xref: /linux/drivers/net/can/spi/mcp251xfd/mcp251xfd-core.c (revision 85502b2214d50ba0ddf2a5fb454e4d28a160d175)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // mcp251xfd - Microchip MCP251xFD Family CAN controller driver
4 //
5 // Copyright (c) 2019, 2020, 2021, 2023 Pengutronix,
6 //               Marc Kleine-Budde <kernel@pengutronix.de>
7 //
8 // Based on:
9 //
10 // CAN bus driver for Microchip 25XXFD CAN Controller with SPI Interface
11 //
12 // Copyright (c) 2019 Martin Sperl <kernel@martin.sperl.org>
13 //
14 
15 #include <linux/unaligned.h>
16 #include <linux/bitfield.h>
17 #include <linux/clk.h>
18 #include <linux/device.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/property.h>
23 
24 #include "mcp251xfd.h"
25 
26 #define DEVICE_NAME "mcp251xfd"
27 
28 static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp2517fd = {
29 	.quirks = MCP251XFD_QUIRK_MAB_NO_WARN | MCP251XFD_QUIRK_CRC_REG |
30 		MCP251XFD_QUIRK_CRC_RX | MCP251XFD_QUIRK_CRC_TX |
31 		MCP251XFD_QUIRK_ECC,
32 	.model = MCP251XFD_MODEL_MCP2517FD,
33 };
34 
35 static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp2518fd = {
36 	.quirks = MCP251XFD_QUIRK_CRC_REG | MCP251XFD_QUIRK_CRC_RX |
37 		MCP251XFD_QUIRK_CRC_TX | MCP251XFD_QUIRK_ECC,
38 	.model = MCP251XFD_MODEL_MCP2518FD,
39 };
40 
41 static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp251863 = {
42 	.quirks = MCP251XFD_QUIRK_CRC_REG | MCP251XFD_QUIRK_CRC_RX |
43 		MCP251XFD_QUIRK_CRC_TX | MCP251XFD_QUIRK_ECC,
44 	.model = MCP251XFD_MODEL_MCP251863,
45 };
46 
47 /* Autodetect model, start with CRC enabled. */
48 static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp251xfd = {
49 	.quirks = MCP251XFD_QUIRK_CRC_REG | MCP251XFD_QUIRK_CRC_RX |
50 		MCP251XFD_QUIRK_CRC_TX | MCP251XFD_QUIRK_ECC,
51 	.model = MCP251XFD_MODEL_MCP251XFD,
52 };
53 
54 static const struct can_bittiming_const mcp251xfd_bittiming_const = {
55 	.name = DEVICE_NAME,
56 	.tseg1_min = 2,
57 	.tseg1_max = 256,
58 	.tseg2_min = 1,
59 	.tseg2_max = 128,
60 	.sjw_max = 128,
61 	.brp_min = 1,
62 	.brp_max = 256,
63 	.brp_inc = 1,
64 };
65 
66 static const struct can_bittiming_const mcp251xfd_data_bittiming_const = {
67 	.name = DEVICE_NAME,
68 	.tseg1_min = 1,
69 	.tseg1_max = 32,
70 	.tseg2_min = 1,
71 	.tseg2_max = 16,
72 	.sjw_max = 16,
73 	.brp_min = 1,
74 	.brp_max = 256,
75 	.brp_inc = 1,
76 };
77 
78 /* The datasheet of the mcp2518fd (DS20006027B) specifies a range of
79  * [-64,63] for TDCO, indicating a relative TDCO.
80  *
81  * Manual tests have shown, that using a relative TDCO configuration
82  * results in bus off, while an absolute configuration works.
83  *
84  * For TDCO use the max value (63) from the data sheet, but 0 as the
85  * minimum.
86  */
87 static const struct can_tdc_const mcp251xfd_tdc_const = {
88 	.tdcv_min = 0,
89 	.tdcv_max = 63,
90 	.tdco_min = 0,
91 	.tdco_max = 63,
92 	.tdcf_min = 0,
93 	.tdcf_max = 0,
94 };
95 
__mcp251xfd_get_model_str(enum mcp251xfd_model model)96 static const char *__mcp251xfd_get_model_str(enum mcp251xfd_model model)
97 {
98 	switch (model) {
99 	case MCP251XFD_MODEL_MCP2517FD:
100 		return "MCP2517FD";
101 	case MCP251XFD_MODEL_MCP2518FD:
102 		return "MCP2518FD";
103 	case MCP251XFD_MODEL_MCP251863:
104 		return "MCP251863";
105 	case MCP251XFD_MODEL_MCP251XFD:
106 		return "MCP251xFD";
107 	}
108 
109 	return "<unknown>";
110 }
111 
112 static inline const char *
mcp251xfd_get_model_str(const struct mcp251xfd_priv * priv)113 mcp251xfd_get_model_str(const struct mcp251xfd_priv *priv)
114 {
115 	return __mcp251xfd_get_model_str(priv->devtype_data.model);
116 }
117 
mcp251xfd_get_mode_str(const u8 mode)118 static const char *mcp251xfd_get_mode_str(const u8 mode)
119 {
120 	switch (mode) {
121 	case MCP251XFD_REG_CON_MODE_MIXED:
122 		return "Mixed (CAN FD/CAN 2.0)";
123 	case MCP251XFD_REG_CON_MODE_SLEEP:
124 		return "Sleep";
125 	case MCP251XFD_REG_CON_MODE_INT_LOOPBACK:
126 		return "Internal Loopback";
127 	case MCP251XFD_REG_CON_MODE_LISTENONLY:
128 		return "Listen Only";
129 	case MCP251XFD_REG_CON_MODE_CONFIG:
130 		return "Configuration";
131 	case MCP251XFD_REG_CON_MODE_EXT_LOOPBACK:
132 		return "External Loopback";
133 	case MCP251XFD_REG_CON_MODE_CAN2_0:
134 		return "CAN 2.0";
135 	case MCP251XFD_REG_CON_MODE_RESTRICTED:
136 		return "Restricted Operation";
137 	}
138 
139 	return "<unknown>";
140 }
141 
142 static const char *
mcp251xfd_get_osc_str(const u32 osc,const u32 osc_reference)143 mcp251xfd_get_osc_str(const u32 osc, const u32 osc_reference)
144 {
145 	switch (~osc & osc_reference &
146 		(MCP251XFD_REG_OSC_OSCRDY | MCP251XFD_REG_OSC_PLLRDY)) {
147 	case MCP251XFD_REG_OSC_PLLRDY:
148 		return "PLL";
149 	case MCP251XFD_REG_OSC_OSCRDY:
150 		return "Oscillator";
151 	case MCP251XFD_REG_OSC_PLLRDY | MCP251XFD_REG_OSC_OSCRDY:
152 		return "Oscillator/PLL";
153 	}
154 
155 	return "<unknown>";
156 }
157 
mcp251xfd_vdd_enable(const struct mcp251xfd_priv * priv)158 static inline int mcp251xfd_vdd_enable(const struct mcp251xfd_priv *priv)
159 {
160 	if (!priv->reg_vdd)
161 		return 0;
162 
163 	return regulator_enable(priv->reg_vdd);
164 }
165 
mcp251xfd_vdd_disable(const struct mcp251xfd_priv * priv)166 static inline int mcp251xfd_vdd_disable(const struct mcp251xfd_priv *priv)
167 {
168 	if (!priv->reg_vdd)
169 		return 0;
170 
171 	return regulator_disable(priv->reg_vdd);
172 }
173 
174 static inline int
mcp251xfd_transceiver_enable(const struct mcp251xfd_priv * priv)175 mcp251xfd_transceiver_enable(const struct mcp251xfd_priv *priv)
176 {
177 	if (!priv->reg_xceiver)
178 		return 0;
179 
180 	return regulator_enable(priv->reg_xceiver);
181 }
182 
183 static inline int
mcp251xfd_transceiver_disable(const struct mcp251xfd_priv * priv)184 mcp251xfd_transceiver_disable(const struct mcp251xfd_priv *priv)
185 {
186 	if (!priv->reg_xceiver)
187 		return 0;
188 
189 	return regulator_disable(priv->reg_xceiver);
190 }
191 
mcp251xfd_clks_and_vdd_enable(const struct mcp251xfd_priv * priv)192 static int mcp251xfd_clks_and_vdd_enable(const struct mcp251xfd_priv *priv)
193 {
194 	int err;
195 
196 	err = clk_prepare_enable(priv->clk);
197 	if (err)
198 		return err;
199 
200 	err = mcp251xfd_vdd_enable(priv);
201 	if (err)
202 		clk_disable_unprepare(priv->clk);
203 
204 	/* Wait for oscillator stabilisation time after power up */
205 	usleep_range(MCP251XFD_OSC_STAB_SLEEP_US,
206 		     2 * MCP251XFD_OSC_STAB_SLEEP_US);
207 
208 	return err;
209 }
210 
mcp251xfd_clks_and_vdd_disable(const struct mcp251xfd_priv * priv)211 static int mcp251xfd_clks_and_vdd_disable(const struct mcp251xfd_priv *priv)
212 {
213 	int err;
214 
215 	err = mcp251xfd_vdd_disable(priv);
216 	if (err)
217 		return err;
218 
219 	clk_disable_unprepare(priv->clk);
220 
221 	return 0;
222 }
223 
mcp251xfd_reg_invalid(u32 reg)224 static inline bool mcp251xfd_reg_invalid(u32 reg)
225 {
226 	return reg == 0x0 || reg == 0xffffffff;
227 }
228 
229 static inline int
mcp251xfd_chip_get_mode(const struct mcp251xfd_priv * priv,u8 * mode)230 mcp251xfd_chip_get_mode(const struct mcp251xfd_priv *priv, u8 *mode)
231 {
232 	u32 val;
233 	int err;
234 
235 	err = regmap_read(priv->map_reg, MCP251XFD_REG_CON, &val);
236 	if (err)
237 		return err;
238 
239 	*mode = FIELD_GET(MCP251XFD_REG_CON_OPMOD_MASK, val);
240 
241 	return 0;
242 }
243 
244 static int
__mcp251xfd_chip_set_mode(const struct mcp251xfd_priv * priv,const u8 mode_req,bool nowait)245 __mcp251xfd_chip_set_mode(const struct mcp251xfd_priv *priv,
246 			  const u8 mode_req, bool nowait)
247 {
248 	const struct can_bittiming *bt = &priv->can.bittiming;
249 	unsigned long timeout_us = MCP251XFD_POLL_TIMEOUT_US;
250 	u32 con = 0, con_reqop, osc = 0;
251 	u8 mode;
252 	int err;
253 
254 	con_reqop = FIELD_PREP(MCP251XFD_REG_CON_REQOP_MASK, mode_req);
255 	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_CON,
256 				 MCP251XFD_REG_CON_REQOP_MASK, con_reqop);
257 	if (err == -EBADMSG) {
258 		netdev_err(priv->ndev,
259 			   "Failed to set Requested Operation Mode.\n");
260 
261 		return -ENODEV;
262 	} else if (err) {
263 		return err;
264 	}
265 
266 	if (mode_req == MCP251XFD_REG_CON_MODE_SLEEP || nowait)
267 		return 0;
268 
269 	if (bt->bitrate)
270 		timeout_us = max_t(unsigned long, timeout_us,
271 				   MCP251XFD_FRAME_LEN_MAX_BITS * USEC_PER_SEC /
272 				   bt->bitrate);
273 
274 	err = regmap_read_poll_timeout(priv->map_reg, MCP251XFD_REG_CON, con,
275 				       !mcp251xfd_reg_invalid(con) &&
276 				       FIELD_GET(MCP251XFD_REG_CON_OPMOD_MASK,
277 						 con) == mode_req,
278 				       MCP251XFD_POLL_SLEEP_US, timeout_us);
279 	if (err != -ETIMEDOUT && err != -EBADMSG)
280 		return err;
281 
282 	/* Ignore return value.
283 	 * Print below error messages, even if this fails.
