
1188 	struct mcp251xfd_ecc *ecc = &priv->ecc;
1189 	struct net_device_stats *stats = &priv->ndev->stats;
1190 	bool handled = false;
1191 
1192 	/* TX MAB underflow
1193 	 *
1194 	 * According to MCP2517FD Errata DS80000792C 1. a TX MAB
1195 	 * underflow is indicated by SERRIF and MODIF.
1196 	 *
1197 	 * In addition to the effects mentioned in the Errata, there
1198 	 * are Bus Errors due to the aborted CAN frame, so a IVMIF
1199 	 * will be seen as well.
1200 	 *
1201 	 * Sometimes there is an ECC error in the TX-RAM, which leads
1202 	 * to a TX MAB underflow.
1203 	 *
1204 	 * However, probably due to a race condition, there is no
1205 	 * associated MODIF pending.
1206 	 *
1207 	 * Further, there are situations, where the SERRIF is caused
1208 	 * by an ECC error in the TX-RAM, but not even the ECCIF is
1209 	 * set. This only seems to happen _after_ the first occurrence
1210 	 * of a ECCIF (which is tracked in ecc->cnt).
1211 	 *
1212 	 * Treat all as a known system errors..
1213 	 */
1214 	if ((priv->regs_status.intf & MCP251XFD_REG_INT_MODIF &&
1215 	     priv->regs_status.intf & MCP251XFD_REG_INT_IVMIF) ||
1216 	    priv->regs_status.intf & MCP251XFD_REG_INT_ECCIF ||
1217 	    ecc->cnt) {
1218 		const char *msg;
1219 
1220 		if (priv->regs_status.intf & MCP251XFD_REG_INT_ECCIF ||
1221 		    ecc->cnt)
1222 			msg = "TX MAB underflow due to ECC error detected.";
1223 		else
1224 			msg = "TX MAB underflow detected.";
1225 
1226 		if (priv->devtype_data.quirks & MCP251XFD_QUIRK_MAB_NO_WARN)
1227 			netdev_dbg(priv->ndev, "%s\n", msg);
1228 		else
1229 			netdev_info(priv->ndev, "%s\n", msg);
1230 
1231 		stats->tx_aborted_errors++;
1232 		stats->tx_errors++;
1233 		handled = true;
1234 	}
1235 
1236 	/* RX MAB overflow
1237 	 *
1238 	 * According to MCP2517FD Errata DS80000792C 1. a RX MAB
1239 	 * overflow is indicated by SERRIF.
1240 	 *
1241 	 * In addition to the effects mentioned in the Errata, (most
1242 	 * of the times) a RXOVIF is raised, if the FIFO that is being
1243 	 * received into has the RXOVIE activated (and we have enabled
1244 	 * RXOVIE on all FIFOs).
1245 	 *
1246 	 * Sometimes there is no RXOVIF just a RXIF is pending.
1247 	 *
1248 	 * Treat all as a known system errors..
1249 	 */
1250 	if (priv->regs_status.intf & MCP251XFD_REG_INT_RXOVIF ||
1251 	    priv->regs_status.intf & MCP251XFD_REG_INT_RXIF) {
1252 		stats->rx_dropped++;
1253 		handled = true;
1254 	}
1255 
1256 	if (!handled)
1257 		netdev_err(priv->ndev,
1258 			   "Unhandled System Error Interrupt (intf=0x%08x)!\n",
1259 			   priv->regs_status.intf);
1260 
1261 	return 0;
1262 }
1263 
1264 static int
1265 mcp251xfd_handle_eccif_recover(struct mcp251xfd_priv *priv, u8 nr)
1266 {
1267 	struct mcp251xfd_tx_ring *tx_ring = priv->tx;
1268 	struct mcp251xfd_ecc *ecc = &priv->ecc;
1269 	struct mcp251xfd_tx_obj *tx_obj;
1270 	u8 chip_tx_tail, tx_tail, offset;
1271 	u16 addr;
1272 	int err;
1273 
1274 	addr = FIELD_GET(MCP251XFD_REG_ECCSTAT_ERRADDR_MASK, ecc->ecc_stat);
1275 
1276 	err = mcp251xfd_tx_tail_get_from_chip(priv, &chip_tx_tail);
1277 	if (err)
1278 		return err;
1279 
1280 	tx_tail = mcp251xfd_get_tx_tail(tx_ring);
1281 	offset = (nr - chip_tx_tail) & (tx_ring->obj_num - 1);
1282 
1283 	/* Bail out if one of the following is met:
1284 	 * - tx_tail information is inconsistent
1285 	 * - for mcp2517fd: offset not 0
1286 	 * - for mcp2518fd: offset not 0 or 1
1287 	 */
1288 	if (chip_tx_tail != tx_tail ||
1289 	    !(offset == 0 || (offset == 1 && (mcp251xfd_is_2518FD(priv) ||
1290 					      mcp251xfd_is_251863(priv))))) {
1291 		netdev_err(priv->ndev,
1292 			   "ECC Error information inconsistent (addr=0x%04x, nr=%d, tx_tail=0x%08x(%d), chip_tx_tail=%d, offset=%d).\n",
1293 			   addr, nr, tx_ring->tail, tx_tail, chip_tx_tail,
1294 			   offset);
1295 		return -EINVAL;
1296 	}
1297 
1298 	netdev_info(priv->ndev,
1299 		    "Recovering %s ECC Error at address 0x%04x (in TX-RAM, tx_obj=%d, tx_tail=0x%08x(%d), offset=%d).\n",
1300 		    ecc->ecc_stat & MCP251XFD_REG_ECCSTAT_SECIF ?
1301 		    "Single" : "Double",
1302 		    addr, nr, tx_ring->tail, tx_tail, offset);
1303 
1304 	/* reload tx_obj into controller RAM ... */
1305 	tx_obj = &tx_ring->obj[nr];
1306 	err = spi_sync_transfer(priv->spi, tx_obj->xfer, 1);
1307 	if (err)
1308 		return err;
1309 
1310 	/* ... and trigger retransmit */
1311 	return mcp251xfd_chip_set_normal_mode(priv);
1312 }
1313 
1314 static int
1315 mcp251xfd_handle_eccif(struct mcp251xfd_priv *priv, bool set_normal_mode)
1316 {
1317 	struct mcp251xfd_ecc *ecc = &priv->ecc;
1318 	const char *msg;
1319 	bool in_tx_ram;
1320 	u32 ecc_stat;
1321 	u16 addr;
1322 	u8 nr;
1323 	int err;
1324 
1325 	err = regmap_read(priv->map_reg, MCP251XFD_REG_ECCSTAT, &ecc_stat);
1326 	if (err)
1327 		return err;
1328 
1329 	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCSTAT,
1330 				 MCP251XFD_REG_ECCSTAT_IF_MASK, ~ecc_stat);
1331 	if (err)
1332 		return err;
1333 
1334 	/* Check if ECC error occurred in TX-RAM */
1335 	addr = FIELD_GET(MCP251XFD_REG_ECCSTAT_ERRADDR_MASK, ecc_stat);
1336 	err = mcp251xfd_get_tx_nr_by_addr(priv->tx, &nr, addr);
1337 	if (!err)
1338 		in_tx_ram = true;
1339 	else if (err == -ENOENT)
1340 		in_tx_ram = false;
1341 	else
1342 		return err;
1343 
1344 	/* Errata Reference:
1345 	 * mcp2517fd: DS80000789C 3., mcp2518fd: DS80000792E 2.,
1346 	 * mcp251863: DS80000984A 2.
