1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Machine check handler.
4 *
5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6 * Rest from unknown author(s).
7 * 2004 Andi Kleen. Rewrote most of it.
8 * Copyright 2008 Intel Corporation
9 * Author: Andi Kleen
10 */
11
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 #include <linux/kexec.h>
48
49 #include <asm/fred.h>
50 #include <asm/cpu_device_id.h>
51 #include <asm/processor.h>
52 #include <asm/traps.h>
53 #include <asm/tlbflush.h>
54 #include <asm/mce.h>
55 #include <asm/msr.h>
56 #include <asm/reboot.h>
57 #include <asm/tdx.h>
58
59 #include "internal.h"
60
61 /* sysfs synchronization */
62 static DEFINE_MUTEX(mce_sysfs_mutex);
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/mce.h>
66
67 #define SPINUNIT 100 /* 100ns */
68
69 DEFINE_PER_CPU(unsigned, mce_exception_count);
70
71 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
72
73 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
74
75 #define ATTR_LEN 16
76 /* One object for each MCE bank, shared by all CPUs */
77 struct mce_bank_dev {
78 struct device_attribute attr; /* device attribute */
79 char attrname[ATTR_LEN]; /* attribute name */
80 u8 bank; /* bank number */
81 };
82 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
83
84 struct mce_vendor_flags mce_flags __read_mostly;
85
86 struct mca_config mca_cfg __read_mostly = {
87 .bootlog = -1,
88 .monarch_timeout = -1
89 };
90
91 static DEFINE_PER_CPU(struct mce, mces_seen);
92 static unsigned long mce_need_notify;
93
94 /*
95 * MCA banks polled by the period polling timer for corrected events.
96 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
97 */
98 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
99 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
100 };
101
102 /*
103 * MCA banks controlled through firmware first for corrected errors.
104 * This is a global list of banks for which we won't enable CMCI and we
105 * won't poll. Firmware controls these banks and is responsible for
106 * reporting corrected errors through GHES. Uncorrected/recoverable
107 * errors are still notified through a machine check.
108 */
109 mce_banks_t mce_banks_ce_disabled;
110
111 static struct work_struct mce_work;
112 static struct irq_work mce_irq_work;
113
114 /*
115 * CPU/chipset specific EDAC code can register a notifier call here to print
116 * MCE errors in a human-readable form.
117 */
118 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
119
mce_prep_record_common(struct mce * m)120 void mce_prep_record_common(struct mce *m)
121 {
122 memset(m, 0, sizeof(struct mce));
123
124 m->cpuid = cpuid_eax(1);
125 m->cpuvendor = boot_cpu_data.x86_vendor;
126 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
127 /* need the internal __ version to avoid deadlocks */
128 m->time = __ktime_get_real_seconds();
129 }
130
mce_prep_record_per_cpu(unsigned int cpu,struct mce * m)131 void mce_prep_record_per_cpu(unsigned int cpu, struct mce *m)
132 {
133 m->cpu = cpu;
134 m->extcpu = cpu;
135 m->apicid = cpu_data(cpu).topo.initial_apicid;
136 m->microcode = cpu_data(cpu).microcode;
137 m->ppin = topology_ppin(cpu);
138 m->socketid = topology_physical_package_id(cpu);
139 }
140
141 /* Do initial initialization of a struct mce */
mce_prep_record(struct mce * m)142 void mce_prep_record(struct mce *m)
143 {
144 mce_prep_record_common(m);
145 mce_prep_record_per_cpu(smp_processor_id(), m);
146 }
147
148 DEFINE_PER_CPU(struct mce, injectm);
149 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
150
mce_log(struct mce * m)151 void mce_log(struct mce *m)
152 {
153 if (!mce_gen_pool_add(m))
154 irq_work_queue(&mce_irq_work);
155 }
156 EXPORT_SYMBOL_GPL(mce_log);
157
mce_register_decode_chain(struct notifier_block * nb)158 void mce_register_decode_chain(struct notifier_block *nb)
159 {
160 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
161 nb->priority > MCE_PRIO_HIGHEST))
162 return;
163
164 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
165 }
166 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
167
mce_unregister_decode_chain(struct notifier_block * nb)168 void mce_unregister_decode_chain(struct notifier_block *nb)
169 {
170 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
171 }
172 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
173
__print_mce(struct mce * m)174 static void __print_mce(struct mce *m)
175 {
176 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
177 m->extcpu,
178 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
179 m->mcgstatus, m->bank, m->status);
180
181 if (m->ip) {
182 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
183 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
184 m->cs, m->ip);
185
186 if (m->cs == __KERNEL_CS)
187 pr_cont("{%pS}", (void *)(unsigned long)m->ip);
188 pr_cont("\n");
189 }
190
191 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
192 if (m->addr)
193 pr_cont("ADDR %llx ", m->addr);
194 if (m->misc)
195 pr_cont("MISC %llx ", m->misc);
196 if (m->ppin)
197 pr_cont("PPIN %llx ", m->ppin);
198
199 if (mce_flags.smca) {
200 if (m->synd)
201 pr_cont("SYND %llx ", m->synd);
202 if (m->ipid)
203 pr_cont("IPID %llx ", m->ipid);
204 }
205
206 pr_cont("\n");
207
208 /*
209 * Note this output is parsed by external tools and old fields
210 * should not be changed.
211 */
212 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
213 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
214 m->microcode);
215 }
216
print_mce(struct mce * m)217 static void print_mce(struct mce *m)
218 {
219 __print_mce(m);
220
221 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
222 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
223 }
224
225 #define PANIC_TIMEOUT 5 /* 5 seconds */
226
227 static atomic_t mce_panicked;
228
229 static int fake_panic;
230 static atomic_t mce_fake_panicked;
231
232 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)233 static void wait_for_panic(void)
234 {
235 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
236
237 preempt_disable();
238 local_irq_enable();
239 while (timeout-- > 0)
240 udelay(1);
241 if (panic_timeout == 0)
242 panic_timeout = mca_cfg.panic_timeout;
243 panic("Panicing machine check CPU died");
244 }
245
mce_dump_aux_info(struct mce * m)246 static const char *mce_dump_aux_info(struct mce *m)
247 {
248 if (boot_cpu_has_bug(X86_BUG_TDX_PW_MCE))
249 return tdx_dump_mce_info(m);
250
251 return NULL;
252 }
253
mce_panic(const char * msg,struct mce * final,char * exp)254 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
255 {
256 struct llist_node *pending;
257 struct mce_evt_llist *l;
258 int apei_err = 0;
259 const char *memmsg;
260
261 /*
262 * Allow instrumentation around external facilities usage. Not that it
263 * matters a whole lot since the machine is going to panic anyway.
264 */
265 instrumentation_begin();
266
267 if (!fake_panic) {
268 /*
269 * Make sure only one CPU runs in machine check panic
270 */
271 if (atomic_inc_return(&mce_panicked) > 1)
272 wait_for_panic();
273 barrier();
274
275 bust_spinlocks(1);
276 console_verbose();
277 } else {
278 /* Don't log too much for fake panic */
279 if (atomic_inc_return(&mce_fake_panicked) > 1)
280 goto out;
281 }
282 pending = mce_gen_pool_prepare_records();
283 /* First print corrected ones that are still unlogged */
284 llist_for_each_entry(l, pending, llnode) {
285 struct mce *m = &l->mce;
286 if (!(m->status & MCI_STATUS_UC)) {
287 print_mce(m);
288 if (!apei_err)
289 apei_err = apei_write_mce(m);
290 }
291 }
292 /* Now print uncorrected but with the final one last */
293 llist_for_each_entry(l, pending, llnode) {
294 struct mce *m = &l->mce;
295 if (!(m->status & MCI_STATUS_UC))
296 continue;
297 if (!final || mce_cmp(m, final)) {
298 print_mce(m);
299 if (!apei_err)
300 apei_err = apei_write_mce(m);
301 }
302 }
303 if (final) {
304 print_mce(final);
305 if (!apei_err)
306 apei_err = apei_write_mce(final);
307 }
308 if (exp)
309 pr_emerg(HW_ERR "Machine check: %s\n", exp);
310
311 memmsg = mce_dump_aux_info(final);
312 if (memmsg)
313 pr_emerg(HW_ERR "Machine check: %s\n", memmsg);
314
315 if (!fake_panic) {
316 if (panic_timeout == 0)
317 panic_timeout = mca_cfg.panic_timeout;
318
319 /*
320 * Kdump skips the poisoned page in order to avoid
321 * touching the error bits again. Poison the page even
322 * if the error is fatal and the machine is about to
323 * panic.
324 */
325 if (kexec_crash_loaded()) {
326 if (final && (final->status & MCI_STATUS_ADDRV)) {
327 struct page *p;
328 p = pfn_to_online_page(final->addr >> PAGE_SHIFT);
329 if (p)
330 SetPageHWPoison(p);
331 }
332 }
333 panic(msg);
334 } else
335 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
336
337 out:
338 instrumentation_end();
339 }
340
341 /* Support code for software error injection */
342
msr_to_offset(u32 msr)343 static int msr_to_offset(u32 msr)
344 {
345 unsigned bank = __this_cpu_read(injectm.bank);
346
347 if (msr == mca_cfg.rip_msr)
348 return offsetof(struct mce, ip);
349 if (msr == mca_msr_reg(bank, MCA_STATUS))
350 return offsetof(struct mce, status);
351 if (msr == mca_msr_reg(bank, MCA_ADDR))
352 return offsetof(struct mce, addr);
353 if (msr == mca_msr_reg(bank, MCA_MISC))
354 return offsetof(struct mce, misc);
355 if (msr == MSR_IA32_MCG_STATUS)
356 return offsetof(struct mce, mcgstatus);
357 return -1;
358 }
359
ex_handler_msr_mce(struct pt_regs * regs,bool wrmsr)360 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
361 {
362 if (wrmsr) {
363 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
364 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
365 regs->ip, (void *)regs->ip);
366 } else {
367 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
368 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
369 }
370
371 show_stack_regs(regs);
372
373 panic("MCA architectural violation!\n");
374
375 while (true)
376 cpu_relax();
377 }
378
379 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)380 noinstr u64 mce_rdmsrl(u32 msr)
381 {
382 DECLARE_ARGS(val, low, high);
383
384 if (__this_cpu_read(injectm.finished)) {
385 int offset;
386 u64 ret;
387
388 instrumentation_begin();
389
390 offset = msr_to_offset(msr);
391 if (offset < 0)
392 ret = 0;
393 else
394 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
395
396 instrumentation_end();
397
398 return ret;
399 }
400
401 /*
402 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
403 * architectural violation and needs to be reported to hw vendor. Panic
404 * the box to not allow any further progress.
