xref: /linux/arch/x86/kernel/cpu/mce/core.c (revision d9c43b6e43643e0c884179fd4598e2003f1a04a3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 #include <linux/kexec.h>
48 
49 #include <asm/fred.h>
50 #include <asm/cpu_device_id.h>
51 #include <asm/processor.h>
52 #include <asm/traps.h>
53 #include <asm/tlbflush.h>
54 #include <asm/mce.h>
55 #include <asm/msr.h>
56 #include <asm/reboot.h>
57 #include <asm/tdx.h>
58 
59 #include "internal.h"
60 
61 /* sysfs synchronization */
62 static DEFINE_MUTEX(mce_sysfs_mutex);
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/mce.h>
66 
67 #define SPINUNIT		100	/* 100ns */
68 
69 DEFINE_PER_CPU(unsigned, mce_exception_count);
70 
71 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
72 
73 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
74 
75 #define ATTR_LEN               16
76 /* One object for each MCE bank, shared by all CPUs */
77 struct mce_bank_dev {
78 	struct device_attribute	attr;			/* device attribute */
79 	char			attrname[ATTR_LEN];	/* attribute name */
80 	u8			bank;			/* bank number */
81 };
82 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
83 
84 struct mce_vendor_flags mce_flags __read_mostly;
85 
86 struct mca_config mca_cfg __read_mostly = {
87 	.bootlog  = -1,
88 	.monarch_timeout = -1
89 };
90 
91 static DEFINE_PER_CPU(struct mce_hw_err, hw_errs_seen);
92 static unsigned long mce_need_notify;
93 
94 /*
95  * MCA banks polled by the period polling timer for corrected events.
96  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
97  */
98 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
99 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
100 };
101 
102 /*
103  * MCA banks controlled through firmware first for corrected errors.
104  * This is a global list of banks for which we won't enable CMCI and we
105  * won't poll. Firmware controls these banks and is responsible for
106  * reporting corrected errors through GHES. Uncorrected/recoverable
107  * errors are still notified through a machine check.
108  */
109 mce_banks_t mce_banks_ce_disabled;
110 
111 static struct work_struct mce_work;
112 static struct irq_work mce_irq_work;
113 
114 /*
115  * CPU/chipset specific EDAC code can register a notifier call here to print
116  * MCE errors in a human-readable form.
117  */
118 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
119 
mce_prep_record_common(struct mce * m)120 void mce_prep_record_common(struct mce *m)
121 {
122 	m->cpuid	= cpuid_eax(1);
123 	m->cpuvendor	= boot_cpu_data.x86_vendor;
124 	m->mcgcap	= native_rdmsrq(MSR_IA32_MCG_CAP);
125 	/* need the internal __ version to avoid deadlocks */
126 	m->time		= __ktime_get_real_seconds();
127 }
128 
mce_prep_record_per_cpu(unsigned int cpu,struct mce * m)129 void mce_prep_record_per_cpu(unsigned int cpu, struct mce *m)
130 {
131 	m->cpu		= cpu;
132 	m->extcpu	= cpu;
133 	m->apicid	= cpu_data(cpu).topo.initial_apicid;
134 	m->microcode	= cpu_data(cpu).microcode;
135 	m->ppin		= topology_ppin(cpu);
136 	m->socketid	= topology_physical_package_id(cpu);
137 }
138 
139 /* Do initial initialization of struct mce_hw_err */
mce_prep_record(struct mce_hw_err * err)140 void mce_prep_record(struct mce_hw_err *err)
141 {
142 	struct mce *m = &err->m;
143 
144 	memset(err, 0, sizeof(struct mce_hw_err));
145 	mce_prep_record_common(m);
146 	mce_prep_record_per_cpu(smp_processor_id(), m);
147 }
148 
149 DEFINE_PER_CPU(struct mce, injectm);
150 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
151 
mce_log(struct mce_hw_err * err)152 void mce_log(struct mce_hw_err *err)
153 {
154 	if (mce_gen_pool_add(err))
155 		irq_work_queue(&mce_irq_work);
156 }
157 EXPORT_SYMBOL_GPL(mce_log);
158 
mce_register_decode_chain(struct notifier_block * nb)159 void mce_register_decode_chain(struct notifier_block *nb)
160 {
161 	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
162 		    nb->priority > MCE_PRIO_HIGHEST))
163 		return;
164 
165 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
166 }
167 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
168 
mce_unregister_decode_chain(struct notifier_block * nb)169 void mce_unregister_decode_chain(struct notifier_block *nb)
170 {
171 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
172 }
173 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
174 
__print_mce(struct mce_hw_err * err)175 static void __print_mce(struct mce_hw_err *err)
176 {
177 	struct mce *m = &err->m;
178 
179 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
180 		 m->extcpu,
181 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
182 		 m->mcgstatus, m->bank, m->status);
183 
184 	if (m->ip) {
185 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
186 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
187 			m->cs, m->ip);
188 
189 		if (m->cs == __KERNEL_CS)
190 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
191 		pr_cont("\n");
192 	}
193 
194 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
195 	if (m->addr)
196 		pr_cont("ADDR %llx ", m->addr);
197 	if (m->misc)
198 		pr_cont("MISC %llx ", m->misc);
199 	if (m->ppin)
200 		pr_cont("PPIN %llx ", m->ppin);
201 
202 	if (mce_flags.smca) {
203 		if (m->synd)
204 			pr_cont("SYND %llx ", m->synd);
205 		if (err->vendor.amd.synd1)
206 			pr_cont("SYND1 %llx ", err->vendor.amd.synd1);
207 		if (err->vendor.amd.synd2)
208 			pr_cont("SYND2 %llx ", err->vendor.amd.synd2);
209 		if (m->ipid)
210 			pr_cont("IPID %llx ", m->ipid);
211 	}
212 
213 	pr_cont("\n");
214 
215 	/*
216 	 * Note this output is parsed by external tools and old fields
217 	 * should not be changed.
218 	 */
219 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
220 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
221 		m->microcode);
222 }
223 
print_mce(struct mce_hw_err * err)224 static void print_mce(struct mce_hw_err *err)
225 {
226 	struct mce *m = &err->m;
227 
228 	__print_mce(err);
229 
230 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
231 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
232 }
233 
234 #define PANIC_TIMEOUT 5 /* 5 seconds */
235 
236 static atomic_t mce_panicked;
237 
238 static int fake_panic;
239 static atomic_t mce_fake_panicked;
240 
241 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)242 static void wait_for_panic(void)
243 {
244 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
245 
246 	preempt_disable();
247 	local_irq_enable();
248 	while (timeout-- > 0)
249 		udelay(1);
250 	if (panic_timeout == 0)
251 		panic_timeout = mca_cfg.panic_timeout;
252 	panic("Panicing machine check CPU died");
253 }
254 
mce_dump_aux_info(struct mce * m)255 static const char *mce_dump_aux_info(struct mce *m)
256 {
257 	if (boot_cpu_has_bug(X86_BUG_TDX_PW_MCE))
258 		return tdx_dump_mce_info(m);
259 
260 	return NULL;
261 }
262 
mce_panic(const char * msg,struct mce_hw_err * final,char * exp)263 static noinstr void mce_panic(const char *msg, struct mce_hw_err *final, char *exp)
264 {
265 	struct llist_node *pending;
266 	struct mce_evt_llist *l;
267 	int apei_err = 0;
268 	const char *memmsg;
269 
270 	/*
271 	 * Allow instrumentation around external facilities usage. Not that it
272 	 * matters a whole lot since the machine is going to panic anyway.
273 	 */
274 	instrumentation_begin();
275 
276 	if (!fake_panic) {
277 		/*
278 		 * Make sure only one CPU runs in machine check panic
279 		 */
280 		if (atomic_inc_return(&mce_panicked) > 1)
281 			wait_for_panic();
282 		barrier();
283 
284 		bust_spinlocks(1);
285 		console_verbose();
286 	} else {
287 		/* Don't log too much for fake panic */
288 		if (atomic_inc_return(&mce_fake_panicked) > 1)
289 			goto out;
290 	}
291 	pending = mce_gen_pool_prepare_records();
292 	/* First print corrected ones that are still unlogged */
293 	llist_for_each_entry(l, pending, llnode) {
294 		struct mce_hw_err *err = &l->err;
295 		struct mce *m = &err->m;
296 		if (!(m->status & MCI_STATUS_UC)) {
297 			print_mce(err);
298 			if (!apei_err)
299 				apei_err = apei_write_mce(m);
300 		}
301 	}
302 	/* Now print uncorrected but with the final one last */
303 	llist_for_each_entry(l, pending, llnode) {
304 		struct mce_hw_err *err = &l->err;
305 		struct mce *m = &err->m;
306 		if (!(m->status & MCI_STATUS_UC))
307 			continue;
308 		if (!final || mce_cmp(m, &final->m)) {
309 			print_mce(err);
310 			if (!apei_err)
311 				apei_err = apei_write_mce(m);
312 		}
313 	}
314 	if (final) {
315 		print_mce(final);
316 		if (!apei_err)
317 			apei_err = apei_write_mce(&final->m);
318 	}
319 	if (exp)
320 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
321 
322 	memmsg = mce_dump_aux_info(&final->m);
323 	if (memmsg)
324 		pr_emerg(HW_ERR "Machine check: %s\n", memmsg);
325 
326 	if (!fake_panic) {
327 		if (panic_timeout == 0)
328 			panic_timeout = mca_cfg.panic_timeout;
329 
330 		/*
331 		 * Kdump skips the poisoned page in order to avoid
332 		 * touching the error bits again. Poison the page even
333 		 * if the error is fatal and the machine is about to
334 		 * panic.
335 		 */
336 		if (kexec_crash_loaded()) {
337 			if (final && (final->m.status & MCI_STATUS_ADDRV)) {
338 				struct page *p;
339 				p = pfn_to_online_page(final->m.addr >> PAGE_SHIFT);
340 				if (p)
341 					SetPageHWPoison(p);
342 			}
343 		}
344 		panic(msg);
345 	} else
346 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
347 
348 out:
349 	instrumentation_end();
350 }
351 
352 /* Support code for software error injection */
353 
msr_to_offset(u32 msr)354 static int msr_to_offset(u32 msr)
355 {
356 	unsigned bank = __this_cpu_read(injectm.bank);
357 
358 	if (msr == mca_cfg.rip_msr)
359 		return offsetof(struct mce, ip);
360 	if (msr == mca_msr_reg(bank, MCA_STATUS))
361 		return offsetof(struct mce, status);
362 	if (msr == mca_msr_reg(bank, MCA_ADDR))
363 		return offsetof(struct mce, addr);
364 	if (msr == mca_msr_reg(bank, MCA_MISC))
365 		return offsetof(struct mce, misc);
366 	if (msr == MSR_IA32_MCG_STATUS)
367 		return offsetof(struct mce, mcgstatus);
368 	return -1;
369 }
370 
ex_handler_msr_mce(struct pt_regs * regs,bool wrmsr)371 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
372 {
373 	if (wrmsr) {
374 		pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
375 			 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
376 			 regs->ip, (void *)regs->ip);
377 	} else {
378 		pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
379 			 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
380 	}
381 
382 	show_stack_regs(regs);
383 
384 	panic("MCA architectural violation!\n");
385 
386 	while (true)
387 		cpu_relax();
388 }
389 
390 /* MSR access wrappers used for error injection */
mce_rdmsrq(u32 msr)391 noinstr u64 mce_rdmsrq(u32 msr)
392 {
393 	EAX_EDX_DECLARE_ARGS(val, low, high);
394 
395 	if (__this_cpu_read(injectm.finished)) {
396 		int offset;
397 		u64 ret;
398 
399 		instrumentation_begin();
400 
401 		offset = msr_to_offset(msr);
402 		if (offset < 0)
403 			ret = 0;
404 		else
405 			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
406 
407 		instrumentation_end();
408 
409 		return ret;
410 	}
411 
412 	/*
413 	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
414 	 * architectural violation and needs to be reported to hw vendor. Panic
415 	 * the box to not allow any further progress.
