1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Machine check handler.
4 *
5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6 * Rest from unknown author(s).
7 * 2004 Andi Kleen. Rewrote most of it.
8 * Copyright 2008 Intel Corporation
9 * Author: Andi Kleen
10 */
11
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 #include <linux/kexec.h>
48
49 #include <asm/fred.h>
50 #include <asm/cpu_device_id.h>
51 #include <asm/processor.h>
52 #include <asm/traps.h>
53 #include <asm/tlbflush.h>
54 #include <asm/mce.h>
55 #include <asm/msr.h>
56 #include <asm/reboot.h>
57 #include <asm/tdx.h>
58
59 #include "internal.h"
60
61 /* sysfs synchronization */
62 static DEFINE_MUTEX(mce_sysfs_mutex);
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/mce.h>
66
67 #define SPINUNIT 100 /* 100ns */
68
69 DEFINE_PER_CPU(unsigned, mce_exception_count);
70
71 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
72
73 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
74
75 #define ATTR_LEN 16
76 /* One object for each MCE bank, shared by all CPUs */
77 struct mce_bank_dev {
78 struct device_attribute attr; /* device attribute */
79 char attrname[ATTR_LEN]; /* attribute name */
80 u8 bank; /* bank number */
81 };
82 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
83
84 struct mce_vendor_flags mce_flags __read_mostly;
85
86 struct mca_config mca_cfg __read_mostly = {
87 .bootlog = -1,
88 .monarch_timeout = -1
89 };
90
91 static DEFINE_PER_CPU(struct mce_hw_err, hw_errs_seen);
92 static unsigned long mce_need_notify;
93
94 /*
95 * MCA banks polled by the period polling timer for corrected events.
96 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
97 */
98 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
99 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
100 };
101
102 /*
103 * MCA banks controlled through firmware first for corrected errors.
104 * This is a global list of banks for which we won't enable CMCI and we
105 * won't poll. Firmware controls these banks and is responsible for
106 * reporting corrected errors through GHES. Uncorrected/recoverable
107 * errors are still notified through a machine check.
108 */
109 mce_banks_t mce_banks_ce_disabled;
110
111 static struct work_struct mce_work;
112 static struct irq_work mce_irq_work;
113
114 /*
115 * CPU/chipset specific EDAC code can register a notifier call here to print
116 * MCE errors in a human-readable form.
117 */
118 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
119
mce_prep_record_common(struct mce * m)120 void mce_prep_record_common(struct mce *m)
121 {
122 m->cpuid = cpuid_eax(1);
123 m->cpuvendor = boot_cpu_data.x86_vendor;
124 m->mcgcap = native_rdmsrq(MSR_IA32_MCG_CAP);
125 /* need the internal __ version to avoid deadlocks */
126 m->time = __ktime_get_real_seconds();
127 }
128
mce_prep_record_per_cpu(unsigned int cpu,struct mce * m)129 void mce_prep_record_per_cpu(unsigned int cpu, struct mce *m)
130 {
131 m->cpu = cpu;
132 m->extcpu = cpu;
133 m->apicid = cpu_data(cpu).topo.initial_apicid;
134 m->microcode = cpu_data(cpu).microcode;
135 m->ppin = topology_ppin(cpu);
136 m->socketid = topology_physical_package_id(cpu);
137 }
138
139 /* Do initial initialization of struct mce_hw_err */
mce_prep_record(struct mce_hw_err * err)140 void mce_prep_record(struct mce_hw_err *err)
141 {
142 struct mce *m = &err->m;
143
144 memset(err, 0, sizeof(struct mce_hw_err));
145 mce_prep_record_common(m);
146 mce_prep_record_per_cpu(smp_processor_id(), m);
147 }
148
149 DEFINE_PER_CPU(struct mce, injectm);
150 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
151
mce_log(struct mce_hw_err * err)152 void mce_log(struct mce_hw_err *err)
153 {
154 if (mce_gen_pool_add(err))
155 irq_work_queue(&mce_irq_work);
156 }
157 EXPORT_SYMBOL_GPL(mce_log);
158
mce_register_decode_chain(struct notifier_block * nb)159 void mce_register_decode_chain(struct notifier_block *nb)
160 {
161 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
162 nb->priority > MCE_PRIO_HIGHEST))
163 return;
164
165 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
166 }
167 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
168
mce_unregister_decode_chain(struct notifier_block * nb)169 void mce_unregister_decode_chain(struct notifier_block *nb)
170 {
171 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
172 }
173 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
174
__print_mce(struct mce_hw_err * err)175 static void __print_mce(struct mce_hw_err *err)
176 {
177 struct mce *m = &err->m;
178
179 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
180 m->extcpu,
181 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
182 m->mcgstatus, m->bank, m->status);
183
184 if (m->ip) {
185 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
186 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
187 m->cs, m->ip);
188
189 if (m->cs == __KERNEL_CS)
190 pr_cont("{%pS}", (void *)(unsigned long)m->ip);
191 pr_cont("\n");
192 }
193
194 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
195 if (m->addr)
196 pr_cont("ADDR %llx ", m->addr);
197 if (m->misc)
198 pr_cont("MISC %llx ", m->misc);
199 if (m->ppin)
200 pr_cont("PPIN %llx ", m->ppin);
201
202 if (mce_flags.smca) {
203 if (m->synd)
204 pr_cont("SYND %llx ", m->synd);
205 if (err->vendor.amd.synd1)
206 pr_cont("SYND1 %llx ", err->vendor.amd.synd1);
207 if (err->vendor.amd.synd2)
208 pr_cont("SYND2 %llx ", err->vendor.amd.synd2);
209 if (m->ipid)
210 pr_cont("IPID %llx ", m->ipid);
211 }
212
213 pr_cont("\n");
214
215 /*
216 * Note this output is parsed by external tools and old fields
217 * should not be changed.
218 */
219 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
220 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
221 m->microcode);
222 }
223
print_mce(struct mce_hw_err * err)224 static void print_mce(struct mce_hw_err *err)
225 {
226 struct mce *m = &err->m;
227
228 __print_mce(err);
229
230 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
231 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
232 }
233
234 #define PANIC_TIMEOUT 5 /* 5 seconds */
235
236 static atomic_t mce_panicked;
237
238 static int fake_panic;
239 static atomic_t mce_fake_panicked;
240
241 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)242 static void wait_for_panic(void)
243 {
244 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
245
246 preempt_disable();
247 local_irq_enable();
248 while (timeout-- > 0)
249 udelay(1);
250 if (panic_timeout == 0)
251 panic_timeout = mca_cfg.panic_timeout;
252 panic("Panicing machine check CPU died");
253 }
254
mce_dump_aux_info(struct mce * m)255 static const char *mce_dump_aux_info(struct mce *m)
256 {
257 if (boot_cpu_has_bug(X86_BUG_TDX_PW_MCE))
258 return tdx_dump_mce_info(m);
259
260 return NULL;
261 }
262
mce_panic(const char * msg,struct mce_hw_err * final,char * exp)263 static noinstr void mce_panic(const char *msg, struct mce_hw_err *final, char *exp)
264 {
265 struct llist_node *pending;
266 struct mce_evt_llist *l;
267 int apei_err = 0;
268 const char *memmsg;
269
270 /*
271 * Allow instrumentation around external facilities usage. Not that it
272 * matters a whole lot since the machine is going to panic anyway.
273 */
274 instrumentation_begin();
275
276 if (!fake_panic) {
277 /*
278 * Make sure only one CPU runs in machine check panic
279 */
280 if (atomic_inc_return(&mce_panicked) > 1)
281 wait_for_panic();
282 barrier();
283
284 bust_spinlocks(1);
285 console_verbose();
286 } else {
287 /* Don't log too much for fake panic */
288 if (atomic_inc_return(&mce_fake_panicked) > 1)
289 goto out;
290 }
291 pending = mce_gen_pool_prepare_records();
292 /* First print corrected ones that are still unlogged */
293 llist_for_each_entry(l, pending, llnode) {
294 struct mce_hw_err *err = &l->err;
295 struct mce *m = &err->m;
296 if (!(m->status & MCI_STATUS_UC)) {
297 print_mce(err);
298 if (!apei_err)
299 apei_err = apei_write_mce(m);
300 }
301 }
302 /* Now print uncorrected but with the final one last */
303 llist_for_each_entry(l, pending, llnode) {
304 struct mce_hw_err *err = &l->err;
305 struct mce *m = &err->m;
306 if (!(m->status & MCI_STATUS_UC))
307 continue;
308 if (!final || mce_cmp(m, &final->m)) {
309 print_mce(err);
310 if (!apei_err)
311 apei_err = apei_write_mce(m);
312 }
313 }
314 if (final) {
315 print_mce(final);
316 if (!apei_err)
317 apei_err = apei_write_mce(&final->m);
318 }
319 if (exp)
320 pr_emerg(HW_ERR "Machine check: %s\n", exp);
321
322 memmsg = mce_dump_aux_info(&final->m);
323 if (memmsg)
324 pr_emerg(HW_ERR "Machine check: %s\n", memmsg);
325
326 if (!fake_panic) {
327 if (panic_timeout == 0)
328 panic_timeout = mca_cfg.panic_timeout;
329
330 /*
331 * Kdump skips the poisoned page in order to avoid
332 * touching the error bits again. Poison the page even
333 * if the error is fatal and the machine is about to
334 * panic.
335 */
336 if (kexec_crash_loaded()) {
337 if (final && (final->m.status & MCI_STATUS_ADDRV)) {
338 struct page *p;
339 p = pfn_to_online_page(final->m.addr >> PAGE_SHIFT);
340 if (p)
341 SetPageHWPoison(p);
342 }
343 }
344 panic(msg);
345 } else
346 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
347
348 out:
349 instrumentation_end();
350 }
351
352 /* Support code for software error injection */
353
msr_to_offset(u32 msr)354 static int msr_to_offset(u32 msr)
355 {
356 unsigned bank = __this_cpu_read(injectm.bank);
357
358 if (msr == mca_cfg.rip_msr)
359 return offsetof(struct mce, ip);
360 if (msr == mca_msr_reg(bank, MCA_STATUS))
361 return offsetof(struct mce, status);
362 if (msr == mca_msr_reg(bank, MCA_ADDR))
363 return offsetof(struct mce, addr);
364 if (msr == mca_msr_reg(bank, MCA_MISC))
365 return offsetof(struct mce, misc);
366 if (msr == MSR_IA32_MCG_STATUS)
367 return offsetof(struct mce, mcgstatus);
368 return -1;
369 }
370
ex_handler_msr_mce(struct pt_regs * regs,bool wrmsr)371 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
372 {
373 if (wrmsr) {
374 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
375 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
376 regs->ip, (void *)regs->ip);
377 } else {
378 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
379 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
380 }
381
382 show_stack_regs(regs);
383
384 panic("MCA architectural violation!\n");
385
386 while (true)
387 cpu_relax();
388 }
389
390 /* MSR access wrappers used for error injection */
mce_rdmsrq(u32 msr)391 noinstr u64 mce_rdmsrq(u32 msr)
392 {
393 EAX_EDX_DECLARE_ARGS(val, low, high);
394
395 if (__this_cpu_read(injectm.finished)) {
396 int offset;
397 u64 ret;
398
399 instrumentation_begin();
400
401 offset = msr_to_offset(msr);
402 if (offset < 0)
403 ret = 0;
404 else
405 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
406
407 instrumentation_end();
408
409 return ret;
410 }
411
412 /*
413 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
414 * architectural violation and needs to be reported to hw vendor. Panic
415 * the box to not allow any further progress.