1347 	 *
1348 	 * ECC single error correction does not work in all cases:
1349 	 *
1350 	 * Fix/Work Around:
1351 	 * Enable single error correction and double error detection
1352 	 * interrupts by setting SECIE and DEDIE. Handle SECIF as a
1353 	 * detection interrupt and do not rely on the error
1354 	 * correction. Instead, handle both interrupts as a
1355 	 * notification that the RAM word at ERRADDR was corrupted.
1356 	 */
1357 	if (ecc_stat & MCP251XFD_REG_ECCSTAT_SECIF)
1358 		msg = "Single ECC Error detected at address";
1359 	else if (ecc_stat & MCP251XFD_REG_ECCSTAT_DEDIF)
1360 		msg = "Double ECC Error detected at address";
1361 	else
1362 		return -EINVAL;
1363 
1364 	if (!in_tx_ram) {
1365 		ecc->ecc_stat = 0;
1366 
1367 		netdev_notice(priv->ndev, "%s 0x%04x.\n", msg, addr);
1368 	} else {
1369 		/* Re-occurring error? */
1370 		if (ecc->ecc_stat == ecc_stat) {
1371 			ecc->cnt++;
1372 		} else {
1373 			ecc->ecc_stat = ecc_stat;
1374 			ecc->cnt = 1;
1375 		}
1376 
1377 		netdev_info(priv->ndev,
1378 			    "%s 0x%04x (in TX-RAM, tx_obj=%d), occurred %d time%s.\n",
1379 			    msg, addr, nr, ecc->cnt, ecc->cnt > 1 ? "s" : "");
1380 
1381 		if (ecc->cnt >= MCP251XFD_ECC_CNT_MAX)
1382 			return mcp251xfd_handle_eccif_recover(priv, nr);
1383 	}
1384 
1385 	if (set_normal_mode)
1386 		return mcp251xfd_chip_set_normal_mode_nowait(priv);
1387 
1388 	return 0;
1389 }
1390 
1391 static int mcp251xfd_handle_spicrcif(struct mcp251xfd_priv *priv)
1392 {
1393 	int err;
1394 	u32 crc;
1395 
1396 	err = regmap_read(priv->map_reg, MCP251XFD_REG_CRC, &crc);
1397 	if (err)
1398 		return err;
1399 
1400 	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_CRC,
1401 				 MCP251XFD_REG_CRC_IF_MASK,
1402 				 ~crc);
1403 	if (err)
1404 		return err;
1405 
1406 	if (crc & MCP251XFD_REG_CRC_FERRIF)
1407 		netdev_notice(priv->ndev, "CRC write command format error.\n");
1408 	else if (crc & MCP251XFD_REG_CRC_CRCERRIF)
1409 		netdev_notice(priv->ndev,
1410 			      "CRC write error detected. CRC=0x%04lx.\n",
1411 			      FIELD_GET(MCP251XFD_REG_CRC_MASK, crc));
1412 
1413 	return 0;
1414 }
1415 
1416 static int mcp251xfd_read_regs_status(struct mcp251xfd_priv *priv)
1417 {
1418 	const int val_bytes = regmap_get_val_bytes(priv->map_reg);
1419 	size_t len;
1420 
1421 	if (priv->rx_ring_num == 1)
1422 		len = sizeof(priv->regs_status.intf);
1423 	else
1424 		len = sizeof(priv->regs_status);
1425 
1426 	return regmap_bulk_read(priv->map_reg, MCP251XFD_REG_INT,
1427 				&priv->regs_status, len / val_bytes);
1428 }
1429 
1430 #define mcp251xfd_handle(priv, irq, ...) \
1431 ({ \
1432 	struct mcp251xfd_priv *_priv = (priv); \
1433 	int err; \
1434 \
1435 	err = mcp251xfd_handle_##irq(_priv, ## __VA_ARGS__); \
1436 	if (err) \
1437 		netdev_err(_priv->ndev, \
1438 			"IRQ handler mcp251xfd_handle_%s() returned %d.\n", \
1439 			__stringify(irq), err); \
1440 	err; \
1441 })
1442 
1443 static irqreturn_t mcp251xfd_irq(int irq, void *dev_id)
1444 {
1445 	struct mcp251xfd_priv *priv = dev_id;
1446 	irqreturn_t handled = IRQ_NONE;
1447 	int err;
1448 
1449 	if (priv->rx_int)
1450 		do {
1451 			int rx_pending;
1452 
1453 			rx_pending = gpiod_get_value_cansleep(priv->rx_int);
1454 			if (!rx_pending)
1455 				break;
1456 
1457 			/* Assume 1st RX-FIFO pending, if other FIFOs
1458 			 * are pending the main IRQ handler will take
1459 			 * care.
1460 			 */
1461 			priv->regs_status.rxif = BIT(priv->rx[0]->fifo_nr);
1462 			err = mcp251xfd_handle(priv, rxif);
1463 			if (err)
1464 				goto out_fail;
1465 
1466 			handled = IRQ_HANDLED;
1467 
1468 			/* We don't know which RX-FIFO is pending, but only
1469 			 * handle the 1st RX-FIFO. Leave loop here if we have
1470 			 * more than 1 RX-FIFO to avoid starvation.
1471 			 */
1472 		} while (priv->rx_ring_num == 1);
1473 
1474 	do {
1475 		u32 intf_pending, intf_pending_clearable;
1476 		bool set_normal_mode = false;
1477 
1478 		err = mcp251xfd_read_regs_status(priv);
1479 		if (err)
1480 			goto out_fail;
1481 
1482 		intf_pending = FIELD_GET(MCP251XFD_REG_INT_IF_MASK,
1483 					 priv->regs_status.intf) &
1484 			FIELD_GET(MCP251XFD_REG_INT_IE_MASK,
1485 				  priv->regs_status.intf);
1486 
1487 		if (!(intf_pending)) {
1488 			can_rx_offload_threaded_irq_finish(&priv->offload);
1489 			return handled;
1490 		}
1491 
1492 		/* Some interrupts must be ACKed in the
1493 		 * MCP251XFD_REG_INT register.
1494 		 * - First ACK then handle, to avoid lost-IRQ race
1495 		 *   condition on fast re-occurring interrupts.
1496 		 * - Write "0" to clear active IRQs, "1" to all other,
1497 		 *   to avoid r/m/w race condition on the
1498 		 *   MCP251XFD_REG_INT register.