416 	 */
417 	asm volatile("1: rdmsr\n"
418 		     "2:\n"
419 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
420 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
421 
422 
423 	return EAX_EDX_VAL(val, low, high);
424 }
425 
mce_wrmsrq(u32 msr,u64 v)426 noinstr void mce_wrmsrq(u32 msr, u64 v)
427 {
428 	u32 low, high;
429 
430 	if (__this_cpu_read(injectm.finished)) {
431 		int offset;
432 
433 		instrumentation_begin();
434 
435 		offset = msr_to_offset(msr);
436 		if (offset >= 0)
437 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
438 
439 		instrumentation_end();
440 
441 		return;
442 	}
443 
444 	low  = (u32)v;
445 	high = (u32)(v >> 32);
446 
447 	/* See comment in mce_rdmsrq() */
448 	asm volatile("1: wrmsr\n"
449 		     "2:\n"
450 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
451 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
452 }
453 
454 /*
455  * Collect all global (w.r.t. this processor) status about this machine
456  * check into our "mce" struct so that we can use it later to assess
457  * the severity of the problem as we read per-bank specific details.
458  */
mce_gather_info(struct mce_hw_err * err,struct pt_regs * regs)459 static noinstr void mce_gather_info(struct mce_hw_err *err, struct pt_regs *regs)
460 {
461 	struct mce *m;
462 	/*
463 	 * Enable instrumentation around mce_prep_record() which calls external
464 	 * facilities.
465 	 */
466 	instrumentation_begin();
467 	mce_prep_record(err);
468 	instrumentation_end();
469 
470 	m = &err->m;
471 	m->mcgstatus = mce_rdmsrq(MSR_IA32_MCG_STATUS);
472 	if (regs) {
473 		/*
474 		 * Get the address of the instruction at the time of
475 		 * the machine check error.
476 		 */
477 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
478 			m->ip = regs->ip;
479 			m->cs = regs->cs;
480 
481 			/*
482 			 * When in VM86 mode make the cs look like ring 3
483 			 * always. This is a lie, but it's better than passing
484 			 * the additional vm86 bit around everywhere.
485 			 */
486 			if (v8086_mode(regs))
487 				m->cs |= 3;
488 		}
489 		/* Use accurate RIP reporting if available. */
490 		if (mca_cfg.rip_msr)
491 			m->ip = mce_rdmsrq(mca_cfg.rip_msr);
492 	}
493 }
494 
mce_available(struct cpuinfo_x86 * c)495 bool mce_available(struct cpuinfo_x86 *c)
496 {
497 	if (mca_cfg.disabled)
498 		return false;
499 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
500 }
501 
mce_schedule_work(void)502 static void mce_schedule_work(void)
503 {
504 	if (!mce_gen_pool_empty())
505 		schedule_work(&mce_work);
506 }
507 
mce_irq_work_cb(struct irq_work * entry)508 static void mce_irq_work_cb(struct irq_work *entry)
509 {
510 	mce_schedule_work();
511 }
512 
mce_usable_address(struct mce * m)513 bool mce_usable_address(struct mce *m)
514 {
515 	if (!(m->status & MCI_STATUS_ADDRV))
516 		return false;
517 
518 	switch (m->cpuvendor) {
519 	case X86_VENDOR_AMD:
520 		return amd_mce_usable_address(m);
521 
522 	case X86_VENDOR_INTEL:
523 	case X86_VENDOR_ZHAOXIN:
524 		return intel_mce_usable_address(m);
525 
526 	default:
527 		return true;
528 	}
529 }
530 EXPORT_SYMBOL_GPL(mce_usable_address);
531 
mce_is_memory_error(struct mce * m)532 bool mce_is_memory_error(struct mce *m)
533 {
534 	switch (m->cpuvendor) {
535 	case X86_VENDOR_AMD:
536 	case X86_VENDOR_HYGON:
537 		return amd_mce_is_memory_error(m);
538 
539 	case X86_VENDOR_INTEL:
540 	case X86_VENDOR_ZHAOXIN:
541 		/*
542 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
543 		 *
544 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
545 		 * indicating a memory error. Bit 8 is used for indicating a
546 		 * cache hierarchy error. The combination of bit 2 and bit 3
547 		 * is used for indicating a `generic' cache hierarchy error
548 		 * But we can't just blindly check the above bits, because if
549 		 * bit 11 is set, then it is a bus/interconnect error - and
550 		 * either way the above bits just gives more detail on what
551 		 * bus/interconnect error happened. Note that bit 12 can be
552 		 * ignored, as it's the "filter" bit.
553 		 */
554 		return (m->status & 0xef80) == BIT(7) ||
555 		       (m->status & 0xef00) == BIT(8) ||
556 		       (m->status & 0xeffc) == 0xc;
557 
558 	default:
559 		return false;
560 	}
561 }
562 EXPORT_SYMBOL_GPL(mce_is_memory_error);
563 
whole_page(struct mce * m)564 static bool whole_page(struct mce *m)
565 {
566 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
567 		return true;
568 
569 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
570 }
571 
mce_is_correctable(struct mce * m)572 bool mce_is_correctable(struct mce *m)
573 {
574 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
575 		return false;
576 
577 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
578 		return false;
579 
580 	if (m->status & MCI_STATUS_UC)
581 		return false;
582 
583 	return true;
584 }
585 EXPORT_SYMBOL_GPL(mce_is_correctable);
586 
587 /*
588  * Notify the user(s) about new machine check events.
589  * Can be called from interrupt context, but not from machine check/NMI
590  * context.
591  */
mce_notify_irq(void)592 static bool mce_notify_irq(void)
593 {
594 	/* Not more than two messages every minute */
595 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
596 
597 	if (test_and_clear_bit(0, &mce_need_notify)) {
598 		mce_work_trigger();
599 
600 		if (__ratelimit(&ratelimit))
601 			pr_info(HW_ERR "Machine check events logged\n");
602 
603 		return true;
604 	}
605 
606 	return false;
607 }
608 
mce_early_notifier(struct notifier_block * nb,unsigned long val,void * data)609 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
610 			      void *data)
611 {
612 	struct mce_hw_err *err = to_mce_hw_err(data);
613 
614 	if (!err)
615 		return NOTIFY_DONE;
616 
617 	/* Emit the trace record: */
618 	trace_mce_record(err);
619 
620 	set_bit(0, &mce_need_notify);
621 
622 	mce_notify_irq();
623 
624 	return NOTIFY_DONE;
625 }
626 
627 static struct notifier_block early_nb = {
628 	.notifier_call	= mce_early_notifier,
629 	.priority	= MCE_PRIO_EARLY,
630 };
631 
uc_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)632 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
633 			      void *data)
634 {
635 	struct mce *mce = (struct mce *)data;
636 	unsigned long pfn;
637 
638 	if (!mce || !mce_usable_address(mce))
639 		return NOTIFY_DONE;
640 
641 	if (mce->severity != MCE_AO_SEVERITY &&
642 	    mce->severity != MCE_DEFERRED_SEVERITY)
643 		return NOTIFY_DONE;
644 
645 	pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
646 	if (!memory_failure(pfn, 0)) {
647 		set_mce_nospec(pfn);
648 		mce->kflags |= MCE_HANDLED_UC;
649 	}
650 
651 	return NOTIFY_OK;
652 }
653 
654 static struct notifier_block mce_uc_nb = {
655 	.notifier_call	= uc_decode_notifier,
656 	.priority	= MCE_PRIO_UC,
657 };
658 
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)659 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
660 				void *data)
661 {
662 	struct mce_hw_err *err = to_mce_hw_err(data);
663 
664 	if (!err)
665 		return NOTIFY_DONE;
666 
667 	if (mca_cfg.print_all || !(err->m.kflags))
668 		__print_mce(err);
669 
670 	return NOTIFY_DONE;
671 }
672 
673 static struct notifier_block mce_default_nb = {
674 	.notifier_call	= mce_default_notifier,
675 	/* lowest prio, we want it to run last. */
676 	.priority	= MCE_PRIO_LOWEST,
677 };
678 
679 /*
680  * Read ADDR and MISC registers.
681  */
mce_read_aux(struct mce_hw_err * err,int i)682 static noinstr void mce_read_aux(struct mce_hw_err *err, int i)
683 {
684 	struct mce *m = &err->m;
685 
686 	if (m->status & MCI_STATUS_MISCV)
687 		m->misc = mce_rdmsrq(mca_msr_reg(i, MCA_MISC));
688 
689 	if (m->status & MCI_STATUS_ADDRV) {
690 		m->addr = mce_rdmsrq(mca_msr_reg(i, MCA_ADDR));
691 
692 		/*
693 		 * Mask the reported address by the reported granularity.
694 		 */
695 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
696 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
697 			m->addr >>= shift;
698 			m->addr <<= shift;
699 		}
700 
701 		smca_extract_err_addr(m);
702 	}
703 
704 	if (mce_flags.smca) {
705 		m->ipid = mce_rdmsrq(MSR_AMD64_SMCA_MCx_IPID(i));
706 
707 		if (m->status & MCI_STATUS_SYNDV) {
708 			m->synd = mce_rdmsrq(MSR_AMD64_SMCA_MCx_SYND(i));
709 			err->vendor.amd.synd1 = mce_rdmsrq(MSR_AMD64_SMCA_MCx_SYND1(i));
710 			err->vendor.amd.synd2 = mce_rdmsrq(MSR_AMD64_SMCA_MCx_SYND2(i));
711 		}
712 	}
713 }
714 
715 DEFINE_PER_CPU(unsigned, mce_poll_count);
716 
717 /*
718  * Newer Intel systems that support software error
719  * recovery need to make additional checks. Other
720  * CPUs should skip over uncorrected errors, but log
721  * everything else.
722  */
ser_should_log_poll_error(struct mce * m)723 static bool ser_should_log_poll_error(struct mce *m)
724 {
725 	/* Log "not enabled" (speculative) errors */
726 	if (!(m->status & MCI_STATUS_EN))
727 		return true;
728 
729 	/*
730 	 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
731 	 * UC == 1 && PCC == 0 && S == 0
732 	 */
733 	if (!(m->status & MCI_STATUS_PCC) && !(m->status & MCI_STATUS_S))
734 		return true;
735 
736 	return false;
737 }
738 
should_log_poll_error(enum mcp_flags flags,struct mce_hw_err * err)739 static bool should_log_poll_error(enum mcp_flags flags, struct mce_hw_err *err)
740 {
741 	struct mce *m = &err->m;
742 
743 	/* If this entry is not valid, ignore it. */
744 	if (!(m->status & MCI_STATUS_VAL))
745 		return false;
746 
747 	/*
748 	 * If we are logging everything (at CPU online) or this
749 	 * is a corrected error, then we must log it.
750 	 */
751 	if ((flags & MCP_UC) || !(m->status & MCI_STATUS_UC))
752 		return true;
753 
754 	if (mca_cfg.ser)
755 		return ser_should_log_poll_error(m);
756 
757 	if (m->status & MCI_STATUS_UC)
758 		return false;
759 
760 	return true;
761 }
762 
clear_bank(struct mce * m)763 static void clear_bank(struct mce *m)
764 {
765 	if (m->cpuvendor == X86_VENDOR_AMD)
766 		return amd_clear_bank(m);
767 
768 	mce_wrmsrq(mca_msr_reg(m->bank, MCA_STATUS), 0);
769 }
770 
771 /*
772  * Poll for corrected events or events that happened before reset.
773  * Those are just logged through /dev/mcelog.
774  *
775  * This is executed in standard interrupt context.
776  *
777  * Note: spec recommends to panic for fatal unsignalled
778  * errors here. However this would be quite problematic --
779  * we would need to reimplement the Monarch handling and
780  * it would mess up the exclusion between exception handler
781  * and poll handler -- * so we skip this for now.