416 */
417 asm volatile("1: rdmsr\n"
418 "2:\n"
419 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
420 : EAX_EDX_RET(val, low, high) : "c" (msr));
421
422
423 return EAX_EDX_VAL(val, low, high);
424 }
425
mce_wrmsrq(u32 msr,u64 v)426 noinstr void mce_wrmsrq(u32 msr, u64 v)
427 {
428 u32 low, high;
429
430 if (__this_cpu_read(injectm.finished)) {
431 int offset;
432
433 instrumentation_begin();
434
435 offset = msr_to_offset(msr);
436 if (offset >= 0)
437 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
438
439 instrumentation_end();
440
441 return;
442 }
443
444 low = (u32)v;
445 high = (u32)(v >> 32);
446
447 /* See comment in mce_rdmsrq() */
448 asm volatile("1: wrmsr\n"
449 "2:\n"
450 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
451 : : "c" (msr), "a"(low), "d" (high) : "memory");
452 }
453
454 /*
455 * Collect all global (w.r.t. this processor) status about this machine
456 * check into our "mce" struct so that we can use it later to assess
457 * the severity of the problem as we read per-bank specific details.
458 */
mce_gather_info(struct mce_hw_err * err,struct pt_regs * regs)459 static noinstr void mce_gather_info(struct mce_hw_err *err, struct pt_regs *regs)
460 {
461 struct mce *m;
462 /*
463 * Enable instrumentation around mce_prep_record() which calls external
464 * facilities.
465 */
466 instrumentation_begin();
467 mce_prep_record(err);
468 instrumentation_end();
469
470 m = &err->m;
471 m->mcgstatus = mce_rdmsrq(MSR_IA32_MCG_STATUS);
472 if (regs) {
473 /*
474 * Get the address of the instruction at the time of
475 * the machine check error.
476 */
477 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
478 m->ip = regs->ip;
479 m->cs = regs->cs;
480
481 /*
482 * When in VM86 mode make the cs look like ring 3
483 * always. This is a lie, but it's better than passing
484 * the additional vm86 bit around everywhere.
485 */
486 if (v8086_mode(regs))
487 m->cs |= 3;
488 }
489 /* Use accurate RIP reporting if available. */
490 if (mca_cfg.rip_msr)
491 m->ip = mce_rdmsrq(mca_cfg.rip_msr);
492 }
493 }
494
mce_available(struct cpuinfo_x86 * c)495 bool mce_available(struct cpuinfo_x86 *c)
496 {
497 if (mca_cfg.disabled)
498 return false;
499 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
500 }
501
mce_schedule_work(void)502 static void mce_schedule_work(void)
503 {
504 if (!mce_gen_pool_empty())
505 schedule_work(&mce_work);
506 }
507
mce_irq_work_cb(struct irq_work * entry)508 static void mce_irq_work_cb(struct irq_work *entry)
509 {
510 mce_schedule_work();
511 }
512
mce_usable_address(struct mce * m)513 bool mce_usable_address(struct mce *m)
514 {
515 if (!(m->status & MCI_STATUS_ADDRV))
516 return false;
517
518 switch (m->cpuvendor) {
519 case X86_VENDOR_AMD:
520 return amd_mce_usable_address(m);
521
522 case X86_VENDOR_INTEL:
523 case X86_VENDOR_ZHAOXIN:
524 return intel_mce_usable_address(m);
525
526 default:
527 return true;
528 }
529 }
530 EXPORT_SYMBOL_GPL(mce_usable_address);
531
mce_is_memory_error(struct mce * m)532 bool mce_is_memory_error(struct mce *m)
533 {
534 switch (m->cpuvendor) {
535 case X86_VENDOR_AMD:
536 case X86_VENDOR_HYGON:
537 return amd_mce_is_memory_error(m);
538
539 case X86_VENDOR_INTEL:
540 case X86_VENDOR_ZHAOXIN:
541 /*
542 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
543 *
544 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
545 * indicating a memory error. Bit 8 is used for indicating a
546 * cache hierarchy error. The combination of bit 2 and bit 3
547 * is used for indicating a `generic' cache hierarchy error
548 * But we can't just blindly check the above bits, because if
549 * bit 11 is set, then it is a bus/interconnect error - and
550 * either way the above bits just gives more detail on what
551 * bus/interconnect error happened. Note that bit 12 can be
552 * ignored, as it's the "filter" bit.
553 */
554 return (m->status & 0xef80) == BIT(7) ||
555 (m->status & 0xef00) == BIT(8) ||
556 (m->status & 0xeffc) == 0xc;
557
558 default:
559 return false;
560 }
561 }
562 EXPORT_SYMBOL_GPL(mce_is_memory_error);
563
whole_page(struct mce * m)564 static bool whole_page(struct mce *m)
565 {
566 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
567 return true;
568
569 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
570 }
571
mce_is_correctable(struct mce * m)572 bool mce_is_correctable(struct mce *m)
573 {
574 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
575 return false;
576
577 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
578 return false;
579
580 if (m->status & MCI_STATUS_UC)
581 return false;
582
583 return true;
584 }
585 EXPORT_SYMBOL_GPL(mce_is_correctable);
586
587 /*
588 * Notify the user(s) about new machine check events.
589 * Can be called from interrupt context, but not from machine check/NMI
590 * context.
591 */
mce_notify_irq(void)592 static bool mce_notify_irq(void)
593 {
594 /* Not more than two messages every minute */
595 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
596
597 if (test_and_clear_bit(0, &mce_need_notify)) {
598 mce_work_trigger();
599
600 if (__ratelimit(&ratelimit))
601 pr_info(HW_ERR "Machine check events logged\n");
602
603 return true;
604 }
605
606 return false;
607 }
608
mce_early_notifier(struct notifier_block * nb,unsigned long val,void * data)609 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
610 void *data)
611 {
612 struct mce_hw_err *err = to_mce_hw_err(data);
613
614 if (!err)
615 return NOTIFY_DONE;
616
617 /* Emit the trace record: */
618 trace_mce_record(err);
619
620 set_bit(0, &mce_need_notify);
621
622 mce_notify_irq();
623
624 return NOTIFY_DONE;
625 }
626
627 static struct notifier_block early_nb = {
628 .notifier_call = mce_early_notifier,
629 .priority = MCE_PRIO_EARLY,
630 };
631
uc_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)632 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
633 void *data)
634 {
635 struct mce *mce = (struct mce *)data;
636 unsigned long pfn;
637
638 if (!mce || !mce_usable_address(mce))
639 return NOTIFY_DONE;
640
641 if (mce->severity != MCE_AO_SEVERITY &&
642 mce->severity != MCE_DEFERRED_SEVERITY)
643 return NOTIFY_DONE;
644
645 pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
646 if (!memory_failure(pfn, 0)) {
647 set_mce_nospec(pfn);
648 mce->kflags |= MCE_HANDLED_UC;
649 }
650
651 return NOTIFY_OK;
652 }
653
654 static struct notifier_block mce_uc_nb = {
655 .notifier_call = uc_decode_notifier,
656 .priority = MCE_PRIO_UC,
657 };
658
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)659 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
660 void *data)
661 {
662 struct mce_hw_err *err = to_mce_hw_err(data);
663
664 if (!err)
665 return NOTIFY_DONE;
666
667 if (mca_cfg.print_all || !(err->m.kflags))
668 __print_mce(err);
669
670 return NOTIFY_DONE;
671 }
672
673 static struct notifier_block mce_default_nb = {
674 .notifier_call = mce_default_notifier,
675 /* lowest prio, we want it to run last. */
676 .priority = MCE_PRIO_LOWEST,
677 };
678
679 /*
680 * Read ADDR and MISC registers.
681 */
mce_read_aux(struct mce_hw_err * err,int i)682 static noinstr void mce_read_aux(struct mce_hw_err *err, int i)
683 {
684 struct mce *m = &err->m;
685
686 if (m->status & MCI_STATUS_MISCV)
687 m->misc = mce_rdmsrq(mca_msr_reg(i, MCA_MISC));
688
689 if (m->status & MCI_STATUS_ADDRV) {
690 m->addr = mce_rdmsrq(mca_msr_reg(i, MCA_ADDR));
691
692 /*
693 * Mask the reported address by the reported granularity.
694 */
695 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
696 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
697 m->addr >>= shift;
698 m->addr <<= shift;
699 }
700
701 smca_extract_err_addr(m);
702 }
703
704 if (mce_flags.smca) {
705 m->ipid = mce_rdmsrq(MSR_AMD64_SMCA_MCx_IPID(i));
706
707 if (m->status & MCI_STATUS_SYNDV) {
708 m->synd = mce_rdmsrq(MSR_AMD64_SMCA_MCx_SYND(i));
709 err->vendor.amd.synd1 = mce_rdmsrq(MSR_AMD64_SMCA_MCx_SYND1(i));
710 err->vendor.amd.synd2 = mce_rdmsrq(MSR_AMD64_SMCA_MCx_SYND2(i));
711 }
712 }
713 }
714
715 DEFINE_PER_CPU(unsigned, mce_poll_count);
716
717 /*
718 * Newer Intel systems that support software error
719 * recovery need to make additional checks. Other
720 * CPUs should skip over uncorrected errors, but log
721 * everything else.
722 */
ser_should_log_poll_error(struct mce * m)723 static bool ser_should_log_poll_error(struct mce *m)
724 {
725 /* Log "not enabled" (speculative) errors */
726 if (!(m->status & MCI_STATUS_EN))
727 return true;
728
729 /*
730 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
731 * UC == 1 && PCC == 0 && S == 0
732 */
733 if (!(m->status & MCI_STATUS_PCC) && !(m->status & MCI_STATUS_S))
734 return true;
735
736 return false;
737 }
738
should_log_poll_error(enum mcp_flags flags,struct mce_hw_err * err)739 static bool should_log_poll_error(enum mcp_flags flags, struct mce_hw_err *err)
740 {
741 struct mce *m = &err->m;
742
743 /* If this entry is not valid, ignore it. */
744 if (!(m->status & MCI_STATUS_VAL))
745 return false;
746
747 /*
748 * If we are logging everything (at CPU online) or this
749 * is a corrected error, then we must log it.
750 */
751 if ((flags & MCP_UC) || !(m->status & MCI_STATUS_UC))
752 return true;
753
754 if (mca_cfg.ser)
755 return ser_should_log_poll_error(m);
756
757 if (m->status & MCI_STATUS_UC)
758 return false;
759
760 return true;
761 }
762
clear_bank(struct mce * m)763 static void clear_bank(struct mce *m)
764 {
765 if (m->cpuvendor == X86_VENDOR_AMD)
766 return amd_clear_bank(m);
767
768 mce_wrmsrq(mca_msr_reg(m->bank, MCA_STATUS), 0);
769 }
770
771 /*
772 * Poll for corrected events or events that happened before reset.
773 * Those are just logged through /dev/mcelog.
774 *
775 * This is executed in standard interrupt context.
776 *
777 * Note: spec recommends to panic for fatal unsignalled
778 * errors here. However this would be quite problematic --
779 * we would need to reimplement the Monarch handling and
780 * it would mess up the exclusion between exception handler
781 * and poll handler -- * so we skip this for now.