1499 		 */
1500 		intf_pending_clearable = intf_pending &
1501 			MCP251XFD_REG_INT_IF_CLEARABLE_MASK;
1502 		if (intf_pending_clearable) {
1503 			err = regmap_update_bits(priv->map_reg,
1504 						 MCP251XFD_REG_INT,
1505 						 MCP251XFD_REG_INT_IF_MASK,
1506 						 ~intf_pending_clearable);
1507 			if (err)
1508 				goto out_fail;
1509 		}
1510 
1511 		if (intf_pending & MCP251XFD_REG_INT_MODIF) {
1512 			err = mcp251xfd_handle(priv, modif, &set_normal_mode);
1513 			if (err)
1514 				goto out_fail;
1515 		}
1516 
1517 		if (intf_pending & MCP251XFD_REG_INT_RXIF) {
1518 			err = mcp251xfd_handle(priv, rxif);
1519 			if (err)
1520 				goto out_fail;
1521 		}
1522 
1523 		if (intf_pending & MCP251XFD_REG_INT_TEFIF) {
1524 			err = mcp251xfd_handle(priv, tefif);
1525 			if (err)
1526 				goto out_fail;
1527 		}
1528 
1529 		if (intf_pending & MCP251XFD_REG_INT_RXOVIF) {
1530 			err = mcp251xfd_handle(priv, rxovif);
1531 			if (err)
1532 				goto out_fail;
1533 		}
1534 
1535 		if (intf_pending & MCP251XFD_REG_INT_TXATIF) {
1536 			err = mcp251xfd_handle(priv, txatif);
1537 			if (err)
1538 				goto out_fail;
1539 		}
1540 
1541 		if (intf_pending & MCP251XFD_REG_INT_IVMIF) {
1542 			err = mcp251xfd_handle(priv, ivmif);
1543 			if (err)
1544 				goto out_fail;
1545 		}
1546 
1547 		if (intf_pending & MCP251XFD_REG_INT_SERRIF) {
1548 			err = mcp251xfd_handle(priv, serrif);
1549 			if (err)
1550 				goto out_fail;
1551 		}
1552 
1553 		if (intf_pending & MCP251XFD_REG_INT_ECCIF) {
1554 			err = mcp251xfd_handle(priv, eccif, set_normal_mode);
1555 			if (err)
1556 				goto out_fail;
1557 		}
1558 
1559 		if (intf_pending & MCP251XFD_REG_INT_SPICRCIF) {
1560 			err = mcp251xfd_handle(priv, spicrcif);
1561 			if (err)
1562 				goto out_fail;
1563 		}
1564 
1565 		/* On the MCP2527FD and MCP2518FD, we don't get a
1566 		 * CERRIF IRQ on the transition TX ERROR_WARNING -> TX
1567 		 * ERROR_ACTIVE.
1568 		 */
1569 		if (intf_pending & MCP251XFD_REG_INT_CERRIF ||
1570 		    priv->can.state > CAN_STATE_ERROR_ACTIVE) {
1571 			err = mcp251xfd_handle(priv, cerrif);
1572 			if (err)
1573 				goto out_fail;
1574 
1575 			/* In Bus Off we completely shut down the
1576 			 * controller. Every subsequent register read
1577 			 * will read bogus data, and if
1578 			 * MCP251XFD_QUIRK_CRC_REG is enabled the CRC
1579 			 * check will fail, too. So leave IRQ handler
1580 			 * directly.
1581 			 */
1582 			if (priv->can.state == CAN_STATE_BUS_OFF) {
1583 				can_rx_offload_threaded_irq_finish(&priv->offload);
1584 				return IRQ_HANDLED;
1585 			}
1586 		}
1587 
1588 		handled = IRQ_HANDLED;
1589 	} while (1);
1590 
1591 out_fail:
1592 	can_rx_offload_threaded_irq_finish(&priv->offload);
1593 
1594 	netdev_err(priv->ndev, "IRQ handler returned %d (intf=0x%08x).\n",
1595 		   err, priv->regs_status.intf);
1596 	mcp251xfd_dump(priv);
1597 	mcp251xfd_chip_interrupts_disable(priv);
1598 	mcp251xfd_timestamp_stop(priv);
1599 
1600 	return handled;
1601 }
1602 
1603 static int mcp251xfd_open(struct net_device *ndev)
1604 {
1605 	struct mcp251xfd_priv *priv = netdev_priv(ndev);
1606 	const struct spi_device *spi = priv->spi;
1607 	int err;
1608 
1609 	err = open_candev(ndev);
1610 	if (err)
1611 		return err;
1612 
1613 	err = pm_runtime_resume_and_get(ndev->dev.parent);
1614 	if (err) {
1615 		if (err == -ETIMEDOUT || err == -ENODEV)
1616 			pm_runtime_set_suspended(ndev->dev.parent);
1617 		goto out_close_candev;
1618 	}
1619 
1620 	err = mcp251xfd_ring_alloc(priv);
1621 	if (err)
1622 		goto out_pm_runtime_put;
1623 
1624 	err = mcp251xfd_transceiver_enable(priv);
1625 	if (err)
1626 		goto out_mcp251xfd_ring_free;
1627 
1628 	mcp251xfd_timestamp_init(priv);
1629 
1630 	err = mcp251xfd_chip_start(priv);
1631 	if (err)
1632 		goto out_transceiver_disable;
1633 
1634 	clear_bit(MCP251XFD_FLAGS_DOWN, priv->flags);
1635 	can_rx_offload_enable(&priv->offload);
1636 
1637 	priv->wq = alloc_ordered_workqueue("%s-mcp251xfd_wq",
1638 					   WQ_FREEZABLE | WQ_MEM_RECLAIM,
1639 					   dev_name(&spi->dev));
1640 	if (!priv->wq) {
1641 		err = -ENOMEM;
1642 		goto out_can_rx_offload_disable;
1643 	}
1644 	INIT_WORK(&priv->tx_work, mcp251xfd_tx_obj_write_sync);
1645 
1646 	err = request_threaded_irq(spi->irq, NULL, mcp251xfd_irq,