405 */
406 asm volatile("1: rdmsr\n"
407 "2:\n"
408 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
409 : EAX_EDX_RET(val, low, high) : "c" (msr));
410
411
412 return EAX_EDX_VAL(val, low, high);
413 }
414
mce_wrmsrl(u32 msr,u64 v)415 static noinstr void mce_wrmsrl(u32 msr, u64 v)
416 {
417 u32 low, high;
418
419 if (__this_cpu_read(injectm.finished)) {
420 int offset;
421
422 instrumentation_begin();
423
424 offset = msr_to_offset(msr);
425 if (offset >= 0)
426 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
427
428 instrumentation_end();
429
430 return;
431 }
432
433 low = (u32)v;
434 high = (u32)(v >> 32);
435
436 /* See comment in mce_rdmsrl() */
437 asm volatile("1: wrmsr\n"
438 "2:\n"
439 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
440 : : "c" (msr), "a"(low), "d" (high) : "memory");
441 }
442
443 /*
444 * Collect all global (w.r.t. this processor) status about this machine
445 * check into our "mce" struct so that we can use it later to assess
446 * the severity of the problem as we read per-bank specific details.
447 */
mce_gather_info(struct mce * m,struct pt_regs * regs)448 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs)
449 {
450 /*
451 * Enable instrumentation around mce_prep_record() which calls external
452 * facilities.
453 */
454 instrumentation_begin();
455 mce_prep_record(m);
456 instrumentation_end();
457
458 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
459 if (regs) {
460 /*
461 * Get the address of the instruction at the time of
462 * the machine check error.
463 */
464 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
465 m->ip = regs->ip;
466 m->cs = regs->cs;
467
468 /*
469 * When in VM86 mode make the cs look like ring 3
470 * always. This is a lie, but it's better than passing
471 * the additional vm86 bit around everywhere.
472 */
473 if (v8086_mode(regs))
474 m->cs |= 3;
475 }
476 /* Use accurate RIP reporting if available. */
477 if (mca_cfg.rip_msr)
478 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
479 }
480 }
481
mce_available(struct cpuinfo_x86 * c)482 int mce_available(struct cpuinfo_x86 *c)
483 {
484 if (mca_cfg.disabled)
485 return 0;
486 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
487 }
488
mce_schedule_work(void)489 static void mce_schedule_work(void)
490 {
491 if (!mce_gen_pool_empty())
492 schedule_work(&mce_work);
493 }
494
mce_irq_work_cb(struct irq_work * entry)495 static void mce_irq_work_cb(struct irq_work *entry)
496 {
497 mce_schedule_work();
498 }
499
mce_usable_address(struct mce * m)500 bool mce_usable_address(struct mce *m)
501 {
502 if (!(m->status & MCI_STATUS_ADDRV))
503 return false;
504
505 switch (m->cpuvendor) {
506 case X86_VENDOR_AMD:
507 return amd_mce_usable_address(m);
508
509 case X86_VENDOR_INTEL:
510 case X86_VENDOR_ZHAOXIN:
511 return intel_mce_usable_address(m);
512
513 default:
514 return true;
515 }
516 }
517 EXPORT_SYMBOL_GPL(mce_usable_address);
518
mce_is_memory_error(struct mce * m)519 bool mce_is_memory_error(struct mce *m)
520 {
521 switch (m->cpuvendor) {
522 case X86_VENDOR_AMD:
523 case X86_VENDOR_HYGON:
524 return amd_mce_is_memory_error(m);
525
526 case X86_VENDOR_INTEL:
527 case X86_VENDOR_ZHAOXIN:
528 /*
529 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
530 *
531 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
532 * indicating a memory error. Bit 8 is used for indicating a
533 * cache hierarchy error. The combination of bit 2 and bit 3
534 * is used for indicating a `generic' cache hierarchy error
535 * But we can't just blindly check the above bits, because if
536 * bit 11 is set, then it is a bus/interconnect error - and
537 * either way the above bits just gives more detail on what
538 * bus/interconnect error happened. Note that bit 12 can be
539 * ignored, as it's the "filter" bit.
540 */
541 return (m->status & 0xef80) == BIT(7) ||
542 (m->status & 0xef00) == BIT(8) ||
543 (m->status & 0xeffc) == 0xc;
544
545 default:
546 return false;
547 }
548 }
549 EXPORT_SYMBOL_GPL(mce_is_memory_error);
550
whole_page(struct mce * m)551 static bool whole_page(struct mce *m)
552 {
553 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
554 return true;
555
556 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
557 }
558
mce_is_correctable(struct mce * m)559 bool mce_is_correctable(struct mce *m)
560 {
561 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
562 return false;
563
564 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
565 return false;
566
567 if (m->status & MCI_STATUS_UC)
568 return false;
569
570 return true;
571 }
572 EXPORT_SYMBOL_GPL(mce_is_correctable);
573
mce_early_notifier(struct notifier_block * nb,unsigned long val,void * data)574 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
575 void *data)
576 {
577 struct mce *m = (struct mce *)data;
578
579 if (!m)
580 return NOTIFY_DONE;
581
582 /* Emit the trace record: */
583 trace_mce_record(m);
584
585 set_bit(0, &mce_need_notify);
586
587 mce_notify_irq();
588
589 return NOTIFY_DONE;
590 }
591
592 static struct notifier_block early_nb = {
593 .notifier_call = mce_early_notifier,
594 .priority = MCE_PRIO_EARLY,
595 };
596
uc_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)597 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
598 void *data)
599 {
600 struct mce *mce = (struct mce *)data;
601 unsigned long pfn;
602
603 if (!mce || !mce_usable_address(mce))
604 return NOTIFY_DONE;
605
606 if (mce->severity != MCE_AO_SEVERITY &&
607 mce->severity != MCE_DEFERRED_SEVERITY)
608 return NOTIFY_DONE;
609
610 pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
611 if (!memory_failure(pfn, 0)) {
612 set_mce_nospec(pfn);
613 mce->kflags |= MCE_HANDLED_UC;
614 }
615
616 return NOTIFY_OK;
617 }
618
619 static struct notifier_block mce_uc_nb = {
620 .notifier_call = uc_decode_notifier,
621 .priority = MCE_PRIO_UC,
622 };
623
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)624 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
625 void *data)
626 {
627 struct mce *m = (struct mce *)data;
628
629 if (!m)
630 return NOTIFY_DONE;
631
632 if (mca_cfg.print_all || !m->kflags)
633 __print_mce(m);
634
635 return NOTIFY_DONE;
636 }
637
638 static struct notifier_block mce_default_nb = {
639 .notifier_call = mce_default_notifier,
640 /* lowest prio, we want it to run last. */
641 .priority = MCE_PRIO_LOWEST,
642 };
643
644 /*
645 * Read ADDR and MISC registers.
646 */
mce_read_aux(struct mce * m,int i)647 static noinstr void mce_read_aux(struct mce *m, int i)
648 {
649 if (m->status & MCI_STATUS_MISCV)
650 m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
651
652 if (m->status & MCI_STATUS_ADDRV) {
653 m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
654
655 /*
656 * Mask the reported address by the reported granularity.
657 */
658 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
659 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
660 m->addr >>= shift;
661 m->addr <<= shift;
662 }
663
664 smca_extract_err_addr(m);
665 }
666
667 if (mce_flags.smca) {
668 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
669
670 if (m->status & MCI_STATUS_SYNDV)
671 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
672 }
673 }
674
675 DEFINE_PER_CPU(unsigned, mce_poll_count);
676
677 /*
678 * Poll for corrected events or events that happened before reset.
679 * Those are just logged through /dev/mcelog.
680 *
681 * This is executed in standard interrupt context.
682 *
683 * Note: spec recommends to panic for fatal unsignalled
684 * errors here. However this would be quite problematic --
685 * we would need to reimplement the Monarch handling and
686 * it would mess up the exclusion between exception handler
687 * and poll handler -- * so we skip this for now.
688 * These cases should not happen anyways, or only when the CPU
689 * is already totally * confused. In this case it's likely it will
690 * not fully execute the machine check handler either.
691 */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)692 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
693 {
694 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
695 struct mce m;
696 int i;
697
698 this_cpu_inc(mce_poll_count);
699
700 mce_gather_info(&m, NULL);
701
702 if (flags & MCP_TIMESTAMP)
703 m.tsc = rdtsc();
704
705 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
706 if (!mce_banks[i].ctl || !test_bit(i, *b))
707 continue;
708
709 m.misc = 0;
710 m.addr = 0;
711 m.bank = i;
712
713 barrier();
714 m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
715
716 /*
717 * Update storm tracking here, before checking for the
718 * MCI_STATUS_VAL bit. Valid corrected errors count
719 * towards declaring, or maintaining, storm status. No
720 * error in a bank counts towards avoiding, or ending,
721 * storm status.
722 */
723 if (!mca_cfg.cmci_disabled)
724 mce_track_storm(&m);
725
726 /* If this entry is not valid, ignore it */
727 if (!(m.status & MCI_STATUS_VAL))
728 continue;
729
730 /*
731 * If we are logging everything (at CPU online) or this
732 * is a corrected error, then we must log it.
733 */
734 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
735 goto log_it;
736
737 /*
738 * Newer Intel systems that support software error
739 * recovery need to make additional checks. Other
740 * CPUs should skip over uncorrected errors, but log
741 * everything else.
742 */
743 if (!mca_cfg.ser) {
744 if (m.status & MCI_STATUS_UC)
745 continue;
746 goto log_it;
747 }
748
749 /* Log "not enabled" (speculative) errors */
750 if (!(m.status & MCI_STATUS_EN))
751 goto log_it;
752
753 /*
754 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
755 * UC == 1 && PCC == 0 && S == 0
756 */
757 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
758 goto log_it;
759
760 /*
761 * Skip anything else. Presumption is that our read of this
762 * bank is racing with a machine check. Leave the log alone
763 * for do_machine_check() to deal with it.
764 */
765 continue;
766
767 log_it:
768 if (flags & MCP_DONTLOG)
769 goto clear_it;
770
771 mce_read_aux(&m, i);
772 m.severity = mce_severity(&m, NULL, NULL, false);
773 /*
774 * Don't get the IP here because it's unlikely to
775 * have anything to do with the actual error location.
776 */
777
778 if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
779 goto clear_it;
780
781 if (flags & MCP_QUEUE_LOG)
782 mce_gen_pool_add(&m);
783 else
784 mce_log(&m);
785
786 clear_it:
787 /*
788 * Clear state for this bank.
789 */
790 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
791 }
792
793 /*
794 * Don't clear MCG_STATUS here because it's only defined for
795 * exceptions.