782 * These cases should not happen anyways, or only when the CPU
783 * is already totally * confused. In this case it's likely it will
784 * not fully execute the machine check handler either.
785 */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)786 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
787 {
788 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
789 struct mce_hw_err err;
790 struct mce *m;
791 int i;
792
793 this_cpu_inc(mce_poll_count);
794
795 mce_gather_info(&err, NULL);
796 m = &err.m;
797
798 if (flags & MCP_TIMESTAMP)
799 m->tsc = rdtsc();
800
801 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
802 if (!mce_banks[i].ctl || !test_bit(i, *b))
803 continue;
804
805 m->misc = 0;
806 m->addr = 0;
807 m->bank = i;
808
809 barrier();
810 m->status = mce_rdmsrq(mca_msr_reg(i, MCA_STATUS));
811
812 /*
813 * Update storm tracking here, before checking for the
814 * MCI_STATUS_VAL bit. Valid corrected errors count
815 * towards declaring, or maintaining, storm status. No
816 * error in a bank counts towards avoiding, or ending,
817 * storm status.
818 */
819 if (!mca_cfg.cmci_disabled)
820 mce_track_storm(m);
821
822 /* Verify that the error should be logged based on hardware conditions. */
823 if (!should_log_poll_error(flags, &err))
824 continue;
825
826 mce_read_aux(&err, i);
827 m->severity = mce_severity(m, NULL, NULL, false);
828 /*
829 * Don't get the IP here because it's unlikely to
830 * have anything to do with the actual error location.
831 */
832
833 if (mca_cfg.dont_log_ce && !mce_usable_address(m))
834 goto clear_it;
835
836 if (flags & MCP_QUEUE_LOG)
837 mce_gen_pool_add(&err);
838 else
839 mce_log(&err);
840
841 clear_it:
842 clear_bank(m);
843 }
844
845 /*
846 * Don't clear MCG_STATUS here because it's only defined for
847 * exceptions.
848 */
849
850 sync_core();
851 }
852 EXPORT_SYMBOL_GPL(machine_check_poll);
853
854 /*
855 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
856 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
857 * Vol 3B Table 15-20). But this confuses both the code that determines
858 * whether the machine check occurred in kernel or user mode, and also
859 * the severity assessment code. Pretend that EIPV was set, and take the
860 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
861 */
862 static __always_inline void
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)863 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
864 {
865 if (bank != 0)
866 return;
867 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
868 return;
869 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
870 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
871 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
872 MCACOD)) !=
873 (MCI_STATUS_UC|MCI_STATUS_EN|
874 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
875 MCI_STATUS_AR|MCACOD_INSTR))
876 return;
877
878 m->mcgstatus |= MCG_STATUS_EIPV;
879 m->ip = regs->ip;
880 m->cs = regs->cs;
881 }
882
883 /*
884 * Disable fast string copy and return from the MCE handler upon the first SRAR
885 * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake
886 * CPUs.
887 * The fast string copy instructions ("REP; MOVS*") could consume an
888 * uncorrectable memory error in the cache line _right after_ the desired region
889 * to copy and raise an MCE with RIP pointing to the instruction _after_ the
890 * "REP; MOVS*".
891 * This mitigation addresses the issue completely with the caveat of performance
892 * degradation on the CPU affected. This is still better than the OS crashing on
893 * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a
894 * kernel context (e.g., copy_page).
895 *
896 * Returns true when fast string copy on CPU has been disabled.
897 */
quirk_skylake_repmov(void)898 static noinstr bool quirk_skylake_repmov(void)
899 {
900 u64 mcgstatus = mce_rdmsrq(MSR_IA32_MCG_STATUS);
901 u64 misc_enable = mce_rdmsrq(MSR_IA32_MISC_ENABLE);
902 u64 mc1_status;
903
904 /*
905 * Apply the quirk only to local machine checks, i.e., no broadcast
906 * sync is needed.
907 */
908 if (!(mcgstatus & MCG_STATUS_LMCES) ||
909 !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
910 return false;
911
912 mc1_status = mce_rdmsrq(MSR_IA32_MCx_STATUS(1));
913
914 /* Check for a software-recoverable data fetch error. */
915 if ((mc1_status &
916 (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
917 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
918 MCI_STATUS_AR | MCI_STATUS_S)) ==
919 (MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
920 MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
921 MCI_STATUS_AR | MCI_STATUS_S)) {
922 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
923 mce_wrmsrq(MSR_IA32_MISC_ENABLE, misc_enable);
924 mce_wrmsrq(MSR_IA32_MCx_STATUS(1), 0);
925
926 instrumentation_begin();
927 pr_err_once("Erratum detected, disable fast string copy instructions.\n");
928 instrumentation_end();
929
930 return true;
931 }
932
933 return false;
934 }
935
936 /*
937 * Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption
938 * errors. This means mce_gather_info() will not save the "ip" and "cs" registers.
939 *
940 * However, the context is still valid, so save the "cs" register for later use.
941 *
942 * The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV.
943 *
944 * The Instruction Fetch Unit is at MCA bank 1 for all affected systems.
945 */
quirk_zen_ifu(int bank,struct mce * m,struct pt_regs * regs)946 static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs)
947 {
948 if (bank != 1)
949 return;
950 if (!(m->status & MCI_STATUS_POISON))
951 return;
952
953 m->cs = regs->cs;
954 }
955
956 /*
957 * Do a quick check if any of the events requires a panic.
958 * This decides if we keep the events around or clear them.
959 */
mce_no_way_out(struct mce_hw_err * err,char ** msg,unsigned long * validp,struct pt_regs * regs)960 static __always_inline int mce_no_way_out(struct mce_hw_err *err, char **msg, unsigned long *validp,
961 struct pt_regs *regs)
962 {
963 struct mce *m = &err->m;
964 char *tmp = *msg;
965 int i;
966
967 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
968 m->status = mce_rdmsrq(mca_msr_reg(i, MCA_STATUS));
969 if (!(m->status & MCI_STATUS_VAL))
970 continue;
971
972 arch___set_bit(i, validp);
973 if (mce_flags.snb_ifu_quirk)
974 quirk_sandybridge_ifu(i, m, regs);
975
976 if (mce_flags.zen_ifu_quirk)
977 quirk_zen_ifu(i, m, regs);
978
979 m->bank = i;
980 if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
981 mce_read_aux(err, i);
982 *msg = tmp;
983 return 1;
984 }
985 }
986 return 0;
987 }
988
989 /*
990 * Variable to establish order between CPUs while scanning.
991 * Each CPU spins initially until executing is equal its number.
992 */
993 static atomic_t mce_executing;
994
995 /*
996 * Defines order of CPUs on entry. First CPU becomes Monarch.
997 */
998 static atomic_t mce_callin;
999
1000 /*
1001 * Track which CPUs entered the MCA broadcast synchronization and which not in
1002 * order to print holdouts.
1003 */
1004 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
1005
1006 /*
1007 * Check if a timeout waiting for other CPUs happened.
1008 */
mce_timed_out(u64 * t,const char * msg)1009 static noinstr int mce_timed_out(u64 *t, const char *msg)
1010 {
1011 int ret = 0;
1012
1013 /* Enable instrumentation around calls to external facilities */
1014 instrumentation_begin();
1015
1016 /*
1017 * The others already did panic for some reason.
1018 * Bail out like in a timeout.
1019 * rmb() to tell the compiler that system_state
1020 * might have been modified by someone else.
1021 */
1022 rmb();
1023 if (atomic_read(&mce_panicked))
1024 wait_for_panic();
1025 if (!mca_cfg.monarch_timeout)
1026 goto out;
1027 if ((s64)*t < SPINUNIT) {
1028 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
1029 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
1030 cpumask_pr_args(&mce_missing_cpus));
1031 mce_panic(msg, NULL, NULL);
1032
1033 ret = 1;
1034 goto out;
1035 }
1036 *t -= SPINUNIT;
1037
1038 out:
1039 touch_nmi_watchdog();
1040
1041 instrumentation_end();
1042
1043 return ret;
1044 }
1045
1046 /*
1047 * The Monarch's reign. The Monarch is the CPU who entered
1048 * the machine check handler first. It waits for the others to
1049 * raise the exception too and then grades them. When any
1050 * error is fatal panic. Only then let the others continue.
1051 *
1052 * The other CPUs entering the MCE handler will be controlled by the
1053 * Monarch. They are called Subjects.
1054 *
1055 * This way we prevent any potential data corruption in a unrecoverable case
1056 * and also makes sure always all CPU's errors are examined.
1057 *
1058 * Also this detects the case of a machine check event coming from outer
1059 * space (not detected by any CPUs) In this case some external agent wants
1060 * us to shut down, so panic too.
1061 *
1062 * The other CPUs might still decide to panic if the handler happens
1063 * in a unrecoverable place, but in this case the system is in a semi-stable
1064 * state and won't corrupt anything by itself. It's ok to let the others
1065 * continue for a bit first.
1066 *
1067 * All the spin loops have timeouts; when a timeout happens a CPU
1068 * typically elects itself to be Monarch.
1069 */
mce_reign(void)1070 static void mce_reign(void)
1071 {
1072 struct mce_hw_err *err = NULL;
1073 struct mce *m = NULL;
1074 int global_worst = 0;
1075 char *msg = NULL;
1076 int cpu;
1077
1078 /*
1079 * This CPU is the Monarch and the other CPUs have run
1080 * through their handlers.
1081 * Grade the severity of the errors of all the CPUs.
1082 */
1083 for_each_possible_cpu(cpu) {
1084 struct mce_hw_err *etmp = &per_cpu(hw_errs_seen, cpu);
1085 struct mce *mtmp = &etmp->m;
1086
1087 if (mtmp->severity > global_worst) {
1088 global_worst = mtmp->severity;
1089 err = &per_cpu(hw_errs_seen, cpu);
1090 m = &err->m;
1091 }
1092 }
1093
1094 /*
1095 * Cannot recover? Panic here then.
1096 * This dumps all the mces in the log buffer and stops the
1097 * other CPUs.
1098 */
1099 if (m && global_worst >= MCE_PANIC_SEVERITY) {
1100 /* call mce_severity() to get "msg" for panic */
1101 mce_severity(m, NULL, &msg, true);
1102 mce_panic("Fatal machine check", err, msg);
1103 }
1104
1105 /*
1106 * For UC somewhere we let the CPU who detects it handle it.
1107 * Also must let continue the others, otherwise the handling
1108 * CPU could deadlock on a lock.
1109 */
1110
1111 /*
1112 * No machine check event found. Must be some external
1113 * source or one CPU is hung. Panic.
1114 */
1115 if (global_worst <= MCE_KEEP_SEVERITY)
1116 mce_panic("Fatal machine check from unknown source", NULL, NULL);
1117
1118 /*
1119 * Now clear all the hw_errs_seen so that they don't reappear on
1120 * the next mce.
1121 */
1122 for_each_possible_cpu(cpu)
1123 memset(&per_cpu(hw_errs_seen, cpu), 0, sizeof(struct mce_hw_err));
1124 }
1125
1126 static atomic_t global_nwo;
1127
1128 /*
1129 * Start of Monarch synchronization. This waits until all CPUs have
1130 * entered the exception handler and then determines if any of them
1131 * saw a fatal event that requires panic. Then it executes them
1132 * in the entry order.