1647 				   IRQF_SHARED | IRQF_ONESHOT,
1648 				   dev_name(&spi->dev), priv);
1649 	if (err)
1650 		goto out_destroy_workqueue;
1651 
1652 	err = mcp251xfd_chip_interrupts_enable(priv);
1653 	if (err)
1654 		goto out_free_irq;
1655 
1656 	netif_start_queue(ndev);
1657 
1658 	return 0;
1659 
1660 out_free_irq:
1661 	free_irq(spi->irq, priv);
1662 out_destroy_workqueue:
1663 	destroy_workqueue(priv->wq);
1664 out_can_rx_offload_disable:
1665 	can_rx_offload_disable(&priv->offload);
1666 	set_bit(MCP251XFD_FLAGS_DOWN, priv->flags);
1667 out_transceiver_disable:
1668 	mcp251xfd_transceiver_disable(priv);
1669 out_mcp251xfd_ring_free:
1670 	mcp251xfd_ring_free(priv);
1671 out_pm_runtime_put:
1672 	mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
1673 	pm_runtime_put(ndev->dev.parent);
1674 out_close_candev:
1675 	close_candev(ndev);
1676 
1677 	return err;
1678 }
1679 
1680 static int mcp251xfd_stop(struct net_device *ndev)
1681 {
1682 	struct mcp251xfd_priv *priv = netdev_priv(ndev);
1683 
1684 	netif_stop_queue(ndev);
1685 	set_bit(MCP251XFD_FLAGS_DOWN, priv->flags);
1686 	hrtimer_cancel(&priv->rx_irq_timer);
1687 	hrtimer_cancel(&priv->tx_irq_timer);
1688 	mcp251xfd_chip_interrupts_disable(priv);
1689 	free_irq(ndev->irq, priv);
1690 	destroy_workqueue(priv->wq);
1691 	can_rx_offload_disable(&priv->offload);
1692 	mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
1693 	mcp251xfd_transceiver_disable(priv);
1694 	mcp251xfd_ring_free(priv);
1695 	close_candev(ndev);
1696 
1697 	pm_runtime_put(ndev->dev.parent);
1698 
1699 	return 0;
1700 }
1701 
1702 static const struct net_device_ops mcp251xfd_netdev_ops = {
1703 	.ndo_open = mcp251xfd_open,
1704 	.ndo_stop = mcp251xfd_stop,
1705 	.ndo_start_xmit	= mcp251xfd_start_xmit,
1706 	.ndo_hwtstamp_get = can_hwtstamp_get,
1707 	.ndo_hwtstamp_set = can_hwtstamp_set,
1708 };
1709 
1710 static void
1711 mcp251xfd_register_quirks(struct mcp251xfd_priv *priv)
1712 {
1713 	const struct spi_device *spi = priv->spi;
1714 	const struct spi_controller *ctlr = spi->controller;
1715 
1716 	if (ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX)
1717 		priv->devtype_data.quirks |= MCP251XFD_QUIRK_HALF_DUPLEX;
1718 }
1719 
1720 static int mcp251xfd_register_chip_detect(struct mcp251xfd_priv *priv)
1721 {
1722 	const struct net_device *ndev = priv->ndev;
1723 	const struct mcp251xfd_devtype_data *devtype_data;
1724 	u32 osc;
1725 	int err;
1726 
1727 	/* The OSC_LPMEN is only supported on MCP2518FD and MCP251863,
1728 	 * so use it to autodetect the model.
1729 	 */
1730 	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_OSC,
1731 				 MCP251XFD_REG_OSC_LPMEN,
1732 				 MCP251XFD_REG_OSC_LPMEN);
1733 	if (err)
1734 		return err;
1735 
1736 	err = regmap_read(priv->map_reg, MCP251XFD_REG_OSC, &osc);
1737 	if (err)
1738 		return err;
1739 
1740 	if (osc & MCP251XFD_REG_OSC_LPMEN) {
1741 		/* We cannot distinguish between MCP2518FD and
1742 		 * MCP251863. If firmware specifies MCP251863, keep
1743 		 * it, otherwise set to MCP2518FD.
1744 		 */
1745 		if (mcp251xfd_is_251863(priv))
1746 			devtype_data = &mcp251xfd_devtype_data_mcp251863;
1747 		else
1748 			devtype_data = &mcp251xfd_devtype_data_mcp2518fd;
1749 	} else {
1750 		devtype_data = &mcp251xfd_devtype_data_mcp2517fd;
1751 	}
1752 
1753 	if (!mcp251xfd_is_251XFD(priv) &&
1754 	    priv->devtype_data.model != devtype_data->model) {
1755 		netdev_info(ndev,
1756 			    "Detected %s, but firmware specifies a %s. Fixing up.\n",
1757 			    __mcp251xfd_get_model_str(devtype_data->model),
1758 			    mcp251xfd_get_model_str(priv));
1759 	}
1760 	priv->devtype_data = *devtype_data;
1761 
1762 	/* We need to preserve the Half Duplex Quirk. */
1763 	mcp251xfd_register_quirks(priv);
1764 
1765 	/* Re-init regmap with quirks of detected model. */
1766 	return mcp251xfd_regmap_init(priv);
1767 }
1768 
1769 static int mcp251xfd_register_check_rx_int(struct mcp251xfd_priv *priv)
1770 {
1771 	int err, rx_pending;
1772 
1773 	if (!priv->rx_int)
1774 		return 0;
1775 
1776 	err = mcp251xfd_chip_rx_int_enable(priv);
1777 	if (err)
1778 		return err;
1779 
1780 	/* Check if RX_INT is properly working. The RX_INT should not
1781 	 * be active after a softreset.