796 */
797
798 sync_core();
799 }
800 EXPORT_SYMBOL_GPL(machine_check_poll);
801
802 /*
803 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
804 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
805 * Vol 3B Table 15-20). But this confuses both the code that determines
806 * whether the machine check occurred in kernel or user mode, and also
807 * the severity assessment code. Pretend that EIPV was set, and take the
808 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
809 */
810 static __always_inline void
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)811 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
812 {
813 if (bank != 0)
814 return;
815 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
816 return;
817 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
818 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
819 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
820 MCACOD)) !=
821 (MCI_STATUS_UC|MCI_STATUS_EN|
822 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
823 MCI_STATUS_AR|MCACOD_INSTR))
824 return;
825
826 m->mcgstatus |= MCG_STATUS_EIPV;
827 m->ip = regs->ip;
828 m->cs = regs->cs;
829 }
830
831 /*
832 * Disable fast string copy and return from the MCE handler upon the first SRAR
833 * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake
834 * CPUs.
835 * The fast string copy instructions ("REP; MOVS*") could consume an
836 * uncorrectable memory error in the cache line _right after_ the desired region
837 * to copy and raise an MCE with RIP pointing to the instruction _after_ the
838 * "REP; MOVS*".
839 * This mitigation addresses the issue completely with the caveat of performance
840 * degradation on the CPU affected. This is still better than the OS crashing on
841 * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a
842 * kernel context (e.g., copy_page).
843 *
844 * Returns true when fast string copy on CPU has been disabled.
845 */
quirk_skylake_repmov(void)846 static noinstr bool quirk_skylake_repmov(void)
847 {
848 u64 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
849 u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE);
850 u64 mc1_status;
851
852 /*
853 * Apply the quirk only to local machine checks, i.e., no broadcast
854 * sync is needed.
855 */
856 if (!(mcgstatus & MCG_STATUS_LMCES) ||
857 !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
858 return false;
859
860 mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1));
861
862 /* Check for a software-recoverable data fetch error. */
863 if ((mc1_status &
864 (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
865 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
866 MCI_STATUS_AR | MCI_STATUS_S)) ==
867 (MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
868 MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
869 MCI_STATUS_AR | MCI_STATUS_S)) {
870 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
871 mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
872 mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0);
873
874 instrumentation_begin();
875 pr_err_once("Erratum detected, disable fast string copy instructions.\n");
876 instrumentation_end();
877
878 return true;
879 }
880
881 return false;
882 }
883
884 /*
885 * Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption
886 * errors. This means mce_gather_info() will not save the "ip" and "cs" registers.
887 *
888 * However, the context is still valid, so save the "cs" register for later use.
889 *
890 * The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV.
891 *
892 * The Instruction Fetch Unit is at MCA bank 1 for all affected systems.
893 */
quirk_zen_ifu(int bank,struct mce * m,struct pt_regs * regs)894 static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs)
895 {
896 if (bank != 1)
897 return;
898 if (!(m->status & MCI_STATUS_POISON))
899 return;
900
901 m->cs = regs->cs;
902 }
903
904 /*
905 * Do a quick check if any of the events requires a panic.
906 * This decides if we keep the events around or clear them.
907 */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)908 static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
909 struct pt_regs *regs)
910 {
911 char *tmp = *msg;
912 int i;
913
914 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
915 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
916 if (!(m->status & MCI_STATUS_VAL))
917 continue;
918
919 arch___set_bit(i, validp);
920 if (mce_flags.snb_ifu_quirk)
921 quirk_sandybridge_ifu(i, m, regs);
922
923 if (mce_flags.zen_ifu_quirk)
924 quirk_zen_ifu(i, m, regs);
925
926 m->bank = i;
927 if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
928 mce_read_aux(m, i);
929 *msg = tmp;
930 return 1;
931 }
932 }
933 return 0;
934 }
935
936 /*
937 * Variable to establish order between CPUs while scanning.
938 * Each CPU spins initially until executing is equal its number.
939 */
940 static atomic_t mce_executing;
941
942 /*
943 * Defines order of CPUs on entry. First CPU becomes Monarch.
944 */
945 static atomic_t mce_callin;
946
947 /*
948 * Track which CPUs entered the MCA broadcast synchronization and which not in
949 * order to print holdouts.
950 */
951 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
952
953 /*
954 * Check if a timeout waiting for other CPUs happened.
955 */
mce_timed_out(u64 * t,const char * msg)956 static noinstr int mce_timed_out(u64 *t, const char *msg)
957 {
958 int ret = 0;
959
960 /* Enable instrumentation around calls to external facilities */
961 instrumentation_begin();
962
963 /*
964 * The others already did panic for some reason.
965 * Bail out like in a timeout.
966 * rmb() to tell the compiler that system_state
967 * might have been modified by someone else.
968 */
969 rmb();
970 if (atomic_read(&mce_panicked))
971 wait_for_panic();
972 if (!mca_cfg.monarch_timeout)
973 goto out;
974 if ((s64)*t < SPINUNIT) {
975 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
976 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
977 cpumask_pr_args(&mce_missing_cpus));
978 mce_panic(msg, NULL, NULL);
979
980 ret = 1;
981 goto out;
982 }
983 *t -= SPINUNIT;
984
985 out:
986 touch_nmi_watchdog();
987
988 instrumentation_end();
989
990 return ret;
991 }
992
993 /*
994 * The Monarch's reign. The Monarch is the CPU who entered
995 * the machine check handler first. It waits for the others to
996 * raise the exception too and then grades them. When any
997 * error is fatal panic. Only then let the others continue.
998 *
999 * The other CPUs entering the MCE handler will be controlled by the
1000 * Monarch. They are called Subjects.
1001 *
1002 * This way we prevent any potential data corruption in a unrecoverable case
1003 * and also makes sure always all CPU's errors are examined.
1004 *
1005 * Also this detects the case of a machine check event coming from outer
1006 * space (not detected by any CPUs) In this case some external agent wants
1007 * us to shut down, so panic too.
1008 *
1009 * The other CPUs might still decide to panic if the handler happens
1010 * in a unrecoverable place, but in this case the system is in a semi-stable
1011 * state and won't corrupt anything by itself. It's ok to let the others
1012 * continue for a bit first.
1013 *
1014 * All the spin loops have timeouts; when a timeout happens a CPU
1015 * typically elects itself to be Monarch.
1016 */
mce_reign(void)1017 static void mce_reign(void)
1018 {
1019 int cpu;
1020 struct mce *m = NULL;
1021 int global_worst = 0;
1022 char *msg = NULL;
1023
1024 /*
1025 * This CPU is the Monarch and the other CPUs have run
1026 * through their handlers.
1027 * Grade the severity of the errors of all the CPUs.
1028 */
1029 for_each_possible_cpu(cpu) {
1030 struct mce *mtmp = &per_cpu(mces_seen, cpu);
1031
1032 if (mtmp->severity > global_worst) {
1033 global_worst = mtmp->severity;
1034 m = &per_cpu(mces_seen, cpu);
1035 }
1036 }
1037
1038 /*
1039 * Cannot recover? Panic here then.
1040 * This dumps all the mces in the log buffer and stops the
1041 * other CPUs.
1042 */
1043 if (m && global_worst >= MCE_PANIC_SEVERITY) {
1044 /* call mce_severity() to get "msg" for panic */
1045 mce_severity(m, NULL, &msg, true);
1046 mce_panic("Fatal machine check", m, msg);
1047 }
1048
1049 /*
1050 * For UC somewhere we let the CPU who detects it handle it.
1051 * Also must let continue the others, otherwise the handling
1052 * CPU could deadlock on a lock.
1053 */
1054
1055 /*
1056 * No machine check event found. Must be some external
1057 * source or one CPU is hung. Panic.
1058 */
1059 if (global_worst <= MCE_KEEP_SEVERITY)
1060 mce_panic("Fatal machine check from unknown source", NULL, NULL);
1061
1062 /*
1063 * Now clear all the mces_seen so that they don't reappear on
1064 * the next mce.
1065 */
1066 for_each_possible_cpu(cpu)
1067 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
1068 }
1069
1070 static atomic_t global_nwo;
1071
1072 /*
1073 * Start of Monarch synchronization. This waits until all CPUs have
1074 * entered the exception handler and then determines if any of them
1075 * saw a fatal event that requires panic. Then it executes them
1076 * in the entry order.
1077 * TBD double check parallel CPU hotunplug
1078 */
mce_start(int * no_way_out)1079 static noinstr int mce_start(int *no_way_out)
1080 {
1081 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1082 int order, ret = -1;
1083
1084 if (!timeout)
1085 return ret;
1086
1087 raw_atomic_add(*no_way_out, &global_nwo);
1088 /*
1089 * Rely on the implied barrier below, such that global_nwo
1090 * is updated before mce_callin.
1091 */
1092 order = raw_atomic_inc_return(&mce_callin);
1093 arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1094
1095 /* Enable instrumentation around calls to external facilities */
1096 instrumentation_begin();
1097
1098 /*
1099 * Wait for everyone.
1100 */
1101 while (raw_atomic_read(&mce_callin) != num_online_cpus()) {
1102 if (mce_timed_out(&timeout,
1103 "Timeout: Not all CPUs entered broadcast exception handler")) {
1104 raw_atomic_set(&global_nwo, 0);
1105 goto out;
1106 }
1107 ndelay(SPINUNIT);
1108 }
1109
1110 /*
1111 * mce_callin should be read before global_nwo
1112 */
1113 smp_rmb();
1114
1115 if (order == 1) {
1116 /*
1117 * Monarch: Starts executing now, the others wait.
1118 */
1119 raw_atomic_set(&mce_executing, 1);
1120 } else {
1121 /*
1122 * Subject: Now start the scanning loop one by one in
1123 * the original callin order.
1124 * This way when there are any shared banks it will be
1125 * only seen by one CPU before cleared, avoiding duplicates.
1126 */
1127 while (raw_atomic_read(&mce_executing) < order) {
1128 if (mce_timed_out(&timeout,
1129 "Timeout: Subject CPUs unable to finish machine check processing")) {
1130 raw_atomic_set(&global_nwo, 0);
1131 goto out;
1132 }
1133 ndelay(SPINUNIT);
1134 }
1135 }
1136
1137 /*
1138 * Cache the global no_way_out state.
1139 */
1140 *no_way_out = raw_atomic_read(&global_nwo);
1141
1142 ret = order;
1143
1144 out:
1145 instrumentation_end();
1146
1147 return ret;
1148 }
1149
1150 /*
1151 * Synchronize between CPUs after main scanning loop.
1152 * This invokes the bulk of the Monarch processing.