284 	 */
285 	regmap_read(priv->map_reg, MCP251XFD_REG_OSC, &osc);
286 
287 	if (mcp251xfd_reg_invalid(con)) {
288 		netdev_err(priv->ndev,
289 			   "Failed to read CAN Control Register (con=0x%08x, osc=0x%08x).\n",
290 			   con, osc);
291 
292 		return -ENODEV;
293 	}
294 
295 	mode = FIELD_GET(MCP251XFD_REG_CON_OPMOD_MASK, con);
296 	netdev_err(priv->ndev,
297 		   "Controller failed to enter mode %s Mode (%u) and stays in %s Mode (%u) (con=0x%08x, osc=0x%08x).\n",
298 		   mcp251xfd_get_mode_str(mode_req), mode_req,
299 		   mcp251xfd_get_mode_str(mode), mode,
300 		   con, osc);
301 
302 	return -ETIMEDOUT;
303 }
304 
305 static inline int
mcp251xfd_chip_set_mode(const struct mcp251xfd_priv * priv,const u8 mode_req)306 mcp251xfd_chip_set_mode(const struct mcp251xfd_priv *priv,
307 			const u8 mode_req)
308 {
309 	return __mcp251xfd_chip_set_mode(priv, mode_req, false);
310 }
311 
312 static inline int __maybe_unused
mcp251xfd_chip_set_mode_nowait(const struct mcp251xfd_priv * priv,const u8 mode_req)313 mcp251xfd_chip_set_mode_nowait(const struct mcp251xfd_priv *priv,
314 			       const u8 mode_req)
315 {
316 	return __mcp251xfd_chip_set_mode(priv, mode_req, true);
317 }
318 
319 static int
mcp251xfd_chip_wait_for_osc_ready(const struct mcp251xfd_priv * priv,u32 osc_reference,u32 osc_mask)320 mcp251xfd_chip_wait_for_osc_ready(const struct mcp251xfd_priv *priv,
321 				  u32 osc_reference, u32 osc_mask)
322 {
323 	u32 osc;
324 	int err;
325 
326 	err = regmap_read_poll_timeout(priv->map_reg, MCP251XFD_REG_OSC, osc,
327 				       !mcp251xfd_reg_invalid(osc) &&
328 				       (osc & osc_mask) == osc_reference,
329 				       MCP251XFD_OSC_STAB_SLEEP_US,
330 				       MCP251XFD_OSC_STAB_TIMEOUT_US);
331 	if (err != -ETIMEDOUT)
332 		return err;
333 
334 	if (mcp251xfd_reg_invalid(osc)) {
335 		netdev_err(priv->ndev,
336 			   "Failed to read Oscillator Configuration Register (osc=0x%08x).\n",
337 			   osc);
338 		return -ENODEV;
339 	}
340 
341 	netdev_err(priv->ndev,
342 		   "Timeout waiting for %s ready (osc=0x%08x, osc_reference=0x%08x, osc_mask=0x%08x).\n",
343 		   mcp251xfd_get_osc_str(osc, osc_reference),
344 		   osc, osc_reference, osc_mask);
345 
346 	return -ETIMEDOUT;
347 }
348 
mcp251xfd_chip_wake(const struct mcp251xfd_priv * priv)349 static int mcp251xfd_chip_wake(const struct mcp251xfd_priv *priv)
350 {
351 	u32 osc, osc_reference, osc_mask;
352 	int err;
353 
354 	/* For normal sleep on MCP2517FD and MCP2518FD, clearing
355 	 * "Oscillator Disable" will wake the chip. For low power mode
356 	 * on MCP2518FD, asserting the chip select will wake the
357 	 * chip. Writing to the Oscillator register will wake it in
358 	 * both cases.
359 	 */
360 	osc = FIELD_PREP(MCP251XFD_REG_OSC_CLKODIV_MASK,
361 			 MCP251XFD_REG_OSC_CLKODIV_10);
362 
363 	/* We cannot check for the PLL ready bit (either set or
364 	 * unset), as the PLL might be enabled. This can happen if the
365 	 * system reboots, while the mcp251xfd stays powered.
366 	 */
367 	osc_reference = MCP251XFD_REG_OSC_OSCRDY;
368 	osc_mask = MCP251XFD_REG_OSC_OSCRDY;
369 
370 	/* If the controller is in Sleep Mode the following write only
371 	 * removes the "Oscillator Disable" bit and powers it up. All
372 	 * other bits are unaffected.
373 	 */
374 	err = regmap_write(priv->map_reg, MCP251XFD_REG_OSC, osc);
375 	if (err)
376 		return err;
377 
378 	/* Sometimes the PLL is stuck enabled, the controller never
379 	 * sets the OSC Ready bit, and we get an -ETIMEDOUT. Our
380 	 * caller takes care of retry.
381 	 */
382 	return mcp251xfd_chip_wait_for_osc_ready(priv, osc_reference, osc_mask);
383 }
384 
mcp251xfd_chip_sleep(const struct mcp251xfd_priv * priv)385 static inline int mcp251xfd_chip_sleep(const struct mcp251xfd_priv *priv)
386 {
387 	if (priv->pll_enable) {
388 		u32 osc;
389 		int err;
390 
391 		/* Turn off PLL */
392 		osc = FIELD_PREP(MCP251XFD_REG_OSC_CLKODIV_MASK,
393 				 MCP251XFD_REG_OSC_CLKODIV_10);
394 		err = regmap_write(priv->map_reg, MCP251XFD_REG_OSC, osc);
395 		if (err)
396 			netdev_err(priv->ndev,
397 				   "Failed to disable PLL.\n");
398 
399 		priv->spi->max_speed_hz = priv->spi_max_speed_hz_slow;
400 	}
401 
402 	return mcp251xfd_chip_set_mode(priv, MCP251XFD_REG_CON_MODE_SLEEP);
403 }
404 
mcp251xfd_chip_softreset_do(const struct mcp251xfd_priv * priv)405 static int mcp251xfd_chip_softreset_do(const struct mcp251xfd_priv *priv)
406 {
407 	const __be16 cmd = mcp251xfd_cmd_reset();
408 	int err;
409 
410 	/* The Set Mode and SPI Reset command only works if the
411 	 * controller is not in Sleep Mode.
412 	 */
413 	err = mcp251xfd_chip_wake(priv);
414 	if (err)
415 		return err;
416 
417 	err = mcp251xfd_chip_set_mode(priv, MCP251XFD_REG_CON_MODE_CONFIG);
418 	if (err)
419 		return err;
420 
421 	/* spi_write_then_read() works with non DMA-safe buffers */
422 	return spi_write_then_read(priv->spi, &cmd, sizeof(cmd), NULL, 0);
423 }
424 
mcp251xfd_chip_softreset_check(const struct mcp251xfd_priv * priv)425 static int mcp251xfd_chip_softreset_check(const struct mcp251xfd_priv *priv)
426 {
427 	u32 osc_reference, osc_mask;
428 	u8 mode;
429 	int err;
430 
431 	/* Check for reset defaults of OSC reg.
432 	 * This will take care of stabilization period.
433 	 */
434 	osc_reference = MCP251XFD_REG_OSC_OSCRDY |
435 		FIELD_PREP(MCP251XFD_REG_OSC_CLKODIV_MASK,
436 			   MCP251XFD_REG_OSC_CLKODIV_10);
437 	osc_mask = osc_reference | MCP251XFD_REG_OSC_PLLRDY;
438 	err = mcp251xfd_chip_wait_for_osc_ready(priv, osc_reference, osc_mask);
439 	if (err)
440 		return err;
441 
442 	err = mcp251xfd_chip_get_mode(priv, &mode);
443 	if (err)
444 		return err;
445 
446 	if (mode != MCP251XFD_REG_CON_MODE_CONFIG) {
447 		netdev_info(priv->ndev,
448 			    "Controller not in Config Mode after reset, but in %s Mode (%u).\n",
449 			    mcp251xfd_get_mode_str(mode), mode);
450 		return -ETIMEDOUT;
451 	}
452 
453 	return 0;
454 }
455 
mcp251xfd_chip_softreset(const struct mcp251xfd_priv * priv)456 static int mcp251xfd_chip_softreset(const struct mcp251xfd_priv *priv)
457 {
458 	int err, i;
459 
460 	for (i = 0; i < MCP251XFD_SOFTRESET_RETRIES_MAX; i++) {
461 		if (i)
462 			netdev_info(priv->ndev,
463 				    "Retrying to reset controller.\n");
464 
465 		err = mcp251xfd_chip_softreset_do(priv);
466 		if (err == -ETIMEDOUT)
467 			continue;
468 		if (err)
469 			return err;
470 
471 		err = mcp251xfd_chip_softreset_check(priv);
472 		if (err == -ETIMEDOUT)
473 			continue;
474 		if (err)
475 			return err;
476 
477 		return 0;
478 	}
479 
480 	return err;
481 }
482 
mcp251xfd_chip_clock_init(const struct mcp251xfd_priv * priv)483 static int mcp251xfd_chip_clock_init(const struct mcp251xfd_priv *priv)
484 {
485 	u32 osc, osc_reference, osc_mask;
486 	int err;
487 
488 	/* Activate Low Power Mode on Oscillator Disable. This only
489 	 * works on the MCP2518FD. The MCP2517FD will go into normal
490 	 * Sleep Mode instead.
491 	 */
492 	osc = MCP251XFD_REG_OSC_LPMEN |
493 		FIELD_PREP(MCP251XFD_REG_OSC_CLKODIV_MASK,
494 			   MCP251XFD_REG_OSC_CLKODIV_10);
495 	osc_reference = MCP251XFD_REG_OSC_OSCRDY;
496 	osc_mask = MCP251XFD_REG_OSC_OSCRDY | MCP251XFD_REG_OSC_PLLRDY;
497 
498 	if (priv->pll_enable) {
499 		osc |= MCP251XFD_REG_OSC_PLLEN;
500 		osc_reference |= MCP251XFD_REG_OSC_PLLRDY;
501 	}
502 
503 	err = regmap_write(priv->map_reg, MCP251XFD_REG_OSC, osc);
504 	if (err)
505 		return err;
506 
507 	err = mcp251xfd_chip_wait_for_osc_ready(priv, osc_reference, osc_mask);
508 	if (err)
509 		return err;
510 
511 	priv->spi->max_speed_hz = priv->spi_max_speed_hz_fast;
512 
513 	return 0;
514 }
515 
mcp251xfd_chip_timestamp_init(const struct mcp251xfd_priv * priv)516 static int mcp251xfd_chip_timestamp_init(const struct mcp251xfd_priv *priv)
517 {
518 	/* Set Time Base Counter Prescaler to 1.
519 	 *
520 	 * This means an overflow of the 32 bit Time Base Counter
521 	 * register at 40 MHz every 107 seconds.