782  * These cases should not happen anyways, or only when the CPU
783  * is already totally * confused. In this case it's likely it will
784  * not fully execute the machine check handler either.
785  */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)786 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
787 {
788 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
789 	struct mce_hw_err err;
790 	struct mce *m;
791 	int i;
792 
793 	this_cpu_inc(mce_poll_count);
794 
795 	mce_gather_info(&err, NULL);
796 	m = &err.m;
797 
798 	if (flags & MCP_TIMESTAMP)
799 		m->tsc = rdtsc();
800 
801 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
802 		if (!mce_banks[i].ctl || !test_bit(i, *b))
803 			continue;
804 
805 		m->misc = 0;
806 		m->addr = 0;
807 		m->bank = i;
808 
809 		barrier();
810 		m->status = mce_rdmsrq(mca_msr_reg(i, MCA_STATUS));
811 
812 		/*
813 		 * Update storm tracking here, before checking for the
814 		 * MCI_STATUS_VAL bit. Valid corrected errors count
815 		 * towards declaring, or maintaining, storm status. No
816 		 * error in a bank counts towards avoiding, or ending,
817 		 * storm status.
818 		 */
819 		if (!mca_cfg.cmci_disabled)
820 			mce_track_storm(m);
821 
822 		/* Verify that the error should be logged based on hardware conditions. */
823 		if (!should_log_poll_error(flags, &err))
824 			continue;
825 
826 		mce_read_aux(&err, i);
827 		m->severity = mce_severity(m, NULL, NULL, false);
828 		/*
829 		 * Don't get the IP here because it's unlikely to
830 		 * have anything to do with the actual error location.
831 		 */
832 
833 		if (mca_cfg.dont_log_ce && !mce_usable_address(m))
834 			goto clear_it;
835 
836 		if (flags & MCP_QUEUE_LOG)
837 			mce_gen_pool_add(&err);
838 		else
839 			mce_log(&err);
840 
841 clear_it:
842 		clear_bank(m);
843 	}
844 
845 	/*
846 	 * Don't clear MCG_STATUS here because it's only defined for
847 	 * exceptions.
848 	 */
849 
850 	sync_core();
851 }
852 EXPORT_SYMBOL_GPL(machine_check_poll);
853 
854 /*
855  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
856  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
857  * Vol 3B Table 15-20). But this confuses both the code that determines
858  * whether the machine check occurred in kernel or user mode, and also
859  * the severity assessment code. Pretend that EIPV was set, and take the
860  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
861  */
862 static __always_inline void
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)863 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
864 {
865 	if (bank != 0)
866 		return;
867 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
868 		return;
869 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
870 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
871 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
872 			  MCACOD)) !=
873 			 (MCI_STATUS_UC|MCI_STATUS_EN|
874 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
875 			  MCI_STATUS_AR|MCACOD_INSTR))
876 		return;
877 
878 	m->mcgstatus |= MCG_STATUS_EIPV;
879 	m->ip = regs->ip;
880 	m->cs = regs->cs;
881 }
882 
883 /*
884  * Disable fast string copy and return from the MCE handler upon the first SRAR
885  * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake
886  * CPUs.
887  * The fast string copy instructions ("REP; MOVS*") could consume an
888  * uncorrectable memory error in the cache line _right after_ the desired region
889  * to copy and raise an MCE with RIP pointing to the instruction _after_ the
890  * "REP; MOVS*".
891  * This mitigation addresses the issue completely with the caveat of performance
892  * degradation on the CPU affected. This is still better than the OS crashing on
893  * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a
894  * kernel context (e.g., copy_page).
895  *
896  * Returns true when fast string copy on CPU has been disabled.
897  */
quirk_skylake_repmov(void)898 static noinstr bool quirk_skylake_repmov(void)
899 {
900 	u64 mcgstatus   = mce_rdmsrq(MSR_IA32_MCG_STATUS);
901 	u64 misc_enable = mce_rdmsrq(MSR_IA32_MISC_ENABLE);
902 	u64 mc1_status;
903 
904 	/*
905 	 * Apply the quirk only to local machine checks, i.e., no broadcast
906 	 * sync is needed.
907 	 */
908 	if (!(mcgstatus & MCG_STATUS_LMCES) ||
909 	    !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
910 		return false;
911 
912 	mc1_status = mce_rdmsrq(MSR_IA32_MCx_STATUS(1));
913 
914 	/* Check for a software-recoverable data fetch error. */
915 	if ((mc1_status &
916 	     (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
917 	      MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
918 	      MCI_STATUS_AR | MCI_STATUS_S)) ==
919 	     (MCI_STATUS_VAL |                   MCI_STATUS_UC | MCI_STATUS_EN |
920 	      MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
921 	      MCI_STATUS_AR | MCI_STATUS_S)) {
922 		misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
923 		mce_wrmsrq(MSR_IA32_MISC_ENABLE, misc_enable);
924 		mce_wrmsrq(MSR_IA32_MCx_STATUS(1), 0);
925 
926 		instrumentation_begin();
927 		pr_err_once("Erratum detected, disable fast string copy instructions.\n");
928 		instrumentation_end();
929 
930 		return true;
931 	}
932 
933 	return false;
934 }
935 
936 /*
937  * Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption
938  * errors. This means mce_gather_info() will not save the "ip" and "cs" registers.
939  *
940  * However, the context is still valid, so save the "cs" register for later use.
941  *
942  * The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV.
943  *
944  * The Instruction Fetch Unit is at MCA bank 1 for all affected systems.
945  */
quirk_zen_ifu(int bank,struct mce * m,struct pt_regs * regs)946 static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs)
947 {
948 	if (bank != 1)
949 		return;
950 	if (!(m->status & MCI_STATUS_POISON))
951 		return;
952 
953 	m->cs = regs->cs;
954 }
955 
956 /*
957  * Do a quick check if any of the events requires a panic.
958  * This decides if we keep the events around or clear them.
959  */
mce_no_way_out(struct mce_hw_err * err,char ** msg,unsigned long * validp,struct pt_regs * regs)960 static __always_inline int mce_no_way_out(struct mce_hw_err *err, char **msg, unsigned long *validp,
961 					  struct pt_regs *regs)
962 {
963 	struct mce *m = &err->m;
964 	char *tmp = *msg;
965 	int i;
966 
967 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
968 		m->status = mce_rdmsrq(mca_msr_reg(i, MCA_STATUS));
969 		if (!(m->status & MCI_STATUS_VAL))
970 			continue;
971 
972 		arch___set_bit(i, validp);
973 		if (mce_flags.snb_ifu_quirk)
974 			quirk_sandybridge_ifu(i, m, regs);
975 
976 		if (mce_flags.zen_ifu_quirk)
977 			quirk_zen_ifu(i, m, regs);
978 
979 		m->bank = i;
980 		if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
981 			mce_read_aux(err, i);
982 			*msg = tmp;
983 			return 1;
984 		}
985 	}
986 	return 0;
987 }
988 
989 /*
990  * Variable to establish order between CPUs while scanning.
991  * Each CPU spins initially until executing is equal its number.
992  */
993 static atomic_t mce_executing;
994 
995 /*
996  * Defines order of CPUs on entry. First CPU becomes Monarch.
997  */
998 static atomic_t mce_callin;
999 
1000 /*
1001  * Track which CPUs entered the MCA broadcast synchronization and which not in
1002  * order to print holdouts.
1003  */
1004 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
1005 
1006 /*
1007  * Check if a timeout waiting for other CPUs happened.
1008  */
mce_timed_out(u64 * t,const char * msg)1009 static noinstr int mce_timed_out(u64 *t, const char *msg)
1010 {
1011 	int ret = 0;
1012 
1013 	/* Enable instrumentation around calls to external facilities */
1014 	instrumentation_begin();
1015 
1016 	/*
1017 	 * The others already did panic for some reason.
1018 	 * Bail out like in a timeout.
1019 	 * rmb() to tell the compiler that system_state
1020 	 * might have been modified by someone else.
1021 	 */
1022 	rmb();
1023 	if (atomic_read(&mce_panicked))
1024 		wait_for_panic();
1025 	if (!mca_cfg.monarch_timeout)
1026 		goto out;
1027 	if ((s64)*t < SPINUNIT) {
1028 		if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
1029 			pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
1030 				 cpumask_pr_args(&mce_missing_cpus));
1031 		mce_panic(msg, NULL, NULL);
1032 
1033 		ret = 1;
1034 		goto out;
1035 	}
1036 	*t -= SPINUNIT;
1037 
1038 out:
1039 	touch_nmi_watchdog();
1040 
1041 	instrumentation_end();
1042 
1043 	return ret;
1044 }
1045 
1046 /*
1047  * The Monarch's reign.  The Monarch is the CPU who entered
1048  * the machine check handler first. It waits for the others to
1049  * raise the exception too and then grades them. When any
1050  * error is fatal panic. Only then let the others continue.
1051  *
1052  * The other CPUs entering the MCE handler will be controlled by the
1053  * Monarch. They are called Subjects.
1054  *
1055  * This way we prevent any potential data corruption in a unrecoverable case
1056  * and also makes sure always all CPU's errors are examined.
1057  *
1058  * Also this detects the case of a machine check event coming from outer
1059  * space (not detected by any CPUs) In this case some external agent wants
1060  * us to shut down, so panic too.
1061  *
1062  * The other CPUs might still decide to panic if the handler happens
1063  * in a unrecoverable place, but in this case the system is in a semi-stable
1064  * state and won't corrupt anything by itself. It's ok to let the others
1065  * continue for a bit first.
1066  *
1067  * All the spin loops have timeouts; when a timeout happens a CPU
1068  * typically elects itself to be Monarch.
1069  */
mce_reign(void)1070 static void mce_reign(void)
1071 {
1072 	struct mce_hw_err *err = NULL;
1073 	struct mce *m = NULL;
1074 	int global_worst = 0;
1075 	char *msg = NULL;
1076 	int cpu;
1077 
1078 	/*
1079 	 * This CPU is the Monarch and the other CPUs have run
1080 	 * through their handlers.
1081 	 * Grade the severity of the errors of all the CPUs.
1082 	 */
1083 	for_each_possible_cpu(cpu) {
1084 		struct mce_hw_err *etmp = &per_cpu(hw_errs_seen, cpu);
1085 		struct mce *mtmp = &etmp->m;
1086 
1087 		if (mtmp->severity > global_worst) {
1088 			global_worst = mtmp->severity;
1089 			err = &per_cpu(hw_errs_seen, cpu);
1090 			m = &err->m;
1091 		}
1092 	}
1093 
1094 	/*
1095 	 * Cannot recover? Panic here then.
1096 	 * This dumps all the mces in the log buffer and stops the
1097 	 * other CPUs.
1098 	 */
1099 	if (m && global_worst >= MCE_PANIC_SEVERITY) {
1100 		/* call mce_severity() to get "msg" for panic */
1101 		mce_severity(m, NULL, &msg, true);
1102 		mce_panic("Fatal machine check", err, msg);
1103 	}
1104 
1105 	/*
1106 	 * For UC somewhere we let the CPU who detects it handle it.
1107 	 * Also must let continue the others, otherwise the handling
1108 	 * CPU could deadlock on a lock.
1109 	 */
1110 
1111 	/*
1112 	 * No machine check event found. Must be some external
1113 	 * source or one CPU is hung. Panic.
1114 	 */
1115 	if (global_worst <= MCE_KEEP_SEVERITY)
1116 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
1117 
1118 	/*
1119 	 * Now clear all the hw_errs_seen so that they don't reappear on
1120 	 * the next mce.
1121 	 */
1122 	for_each_possible_cpu(cpu)
1123 		memset(&per_cpu(hw_errs_seen, cpu), 0, sizeof(struct mce_hw_err));
1124 }
1125 
1126 static atomic_t global_nwo;
1127 
1128 /*
1129  * Start of Monarch synchronization. This waits until all CPUs have
1130  * entered the exception handler and then determines if any of them
1131  * saw a fatal event that requires panic. Then it executes them
1132  * in the entry order.