1782 	 */
1783 	rx_pending = gpiod_get_value_cansleep(priv->rx_int);
1784 
1785 	err = mcp251xfd_chip_rx_int_disable(priv);
1786 	if (err)
1787 		return err;
1788 
1789 	if (!rx_pending)
1790 		return 0;
1791 
1792 	netdev_info(priv->ndev,
1793 		    "RX_INT active after softreset, disabling RX_INT support.\n");
1794 	devm_gpiod_put(&priv->spi->dev, priv->rx_int);
1795 	priv->rx_int = NULL;
1796 
1797 	return 0;
1798 }
1799 
1800 static const char * const mcp251xfd_gpio_names[] = { "GPIO0", "GPIO1" };
1801 
1802 static int mcp251xfd_gpio_request(struct gpio_chip *chip, unsigned int offset)
1803 {
1804 	struct mcp251xfd_priv *priv = gpiochip_get_data(chip);
1805 	u32 pin_mask = MCP251XFD_REG_IOCON_PM(offset);
1806 	int ret;
1807 
1808 	if (priv->rx_int && offset == 1) {
1809 		netdev_err(priv->ndev, "Can't use GPIO 1 with RX-INT!\n");
1810 		return -EINVAL;
1811 	}
1812 
1813 	ret = pm_runtime_resume_and_get(priv->ndev->dev.parent);
1814 	if (ret)
1815 		return ret;
1816 
1817 	return regmap_update_bits(priv->map_reg, MCP251XFD_REG_IOCON, pin_mask, pin_mask);
1818 }
1819 
1820 static void mcp251xfd_gpio_free(struct gpio_chip *chip, unsigned int offset)
1821 {
1822 	struct mcp251xfd_priv *priv = gpiochip_get_data(chip);
1823 
1824 	pm_runtime_put(priv->ndev->dev.parent);
1825 }
1826 
1827 static int mcp251xfd_gpio_get_direction(struct gpio_chip *chip,
1828 					unsigned int offset)
1829 {
1830 	struct mcp251xfd_priv *priv = gpiochip_get_data(chip);
1831 	u32 mask = MCP251XFD_REG_IOCON_TRIS(offset);
1832 	u32 val;
1833 	int ret;
1834 
1835 	ret = regmap_read(priv->map_reg, MCP251XFD_REG_IOCON, &val);
1836 	if (ret)
1837 		return ret;
1838 
1839 	if (mask & val)
1840 		return GPIO_LINE_DIRECTION_IN;
1841 
1842 	return GPIO_LINE_DIRECTION_OUT;
1843 }
1844 
1845 static int mcp251xfd_gpio_get(struct gpio_chip *chip, unsigned int offset)
1846 {
1847 	struct mcp251xfd_priv *priv = gpiochip_get_data(chip);
1848 	u32 mask = MCP251XFD_REG_IOCON_GPIO(offset);
1849 	u32 val;
1850 	int ret;
1851 
1852 	ret = regmap_read(priv->map_reg, MCP251XFD_REG_IOCON, &val);
1853 	if (ret)
1854 		return ret;
1855 
1856 	return !!(mask & val);
1857 }
1858 
1859 static int mcp251xfd_gpio_get_multiple(struct gpio_chip *chip, unsigned long *mask,
1860 				       unsigned long *bit)
1861 {
1862 	struct mcp251xfd_priv *priv = gpiochip_get_data(chip);
1863 	u32 val;
1864 	int ret;
1865 
1866 	ret = regmap_read(priv->map_reg, MCP251XFD_REG_IOCON, &val);
1867 	if (ret)
1868 		return ret;
1869 
1870 	*bit = FIELD_GET(MCP251XFD_REG_IOCON_GPIO_MASK, val) & *mask;
1871 
1872 	return 0;
1873 }
1874 
1875 static int mcp251xfd_gpio_direction_output(struct gpio_chip *chip,
1876 					   unsigned int offset, int value)
1877 {
1878 	struct mcp251xfd_priv *priv = gpiochip_get_data(chip);
1879 	u32 dir_mask = MCP251XFD_REG_IOCON_TRIS(offset);
1880 	u32 val_mask = MCP251XFD_REG_IOCON_LAT(offset);
1881 	u32 val;
1882 
1883 	if (value)
1884 		val = val_mask;
1885 	else
1886 		val = 0;
1887 
1888 	return regmap_update_bits(priv->map_reg, MCP251XFD_REG_IOCON,
1889 				  dir_mask | val_mask, val);
1890 }
1891 
1892 static int mcp251xfd_gpio_direction_input(struct gpio_chip *chip,
1893 					  unsigned int offset)
1894 {
1895 	struct mcp251xfd_priv *priv = gpiochip_get_data(chip);
1896 	u32 dir_mask = MCP251XFD_REG_IOCON_TRIS(offset);
1897 
1898 	return regmap_update_bits(priv->map_reg, MCP251XFD_REG_IOCON, dir_mask, dir_mask);
1899 }
1900 
1901 static int mcp251xfd_gpio_set(struct gpio_chip *chip, unsigned int offset, int value)
1902 {
1903 	struct mcp251xfd_priv *priv = gpiochip_get_data(chip);
1904 	u32 val_mask = MCP251XFD_REG_IOCON_LAT(offset);
1905 	u32 val;
1906 
1907 	if (value)
1908 		val = val_mask;
1909 	else
1910 		val = 0;
1911 
1912 	return regmap_update_bits(priv->map_reg, MCP251XFD_REG_IOCON, val_mask, val);
1913 }
1914 
1915 static int mcp251xfd_gpio_set_multiple(struct gpio_chip *chip, unsigned long *mask,
1916 				       unsigned long *bits)
1917 {
1918 	struct mcp251xfd_priv *priv = gpiochip_get_data(chip);
1919 	u32 val;
1920 
1921 	val = FIELD_PREP(MCP251XFD_REG_IOCON_LAT_MASK, *bits);
1922 
1923 	return regmap_update_bits(priv->map_reg, MCP251XFD_REG_IOCON,
1924 				  MCP251XFD_REG_IOCON_LAT_MASK, val);
1925 }
1926 
1927 static int mcp251fdx_gpio_setup(struct mcp251xfd_priv *priv)
1928 {
1929 	struct gpio_chip *gc = &priv->gc;
1930 
1931 	if (!device_property_present(&priv->spi->dev, "gpio-controller"))
1932 		return 0;
1933 
1934 	gc->label = dev_name(&priv->spi->dev);
1935 	gc->parent = &priv->spi->dev;
1936 	gc->owner = THIS_MODULE;
1937 	gc->request = mcp251xfd_gpio_request;
1938 	gc->free = mcp251xfd_gpio_free;
1939 	gc->get_direction = mcp251xfd_gpio_get_direction;
1940 	gc->direction_output = mcp251xfd_gpio_direction_output;
1941 	gc->direction_input = mcp251xfd_gpio_direction_input;
1942 	gc->get = mcp251xfd_gpio_get;
1943 	gc->get_multiple = mcp251xfd_gpio_get_multiple;
1944 	gc->set = mcp251xfd_gpio_set;
1945 	gc->set_multiple = mcp251xfd_gpio_set_multiple;
1946 	gc->base = -1;
1947 	gc->can_sleep = true;
1948 	gc->ngpio = ARRAY_SIZE(mcp251xfd_gpio_names);