522 	 */
523 	return regmap_write(priv->map_reg, MCP251XFD_REG_TSCON,
524 			    MCP251XFD_REG_TSCON_TBCEN);
525 }
526 
mcp251xfd_set_bittiming(const struct mcp251xfd_priv * priv)527 static int mcp251xfd_set_bittiming(const struct mcp251xfd_priv *priv)
528 {
529 	const struct can_bittiming *bt = &priv->can.bittiming;
530 	const struct can_bittiming *dbt = &priv->can.fd.data_bittiming;
531 	u32 tdcmod, val = 0;
532 	int err;
533 
534 	/* CAN Control Register
535 	 *
536 	 * - no transmit bandwidth sharing
537 	 * - config mode
538 	 * - disable transmit queue
539 	 * - store in transmit FIFO event
540 	 * - transition to restricted operation mode on system error
541 	 * - ESI is transmitted recessive when ESI of message is high or
542 	 *   CAN controller error passive
543 	 * - restricted retransmission attempts,
544 	 *   use TQXCON_TXAT and FIFOCON_TXAT
545 	 * - wake-up filter bits T11FILTER
546 	 * - use CAN bus line filter for wakeup
547 	 * - protocol exception is treated as a form error
548 	 * - Do not compare data bytes
549 	 */
550 	val = FIELD_PREP(MCP251XFD_REG_CON_REQOP_MASK,
551 			 MCP251XFD_REG_CON_MODE_CONFIG) |
552 		MCP251XFD_REG_CON_STEF |
553 		MCP251XFD_REG_CON_ESIGM |
554 		MCP251XFD_REG_CON_RTXAT |
555 		FIELD_PREP(MCP251XFD_REG_CON_WFT_MASK,
556 			   MCP251XFD_REG_CON_WFT_T11FILTER) |
557 		MCP251XFD_REG_CON_WAKFIL |
558 		MCP251XFD_REG_CON_PXEDIS;
559 
560 	if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO))
561 		val |= MCP251XFD_REG_CON_ISOCRCEN;
562 
563 	err = regmap_write(priv->map_reg, MCP251XFD_REG_CON, val);
564 	if (err)
565 		return err;
566 
567 	/* Nominal Bit Time */
568 	val = FIELD_PREP(MCP251XFD_REG_NBTCFG_BRP_MASK, bt->brp - 1) |
569 		FIELD_PREP(MCP251XFD_REG_NBTCFG_TSEG1_MASK,
570 			   bt->prop_seg + bt->phase_seg1 - 1) |
571 		FIELD_PREP(MCP251XFD_REG_NBTCFG_TSEG2_MASK,
572 			   bt->phase_seg2 - 1) |
573 		FIELD_PREP(MCP251XFD_REG_NBTCFG_SJW_MASK, bt->sjw - 1);
574 
575 	err = regmap_write(priv->map_reg, MCP251XFD_REG_NBTCFG, val);
576 	if (err)
577 		return err;
578 
579 	if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD))
580 		return 0;
581 
582 	/* Data Bit Time */
583 	val = FIELD_PREP(MCP251XFD_REG_DBTCFG_BRP_MASK, dbt->brp - 1) |
584 		FIELD_PREP(MCP251XFD_REG_DBTCFG_TSEG1_MASK,
585 			   dbt->prop_seg + dbt->phase_seg1 - 1) |
586 		FIELD_PREP(MCP251XFD_REG_DBTCFG_TSEG2_MASK,
587 			   dbt->phase_seg2 - 1) |
588 		FIELD_PREP(MCP251XFD_REG_DBTCFG_SJW_MASK, dbt->sjw - 1);
589 
590 	err = regmap_write(priv->map_reg, MCP251XFD_REG_DBTCFG, val);
591 	if (err)
592 		return err;
593 
594 	/* Transmitter Delay Compensation */
595 	if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_AUTO)
596 		tdcmod = MCP251XFD_REG_TDC_TDCMOD_AUTO;
597 	else if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_MANUAL)
598 		tdcmod = MCP251XFD_REG_TDC_TDCMOD_MANUAL;
599 	else
600 		tdcmod = MCP251XFD_REG_TDC_TDCMOD_DISABLED;
601 
602 	val = FIELD_PREP(MCP251XFD_REG_TDC_TDCMOD_MASK, tdcmod) |
603 	      FIELD_PREP(MCP251XFD_REG_TDC_TDCV_MASK, priv->can.fd.tdc.tdcv) |
604 	      FIELD_PREP(MCP251XFD_REG_TDC_TDCO_MASK, priv->can.fd.tdc.tdco);
605 
606 	return regmap_write(priv->map_reg, MCP251XFD_REG_TDC, val);
607 }
608 
mcp251xfd_chip_rx_int_enable(const struct mcp251xfd_priv * priv)609 static int mcp251xfd_chip_rx_int_enable(const struct mcp251xfd_priv *priv)
610 {
611 	u32 val;
612 
613 	if (!priv->rx_int)
614 		return 0;
615 
616 	/* Configure GPIOs:
617 	 * - PIN0: GPIO Input
618 	 * - PIN1: GPIO Input/RX Interrupt
619 	 *
620 	 * PIN1 must be Input, otherwise there is a glitch on the
621 	 * rx-INT line. It happens between setting the PIN as output
622 	 * (in the first byte of the SPI transfer) and configuring the
623 	 * PIN as interrupt (in the last byte of the SPI transfer).
624 	 */
625 	val = MCP251XFD_REG_IOCON_PM0 | MCP251XFD_REG_IOCON_TRIS1 |
626 		MCP251XFD_REG_IOCON_TRIS0;
627 	return regmap_write(priv->map_reg, MCP251XFD_REG_IOCON, val);
628 }
629 
mcp251xfd_chip_rx_int_disable(const struct mcp251xfd_priv * priv)630 static int mcp251xfd_chip_rx_int_disable(const struct mcp251xfd_priv *priv)
631 {
632 	u32 val;
633 
634 	if (!priv->rx_int)
635 		return 0;
636 
637 	/* Configure GPIOs:
638 	 * - PIN0: GPIO Input
639 	 * - PIN1: GPIO Input
640 	 */
641 	val = MCP251XFD_REG_IOCON_PM1 | MCP251XFD_REG_IOCON_PM0 |
642 		MCP251XFD_REG_IOCON_TRIS1 | MCP251XFD_REG_IOCON_TRIS0;
643 	return regmap_write(priv->map_reg, MCP251XFD_REG_IOCON, val);
644 }
645 
mcp251xfd_chip_ecc_init(struct mcp251xfd_priv * priv)646 static int mcp251xfd_chip_ecc_init(struct mcp251xfd_priv *priv)
647 {
648 	struct mcp251xfd_ecc *ecc = &priv->ecc;
649 	void *ram;
650 	u32 val = 0;
651 	int err;
652 
653 	ecc->ecc_stat = 0;
654 
655 	if (priv->devtype_data.quirks & MCP251XFD_QUIRK_ECC)
656 		val = MCP251XFD_REG_ECCCON_ECCEN;
657 
658 	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCCON,
659 				 MCP251XFD_REG_ECCCON_ECCEN, val);
660 	if (err)
661 		return err;
662 
663 	ram = kzalloc(MCP251XFD_RAM_SIZE, GFP_KERNEL);
664 	if (!ram)
665 		return -ENOMEM;
666 
667 	err = regmap_raw_write(priv->map_reg, MCP251XFD_RAM_START, ram,
668 			       MCP251XFD_RAM_SIZE);
669 	kfree(ram);
670 
671 	return err;
672 }
673 
mcp251xfd_get_normal_mode(const struct mcp251xfd_priv * priv)674 static u8 mcp251xfd_get_normal_mode(const struct mcp251xfd_priv *priv)
675 {
676 	u8 mode;
677 
678 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
679 		mode = MCP251XFD_REG_CON_MODE_INT_LOOPBACK;
680 	else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
681 		mode = MCP251XFD_REG_CON_MODE_LISTENONLY;
682 	else if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
683 		mode = MCP251XFD_REG_CON_MODE_MIXED;
684 	else
685 		mode = MCP251XFD_REG_CON_MODE_CAN2_0;
686 
687 	return mode;
688 }
689 
690 static int
__mcp251xfd_chip_set_normal_mode(const struct mcp251xfd_priv * priv,bool nowait)691 __mcp251xfd_chip_set_normal_mode(const struct mcp251xfd_priv *priv,
692 				 bool nowait)
693 {
694 	u8 mode;
695 
696 	mode = mcp251xfd_get_normal_mode(priv);
697 
698 	return __mcp251xfd_chip_set_mode(priv, mode, nowait);
699 }
700 
701 static inline int
mcp251xfd_chip_set_normal_mode(const struct mcp251xfd_priv * priv)702 mcp251xfd_chip_set_normal_mode(const struct mcp251xfd_priv *priv)
703 {
704 	return __mcp251xfd_chip_set_normal_mode(priv, false);
705 }
706 
707 static inline int
mcp251xfd_chip_set_normal_mode_nowait(const struct mcp251xfd_priv * priv)708 mcp251xfd_chip_set_normal_mode_nowait(const struct mcp251xfd_priv *priv)
709 {
710 	return __mcp251xfd_chip_set_normal_mode(priv, true);
711 }
712 
mcp251xfd_chip_interrupts_enable(const struct mcp251xfd_priv * priv)713 static int mcp251xfd_chip_interrupts_enable(const struct mcp251xfd_priv *priv)
714 {
715 	u32 val;
716 	int err;
717 
718 	val = MCP251XFD_REG_CRC_FERRIE | MCP251XFD_REG_CRC_CRCERRIE;
719 	err = regmap_write(priv->map_reg, MCP251XFD_REG_CRC, val);
720 	if (err)
721 		return err;
722 
723 	val = MCP251XFD_REG_ECCCON_DEDIE | MCP251XFD_REG_ECCCON_SECIE;
724 	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCCON, val, val);
725 	if (err)
726 		return err;
727 
728 	val = MCP251XFD_REG_INT_CERRIE |
729 		MCP251XFD_REG_INT_SERRIE |
730 		MCP251XFD_REG_INT_RXOVIE |
731 		MCP251XFD_REG_INT_TXATIE |
732 		MCP251XFD_REG_INT_SPICRCIE |
733 		MCP251XFD_REG_INT_ECCIE |
734 		MCP251XFD_REG_INT_TEFIE |
735 		MCP251XFD_REG_INT_MODIE |
736 		MCP251XFD_REG_INT_RXIE;
737 
738 	if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
739 		val |= MCP251XFD_REG_INT_IVMIE;
740 
741 	return regmap_write(priv->map_reg, MCP251XFD_REG_INT, val);
742 }
743 
mcp251xfd_chip_interrupts_disable(const struct mcp251xfd_priv * priv)744 static int mcp251xfd_chip_interrupts_disable(const struct mcp251xfd_priv *priv)
745 {
746 	int err;
747 	u32 mask;
748 
749 	err = regmap_write(priv->map_reg, MCP251XFD_REG_INT, 0);
750 	if (err)
751 		return err;
752 
753 	mask = MCP251XFD_REG_ECCCON_DEDIE | MCP251XFD_REG_ECCCON_SECIE;
754 	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCCON,
755 				 mask, 0x0);
756 	if (err)
757 		return err;
758 
759 	return regmap_write(priv->map_reg, MCP251XFD_REG_CRC, 0);
760 }
761 
mcp251xfd_chip_stop(struct mcp251xfd_priv * priv,const enum can_state state)762 static void mcp251xfd_chip_stop(struct mcp251xfd_priv *priv,
763 				const enum can_state state)
764 {
765 	priv->can.state = state;
766 
767 	mcp251xfd_chip_interrupts_disable(priv);
768 	mcp251xfd_chip_rx_int_disable(priv);
769 	mcp251xfd_timestamp_stop(priv);
770 	mcp251xfd_chip_sleep(priv);
771 }
772 
mcp251xfd_chip_start(struct mcp251xfd_priv * priv)773 static int mcp251xfd_chip_start(struct mcp251xfd_priv *priv)
774 {
775 	int err;
776 
777 	err = mcp251xfd_chip_softreset(priv);
778 	if (err)
779 		goto out_chip_stop;
780 
781 	err = mcp251xfd_chip_clock_init(priv);
782 	if (err)
783 		goto out_chip_stop;
784 
785 	err = mcp251xfd_chip_timestamp_init(priv);
786 	if (err)
787 		goto out_chip_stop;
788 
789 	mcp251xfd_timestamp_start(priv);
790 
791 	err = mcp251xfd_set_bittiming(priv);
792 	if (err)
793 		goto out_chip_stop;
794 
795 	err = mcp251xfd_chip_rx_int_enable(priv);
796 	if (err)
797 		goto out_chip_stop;
798 
799 	err = mcp251xfd_chip_ecc_init(priv);
800 	if (err)
801 		goto out_chip_stop;
802 
803 	err = mcp251xfd_ring_init(priv);
804 	if (err)
805 		goto out_chip_stop;
806 
807 	err = mcp251xfd_chip_fifo_init(priv);
808 	if (err)
809 		goto out_chip_stop;
810 
811 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
812 
813 	err = mcp251xfd_chip_set_normal_mode(priv);
814 	if (err)
815 		goto out_chip_stop;
816 
817 	return 0;
818 
819 out_chip_stop:
820 	mcp251xfd_dump(priv);
821 	mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
822 
823 	return err;
824 }
825 
mcp251xfd_set_mode(struct net_device * ndev,enum can_mode mode)826 static int mcp251xfd_set_mode(struct net_device *ndev, enum can_mode mode)
827 {
828 	struct mcp251xfd_priv *priv = netdev_priv(ndev);
829 	int err;
830 
831 	switch (mode) {
832 	case CAN_MODE_START:
833 		err = mcp251xfd_chip_start(priv);
834 		if (err)
835 			return err;
836 
837 		err = mcp251xfd_chip_interrupts_enable(priv);
838 		if (err) {
839 			mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
840 			return err;
841 		}
842 
843 		netif_wake_queue(ndev);
844 		break;
845 
846 	default:
847 		return -EOPNOTSUPP;
848 	}
849 
850 	return 0;
851 }
852 
__mcp251xfd_get_berr_counter(const struct net_device * ndev,struct can_berr_counter * bec)853 static int __mcp251xfd_get_berr_counter(const struct net_device *ndev,
854 					struct can_berr_counter *bec)
855 {
856 	const struct mcp251xfd_priv *priv = netdev_priv(ndev);
857 	u32 trec;
858 	int err;
859 
860 	err = regmap_read(priv->map_reg, MCP251XFD_REG_TREC, &trec);
861 	if (err)
862 		return err;
863 
864 	if (trec & MCP251XFD_REG_TREC_TXBO)
865 		bec->txerr = CAN_BUS_OFF_THRESHOLD;
866 	else
867 		bec->txerr = FIELD_GET(MCP251XFD_REG_TREC_TEC_MASK, trec);
868 	bec->rxerr = FIELD_GET(MCP251XFD_REG_TREC_REC_MASK, trec);
869 
870 	return 0;
871 }
872 
mcp251xfd_get_berr_counter(const struct net_device * ndev,struct can_berr_counter * bec)873 static int mcp251xfd_get_berr_counter(const struct net_device *ndev,
874 				      struct can_berr_counter *bec)
875 {
876 	const struct mcp251xfd_priv *priv = netdev_priv(ndev);
877 
878 	/* Avoid waking up the controller if the interface is down */
879 	if (!(ndev->flags & IFF_UP))
880 		return 0;
881 
882 	/* The controller is powered down during Bus Off, use saved
883 	 * bec values.