1133  * TBD double check parallel CPU hotunplug
1134  */
mce_start(int * no_way_out)1135 static noinstr int mce_start(int *no_way_out)
1136 {
1137 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1138 	int order, ret = -1;
1139 
1140 	if (!timeout)
1141 		return ret;
1142 
1143 	raw_atomic_add(*no_way_out, &global_nwo);
1144 	/*
1145 	 * Rely on the implied barrier below, such that global_nwo
1146 	 * is updated before mce_callin.
1147 	 */
1148 	order = raw_atomic_inc_return(&mce_callin);
1149 	arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1150 
1151 	/* Enable instrumentation around calls to external facilities */
1152 	instrumentation_begin();
1153 
1154 	/*
1155 	 * Wait for everyone.
1156 	 */
1157 	while (raw_atomic_read(&mce_callin) != num_online_cpus()) {
1158 		if (mce_timed_out(&timeout,
1159 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1160 			raw_atomic_set(&global_nwo, 0);
1161 			goto out;
1162 		}
1163 		ndelay(SPINUNIT);
1164 	}
1165 
1166 	/*
1167 	 * mce_callin should be read before global_nwo
1168 	 */
1169 	smp_rmb();
1170 
1171 	if (order == 1) {
1172 		/*
1173 		 * Monarch: Starts executing now, the others wait.
1174 		 */
1175 		raw_atomic_set(&mce_executing, 1);
1176 	} else {
1177 		/*
1178 		 * Subject: Now start the scanning loop one by one in
1179 		 * the original callin order.
1180 		 * This way when there are any shared banks it will be
1181 		 * only seen by one CPU before cleared, avoiding duplicates.
1182 		 */
1183 		while (raw_atomic_read(&mce_executing) < order) {
1184 			if (mce_timed_out(&timeout,
1185 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1186 				raw_atomic_set(&global_nwo, 0);
1187 				goto out;
1188 			}
1189 			ndelay(SPINUNIT);
1190 		}
1191 	}
1192 
1193 	/*
1194 	 * Cache the global no_way_out state.
1195 	 */
1196 	*no_way_out = raw_atomic_read(&global_nwo);
1197 
1198 	ret = order;
1199 
1200 out:
1201 	instrumentation_end();
1202 
1203 	return ret;
1204 }
1205 
1206 /*
1207  * Synchronize between CPUs after main scanning loop.
1208  * This invokes the bulk of the Monarch processing.
1209  */
mce_end(int order)1210 static noinstr int mce_end(int order)
1211 {
1212 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1213 	int ret = -1;
1214 
1215 	/* Allow instrumentation around external facilities. */
1216 	instrumentation_begin();
1217 
1218 	if (!timeout)
1219 		goto reset;
1220 	if (order < 0)
1221 		goto reset;
1222 
1223 	/*
1224 	 * Allow others to run.
1225 	 */
1226 	atomic_inc(&mce_executing);
1227 
1228 	if (order == 1) {
1229 		/*
1230 		 * Monarch: Wait for everyone to go through their scanning
1231 		 * loops.
1232 		 */
1233 		while (atomic_read(&mce_executing) <= num_online_cpus()) {
1234 			if (mce_timed_out(&timeout,
1235 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1236 				goto reset;
1237 			ndelay(SPINUNIT);
1238 		}
1239 
1240 		mce_reign();
1241 		barrier();
1242 		ret = 0;
1243 	} else {
1244 		/*
1245 		 * Subject: Wait for Monarch to finish.
1246 		 */
1247 		while (atomic_read(&mce_executing) != 0) {
1248 			if (mce_timed_out(&timeout,
1249 					  "Timeout: Monarch CPU did not finish machine check processing"))
1250 				goto reset;
1251 			ndelay(SPINUNIT);
1252 		}
1253 
1254 		/*
1255 		 * Don't reset anything. That's done by the Monarch.
1256 		 */
1257 		ret = 0;
1258 		goto out;
1259 	}
1260 
1261 	/*
1262 	 * Reset all global state.
1263 	 */
1264 reset:
1265 	atomic_set(&global_nwo, 0);
1266 	atomic_set(&mce_callin, 0);
1267 	cpumask_setall(&mce_missing_cpus);
1268 	barrier();
1269 
1270 	/*
1271 	 * Let others run again.
1272 	 */
1273 	atomic_set(&mce_executing, 0);
1274 
1275 out:
1276 	instrumentation_end();
1277 
1278 	return ret;
1279 }
1280 
mce_clear_state(unsigned long * toclear)1281 static __always_inline void mce_clear_state(unsigned long *toclear)
1282 {
1283 	int i;
1284 
1285 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1286 		if (arch_test_bit(i, toclear))
1287 			mce_wrmsrq(mca_msr_reg(i, MCA_STATUS), 0);
1288 	}
1289 }
1290 
1291 /*
1292  * Cases where we avoid rendezvous handler timeout:
1293  * 1) If this CPU is offline.
1294  *
1295  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1296  *  skip those CPUs which remain looping in the 1st kernel - see
1297  *  crash_nmi_callback().
1298  *
1299  * Note: there still is a small window between kexec-ing and the new,
1300  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1301  * might not get handled properly.
1302  */
mce_check_crashing_cpu(void)1303 static noinstr bool mce_check_crashing_cpu(void)
1304 {
1305 	unsigned int cpu = smp_processor_id();
1306 
1307 	if (arch_cpu_is_offline(cpu) ||
1308 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1309 		u64 mcgstatus;
1310 
1311 		mcgstatus = native_rdmsrq(MSR_IA32_MCG_STATUS);
1312 
1313 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1314 			if (mcgstatus & MCG_STATUS_LMCES)
1315 				return false;
1316 		}
1317 
1318 		if (mcgstatus & MCG_STATUS_RIPV) {
1319 			native_wrmsrq(MSR_IA32_MCG_STATUS, 0);
1320 			return true;
1321 		}
1322 	}
1323 	return false;
1324 }
1325 
1326 static __always_inline int
__mc_scan_banks(struct mce_hw_err * err,struct pt_regs * regs,struct mce_hw_err * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1327 __mc_scan_banks(struct mce_hw_err *err, struct pt_regs *regs,
1328 		struct mce_hw_err *final, unsigned long *toclear,
1329 		unsigned long *valid_banks, int no_way_out, int *worst)
1330 {
1331 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1332 	struct mca_config *cfg = &mca_cfg;
1333 	int severity, i, taint = 0;
1334 	struct mce *m = &err->m;
1335 
1336 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1337 		arch___clear_bit(i, toclear);
1338 		if (!arch_test_bit(i, valid_banks))
1339 			continue;
1340 
1341 		if (!mce_banks[i].ctl)
1342 			continue;
1343 
1344 		m->misc = 0;
1345 		m->addr = 0;
1346 		m->bank = i;
1347 
1348 		m->status = mce_rdmsrq(mca_msr_reg(i, MCA_STATUS));
1349 		if (!(m->status & MCI_STATUS_VAL))
1350 			continue;
1351 
1352 		/*
1353 		 * Corrected or non-signaled errors are handled by
1354 		 * machine_check_poll(). Leave them alone, unless this panics.
1355 		 */
1356 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1357 			!no_way_out)
1358 			continue;
1359 
1360 		/* Set taint even when machine check was not enabled. */
1361 		taint++;
1362 
1363 		severity = mce_severity(m, regs, NULL, true);
1364 
1365 		/*
1366 		 * When machine check was for corrected/deferred handler don't
1367 		 * touch, unless we're panicking.
1368 		 */
1369 		if ((severity == MCE_KEEP_SEVERITY ||
1370 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1371 			continue;
1372 
1373 		arch___set_bit(i, toclear);
1374 
1375 		/* Machine check event was not enabled. Clear, but ignore. */
1376 		if (severity == MCE_NO_SEVERITY)
1377 			continue;
1378 
1379 		mce_read_aux(err, i);
1380 
1381 		/* assuming valid severity level != 0 */
1382 		m->severity = severity;
1383 
1384 		/*
1385 		 * Enable instrumentation around the mce_log() call which is
1386 		 * done in #MC context, where instrumentation is disabled.
1387 		 */
1388 		instrumentation_begin();
1389 		mce_log(err);
1390 		instrumentation_end();
1391 
1392 		if (severity > *worst) {
1393 			*final = *err;
1394 			*worst = severity;
1395 		}
1396 	}
1397 
1398 	/* mce_clear_state will clear *final, save locally for use later */
1399 	*err = *final;
1400 
1401 	return taint;
1402 }
1403 
kill_me_now(struct callback_head * ch)1404 static void kill_me_now(struct callback_head *ch)
1405 {
1406 	struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1407 
1408 	p->mce_count = 0;
1409 	force_sig(SIGBUS);
1410 }
1411 
kill_me_maybe(struct callback_head * cb)1412 static void kill_me_maybe(struct callback_head *cb)
1413 {
1414 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1415 	int flags = MF_ACTION_REQUIRED;
1416 	unsigned long pfn;
1417 	int ret;
1418 
1419 	p->mce_count = 0;
1420 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1421 
1422 	if (!p->mce_ripv)
1423 		flags |= MF_MUST_KILL;
1424 
1425 	pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1426 	ret = memory_failure(pfn, flags);
1427 	if (!ret) {
1428 		set_mce_nospec(pfn);
1429 		sync_core();
1430 		return;
1431 	}
1432 
1433 	/*
1434 	 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1435 	 * to the current process with the proper error info,
1436 	 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1437 	 *
1438 	 * In both cases, no further processing is required.
1439 	 */
1440 	if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1441 		return;
1442 
1443 	pr_err("Memory error not recovered");
1444 	kill_me_now(cb);
1445 }
1446 
kill_me_never(struct callback_head * cb)1447 static void kill_me_never(struct callback_head *cb)
1448 {
1449 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1450 	unsigned long pfn;
1451 
1452 	p->mce_count = 0;
1453 	pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1454 	pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1455 	if (!memory_failure(pfn, 0))
1456 		set_mce_nospec(pfn);
1457 }
1458 
queue_task_work(struct mce_hw_err * err,char * msg,void (* func)(struct callback_head *))1459 static void queue_task_work(struct mce_hw_err *err, char *msg, void (*func)(struct callback_head *))
1460 {
1461 	int count = ++current->mce_count;
1462 	struct mce *m = &err->m;
1463 
1464 	/* First call, save all the details */
1465 	if (count == 1) {
1466 		current->mce_addr = m->addr;
1467 		current->mce_kflags = m->kflags;
1468 		current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1469 		current->mce_whole_page = whole_page(m);
1470 		current->mce_kill_me.func = func;
1471 	}
1472 
1473 	/* Ten is likely overkill. Don't expect more than two faults before task_work() */
1474 	if (count > 10)
1475 		mce_panic("Too many consecutive machine checks while accessing user data",
1476 			  err, msg);
1477 
1478 	/* Second or later call, make sure page address matches the one from first call */
1479 	if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1480 		mce_panic("Consecutive machine checks to different user pages", err, msg);
1481 
1482 	/* Do not call task_work_add() more than once */
1483 	if (count > 1)
1484 		return;
1485 
1486 	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1487 }
1488 
1489 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs)1490 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1491 {
1492 	instrumentation_begin();
1493 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1494 	       smp_processor_id());
1495 	instrumentation_end();
1496 }
1497 
1498 /*
1499  * The actual machine check handler. This only handles real exceptions when
1500  * something got corrupted coming in through int 18.
1501  *
1502  * This is executed in #MC context not subject to normal locking rules.
1503  * This implies that most kernel services cannot be safely used. Don't even
1504  * think about putting a printk in there!