1133 * TBD double check parallel CPU hotunplug
1134 */
mce_start(int * no_way_out)1135 static noinstr int mce_start(int *no_way_out)
1136 {
1137 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1138 int order, ret = -1;
1139
1140 if (!timeout)
1141 return ret;
1142
1143 raw_atomic_add(*no_way_out, &global_nwo);
1144 /*
1145 * Rely on the implied barrier below, such that global_nwo
1146 * is updated before mce_callin.
1147 */
1148 order = raw_atomic_inc_return(&mce_callin);
1149 arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1150
1151 /* Enable instrumentation around calls to external facilities */
1152 instrumentation_begin();
1153
1154 /*
1155 * Wait for everyone.
1156 */
1157 while (raw_atomic_read(&mce_callin) != num_online_cpus()) {
1158 if (mce_timed_out(&timeout,
1159 "Timeout: Not all CPUs entered broadcast exception handler")) {
1160 raw_atomic_set(&global_nwo, 0);
1161 goto out;
1162 }
1163 ndelay(SPINUNIT);
1164 }
1165
1166 /*
1167 * mce_callin should be read before global_nwo
1168 */
1169 smp_rmb();
1170
1171 if (order == 1) {
1172 /*
1173 * Monarch: Starts executing now, the others wait.
1174 */
1175 raw_atomic_set(&mce_executing, 1);
1176 } else {
1177 /*
1178 * Subject: Now start the scanning loop one by one in
1179 * the original callin order.
1180 * This way when there are any shared banks it will be
1181 * only seen by one CPU before cleared, avoiding duplicates.
1182 */
1183 while (raw_atomic_read(&mce_executing) < order) {
1184 if (mce_timed_out(&timeout,
1185 "Timeout: Subject CPUs unable to finish machine check processing")) {
1186 raw_atomic_set(&global_nwo, 0);
1187 goto out;
1188 }
1189 ndelay(SPINUNIT);
1190 }
1191 }
1192
1193 /*
1194 * Cache the global no_way_out state.
1195 */
1196 *no_way_out = raw_atomic_read(&global_nwo);
1197
1198 ret = order;
1199
1200 out:
1201 instrumentation_end();
1202
1203 return ret;
1204 }
1205
1206 /*
1207 * Synchronize between CPUs after main scanning loop.
1208 * This invokes the bulk of the Monarch processing.
1209 */
mce_end(int order)1210 static noinstr int mce_end(int order)
1211 {
1212 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1213 int ret = -1;
1214
1215 /* Allow instrumentation around external facilities. */
1216 instrumentation_begin();
1217
1218 if (!timeout)
1219 goto reset;
1220 if (order < 0)
1221 goto reset;
1222
1223 /*
1224 * Allow others to run.
1225 */
1226 atomic_inc(&mce_executing);
1227
1228 if (order == 1) {
1229 /*
1230 * Monarch: Wait for everyone to go through their scanning
1231 * loops.
1232 */
1233 while (atomic_read(&mce_executing) <= num_online_cpus()) {
1234 if (mce_timed_out(&timeout,
1235 "Timeout: Monarch CPU unable to finish machine check processing"))
1236 goto reset;
1237 ndelay(SPINUNIT);
1238 }
1239
1240 mce_reign();
1241 barrier();
1242 ret = 0;
1243 } else {
1244 /*
1245 * Subject: Wait for Monarch to finish.
1246 */
1247 while (atomic_read(&mce_executing) != 0) {
1248 if (mce_timed_out(&timeout,
1249 "Timeout: Monarch CPU did not finish machine check processing"))
1250 goto reset;
1251 ndelay(SPINUNIT);
1252 }
1253
1254 /*
1255 * Don't reset anything. That's done by the Monarch.
1256 */
1257 ret = 0;
1258 goto out;
1259 }
1260
1261 /*
1262 * Reset all global state.
1263 */
1264 reset:
1265 atomic_set(&global_nwo, 0);
1266 atomic_set(&mce_callin, 0);
1267 cpumask_setall(&mce_missing_cpus);
1268 barrier();
1269
1270 /*
1271 * Let others run again.
1272 */
1273 atomic_set(&mce_executing, 0);
1274
1275 out:
1276 instrumentation_end();
1277
1278 return ret;
1279 }
1280
mce_clear_state(unsigned long * toclear)1281 static __always_inline void mce_clear_state(unsigned long *toclear)
1282 {
1283 int i;
1284
1285 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1286 if (arch_test_bit(i, toclear))
1287 mce_wrmsrq(mca_msr_reg(i, MCA_STATUS), 0);
1288 }
1289 }
1290
1291 /*
1292 * Cases where we avoid rendezvous handler timeout:
1293 * 1) If this CPU is offline.
1294 *
1295 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1296 * skip those CPUs which remain looping in the 1st kernel - see
1297 * crash_nmi_callback().
1298 *
1299 * Note: there still is a small window between kexec-ing and the new,
1300 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1301 * might not get handled properly.
1302 */
mce_check_crashing_cpu(void)1303 static noinstr bool mce_check_crashing_cpu(void)
1304 {
1305 unsigned int cpu = smp_processor_id();
1306
1307 if (arch_cpu_is_offline(cpu) ||
1308 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1309 u64 mcgstatus;
1310
1311 mcgstatus = native_rdmsrq(MSR_IA32_MCG_STATUS);
1312
1313 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1314 if (mcgstatus & MCG_STATUS_LMCES)
1315 return false;
1316 }
1317
1318 if (mcgstatus & MCG_STATUS_RIPV) {
1319 native_wrmsrq(MSR_IA32_MCG_STATUS, 0);
1320 return true;
1321 }
1322 }
1323 return false;
1324 }
1325
1326 static __always_inline int
__mc_scan_banks(struct mce_hw_err * err,struct pt_regs * regs,struct mce_hw_err * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1327 __mc_scan_banks(struct mce_hw_err *err, struct pt_regs *regs,
1328 struct mce_hw_err *final, unsigned long *toclear,
1329 unsigned long *valid_banks, int no_way_out, int *worst)
1330 {
1331 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1332 struct mca_config *cfg = &mca_cfg;
1333 int severity, i, taint = 0;
1334 struct mce *m = &err->m;
1335
1336 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1337 arch___clear_bit(i, toclear);
1338 if (!arch_test_bit(i, valid_banks))
1339 continue;
1340
1341 if (!mce_banks[i].ctl)
1342 continue;
1343
1344 m->misc = 0;
1345 m->addr = 0;
1346 m->bank = i;
1347
1348 m->status = mce_rdmsrq(mca_msr_reg(i, MCA_STATUS));
1349 if (!(m->status & MCI_STATUS_VAL))
1350 continue;
1351
1352 /*
1353 * Corrected or non-signaled errors are handled by
1354 * machine_check_poll(). Leave them alone, unless this panics.
1355 */
1356 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1357 !no_way_out)
1358 continue;
1359
1360 /* Set taint even when machine check was not enabled. */
1361 taint++;
1362
1363 severity = mce_severity(m, regs, NULL, true);
1364
1365 /*
1366 * When machine check was for corrected/deferred handler don't
1367 * touch, unless we're panicking.
1368 */
1369 if ((severity == MCE_KEEP_SEVERITY ||
1370 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1371 continue;
1372
1373 arch___set_bit(i, toclear);
1374
1375 /* Machine check event was not enabled. Clear, but ignore. */
1376 if (severity == MCE_NO_SEVERITY)
1377 continue;
1378
1379 mce_read_aux(err, i);
1380
1381 /* assuming valid severity level != 0 */
1382 m->severity = severity;
1383
1384 /*
1385 * Enable instrumentation around the mce_log() call which is
1386 * done in #MC context, where instrumentation is disabled.
1387 */
1388 instrumentation_begin();
1389 mce_log(err);
1390 instrumentation_end();
1391
1392 if (severity > *worst) {
1393 *final = *err;
1394 *worst = severity;
1395 }
1396 }
1397
1398 /* mce_clear_state will clear *final, save locally for use later */
1399 *err = *final;
1400
1401 return taint;
1402 }
1403
kill_me_now(struct callback_head * ch)1404 static void kill_me_now(struct callback_head *ch)
1405 {
1406 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1407
1408 p->mce_count = 0;
1409 force_sig(SIGBUS);
1410 }
1411
kill_me_maybe(struct callback_head * cb)1412 static void kill_me_maybe(struct callback_head *cb)
1413 {
1414 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1415 int flags = MF_ACTION_REQUIRED;
1416 unsigned long pfn;
1417 int ret;
1418
1419 p->mce_count = 0;
1420 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1421
1422 if (!p->mce_ripv)
1423 flags |= MF_MUST_KILL;
1424
1425 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1426 ret = memory_failure(pfn, flags);
1427 if (!ret) {
1428 set_mce_nospec(pfn);
1429 sync_core();
1430 return;
1431 }
1432
1433 /*
1434 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1435 * to the current process with the proper error info,
1436 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1437 *
1438 * In both cases, no further processing is required.
1439 */
1440 if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1441 return;
1442
1443 pr_err("Memory error not recovered");
1444 kill_me_now(cb);
1445 }
1446
kill_me_never(struct callback_head * cb)1447 static void kill_me_never(struct callback_head *cb)
1448 {
1449 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1450 unsigned long pfn;
1451
1452 p->mce_count = 0;
1453 pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1454 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1455 if (!memory_failure(pfn, 0))
1456 set_mce_nospec(pfn);
1457 }
1458
queue_task_work(struct mce_hw_err * err,char * msg,void (* func)(struct callback_head *))1459 static void queue_task_work(struct mce_hw_err *err, char *msg, void (*func)(struct callback_head *))
1460 {
1461 int count = ++current->mce_count;
1462 struct mce *m = &err->m;
1463
1464 /* First call, save all the details */
1465 if (count == 1) {
1466 current->mce_addr = m->addr;
1467 current->mce_kflags = m->kflags;
1468 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1469 current->mce_whole_page = whole_page(m);
1470 current->mce_kill_me.func = func;
1471 }
1472
1473 /* Ten is likely overkill. Don't expect more than two faults before task_work() */
1474 if (count > 10)
1475 mce_panic("Too many consecutive machine checks while accessing user data",
1476 err, msg);
1477
1478 /* Second or later call, make sure page address matches the one from first call */
1479 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1480 mce_panic("Consecutive machine checks to different user pages", err, msg);
1481
1482 /* Do not call task_work_add() more than once */
1483 if (count > 1)
1484 return;
1485
1486 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME);
1487 }
1488
1489 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs)1490 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1491 {
1492 instrumentation_begin();
1493 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1494 smp_processor_id());
1495 instrumentation_end();
1496 }
1497
1498 /*
1499 * The actual machine check handler. This only handles real exceptions when
1500 * something got corrupted coming in through int 18.
1501 *
1502 * This is executed in #MC context not subject to normal locking rules.
1503 * This implies that most kernel services cannot be safely used. Don't even
1504 * think about putting a printk in there!
1505 *
1506 * On Intel systems this is entered on all CPUs in parallel through
1507 * MCE broadcast. However some CPUs might be broken beyond repair,
1508 * so be always careful when synchronizing with others.
1509 *
1510 * Tracing and kprobes are disabled: if we interrupted a kernel context
1511 * with IF=1, we need to minimize stack usage. There are also recursion
1512 * issues: if the machine check was due to a failure of the memory
1513 * backing the user stack, tracing that reads the user stack will cause
1514 * potentially infinite recursion.