884 	 */
885 	if (priv->can.state == CAN_STATE_BUS_OFF) {
886 		*bec = priv->bec;
887 		return 0;
888 	}
889 
890 	return __mcp251xfd_get_berr_counter(ndev, bec);
891 }
892 
893 static struct sk_buff *
mcp251xfd_alloc_can_err_skb(struct mcp251xfd_priv * priv,struct can_frame ** cf,u32 * ts_raw)894 mcp251xfd_alloc_can_err_skb(struct mcp251xfd_priv *priv,
895 			    struct can_frame **cf, u32 *ts_raw)
896 {
897 	struct sk_buff *skb;
898 	int err;
899 
900 	err = mcp251xfd_get_timestamp_raw(priv, ts_raw);
901 	if (err)
902 		return NULL;
903 
904 	skb = alloc_can_err_skb(priv->ndev, cf);
905 	if (skb)
906 		mcp251xfd_skb_set_timestamp_raw(priv, skb, *ts_raw);
907 
908 	return skb;
909 }
910 
mcp251xfd_handle_rxovif(struct mcp251xfd_priv * priv)911 static int mcp251xfd_handle_rxovif(struct mcp251xfd_priv *priv)
912 {
913 	struct net_device_stats *stats = &priv->ndev->stats;
914 	struct mcp251xfd_rx_ring *ring;
915 	struct sk_buff *skb;
916 	struct can_frame *cf;
917 	u32 ts_raw, rxovif;
918 	int err, i;
919 
920 	stats->rx_over_errors++;
921 	stats->rx_errors++;
922 
923 	err = regmap_read(priv->map_reg, MCP251XFD_REG_RXOVIF, &rxovif);
924 	if (err)
925 		return err;
926 
927 	mcp251xfd_for_each_rx_ring(priv, ring, i) {
928 		if (!(rxovif & BIT(ring->fifo_nr)))
929 			continue;
930 
931 		/* If SERRIF is active, there was a RX MAB overflow. */
932 		if (priv->regs_status.intf & MCP251XFD_REG_INT_SERRIF) {
933 			if (net_ratelimit())
934 				netdev_dbg(priv->ndev,
935 					   "RX-%d: MAB overflow detected.\n",
936 					   ring->nr);
937 		} else {
938 			if (net_ratelimit())
939 				netdev_dbg(priv->ndev,
940 					   "RX-%d: FIFO overflow.\n",
941 					   ring->nr);
942 		}
943 
944 		err = regmap_update_bits(priv->map_reg,
945 					 MCP251XFD_REG_FIFOSTA(ring->fifo_nr),
946 					 MCP251XFD_REG_FIFOSTA_RXOVIF,
947 					 0x0);
948 		if (err)
949 			return err;
950 	}
951 
952 	skb = mcp251xfd_alloc_can_err_skb(priv, &cf, &ts_raw);
953 	if (!skb)
954 		return 0;
955 
956 	cf->can_id |= CAN_ERR_CRTL;
957 	cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
958 
959 	err = can_rx_offload_queue_timestamp(&priv->offload, skb, ts_raw);
960 	if (err)
961 		stats->rx_fifo_errors++;
962 
963 	return 0;
964 }
965 
mcp251xfd_handle_txatif(struct mcp251xfd_priv * priv)966 static int mcp251xfd_handle_txatif(struct mcp251xfd_priv *priv)
967 {
968 	netdev_info(priv->ndev, "%s\n", __func__);
969 
970 	return 0;
971 }
972 
mcp251xfd_handle_ivmif(struct mcp251xfd_priv * priv)973 static int mcp251xfd_handle_ivmif(struct mcp251xfd_priv *priv)
974 {
975 	struct net_device_stats *stats = &priv->ndev->stats;
976 	u32 bdiag1, ts_raw;
977 	struct sk_buff *skb;
978 	struct can_frame *cf = NULL;
979 	int err;
980 
981 	err = mcp251xfd_get_timestamp_raw(priv, &ts_raw);
982 	if (err)
983 		return err;
984 
985 	err = regmap_read(priv->map_reg, MCP251XFD_REG_BDIAG1, &bdiag1);
986 	if (err)
987 		return err;
988 
989 	/* Write 0s to clear error bits, don't write 1s to non active
990 	 * bits, as they will be set.
991 	 */
992 	err = regmap_write(priv->map_reg, MCP251XFD_REG_BDIAG1, 0x0);
993 	if (err)
994 		return err;
995 
996 	priv->can.can_stats.bus_error++;
997 
998 	skb = alloc_can_err_skb(priv->ndev, &cf);
999 	if (cf)
1000 		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1001 
1002 	/* Controller misconfiguration */
1003 	if (WARN_ON(bdiag1 & MCP251XFD_REG_BDIAG1_DLCMM))
1004 		netdev_err(priv->ndev,
1005 			   "recv'd DLC is larger than PLSIZE of FIFO element.");
1006 
1007 	/* RX errors */
1008 	if (bdiag1 & (MCP251XFD_REG_BDIAG1_DCRCERR |
1009 		      MCP251XFD_REG_BDIAG1_NCRCERR)) {
1010 		netdev_dbg(priv->ndev, "CRC error\n");
1011 
1012 		stats->rx_errors++;
1013 		if (cf)
1014 			cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1015 	}
1016 	if (bdiag1 & (MCP251XFD_REG_BDIAG1_DSTUFERR |
1017 		      MCP251XFD_REG_BDIAG1_NSTUFERR)) {
1018 		netdev_dbg(priv->ndev, "Stuff error\n");
1019 
1020 		stats->rx_errors++;
1021 		if (cf)
1022 			cf->data[2] |= CAN_ERR_PROT_STUFF;
1023 	}
1024 	if (bdiag1 & (MCP251XFD_REG_BDIAG1_DFORMERR |
1025 		      MCP251XFD_REG_BDIAG1_NFORMERR)) {
1026 		netdev_dbg(priv->ndev, "Format error\n");
1027 
1028 		stats->rx_errors++;
1029 		if (cf)
1030 			cf->data[2] |= CAN_ERR_PROT_FORM;
1031 	}
1032 
1033 	/* TX errors */
1034 	if (bdiag1 & MCP251XFD_REG_BDIAG1_NACKERR) {
1035 		netdev_dbg(priv->ndev, "NACK error\n");
1036 
1037 		stats->tx_errors++;
1038 		if (cf) {
1039 			cf->can_id |= CAN_ERR_ACK;
1040 			cf->data[2] |= CAN_ERR_PROT_TX;
1041 		}
1042 	}
1043 	if (bdiag1 & (MCP251XFD_REG_BDIAG1_DBIT1ERR |
1044 		      MCP251XFD_REG_BDIAG1_NBIT1ERR)) {
1045 		netdev_dbg(priv->ndev, "Bit1 error\n");
1046 
1047 		stats->tx_errors++;
1048 		if (cf)
1049 			cf->data[2] |= CAN_ERR_PROT_TX | CAN_ERR_PROT_BIT1;
1050 	}
1051 	if (bdiag1 & (MCP251XFD_REG_BDIAG1_DBIT0ERR |
1052 		      MCP251XFD_REG_BDIAG1_NBIT0ERR)) {
1053 		netdev_dbg(priv->ndev, "Bit0 error\n");
1054 
1055 		stats->tx_errors++;
1056 		if (cf)
1057 			cf->data[2] |= CAN_ERR_PROT_TX | CAN_ERR_PROT_BIT0;
1058 	}
1059 
1060 	if (!cf)
1061 		return 0;
1062 
1063 	mcp251xfd_skb_set_timestamp_raw(priv, skb, ts_raw);
1064 	err = can_rx_offload_queue_timestamp(&priv->offload, skb, ts_raw);
1065 	if (err)
1066 		stats->rx_fifo_errors++;
1067 
1068 	return 0;
1069 }
1070 
mcp251xfd_handle_cerrif(struct mcp251xfd_priv * priv)1071 static int mcp251xfd_handle_cerrif(struct mcp251xfd_priv *priv)
1072 {
1073 	struct net_device_stats *stats = &priv->ndev->stats;
1074 	struct sk_buff *skb;
1075 	struct can_frame *cf = NULL;
1076 	enum can_state new_state, rx_state, tx_state;
1077 	u32 trec, ts_raw;
1078 	int err;
1079 
1080 	err = regmap_read(priv->map_reg, MCP251XFD_REG_TREC, &trec);
1081 	if (err)
1082 		return err;
1083 
1084 	if (trec & MCP251XFD_REG_TREC_TXBO)
1085 		tx_state = CAN_STATE_BUS_OFF;
1086 	else if (trec & MCP251XFD_REG_TREC_TXBP)
1087 		tx_state = CAN_STATE_ERROR_PASSIVE;
1088 	else if (trec & MCP251XFD_REG_TREC_TXWARN)
1089 		tx_state = CAN_STATE_ERROR_WARNING;
1090 	else
1091 		tx_state = CAN_STATE_ERROR_ACTIVE;
1092 
1093 	if (trec & MCP251XFD_REG_TREC_RXBP)
1094 		rx_state = CAN_STATE_ERROR_PASSIVE;
1095 	else if (trec & MCP251XFD_REG_TREC_RXWARN)
1096 		rx_state = CAN_STATE_ERROR_WARNING;
1097 	else
1098 		rx_state = CAN_STATE_ERROR_ACTIVE;
1099 
1100 	new_state = max(tx_state, rx_state);
1101 	if (new_state == priv->can.state)
1102 		return 0;
1103 
1104 	/* The skb allocation might fail, but can_change_state()
1105 	 * handles cf == NULL.
1106 	 */
1107 	skb = mcp251xfd_alloc_can_err_skb(priv, &cf, &ts_raw);
1108 	can_change_state(priv->ndev, cf, tx_state, rx_state);
1109 
1110 	if (new_state == CAN_STATE_BUS_OFF) {
1111 		/* As we're going to switch off the chip now, let's
1112 		 * save the error counters and return them to
1113 		 * userspace, if do_get_berr_counter() is called while
1114 		 * the chip is in Bus Off.
1115 		 */
1116 		err = __mcp251xfd_get_berr_counter(priv->ndev, &priv->bec);
1117 		if (err)
1118 			return err;
1119 
1120 		mcp251xfd_chip_stop(priv, CAN_STATE_BUS_OFF);
1121 		can_bus_off(priv->ndev);
1122 	}
1123 
1124 	if (!skb)
1125 		return 0;
1126 
1127 	if (new_state != CAN_STATE_BUS_OFF) {
1128 		struct can_berr_counter bec;
1129 
1130 		err = mcp251xfd_get_berr_counter(priv->ndev, &bec);
1131 		if (err)
1132 			return err;
1133 		cf->can_id |= CAN_ERR_CNT;
1134 		cf->data[6] = bec.txerr;
1135 		cf->data[7] = bec.rxerr;
1136 	}
1137 
1138 	err = can_rx_offload_queue_timestamp(&priv->offload, skb, ts_raw);
1139 	if (err)
1140 		stats->rx_fifo_errors++;
1141 
1142 	return 0;
1143 }
1144 
1145 static int
mcp251xfd_handle_modif(const struct mcp251xfd_priv * priv,bool * set_normal_mode)1146 mcp251xfd_handle_modif(const struct mcp251xfd_priv *priv, bool *set_normal_mode)
1147 {
1148 	const u8 mode_reference = mcp251xfd_get_normal_mode(priv);
1149 	u8 mode;
1150 	int err;
1151 
1152 	err = mcp251xfd_chip_get_mode(priv, &mode);
1153 	if (err)
1154 		return err;
1155 
1156 	if (mode == mode_reference) {
1157 		netdev_dbg(priv->ndev,
1158 			   "Controller changed into %s Mode (%u).\n",
1159 			   mcp251xfd_get_mode_str(mode), mode);
1160 		return 0;
1161 	}
1162 
1163 	/* According to MCP2517FD errata DS80000792C 1., during a TX
1164 	 * MAB underflow, the controller will transition to Restricted
1165 	 * Operation Mode or Listen Only Mode (depending on SERR2LOM).