1505  *
1506  * On Intel systems this is entered on all CPUs in parallel through
1507  * MCE broadcast. However some CPUs might be broken beyond repair,
1508  * so be always careful when synchronizing with others.
1509  *
1510  * Tracing and kprobes are disabled: if we interrupted a kernel context
1511  * with IF=1, we need to minimize stack usage.  There are also recursion
1512  * issues: if the machine check was due to a failure of the memory
1513  * backing the user stack, tracing that reads the user stack will cause
1514  * potentially infinite recursion.
1515  *
1516  * Currently, the #MC handler calls out to a number of external facilities
1517  * and, therefore, allows instrumentation around them. The optimal thing to
1518  * have would be to do the absolutely minimal work required in #MC context
1519  * and have instrumentation disabled only around that. Further processing can
1520  * then happen in process context where instrumentation is allowed. Achieving
1521  * that requires careful auditing and modifications. Until then, the code
1522  * allows instrumentation temporarily, where required. *
1523  */
do_machine_check(struct pt_regs * regs)1524 noinstr void do_machine_check(struct pt_regs *regs)
1525 {
1526 	int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1527 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1528 	DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1529 	struct mce_hw_err *final;
1530 	struct mce_hw_err err;
1531 	char *msg = NULL;
1532 	struct mce *m;
1533 
1534 	if (unlikely(mce_flags.p5))
1535 		return pentium_machine_check(regs);
1536 	else if (unlikely(mce_flags.winchip))
1537 		return winchip_machine_check(regs);
1538 	else if (unlikely(!mca_cfg.initialized))
1539 		return unexpected_machine_check(regs);
1540 
1541 	if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
1542 		goto clear;
1543 
1544 	/*
1545 	 * Establish sequential order between the CPUs entering the machine
1546 	 * check handler.
1547 	 */
1548 	order = -1;
1549 
1550 	/*
1551 	 * If no_way_out gets set, there is no safe way to recover from this
1552 	 * MCE.
1553 	 */
1554 	no_way_out = 0;
1555 
1556 	/*
1557 	 * If kill_current_task is not set, there might be a way to recover from this
1558 	 * error.
1559 	 */
1560 	kill_current_task = 0;
1561 
1562 	/*
1563 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1564 	 * on Intel.
1565 	 */
1566 	lmce = 1;
1567 
1568 	this_cpu_inc(mce_exception_count);
1569 
1570 	mce_gather_info(&err, regs);
1571 	m = &err.m;
1572 	m->tsc = rdtsc();
1573 
1574 	final = this_cpu_ptr(&hw_errs_seen);
1575 	*final = err;
1576 
1577 	no_way_out = mce_no_way_out(&err, &msg, valid_banks, regs);
1578 
1579 	barrier();
1580 
1581 	/*
1582 	 * When no restart IP might need to kill or panic.
1583 	 * Assume the worst for now, but if we find the
1584 	 * severity is MCE_AR_SEVERITY we have other options.
1585 	 */
1586 	if (!(m->mcgstatus & MCG_STATUS_RIPV))
1587 		kill_current_task = 1;
1588 	/*
1589 	 * Check if this MCE is signaled to only this logical processor,
1590 	 * on Intel, Zhaoxin only.
1591 	 */
1592 	if (m->cpuvendor == X86_VENDOR_INTEL ||
1593 	    m->cpuvendor == X86_VENDOR_ZHAOXIN)
1594 		lmce = m->mcgstatus & MCG_STATUS_LMCES;
1595 
1596 	/*
1597 	 * Local machine check may already know that we have to panic.
1598 	 * Broadcast machine check begins rendezvous in mce_start()
1599 	 * Go through all banks in exclusion of the other CPUs. This way we
1600 	 * don't report duplicated events on shared banks because the first one
1601 	 * to see it will clear it.
1602 	 */
1603 	if (lmce) {
1604 		if (no_way_out)
1605 			mce_panic("Fatal local machine check", &err, msg);
1606 	} else {
1607 		order = mce_start(&no_way_out);
1608 	}
1609 
1610 	taint = __mc_scan_banks(&err, regs, final, toclear, valid_banks, no_way_out, &worst);
1611 
1612 	if (!no_way_out)
1613 		mce_clear_state(toclear);
1614 
1615 	/*
1616 	 * Do most of the synchronization with other CPUs.
1617 	 * When there's any problem use only local no_way_out state.
1618 	 */
1619 	if (!lmce) {
1620 		if (mce_end(order) < 0) {
1621 			if (!no_way_out)
1622 				no_way_out = worst >= MCE_PANIC_SEVERITY;
1623 
1624 			if (no_way_out)
1625 				mce_panic("Fatal machine check on current CPU", &err, msg);
1626 		}
1627 	} else {
1628 		/*
1629 		 * If there was a fatal machine check we should have
1630 		 * already called mce_panic earlier in this function.
1631 		 * Since we re-read the banks, we might have found
1632 		 * something new. Check again to see if we found a
1633 		 * fatal error. We call "mce_severity()" again to
1634 		 * make sure we have the right "msg".
1635 		 */
1636 		if (worst >= MCE_PANIC_SEVERITY) {
1637 			mce_severity(m, regs, &msg, true);
1638 			mce_panic("Local fatal machine check!", &err, msg);
1639 		}
1640 	}
1641 
1642 	/*
1643 	 * Enable instrumentation around the external facilities like task_work_add()
1644 	 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1645 	 * properly would need a lot more involved reorganization.
1646 	 */
1647 	instrumentation_begin();
1648 
1649 	if (taint)
1650 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1651 
1652 	if (worst != MCE_AR_SEVERITY && !kill_current_task)
1653 		goto out;
1654 
1655 	/* Fault was in user mode and we need to take some action */
1656 	if ((m->cs & 3) == 3) {
1657 		/* If this triggers there is no way to recover. Die hard. */
1658 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1659 
1660 		if (!mce_usable_address(m))
1661 			queue_task_work(&err, msg, kill_me_now);
1662 		else
1663 			queue_task_work(&err, msg, kill_me_maybe);
1664 
1665 	} else if (m->mcgstatus & MCG_STATUS_SEAM_NR) {
1666 		/*
1667 		 * Saved RIP on stack makes it look like the machine check
1668 		 * was taken in the kernel on the instruction following
1669 		 * the entry to SEAM mode. But MCG_STATUS_SEAM_NR indicates
1670 		 * that the machine check was taken inside SEAM non-root
1671 		 * mode.  CPU core has already marked that guest as dead.
1672 		 * It is OK for the kernel to resume execution at the
1673 		 * apparent point of the machine check as the fault did
1674 		 * not occur there. Mark the page as poisoned so it won't
1675 		 * be added to free list when the guest is terminated.
1676 		 */
1677 		if (mce_usable_address(m)) {
1678 			struct page *p = pfn_to_online_page(m->addr >> PAGE_SHIFT);
1679 
1680 			if (p)
1681 				SetPageHWPoison(p);
1682 		}
1683 	} else {
1684 		/*
1685 		 * Handle an MCE which has happened in kernel space but from
1686 		 * which the kernel can recover: ex_has_fault_handler() has
1687 		 * already verified that the rIP at which the error happened is
1688 		 * a rIP from which the kernel can recover (by jumping to
1689 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1690 		 * corresponding exception handler which would do that is the
1691 		 * proper one.
1692 		 */
1693 		if (m->kflags & MCE_IN_KERNEL_RECOV) {
1694 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1695 				mce_panic("Failed kernel mode recovery", &err, msg);
1696 		}
1697 
1698 		if (m->kflags & MCE_IN_KERNEL_COPYIN)
1699 			queue_task_work(&err, msg, kill_me_never);
1700 	}
1701 
1702 out:
1703 	instrumentation_end();
1704 
1705 clear:
1706 	mce_wrmsrq(MSR_IA32_MCG_STATUS, 0);
1707 }
1708 EXPORT_SYMBOL_GPL(do_machine_check);
1709 
1710 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1711 int memory_failure(unsigned long pfn, int flags)
1712 {
1713 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1714 	BUG_ON(flags & MF_ACTION_REQUIRED);
1715 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1716 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1717 	       pfn);
1718 
1719 	return 0;
1720 }
1721 #endif
1722 
1723 /*
1724  * Periodic polling timer for "silent" machine check errors.  If the
1725  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1726  * errors, poll 2x slower (up to check_interval seconds).
1727  */
1728 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1729 
1730 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1731 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1732 
__start_timer(struct timer_list * t,unsigned long interval)1733 static void __start_timer(struct timer_list *t, unsigned long interval)
1734 {
1735 	unsigned long when = jiffies + interval;
1736 	unsigned long flags;
1737 
1738 	local_irq_save(flags);
1739 
1740 	if (!timer_pending(t) || time_before(when, t->expires))
1741 		mod_timer(t, round_jiffies(when));
1742 
1743 	local_irq_restore(flags);
1744 }
1745 
mc_poll_banks_default(void)1746 static void mc_poll_banks_default(void)
1747 {
1748 	machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1749 }
1750 
1751 void (*mc_poll_banks)(void) = mc_poll_banks_default;
1752 
should_enable_timer(unsigned long iv)1753 static bool should_enable_timer(unsigned long iv)
1754 {
1755 	return !mca_cfg.ignore_ce && iv;
1756 }
1757 
mce_timer_fn(struct timer_list * t)1758 static void mce_timer_fn(struct timer_list *t)
1759 {
1760 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1761 	unsigned long iv;
1762 
1763 	WARN_ON(cpu_t != t);
1764 
1765 	iv = __this_cpu_read(mce_next_interval);
1766 
1767 	if (mce_available(this_cpu_ptr(&cpu_info)))
1768 		mc_poll_banks();
1769 
1770 	/*
1771 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1772 	 * interval, otherwise increase the polling interval.
1773 	 */
1774 	if (mce_notify_irq())
1775 		iv = max(iv / 2, (unsigned long) HZ/100);
1776 	else
1777 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1778 
1779 	if (mce_get_storm_mode()) {
1780 		__start_timer(t, HZ);
1781 	} else if (should_enable_timer(iv)) {
1782 		__this_cpu_write(mce_next_interval, iv);
1783 		__start_timer(t, iv);
1784 	}
1785 }
1786 
1787 /*
1788  * When a storm starts on any bank on this CPU, switch to polling
1789  * once per second. When the storm ends, revert to the default
1790  * polling interval.
1791  */
mce_timer_kick(bool storm)1792 void mce_timer_kick(bool storm)
1793 {
1794 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1795 
1796 	mce_set_storm_mode(storm);
1797 
1798 	if (storm)
1799 		__start_timer(t, HZ);
1800 	else
1801 		__this_cpu_write(mce_next_interval, check_interval * HZ);
1802 }
1803 
1804 /* Must not be called in IRQ context where timer_delete_sync() can deadlock */
mce_timer_delete_all(void)1805 static void mce_timer_delete_all(void)
1806 {
1807 	int cpu;
1808 
1809 	for_each_online_cpu(cpu)
1810 		timer_delete_sync(&per_cpu(mce_timer, cpu));
1811 }
1812 
__mcheck_cpu_mce_banks_init(void)1813 static void __mcheck_cpu_mce_banks_init(void)
1814 {
1815 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1816 	u8 n_banks = this_cpu_read(mce_num_banks);
1817 	int i;
1818 
1819 	for (i = 0; i < n_banks; i++) {
1820 		struct mce_bank *b = &mce_banks[i];
1821 
1822 		/*
1823 		 * Init them all by default.
1824 		 *
1825 		 * The required vendor quirks will be applied before
1826 		 * __mcheck_cpu_init_prepare_banks() does the final bank setup.
1827 		 */
1828 		b->ctl = -1ULL;
1829 		b->init = true;
1830 	}
1831 }
1832 
1833 /*
1834  * Initialize Machine Checks for a CPU.