1515 *
1516 * Currently, the #MC handler calls out to a number of external facilities
1517 * and, therefore, allows instrumentation around them. The optimal thing to
1518 * have would be to do the absolutely minimal work required in #MC context
1519 * and have instrumentation disabled only around that. Further processing can
1520 * then happen in process context where instrumentation is allowed. Achieving
1521 * that requires careful auditing and modifications. Until then, the code
1522 * allows instrumentation temporarily, where required. *
1523 */
do_machine_check(struct pt_regs * regs)1524 noinstr void do_machine_check(struct pt_regs *regs)
1525 {
1526 int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1527 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1528 DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1529 struct mce_hw_err *final;
1530 struct mce_hw_err err;
1531 char *msg = NULL;
1532 struct mce *m;
1533
1534 if (unlikely(mce_flags.p5))
1535 return pentium_machine_check(regs);
1536 else if (unlikely(mce_flags.winchip))
1537 return winchip_machine_check(regs);
1538 else if (unlikely(!mca_cfg.initialized))
1539 return unexpected_machine_check(regs);
1540
1541 if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
1542 goto clear;
1543
1544 /*
1545 * Establish sequential order between the CPUs entering the machine
1546 * check handler.
1547 */
1548 order = -1;
1549
1550 /*
1551 * If no_way_out gets set, there is no safe way to recover from this
1552 * MCE.
1553 */
1554 no_way_out = 0;
1555
1556 /*
1557 * If kill_current_task is not set, there might be a way to recover from this
1558 * error.
1559 */
1560 kill_current_task = 0;
1561
1562 /*
1563 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1564 * on Intel.
1565 */
1566 lmce = 1;
1567
1568 this_cpu_inc(mce_exception_count);
1569
1570 mce_gather_info(&err, regs);
1571 m = &err.m;
1572 m->tsc = rdtsc();
1573
1574 final = this_cpu_ptr(&hw_errs_seen);
1575 *final = err;
1576
1577 no_way_out = mce_no_way_out(&err, &msg, valid_banks, regs);
1578
1579 barrier();
1580
1581 /*
1582 * When no restart IP might need to kill or panic.
1583 * Assume the worst for now, but if we find the
1584 * severity is MCE_AR_SEVERITY we have other options.
1585 */
1586 if (!(m->mcgstatus & MCG_STATUS_RIPV))
1587 kill_current_task = 1;
1588 /*
1589 * Check if this MCE is signaled to only this logical processor,
1590 * on Intel, Zhaoxin only.
1591 */
1592 if (m->cpuvendor == X86_VENDOR_INTEL ||
1593 m->cpuvendor == X86_VENDOR_ZHAOXIN)
1594 lmce = m->mcgstatus & MCG_STATUS_LMCES;
1595
1596 /*
1597 * Local machine check may already know that we have to panic.
1598 * Broadcast machine check begins rendezvous in mce_start()
1599 * Go through all banks in exclusion of the other CPUs. This way we
1600 * don't report duplicated events on shared banks because the first one
1601 * to see it will clear it.
1602 */
1603 if (lmce) {
1604 if (no_way_out)
1605 mce_panic("Fatal local machine check", &err, msg);
1606 } else {
1607 order = mce_start(&no_way_out);
1608 }
1609
1610 taint = __mc_scan_banks(&err, regs, final, toclear, valid_banks, no_way_out, &worst);
1611
1612 if (!no_way_out)
1613 mce_clear_state(toclear);
1614
1615 /*
1616 * Do most of the synchronization with other CPUs.
1617 * When there's any problem use only local no_way_out state.
1618 */
1619 if (!lmce) {
1620 if (mce_end(order) < 0) {
1621 if (!no_way_out)
1622 no_way_out = worst >= MCE_PANIC_SEVERITY;
1623
1624 if (no_way_out)
1625 mce_panic("Fatal machine check on current CPU", &err, msg);
1626 }
1627 } else {
1628 /*
1629 * If there was a fatal machine check we should have
1630 * already called mce_panic earlier in this function.
1631 * Since we re-read the banks, we might have found
1632 * something new. Check again to see if we found a
1633 * fatal error. We call "mce_severity()" again to
1634 * make sure we have the right "msg".
1635 */
1636 if (worst >= MCE_PANIC_SEVERITY) {
1637 mce_severity(m, regs, &msg, true);
1638 mce_panic("Local fatal machine check!", &err, msg);
1639 }
1640 }
1641
1642 /*
1643 * Enable instrumentation around the external facilities like task_work_add()
1644 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1645 * properly would need a lot more involved reorganization.
1646 */
1647 instrumentation_begin();
1648
1649 if (taint)
1650 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1651
1652 if (worst != MCE_AR_SEVERITY && !kill_current_task)
1653 goto out;
1654
1655 /* Fault was in user mode and we need to take some action */
1656 if ((m->cs & 3) == 3) {
1657 /* If this triggers there is no way to recover. Die hard. */
1658 BUG_ON(!on_thread_stack() || !user_mode(regs));
1659
1660 if (!mce_usable_address(m))
1661 queue_task_work(&err, msg, kill_me_now);
1662 else
1663 queue_task_work(&err, msg, kill_me_maybe);
1664
1665 } else if (m->mcgstatus & MCG_STATUS_SEAM_NR) {
1666 /*
1667 * Saved RIP on stack makes it look like the machine check
1668 * was taken in the kernel on the instruction following
1669 * the entry to SEAM mode. But MCG_STATUS_SEAM_NR indicates
1670 * that the machine check was taken inside SEAM non-root
1671 * mode. CPU core has already marked that guest as dead.
1672 * It is OK for the kernel to resume execution at the
1673 * apparent point of the machine check as the fault did
1674 * not occur there. Mark the page as poisoned so it won't
1675 * be added to free list when the guest is terminated.
1676 */
1677 if (mce_usable_address(m)) {
1678 struct page *p = pfn_to_online_page(m->addr >> PAGE_SHIFT);
1679
1680 if (p)
1681 SetPageHWPoison(p);
1682 }
1683 } else {
1684 /*
1685 * Handle an MCE which has happened in kernel space but from
1686 * which the kernel can recover: ex_has_fault_handler() has
1687 * already verified that the rIP at which the error happened is
1688 * a rIP from which the kernel can recover (by jumping to
1689 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1690 * corresponding exception handler which would do that is the
1691 * proper one.
1692 */
1693 if (m->kflags & MCE_IN_KERNEL_RECOV) {
1694 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1695 mce_panic("Failed kernel mode recovery", &err, msg);
1696 }
1697
1698 if (m->kflags & MCE_IN_KERNEL_COPYIN)
1699 queue_task_work(&err, msg, kill_me_never);
1700 }
1701
1702 out:
1703 instrumentation_end();
1704
1705 clear:
1706 mce_wrmsrq(MSR_IA32_MCG_STATUS, 0);
1707 }
1708 EXPORT_SYMBOL_GPL(do_machine_check);
1709
1710 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1711 int memory_failure(unsigned long pfn, int flags)
1712 {
1713 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1714 BUG_ON(flags & MF_ACTION_REQUIRED);
1715 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1716 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1717 pfn);
1718
1719 return 0;
1720 }
1721 #endif
1722
1723 /*
1724 * Periodic polling timer for "silent" machine check errors. If the
1725 * poller finds an MCE, poll 2x faster. When the poller finds no more
1726 * errors, poll 2x slower (up to check_interval seconds).
1727 */
1728 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1729
1730 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1731 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1732
__start_timer(struct timer_list * t,unsigned long interval)1733 static void __start_timer(struct timer_list *t, unsigned long interval)
1734 {
1735 unsigned long when = jiffies + interval;
1736 unsigned long flags;
1737
1738 local_irq_save(flags);
1739
1740 if (!timer_pending(t) || time_before(when, t->expires))
1741 mod_timer(t, round_jiffies(when));
1742
1743 local_irq_restore(flags);
1744 }
1745
mc_poll_banks_default(void)1746 static void mc_poll_banks_default(void)
1747 {
1748 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1749 }
1750
1751 void (*mc_poll_banks)(void) = mc_poll_banks_default;
1752
should_enable_timer(unsigned long iv)1753 static bool should_enable_timer(unsigned long iv)
1754 {
1755 return !mca_cfg.ignore_ce && iv;
1756 }
1757
mce_timer_fn(struct timer_list * t)1758 static void mce_timer_fn(struct timer_list *t)
1759 {
1760 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1761 unsigned long iv;
1762
1763 WARN_ON(cpu_t != t);
1764
1765 iv = __this_cpu_read(mce_next_interval);
1766
1767 if (mce_available(this_cpu_ptr(&cpu_info)))
1768 mc_poll_banks();
1769
1770 /*
1771 * Alert userspace if needed. If we logged an MCE, reduce the polling
1772 * interval, otherwise increase the polling interval.
1773 */
1774 if (mce_notify_irq())
1775 iv = max(iv / 2, (unsigned long) HZ/100);
1776 else
1777 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1778
1779 if (mce_get_storm_mode()) {
1780 __start_timer(t, HZ);
1781 } else if (should_enable_timer(iv)) {
1782 __this_cpu_write(mce_next_interval, iv);
1783 __start_timer(t, iv);
1784 }
1785 }
1786
1787 /*
1788 * When a storm starts on any bank on this CPU, switch to polling
1789 * once per second. When the storm ends, revert to the default
1790 * polling interval.
1791 */
mce_timer_kick(bool storm)1792 void mce_timer_kick(bool storm)
1793 {
1794 struct timer_list *t = this_cpu_ptr(&mce_timer);
1795
1796 mce_set_storm_mode(storm);
1797
1798 if (storm)
1799 __start_timer(t, HZ);
1800 else
1801 __this_cpu_write(mce_next_interval, check_interval * HZ);
1802 }
1803
1804 /* Must not be called in IRQ context where timer_delete_sync() can deadlock */
mce_timer_delete_all(void)1805 static void mce_timer_delete_all(void)
1806 {
1807 int cpu;
1808
1809 for_each_online_cpu(cpu)
1810 timer_delete_sync(&per_cpu(mce_timer, cpu));
1811 }
1812
__mcheck_cpu_mce_banks_init(void)1813 static void __mcheck_cpu_mce_banks_init(void)
1814 {
1815 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1816 u8 n_banks = this_cpu_read(mce_num_banks);
1817 int i;
1818
1819 for (i = 0; i < n_banks; i++) {
1820 struct mce_bank *b = &mce_banks[i];
1821
1822 /*
1823 * Init them all by default.
1824 *
1825 * The required vendor quirks will be applied before
1826 * __mcheck_cpu_init_prepare_banks() does the final bank setup.
1827 */
1828 b->ctl = -1ULL;
1829 b->init = true;
1830 }
1831 }
1832
1833 /*
1834 * Initialize Machine Checks for a CPU.