1166 	 *
1167 	 * However this is not always the case. If SERR2LOM is
1168 	 * configured for Restricted Operation Mode (SERR2LOM not set)
1169 	 * the MCP2517FD will sometimes transition to Listen Only Mode
1170 	 * first. When polling this bit we see that it will transition
1171 	 * to Restricted Operation Mode shortly after.
1172 	 */
1173 	if ((priv->devtype_data.quirks & MCP251XFD_QUIRK_MAB_NO_WARN) &&
1174 	    (mode == MCP251XFD_REG_CON_MODE_RESTRICTED ||
1175 	     mode == MCP251XFD_REG_CON_MODE_LISTENONLY))
1176 		netdev_dbg(priv->ndev,
1177 			   "Controller changed into %s Mode (%u).\n",
1178 			   mcp251xfd_get_mode_str(mode), mode);
1179 	else
1180 		netdev_err(priv->ndev,
1181 			   "Controller changed into %s Mode (%u).\n",
1182 			   mcp251xfd_get_mode_str(mode), mode);
1183 
1184 	/* After the application requests Normal mode, the controller
1185 	 * will automatically attempt to retransmit the message that
1186 	 * caused the TX MAB underflow.
1187 	 *
1188 	 * However, if there is an ECC error in the TX-RAM, we first
1189 	 * have to reload the tx-object before requesting Normal
1190 	 * mode. This is done later in mcp251xfd_handle_eccif().
1191 	 */
1192 	if (priv->regs_status.intf & MCP251XFD_REG_INT_ECCIF) {
1193 		*set_normal_mode = true;
1194 		return 0;
1195 	}
1196 
1197 	return mcp251xfd_chip_set_normal_mode_nowait(priv);
1198 }
1199 
mcp251xfd_handle_serrif(struct mcp251xfd_priv * priv)1200 static int mcp251xfd_handle_serrif(struct mcp251xfd_priv *priv)
1201 {
1202 	struct mcp251xfd_ecc *ecc = &priv->ecc;
1203 	struct net_device_stats *stats = &priv->ndev->stats;
1204 	bool handled = false;
1205 
1206 	/* TX MAB underflow
1207 	 *
1208 	 * According to MCP2517FD Errata DS80000792C 1. a TX MAB
1209 	 * underflow is indicated by SERRIF and MODIF.
1210 	 *
1211 	 * In addition to the effects mentioned in the Errata, there
1212 	 * are Bus Errors due to the aborted CAN frame, so a IVMIF
1213 	 * will be seen as well.
1214 	 *
1215 	 * Sometimes there is an ECC error in the TX-RAM, which leads
1216 	 * to a TX MAB underflow.
1217 	 *
1218 	 * However, probably due to a race condition, there is no
1219 	 * associated MODIF pending.
1220 	 *
1221 	 * Further, there are situations, where the SERRIF is caused
1222 	 * by an ECC error in the TX-RAM, but not even the ECCIF is
1223 	 * set. This only seems to happen _after_ the first occurrence
1224 	 * of a ECCIF (which is tracked in ecc->cnt).
1225 	 *
1226 	 * Treat all as a known system errors..
1227 	 */
1228 	if ((priv->regs_status.intf & MCP251XFD_REG_INT_MODIF &&
1229 	     priv->regs_status.intf & MCP251XFD_REG_INT_IVMIF) ||
1230 	    priv->regs_status.intf & MCP251XFD_REG_INT_ECCIF ||
1231 	    ecc->cnt) {
1232 		const char *msg;
1233 
1234 		if (priv->regs_status.intf & MCP251XFD_REG_INT_ECCIF ||
1235 		    ecc->cnt)
1236 			msg = "TX MAB underflow due to ECC error detected.";
1237 		else
1238 			msg = "TX MAB underflow detected.";
1239 
1240 		if (priv->devtype_data.quirks & MCP251XFD_QUIRK_MAB_NO_WARN)
1241 			netdev_dbg(priv->ndev, "%s\n", msg);
1242 		else
1243 			netdev_info(priv->ndev, "%s\n", msg);
1244 
1245 		stats->tx_aborted_errors++;
1246 		stats->tx_errors++;
1247 		handled = true;
1248 	}
1249 
1250 	/* RX MAB overflow
1251 	 *
1252 	 * According to MCP2517FD Errata DS80000792C 1. a RX MAB
1253 	 * overflow is indicated by SERRIF.
1254 	 *
1255 	 * In addition to the effects mentioned in the Errata, (most
1256 	 * of the times) a RXOVIF is raised, if the FIFO that is being
1257 	 * received into has the RXOVIE activated (and we have enabled
1258 	 * RXOVIE on all FIFOs).
1259 	 *
1260 	 * Sometimes there is no RXOVIF just a RXIF is pending.
1261 	 *
1262 	 * Treat all as a known system errors..
1263 	 */
1264 	if (priv->regs_status.intf & MCP251XFD_REG_INT_RXOVIF ||
1265 	    priv->regs_status.intf & MCP251XFD_REG_INT_RXIF) {
1266 		stats->rx_dropped++;
1267 		handled = true;
1268 	}
1269 
1270 	if (!handled)
1271 		netdev_err(priv->ndev,
1272 			   "Unhandled System Error Interrupt (intf=0x%08x)!\n",
1273 			   priv->regs_status.intf);
1274 
1275 	return 0;
1276 }
1277 
1278 static int
mcp251xfd_handle_eccif_recover(struct mcp251xfd_priv * priv,u8 nr)1279 mcp251xfd_handle_eccif_recover(struct mcp251xfd_priv *priv, u8 nr)
1280 {
1281 	struct mcp251xfd_tx_ring *tx_ring = priv->tx;
1282 	struct mcp251xfd_ecc *ecc = &priv->ecc;
1283 	struct mcp251xfd_tx_obj *tx_obj;
1284 	u8 chip_tx_tail, tx_tail, offset;
1285 	u16 addr;
1286 	int err;
1287 
1288 	addr = FIELD_GET(MCP251XFD_REG_ECCSTAT_ERRADDR_MASK, ecc->ecc_stat);
1289 
1290 	err = mcp251xfd_tx_tail_get_from_chip(priv, &chip_tx_tail);
1291 	if (err)
1292 		return err;
1293 
1294 	tx_tail = mcp251xfd_get_tx_tail(tx_ring);
1295 	offset = (nr - chip_tx_tail) & (tx_ring->obj_num - 1);
1296 
1297 	/* Bail out if one of the following is met:
1298 	 * - tx_tail information is inconsistent
1299 	 * - for mcp2517fd: offset not 0
1300 	 * - for mcp2518fd: offset not 0 or 1
1301 	 */
1302 	if (chip_tx_tail != tx_tail ||
1303 	    !(offset == 0 || (offset == 1 && (mcp251xfd_is_2518FD(priv) ||
1304 					      mcp251xfd_is_251863(priv))))) {
1305 		netdev_err(priv->ndev,
1306 			   "ECC Error information inconsistent (addr=0x%04x, nr=%d, tx_tail=0x%08x(%d), chip_tx_tail=%d, offset=%d).\n",
1307 			   addr, nr, tx_ring->tail, tx_tail, chip_tx_tail,
1308 			   offset);
1309 		return -EINVAL;
1310 	}
1311 
1312 	netdev_info(priv->ndev,
1313 		    "Recovering %s ECC Error at address 0x%04x (in TX-RAM, tx_obj=%d, tx_tail=0x%08x(%d), offset=%d).\n",
1314 		    ecc->ecc_stat & MCP251XFD_REG_ECCSTAT_SECIF ?
1315 		    "Single" : "Double",
1316 		    addr, nr, tx_ring->tail, tx_tail, offset);
1317 
1318 	/* reload tx_obj into controller RAM ... */
1319 	tx_obj = &tx_ring->obj[nr];
1320 	err = spi_sync_transfer(priv->spi, tx_obj->xfer, 1);
1321 	if (err)
1322 		return err;
1323 
1324 	/* ... and trigger retransmit */
1325 	return mcp251xfd_chip_set_normal_mode(priv);
1326 }
1327 
1328 static int
mcp251xfd_handle_eccif(struct mcp251xfd_priv * priv,bool set_normal_mode)1329 mcp251xfd_handle_eccif(struct mcp251xfd_priv *priv, bool set_normal_mode)
1330 {
1331 	struct mcp251xfd_ecc *ecc = &priv->ecc;
1332 	const char *msg;
1333 	bool in_tx_ram;
1334 	u32 ecc_stat;
1335 	u16 addr;
1336 	u8 nr;
1337 	int err;
1338 
1339 	err = regmap_read(priv->map_reg, MCP251XFD_REG_ECCSTAT, &ecc_stat);
1340 	if (err)
1341 		return err;
1342 
1343 	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCSTAT,
1344 				 MCP251XFD_REG_ECCSTAT_IF_MASK, ~ecc_stat);
1345 	if (err)
1346 		return err;
1347 
1348 	/* Check if ECC error occurred in TX-RAM */
1349 	addr = FIELD_GET(MCP251XFD_REG_ECCSTAT_ERRADDR_MASK, ecc_stat);
1350 	err = mcp251xfd_get_tx_nr_by_addr(priv->tx, &nr, addr);
1351 	if (!err)
1352 		in_tx_ram = true;
1353 	else if (err == -ENOENT)
1354 		in_tx_ram = false;
1355 	else
1356 		return err;
1357 
1358 	/* Errata Reference:
1359 	 * mcp2517fd: DS80000789C 3., mcp2518fd: DS80000792E 2.,
1360 	 * mcp251863: DS80000984A 2.
1361 	 *
1362 	 * ECC single error correction does not work in all cases:
1363 	 *
1364 	 * Fix/Work Around:
1365 	 * Enable single error correction and double error detection
1366 	 * interrupts by setting SECIE and DEDIE. Handle SECIF as a
1367 	 * detection interrupt and do not rely on the error
1368 	 * correction. Instead, handle both interrupts as a
1369 	 * notification that the RAM word at ERRADDR was corrupted.
