xref: /linux/arch/x86/kernel/cpu/mce/core.c (revision 509d3f45847627f4c5cdce004c3ec79262b5239c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 #include <linux/kexec.h>
48 #include <linux/vmcore_info.h>
49 
50 #include <asm/fred.h>
51 #include <asm/cpu_device_id.h>
52 #include <asm/processor.h>
53 #include <asm/traps.h>
54 #include <asm/tlbflush.h>
55 #include <asm/mce.h>
56 #include <asm/msr.h>
57 #include <asm/reboot.h>
58 #include <asm/tdx.h>
59 
60 #include "internal.h"
61 
62 /* sysfs synchronization */
63 static DEFINE_MUTEX(mce_sysfs_mutex);
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/mce.h>
67 
68 #define SPINUNIT		100	/* 100ns */
69 
70 DEFINE_PER_CPU(unsigned, mce_exception_count);
71 
72 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
73 
74 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
75 
76 #define ATTR_LEN               16
77 /* One object for each MCE bank, shared by all CPUs */
78 struct mce_bank_dev {
79 	struct device_attribute	attr;			/* device attribute */
80 	char			attrname[ATTR_LEN];	/* attribute name */
81 	u8			bank;			/* bank number */
82 };
83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
84 
85 struct mce_vendor_flags mce_flags __read_mostly;
86 
87 struct mca_config mca_cfg __read_mostly = {
88 	.bootlog  = -1,
89 	.monarch_timeout = -1
90 };
91 
92 static DEFINE_PER_CPU(struct mce_hw_err, hw_errs_seen);
93 static unsigned long mce_need_notify;
94 
95 /*
96  * MCA banks polled by the period polling timer for corrected events.
97  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
98  */
99 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
100 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
101 };
102 
103 /*
104  * MCA banks controlled through firmware first for corrected errors.
105  * This is a global list of banks for which we won't enable CMCI and we
106  * won't poll. Firmware controls these banks and is responsible for
107  * reporting corrected errors through GHES. Uncorrected/recoverable
108  * errors are still notified through a machine check.
109  */
110 mce_banks_t mce_banks_ce_disabled;
111 
112 static struct work_struct mce_work;
113 static struct irq_work mce_irq_work;
114 
115 /*
116  * CPU/chipset specific EDAC code can register a notifier call here to print
117  * MCE errors in a human-readable form.
118  */
119 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
120 
mce_prep_record_common(struct mce * m)121 void mce_prep_record_common(struct mce *m)
122 {
123 	m->cpuid	= cpuid_eax(1);
124 	m->cpuvendor	= boot_cpu_data.x86_vendor;
125 	m->mcgcap	= native_rdmsrq(MSR_IA32_MCG_CAP);
126 	/* need the internal __ version to avoid deadlocks */
127 	m->time		= __ktime_get_real_seconds();
128 }
129 
mce_prep_record_per_cpu(unsigned int cpu,struct mce * m)130 void mce_prep_record_per_cpu(unsigned int cpu, struct mce *m)
131 {
132 	m->cpu		= cpu;
133 	m->extcpu	= cpu;
134 	m->apicid	= cpu_data(cpu).topo.initial_apicid;
135 	m->microcode	= cpu_data(cpu).microcode;
136 	m->ppin		= topology_ppin(cpu);
137 	m->socketid	= topology_physical_package_id(cpu);
138 }
139 
140 /* Do initial initialization of struct mce_hw_err */
mce_prep_record(struct mce_hw_err * err)141 void mce_prep_record(struct mce_hw_err *err)
142 {
143 	struct mce *m = &err->m;
144 
145 	memset(err, 0, sizeof(struct mce_hw_err));
146 	mce_prep_record_common(m);
147 	mce_prep_record_per_cpu(smp_processor_id(), m);
148 }
149 
150 DEFINE_PER_CPU(struct mce, injectm);
151 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
152 
mce_log(struct mce_hw_err * err)153 void mce_log(struct mce_hw_err *err)
154 {