1835 */
__mcheck_cpu_cap_init(void)1836 static void __mcheck_cpu_cap_init(void)
1837 {
1838 u64 cap;
1839 u8 b;
1840
1841 rdmsrq(MSR_IA32_MCG_CAP, cap);
1842
1843 b = cap & MCG_BANKCNT_MASK;
1844
1845 if (b > MAX_NR_BANKS) {
1846 pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1847 smp_processor_id(), MAX_NR_BANKS, b);
1848 b = MAX_NR_BANKS;
1849 }
1850
1851 this_cpu_write(mce_num_banks, b);
1852
1853 __mcheck_cpu_mce_banks_init();
1854 }
1855
__mcheck_cpu_init_generic(void)1856 static void __mcheck_cpu_init_generic(void)
1857 {
1858 u64 cap;
1859
1860 rdmsrq(MSR_IA32_MCG_CAP, cap);
1861 if (cap & MCG_CTL_P)
1862 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1863 }
1864
__mcheck_cpu_init_prepare_banks(void)1865 static void __mcheck_cpu_init_prepare_banks(void)
1866 {
1867 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1868 u64 msrval;
1869 int i;
1870
1871 /*
1872 * Log the machine checks left over from the previous reset. Log them
1873 * only, do not start processing them. That will happen in mcheck_late_init()
1874 * when all consumers have been registered on the notifier chain.
1875 */
1876 if (mca_cfg.bootlog) {
1877 mce_banks_t all_banks;
1878
1879 bitmap_fill(all_banks, MAX_NR_BANKS);
1880 machine_check_poll(MCP_UC | MCP_QUEUE_LOG, &all_banks);
1881 }
1882
1883 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1884 struct mce_bank *b = &mce_banks[i];
1885
1886 if (!b->init)
1887 continue;
1888
1889 wrmsrq(mca_msr_reg(i, MCA_CTL), b->ctl);
1890 wrmsrq(mca_msr_reg(i, MCA_STATUS), 0);
1891
1892 rdmsrq(mca_msr_reg(i, MCA_CTL), msrval);
1893 b->init = !!msrval;
1894 }
1895 }
1896
amd_apply_global_quirks(struct cpuinfo_x86 * c)1897 static void amd_apply_global_quirks(struct cpuinfo_x86 *c)
1898 {
1899 if (c->x86 < 0x11 && mca_cfg.bootlog < 0) {
1900 /*
1901 * Lots of broken BIOS around that don't clear them
1902 * by default and leave crap in there. Don't log:
1903 */
1904 mca_cfg.bootlog = 0;
1905 }
1906
1907 /*
1908 * overflow_recov is supported for F15h Models 00h-0fh
1909 * even though we don't have a CPUID bit for it.
1910 */
1911 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1912 mce_flags.overflow_recov = 1;
1913
1914 if (c->x86 >= 0x17 && c->x86 <= 0x1A)
1915 mce_flags.zen_ifu_quirk = 1;
1916 }
1917
intel_apply_global_quirks(struct cpuinfo_x86 * c)1918 static void intel_apply_global_quirks(struct cpuinfo_x86 *c)
1919 {
1920 /* Older CPUs (prior to family 6) don't need quirks. */
1921 if (c->x86_vfm < INTEL_PENTIUM_PRO)
1922 return;
1923
1924 /*
1925 * All newer Intel systems support MCE broadcasting. Enable
1926 * synchronization with a one second timeout.
1927 */
1928 if (c->x86_vfm >= INTEL_CORE_YONAH && mca_cfg.monarch_timeout < 0)
1929 mca_cfg.monarch_timeout = USEC_PER_SEC;
1930
1931 /*
1932 * There are also broken BIOSes on some Pentium M and
1933 * earlier systems:
1934 */
1935 if (c->x86_vfm < INTEL_CORE_YONAH && mca_cfg.bootlog < 0)
1936 mca_cfg.bootlog = 0;
1937
1938 if (c->x86_vfm == INTEL_SANDYBRIDGE_X)
1939 mce_flags.snb_ifu_quirk = 1;
1940
1941 /*
1942 * Skylake, Cascacde Lake and Cooper Lake require a quirk on
1943 * rep movs.
1944 */
1945 if (c->x86_vfm == INTEL_SKYLAKE_X)
1946 mce_flags.skx_repmov_quirk = 1;
1947 }
1948
zhaoxin_apply_global_quirks(struct cpuinfo_x86 * c)1949 static void zhaoxin_apply_global_quirks(struct cpuinfo_x86 *c)
1950 {
1951 /*
1952 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1953 * synchronization with a one second timeout.
1954 */
1955 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1956 if (mca_cfg.monarch_timeout < 0)
1957 mca_cfg.monarch_timeout = USEC_PER_SEC;
1958 }
1959 }
1960
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1961 static bool __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1962 {
1963 if (c->x86 != 5)
1964 return false;
1965
1966 switch (c->x86_vendor) {
1967 case X86_VENDOR_INTEL:
1968 intel_p5_mcheck_init(c);
1969 mce_flags.p5 = 1;
1970 return true;
1971 case X86_VENDOR_CENTAUR:
1972 winchip_mcheck_init(c);
1973 mce_flags.winchip = 1;
1974 return true;
1975 default:
1976 return false;
1977 }
1978
1979 return false;
1980 }
1981
mce_centaur_feature_init(struct cpuinfo_x86 * c)1982 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1983 {
1984 struct mca_config *cfg = &mca_cfg;
1985
1986 /*
1987 * All newer Centaur CPUs support MCE broadcasting. Enable
1988 * synchronization with a one second timeout.
1989 */
1990 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1991 c->x86 > 6) {
1992 if (cfg->monarch_timeout < 0)
1993 cfg->monarch_timeout = USEC_PER_SEC;
1994 }
1995 }
1996
mce_zhaoxin_feature_init(struct cpuinfo_x86 * c)1997 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1998 {
1999 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2000
2001 /*
2002 * These CPUs have MCA bank 8 which reports only one error type called
2003 * SVAD (System View Address Decoder). The reporting of that error is
2004 * controlled by IA32_MC8.CTL.0.
2005 *
2006 * If enabled, prefetching on these CPUs will cause SVAD MCE when
2007 * virtual machines start and result in a system panic. Always disable
2008 * bank 8 SVAD error by default.
2009 */
2010 if ((c->x86 == 7 && c->x86_model == 0x1b) ||
2011 (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
2012 if (this_cpu_read(mce_num_banks) > 8)
2013 mce_banks[8].ctl = 0;
2014 }
2015
2016 intel_init_cmci();
2017 intel_init_lmce();
2018 }
2019
mce_zhaoxin_feature_clear(struct cpuinfo_x86 * c)2020 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
2021 {
2022 intel_clear_lmce();
2023 }
2024
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)2025 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
2026 {
2027 switch (c->x86_vendor) {
2028 case X86_VENDOR_INTEL:
2029 mce_intel_feature_init(c);
2030 break;
2031
2032 case X86_VENDOR_AMD:
2033 case X86_VENDOR_HYGON:
2034 mce_amd_feature_init(c);
2035 break;
2036
2037 case X86_VENDOR_CENTAUR:
2038 mce_centaur_feature_init(c);
2039 break;
2040
2041 case X86_VENDOR_ZHAOXIN:
2042 mce_zhaoxin_feature_init(c);
2043 break;
2044
2045 default:
2046 break;
2047 }
2048 }
2049
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)2050 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
2051 {
2052 switch (c->x86_vendor) {
2053 case X86_VENDOR_INTEL:
2054 mce_intel_feature_clear(c);
2055 break;
2056
2057 case X86_VENDOR_ZHAOXIN:
2058 mce_zhaoxin_feature_clear(c);
2059 break;
2060
2061 default:
2062 break;
2063 }
2064 }
2065
mce_start_timer(struct timer_list * t)2066 static void mce_start_timer(struct timer_list *t)
2067 {
2068 unsigned long iv = check_interval * HZ;
2069
2070 if (should_enable_timer(iv)) {
2071 this_cpu_write(mce_next_interval, iv);
2072 __start_timer(t, iv);
2073 }
2074 }
2075
__mcheck_cpu_setup_timer(void)2076 static void __mcheck_cpu_setup_timer(void)
2077 {
2078 struct timer_list *t = this_cpu_ptr(&mce_timer);
2079
2080 timer_setup(t, mce_timer_fn, TIMER_PINNED);
2081 }
2082
__mcheck_cpu_init_timer(void)2083 static void __mcheck_cpu_init_timer(void)
2084 {
2085 struct timer_list *t = this_cpu_ptr(&mce_timer);
2086
2087 timer_setup(t, mce_timer_fn, TIMER_PINNED);
2088 mce_start_timer(t);
2089 }
2090
filter_mce(struct mce * m)2091 bool filter_mce(struct mce *m)
2092 {
2093 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2094 return amd_filter_mce(m);
2095 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2096 return intel_filter_mce(m);
2097
2098 return false;
2099 }
2100
exc_machine_check_kernel(struct pt_regs * regs)2101 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2102 {
2103 irqentry_state_t irq_state;
2104
2105 WARN_ON_ONCE(user_mode(regs));
2106
2107 /*
2108 * Only required when from kernel mode. See
2109 * mce_check_crashing_cpu() for details.
2110 */
2111 if (mca_cfg.initialized && mce_check_crashing_cpu())
2112 return;
2113
2114 irq_state = irqentry_nmi_enter(regs);
2115
2116 do_machine_check(regs);
2117
2118 irqentry_nmi_exit(regs, irq_state);
2119 }
2120
exc_machine_check_user(struct pt_regs * regs)2121 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2122 {
2123 irqentry_enter_from_user_mode(regs);
2124
2125 do_machine_check(regs);
2126
2127 irqentry_exit_to_user_mode(regs);
2128 }
2129
2130 #ifdef CONFIG_X86_64
2131 /* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)2132 DEFINE_IDTENTRY_MCE(exc_machine_check)
2133 {
2134 unsigned long dr7;
2135
2136 dr7 = local_db_save();
2137 exc_machine_check_kernel(regs);
2138 local_db_restore(dr7);
2139 }
2140
2141 /* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)2142 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2143 {
2144 unsigned long dr7;
2145
2146 dr7 = local_db_save();
2147 exc_machine_check_user(regs);
2148 local_db_restore(dr7);
2149 }
2150
2151 #ifdef CONFIG_X86_FRED
2152 /*
2153 * When occurred on different ring level, i.e., from user or kernel
2154 * context, #MCE needs to be handled on different stack: User #MCE
2155 * on current task stack, while kernel #MCE on a dedicated stack.
2156 *
2157 * This is exactly how FRED event delivery invokes an exception
2158 * handler: ring 3 event on level 0 stack, i.e., current task stack;
2159 * ring 0 event on the #MCE dedicated stack specified in the
2160 * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED machine check entry
2161 * stub doesn't do stack switch.