1153 */
mce_end(int order)1154 static noinstr int mce_end(int order)
1155 {
1156 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1157 int ret = -1;
1158
1159 /* Allow instrumentation around external facilities. */
1160 instrumentation_begin();
1161
1162 if (!timeout)
1163 goto reset;
1164 if (order < 0)
1165 goto reset;
1166
1167 /*
1168 * Allow others to run.
1169 */
1170 atomic_inc(&mce_executing);
1171
1172 if (order == 1) {
1173 /*
1174 * Monarch: Wait for everyone to go through their scanning
1175 * loops.
1176 */
1177 while (atomic_read(&mce_executing) <= num_online_cpus()) {
1178 if (mce_timed_out(&timeout,
1179 "Timeout: Monarch CPU unable to finish machine check processing"))
1180 goto reset;
1181 ndelay(SPINUNIT);
1182 }
1183
1184 mce_reign();
1185 barrier();
1186 ret = 0;
1187 } else {
1188 /*
1189 * Subject: Wait for Monarch to finish.
1190 */
1191 while (atomic_read(&mce_executing) != 0) {
1192 if (mce_timed_out(&timeout,
1193 "Timeout: Monarch CPU did not finish machine check processing"))
1194 goto reset;
1195 ndelay(SPINUNIT);
1196 }
1197
1198 /*
1199 * Don't reset anything. That's done by the Monarch.
1200 */
1201 ret = 0;
1202 goto out;
1203 }
1204
1205 /*
1206 * Reset all global state.
1207 */
1208 reset:
1209 atomic_set(&global_nwo, 0);
1210 atomic_set(&mce_callin, 0);
1211 cpumask_setall(&mce_missing_cpus);
1212 barrier();
1213
1214 /*
1215 * Let others run again.
1216 */
1217 atomic_set(&mce_executing, 0);
1218
1219 out:
1220 instrumentation_end();
1221
1222 return ret;
1223 }
1224
mce_clear_state(unsigned long * toclear)1225 static __always_inline void mce_clear_state(unsigned long *toclear)
1226 {
1227 int i;
1228
1229 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1230 if (arch_test_bit(i, toclear))
1231 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1232 }
1233 }
1234
1235 /*
1236 * Cases where we avoid rendezvous handler timeout:
1237 * 1) If this CPU is offline.
1238 *
1239 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1240 * skip those CPUs which remain looping in the 1st kernel - see
1241 * crash_nmi_callback().
1242 *
1243 * Note: there still is a small window between kexec-ing and the new,
1244 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1245 * might not get handled properly.
1246 */
mce_check_crashing_cpu(void)1247 static noinstr bool mce_check_crashing_cpu(void)
1248 {
1249 unsigned int cpu = smp_processor_id();
1250
1251 if (arch_cpu_is_offline(cpu) ||
1252 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1253 u64 mcgstatus;
1254
1255 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1256
1257 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1258 if (mcgstatus & MCG_STATUS_LMCES)
1259 return false;
1260 }
1261
1262 if (mcgstatus & MCG_STATUS_RIPV) {
1263 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1264 return true;
1265 }
1266 }
1267 return false;
1268 }
1269
1270 static __always_inline int
__mc_scan_banks(struct mce * m,struct pt_regs * regs,struct mce * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1271 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1272 unsigned long *toclear, unsigned long *valid_banks, int no_way_out,
1273 int *worst)
1274 {
1275 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1276 struct mca_config *cfg = &mca_cfg;
1277 int severity, i, taint = 0;
1278
1279 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1280 arch___clear_bit(i, toclear);
1281 if (!arch_test_bit(i, valid_banks))
1282 continue;
1283
1284 if (!mce_banks[i].ctl)
1285 continue;
1286
1287 m->misc = 0;
1288 m->addr = 0;
1289 m->bank = i;
1290
1291 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1292 if (!(m->status & MCI_STATUS_VAL))
1293 continue;
1294
1295 /*
1296 * Corrected or non-signaled errors are handled by
1297 * machine_check_poll(). Leave them alone, unless this panics.
1298 */
1299 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1300 !no_way_out)
1301 continue;
1302
1303 /* Set taint even when machine check was not enabled. */
1304 taint++;
1305
1306 severity = mce_severity(m, regs, NULL, true);
1307
1308 /*
1309 * When machine check was for corrected/deferred handler don't
1310 * touch, unless we're panicking.
1311 */
1312 if ((severity == MCE_KEEP_SEVERITY ||
1313 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1314 continue;
1315
1316 arch___set_bit(i, toclear);
1317
1318 /* Machine check event was not enabled. Clear, but ignore. */
1319 if (severity == MCE_NO_SEVERITY)
1320 continue;
1321
1322 mce_read_aux(m, i);
1323
1324 /* assuming valid severity level != 0 */
1325 m->severity = severity;
1326
1327 /*
1328 * Enable instrumentation around the mce_log() call which is
1329 * done in #MC context, where instrumentation is disabled.
1330 */
1331 instrumentation_begin();
1332 mce_log(m);
1333 instrumentation_end();
1334
1335 if (severity > *worst) {
1336 *final = *m;
1337 *worst = severity;
1338 }
1339 }
1340
1341 /* mce_clear_state will clear *final, save locally for use later */
1342 *m = *final;
1343
1344 return taint;
1345 }
1346
kill_me_now(struct callback_head * ch)1347 static void kill_me_now(struct callback_head *ch)
1348 {
1349 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1350
1351 p->mce_count = 0;
1352 force_sig(SIGBUS);
1353 }
1354
kill_me_maybe(struct callback_head * cb)1355 static void kill_me_maybe(struct callback_head *cb)
1356 {
1357 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1358 int flags = MF_ACTION_REQUIRED;
1359 unsigned long pfn;
1360 int ret;
1361
1362 p->mce_count = 0;
1363 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1364
1365 if (!p->mce_ripv)
1366 flags |= MF_MUST_KILL;
1367
1368 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1369 ret = memory_failure(pfn, flags);
1370 if (!ret) {
1371 set_mce_nospec(pfn);
1372 sync_core();
1373 return;
1374 }
1375
1376 /*
1377 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1378 * to the current process with the proper error info,
1379 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1380 *
1381 * In both cases, no further processing is required.
1382 */
1383 if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1384 return;
1385
1386 pr_err("Memory error not recovered");
1387 kill_me_now(cb);
1388 }
1389
kill_me_never(struct callback_head * cb)1390 static void kill_me_never(struct callback_head *cb)
1391 {
1392 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1393 unsigned long pfn;
1394
1395 p->mce_count = 0;
1396 pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1397 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1398 if (!memory_failure(pfn, 0))
1399 set_mce_nospec(pfn);
1400 }
1401
queue_task_work(struct mce * m,char * msg,void (* func)(struct callback_head *))1402 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *))
1403 {
1404 int count = ++current->mce_count;
1405
1406 /* First call, save all the details */
1407 if (count == 1) {
1408 current->mce_addr = m->addr;
1409 current->mce_kflags = m->kflags;
1410 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1411 current->mce_whole_page = whole_page(m);
1412 current->mce_kill_me.func = func;
1413 }
1414
1415 /* Ten is likely overkill. Don't expect more than two faults before task_work() */
1416 if (count > 10)
1417 mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1418
1419 /* Second or later call, make sure page address matches the one from first call */
1420 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1421 mce_panic("Consecutive machine checks to different user pages", m, msg);
1422
1423 /* Do not call task_work_add() more than once */
1424 if (count > 1)
1425 return;
1426
1427 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME);
1428 }
1429
1430 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs)1431 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1432 {
1433 instrumentation_begin();
1434 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1435 smp_processor_id());
1436 instrumentation_end();
1437 }
1438
1439 /*
1440 * The actual machine check handler. This only handles real exceptions when
1441 * something got corrupted coming in through int 18.
1442 *
1443 * This is executed in #MC context not subject to normal locking rules.
1444 * This implies that most kernel services cannot be safely used. Don't even
1445 * think about putting a printk in there!
1446 *
1447 * On Intel systems this is entered on all CPUs in parallel through
1448 * MCE broadcast. However some CPUs might be broken beyond repair,
1449 * so be always careful when synchronizing with others.
1450 *
1451 * Tracing and kprobes are disabled: if we interrupted a kernel context
1452 * with IF=1, we need to minimize stack usage. There are also recursion
1453 * issues: if the machine check was due to a failure of the memory
1454 * backing the user stack, tracing that reads the user stack will cause
1455 * potentially infinite recursion.
1456 *
1457 * Currently, the #MC handler calls out to a number of external facilities
1458 * and, therefore, allows instrumentation around them. The optimal thing to
1459 * have would be to do the absolutely minimal work required in #MC context
1460 * and have instrumentation disabled only around that. Further processing can
1461 * then happen in process context where instrumentation is allowed. Achieving
1462 * that requires careful auditing and modifications. Until then, the code
1463 * allows instrumentation temporarily, where required. *
1464 */
do_machine_check(struct pt_regs * regs)1465 noinstr void do_machine_check(struct pt_regs *regs)
1466 {
1467 int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1468 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1469 DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1470 struct mce m, *final;
1471 char *msg = NULL;
1472
1473 if (unlikely(mce_flags.p5))
1474 return pentium_machine_check(regs);
1475 else if (unlikely(mce_flags.winchip))
1476 return winchip_machine_check(regs);
1477 else if (unlikely(!mca_cfg.initialized))
1478 return unexpected_machine_check(regs);
1479
1480 if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
1481 goto clear;
1482
1483 /*
1484 * Establish sequential order between the CPUs entering the machine
1485 * check handler.
1486 */
1487 order = -1;
1488
1489 /*
1490 * If no_way_out gets set, there is no safe way to recover from this
1491 * MCE.
1492 */
1493 no_way_out = 0;
1494
1495 /*
1496 * If kill_current_task is not set, there might be a way to recover from this
1497 * error.
1498 */
1499 kill_current_task = 0;
1500
1501 /*
1502 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1503 * on Intel.
1504 */
1505 lmce = 1;
1506
1507 this_cpu_inc(mce_exception_count);
1508
1509 mce_gather_info(&m, regs);
1510 m.tsc = rdtsc();
1511
1512 final = this_cpu_ptr(&mces_seen);
1513 *final = m;
1514
1515 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1516
1517 barrier();
1518
1519 /*
1520 * When no restart IP might need to kill or panic.
1521 * Assume the worst for now, but if we find the
1522 * severity is MCE_AR_SEVERITY we have other options.
1523 */
1524 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1525 kill_current_task = 1;
1526 /*
1527 * Check if this MCE is signaled to only this logical processor,
1528 * on Intel, Zhaoxin only.
1529 */
1530 if (m.cpuvendor == X86_VENDOR_INTEL ||
1531 m.cpuvendor == X86_VENDOR_ZHAOXIN)
1532 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1533
1534 /*
1535 * Local machine check may already know that we have to panic.