155 	if (mce_gen_pool_add(err))
156 		irq_work_queue(&mce_irq_work);
157 }
158 EXPORT_SYMBOL_GPL(mce_log);
159 
mce_register_decode_chain(struct notifier_block * nb)160 void mce_register_decode_chain(struct notifier_block *nb)
161 {
162 	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
163 		    nb->priority > MCE_PRIO_HIGHEST))
164 		return;
165 
166 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
167 }
168 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
169 
mce_unregister_decode_chain(struct notifier_block * nb)170 void mce_unregister_decode_chain(struct notifier_block *nb)
171 {
172 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
173 }
174 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
175 
__print_mce(struct mce_hw_err * err)176 static void __print_mce(struct mce_hw_err *err)
177 {
178 	struct mce *m = &err->m;
179 
180 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
181 		 m->extcpu,
182 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
183 		 m->mcgstatus, m->bank, m->status);
184 
185 	if (m->ip) {
186 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
187 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
188 			m->cs, m->ip);
189 
190 		if (m->cs == __KERNEL_CS)
191 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
192 		pr_cont("\n");
193 	}
194 
195 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
196 	if (m->addr)
197 		pr_cont("ADDR %llx ", m->addr);
198 	if (m->misc)
199 		pr_cont("MISC %llx ", m->misc);
200 	if (m->ppin)
201 		pr_cont("PPIN %llx ", m->ppin);
202 
203 	if (mce_flags.smca) {
204 		if (m->synd)
205 			pr_cont("SYND %llx ", m->synd);
206 		if (err->vendor.amd.synd1)
207 			pr_cont("SYND1 %llx ", err->vendor.amd.synd1);
208 		if (err->vendor.amd.synd2)
209 			pr_cont("SYND2 %llx ", err->vendor.amd.synd2);
210 		if (m->ipid)
211 			pr_cont("IPID %llx ", m->ipid);
212 	}
213 
214 	pr_cont("\n");
215 
216 	/*
217 	 * Note this output is parsed by external tools and old fields
218 	 * should not be changed.
219 	 */
220 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
221 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
222 		m->microcode);
223 }
224 
print_mce(struct mce_hw_err * err)225 static void print_mce(struct mce_hw_err *err)
226 {
227 	struct mce *m = &err->m;
228 
229 	__print_mce(err);
230 
231 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
232 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
233 }
234 
235 #define PANIC_TIMEOUT 5 /* 5 seconds */
236 
237 static atomic_t mce_panicked;
238 
239 static int fake_panic;
240 static atomic_t mce_fake_panicked;
241 
242 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)243 static void wait_for_panic(void)
244 {
245 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
246 
247 	preempt_disable();
248 	local_irq_enable();
249 	while (timeout-- > 0)
250 		udelay(1);
251 	if (panic_timeout == 0)
252 		panic_timeout = mca_cfg.panic_timeout;
253 	panic("Panicing machine check CPU died");
254 }
255 
mce_dump_aux_info(struct mce * m)256 static const char *mce_dump_aux_info(struct mce *m)
257 {
258 	if (boot_cpu_has_bug(X86_BUG_TDX_PW_MCE))
259 		return tdx_dump_mce_info(m);
260 
261 	return NULL;
262 }
263 
mce_panic(const char * msg,struct mce_hw_err * final,char * exp)264 static noinstr void mce_panic(const char *msg, struct mce_hw_err *final, char *exp)
265 {
266 	struct llist_node *pending;
267 	struct mce_evt_llist *l;
268 	int apei_err = 0;
269 	const char *memmsg;
270 
271 	/*
272 	 * Allow instrumentation around external facilities usage. Not that it
273 	 * matters a whole lot since the machine is going to panic anyway.