1835  */
__mcheck_cpu_cap_init(void)1836 static void __mcheck_cpu_cap_init(void)
1837 {
1838 	u64 cap;
1839 	u8 b;
1840 
1841 	rdmsrq(MSR_IA32_MCG_CAP, cap);
1842 
1843 	b = cap & MCG_BANKCNT_MASK;
1844 
1845 	if (b > MAX_NR_BANKS) {
1846 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1847 			smp_processor_id(), MAX_NR_BANKS, b);
1848 		b = MAX_NR_BANKS;
1849 	}
1850 
1851 	this_cpu_write(mce_num_banks, b);
1852 
1853 	__mcheck_cpu_mce_banks_init();
1854 }
1855 
__mcheck_cpu_init_generic(void)1856 static void __mcheck_cpu_init_generic(void)
1857 {
1858 	u64 cap;
1859 
1860 	rdmsrq(MSR_IA32_MCG_CAP, cap);
1861 	if (cap & MCG_CTL_P)
1862 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1863 }
1864 
__mcheck_cpu_init_prepare_banks(void)1865 static void __mcheck_cpu_init_prepare_banks(void)
1866 {
1867 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1868 	u64 msrval;
1869 	int i;
1870 
1871 	/*
1872 	 * Log the machine checks left over from the previous reset. Log them
1873 	 * only, do not start processing them. That will happen in mcheck_late_init()
1874 	 * when all consumers have been registered on the notifier chain.
1875 	 */
1876 	if (mca_cfg.bootlog) {
1877 		mce_banks_t all_banks;
1878 
1879 		bitmap_fill(all_banks, MAX_NR_BANKS);
1880 		machine_check_poll(MCP_UC | MCP_QUEUE_LOG, &all_banks);
1881 	}
1882 
1883 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1884 		struct mce_bank *b = &mce_banks[i];
1885 
1886 		if (!b->init)
1887 			continue;
1888 
1889 		wrmsrq(mca_msr_reg(i, MCA_CTL), b->ctl);
1890 		wrmsrq(mca_msr_reg(i, MCA_STATUS), 0);
1891 
1892 		rdmsrq(mca_msr_reg(i, MCA_CTL), msrval);
1893 		b->init = !!msrval;
1894 	}
1895 }
1896 
amd_apply_global_quirks(struct cpuinfo_x86 * c)1897 static void amd_apply_global_quirks(struct cpuinfo_x86 *c)
1898 {
1899 	if (c->x86 < 0x11 && mca_cfg.bootlog < 0) {
1900 		/*
1901 		 * Lots of broken BIOS around that don't clear them
1902 		 * by default and leave crap in there. Don't log:
1903 		 */
1904 		mca_cfg.bootlog = 0;
1905 	}
1906 
1907 	/*
1908 	 * overflow_recov is supported for F15h Models 00h-0fh
1909 	 * even though we don't have a CPUID bit for it.
1910 	 */
1911 	if (c->x86 == 0x15 && c->x86_model <= 0xf)
1912 		mce_flags.overflow_recov = 1;
1913 
1914 	if (c->x86 >= 0x17 && c->x86 <= 0x1A)
1915 		mce_flags.zen_ifu_quirk = 1;
1916 }
1917 
intel_apply_global_quirks(struct cpuinfo_x86 * c)1918 static void intel_apply_global_quirks(struct cpuinfo_x86 *c)
1919 {
1920 	/* Older CPUs (prior to family 6) don't need quirks. */
1921 	if (c->x86_vfm < INTEL_PENTIUM_PRO)
1922 		return;
1923 
1924 	/*
1925 	 * All newer Intel systems support MCE broadcasting. Enable
1926 	 * synchronization with a one second timeout.
1927 	 */
1928 	if (c->x86_vfm >= INTEL_CORE_YONAH && mca_cfg.monarch_timeout < 0)
1929 		mca_cfg.monarch_timeout = USEC_PER_SEC;
1930 
1931 	/*
1932 	 * There are also broken BIOSes on some Pentium M and
1933 	 * earlier systems:
1934 	 */
1935 	if (c->x86_vfm < INTEL_CORE_YONAH && mca_cfg.bootlog < 0)
1936 		mca_cfg.bootlog = 0;
1937 
1938 	if (c->x86_vfm == INTEL_SANDYBRIDGE_X)
1939 		mce_flags.snb_ifu_quirk = 1;
1940 
1941 	/*
1942 	 * Skylake, Cascacde Lake and Cooper Lake require a quirk on
1943 	 * rep movs.
1944 	 */
1945 	if (c->x86_vfm == INTEL_SKYLAKE_X)
1946 		mce_flags.skx_repmov_quirk = 1;
1947 }
1948 
zhaoxin_apply_global_quirks(struct cpuinfo_x86 * c)1949 static void zhaoxin_apply_global_quirks(struct cpuinfo_x86 *c)
1950 {
1951 	/*
1952 	 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1953 	 * synchronization with a one second timeout.
1954 	 */
1955 	if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1956 		if (mca_cfg.monarch_timeout < 0)
1957 			mca_cfg.monarch_timeout = USEC_PER_SEC;
1958 	}
1959 }
1960 
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1961 static bool __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1962 {
1963 	if (c->x86 != 5)
1964 		return false;
1965 
1966 	switch (c->x86_vendor) {
1967 	case X86_VENDOR_INTEL:
1968 		intel_p5_mcheck_init(c);
1969 		mce_flags.p5 = 1;
1970 		return true;
1971 	case X86_VENDOR_CENTAUR:
1972 		winchip_mcheck_init(c);
1973 		mce_flags.winchip = 1;
1974 		return true;
1975 	default:
1976 		return false;
1977 	}
1978 
1979 	return false;
1980 }
1981 
mce_centaur_feature_init(struct cpuinfo_x86 * c)1982 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1983 {
1984 	struct mca_config *cfg = &mca_cfg;
1985 
1986 	 /*
1987 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1988 	  * synchronization with a one second timeout.
1989 	  */
1990 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1991 	     c->x86 > 6) {
1992 		if (cfg->monarch_timeout < 0)
1993 			cfg->monarch_timeout = USEC_PER_SEC;
1994 	}
1995 }
1996 
mce_zhaoxin_feature_init(struct cpuinfo_x86 * c)1997 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1998 {
1999 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2000 
2001 	/*
2002 	 * These CPUs have MCA bank 8 which reports only one error type called
2003 	 * SVAD (System View Address Decoder). The reporting of that error is
2004 	 * controlled by IA32_MC8.CTL.0.
2005 	 *
2006 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
2007 	 * virtual machines start and result in a system  panic. Always disable
2008 	 * bank 8 SVAD error by default.
2009 	 */
2010 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
2011 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
2012 		if (this_cpu_read(mce_num_banks) > 8)
2013 			mce_banks[8].ctl = 0;
2014 	}
2015 
2016 	intel_init_cmci();
2017 	intel_init_lmce();
2018 }
2019 
mce_zhaoxin_feature_clear(struct cpuinfo_x86 * c)2020 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
2021 {
2022 	intel_clear_lmce();
2023 }
2024 
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)2025 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
2026 {
2027 	switch (c->x86_vendor) {
2028 	case X86_VENDOR_INTEL:
2029 		mce_intel_feature_init(c);
2030 		break;
2031 
2032 	case X86_VENDOR_AMD:
2033 	case X86_VENDOR_HYGON:
2034 		mce_amd_feature_init(c);
2035 		break;
2036 
2037 	case X86_VENDOR_CENTAUR:
2038 		mce_centaur_feature_init(c);
2039 		break;
2040 
2041 	case X86_VENDOR_ZHAOXIN:
2042 		mce_zhaoxin_feature_init(c);
2043 		break;
2044 
2045 	default:
2046 		break;
2047 	}
2048 }
2049 
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)2050 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
2051 {
2052 	switch (c->x86_vendor) {
2053 	case X86_VENDOR_INTEL:
2054 		mce_intel_feature_clear(c);
2055 		break;
2056 
2057 	case X86_VENDOR_ZHAOXIN:
2058 		mce_zhaoxin_feature_clear(c);
2059 		break;
2060 
2061 	default:
2062 		break;
2063 	}
2064 }
2065 
mce_start_timer(struct timer_list * t)2066 static void mce_start_timer(struct timer_list *t)
2067 {
2068 	unsigned long iv = check_interval * HZ;
2069 
2070 	if (should_enable_timer(iv)) {
2071 		this_cpu_write(mce_next_interval, iv);
2072 		__start_timer(t, iv);
2073 	}
2074 }
2075 
__mcheck_cpu_setup_timer(void)2076 static void __mcheck_cpu_setup_timer(void)
2077 {
2078 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2079 
2080 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2081 }
2082 
__mcheck_cpu_init_timer(void)2083 static void __mcheck_cpu_init_timer(void)
2084 {
2085 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2086 
2087 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2088 	mce_start_timer(t);
2089 }
2090 
filter_mce(struct mce * m)2091 bool filter_mce(struct mce *m)
2092 {
2093 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2094 		return amd_filter_mce(m);
2095 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2096 		return intel_filter_mce(m);
2097 
2098 	return false;
2099 }
2100 
exc_machine_check_kernel(struct pt_regs * regs)2101 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2102 {
2103 	irqentry_state_t irq_state;
2104 
2105 	WARN_ON_ONCE(user_mode(regs));
2106 
2107 	/*
2108 	 * Only required when from kernel mode. See
2109 	 * mce_check_crashing_cpu() for details.
2110 	 */
2111 	if (mca_cfg.initialized && mce_check_crashing_cpu())
2112 		return;
2113 
2114 	irq_state = irqentry_nmi_enter(regs);
2115 
2116 	do_machine_check(regs);
2117 
2118 	irqentry_nmi_exit(regs, irq_state);
2119 }
2120 
exc_machine_check_user(struct pt_regs * regs)2121 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2122 {
2123 	irqentry_enter_from_user_mode(regs);
2124 
2125 	do_machine_check(regs);
2126 
2127 	irqentry_exit_to_user_mode(regs);
2128 }
2129 
2130 #ifdef CONFIG_X86_64
2131 /* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)2132 DEFINE_IDTENTRY_MCE(exc_machine_check)
2133 {
2134 	unsigned long dr7;
2135 
2136 	dr7 = local_db_save();
2137 	exc_machine_check_kernel(regs);
2138 	local_db_restore(dr7);
2139 }
2140 
2141 /* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)2142 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2143 {
2144 	unsigned long dr7;
2145 
2146 	dr7 = local_db_save();
2147 	exc_machine_check_user(regs);
2148 	local_db_restore(dr7);
2149 }
2150 
2151 #ifdef CONFIG_X86_FRED
2152 /*
2153  * When occurred on different ring level, i.e., from user or kernel
2154  * context, #MCE needs to be handled on different stack: User #MCE
2155  * on current task stack, while kernel #MCE on a dedicated stack.
2156  *
2157  * This is exactly how FRED event delivery invokes an exception
2158  * handler: ring 3 event on level 0 stack, i.e., current task stack;
2159  * ring 0 event on the #MCE dedicated stack specified in the
2160  * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED machine check entry
2161  * stub doesn't do stack switch.