1536 * Broadcast machine check begins rendezvous in mce_start()
1537 * Go through all banks in exclusion of the other CPUs. This way we
1538 * don't report duplicated events on shared banks because the first one
1539 * to see it will clear it.
1540 */
1541 if (lmce) {
1542 if (no_way_out)
1543 mce_panic("Fatal local machine check", &m, msg);
1544 } else {
1545 order = mce_start(&no_way_out);
1546 }
1547
1548 taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1549
1550 if (!no_way_out)
1551 mce_clear_state(toclear);
1552
1553 /*
1554 * Do most of the synchronization with other CPUs.
1555 * When there's any problem use only local no_way_out state.
1556 */
1557 if (!lmce) {
1558 if (mce_end(order) < 0) {
1559 if (!no_way_out)
1560 no_way_out = worst >= MCE_PANIC_SEVERITY;
1561
1562 if (no_way_out)
1563 mce_panic("Fatal machine check on current CPU", &m, msg);
1564 }
1565 } else {
1566 /*
1567 * If there was a fatal machine check we should have
1568 * already called mce_panic earlier in this function.
1569 * Since we re-read the banks, we might have found
1570 * something new. Check again to see if we found a
1571 * fatal error. We call "mce_severity()" again to
1572 * make sure we have the right "msg".
1573 */
1574 if (worst >= MCE_PANIC_SEVERITY) {
1575 mce_severity(&m, regs, &msg, true);
1576 mce_panic("Local fatal machine check!", &m, msg);
1577 }
1578 }
1579
1580 /*
1581 * Enable instrumentation around the external facilities like task_work_add()
1582 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1583 * properly would need a lot more involved reorganization.
1584 */
1585 instrumentation_begin();
1586
1587 if (taint)
1588 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1589
1590 if (worst != MCE_AR_SEVERITY && !kill_current_task)
1591 goto out;
1592
1593 /* Fault was in user mode and we need to take some action */
1594 if ((m.cs & 3) == 3) {
1595 /* If this triggers there is no way to recover. Die hard. */
1596 BUG_ON(!on_thread_stack() || !user_mode(regs));
1597
1598 if (!mce_usable_address(&m))
1599 queue_task_work(&m, msg, kill_me_now);
1600 else
1601 queue_task_work(&m, msg, kill_me_maybe);
1602
1603 } else if (m.mcgstatus & MCG_STATUS_SEAM_NR) {
1604 /*
1605 * Saved RIP on stack makes it look like the machine check
1606 * was taken in the kernel on the instruction following
1607 * the entry to SEAM mode. But MCG_STATUS_SEAM_NR indicates
1608 * that the machine check was taken inside SEAM non-root
1609 * mode. CPU core has already marked that guest as dead.
1610 * It is OK for the kernel to resume execution at the
1611 * apparent point of the machine check as the fault did
1612 * not occur there. Mark the page as poisoned so it won't
1613 * be added to free list when the guest is terminated.
1614 */
1615 if (mce_usable_address(&m)) {
1616 struct page *p = pfn_to_online_page(m.addr >> PAGE_SHIFT);
1617
1618 if (p)
1619 SetPageHWPoison(p);
1620 }
1621 } else {
1622 /*
1623 * Handle an MCE which has happened in kernel space but from
1624 * which the kernel can recover: ex_has_fault_handler() has
1625 * already verified that the rIP at which the error happened is
1626 * a rIP from which the kernel can recover (by jumping to
1627 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1628 * corresponding exception handler which would do that is the
1629 * proper one.
1630 */
1631 if (m.kflags & MCE_IN_KERNEL_RECOV) {
1632 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1633 mce_panic("Failed kernel mode recovery", &m, msg);
1634 }
1635
1636 if (m.kflags & MCE_IN_KERNEL_COPYIN)
1637 queue_task_work(&m, msg, kill_me_never);
1638 }
1639
1640 out:
1641 instrumentation_end();
1642
1643 clear:
1644 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1645 }
1646 EXPORT_SYMBOL_GPL(do_machine_check);
1647
1648 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1649 int memory_failure(unsigned long pfn, int flags)
1650 {
1651 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1652 BUG_ON(flags & MF_ACTION_REQUIRED);
1653 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1654 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1655 pfn);
1656
1657 return 0;
1658 }
1659 #endif
1660
1661 /*
1662 * Periodic polling timer for "silent" machine check errors. If the
1663 * poller finds an MCE, poll 2x faster. When the poller finds no more
1664 * errors, poll 2x slower (up to check_interval seconds).
1665 */
1666 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1667
1668 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1669 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1670
__start_timer(struct timer_list * t,unsigned long interval)1671 static void __start_timer(struct timer_list *t, unsigned long interval)
1672 {
1673 unsigned long when = jiffies + interval;
1674 unsigned long flags;
1675
1676 local_irq_save(flags);
1677
1678 if (!timer_pending(t) || time_before(when, t->expires))
1679 mod_timer(t, round_jiffies(when));
1680
1681 local_irq_restore(flags);
1682 }
1683
mc_poll_banks_default(void)1684 static void mc_poll_banks_default(void)
1685 {
1686 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1687 }
1688
1689 void (*mc_poll_banks)(void) = mc_poll_banks_default;
1690
mce_timer_fn(struct timer_list * t)1691 static void mce_timer_fn(struct timer_list *t)
1692 {
1693 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1694 unsigned long iv;
1695
1696 WARN_ON(cpu_t != t);
1697
1698 iv = __this_cpu_read(mce_next_interval);
1699
1700 if (mce_available(this_cpu_ptr(&cpu_info)))
1701 mc_poll_banks();
1702
1703 /*
1704 * Alert userspace if needed. If we logged an MCE, reduce the polling
1705 * interval, otherwise increase the polling interval.
1706 */
1707 if (mce_notify_irq())
1708 iv = max(iv / 2, (unsigned long) HZ/100);
1709 else
1710 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1711
1712 if (mce_get_storm_mode()) {
1713 __start_timer(t, HZ);
1714 } else {
1715 __this_cpu_write(mce_next_interval, iv);
1716 __start_timer(t, iv);
1717 }
1718 }
1719
1720 /*
1721 * When a storm starts on any bank on this CPU, switch to polling
1722 * once per second. When the storm ends, revert to the default
1723 * polling interval.
1724 */
mce_timer_kick(bool storm)1725 void mce_timer_kick(bool storm)
1726 {
1727 struct timer_list *t = this_cpu_ptr(&mce_timer);
1728
1729 mce_set_storm_mode(storm);
1730
1731 if (storm)
1732 __start_timer(t, HZ);
1733 else
1734 __this_cpu_write(mce_next_interval, check_interval * HZ);
1735 }
1736
1737 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1738 static void mce_timer_delete_all(void)
1739 {
1740 int cpu;
1741
1742 for_each_online_cpu(cpu)
1743 del_timer_sync(&per_cpu(mce_timer, cpu));
1744 }
1745
1746 /*
1747 * Notify the user(s) about new machine check events.
1748 * Can be called from interrupt context, but not from machine check/NMI
1749 * context.
1750 */
mce_notify_irq(void)1751 int mce_notify_irq(void)
1752 {
1753 /* Not more than two messages every minute */
1754 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1755
1756 if (test_and_clear_bit(0, &mce_need_notify)) {
1757 mce_work_trigger();
1758
1759 if (__ratelimit(&ratelimit))
1760 pr_info(HW_ERR "Machine check events logged\n");
1761
1762 return 1;
1763 }
1764 return 0;
1765 }
1766 EXPORT_SYMBOL_GPL(mce_notify_irq);
1767
__mcheck_cpu_mce_banks_init(void)1768 static void __mcheck_cpu_mce_banks_init(void)
1769 {
1770 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1771 u8 n_banks = this_cpu_read(mce_num_banks);
1772 int i;
1773
1774 for (i = 0; i < n_banks; i++) {
1775 struct mce_bank *b = &mce_banks[i];
1776
1777 /*
1778 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1779 * the required vendor quirks before
1780 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1781 */
1782 b->ctl = -1ULL;
1783 b->init = true;
1784 }
1785 }
1786
1787 /*
1788 * Initialize Machine Checks for a CPU.
1789 */
__mcheck_cpu_cap_init(void)1790 static void __mcheck_cpu_cap_init(void)
1791 {
1792 u64 cap;
1793 u8 b;
1794
1795 rdmsrl(MSR_IA32_MCG_CAP, cap);
1796
1797 b = cap & MCG_BANKCNT_MASK;
1798
1799 if (b > MAX_NR_BANKS) {
1800 pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1801 smp_processor_id(), MAX_NR_BANKS, b);
1802 b = MAX_NR_BANKS;
1803 }
1804
1805 this_cpu_write(mce_num_banks, b);
1806
1807 __mcheck_cpu_mce_banks_init();
1808
1809 /* Use accurate RIP reporting if available. */
1810 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1811 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1812
1813 if (cap & MCG_SER_P)
1814 mca_cfg.ser = 1;
1815 }
1816
__mcheck_cpu_init_generic(void)1817 static void __mcheck_cpu_init_generic(void)
1818 {
1819 enum mcp_flags m_fl = 0;
1820 mce_banks_t all_banks;
1821 u64 cap;
1822
1823 if (!mca_cfg.bootlog)
1824 m_fl = MCP_DONTLOG;
1825
1826 /*
1827 * Log the machine checks left over from the previous reset. Log them
1828 * only, do not start processing them. That will happen in mcheck_late_init()
1829 * when all consumers have been registered on the notifier chain.
1830 */
1831 bitmap_fill(all_banks, MAX_NR_BANKS);
1832 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1833
1834 cr4_set_bits(X86_CR4_MCE);
1835
1836 rdmsrl(MSR_IA32_MCG_CAP, cap);
1837 if (cap & MCG_CTL_P)
1838 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1839 }
1840
__mcheck_cpu_init_clear_banks(void)1841 static void __mcheck_cpu_init_clear_banks(void)
1842 {
1843 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1844 int i;
1845
1846 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1847 struct mce_bank *b = &mce_banks[i];
1848
1849 if (!b->init)
1850 continue;
1851 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1852 wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1853 }
1854 }
1855
1856 /*
1857 * Do a final check to see if there are any unused/RAZ banks.
1858 *
1859 * This must be done after the banks have been initialized and any quirks have
1860 * been applied.
1861 *
1862 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1863 * Otherwise, a user who disables a bank will not be able to re-enable it
1864 * without a system reboot.