1949 	gc->names = mcp251xfd_gpio_names;
1950 
1951 	return devm_gpiochip_add_data(&priv->spi->dev, gc, priv);
1952 }
1953 
1954 static int
1955 mcp251xfd_register_get_dev_id(const struct mcp251xfd_priv *priv, u32 *dev_id,
1956 			      u32 *effective_speed_hz_slow,
1957 			      u32 *effective_speed_hz_fast)
1958 {
1959 	struct mcp251xfd_map_buf_nocrc *buf_rx;
1960 	struct mcp251xfd_map_buf_nocrc *buf_tx;
1961 	struct spi_transfer xfer[2] = { };
1962 	int err;
1963 
1964 	buf_rx = kzalloc(sizeof(*buf_rx), GFP_KERNEL);
1965 	if (!buf_rx)
1966 		return -ENOMEM;
1967 
1968 	buf_tx = kzalloc(sizeof(*buf_tx), GFP_KERNEL);
1969 	if (!buf_tx) {
1970 		err = -ENOMEM;
1971 		goto out_kfree_buf_rx;
1972 	}
1973 
1974 	xfer[0].tx_buf = buf_tx;
1975 	xfer[0].len = sizeof(buf_tx->cmd);
1976 	xfer[0].speed_hz = priv->spi_max_speed_hz_slow;
1977 	xfer[1].rx_buf = buf_rx->data;
1978 	xfer[1].len = sizeof(*dev_id);
1979 	xfer[1].speed_hz = priv->spi_max_speed_hz_fast;
1980 
1981 	mcp251xfd_spi_cmd_read_nocrc(&buf_tx->cmd, MCP251XFD_REG_DEVID);
1982 
1983 	err = spi_sync_transfer(priv->spi, xfer, ARRAY_SIZE(xfer));
1984 	if (err)
1985 		goto out_kfree_buf_tx;
1986 
1987 	*dev_id = get_unaligned_le32(buf_rx->data);
1988 	*effective_speed_hz_slow = xfer[0].effective_speed_hz;
1989 	*effective_speed_hz_fast = xfer[1].effective_speed_hz;
1990 
1991 out_kfree_buf_tx:
1992 	kfree(buf_tx);
1993 out_kfree_buf_rx:
1994 	kfree(buf_rx);
1995 
1996 	return err;
1997 }
1998 
1999 #define MCP251XFD_QUIRK_ACTIVE(quirk) \
2000 	(priv->devtype_data.quirks & MCP251XFD_QUIRK_##quirk ? '+' : '-')
2001 
2002 static int
2003 mcp251xfd_register_done(const struct mcp251xfd_priv *priv)
2004 {
2005 	u32 dev_id, effective_speed_hz_slow, effective_speed_hz_fast;
2006 	unsigned long clk_rate;
2007 	int err;
2008 
2009 	err = mcp251xfd_register_get_dev_id(priv, &dev_id,
2010 					    &effective_speed_hz_slow,
2011 					    &effective_speed_hz_fast);
2012 	if (err)
2013 		return err;
2014 
2015 	clk_rate = clk_get_rate(priv->clk);
2016 
2017 	netdev_info(priv->ndev,
2018 		    "%s rev%lu.%lu (%cRX_INT %cPLL %cMAB_NO_WARN %cCRC_REG %cCRC_RX %cCRC_TX %cECC %cHD o:%lu.%02luMHz c:%u.%02uMHz m:%u.%02uMHz rs:%u.%02uMHz es:%u.%02uMHz rf:%u.%02uMHz ef:%u.%02uMHz) successfully initialized.\n",
2019 		    mcp251xfd_get_model_str(priv),
2020 		    FIELD_GET(MCP251XFD_REG_DEVID_ID_MASK, dev_id),
2021 		    FIELD_GET(MCP251XFD_REG_DEVID_REV_MASK, dev_id),
2022 		    priv->rx_int ? '+' : '-',
2023 		    priv->pll_enable ? '+' : '-',
2024 		    MCP251XFD_QUIRK_ACTIVE(MAB_NO_WARN),
2025 		    MCP251XFD_QUIRK_ACTIVE(CRC_REG),
2026 		    MCP251XFD_QUIRK_ACTIVE(CRC_RX),
2027 		    MCP251XFD_QUIRK_ACTIVE(CRC_TX),
2028 		    MCP251XFD_QUIRK_ACTIVE(ECC),
2029 		    MCP251XFD_QUIRK_ACTIVE(HALF_DUPLEX),
2030 		    clk_rate / 1000000,
2031 		    clk_rate % 1000000 / 1000 / 10,
2032 		    priv->can.clock.freq / 1000000,
2033 		    priv->can.clock.freq % 1000000 / 1000 / 10,
2034 		    priv->spi_max_speed_hz_orig / 1000000,
2035 		    priv->spi_max_speed_hz_orig % 1000000 / 1000 / 10,
2036 		    priv->spi_max_speed_hz_slow / 1000000,
2037 		    priv->spi_max_speed_hz_slow % 1000000 / 1000 / 10,
2038 		    effective_speed_hz_slow / 1000000,
2039 		    effective_speed_hz_slow % 1000000 / 1000 / 10,
2040 		    priv->spi_max_speed_hz_fast / 1000000,
2041 		    priv->spi_max_speed_hz_fast % 1000000 / 1000 / 10,
2042 		    effective_speed_hz_fast / 1000000,
2043 		    effective_speed_hz_fast % 1000000 / 1000 / 10);
2044 
2045 	return 0;
2046 }
2047 
2048 static int mcp251xfd_register(struct mcp251xfd_priv *priv)
2049 {
2050 	struct net_device *ndev = priv->ndev;
2051 	int err;
2052 
2053 	mcp251xfd_register_quirks(priv);
2054 
2055 	err = mcp251xfd_clks_and_vdd_enable(priv);
2056 	if (err)
2057 		return err;
2058 
2059 	err = mcp251xfd_chip_softreset(priv);
2060 	if (err == -ENODEV)
2061 		goto out_clks_and_vdd_disable;
2062 	if (err)
2063 		goto out_chip_sleep;
2064 
2065 	err = mcp251xfd_chip_clock_init(priv);
2066 	if (err == -ENODEV)
2067 		goto out_clks_and_vdd_disable;
2068 	if (err)
2069 		goto out_chip_sleep;
2070 
2071 	pm_runtime_get_noresume(ndev->dev.parent);
2072 	err = pm_runtime_set_active(ndev->dev.parent);
2073 	if (err)
2074 		goto out_runtime_put_noidle;
2075 	pm_runtime_enable(ndev->dev.parent);
2076 
2077 	err = mcp251xfd_register_chip_detect(priv);
2078 	if (err)
2079 		goto out_runtime_disable;
2080 
2081 	err = mcp251xfd_register_check_rx_int(priv);
2082 	if (err)
2083 		goto out_runtime_disable;
2084 
2085 	mcp251xfd_ethtool_init(priv);
2086 
2087 	err = mcp251fdx_gpio_setup(priv);
2088 	if (err) {
2089 		dev_err_probe(&priv->spi->dev, err, "Failed to register gpio-controller.\n");
2090 		goto out_runtime_disable;
2091 	}
2092 
2093 	err = register_candev(ndev);
2094 	if (err)
2095 		goto out_runtime_disable;
2096 
2097 	err = mcp251xfd_register_done(priv);
2098 	if (err)
2099 		goto out_unregister_candev;
2100 
2101 	/* Put controller into Config mode and let pm_runtime_put()
2102 	 * put in sleep mode, disable the clocks and vdd. If CONFIG_PM
2103 	 * is not enabled, the clocks and vdd will stay powered.