2162 */
DEFINE_FREDENTRY_MCE(exc_machine_check)2163 DEFINE_FREDENTRY_MCE(exc_machine_check)
2164 {
2165 unsigned long dr7;
2166
2167 dr7 = local_db_save();
2168 if (user_mode(regs))
2169 exc_machine_check_user(regs);
2170 else
2171 exc_machine_check_kernel(regs);
2172 local_db_restore(dr7);
2173 }
2174 #endif
2175 #else
2176 /* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)2177 DEFINE_IDTENTRY_RAW(exc_machine_check)
2178 {
2179 unsigned long dr7;
2180
2181 dr7 = local_db_save();
2182 if (user_mode(regs))
2183 exc_machine_check_user(regs);
2184 else
2185 exc_machine_check_kernel(regs);
2186 local_db_restore(dr7);
2187 }
2188 #endif
2189
mca_bsp_init(struct cpuinfo_x86 * c)2190 void mca_bsp_init(struct cpuinfo_x86 *c)
2191 {
2192 u64 cap;
2193
2194 if (!mce_available(c))
2195 return;
2196
2197 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
2198 mca_cfg.disabled = 1;
2199 pr_info("unknown CPU type - not enabling MCE support\n");
2200 return;
2201 }
2202
2203 mce_flags.overflow_recov = cpu_feature_enabled(X86_FEATURE_OVERFLOW_RECOV);
2204 mce_flags.succor = cpu_feature_enabled(X86_FEATURE_SUCCOR);
2205 mce_flags.smca = cpu_feature_enabled(X86_FEATURE_SMCA);
2206
2207 if (mce_flags.smca)
2208 smca_bsp_init();
2209
2210 rdmsrq(MSR_IA32_MCG_CAP, cap);
2211
2212 /* Use accurate RIP reporting if available. */
2213 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
2214 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
2215
2216 if (cap & MCG_SER_P)
2217 mca_cfg.ser = 1;
2218
2219 switch (c->x86_vendor) {
2220 case X86_VENDOR_AMD:
2221 amd_apply_global_quirks(c);
2222 break;
2223 case X86_VENDOR_INTEL:
2224 intel_apply_global_quirks(c);
2225 break;
2226 case X86_VENDOR_ZHAOXIN:
2227 zhaoxin_apply_global_quirks(c);
2228 break;
2229 }
2230
2231 if (mca_cfg.monarch_timeout < 0)
2232 mca_cfg.monarch_timeout = 0;
2233 if (mca_cfg.bootlog != 0)
2234 mca_cfg.panic_timeout = 30;
2235 }
2236
2237 /*
2238 * Called for each booted CPU to set up machine checks.
2239 * Must be called with preempt off:
2240 */
mcheck_cpu_init(struct cpuinfo_x86 * c)2241 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2242 {
2243 if (mca_cfg.disabled)
2244 return;
2245
2246 if (__mcheck_cpu_ancient_init(c))
2247 return;
2248
2249 if (!mce_available(c))
2250 return;
2251
2252 __mcheck_cpu_cap_init();
2253
2254 if (!mce_gen_pool_init()) {
2255 mca_cfg.disabled = 1;
2256 pr_emerg("Couldn't allocate MCE records pool!\n");
2257 return;
2258 }
2259
2260 mca_cfg.initialized = 1;
2261
2262 __mcheck_cpu_init_generic();
2263 __mcheck_cpu_init_vendor(c);
2264 __mcheck_cpu_init_prepare_banks();
2265 __mcheck_cpu_setup_timer();
2266 cr4_set_bits(X86_CR4_MCE);
2267 }
2268
2269 /*
2270 * Called for each booted CPU to clear some machine checks opt-ins
2271 */
mcheck_cpu_clear(struct cpuinfo_x86 * c)2272 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2273 {
2274 if (mca_cfg.disabled)
2275 return;
2276
2277 if (!mce_available(c))
2278 return;
2279
2280 /*
2281 * Possibly to clear general settings generic to x86
2282 * __mcheck_cpu_clear_generic(c);
2283 */
2284 __mcheck_cpu_clear_vendor(c);
2285
2286 }
2287
__mce_disable_bank(void * arg)2288 static void __mce_disable_bank(void *arg)
2289 {
2290 int bank = *((int *)arg);
2291 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2292 cmci_disable_bank(bank);
2293 }
2294
mce_disable_bank(int bank)2295 void mce_disable_bank(int bank)
2296 {
2297 if (bank >= this_cpu_read(mce_num_banks)) {
2298 pr_warn(FW_BUG
2299 "Ignoring request to disable invalid MCA bank %d.\n",
2300 bank);
2301 return;
2302 }
2303 set_bit(bank, mce_banks_ce_disabled);
2304 on_each_cpu(__mce_disable_bank, &bank, 1);
2305 }
2306
2307 /*
2308 * mce=off Disables machine check
2309 * mce=no_cmci Disables CMCI
2310 * mce=no_lmce Disables LMCE
2311 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2312 * mce=print_all Print all machine check logs to console
2313 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2314 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2315 * monarchtimeout is how long to wait for other CPUs on machine
2316 * check, or 0 to not wait
2317 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2318 and older.
2319 * mce=nobootlog Don't log MCEs from before booting.
2320 * mce=bios_cmci_threshold Don't program the CMCI threshold
2321 * mce=recovery force enable copy_mc_fragile()
2322 */
mcheck_enable(char * str)2323 static int __init mcheck_enable(char *str)
2324 {
2325 struct mca_config *cfg = &mca_cfg;
2326
2327 if (*str == 0) {
2328 enable_p5_mce();
2329 return 1;
2330 }
2331 if (*str == '=')
2332 str++;
2333 if (!strcmp(str, "off"))
2334 cfg->disabled = 1;
2335 else if (!strcmp(str, "no_cmci"))
2336 cfg->cmci_disabled = true;
2337 else if (!strcmp(str, "no_lmce"))
2338 cfg->lmce_disabled = 1;
2339 else if (!strcmp(str, "dont_log_ce"))
2340 cfg->dont_log_ce = true;
2341 else if (!strcmp(str, "print_all"))
2342 cfg->print_all = true;
2343 else if (!strcmp(str, "ignore_ce"))
2344 cfg->ignore_ce = true;
2345 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2346 cfg->bootlog = (str[0] == 'b');
2347 else if (!strcmp(str, "bios_cmci_threshold"))
2348 cfg->bios_cmci_threshold = 1;
2349 else if (!strcmp(str, "recovery"))
2350 cfg->recovery = 1;
2351 else if (isdigit(str[0]))
2352 get_option(&str, &(cfg->monarch_timeout));
2353 else {
2354 pr_info("mce argument %s ignored. Please use /sys\n", str);
2355 return 0;
2356 }
2357 return 1;
2358 }
2359 __setup("mce", mcheck_enable);
2360
mcheck_init(void)2361 int __init mcheck_init(void)
2362 {
2363 mce_register_decode_chain(&early_nb);
2364 mce_register_decode_chain(&mce_uc_nb);
2365 mce_register_decode_chain(&mce_default_nb);
2366
2367 INIT_WORK(&mce_work, mce_gen_pool_process);
2368 init_irq_work(&mce_irq_work, mce_irq_work_cb);
2369
2370 return 0;
2371 }
2372
2373 /*
2374 * mce_syscore: PM support
2375 */
2376
2377 /*
2378 * Disable machine checks on suspend and shutdown. We can't really handle
2379 * them later.
2380 */
mce_disable_error_reporting(void)2381 static void mce_disable_error_reporting(void)
2382 {
2383 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2384 int i;
2385
2386 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2387 struct mce_bank *b = &mce_banks[i];
2388
2389 if (b->init)
2390 wrmsrq(mca_msr_reg(i, MCA_CTL), 0);
2391 }
2392 return;
2393 }
2394
vendor_disable_error_reporting(void)2395 static void vendor_disable_error_reporting(void)
2396 {
2397 /*
2398 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2399 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2400 * is bad, since it will inhibit reporting for all shared resources on
2401 * the socket like the last level cache (LLC), the integrated memory
2402 * controller (iMC), etc.
2403 */
2404 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2405 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2406 boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2407 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2408 return;
2409
2410 mce_disable_error_reporting();
2411 }
2412
mce_syscore_suspend(void)2413 static int mce_syscore_suspend(void)
2414 {
2415 vendor_disable_error_reporting();
2416 return 0;
2417 }
2418
mce_syscore_shutdown(void)2419 static void mce_syscore_shutdown(void)
2420 {
2421 vendor_disable_error_reporting();
2422 }
2423
2424 /*
2425 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2426 * Only one CPU is active at this time, the others get re-added later using
2427 * CPU hotplug:
2428 */
mce_syscore_resume(void)2429 static void mce_syscore_resume(void)
2430 {
2431 __mcheck_cpu_init_generic();
2432 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2433 __mcheck_cpu_init_prepare_banks();
2434 cr4_set_bits(X86_CR4_MCE);
2435 }
2436
2437 static struct syscore_ops mce_syscore_ops = {
2438 .suspend = mce_syscore_suspend,
2439 .shutdown = mce_syscore_shutdown,
2440 .resume = mce_syscore_resume,
2441 };
2442
2443 /*
2444 * mce_device: Sysfs support
2445 */
2446
mce_cpu_restart(void * data)2447 static void mce_cpu_restart(void *data)
2448 {
2449 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2450 return;
2451 __mcheck_cpu_init_generic();
2452 __mcheck_cpu_init_prepare_banks();
2453 __mcheck_cpu_init_timer();
2454 cr4_set_bits(X86_CR4_MCE);
2455 }
2456
2457 /* Reinit MCEs after user configuration changes */
mce_restart(void)2458 static void mce_restart(void)
2459 {
2460 mce_timer_delete_all();
2461 on_each_cpu(mce_cpu_restart, NULL, 1);
2462 mce_schedule_work();
2463 }
2464
2465 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2466 static void mce_disable_cmci(void *data)
2467 {
2468 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2469 return;
2470 cmci_clear();
2471 }
2472
mce_enable_ce(void * all)2473 static void mce_enable_ce(void *all)
2474 {
2475 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2476 return;
2477 cmci_reenable();
2478 cmci_recheck();
2479 if (all)
2480 __mcheck_cpu_init_timer();
2481 }
2482
2483 static const struct bus_type mce_subsys = {
2484 .name = "machinecheck",
2485 .dev_name = "machinecheck",
2486 };
2487
2488 DEFINE_PER_CPU(struct device *, mce_device);
2489
attr_to_bank(struct device_attribute * attr)2490 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2491 {
2492 return container_of(attr, struct mce_bank_dev, attr);
2493 }
2494
show_bank(struct device * s,struct device_attribute * attr,char * buf)2495 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2496 char *buf)
2497 {
2498 u8 bank = attr_to_bank(attr)->bank;
2499 struct mce_bank *b;
2500
2501 if (bank >= per_cpu(mce_num_banks, s->id))
2502 return -EINVAL;
2503
2504 b = &per_cpu(mce_banks_array, s->id)[bank];
2505
2506 if (!b->init)
2507 return -ENODEV;
2508
2509 return sprintf(buf, "%llx\n", b->ctl);
2510 }
2511
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2512 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2513 const char *buf, size_t size)
2514 {
2515 u8 bank = attr_to_bank(attr)->bank;
2516 struct mce_bank *b;
2517 u64 new;
2518
2519 if (kstrtou64(buf, 0, &new) < 0)
2520 return -EINVAL;
2521
2522 if (bank >= per_cpu(mce_num_banks, s->id))
2523 return -EINVAL;
2524
2525 b = &per_cpu(mce_banks_array, s->id)[bank];
2526 if (!b->init)
2527 return -ENODEV;
2528
2529 b->ctl = new;
2530
2531 mutex_lock(&mce_sysfs_mutex);
2532 mce_restart();
2533 mutex_unlock(&mce_sysfs_mutex);
2534
2535 return size;
2536 }
2537