1370 	 */
1371 	if (ecc_stat & MCP251XFD_REG_ECCSTAT_SECIF)
1372 		msg = "Single ECC Error detected at address";
1373 	else if (ecc_stat & MCP251XFD_REG_ECCSTAT_DEDIF)
1374 		msg = "Double ECC Error detected at address";
1375 	else
1376 		return -EINVAL;
1377 
1378 	if (!in_tx_ram) {
1379 		ecc->ecc_stat = 0;
1380 
1381 		netdev_notice(priv->ndev, "%s 0x%04x.\n", msg, addr);
1382 	} else {
1383 		/* Re-occurring error? */
1384 		if (ecc->ecc_stat == ecc_stat) {
1385 			ecc->cnt++;
1386 		} else {
1387 			ecc->ecc_stat = ecc_stat;
1388 			ecc->cnt = 1;
1389 		}
1390 
1391 		netdev_info(priv->ndev,
1392 			    "%s 0x%04x (in TX-RAM, tx_obj=%d), occurred %d time%s.\n",
1393 			    msg, addr, nr, ecc->cnt, ecc->cnt > 1 ? "s" : "");
1394 
1395 		if (ecc->cnt >= MCP251XFD_ECC_CNT_MAX)
1396 			return mcp251xfd_handle_eccif_recover(priv, nr);
1397 	}
1398 
1399 	if (set_normal_mode)
1400 		return mcp251xfd_chip_set_normal_mode_nowait(priv);
1401 
1402 	return 0;
1403 }
1404 
mcp251xfd_handle_spicrcif(struct mcp251xfd_priv * priv)1405 static int mcp251xfd_handle_spicrcif(struct mcp251xfd_priv *priv)
1406 {
1407 	int err;
1408 	u32 crc;
1409 
1410 	err = regmap_read(priv->map_reg, MCP251XFD_REG_CRC, &crc);
1411 	if (err)
1412 		return err;
1413 
1414 	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_CRC,
1415 				 MCP251XFD_REG_CRC_IF_MASK,
1416 				 ~crc);
1417 	if (err)
1418 		return err;
1419 
1420 	if (crc & MCP251XFD_REG_CRC_FERRIF)
1421 		netdev_notice(priv->ndev, "CRC write command format error.\n");
1422 	else if (crc & MCP251XFD_REG_CRC_CRCERRIF)
1423 		netdev_notice(priv->ndev,
1424 			      "CRC write error detected. CRC=0x%04lx.\n",
1425 			      FIELD_GET(MCP251XFD_REG_CRC_MASK, crc));
1426 
1427 	return 0;
1428 }
1429 
mcp251xfd_read_regs_status(struct mcp251xfd_priv * priv)1430 static int mcp251xfd_read_regs_status(struct mcp251xfd_priv *priv)
1431 {
1432 	const int val_bytes = regmap_get_val_bytes(priv->map_reg);
1433 	size_t len;
1434 
1435 	if (priv->rx_ring_num == 1)
1436 		len = sizeof(priv->regs_status.intf);
1437 	else
1438 		len = sizeof(priv->regs_status);
1439 
1440 	return regmap_bulk_read(priv->map_reg, MCP251XFD_REG_INT,
1441 				&priv->regs_status, len / val_bytes);
1442 }
1443 
1444 #define mcp251xfd_handle(priv, irq, ...) \
1445 ({ \
1446 	struct mcp251xfd_priv *_priv = (priv); \
1447 	int err; \
1448 \
1449 	err = mcp251xfd_handle_##irq(_priv, ## __VA_ARGS__); \
1450 	if (err) \
1451 		netdev_err(_priv->ndev, \
1452 			"IRQ handler mcp251xfd_handle_%s() returned %d.\n", \
1453 			__stringify(irq), err); \
1454 	err; \
1455 })
1456 
mcp251xfd_irq(int irq,void * dev_id)1457 static irqreturn_t mcp251xfd_irq(int irq, void *dev_id)
1458 {
1459 	struct mcp251xfd_priv *priv = dev_id;
1460 	irqreturn_t handled = IRQ_NONE;
1461 	int err;
1462 
1463 	if (priv->rx_int)
1464 		do {
1465 			int rx_pending;
1466 
1467 			rx_pending = gpiod_get_value_cansleep(priv->rx_int);
1468 			if (!rx_pending)
1469 				break;
1470 
1471 			/* Assume 1st RX-FIFO pending, if other FIFOs
1472 			 * are pending the main IRQ handler will take
1473 			 * care.
1474 			 */
1475 			priv->regs_status.rxif = BIT(priv->rx[0]->fifo_nr);
1476 			err = mcp251xfd_handle(priv, rxif);
1477 			if (err)
1478 				goto out_fail;
1479 
1480 			handled = IRQ_HANDLED;
1481 
1482 			/* We don't know which RX-FIFO is pending, but only
1483 			 * handle the 1st RX-FIFO. Leave loop here if we have
1484 			 * more than 1 RX-FIFO to avoid starvation.
1485 			 */
1486 		} while (priv->rx_ring_num == 1);
1487 
1488 	do {
1489 		u32 intf_pending, intf_pending_clearable;
1490 		bool set_normal_mode = false;
1491 
1492 		err = mcp251xfd_read_regs_status(priv);
1493 		if (err)
1494 			goto out_fail;
1495 
1496 		intf_pending = FIELD_GET(MCP251XFD_REG_INT_IF_MASK,
1497 					 priv->regs_status.intf) &
1498 			FIELD_GET(MCP251XFD_REG_INT_IE_MASK,
1499 				  priv->regs_status.intf);
1500 
1501 		if (!(intf_pending)) {
1502 			can_rx_offload_threaded_irq_finish(&priv->offload);
1503 			return handled;
1504 		}
1505 
1506 		/* Some interrupts must be ACKed in the
1507 		 * MCP251XFD_REG_INT register.
1508 		 * - First ACK then handle, to avoid lost-IRQ race
1509 		 *   condition on fast re-occurring interrupts.
1510 		 * - Write "0" to clear active IRQs, "1" to all other,
1511 		 *   to avoid r/m/w race condition on the
1512 		 *   MCP251XFD_REG_INT register.
1513 		 */
1514 		intf_pending_clearable = intf_pending &
1515 			MCP251XFD_REG_INT_IF_CLEARABLE_MASK;
1516 		if (intf_pending_clearable) {
1517 			err = regmap_update_bits(priv->map_reg,
1518 						 MCP251XFD_REG_INT,
1519 						 MCP251XFD_REG_INT_IF_MASK,
1520 						 ~intf_pending_clearable);
1521 			if (err)
1522 				goto out_fail;
1523 		}
1524 
1525 		if (intf_pending & MCP251XFD_REG_INT_MODIF) {
1526 			err = mcp251xfd_handle(priv, modif, &set_normal_mode);
1527 			if (err)
1528 				goto out_fail;
1529 		}
1530 
1531 		if (intf_pending & MCP251XFD_REG_INT_RXIF) {
1532 			err = mcp251xfd_handle(priv, rxif);
1533 			if (err)
1534 				goto out_fail;
1535 		}
1536 
1537 		if (intf_pending & MCP251XFD_REG_INT_TEFIF) {
1538 			err = mcp251xfd_handle(priv, tefif);
1539 			if (err)
1540 				goto out_fail;
1541 		}
1542 
1543 		if (intf_pending & MCP251XFD_REG_INT_RXOVIF) {
1544 			err = mcp251xfd_handle(priv, rxovif);
1545 			if (err)
1546 				goto out_fail;
1547 		}
1548 
1549 		if (intf_pending & MCP251XFD_REG_INT_TXATIF) {
1550 			err = mcp251xfd_handle(priv, txatif);
1551 			if (err)
1552 				goto out_fail;
1553 		}
1554 
1555 		if (intf_pending & MCP251XFD_REG_INT_IVMIF) {
1556 			err = mcp251xfd_handle(priv, ivmif);
1557 			if (err)
1558 				goto out_fail;
1559 		}
1560 
1561 		if (intf_pending & MCP251XFD_REG_INT_SERRIF) {
1562 			err = mcp251xfd_handle(priv, serrif);
1563 			if (err)
1564 				goto out_fail;
1565 		}
1566 
1567 		if (intf_pending & MCP251XFD_REG_INT_ECCIF) {
1568 			err = mcp251xfd_handle(priv, eccif, set_normal_mode);
1569 			if (err)
1570 				goto out_fail;
1571 		}
1572 
1573 		if (intf_pending & MCP251XFD_REG_INT_SPICRCIF) {
1574 			err = mcp251xfd_handle(priv, spicrcif);
1575 			if (err)
1576 				goto out_fail;
1577 		}
1578 
1579 		/* On the MCP2527FD and MCP2518FD, we don't get a
1580 		 * CERRIF IRQ on the transition TX ERROR_WARNING -> TX
1581 		 * ERROR_ACTIVE.
1582 		 */
1583 		if (intf_pending & MCP251XFD_REG_INT_CERRIF ||
1584 		    priv->can.state > CAN_STATE_ERROR_ACTIVE) {
1585 			err = mcp251xfd_handle(priv, cerrif);
1586 			if (err)
1587 				goto out_fail;
1588 
1589 			/* In Bus Off we completely shut down the
1590 			 * controller. Every subsequent register read
1591 			 * will read bogus data, and if
1592 			 * MCP251XFD_QUIRK_CRC_REG is enabled the CRC
1593 			 * check will fail, too. So leave IRQ handler
1594 			 * directly.
1595 			 */
1596 			if (priv->can.state == CAN_STATE_BUS_OFF) {
1597 				can_rx_offload_threaded_irq_finish(&priv->offload);
1598 				return IRQ_HANDLED;
1599 			}
1600 		}
1601 
1602 		handled = IRQ_HANDLED;
1603 	} while (1);
1604 
1605 out_fail:
1606 	can_rx_offload_threaded_irq_finish(&priv->offload);
1607 
1608 	netdev_err(priv->ndev, "IRQ handler returned %d (intf=0x%08x).\n",
1609 		   err, priv->regs_status.intf);
1610 	mcp251xfd_dump(priv);
1611 	mcp251xfd_chip_interrupts_disable(priv);
1612 	mcp251xfd_timestamp_stop(priv);
1613 
1614 	return handled;
1615 }
1616 
mcp251xfd_open(struct net_device * ndev)1617 static int mcp251xfd_open(struct net_device *ndev)
1618 {
1619 	struct mcp251xfd_priv *priv = netdev_priv(ndev);
1620 	const struct spi_device *spi = priv->spi;
1621 	int err;
1622 
1623 	err = open_candev(ndev);
1624 	if (err)
1625 		return err;
1626 
1627 	err = pm_runtime_resume_and_get(ndev->dev.parent);
1628 	if (err)
1629 		goto out_close_candev;
1630 
1631 	err = mcp251xfd_ring_alloc(priv);
1632 	if (err)
1633 		goto out_pm_runtime_put;
1634 
1635 	err = mcp251xfd_transceiver_enable(priv);
1636 	if (err)
1637 		goto out_mcp251xfd_ring_free;
1638 
1639 	mcp251xfd_timestamp_init(priv);
1640 
1641 	err = mcp251xfd_chip_start(priv);
1642 	if (err)
1643 		goto out_transceiver_disable;
1644 
1645 	clear_bit(MCP251XFD_FLAGS_DOWN, priv->flags);
1646 	can_rx_offload_enable(&priv->offload);
1647 
1648 	priv->wq = alloc_ordered_workqueue("%s-mcp251xfd_wq",
1649 					   WQ_FREEZABLE | WQ_MEM_RECLAIM,
1650 					   dev_name(&spi->dev));
1651 	if (!priv->wq) {
1652 		err = -ENOMEM;
1653 		goto out_can_rx_offload_disable;
1654 	}
1655 	INIT_WORK(&priv->tx_work, mcp251xfd_tx_obj_write_sync);
1656 
1657 	err = request_threaded_irq(spi->irq, NULL, mcp251xfd_irq,
1658 				   IRQF_SHARED | IRQF_ONESHOT,
1659 				   dev_name(&spi->dev), priv);
1660 	if (err)
1661 		goto out_destroy_workqueue;
1662 
1663 	err = mcp251xfd_chip_interrupts_enable(priv);
1664 	if (err)
1665 		goto out_free_irq;
1666 
1667 	netif_start_queue(ndev);
1668 
1669 	return 0;
1670 
1671 out_free_irq:
1672 	free_irq(spi->irq, priv);
1673 out_destroy_workqueue:
1674 	destroy_workqueue(priv->wq);
1675 out_can_rx_offload_disable:
1676 	can_rx_offload_disable(&priv->offload);
1677 	set_bit(MCP251XFD_FLAGS_DOWN, priv->flags);
1678 out_transceiver_disable:
1679 	mcp251xfd_transceiver_disable(priv);
1680 out_mcp251xfd_ring_free:
1681 	mcp251xfd_ring_free(priv);
1682 out_pm_runtime_put:
1683 	mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
1684 	pm_runtime_put(ndev->dev.parent);
1685 out_close_candev:
1686 	close_candev(ndev);
1687 
1688 	return err;
1689 }
1690 
mcp251xfd_stop(struct net_device * ndev)1691 static int mcp251xfd_stop(struct net_device *ndev)
1692 {
1693 	struct mcp251xfd_priv *priv = netdev_priv(ndev);
1694 
1695 	netif_stop_queue(ndev);
1696 	set_bit(MCP251XFD_FLAGS_DOWN, priv->flags);
1697 	hrtimer_cancel(&priv->rx_irq_timer);
1698 	hrtimer_cancel(&priv->tx_irq_timer);
1699 	mcp251xfd_chip_interrupts_disable(priv);
1700 	free_irq(ndev->irq, priv);
1701 	destroy_workqueue(priv->wq);
1702 	can_rx_offload_disable(&priv->offload);
1703 	mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
1704 	mcp251xfd_transceiver_disable(priv);
1705 	mcp251xfd_ring_free(priv);
1706 	close_candev(ndev);
1707 
1708 	pm_runtime_put(ndev->dev.parent);
1709 
1710 	return 0;
1711 }
1712 
1713 static const struct net_device_ops mcp251xfd_netdev_ops = {
1714 	.ndo_open = mcp251xfd_open,
1715 	.ndo_stop = mcp251xfd_stop,
1716 	.ndo_start_xmit	= mcp251xfd_start_xmit,
1717 	.ndo_eth_ioctl = can_eth_ioctl_hwts,
1718 	.ndo_change_mtu = can_change_mtu,
1719 };
1720 
1721 static void
mcp251xfd_register_quirks(struct mcp251xfd_priv * priv)1722 mcp251xfd_register_quirks(struct mcp251xfd_priv *priv)
1723 {
1724 	const struct spi_device *spi = priv->spi;
1725 	const struct spi_controller *ctlr = spi->controller;
1726 
1727 	if (ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX)
1728 		priv->devtype_data.quirks |= MCP251XFD_QUIRK_HALF_DUPLEX;
1729 }
1730 
mcp251xfd_register_chip_detect(struct mcp251xfd_priv * priv)1731 static int mcp251xfd_register_chip_detect(struct mcp251xfd_priv *priv)
1732 {
1733 	const struct net_device *ndev = priv->ndev;
1734 	const struct mcp251xfd_devtype_data *devtype_data;
1735 	u32 osc;
1736 	int err;
1737 
1738 	/* The OSC_LPMEN is only supported on MCP2518FD and MCP251863,
1739 	 * so use it to autodetect the model.