2104 	 */
2105 	err = mcp251xfd_chip_set_mode(priv, MCP251XFD_REG_CON_MODE_CONFIG);
2106 	if (err)
2107 		goto out_unregister_candev;
2108 
2109 	pm_runtime_put(ndev->dev.parent);
2110 
2111 	return 0;
2112 
2113 out_unregister_candev:
2114 	unregister_candev(ndev);
2115 out_runtime_disable:
2116 	pm_runtime_disable(ndev->dev.parent);
2117 out_runtime_put_noidle:
2118 	pm_runtime_put_noidle(ndev->dev.parent);
2119 out_chip_sleep:
2120 	mcp251xfd_chip_sleep(priv);
2121 out_clks_and_vdd_disable:
2122 	mcp251xfd_clks_and_vdd_disable(priv);
2123 
2124 	return err;
2125 }
2126 
2127 static inline void mcp251xfd_unregister(struct mcp251xfd_priv *priv)
2128 {
2129 	struct net_device *ndev	= priv->ndev;
2130 
2131 	unregister_candev(ndev);
2132 
2133 	if (pm_runtime_enabled(ndev->dev.parent)) {
2134 		pm_runtime_disable(ndev->dev.parent);
2135 	} else {
2136 		mcp251xfd_chip_sleep(priv);
2137 		mcp251xfd_clks_and_vdd_disable(priv);
2138 	}
2139 }
2140 
2141 static const struct of_device_id mcp251xfd_of_match[] = {
2142 	{
2143 		.compatible = "microchip,mcp2517fd",
2144 		.data = &mcp251xfd_devtype_data_mcp2517fd,
2145 	}, {
2146 		.compatible = "microchip,mcp2518fd",
2147 		.data = &mcp251xfd_devtype_data_mcp2518fd,
2148 	}, {
2149 		.compatible = "microchip,mcp251863",
2150 		.data = &mcp251xfd_devtype_data_mcp251863,
2151 	}, {
2152 		.compatible = "microchip,mcp251xfd",
2153 		.data = &mcp251xfd_devtype_data_mcp251xfd,
2154 	}, {
2155 		/* sentinel */
2156 	},
2157 };
2158 MODULE_DEVICE_TABLE(of, mcp251xfd_of_match);
2159 
2160 static const struct spi_device_id mcp251xfd_id_table[] = {
2161 	{
2162 		.name = "mcp2517fd",
2163 		.driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp2517fd,
2164 	}, {
2165 		.name = "mcp2518fd",
2166 		.driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp2518fd,
2167 	}, {
2168 		.name = "mcp251863",
2169 		.driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp251863,
2170 	}, {
2171 		.name = "mcp251xfd",
2172 		.driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp251xfd,
2173 	}, {
2174 		/* sentinel */
2175 	},
2176 };
2177 MODULE_DEVICE_TABLE(spi, mcp251xfd_id_table);
2178 
2179 static int mcp251xfd_probe(struct spi_device *spi)
2180 {
2181 	struct net_device *ndev;
2182 	struct mcp251xfd_priv *priv;
2183 	struct gpio_desc *rx_int;
2184 	struct regulator *reg_vdd, *reg_xceiver;
2185 	struct clk *clk;
2186 	bool pll_enable = false;
2187 	u32 freq = 0;
2188 	int err;
2189 
2190 	if (!spi->irq)
2191 		return dev_err_probe(&spi->dev, -ENXIO,
2192 				     "No IRQ specified (maybe node \"interrupts-extended\" in DT missing)!\n");
2193 
2194 	rx_int = devm_gpiod_get_optional(&spi->dev, "microchip,rx-int",
2195 					 GPIOD_IN);
2196 	if (IS_ERR(rx_int))
2197 		return dev_err_probe(&spi->dev, PTR_ERR(rx_int),
2198 				     "Failed to get RX-INT!\n");
2199 
2200 	reg_vdd = devm_regulator_get_optional(&spi->dev, "vdd");
2201 	if (PTR_ERR(reg_vdd) == -ENODEV)
2202 		reg_vdd = NULL;
2203 	else if (IS_ERR(reg_vdd))
2204 		return dev_err_probe(&spi->dev, PTR_ERR(reg_vdd),
2205 				     "Failed to get VDD regulator!\n");
2206 
2207 	reg_xceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
2208 	if (PTR_ERR(reg_xceiver) == -ENODEV)
2209 		reg_xceiver = NULL;
2210 	else if (IS_ERR(reg_xceiver))
2211 		return dev_err_probe(&spi->dev, PTR_ERR(reg_xceiver),
2212 				     "Failed to get Transceiver regulator!\n");
2213 
2214 	clk = devm_clk_get_optional(&spi->dev, NULL);
2215 	if (IS_ERR(clk))
2216 		return dev_err_probe(&spi->dev, PTR_ERR(clk),
2217 				     "Failed to get Oscillator (clock)!\n");
2218 	if (clk) {
2219 		freq = clk_get_rate(clk);
2220 	} else {
2221 		err = device_property_read_u32(&spi->dev, "clock-frequency",
2222 					       &freq);
2223 		if (err)
2224 			return dev_err_probe(&spi->dev, err,
2225 					     "Failed to get clock-frequency!\n");
2226 	}
2227 
2228 	/* Sanity check */
2229 	if (freq < MCP251XFD_SYSCLOCK_HZ_MIN ||
2230 	    freq > MCP251XFD_SYSCLOCK_HZ_MAX) {
2231 		dev_err(&spi->dev,
2232 			"Oscillator frequency (%u Hz) is too low or high.\n",
2233 			freq);
2234 		return -ERANGE;
2235 	}
2236 
2237 	if (freq <= MCP251XFD_SYSCLOCK_HZ_MAX / MCP251XFD_OSC_PLL_MULTIPLIER)
2238 		pll_enable = true;
2239 
2240 	ndev = alloc_candev(sizeof(struct mcp251xfd_priv),
2241 			    MCP251XFD_TX_OBJ_NUM_MAX);
2242 	if (!ndev)
2243 		return -ENOMEM;
2244 
2245 	SET_NETDEV_DEV(ndev, &spi->dev);
2246 
2247 	ndev->netdev_ops = &mcp251xfd_netdev_ops;
2248 	ndev->irq = spi->irq;
2249 	ndev->flags |= IFF_ECHO;
2250 
2251 	priv = netdev_priv(ndev);
2252 	spi_set_drvdata(spi, priv);
2253 	priv->can.clock.freq = freq;
2254 	if (pll_enable)
2255 		priv->can.clock.freq *= MCP251XFD_OSC_PLL_MULTIPLIER;
2256 	priv->can.do_set_mode = mcp251xfd_set_mode;
2257 	priv->can.do_get_berr_counter = mcp251xfd_get_berr_counter;
2258 	priv->can.bittiming_const = &mcp251xfd_bittiming_const;
2259 	priv->can.fd.data_bittiming_const = &mcp251xfd_data_bittiming_const;
2260 	priv->can.fd.tdc_const = &mcp251xfd_tdc_const;
2261 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
2262 		CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_BERR_REPORTING |
2263 		CAN_CTRLMODE_FD | CAN_CTRLMODE_FD_NON_ISO |
2264 		CAN_CTRLMODE_CC_LEN8_DLC | CAN_CTRLMODE_TDC_AUTO |
2265 		CAN_CTRLMODE_TDC_MANUAL;
2266 	set_bit(MCP251XFD_FLAGS_DOWN, priv->flags);
2267 	priv->ndev = ndev;
2268 	priv->spi = spi;
2269 	priv->rx_int = rx_int;
2270 	priv->clk = clk;
2271 	priv->pll_enable = pll_enable;
2272 	priv->reg_vdd = reg_vdd;
2273 	priv->reg_xceiver = reg_xceiver;
2274 	priv->devtype_data = *(struct mcp251xfd_devtype_data *)spi_get_device_match_data(spi);
2275 
2276 	/* Errata Reference:
2277 	 * mcp2517fd: DS80000792C 5., mcp2518fd: DS80000789E 4.,
2278 	 * mcp251863: DS80000984A 4.