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2538 static ssize_t set_ignore_ce(struct device *s,
2539 struct device_attribute *attr,
2540 const char *buf, size_t size)
2541 {
2542 u64 new;
2543
2544 if (kstrtou64(buf, 0, &new) < 0)
2545 return -EINVAL;
2546
2547 mutex_lock(&mce_sysfs_mutex);
2548 if (mca_cfg.ignore_ce ^ !!new) {
2549 if (new) {
2550 /* disable ce features */
2551 mce_timer_delete_all();
2552 on_each_cpu(mce_disable_cmci, NULL, 1);
2553 mca_cfg.ignore_ce = true;
2554 } else {
2555 /* enable ce features */
2556 mca_cfg.ignore_ce = false;
2557 on_each_cpu(mce_enable_ce, (void *)1, 1);
2558 }
2559 }
2560 mutex_unlock(&mce_sysfs_mutex);
2561
2562 return size;
2563 }
2564
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2565 static ssize_t set_cmci_disabled(struct device *s,
2566 struct device_attribute *attr,
2567 const char *buf, size_t size)
2568 {
2569 u64 new;
2570
2571 if (kstrtou64(buf, 0, &new) < 0)
2572 return -EINVAL;
2573
2574 mutex_lock(&mce_sysfs_mutex);
2575 if (mca_cfg.cmci_disabled ^ !!new) {
2576 if (new) {
2577 /* disable cmci */
2578 on_each_cpu(mce_disable_cmci, NULL, 1);
2579 mca_cfg.cmci_disabled = true;
2580 } else {
2581 /* enable cmci */
2582 mca_cfg.cmci_disabled = false;
2583 on_each_cpu(mce_enable_ce, NULL, 1);
2584 }
2585 }
2586 mutex_unlock(&mce_sysfs_mutex);
2587
2588 return size;
2589 }
2590
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2591 static ssize_t store_int_with_restart(struct device *s,
2592 struct device_attribute *attr,
2593 const char *buf, size_t size)
2594 {
2595 unsigned long old_check_interval = check_interval;
2596 ssize_t ret = device_store_ulong(s, attr, buf, size);
2597
2598 if (check_interval == old_check_interval)
2599 return ret;
2600
2601 mutex_lock(&mce_sysfs_mutex);
2602 mce_restart();
2603 mutex_unlock(&mce_sysfs_mutex);
2604
2605 return ret;
2606 }
2607
2608 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2609 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2610 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2611
2612 static struct dev_ext_attribute dev_attr_check_interval = {
2613 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2614 &check_interval
2615 };
2616
2617 static struct dev_ext_attribute dev_attr_ignore_ce = {
2618 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2619 &mca_cfg.ignore_ce
2620 };
2621
2622 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2623 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2624 &mca_cfg.cmci_disabled
2625 };
2626
2627 static struct device_attribute *mce_device_attrs[] = {
2628 &dev_attr_check_interval.attr,
2629 #ifdef CONFIG_X86_MCELOG_LEGACY
2630 &dev_attr_trigger,
2631 #endif
2632 &dev_attr_monarch_timeout.attr,
2633 &dev_attr_dont_log_ce.attr,
2634 &dev_attr_print_all.attr,
2635 &dev_attr_ignore_ce.attr,
2636 &dev_attr_cmci_disabled.attr,
2637 NULL
2638 };
2639
2640 static cpumask_var_t mce_device_initialized;
2641
mce_device_release(struct device * dev)2642 static void mce_device_release(struct device *dev)
2643 {
2644 kfree(dev);
2645 }
2646
2647 /* Per CPU device init. All of the CPUs still share the same bank device: */
mce_device_create(unsigned int cpu)2648 static int mce_device_create(unsigned int cpu)
2649 {
2650 struct device *dev;
2651 int err;
2652 int i, j;
2653
2654 dev = per_cpu(mce_device, cpu);
2655 if (dev)
2656 return 0;
2657
2658 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2659 if (!dev)
2660 return -ENOMEM;
2661 dev->id = cpu;
2662 dev->bus = &mce_subsys;
2663 dev->release = &mce_device_release;
2664
2665 err = device_register(dev);
2666 if (err) {
2667 put_device(dev);
2668 return err;
2669 }
2670
2671 for (i = 0; mce_device_attrs[i]; i++) {
2672 err = device_create_file(dev, mce_device_attrs[i]);
2673 if (err)
2674 goto error;
2675 }
2676 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2677 err = device_create_file(dev, &mce_bank_devs[j].attr);
2678 if (err)
2679 goto error2;
2680 }
2681 cpumask_set_cpu(cpu, mce_device_initialized);
2682 per_cpu(mce_device, cpu) = dev;
2683
2684 return 0;
2685 error2:
2686 while (--j >= 0)
2687 device_remove_file(dev, &mce_bank_devs[j].attr);
2688 error:
2689 while (--i >= 0)
2690 device_remove_file(dev, mce_device_attrs[i]);
2691
2692 device_unregister(dev);
2693
2694 return err;
2695 }
2696
mce_device_remove(unsigned int cpu)2697 static void mce_device_remove(unsigned int cpu)
2698 {
2699 struct device *dev = per_cpu(mce_device, cpu);
2700 int i;
2701
2702 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2703 return;
2704
2705 for (i = 0; mce_device_attrs[i]; i++)
2706 device_remove_file(dev, mce_device_attrs[i]);
2707
2708 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2709 device_remove_file(dev, &mce_bank_devs[i].attr);
2710
2711 device_unregister(dev);
2712 cpumask_clear_cpu(cpu, mce_device_initialized);
2713 per_cpu(mce_device, cpu) = NULL;
2714 }
2715
2716 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2717 static void mce_disable_cpu(void)
2718 {
2719 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2720 return;
2721
2722 if (!cpuhp_tasks_frozen)
2723 cmci_clear();
2724
2725 vendor_disable_error_reporting();
2726 }
2727
mce_reenable_cpu(void)2728 static void mce_reenable_cpu(void)
2729 {
2730 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2731 int i;
2732
2733 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2734 return;
2735
2736 if (!cpuhp_tasks_frozen)
2737 cmci_reenable();
2738 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2739 struct mce_bank *b = &mce_banks[i];
2740
2741 if (b->init)
2742 wrmsrq(mca_msr_reg(i, MCA_CTL), b->ctl);
2743 }
2744 }
2745
mce_cpu_dead(unsigned int cpu)2746 static int mce_cpu_dead(unsigned int cpu)
2747 {
2748 /* intentionally ignoring frozen here */
2749 if (!cpuhp_tasks_frozen)
2750 cmci_rediscover();
2751 return 0;
2752 }
2753
mce_cpu_online(unsigned int cpu)2754 static int mce_cpu_online(unsigned int cpu)
2755 {
2756 struct timer_list *t = this_cpu_ptr(&mce_timer);
2757
2758 mce_device_create(cpu);
2759 mce_threshold_create_device(cpu);
2760 mce_reenable_cpu();
2761 mce_start_timer(t);
2762 return 0;
2763 }
2764
mce_cpu_pre_down(unsigned int cpu)2765 static int mce_cpu_pre_down(unsigned int cpu)
2766 {
2767 struct timer_list *t = this_cpu_ptr(&mce_timer);
2768
2769 mce_disable_cpu();
2770 timer_delete_sync(t);
2771 mce_threshold_remove_device(cpu);
2772 mce_device_remove(cpu);
2773 return 0;
2774 }
2775
mce_init_banks(void)2776 static __init void mce_init_banks(void)
2777 {
2778 int i;
2779
2780 for (i = 0; i < MAX_NR_BANKS; i++) {
2781 struct mce_bank_dev *b = &mce_bank_devs[i];
2782 struct device_attribute *a = &b->attr;
2783
2784 b->bank = i;
2785
2786 sysfs_attr_init(&a->attr);
2787 a->attr.name = b->attrname;
2788 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2789
2790 a->attr.mode = 0644;
2791 a->show = show_bank;
2792 a->store = set_bank;
2793 }
2794 }
2795
2796 /*
2797 * When running on XEN, this initcall is ordered against the XEN mcelog
2798 * initcall:
2799 *
2800 * device_initcall(xen_late_init_mcelog);
2801 * device_initcall_sync(mcheck_init_device);
2802 */
mcheck_init_device(void)2803 static __init int mcheck_init_device(void)
2804 {
2805 int err;
2806
2807 /*
2808 * Check if we have a spare virtual bit. This will only become
2809 * a problem if/when we move beyond 5-level page tables.
2810 */
2811 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2812
2813 if (!mce_available(&boot_cpu_data)) {
2814 err = -EIO;
2815 goto err_out;
2816 }
2817
2818 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2819 err = -ENOMEM;
2820 goto err_out;
2821 }
2822
2823 mce_init_banks();
2824
2825 err = subsys_system_register(&mce_subsys, NULL);
2826 if (err)
2827 goto err_out_mem;
2828
2829 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2830 mce_cpu_dead);
2831 if (err)
2832 goto err_out_mem;
2833
2834 /*
2835 * Invokes mce_cpu_online() on all CPUs which are online when
2836 * the state is installed.
2837 */
2838 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2839 mce_cpu_online, mce_cpu_pre_down);
2840 if (err < 0)
2841 goto err_out_online;
2842
2843 register_syscore_ops(&mce_syscore_ops);
2844
2845 return 0;
2846
2847 err_out_online:
2848 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2849
2850 err_out_mem:
2851 free_cpumask_var(mce_device_initialized);
2852
2853 err_out:
2854 pr_err("Unable to init MCE device (rc: %d)\n", err);
2855
2856 return err;
2857 }
2858 device_initcall_sync(mcheck_init_device);
2859
2860 /*
2861 * Old style boot options parsing. Only for compatibility.
2862 */
mcheck_disable(char * str)2863 static int __init mcheck_disable(char *str)
2864 {
2865 mca_cfg.disabled = 1;
2866 return 1;
2867 }
2868 __setup("nomce", mcheck_disable);
2869
2870 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2871 struct dentry *mce_get_debugfs_dir(void)
2872 {
2873 static struct dentry *dmce;
2874
2875 if (!dmce)
2876 dmce = debugfs_create_dir("mce", NULL);
2877
2878 return dmce;
2879 }
2880
mce_reset(void)2881 static void mce_reset(void)
2882 {
2883 atomic_set(&mce_fake_panicked, 0);
2884 atomic_set(&mce_executing, 0);
2885 atomic_set(&mce_callin, 0);
2886 atomic_set(&global_nwo, 0);
2887 cpumask_setall(&mce_missing_cpus);
2888 }
2889
fake_panic_get(void * data,u64 * val)2890 static int fake_panic_get(void *data, u64 *val)
2891 {
2892 *val = fake_panic;
2893 return 0;
2894 }
2895
fake_panic_set(void * data,u64 val)2896 static int fake_panic_set(void *data, u64 val)
2897 {
2898 mce_reset();
2899 fake_panic = val;
2900 return 0;
2901 }
2902
2903 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2904 "%llu\n");
2905
mcheck_debugfs_init(void)2906 static void __init mcheck_debugfs_init(void)
2907 {
2908 struct dentry *dmce;
2909
2910 dmce = mce_get_debugfs_dir();
2911 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2912 &fake_panic_fops);
2913 }
2914 #else
mcheck_debugfs_init(void)2915 static void __init mcheck_debugfs_init(void) { }
2916 #endif
2917
mcheck_late_init(void)2918 static int __init mcheck_late_init(void)
2919 {
2920 if (mca_cfg.recovery)
2921 enable_copy_mc_fragile();
2922
2923 mcheck_debugfs_init();
2924
2925 /*
2926 * Flush out everything that has been logged during early boot, now that
2927 * everything has been initialized (workqueues, decoders, ...).
2928 */
2929 mce_schedule_work();
2930
2931 return 0;
2932 }
2933 late_initcall(mcheck_late_init);
2934