1740 	 */
1741 	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_OSC,
1742 				 MCP251XFD_REG_OSC_LPMEN,
1743 				 MCP251XFD_REG_OSC_LPMEN);
1744 	if (err)
1745 		return err;
1746 
1747 	err = regmap_read(priv->map_reg, MCP251XFD_REG_OSC, &osc);
1748 	if (err)
1749 		return err;
1750 
1751 	if (osc & MCP251XFD_REG_OSC_LPMEN) {
1752 		/* We cannot distinguish between MCP2518FD and
1753 		 * MCP251863. If firmware specifies MCP251863, keep
1754 		 * it, otherwise set to MCP2518FD.
1755 		 */
1756 		if (mcp251xfd_is_251863(priv))
1757 			devtype_data = &mcp251xfd_devtype_data_mcp251863;
1758 		else
1759 			devtype_data = &mcp251xfd_devtype_data_mcp2518fd;
1760 	} else {
1761 		devtype_data = &mcp251xfd_devtype_data_mcp2517fd;
1762 	}
1763 
1764 	if (!mcp251xfd_is_251XFD(priv) &&
1765 	    priv->devtype_data.model != devtype_data->model) {
1766 		netdev_info(ndev,
1767 			    "Detected %s, but firmware specifies a %s. Fixing up.\n",
1768 			    __mcp251xfd_get_model_str(devtype_data->model),
1769 			    mcp251xfd_get_model_str(priv));
1770 	}
1771 	priv->devtype_data = *devtype_data;
1772 
1773 	/* We need to preserve the Half Duplex Quirk. */
1774 	mcp251xfd_register_quirks(priv);
1775 
1776 	/* Re-init regmap with quirks of detected model. */
1777 	return mcp251xfd_regmap_init(priv);
1778 }
1779 
mcp251xfd_register_check_rx_int(struct mcp251xfd_priv * priv)1780 static int mcp251xfd_register_check_rx_int(struct mcp251xfd_priv *priv)
1781 {
1782 	int err, rx_pending;
1783 
1784 	if (!priv->rx_int)
1785 		return 0;
1786 
1787 	err = mcp251xfd_chip_rx_int_enable(priv);
1788 	if (err)
1789 		return err;
1790 
1791 	/* Check if RX_INT is properly working. The RX_INT should not
1792 	 * be active after a softreset.
1793 	 */
1794 	rx_pending = gpiod_get_value_cansleep(priv->rx_int);
1795 
1796 	err = mcp251xfd_chip_rx_int_disable(priv);
1797 	if (err)
1798 		return err;
1799 
1800 	if (!rx_pending)
1801 		return 0;
1802 
1803 	netdev_info(priv->ndev,
1804 		    "RX_INT active after softreset, disabling RX_INT support.\n");
1805 	devm_gpiod_put(&priv->spi->dev, priv->rx_int);
1806 	priv->rx_int = NULL;
1807 
1808 	return 0;
1809 }
1810 
1811 static int
mcp251xfd_register_get_dev_id(const struct mcp251xfd_priv * priv,u32 * dev_id,u32 * effective_speed_hz_slow,u32 * effective_speed_hz_fast)1812 mcp251xfd_register_get_dev_id(const struct mcp251xfd_priv *priv, u32 *dev_id,
1813 			      u32 *effective_speed_hz_slow,
1814 			      u32 *effective_speed_hz_fast)
1815 {
1816 	struct mcp251xfd_map_buf_nocrc *buf_rx;
1817 	struct mcp251xfd_map_buf_nocrc *buf_tx;
1818 	struct spi_transfer xfer[2] = { };
1819 	int err;
1820 
1821 	buf_rx = kzalloc(sizeof(*buf_rx), GFP_KERNEL);
1822 	if (!buf_rx)
1823 		return -ENOMEM;
1824 
1825 	buf_tx = kzalloc(sizeof(*buf_tx), GFP_KERNEL);
1826 	if (!buf_tx) {
1827 		err = -ENOMEM;
1828 		goto out_kfree_buf_rx;
1829 	}
1830 
1831 	xfer[0].tx_buf = buf_tx;
1832 	xfer[0].len = sizeof(buf_tx->cmd);
1833 	xfer[0].speed_hz = priv->spi_max_speed_hz_slow;
1834 	xfer[1].rx_buf = buf_rx->data;
1835 	xfer[1].len = sizeof(*dev_id);
1836 	xfer[1].speed_hz = priv->spi_max_speed_hz_fast;
1837 
1838 	mcp251xfd_spi_cmd_read_nocrc(&buf_tx->cmd, MCP251XFD_REG_DEVID);
1839 
1840 	err = spi_sync_transfer(priv->spi, xfer, ARRAY_SIZE(xfer));
1841 	if (err)
1842 		goto out_kfree_buf_tx;
1843 
1844 	*dev_id = get_unaligned_le32(buf_rx->data);
1845 	*effective_speed_hz_slow = xfer[0].effective_speed_hz;
1846 	*effective_speed_hz_fast = xfer[1].effective_speed_hz;
1847 
1848 out_kfree_buf_tx:
1849 	kfree(buf_tx);
1850 out_kfree_buf_rx:
1851 	kfree(buf_rx);
1852 
1853 	return err;
1854 }
1855 
1856 #define MCP251XFD_QUIRK_ACTIVE(quirk) \
1857 	(priv->devtype_data.quirks & MCP251XFD_QUIRK_##quirk ? '+' : '-')
1858 
1859 static int
mcp251xfd_register_done(const struct mcp251xfd_priv * priv)1860 mcp251xfd_register_done(const struct mcp251xfd_priv *priv)
1861 {
1862 	u32 dev_id, effective_speed_hz_slow, effective_speed_hz_fast;
1863 	unsigned long clk_rate;
1864 	int err;
1865 
1866 	err = mcp251xfd_register_get_dev_id(priv, &dev_id,
1867 					    &effective_speed_hz_slow,
1868 					    &effective_speed_hz_fast);
1869 	if (err)
1870 		return err;
1871 
1872 	clk_rate = clk_get_rate(priv->clk);
1873 
1874 	netdev_info(priv->ndev,
1875 		    "%s rev%lu.%lu (%cRX_INT %cPLL %cMAB_NO_WARN %cCRC_REG %cCRC_RX %cCRC_TX %cECC %cHD o:%lu.%02luMHz c:%u.%02uMHz m:%u.%02uMHz rs:%u.%02uMHz es:%u.%02uMHz rf:%u.%02uMHz ef:%u.%02uMHz) successfully initialized.\n",
1876 		    mcp251xfd_get_model_str(priv),
1877 		    FIELD_GET(MCP251XFD_REG_DEVID_ID_MASK, dev_id),
1878 		    FIELD_GET(MCP251XFD_REG_DEVID_REV_MASK, dev_id),
1879 		    priv->rx_int ? '+' : '-',
1880 		    priv->pll_enable ? '+' : '-',
1881 		    MCP251XFD_QUIRK_ACTIVE(MAB_NO_WARN),
1882 		    MCP251XFD_QUIRK_ACTIVE(CRC_REG),
1883 		    MCP251XFD_QUIRK_ACTIVE(CRC_RX),
1884 		    MCP251XFD_QUIRK_ACTIVE(CRC_TX),
1885 		    MCP251XFD_QUIRK_ACTIVE(ECC),
1886 		    MCP251XFD_QUIRK_ACTIVE(HALF_DUPLEX),
1887 		    clk_rate / 1000000,
1888 		    clk_rate % 1000000 / 1000 / 10,
1889 		    priv->can.clock.freq / 1000000,
1890 		    priv->can.clock.freq % 1000000 / 1000 / 10,
1891 		    priv->spi_max_speed_hz_orig / 1000000,
1892 		    priv->spi_max_speed_hz_orig % 1000000 / 1000 / 10,
1893 		    priv->spi_max_speed_hz_slow / 1000000,
1894 		    priv->spi_max_speed_hz_slow % 1000000 / 1000 / 10,
1895 		    effective_speed_hz_slow / 1000000,
1896 		    effective_speed_hz_slow % 1000000 / 1000 / 10,
1897 		    priv->spi_max_speed_hz_fast / 1000000,
1898 		    priv->spi_max_speed_hz_fast % 1000000 / 1000 / 10,
1899 		    effective_speed_hz_fast / 1000000,
1900 		    effective_speed_hz_fast % 1000000 / 1000 / 10);
1901 
1902 	return 0;
1903 }
1904 
mcp251xfd_register(struct mcp251xfd_priv * priv)1905 static int mcp251xfd_register(struct mcp251xfd_priv *priv)
1906 {
1907 	struct net_device *ndev = priv->ndev;
1908 	int err;
1909 
1910 	err = mcp251xfd_clks_and_vdd_enable(priv);
1911 	if (err)
1912 		return err;
1913 
1914 	pm_runtime_get_noresume(ndev->dev.parent);
1915 	err = pm_runtime_set_active(ndev->dev.parent);
1916 	if (err)
1917 		goto out_runtime_put_noidle;
1918 	pm_runtime_enable(ndev->dev.parent);
1919 
1920 	mcp251xfd_register_quirks(priv);
1921 
1922 	err = mcp251xfd_chip_softreset(priv);
1923 	if (err == -ENODEV)
1924 		goto out_runtime_disable;
1925 	if (err)
1926 		goto out_chip_sleep;
1927 
1928 	err = mcp251xfd_chip_clock_init(priv);
1929 	if (err == -ENODEV)
1930 		goto out_runtime_disable;
1931 	if (err)
1932 		goto out_chip_sleep;
1933 
1934 	err = mcp251xfd_register_chip_detect(priv);
1935 	if (err)
1936 		goto out_chip_sleep;
1937 
1938 	err = mcp251xfd_register_check_rx_int(priv);
1939 	if (err)
1940 		goto out_chip_sleep;
1941 
1942 	mcp251xfd_ethtool_init(priv);
1943 
1944 	err = register_candev(ndev);
1945 	if (err)
1946 		goto out_chip_sleep;
1947 
1948 	err = mcp251xfd_register_done(priv);
1949 	if (err)
1950 		goto out_unregister_candev;
1951 
1952 	/* Put controller into sleep mode and let pm_runtime_put()
1953 	 * disable the clocks and vdd. If CONFIG_PM is not enabled,
1954 	 * the clocks and vdd will stay powered.