2279 	 *
2280 	 * The SPI can write corrupted data to the RAM at fast SPI
2281 	 * speeds:
2282 	 *
2283 	 * Simultaneous activity on the CAN bus while writing data to
2284 	 * RAM via the SPI interface, with high SCK frequency, can
2285 	 * lead to corrupted data being written to RAM.
2286 	 *
2287 	 * Fix/Work Around:
2288 	 * Ensure that FSCK is less than or equal to 0.85 *
2289 	 * (FSYSCLK/2).
2290 	 *
2291 	 * Known good combinations are:
2292 	 *
2293 	 * MCP	ext-clk	SoC			SPI			SPI-clk		max-clk	parent-clk	config
2294 	 *
2295 	 * 2518	20 MHz	allwinner,sun8i-h3	allwinner,sun8i-h3-spi	 8333333 Hz	 83.33%	600000000 Hz	assigned-clocks = <&ccu CLK_SPIx>
2296 	 * 2518	40 MHz	allwinner,sun8i-h3	allwinner,sun8i-h3-spi	16666667 Hz	 83.33%	600000000 Hz	assigned-clocks = <&ccu CLK_SPIx>
2297 	 * 2517	40 MHz	atmel,sama5d27		atmel,at91rm9200-spi	16400000 Hz	 82.00%	 82000000 Hz	default
2298 	 * 2518	40 MHz	atmel,sama5d27		atmel,at91rm9200-spi	16400000 Hz	 82.00%	 82000000 Hz	default
2299 	 * 2518	40 MHz	fsl,imx6dl		fsl,imx51-ecspi		15000000 Hz	 75.00%	 30000000 Hz	default
2300 	 * 2517	20 MHz	fsl,imx8mm		fsl,imx51-ecspi		 8333333 Hz	 83.33%	 16666667 Hz	assigned-clocks = <&clk IMX8MM_CLK_ECSPIx_ROOT>
2301 	 *
2302 	 */
2303 	priv->spi_max_speed_hz_orig = spi->max_speed_hz;
2304 	priv->spi_max_speed_hz_slow = min(spi->max_speed_hz,
2305 					  freq / 2 / 1000 * 850);
2306 	if (priv->pll_enable)
2307 		priv->spi_max_speed_hz_fast = min(spi->max_speed_hz,
2308 						  freq *
2309 						  MCP251XFD_OSC_PLL_MULTIPLIER /
2310 						  2 / 1000 * 850);
2311 	else
2312 		priv->spi_max_speed_hz_fast = priv->spi_max_speed_hz_slow;
2313 	spi->max_speed_hz = priv->spi_max_speed_hz_slow;
2314 	spi->bits_per_word = 8;
2315 	spi->rt = true;
2316 	err = spi_setup(spi);
2317 	if (err)
2318 		goto out_free_candev;
2319 
2320 	err = mcp251xfd_regmap_init(priv);
2321 	if (err)
2322 		goto out_free_candev;
2323 
2324 	err = can_rx_offload_add_manual(ndev, &priv->offload,
2325 					MCP251XFD_NAPI_WEIGHT);
2326 	if (err)
2327 		goto out_free_candev;
2328 
2329 	err = mcp251xfd_register(priv);
2330 	if (err) {
2331 		dev_err_probe(&spi->dev, err, "Failed to detect %s.\n",
2332 			      mcp251xfd_get_model_str(priv));
2333 		goto out_can_rx_offload_del;
2334 	}
2335 
2336 	return 0;
2337 
2338 out_can_rx_offload_del:
2339 	can_rx_offload_del(&priv->offload);
2340 out_free_candev:
2341 	spi->max_speed_hz = priv->spi_max_speed_hz_orig;
2342 
2343 	free_candev(ndev);
2344 
2345 	return err;
2346 }
2347 
2348 static void mcp251xfd_remove(struct spi_device *spi)
2349 {
2350 	struct mcp251xfd_priv *priv = spi_get_drvdata(spi);
2351 	struct net_device *ndev = priv->ndev;
2352 
2353 	mcp251xfd_unregister(priv);
2354 	can_rx_offload_del(&priv->offload);
2355 	spi->max_speed_hz = priv->spi_max_speed_hz_orig;
2356 	free_candev(ndev);
2357 }
2358 
2359 static int __maybe_unused mcp251xfd_runtime_suspend(struct device *device)
2360 {
2361 	struct mcp251xfd_priv *priv = dev_get_drvdata(device);
2362 
2363 	mcp251xfd_chip_sleep(priv);
2364 	return mcp251xfd_clks_and_vdd_disable(priv);
2365 }
2366 
2367 static int __maybe_unused mcp251xfd_runtime_resume(struct device *device)
2368 {
2369 	struct mcp251xfd_priv *priv = dev_get_drvdata(device);
2370 	int err;
2371 
2372 	err = mcp251xfd_clks_and_vdd_enable(priv);
2373 	if (err)
2374 		return err;
2375 
2376 	err = mcp251xfd_chip_softreset(priv);
2377 	if (err == -ENODEV)
2378 		goto out_clks_and_vdd_disable;
2379 	if (err)
2380 		goto out_chip_sleep;
2381 
2382 	err = mcp251xfd_chip_clock_init(priv);
2383 	if (err == -ENODEV)
2384 		goto out_clks_and_vdd_disable;
2385 	if (err)
2386 		goto out_chip_sleep;
2387 
2388 	return 0;
2389 
2390 out_chip_sleep:
2391 	mcp251xfd_chip_sleep(priv);
2392 out_clks_and_vdd_disable:
2393 	mcp251xfd_clks_and_vdd_disable(priv);
2394 
2395 	return err;
2396 }
2397 
2398 static const struct dev_pm_ops mcp251xfd_pm_ops = {
2399 	SET_RUNTIME_PM_OPS(mcp251xfd_runtime_suspend,
2400 			   mcp251xfd_runtime_resume, NULL)
2401 };
2402 
2403 static struct spi_driver mcp251xfd_driver = {
2404 	.driver = {
2405 		.name = DEVICE_NAME,
2406 		.pm = &mcp251xfd_pm_ops,
2407 		.of_match_table = mcp251xfd_of_match,
2408 	},
2409 	.probe = mcp251xfd_probe,
2410 	.remove = mcp251xfd_remove,
2411 	.id_table = mcp251xfd_id_table,
2412 };
2413 module_spi_driver(mcp251xfd_driver);
2414 
2415 MODULE_AUTHOR("Marc Kleine-Budde <mkl@pengutronix.de>");
2416 MODULE_DESCRIPTION("Microchip MCP251xFD Family CAN controller driver");
2417 MODULE_LICENSE("GPL v2");
2418