2162  */
DEFINE_FREDENTRY_MCE(exc_machine_check)2163 DEFINE_FREDENTRY_MCE(exc_machine_check)
2164 {
2165 	unsigned long dr7;
2166 
2167 	dr7 = local_db_save();
2168 	if (user_mode(regs))
2169 		exc_machine_check_user(regs);
2170 	else
2171 		exc_machine_check_kernel(regs);
2172 	local_db_restore(dr7);
2173 }
2174 #endif
2175 #else
2176 /* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)2177 DEFINE_IDTENTRY_RAW(exc_machine_check)
2178 {
2179 	unsigned long dr7;
2180 
2181 	dr7 = local_db_save();
2182 	if (user_mode(regs))
2183 		exc_machine_check_user(regs);
2184 	else
2185 		exc_machine_check_kernel(regs);
2186 	local_db_restore(dr7);
2187 }
2188 #endif
2189 
mca_bsp_init(struct cpuinfo_x86 * c)2190 void mca_bsp_init(struct cpuinfo_x86 *c)
2191 {
2192 	u64 cap;
2193 
2194 	if (!mce_available(c))
2195 		return;
2196 
2197 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
2198 		mca_cfg.disabled = 1;
2199 		pr_info("unknown CPU type - not enabling MCE support\n");
2200 		return;
2201 	}
2202 
2203 	mce_flags.overflow_recov = cpu_feature_enabled(X86_FEATURE_OVERFLOW_RECOV);
2204 	mce_flags.succor	 = cpu_feature_enabled(X86_FEATURE_SUCCOR);
2205 	mce_flags.smca		 = cpu_feature_enabled(X86_FEATURE_SMCA);
2206 
2207 	if (mce_flags.smca)
2208 		smca_bsp_init();
2209 
2210 	rdmsrq(MSR_IA32_MCG_CAP, cap);
2211 
2212 	/* Use accurate RIP reporting if available. */
2213 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
2214 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
2215 
2216 	if (cap & MCG_SER_P)
2217 		mca_cfg.ser = 1;
2218 
2219 	switch (c->x86_vendor) {
2220 	case X86_VENDOR_AMD:
2221 		amd_apply_global_quirks(c);
2222 		break;
2223 	case X86_VENDOR_INTEL:
2224 		intel_apply_global_quirks(c);
2225 		break;
2226 	case X86_VENDOR_ZHAOXIN:
2227 		zhaoxin_apply_global_quirks(c);
2228 		break;
2229 	}
2230 
2231 	if (mca_cfg.monarch_timeout < 0)
2232 		mca_cfg.monarch_timeout = 0;
2233 	if (mca_cfg.bootlog != 0)
2234 		mca_cfg.panic_timeout = 30;
2235 }
2236 
2237 /*
2238  * Called for each booted CPU to set up machine checks.
2239  * Must be called with preempt off:
2240  */
mcheck_cpu_init(struct cpuinfo_x86 * c)2241 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2242 {
2243 	if (mca_cfg.disabled)
2244 		return;
2245 
2246 	if (__mcheck_cpu_ancient_init(c))
2247 		return;
2248 
2249 	if (!mce_available(c))
2250 		return;
2251 
2252 	__mcheck_cpu_cap_init();
2253 
2254 	if (!mce_gen_pool_init()) {
2255 		mca_cfg.disabled = 1;
2256 		pr_emerg("Couldn't allocate MCE records pool!\n");
2257 		return;
2258 	}
2259 
2260 	mca_cfg.initialized = 1;
2261 
2262 	__mcheck_cpu_init_generic();
2263 	__mcheck_cpu_init_vendor(c);
2264 	__mcheck_cpu_init_prepare_banks();
2265 	__mcheck_cpu_setup_timer();
2266 	cr4_set_bits(X86_CR4_MCE);
2267 }
2268 
2269 /*
2270  * Called for each booted CPU to clear some machine checks opt-ins
2271  */
mcheck_cpu_clear(struct cpuinfo_x86 * c)2272 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2273 {
2274 	if (mca_cfg.disabled)
2275 		return;
2276 
2277 	if (!mce_available(c))
2278 		return;
2279 
2280 	/*
2281 	 * Possibly to clear general settings generic to x86
2282 	 * __mcheck_cpu_clear_generic(c);
2283 	 */
2284 	__mcheck_cpu_clear_vendor(c);
2285 
2286 }
2287 
__mce_disable_bank(void * arg)2288 static void __mce_disable_bank(void *arg)
2289 {
2290 	int bank = *((int *)arg);
2291 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2292 	cmci_disable_bank(bank);
2293 }
2294 
mce_disable_bank(int bank)2295 void mce_disable_bank(int bank)
2296 {
2297 	if (bank >= this_cpu_read(mce_num_banks)) {
2298 		pr_warn(FW_BUG
2299 			"Ignoring request to disable invalid MCA bank %d.\n",
2300 			bank);
2301 		return;
2302 	}
2303 	set_bit(bank, mce_banks_ce_disabled);
2304 	on_each_cpu(__mce_disable_bank, &bank, 1);
2305 }
2306 
2307 /*
2308  * mce=off Disables machine check
2309  * mce=no_cmci Disables CMCI
2310  * mce=no_lmce Disables LMCE
2311  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2312  * mce=print_all Print all machine check logs to console
2313  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2314  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2315  *	monarchtimeout is how long to wait for other CPUs on machine
2316  *	check, or 0 to not wait
2317  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2318 	and older.
2319  * mce=nobootlog Don't log MCEs from before booting.
2320  * mce=bios_cmci_threshold Don't program the CMCI threshold
2321  * mce=recovery force enable copy_mc_fragile()
2322  */
mcheck_enable(char * str)2323 static int __init mcheck_enable(char *str)
2324 {
2325 	struct mca_config *cfg = &mca_cfg;
2326 
2327 	if (*str == 0) {
2328 		enable_p5_mce();
2329 		return 1;
2330 	}
2331 	if (*str == '=')
2332 		str++;
2333 	if (!strcmp(str, "off"))
2334 		cfg->disabled = 1;
2335 	else if (!strcmp(str, "no_cmci"))
2336 		cfg->cmci_disabled = true;
2337 	else if (!strcmp(str, "no_lmce"))
2338 		cfg->lmce_disabled = 1;
2339 	else if (!strcmp(str, "dont_log_ce"))
2340 		cfg->dont_log_ce = true;
2341 	else if (!strcmp(str, "print_all"))
2342 		cfg->print_all = true;
2343 	else if (!strcmp(str, "ignore_ce"))
2344 		cfg->ignore_ce = true;
2345 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2346 		cfg->bootlog = (str[0] == 'b');
2347 	else if (!strcmp(str, "bios_cmci_threshold"))
2348 		cfg->bios_cmci_threshold = 1;
2349 	else if (!strcmp(str, "recovery"))
2350 		cfg->recovery = 1;
2351 	else if (isdigit(str[0]))
2352 		get_option(&str, &(cfg->monarch_timeout));
2353 	else {
2354 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2355 		return 0;
2356 	}
2357 	return 1;
2358 }
2359 __setup("mce", mcheck_enable);
2360 
mcheck_init(void)2361 int __init mcheck_init(void)
2362 {
2363 	mce_register_decode_chain(&early_nb);
2364 	mce_register_decode_chain(&mce_uc_nb);
2365 	mce_register_decode_chain(&mce_default_nb);
2366 
2367 	INIT_WORK(&mce_work, mce_gen_pool_process);
2368 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2369 
2370 	return 0;
2371 }
2372 
2373 /*
2374  * mce_syscore: PM support
2375  */
2376 
2377 /*
2378  * Disable machine checks on suspend and shutdown. We can't really handle
2379  * them later.
2380  */
mce_disable_error_reporting(void)2381 static void mce_disable_error_reporting(void)
2382 {
2383 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2384 	int i;
2385 
2386 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2387 		struct mce_bank *b = &mce_banks[i];
2388 
2389 		if (b->init)
2390 			wrmsrq(mca_msr_reg(i, MCA_CTL), 0);
2391 	}
2392 	return;
2393 }
2394 
vendor_disable_error_reporting(void)2395 static void vendor_disable_error_reporting(void)
2396 {
2397 	/*
2398 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2399 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2400 	 * is bad, since it will inhibit reporting for all shared resources on
2401 	 * the socket like the last level cache (LLC), the integrated memory
2402 	 * controller (iMC), etc.
2403 	 */
2404 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2405 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2406 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2407 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2408 		return;
2409 
2410 	mce_disable_error_reporting();
2411 }
2412 
mce_syscore_suspend(void)2413 static int mce_syscore_suspend(void)
2414 {
2415 	vendor_disable_error_reporting();
2416 	return 0;
2417 }
2418 
mce_syscore_shutdown(void)2419 static void mce_syscore_shutdown(void)
2420 {
2421 	vendor_disable_error_reporting();
2422 }
2423 
2424 /*
2425  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2426  * Only one CPU is active at this time, the others get re-added later using
2427  * CPU hotplug:
2428  */
mce_syscore_resume(void)2429 static void mce_syscore_resume(void)
2430 {
2431 	__mcheck_cpu_init_generic();
2432 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2433 	__mcheck_cpu_init_prepare_banks();
2434 	cr4_set_bits(X86_CR4_MCE);
2435 }
2436 
2437 static struct syscore_ops mce_syscore_ops = {
2438 	.suspend	= mce_syscore_suspend,
2439 	.shutdown	= mce_syscore_shutdown,
2440 	.resume		= mce_syscore_resume,
2441 };
2442 
2443 /*
2444  * mce_device: Sysfs support
2445  */
2446 
mce_cpu_restart(void * data)2447 static void mce_cpu_restart(void *data)
2448 {
2449 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2450 		return;
2451 	__mcheck_cpu_init_generic();
2452 	__mcheck_cpu_init_prepare_banks();
2453 	__mcheck_cpu_init_timer();
2454 	cr4_set_bits(X86_CR4_MCE);
2455 }
2456 
2457 /* Reinit MCEs after user configuration changes */
mce_restart(void)2458 static void mce_restart(void)
2459 {
2460 	mce_timer_delete_all();
2461 	on_each_cpu(mce_cpu_restart, NULL, 1);
2462 	mce_schedule_work();
2463 }
2464 
2465 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2466 static void mce_disable_cmci(void *data)
2467 {
2468 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2469 		return;
2470 	cmci_clear();
2471 }
2472 
mce_enable_ce(void * all)2473 static void mce_enable_ce(void *all)
2474 {
2475 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2476 		return;
2477 	cmci_reenable();
2478 	cmci_recheck();
2479 	if (all)
2480 		__mcheck_cpu_init_timer();
2481 }
2482 
2483 static const struct bus_type mce_subsys = {
2484 	.name		= "machinecheck",
2485 	.dev_name	= "machinecheck",
2486 };
2487 
2488 DEFINE_PER_CPU(struct device *, mce_device);
2489 
attr_to_bank(struct device_attribute * attr)2490 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2491 {
2492 	return container_of(attr, struct mce_bank_dev, attr);
2493 }
2494 
show_bank(struct device * s,struct device_attribute * attr,char * buf)2495 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2496 			 char *buf)
2497 {
2498 	u8 bank = attr_to_bank(attr)->bank;
2499 	struct mce_bank *b;
2500 
2501 	if (bank >= per_cpu(mce_num_banks, s->id))
2502 		return -EINVAL;
2503 
2504 	b = &per_cpu(mce_banks_array, s->id)[bank];
2505 
2506 	if (!b->init)
2507 		return -ENODEV;
2508 
2509 	return sprintf(buf, "%llx\n", b->ctl);
2510 }
2511 
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2512 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2513 			const char *buf, size_t size)
2514 {
2515 	u8 bank = attr_to_bank(attr)->bank;
2516 	struct mce_bank *b;
2517 	u64 new;
2518 
2519 	if (kstrtou64(buf, 0, &new) < 0)
2520 		return -EINVAL;
2521 
2522 	if (bank >= per_cpu(mce_num_banks, s->id))
2523 		return -EINVAL;
2524 
2525 	b = &per_cpu(mce_banks_array, s->id)[bank];
2526 	if (!b->init)
2527 		return -ENODEV;
2528 
2529 	b->ctl = new;
2530 
2531 	mutex_lock(&mce_sysfs_mutex);
2532 	mce_restart();
2533 	mutex_unlock(&mce_sysfs_mutex);
2534 
2535 	return size;
2536 }
2537 
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2538 static ssize_t set_ignore_ce(struct device *s,