1865 */
__mcheck_cpu_check_banks(void)1866 static void __mcheck_cpu_check_banks(void)
1867 {
1868 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1869 u64 msrval;
1870 int i;
1871
1872 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1873 struct mce_bank *b = &mce_banks[i];
1874
1875 if (!b->init)
1876 continue;
1877
1878 rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1879 b->init = !!msrval;
1880 }
1881 }
1882
1883 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1884 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1885 {
1886 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1887 struct mca_config *cfg = &mca_cfg;
1888
1889 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1890 pr_info("unknown CPU type - not enabling MCE support\n");
1891 return -EOPNOTSUPP;
1892 }
1893
1894 /* This should be disabled by the BIOS, but isn't always */
1895 if (c->x86_vendor == X86_VENDOR_AMD) {
1896 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1897 /*
1898 * disable GART TBL walk error reporting, which
1899 * trips off incorrectly with the IOMMU & 3ware
1900 * & Cerberus:
1901 */
1902 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1903 }
1904 if (c->x86 < 0x11 && cfg->bootlog < 0) {
1905 /*
1906 * Lots of broken BIOS around that don't clear them
1907 * by default and leave crap in there. Don't log:
1908 */
1909 cfg->bootlog = 0;
1910 }
1911 /*
1912 * Various K7s with broken bank 0 around. Always disable
1913 * by default.
1914 */
1915 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1916 mce_banks[0].ctl = 0;
1917
1918 /*
1919 * overflow_recov is supported for F15h Models 00h-0fh
1920 * even though we don't have a CPUID bit for it.
1921 */
1922 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1923 mce_flags.overflow_recov = 1;
1924
1925 if (c->x86 >= 0x17 && c->x86 <= 0x1A)
1926 mce_flags.zen_ifu_quirk = 1;
1927
1928 }
1929
1930 if (c->x86_vendor == X86_VENDOR_INTEL) {
1931 /*
1932 * SDM documents that on family 6 bank 0 should not be written
1933 * because it aliases to another special BIOS controlled
1934 * register.
1935 * But it's not aliased anymore on model 0x1a+
1936 * Don't ignore bank 0 completely because there could be a
1937 * valid event later, merely don't write CTL0.
1938 */
1939
1940 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1941 mce_banks[0].init = false;
1942
1943 /*
1944 * All newer Intel systems support MCE broadcasting. Enable
1945 * synchronization with a one second timeout.
1946 */
1947 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1948 cfg->monarch_timeout < 0)
1949 cfg->monarch_timeout = USEC_PER_SEC;
1950
1951 /*
1952 * There are also broken BIOSes on some Pentium M and
1953 * earlier systems:
1954 */
1955 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1956 cfg->bootlog = 0;
1957
1958 if (c->x86_vfm == INTEL_SANDYBRIDGE_X)
1959 mce_flags.snb_ifu_quirk = 1;
1960
1961 /*
1962 * Skylake, Cascacde Lake and Cooper Lake require a quirk on
1963 * rep movs.
1964 */
1965 if (c->x86_vfm == INTEL_SKYLAKE_X)
1966 mce_flags.skx_repmov_quirk = 1;
1967 }
1968
1969 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1970 /*
1971 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1972 * synchronization with a one second timeout.
1973 */
1974 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1975 if (cfg->monarch_timeout < 0)
1976 cfg->monarch_timeout = USEC_PER_SEC;
1977 }
1978 }
1979
1980 if (cfg->monarch_timeout < 0)
1981 cfg->monarch_timeout = 0;
1982 if (cfg->bootlog != 0)
1983 cfg->panic_timeout = 30;
1984
1985 return 0;
1986 }
1987
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1988 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1989 {
1990 if (c->x86 != 5)
1991 return 0;
1992
1993 switch (c->x86_vendor) {
1994 case X86_VENDOR_INTEL:
1995 intel_p5_mcheck_init(c);
1996 mce_flags.p5 = 1;
1997 return 1;
1998 case X86_VENDOR_CENTAUR:
1999 winchip_mcheck_init(c);
2000 mce_flags.winchip = 1;
2001 return 1;
2002 default:
2003 return 0;
2004 }
2005
2006 return 0;
2007 }
2008
2009 /*
2010 * Init basic CPU features needed for early decoding of MCEs.
2011 */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)2012 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
2013 {
2014 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
2015 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
2016 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
2017 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
2018 mce_flags.amd_threshold = 1;
2019 }
2020 }
2021
mce_centaur_feature_init(struct cpuinfo_x86 * c)2022 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
2023 {
2024 struct mca_config *cfg = &mca_cfg;
2025
2026 /*
2027 * All newer Centaur CPUs support MCE broadcasting. Enable
2028 * synchronization with a one second timeout.
2029 */
2030 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
2031 c->x86 > 6) {
2032 if (cfg->monarch_timeout < 0)
2033 cfg->monarch_timeout = USEC_PER_SEC;
2034 }
2035 }
2036
mce_zhaoxin_feature_init(struct cpuinfo_x86 * c)2037 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
2038 {
2039 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2040
2041 /*
2042 * These CPUs have MCA bank 8 which reports only one error type called
2043 * SVAD (System View Address Decoder). The reporting of that error is
2044 * controlled by IA32_MC8.CTL.0.
2045 *
2046 * If enabled, prefetching on these CPUs will cause SVAD MCE when
2047 * virtual machines start and result in a system panic. Always disable
2048 * bank 8 SVAD error by default.
2049 */
2050 if ((c->x86 == 7 && c->x86_model == 0x1b) ||
2051 (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
2052 if (this_cpu_read(mce_num_banks) > 8)
2053 mce_banks[8].ctl = 0;
2054 }
2055
2056 intel_init_cmci();
2057 intel_init_lmce();
2058 }
2059
mce_zhaoxin_feature_clear(struct cpuinfo_x86 * c)2060 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
2061 {
2062 intel_clear_lmce();
2063 }
2064
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)2065 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
2066 {
2067 switch (c->x86_vendor) {
2068 case X86_VENDOR_INTEL:
2069 mce_intel_feature_init(c);
2070 break;
2071
2072 case X86_VENDOR_AMD: {
2073 mce_amd_feature_init(c);
2074 break;
2075 }
2076
2077 case X86_VENDOR_HYGON:
2078 mce_hygon_feature_init(c);
2079 break;
2080
2081 case X86_VENDOR_CENTAUR:
2082 mce_centaur_feature_init(c);
2083 break;
2084
2085 case X86_VENDOR_ZHAOXIN:
2086 mce_zhaoxin_feature_init(c);
2087 break;
2088
2089 default:
2090 break;
2091 }
2092 }
2093
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)2094 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
2095 {
2096 switch (c->x86_vendor) {
2097 case X86_VENDOR_INTEL:
2098 mce_intel_feature_clear(c);
2099 break;
2100
2101 case X86_VENDOR_ZHAOXIN:
2102 mce_zhaoxin_feature_clear(c);
2103 break;
2104
2105 default:
2106 break;
2107 }
2108 }
2109
mce_start_timer(struct timer_list * t)2110 static void mce_start_timer(struct timer_list *t)
2111 {
2112 unsigned long iv = check_interval * HZ;
2113
2114 if (mca_cfg.ignore_ce || !iv)
2115 return;
2116
2117 this_cpu_write(mce_next_interval, iv);
2118 __start_timer(t, iv);
2119 }
2120
__mcheck_cpu_setup_timer(void)2121 static void __mcheck_cpu_setup_timer(void)
2122 {
2123 struct timer_list *t = this_cpu_ptr(&mce_timer);
2124
2125 timer_setup(t, mce_timer_fn, TIMER_PINNED);
2126 }
2127
__mcheck_cpu_init_timer(void)2128 static void __mcheck_cpu_init_timer(void)
2129 {
2130 struct timer_list *t = this_cpu_ptr(&mce_timer);
2131
2132 timer_setup(t, mce_timer_fn, TIMER_PINNED);
2133 mce_start_timer(t);
2134 }
2135
filter_mce(struct mce * m)2136 bool filter_mce(struct mce *m)
2137 {
2138 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2139 return amd_filter_mce(m);
2140 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2141 return intel_filter_mce(m);
2142
2143 return false;
2144 }
2145
exc_machine_check_kernel(struct pt_regs * regs)2146 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2147 {
2148 irqentry_state_t irq_state;
2149
2150 WARN_ON_ONCE(user_mode(regs));
2151
2152 /*
2153 * Only required when from kernel mode. See
2154 * mce_check_crashing_cpu() for details.
2155 */
2156 if (mca_cfg.initialized && mce_check_crashing_cpu())
2157 return;
2158
2159 irq_state = irqentry_nmi_enter(regs);
2160
2161 do_machine_check(regs);
2162
2163 irqentry_nmi_exit(regs, irq_state);
2164 }
2165
exc_machine_check_user(struct pt_regs * regs)2166 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2167 {
2168 irqentry_enter_from_user_mode(regs);
2169
2170 do_machine_check(regs);
2171
2172 irqentry_exit_to_user_mode(regs);
2173 }
2174
2175 #ifdef CONFIG_X86_64
2176 /* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)2177 DEFINE_IDTENTRY_MCE(exc_machine_check)
2178 {
2179 unsigned long dr7;
2180
2181 dr7 = local_db_save();
2182 exc_machine_check_kernel(regs);
2183 local_db_restore(dr7);
2184 }
2185
2186 /* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)2187 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2188 {
2189 unsigned long dr7;
2190
2191 dr7 = local_db_save();
2192 exc_machine_check_user(regs);
2193 local_db_restore(dr7);
2194 }
2195
2196 #ifdef CONFIG_X86_FRED
2197 /*
2198 * When occurred on different ring level, i.e., from user or kernel
2199 * context, #MCE needs to be handled on different stack: User #MCE
2200 * on current task stack, while kernel #MCE on a dedicated stack.
2201 *
2202 * This is exactly how FRED event delivery invokes an exception
2203 * handler: ring 3 event on level 0 stack, i.e., current task stack;
2204 * ring 0 event on the #MCE dedicated stack specified in the
2205 * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED machine check entry
2206 * stub doesn't do stack switch.
2207 */
DEFINE_FREDENTRY_MCE(exc_machine_check)2208 DEFINE_FREDENTRY_MCE(exc_machine_check)
2209 {
2210 unsigned long dr7;
2211
2212 dr7 = local_db_save();
2213 if (user_mode(regs))
2214 exc_machine_check_user(regs);
2215 else
2216 exc_machine_check_kernel(regs);
2217 local_db_restore(dr7);
2218 }
2219 #endif
2220 #else
2221 /* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)2222 DEFINE_IDTENTRY_RAW(exc_machine_check)
2223 {
2224 unsigned long dr7;
2225
2226 dr7 = local_db_save();
2227 if (user_mode(regs))
2228 exc_machine_check_user(regs);
2229 else
2230 exc_machine_check_kernel(regs);
2231 local_db_restore(dr7);
2232 }
2233 #endif
2234
2235 /*
2236 * Called for each booted CPU to set up machine checks.