1955 	 */
1956 	err = mcp251xfd_chip_sleep(priv);
1957 	if (err)
1958 		goto out_unregister_candev;
1959 
1960 	pm_runtime_put(ndev->dev.parent);
1961 
1962 	return 0;
1963 
1964 out_unregister_candev:
1965 	unregister_candev(ndev);
1966 out_chip_sleep:
1967 	mcp251xfd_chip_sleep(priv);
1968 out_runtime_disable:
1969 	pm_runtime_disable(ndev->dev.parent);
1970 out_runtime_put_noidle:
1971 	pm_runtime_put_noidle(ndev->dev.parent);
1972 	mcp251xfd_clks_and_vdd_disable(priv);
1973 
1974 	return err;
1975 }
1976 
mcp251xfd_unregister(struct mcp251xfd_priv * priv)1977 static inline void mcp251xfd_unregister(struct mcp251xfd_priv *priv)
1978 {
1979 	struct net_device *ndev	= priv->ndev;
1980 
1981 	unregister_candev(ndev);
1982 
1983 	if (pm_runtime_enabled(ndev->dev.parent))
1984 		pm_runtime_disable(ndev->dev.parent);
1985 	else
1986 		mcp251xfd_clks_and_vdd_disable(priv);
1987 }
1988 
1989 static const struct of_device_id mcp251xfd_of_match[] = {
1990 	{
1991 		.compatible = "microchip,mcp2517fd",
1992 		.data = &mcp251xfd_devtype_data_mcp2517fd,
1993 	}, {
1994 		.compatible = "microchip,mcp2518fd",
1995 		.data = &mcp251xfd_devtype_data_mcp2518fd,
1996 	}, {
1997 		.compatible = "microchip,mcp251863",
1998 		.data = &mcp251xfd_devtype_data_mcp251863,
1999 	}, {
2000 		.compatible = "microchip,mcp251xfd",
2001 		.data = &mcp251xfd_devtype_data_mcp251xfd,
2002 	}, {
2003 		/* sentinel */
2004 	},
2005 };
2006 MODULE_DEVICE_TABLE(of, mcp251xfd_of_match);
2007 
2008 static const struct spi_device_id mcp251xfd_id_table[] = {
2009 	{
2010 		.name = "mcp2517fd",
2011 		.driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp2517fd,
2012 	}, {
2013 		.name = "mcp2518fd",
2014 		.driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp2518fd,
2015 	}, {
2016 		.name = "mcp251863",
2017 		.driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp251863,
2018 	}, {
2019 		.name = "mcp251xfd",
2020 		.driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp251xfd,
2021 	}, {
2022 		/* sentinel */
2023 	},
2024 };
2025 MODULE_DEVICE_TABLE(spi, mcp251xfd_id_table);
2026 
mcp251xfd_probe(struct spi_device * spi)2027 static int mcp251xfd_probe(struct spi_device *spi)
2028 {
2029 	struct net_device *ndev;
2030 	struct mcp251xfd_priv *priv;
2031 	struct gpio_desc *rx_int;
2032 	struct regulator *reg_vdd, *reg_xceiver;
2033 	struct clk *clk;
2034 	bool pll_enable = false;
2035 	u32 freq = 0;
2036 	int err;
2037 
2038 	if (!spi->irq)
2039 		return dev_err_probe(&spi->dev, -ENXIO,
2040 				     "No IRQ specified (maybe node \"interrupts-extended\" in DT missing)!\n");
2041 
2042 	rx_int = devm_gpiod_get_optional(&spi->dev, "microchip,rx-int",
2043 					 GPIOD_IN);
2044 	if (IS_ERR(rx_int))
2045 		return dev_err_probe(&spi->dev, PTR_ERR(rx_int),
2046 				     "Failed to get RX-INT!\n");
2047 
2048 	reg_vdd = devm_regulator_get_optional(&spi->dev, "vdd");
2049 	if (PTR_ERR(reg_vdd) == -ENODEV)
2050 		reg_vdd = NULL;
2051 	else if (IS_ERR(reg_vdd))
2052 		return dev_err_probe(&spi->dev, PTR_ERR(reg_vdd),
2053 				     "Failed to get VDD regulator!\n");
2054 
2055 	reg_xceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
2056 	if (PTR_ERR(reg_xceiver) == -ENODEV)
2057 		reg_xceiver = NULL;
2058 	else if (IS_ERR(reg_xceiver))
2059 		return dev_err_probe(&spi->dev, PTR_ERR(reg_xceiver),
2060 				     "Failed to get Transceiver regulator!\n");
2061 
2062 	clk = devm_clk_get_optional(&spi->dev, NULL);
2063 	if (IS_ERR(clk))
2064 		return dev_err_probe(&spi->dev, PTR_ERR(clk),
2065 				     "Failed to get Oscillator (clock)!\n");
2066 	if (clk) {
2067 		freq = clk_get_rate(clk);
2068 	} else {
2069 		err = device_property_read_u32(&spi->dev, "clock-frequency",
2070 					       &freq);
2071 		if (err)
2072 			return dev_err_probe(&spi->dev, err,
2073 					     "Failed to get clock-frequency!\n");
2074 	}
2075 
2076 	/* Sanity check */
2077 	if (freq < MCP251XFD_SYSCLOCK_HZ_MIN ||
2078 	    freq > MCP251XFD_SYSCLOCK_HZ_MAX) {
2079 		dev_err(&spi->dev,
2080 			"Oscillator frequency (%u Hz) is too low or high.\n",
2081 			freq);
2082 		return -ERANGE;
2083 	}
2084 
2085 	if (freq <= MCP251XFD_SYSCLOCK_HZ_MAX / MCP251XFD_OSC_PLL_MULTIPLIER)
2086 		pll_enable = true;
2087 
2088 	ndev = alloc_candev(sizeof(struct mcp251xfd_priv),
2089 			    MCP251XFD_TX_OBJ_NUM_MAX);
2090 	if (!ndev)
2091 		return -ENOMEM;
2092 
2093 	SET_NETDEV_DEV(ndev, &spi->dev);
2094 
2095 	ndev->netdev_ops = &mcp251xfd_netdev_ops;
2096 	ndev->irq = spi->irq;
2097 	ndev->flags |= IFF_ECHO;
2098 
2099 	priv = netdev_priv(ndev);
2100 	spi_set_drvdata(spi, priv);
2101 	priv->can.clock.freq = freq;
2102 	if (pll_enable)
2103 		priv->can.clock.freq *= MCP251XFD_OSC_PLL_MULTIPLIER;
2104 	priv->can.do_set_mode = mcp251xfd_set_mode;
2105 	priv->can.do_get_berr_counter = mcp251xfd_get_berr_counter;
2106 	priv->can.bittiming_const = &mcp251xfd_bittiming_const;
2107 	priv->can.fd.data_bittiming_const = &mcp251xfd_data_bittiming_const;
2108 	priv->can.fd.tdc_const = &mcp251xfd_tdc_const;
2109 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
2110 		CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_BERR_REPORTING |
2111 		CAN_CTRLMODE_FD | CAN_CTRLMODE_FD_NON_ISO |
2112 		CAN_CTRLMODE_CC_LEN8_DLC | CAN_CTRLMODE_TDC_AUTO |
2113 		CAN_CTRLMODE_TDC_MANUAL;
2114 	set_bit(MCP251XFD_FLAGS_DOWN, priv->flags);
2115 	priv->ndev = ndev;
2116 	priv->spi = spi;
2117 	priv->rx_int = rx_int;
2118 	priv->clk = clk;
2119 	priv->pll_enable = pll_enable;
2120 	priv->reg_vdd = reg_vdd;
2121 	priv->reg_xceiver = reg_xceiver;
2122 	priv->devtype_data = *(struct mcp251xfd_devtype_data *)spi_get_device_match_data(spi);
2123 
2124 	/* Errata Reference:
2125 	 * mcp2517fd: DS80000792C 5., mcp2518fd: DS80000789E 4.,
2126 	 * mcp251863: DS80000984A 4.
2127 	 *
2128 	 * The SPI can write corrupted data to the RAM at fast SPI
2129 	 * speeds:
2130 	 *
2131 	 * Simultaneous activity on the CAN bus while writing data to
2132 	 * RAM via the SPI interface, with high SCK frequency, can
2133 	 * lead to corrupted data being written to RAM.
2134 	 *
2135 	 * Fix/Work Around:
2136 	 * Ensure that FSCK is less than or equal to 0.85 *
2137 	 * (FSYSCLK/2).
2138 	 *
2139 	 * Known good combinations are:
2140 	 *
2141 	 * MCP	ext-clk	SoC			SPI			SPI-clk		max-clk	parent-clk	config
2142 	 *
2143 	 * 2518	20 MHz	allwinner,sun8i-h3	allwinner,sun8i-h3-spi	 8333333 Hz	 83.33%	600000000 Hz	assigned-clocks = <&ccu CLK_SPIx>
2144 	 * 2518	40 MHz	allwinner,sun8i-h3	allwinner,sun8i-h3-spi	16666667 Hz	 83.33%	600000000 Hz	assigned-clocks = <&ccu CLK_SPIx>
2145 	 * 2517	40 MHz	atmel,sama5d27		atmel,at91rm9200-spi	16400000 Hz	 82.00%	 82000000 Hz	default
2146 	 * 2518	40 MHz	atmel,sama5d27		atmel,at91rm9200-spi	16400000 Hz	 82.00%	 82000000 Hz	default
2147 	 * 2518	40 MHz	fsl,imx6dl		fsl,imx51-ecspi		15000000 Hz	 75.00%	 30000000 Hz	default
2148 	 * 2517	20 MHz	fsl,imx8mm		fsl,imx51-ecspi		 8333333 Hz	 83.33%	 16666667 Hz	assigned-clocks = <&clk IMX8MM_CLK_ECSPIx_ROOT>
2149 	 *
2150 	 */
2151 	priv->spi_max_speed_hz_orig = spi->max_speed_hz;
2152 	priv->spi_max_speed_hz_slow = min(spi->max_speed_hz,
2153 					  freq / 2 / 1000 * 850);
2154 	if (priv->pll_enable)
2155 		priv->spi_max_speed_hz_fast = min(spi->max_speed_hz,
2156 						  freq *
2157 						  MCP251XFD_OSC_PLL_MULTIPLIER /
2158 						  2 / 1000 * 850);
2159 	else
2160 		priv->spi_max_speed_hz_fast = priv->spi_max_speed_hz_slow;
2161 	spi->max_speed_hz = priv->spi_max_speed_hz_slow;
2162 	spi->bits_per_word = 8;
2163 	spi->rt = true;
2164 	err = spi_setup(spi);
2165 	if (err)
2166 		goto out_free_candev;
2167 
2168 	err = mcp251xfd_regmap_init(priv);
2169 	if (err)
2170 		goto out_free_candev;
2171 
2172 	err = can_rx_offload_add_manual(ndev, &priv->offload,
2173 					MCP251XFD_NAPI_WEIGHT);
2174 	if (err)
2175 		goto out_free_candev;
2176 
2177 	err = mcp251xfd_register(priv);
2178 	if (err) {
2179 		dev_err_probe(&spi->dev, err, "Failed to detect %s.\n",
2180 			      mcp251xfd_get_model_str(priv));
2181 		goto out_can_rx_offload_del;
2182 	}
2183 
2184 	return 0;
2185 
2186 out_can_rx_offload_del:
2187 	can_rx_offload_del(&priv->offload);
2188 out_free_candev:
2189 	spi->max_speed_hz = priv->spi_max_speed_hz_orig;
2190 
2191 	free_candev(ndev);
2192 
2193 	return err;
2194 }
2195 
mcp251xfd_remove(struct spi_device * spi)2196 static void mcp251xfd_remove(struct spi_device *spi)
2197 {
2198 	struct mcp251xfd_priv *priv = spi_get_drvdata(spi);
2199 	struct net_device *ndev = priv->ndev;
2200 
2201 	mcp251xfd_unregister(priv);
2202 	can_rx_offload_del(&priv->offload);
2203 	spi->max_speed_hz = priv->spi_max_speed_hz_orig;
2204 	free_candev(ndev);
2205 }
2206 
mcp251xfd_runtime_suspend(struct device * device)2207 static int __maybe_unused mcp251xfd_runtime_suspend(struct device *device)
2208 {
2209 	const struct mcp251xfd_priv *priv = dev_get_drvdata(device);
2210 
2211 	return mcp251xfd_clks_and_vdd_disable(priv);
2212 }
2213 
mcp251xfd_runtime_resume(struct device * device)2214 static int __maybe_unused mcp251xfd_runtime_resume(struct device *device)
2215 {
2216 	const struct mcp251xfd_priv *priv = dev_get_drvdata(device);
2217 
2218 	return mcp251xfd_clks_and_vdd_enable(priv);
2219 }
2220 
2221 static const struct dev_pm_ops mcp251xfd_pm_ops = {
2222 	SET_RUNTIME_PM_OPS(mcp251xfd_runtime_suspend,
2223 			   mcp251xfd_runtime_resume, NULL)
2224 };
2225 
2226 static struct spi_driver mcp251xfd_driver = {
2227 	.driver = {
2228 		.name = DEVICE_NAME,
2229 		.pm = &mcp251xfd_pm_ops,
2230 		.of_match_table = mcp251xfd_of_match,
2231 	},
2232 	.probe = mcp251xfd_probe,
2233 	.remove = mcp251xfd_remove,
2234 	.id_table = mcp251xfd_id_table,
2235 };
2236 module_spi_driver(mcp251xfd_driver);
2237 
2238 MODULE_AUTHOR("Marc Kleine-Budde <mkl@pengutronix.de>");
2239 MODULE_DESCRIPTION("Microchip MCP251xFD Family CAN controller driver");
2240 MODULE_LICENSE("GPL v2");
2241