274 	 */
275 	instrumentation_begin();
276 
277 	if (!fake_panic) {
278 		/*
279 		 * Make sure only one CPU runs in machine check panic
280 		 */
281 		if (atomic_inc_return(&mce_panicked) > 1)
282 			wait_for_panic();
283 		barrier();
284 
285 		bust_spinlocks(1);
286 		console_verbose();
287 	} else {
288 		/* Don't log too much for fake panic */
289 		if (atomic_inc_return(&mce_fake_panicked) > 1)
290 			goto out;
291 	}
292 	pending = mce_gen_pool_prepare_records();
293 	/* First print corrected ones that are still unlogged */
294 	llist_for_each_entry(l, pending, llnode) {
295 		struct mce_hw_err *err = &l->err;
296 		struct mce *m = &err->m;
297 		if (!(m->status & MCI_STATUS_UC)) {
298 			print_mce(err);
299 			if (!apei_err)
300 				apei_err = apei_write_mce(m);
301 		}
302 	}
303 	/* Now print uncorrected but with the final one last */
304 	llist_for_each_entry(l, pending, llnode) {
305 		struct mce_hw_err *err = &l->err;
306 		struct mce *m = &err->m;
307 		if (!(m->status & MCI_STATUS_UC))
308 			continue;
309 		if (!final || mce_cmp(m, &final->m)) {
310 			print_mce(err);
311 			if (!apei_err)
312 				apei_err = apei_write_mce(m);
313 		}
314 	}
315 	if (final) {
316 		print_mce(final);
317 		if (!apei_err)
318 			apei_err = apei_write_mce(&final->m);
319 	}
320 	if (exp)
321 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
322 
323 	memmsg = mce_dump_aux_info(&final->m);
324 	if (memmsg)
325 		pr_emerg(HW_ERR "Machine check: %s\n", memmsg);
326 
327 	if (!fake_panic) {
328 		if (panic_timeout == 0)
329 			panic_timeout = mca_cfg.panic_timeout;
330 
331 		/*
332 		 * Kdump skips the poisoned page in order to avoid
333 		 * touching the error bits again. Poison the page even
334 		 * if the error is fatal and the machine is about to
335 		 * panic.
336 		 */
337 		if (kexec_crash_loaded()) {
338 			if (final && (final->m.status & MCI_STATUS_ADDRV)) {
339 				struct page *p;
340 				p = pfn_to_online_page(final->m.addr >> PAGE_SHIFT);
341 				if (p)
342 					SetPageHWPoison(p);
343 			}
344 		}
345 		panic(msg);
346 	} else
347 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
348 
349 out:
350 	instrumentation_end();
351 }
352 
353 /* Support code for software error injection */
354 
msr_to_offset(u32 msr)355 static int msr_to_offset(u32 msr)
356 {
357 	unsigned bank = __this_cpu_read(injectm.bank);
358 
359 	if (msr == mca_cfg.rip_msr)
360 		return offsetof(struct mce, ip);
361 	if (msr == mca_msr_reg(bank, MCA_STATUS))
362 		return offsetof(struct mce, status);
363 	if (msr == mca_msr_reg(bank, MCA_ADDR))
364 		return offsetof(struct mce, addr);
365 	if (msr == mca_msr_reg(bank, MCA_MISC))
366 		return offsetof(struct mce, misc);
367 	if (msr == MSR_IA32_MCG_STATUS)
368 		return offsetof(struct mce, mcgstatus);
369 	return -1;
370 }
371 
ex_handler_msr_mce(struct pt_regs * regs,bool wrmsr)372 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
373 {
374 	if (wrmsr) {
375 		pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
376 			 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
377 			 regs->ip, (void *)regs->ip);
378 	} else {
379 		pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
380 			 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
381 	}
382 
383 	show_stack_regs(regs);
384 
385 	panic("MCA architectural violation!\n");
386 
387 	while (true)
388 		cpu_relax();
389 }
390 
391 /* MSR access wrappers used for error injection */
mce_rdmsrq(u32 msr)392 noinstr u64 mce_rdmsrq(u32 msr)
393 {
394 	EAX_EDX_DECLARE_ARGS(val, low, high);
395 
396 	if (__this_cpu_read(injectm.finished)) {
397 		int offset;
398 		u64 ret;
399 
400 		instrumentation_begin();
401 
402 		offset = msr_to_offset(msr);
403 		if (offset < 0)
404 			ret = 0;
405 		else
406 			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
407 
408 		instrumentation_end();
409 
410 		return ret;
411 	}
412 
413 	/*
414 	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
415 	 * architectural violation and needs to be reported to hw vendor. Panic
416 	 * the box to not allow any further progress.