2237 * Must be called with preempt off:
2238 */
mcheck_cpu_init(struct cpuinfo_x86 * c)2239 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2240 {
2241 if (mca_cfg.disabled)
2242 return;
2243
2244 if (__mcheck_cpu_ancient_init(c))
2245 return;
2246
2247 if (!mce_available(c))
2248 return;
2249
2250 __mcheck_cpu_cap_init();
2251
2252 if (__mcheck_cpu_apply_quirks(c) < 0) {
2253 mca_cfg.disabled = 1;
2254 return;
2255 }
2256
2257 if (mce_gen_pool_init()) {
2258 mca_cfg.disabled = 1;
2259 pr_emerg("Couldn't allocate MCE records pool!\n");
2260 return;
2261 }
2262
2263 mca_cfg.initialized = 1;
2264
2265 __mcheck_cpu_init_early(c);
2266 __mcheck_cpu_init_generic();
2267 __mcheck_cpu_init_vendor(c);
2268 __mcheck_cpu_init_clear_banks();
2269 __mcheck_cpu_check_banks();
2270 __mcheck_cpu_setup_timer();
2271 }
2272
2273 /*
2274 * Called for each booted CPU to clear some machine checks opt-ins
2275 */
mcheck_cpu_clear(struct cpuinfo_x86 * c)2276 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2277 {
2278 if (mca_cfg.disabled)
2279 return;
2280
2281 if (!mce_available(c))
2282 return;
2283
2284 /*
2285 * Possibly to clear general settings generic to x86
2286 * __mcheck_cpu_clear_generic(c);
2287 */
2288 __mcheck_cpu_clear_vendor(c);
2289
2290 }
2291
__mce_disable_bank(void * arg)2292 static void __mce_disable_bank(void *arg)
2293 {
2294 int bank = *((int *)arg);
2295 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2296 cmci_disable_bank(bank);
2297 }
2298
mce_disable_bank(int bank)2299 void mce_disable_bank(int bank)
2300 {
2301 if (bank >= this_cpu_read(mce_num_banks)) {
2302 pr_warn(FW_BUG
2303 "Ignoring request to disable invalid MCA bank %d.\n",
2304 bank);
2305 return;
2306 }
2307 set_bit(bank, mce_banks_ce_disabled);
2308 on_each_cpu(__mce_disable_bank, &bank, 1);
2309 }
2310
2311 /*
2312 * mce=off Disables machine check
2313 * mce=no_cmci Disables CMCI
2314 * mce=no_lmce Disables LMCE
2315 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2316 * mce=print_all Print all machine check logs to console
2317 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2318 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2319 * monarchtimeout is how long to wait for other CPUs on machine
2320 * check, or 0 to not wait
2321 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2322 and older.
2323 * mce=nobootlog Don't log MCEs from before booting.
2324 * mce=bios_cmci_threshold Don't program the CMCI threshold
2325 * mce=recovery force enable copy_mc_fragile()
2326 */
mcheck_enable(char * str)2327 static int __init mcheck_enable(char *str)
2328 {
2329 struct mca_config *cfg = &mca_cfg;
2330
2331 if (*str == 0) {
2332 enable_p5_mce();
2333 return 1;
2334 }
2335 if (*str == '=')
2336 str++;
2337 if (!strcmp(str, "off"))
2338 cfg->disabled = 1;
2339 else if (!strcmp(str, "no_cmci"))
2340 cfg->cmci_disabled = true;
2341 else if (!strcmp(str, "no_lmce"))
2342 cfg->lmce_disabled = 1;
2343 else if (!strcmp(str, "dont_log_ce"))
2344 cfg->dont_log_ce = true;
2345 else if (!strcmp(str, "print_all"))
2346 cfg->print_all = true;
2347 else if (!strcmp(str, "ignore_ce"))
2348 cfg->ignore_ce = true;
2349 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2350 cfg->bootlog = (str[0] == 'b');
2351 else if (!strcmp(str, "bios_cmci_threshold"))
2352 cfg->bios_cmci_threshold = 1;
2353 else if (!strcmp(str, "recovery"))
2354 cfg->recovery = 1;
2355 else if (isdigit(str[0]))
2356 get_option(&str, &(cfg->monarch_timeout));
2357 else {
2358 pr_info("mce argument %s ignored. Please use /sys\n", str);
2359 return 0;
2360 }
2361 return 1;
2362 }
2363 __setup("mce", mcheck_enable);
2364
mcheck_init(void)2365 int __init mcheck_init(void)
2366 {
2367 mce_register_decode_chain(&early_nb);
2368 mce_register_decode_chain(&mce_uc_nb);
2369 mce_register_decode_chain(&mce_default_nb);
2370
2371 INIT_WORK(&mce_work, mce_gen_pool_process);
2372 init_irq_work(&mce_irq_work, mce_irq_work_cb);
2373
2374 return 0;
2375 }
2376
2377 /*
2378 * mce_syscore: PM support
2379 */
2380
2381 /*
2382 * Disable machine checks on suspend and shutdown. We can't really handle
2383 * them later.
2384 */
mce_disable_error_reporting(void)2385 static void mce_disable_error_reporting(void)
2386 {
2387 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2388 int i;
2389
2390 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2391 struct mce_bank *b = &mce_banks[i];
2392
2393 if (b->init)
2394 wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2395 }
2396 return;
2397 }
2398
vendor_disable_error_reporting(void)2399 static void vendor_disable_error_reporting(void)
2400 {
2401 /*
2402 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2403 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2404 * is bad, since it will inhibit reporting for all shared resources on
2405 * the socket like the last level cache (LLC), the integrated memory
2406 * controller (iMC), etc.
2407 */
2408 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2409 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2410 boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2411 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2412 return;
2413
2414 mce_disable_error_reporting();
2415 }
2416
mce_syscore_suspend(void)2417 static int mce_syscore_suspend(void)
2418 {
2419 vendor_disable_error_reporting();
2420 return 0;
2421 }
2422
mce_syscore_shutdown(void)2423 static void mce_syscore_shutdown(void)
2424 {
2425 vendor_disable_error_reporting();
2426 }
2427
2428 /*
2429 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2430 * Only one CPU is active at this time, the others get re-added later using
2431 * CPU hotplug:
2432 */
mce_syscore_resume(void)2433 static void mce_syscore_resume(void)
2434 {
2435 __mcheck_cpu_init_generic();
2436 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2437 __mcheck_cpu_init_clear_banks();
2438 }
2439
2440 static struct syscore_ops mce_syscore_ops = {
2441 .suspend = mce_syscore_suspend,
2442 .shutdown = mce_syscore_shutdown,
2443 .resume = mce_syscore_resume,
2444 };
2445
2446 /*
2447 * mce_device: Sysfs support
2448 */
2449
mce_cpu_restart(void * data)2450 static void mce_cpu_restart(void *data)
2451 {
2452 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2453 return;
2454 __mcheck_cpu_init_generic();
2455 __mcheck_cpu_init_clear_banks();
2456 __mcheck_cpu_init_timer();
2457 }
2458
2459 /* Reinit MCEs after user configuration changes */
mce_restart(void)2460 static void mce_restart(void)
2461 {
2462 mce_timer_delete_all();
2463 on_each_cpu(mce_cpu_restart, NULL, 1);
2464 mce_schedule_work();
2465 }
2466
2467 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2468 static void mce_disable_cmci(void *data)
2469 {
2470 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2471 return;
2472 cmci_clear();
2473 }
2474
mce_enable_ce(void * all)2475 static void mce_enable_ce(void *all)
2476 {
2477 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2478 return;
2479 cmci_reenable();
2480 cmci_recheck();
2481 if (all)
2482 __mcheck_cpu_init_timer();
2483 }
2484
2485 static const struct bus_type mce_subsys = {
2486 .name = "machinecheck",
2487 .dev_name = "machinecheck",
2488 };
2489
2490 DEFINE_PER_CPU(struct device *, mce_device);
2491
attr_to_bank(struct device_attribute * attr)2492 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2493 {
2494 return container_of(attr, struct mce_bank_dev, attr);
2495 }
2496
show_bank(struct device * s,struct device_attribute * attr,char * buf)2497 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2498 char *buf)
2499 {
2500 u8 bank = attr_to_bank(attr)->bank;
2501 struct mce_bank *b;
2502
2503 if (bank >= per_cpu(mce_num_banks, s->id))
2504 return -EINVAL;
2505
2506 b = &per_cpu(mce_banks_array, s->id)[bank];
2507
2508 if (!b->init)
2509 return -ENODEV;
2510
2511 return sprintf(buf, "%llx\n", b->ctl);
2512 }
2513
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2514 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2515 const char *buf, size_t size)
2516 {
2517 u8 bank = attr_to_bank(attr)->bank;
2518 struct mce_bank *b;
2519 u64 new;
2520
2521 if (kstrtou64(buf, 0, &new) < 0)
2522 return -EINVAL;
2523
2524 if (bank >= per_cpu(mce_num_banks, s->id))
2525 return -EINVAL;
2526
2527 b = &per_cpu(mce_banks_array, s->id)[bank];
2528 if (!b->init)
2529 return -ENODEV;
2530
2531 b->ctl = new;
2532
2533 mutex_lock(&mce_sysfs_mutex);
2534 mce_restart();
2535 mutex_unlock(&mce_sysfs_mutex);
2536
2537 return size;
2538 }
2539
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2540 static ssize_t set_ignore_ce(struct device *s,
2541 struct device_attribute *attr,
2542 const char *buf, size_t size)
2543 {
2544 u64 new;
2545
2546 if (kstrtou64(buf, 0, &new) < 0)
2547 return -EINVAL;
2548
2549 mutex_lock(&mce_sysfs_mutex);
2550 if (mca_cfg.ignore_ce ^ !!new) {
2551 if (new) {
2552 /* disable ce features */
2553 mce_timer_delete_all();
2554 on_each_cpu(mce_disable_cmci, NULL, 1);
2555 mca_cfg.ignore_ce = true;
2556 } else {
2557 /* enable ce features */
2558 mca_cfg.ignore_ce = false;
2559 on_each_cpu(mce_enable_ce, (void *)1, 1);
2560 }
2561 }
2562 mutex_unlock(&mce_sysfs_mutex);
2563
2564 return size;
2565 }
2566
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2567 static ssize_t set_cmci_disabled(struct device *s,
2568 struct device_attribute *attr,
2569 const char *buf, size_t size)
2570 {
2571 u64 new;
2572
2573 if (kstrtou64(buf, 0, &new) < 0)
2574 return -EINVAL;
2575
2576 mutex_lock(&mce_sysfs_mutex);