2539 			     struct device_attribute *attr,
2540 			     const char *buf, size_t size)
2541 {
2542 	u64 new;
2543 
2544 	if (kstrtou64(buf, 0, &new) < 0)
2545 		return -EINVAL;
2546 
2547 	mutex_lock(&mce_sysfs_mutex);
2548 	if (mca_cfg.ignore_ce ^ !!new) {
2549 		if (new) {
2550 			/* disable ce features */
2551 			mce_timer_delete_all();
2552 			on_each_cpu(mce_disable_cmci, NULL, 1);
2553 			mca_cfg.ignore_ce = true;
2554 		} else {
2555 			/* enable ce features */
2556 			mca_cfg.ignore_ce = false;
2557 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2558 		}
2559 	}
2560 	mutex_unlock(&mce_sysfs_mutex);
2561 
2562 	return size;
2563 }
2564 
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2565 static ssize_t set_cmci_disabled(struct device *s,
2566 				 struct device_attribute *attr,
2567 				 const char *buf, size_t size)
2568 {
2569 	u64 new;
2570 
2571 	if (kstrtou64(buf, 0, &new) < 0)
2572 		return -EINVAL;
2573 
2574 	mutex_lock(&mce_sysfs_mutex);
2575 	if (mca_cfg.cmci_disabled ^ !!new) {
2576 		if (new) {
2577 			/* disable cmci */
2578 			on_each_cpu(mce_disable_cmci, NULL, 1);
2579 			mca_cfg.cmci_disabled = true;
2580 		} else {
2581 			/* enable cmci */
2582 			mca_cfg.cmci_disabled = false;
2583 			on_each_cpu(mce_enable_ce, NULL, 1);
2584 		}
2585 	}
2586 	mutex_unlock(&mce_sysfs_mutex);
2587 
2588 	return size;
2589 }
2590 
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2591 static ssize_t store_int_with_restart(struct device *s,
2592 				      struct device_attribute *attr,
2593 				      const char *buf, size_t size)
2594 {
2595 	unsigned long old_check_interval = check_interval;
2596 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2597 
2598 	if (check_interval == old_check_interval)
2599 		return ret;
2600 
2601 	mutex_lock(&mce_sysfs_mutex);
2602 	mce_restart();
2603 	mutex_unlock(&mce_sysfs_mutex);
2604 
2605 	return ret;
2606 }
2607 
2608 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2609 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2610 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2611 
2612 static struct dev_ext_attribute dev_attr_check_interval = {
2613 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2614 	&check_interval
2615 };
2616 
2617 static struct dev_ext_attribute dev_attr_ignore_ce = {
2618 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2619 	&mca_cfg.ignore_ce
2620 };
2621 
2622 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2623 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2624 	&mca_cfg.cmci_disabled
2625 };
2626 
2627 static struct device_attribute *mce_device_attrs[] = {
2628 	&dev_attr_check_interval.attr,
2629 #ifdef CONFIG_X86_MCELOG_LEGACY
2630 	&dev_attr_trigger,
2631 #endif
2632 	&dev_attr_monarch_timeout.attr,
2633 	&dev_attr_dont_log_ce.attr,
2634 	&dev_attr_print_all.attr,
2635 	&dev_attr_ignore_ce.attr,
2636 	&dev_attr_cmci_disabled.attr,
2637 	NULL
2638 };
2639 
2640 static cpumask_var_t mce_device_initialized;
2641 
mce_device_release(struct device * dev)2642 static void mce_device_release(struct device *dev)
2643 {
2644 	kfree(dev);
2645 }
2646 
2647 /* Per CPU device init. All of the CPUs still share the same bank device: */
mce_device_create(unsigned int cpu)2648 static int mce_device_create(unsigned int cpu)
2649 {
2650 	struct device *dev;
2651 	int err;
2652 	int i, j;
2653 
2654 	dev = per_cpu(mce_device, cpu);
2655 	if (dev)
2656 		return 0;
2657 
2658 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2659 	if (!dev)
2660 		return -ENOMEM;
2661 	dev->id  = cpu;
2662 	dev->bus = &mce_subsys;
2663 	dev->release = &mce_device_release;
2664 
2665 	err = device_register(dev);
2666 	if (err) {
2667 		put_device(dev);
2668 		return err;
2669 	}
2670 
2671 	for (i = 0; mce_device_attrs[i]; i++) {
2672 		err = device_create_file(dev, mce_device_attrs[i]);
2673 		if (err)
2674 			goto error;
2675 	}
2676 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2677 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2678 		if (err)
2679 			goto error2;
2680 	}
2681 	cpumask_set_cpu(cpu, mce_device_initialized);
2682 	per_cpu(mce_device, cpu) = dev;
2683 
2684 	return 0;
2685 error2:
2686 	while (--j >= 0)
2687 		device_remove_file(dev, &mce_bank_devs[j].attr);
2688 error:
2689 	while (--i >= 0)
2690 		device_remove_file(dev, mce_device_attrs[i]);
2691 
2692 	device_unregister(dev);
2693 
2694 	return err;
2695 }
2696 
mce_device_remove(unsigned int cpu)2697 static void mce_device_remove(unsigned int cpu)
2698 {
2699 	struct device *dev = per_cpu(mce_device, cpu);
2700 	int i;
2701 
2702 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2703 		return;
2704 
2705 	for (i = 0; mce_device_attrs[i]; i++)
2706 		device_remove_file(dev, mce_device_attrs[i]);
2707 
2708 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2709 		device_remove_file(dev, &mce_bank_devs[i].attr);
2710 
2711 	device_unregister(dev);
2712 	cpumask_clear_cpu(cpu, mce_device_initialized);
2713 	per_cpu(mce_device, cpu) = NULL;
2714 }
2715 
2716 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2717 static void mce_disable_cpu(void)
2718 {
2719 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2720 		return;
2721 
2722 	if (!cpuhp_tasks_frozen)
2723 		cmci_clear();
2724 
2725 	vendor_disable_error_reporting();
2726 }
2727 
mce_reenable_cpu(void)2728 static void mce_reenable_cpu(void)
2729 {
2730 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2731 	int i;
2732 
2733 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2734 		return;
2735 
2736 	if (!cpuhp_tasks_frozen)
2737 		cmci_reenable();
2738 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2739 		struct mce_bank *b = &mce_banks[i];
2740 
2741 		if (b->init)
2742 			wrmsrq(mca_msr_reg(i, MCA_CTL), b->ctl);
2743 	}
2744 }
2745 
mce_cpu_dead(unsigned int cpu)2746 static int mce_cpu_dead(unsigned int cpu)
2747 {
2748 	/* intentionally ignoring frozen here */
2749 	if (!cpuhp_tasks_frozen)
2750 		cmci_rediscover();
2751 	return 0;
2752 }
2753 
mce_cpu_online(unsigned int cpu)2754 static int mce_cpu_online(unsigned int cpu)
2755 {
2756 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2757 
2758 	mce_device_create(cpu);
2759 	mce_threshold_create_device(cpu);
2760 	mce_reenable_cpu();
2761 	mce_start_timer(t);
2762 	return 0;
2763 }
2764 
mce_cpu_pre_down(unsigned int cpu)2765 static int mce_cpu_pre_down(unsigned int cpu)
2766 {
2767 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2768 
2769 	mce_disable_cpu();
2770 	timer_delete_sync(t);
2771 	mce_threshold_remove_device(cpu);
2772 	mce_device_remove(cpu);
2773 	return 0;
2774 }
2775 
mce_init_banks(void)2776 static __init void mce_init_banks(void)
2777 {
2778 	int i;
2779 
2780 	for (i = 0; i < MAX_NR_BANKS; i++) {
2781 		struct mce_bank_dev *b = &mce_bank_devs[i];
2782 		struct device_attribute *a = &b->attr;
2783 
2784 		b->bank = i;
2785 
2786 		sysfs_attr_init(&a->attr);
2787 		a->attr.name	= b->attrname;
2788 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2789 
2790 		a->attr.mode	= 0644;
2791 		a->show		= show_bank;
2792 		a->store	= set_bank;
2793 	}
2794 }
2795 
2796 /*
2797  * When running on XEN, this initcall is ordered against the XEN mcelog
2798  * initcall:
2799  *
2800  *   device_initcall(xen_late_init_mcelog);
2801  *   device_initcall_sync(mcheck_init_device);
2802  */
mcheck_init_device(void)2803 static __init int mcheck_init_device(void)
2804 {
2805 	int err;
2806 
2807 	/*
2808 	 * Check if we have a spare virtual bit. This will only become
2809 	 * a problem if/when we move beyond 5-level page tables.
2810 	 */
2811 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2812 
2813 	if (!mce_available(&boot_cpu_data)) {
2814 		err = -EIO;
2815 		goto err_out;
2816 	}
2817 
2818 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2819 		err = -ENOMEM;
2820 		goto err_out;
2821 	}
2822 
2823 	mce_init_banks();
2824 
2825 	err = subsys_system_register(&mce_subsys, NULL);
2826 	if (err)
2827 		goto err_out_mem;
2828 
2829 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2830 				mce_cpu_dead);
2831 	if (err)
2832 		goto err_out_mem;
2833 
2834 	/*
2835 	 * Invokes mce_cpu_online() on all CPUs which are online when
2836 	 * the state is installed.
2837 	 */
2838 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2839 				mce_cpu_online, mce_cpu_pre_down);
2840 	if (err < 0)
2841 		goto err_out_online;
2842 
2843 	register_syscore_ops(&mce_syscore_ops);
2844 
2845 	return 0;
2846 
2847 err_out_online:
2848 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2849 
2850 err_out_mem:
2851 	free_cpumask_var(mce_device_initialized);
2852 
2853 err_out:
2854 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2855 
2856 	return err;
2857 }
2858 device_initcall_sync(mcheck_init_device);
2859 
2860 /*
2861  * Old style boot options parsing. Only for compatibility.
2862  */
mcheck_disable(char * str)2863 static int __init mcheck_disable(char *str)
2864 {
2865 	mca_cfg.disabled = 1;
2866 	return 1;
2867 }
2868 __setup("nomce", mcheck_disable);
2869 
2870 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2871 struct dentry *mce_get_debugfs_dir(void)
2872 {
2873 	static struct dentry *dmce;
2874 
2875 	if (!dmce)
2876 		dmce = debugfs_create_dir("mce", NULL);
2877 
2878 	return dmce;
2879 }
2880 
mce_reset(void)2881 static void mce_reset(void)
2882 {
2883 	atomic_set(&mce_fake_panicked, 0);
2884 	atomic_set(&mce_executing, 0);
2885 	atomic_set(&mce_callin, 0);
2886 	atomic_set(&global_nwo, 0);
2887 	cpumask_setall(&mce_missing_cpus);
2888 }
2889 
fake_panic_get(void * data,u64 * val)2890 static int fake_panic_get(void *data, u64 *val)
2891 {
2892 	*val = fake_panic;
2893 	return 0;
2894 }
2895 
fake_panic_set(void * data,u64 val)2896 static int fake_panic_set(void *data, u64 val)
2897 {
2898 	mce_reset();
2899 	fake_panic = val;
2900 	return 0;
2901 }
2902 
2903 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2904 			 "%llu\n");
2905 
mcheck_debugfs_init(void)2906 static void __init mcheck_debugfs_init(void)
2907 {
2908 	struct dentry *dmce;
2909 
2910 	dmce = mce_get_debugfs_dir();
2911 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2912 				   &fake_panic_fops);
2913 }
2914 #else
mcheck_debugfs_init(void)2915 static void __init mcheck_debugfs_init(void) { }
2916 #endif
2917 
mcheck_late_init(void)2918 static int __init mcheck_late_init(void)
2919 {
2920 	if (mca_cfg.recovery)
2921 		enable_copy_mc_fragile();
2922 
2923 	mcheck_debugfs_init();
2924 
2925 	/*
2926 	 * Flush out everything that has been logged during early boot, now that
2927 	 * everything has been initialized (workqueues, decoders, ...).
2928 	 */
2929 	mce_schedule_work();
2930 
2931 	return 0;
2932 }
2933 late_initcall(mcheck_late_init);
2934