417 	 */
418 	asm volatile("1: rdmsr\n"
419 		     "2:\n"
420 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
421 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
422 
423 
424 	return EAX_EDX_VAL(val, low, high);
425 }
426 
mce_wrmsrq(u32 msr,u64 v)427 noinstr void mce_wrmsrq(u32 msr, u64 v)
428 {
429 	u32 low, high;
430 
431 	if (__this_cpu_read(injectm.finished)) {
432 		int offset;
433 
434 		instrumentation_begin();
435 
436 		offset = msr_to_offset(msr);
437 		if (offset >= 0)
438 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
439 
440 		instrumentation_end();
441 
442 		return;
443 	}
444 
445 	low  = (u32)v;
446 	high = (u32)(v >> 32);
447 
448 	/* See comment in mce_rdmsrq() */
449 	asm volatile("1: wrmsr\n"
450 		     "2:\n"
451 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
452 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
453 }
454 
455 /*
456  * Collect all global (w.r.t. this processor) status about this machine
457  * check into our "mce" struct so that we can use it later to assess
458  * the severity of the problem as we read per-bank specific details.
459  */
mce_gather_info(struct mce_hw_err * err,struct pt_regs * regs)460 static noinstr void mce_gather_info(struct mce_hw_err *err, struct pt_regs *regs)
461 {
462 	struct mce *m;
463 	/*
464 	 * Enable instrumentation around mce_prep_record() which calls external
465 	 * facilities.
466 	 */
467 	instrumentation_begin();
468 	mce_prep_record(err);
469 	instrumentation_end();
470 
471 	m = &err->m;
472 	m->mcgstatus = mce_rdmsrq(MSR_IA32_MCG_STATUS);
473 	if (regs) {
474 		/*
475 		 * Get the address of the instruction at the time of
476 		 * the machine check error.
477 		 */
478 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
479 			m->ip = regs->ip;
480 			m->cs = regs->cs;
481 
482 			/*
483 			 * When in VM86 mode make the cs look like ring 3
484 			 * always. This is a lie, but it's better than passing
485 			 * the additional vm86 bit around everywhere.
486 			 */
487 			if (v8086_mode(regs))
488 				m->cs |= 3;
489 		}
490 		/* Use accurate RIP reporting if available. */
491 		if (mca_cfg.rip_msr)
492 			m->ip = mce_rdmsrq(mca_cfg.rip_msr);
493 	}
494 }
495 
mce_available(struct cpuinfo_x86 * c)496 bool mce_available(struct cpuinfo_x86 *c)
497 {
498 	if (mca_cfg.disabled)
499 		return false;
500 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
501 }
502 
mce_schedule_work(void)503 static void mce_schedule_work(void)
504 {
505 	if (!mce_gen_pool_empty())
506 		schedule_work(&mce_work);
507 }
508 
mce_irq_work_cb(struct irq_work * entry)509 static void mce_irq_work_cb(struct irq_work *entry)
510 {
511 	mce_schedule_work();
512 }
513 
mce_usable_address(struct mce * m)514 bool mce_usable_address(struct mce *m)
515 {
516 	if (!(m->status & MCI_STATUS_ADDRV))
517 		return false;
518 
519 	switch (m->cpuvendor) {
520 	case X86_VENDOR_AMD:
521 		return amd_mce_usable_address(m);
522 
523 	case X86_VENDOR_INTEL:
524 	case X86_VENDOR_ZHAOXIN:
525 		return intel_mce_usable_address(m);
526 
527 	default:
528 		return true;
529 	}
530 }
531 EXPORT_SYMBOL_GPL(mce_usable_address);
532 
mce_is_memory_error(struct mce * m)533 bool mce_is_memory_error(struct mce *m)
534 {
535 	switch (m->cpuvendor) {
536 	case X86_VENDOR_AMD:
537 	case X86_VENDOR_HYGON:
538 		return amd_mce_is_memory_error(m);
539 
540 	case X86_VENDOR_INTEL:
541 	case X86_VENDOR_ZHAOXIN:
542 		/*
543 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
544 		 *
545 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
546 		 * indicating a memory error. Bit 8 is used for indicating a
547 		 * cache hierarchy error. The combination of bit 2 and bit 3
548 		 * is used for indicating a `generic' cache hierarchy error
549 		 * But we can't just blindly check the above bits, because if
550 		 * bit 11 is set, then it is a bus/interconnect error - and
551 		 * either way the above bits just gives more detail on what
552 		 * bus/interconnect error happened. Note that bit 12 can be
553 		 * ignored, as it's the "filter" bit.