2577 if (mca_cfg.cmci_disabled ^ !!new) {
2578 if (new) {
2579 /* disable cmci */
2580 on_each_cpu(mce_disable_cmci, NULL, 1);
2581 mca_cfg.cmci_disabled = true;
2582 } else {
2583 /* enable cmci */
2584 mca_cfg.cmci_disabled = false;
2585 on_each_cpu(mce_enable_ce, NULL, 1);
2586 }
2587 }
2588 mutex_unlock(&mce_sysfs_mutex);
2589
2590 return size;
2591 }
2592
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2593 static ssize_t store_int_with_restart(struct device *s,
2594 struct device_attribute *attr,
2595 const char *buf, size_t size)
2596 {
2597 unsigned long old_check_interval = check_interval;
2598 ssize_t ret = device_store_ulong(s, attr, buf, size);
2599
2600 if (check_interval == old_check_interval)
2601 return ret;
2602
2603 mutex_lock(&mce_sysfs_mutex);
2604 mce_restart();
2605 mutex_unlock(&mce_sysfs_mutex);
2606
2607 return ret;
2608 }
2609
2610 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2611 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2612 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2613
2614 static struct dev_ext_attribute dev_attr_check_interval = {
2615 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2616 &check_interval
2617 };
2618
2619 static struct dev_ext_attribute dev_attr_ignore_ce = {
2620 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2621 &mca_cfg.ignore_ce
2622 };
2623
2624 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2625 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2626 &mca_cfg.cmci_disabled
2627 };
2628
2629 static struct device_attribute *mce_device_attrs[] = {
2630 &dev_attr_check_interval.attr,
2631 #ifdef CONFIG_X86_MCELOG_LEGACY
2632 &dev_attr_trigger,
2633 #endif
2634 &dev_attr_monarch_timeout.attr,
2635 &dev_attr_dont_log_ce.attr,
2636 &dev_attr_print_all.attr,
2637 &dev_attr_ignore_ce.attr,
2638 &dev_attr_cmci_disabled.attr,
2639 NULL
2640 };
2641
2642 static cpumask_var_t mce_device_initialized;
2643
mce_device_release(struct device * dev)2644 static void mce_device_release(struct device *dev)
2645 {
2646 kfree(dev);
2647 }
2648
2649 /* Per CPU device init. All of the CPUs still share the same bank device: */
mce_device_create(unsigned int cpu)2650 static int mce_device_create(unsigned int cpu)
2651 {
2652 struct device *dev;
2653 int err;
2654 int i, j;
2655
2656 dev = per_cpu(mce_device, cpu);
2657 if (dev)
2658 return 0;
2659
2660 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2661 if (!dev)
2662 return -ENOMEM;
2663 dev->id = cpu;
2664 dev->bus = &mce_subsys;
2665 dev->release = &mce_device_release;
2666
2667 err = device_register(dev);
2668 if (err) {
2669 put_device(dev);
2670 return err;
2671 }
2672
2673 for (i = 0; mce_device_attrs[i]; i++) {
2674 err = device_create_file(dev, mce_device_attrs[i]);
2675 if (err)
2676 goto error;
2677 }
2678 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2679 err = device_create_file(dev, &mce_bank_devs[j].attr);
2680 if (err)
2681 goto error2;
2682 }
2683 cpumask_set_cpu(cpu, mce_device_initialized);
2684 per_cpu(mce_device, cpu) = dev;
2685
2686 return 0;
2687 error2:
2688 while (--j >= 0)
2689 device_remove_file(dev, &mce_bank_devs[j].attr);
2690 error:
2691 while (--i >= 0)
2692 device_remove_file(dev, mce_device_attrs[i]);
2693
2694 device_unregister(dev);
2695
2696 return err;
2697 }
2698
mce_device_remove(unsigned int cpu)2699 static void mce_device_remove(unsigned int cpu)
2700 {
2701 struct device *dev = per_cpu(mce_device, cpu);
2702 int i;
2703
2704 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2705 return;
2706
2707 for (i = 0; mce_device_attrs[i]; i++)
2708 device_remove_file(dev, mce_device_attrs[i]);
2709
2710 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2711 device_remove_file(dev, &mce_bank_devs[i].attr);
2712
2713 device_unregister(dev);
2714 cpumask_clear_cpu(cpu, mce_device_initialized);
2715 per_cpu(mce_device, cpu) = NULL;
2716 }
2717
2718 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2719 static void mce_disable_cpu(void)
2720 {
2721 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2722 return;
2723
2724 if (!cpuhp_tasks_frozen)
2725 cmci_clear();
2726
2727 vendor_disable_error_reporting();
2728 }
2729
mce_reenable_cpu(void)2730 static void mce_reenable_cpu(void)
2731 {
2732 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2733 int i;
2734
2735 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2736 return;
2737
2738 if (!cpuhp_tasks_frozen)
2739 cmci_reenable();
2740 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2741 struct mce_bank *b = &mce_banks[i];
2742
2743 if (b->init)
2744 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2745 }
2746 }
2747
mce_cpu_dead(unsigned int cpu)2748 static int mce_cpu_dead(unsigned int cpu)
2749 {
2750 /* intentionally ignoring frozen here */
2751 if (!cpuhp_tasks_frozen)
2752 cmci_rediscover();
2753 return 0;
2754 }
2755
mce_cpu_online(unsigned int cpu)2756 static int mce_cpu_online(unsigned int cpu)
2757 {
2758 struct timer_list *t = this_cpu_ptr(&mce_timer);
2759 int ret;
2760
2761 mce_device_create(cpu);
2762
2763 ret = mce_threshold_create_device(cpu);
2764 if (ret) {
2765 mce_device_remove(cpu);
2766 return ret;
2767 }
2768 mce_reenable_cpu();
2769 mce_start_timer(t);
2770 return 0;
2771 }
2772
mce_cpu_pre_down(unsigned int cpu)2773 static int mce_cpu_pre_down(unsigned int cpu)
2774 {
2775 struct timer_list *t = this_cpu_ptr(&mce_timer);
2776
2777 mce_disable_cpu();
2778 del_timer_sync(t);
2779 mce_threshold_remove_device(cpu);
2780 mce_device_remove(cpu);
2781 return 0;
2782 }
2783
mce_init_banks(void)2784 static __init void mce_init_banks(void)
2785 {
2786 int i;
2787
2788 for (i = 0; i < MAX_NR_BANKS; i++) {
2789 struct mce_bank_dev *b = &mce_bank_devs[i];
2790 struct device_attribute *a = &b->attr;
2791
2792 b->bank = i;
2793
2794 sysfs_attr_init(&a->attr);
2795 a->attr.name = b->attrname;
2796 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2797
2798 a->attr.mode = 0644;
2799 a->show = show_bank;
2800 a->store = set_bank;
2801 }
2802 }
2803
2804 /*
2805 * When running on XEN, this initcall is ordered against the XEN mcelog
2806 * initcall:
2807 *
2808 * device_initcall(xen_late_init_mcelog);
2809 * device_initcall_sync(mcheck_init_device);
2810 */
mcheck_init_device(void)2811 static __init int mcheck_init_device(void)
2812 {
2813 int err;
2814
2815 /*
2816 * Check if we have a spare virtual bit. This will only become
2817 * a problem if/when we move beyond 5-level page tables.
2818 */
2819 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2820
2821 if (!mce_available(&boot_cpu_data)) {
2822 err = -EIO;
2823 goto err_out;
2824 }
2825
2826 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2827 err = -ENOMEM;
2828 goto err_out;
2829 }
2830
2831 mce_init_banks();
2832
2833 err = subsys_system_register(&mce_subsys, NULL);
2834 if (err)
2835 goto err_out_mem;
2836
2837 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2838 mce_cpu_dead);
2839 if (err)
2840 goto err_out_mem;
2841
2842 /*
2843 * Invokes mce_cpu_online() on all CPUs which are online when
2844 * the state is installed.
2845 */
2846 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2847 mce_cpu_online, mce_cpu_pre_down);
2848 if (err < 0)
2849 goto err_out_online;
2850
2851 register_syscore_ops(&mce_syscore_ops);
2852
2853 return 0;
2854
2855 err_out_online:
2856 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2857
2858 err_out_mem:
2859 free_cpumask_var(mce_device_initialized);
2860
2861 err_out:
2862 pr_err("Unable to init MCE device (rc: %d)\n", err);
2863
2864 return err;
2865 }
2866 device_initcall_sync(mcheck_init_device);
2867
2868 /*
2869 * Old style boot options parsing. Only for compatibility.
2870 */
mcheck_disable(char * str)2871 static int __init mcheck_disable(char *str)
2872 {
2873 mca_cfg.disabled = 1;
2874 return 1;
2875 }
2876 __setup("nomce", mcheck_disable);
2877
2878 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2879 struct dentry *mce_get_debugfs_dir(void)
2880 {
2881 static struct dentry *dmce;
2882
2883 if (!dmce)
2884 dmce = debugfs_create_dir("mce", NULL);
2885
2886 return dmce;
2887 }
2888
mce_reset(void)2889 static void mce_reset(void)
2890 {
2891 atomic_set(&mce_fake_panicked, 0);
2892 atomic_set(&mce_executing, 0);
2893 atomic_set(&mce_callin, 0);
2894 atomic_set(&global_nwo, 0);
2895 cpumask_setall(&mce_missing_cpus);
2896 }
2897
fake_panic_get(void * data,u64 * val)2898 static int fake_panic_get(void *data, u64 *val)
2899 {
2900 *val = fake_panic;
2901 return 0;
2902 }
2903
fake_panic_set(void * data,u64 val)2904 static int fake_panic_set(void *data, u64 val)
2905 {
2906 mce_reset();
2907 fake_panic = val;
2908 return 0;
2909 }
2910
2911 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2912 "%llu\n");
2913
mcheck_debugfs_init(void)2914 static void __init mcheck_debugfs_init(void)
2915 {
2916 struct dentry *dmce;
2917
2918 dmce = mce_get_debugfs_dir();
2919 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2920 &fake_panic_fops);
2921 }
2922 #else
mcheck_debugfs_init(void)2923 static void __init mcheck_debugfs_init(void) { }
2924 #endif
2925
mcheck_late_init(void)2926 static int __init mcheck_late_init(void)
2927 {
2928 if (mca_cfg.recovery)
2929 enable_copy_mc_fragile();
2930
2931 mcheck_debugfs_init();
2932
2933 /*
2934 * Flush out everything that has been logged during early boot, now that
2935 * everything has been initialized (workqueues, decoders, ...).
2936 */
2937 mce_schedule_work();
2938
2939 return 0;
2940 }
2941 late_initcall(mcheck_late_init);
2942