554 		 */
555 		return (m->status & 0xef80) == BIT(7) ||
556 		       (m->status & 0xef00) == BIT(8) ||
557 		       (m->status & 0xeffc) == 0xc;
558 
559 	default:
560 		return false;
561 	}
562 }
563 EXPORT_SYMBOL_GPL(mce_is_memory_error);
564 
whole_page(struct mce * m)565 static bool whole_page(struct mce *m)
566 {
567 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
568 		return true;
569 
570 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
571 }
572 
mce_is_correctable(struct mce * m)573 bool mce_is_correctable(struct mce *m)
574 {
575 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
576 		return false;
577 
578 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
579 		return false;
580 
581 	if (m->status & MCI_STATUS_UC)
582 		return false;
583 
584 	return true;
585 }
586 EXPORT_SYMBOL_GPL(mce_is_correctable);
587 
588 /*
589  * Notify the user(s) about new machine check events.
590  * Can be called from interrupt context, but not from machine check/NMI
591  * context.
592  */
mce_notify_irq(void)593 static bool mce_notify_irq(void)
594 {
595 	/* Not more than two messages every minute */
596 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
597 
598 	if (test_and_clear_bit(0, &mce_need_notify)) {
599 		mce_work_trigger();
600 
601 		if (__ratelimit(&ratelimit))
602 			pr_info(HW_ERR "Machine check events logged\n");
603 
604 		return true;
605 	}
606 
607 	return false;
608 }
609 
mce_early_notifier(struct notifier_block * nb,unsigned long val,void * data)610 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
611 			      void *data)
612 {
613 	struct mce_hw_err *err = to_mce_hw_err(data);
614 
615 	if (!err)
616 		return NOTIFY_DONE;
617 
618 	/* Emit the trace record: */
619 	trace_mce_record(err);
620 
621 	set_bit(0, &mce_need_notify);
622 
623 	mce_notify_irq();
624 
625 	return NOTIFY_DONE;
626 }
627 
628 static struct notifier_block early_nb = {
629 	.notifier_call	= mce_early_notifier,
630 	.priority	= MCE_PRIO_EARLY,
631 };
632 
uc_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)633 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
634 			      void *data)
635 {
636 	struct mce *mce = (struct mce *)data;
637 	unsigned long pfn;
638 
639 	if (!mce || !mce_usable_address(mce))
640 		return NOTIFY_DONE;
641 
642 	if (mce->severity != MCE_AO_SEVERITY &&
643 	    mce->severity != MCE_DEFERRED_SEVERITY)
644 		return NOTIFY_DONE;
645 
646 	pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
647 	if (!memory_failure(pfn, 0)) {
648 		set_mce_nospec(pfn);
649 		mce->kflags |= MCE_HANDLED_UC;
650 	}
651 
652 	return NOTIFY_OK;
653 }
654 
655 static struct notifier_block mce_uc_nb = {
656 	.notifier_call	= uc_decode_notifier,
657 	.priority	= MCE_PRIO_UC,
658 };
659 
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)660 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
661 				void *data)
662 {
663 	struct mce_hw_err *err = to_mce_hw_err(data);
664 
665 	if (!err)
666 		return NOTIFY_DONE;
667 
668 	if (mca_cfg.print_all || !(err->m.kflags))
669 		__print_mce(err);
670 
671 	return NOTIFY_DONE;
672 }
673 
674 static struct notifier_block mce_default_nb = {
675 	.notifier_call	= mce_default_notifier,
676 	/* lowest prio, we want it to run last. */
677 	.priority	= MCE_PRIO_LOWEST,
678 };
679 
680 /*
681  * Read ADDR and MISC registers.
682  */
mce_read_aux(struct mce_hw_err * err,int i)683 static noinstr void mce_read_aux(struct mce_hw_err *err, int i)
684 {
685 	struct mce *m = &err->m;
686 
687 	if (m->status & MCI_STATUS_MISCV)
688 		m->misc = mce_rdmsrq(mca_msr_reg(i, MCA_MISC));
689 
690 	if (m->status & MCI_STATUS_ADDRV) {
691 		if (m->kflags & MCE_CHECK_DFR_REGS)
692 			m->addr = mce_rdmsrq(MSR_AMD64_SMCA_MCx_DEADDR(i));
693 		else
694 			m->addr = mce_rdmsrq(mca_msr_reg(i, MCA_ADDR));
695 
696 		/*
697 		 * Mask the reported address by the reported granularity.
698 		 */
699 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
700 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
701 			m->addr >>= shift;
702 			m->addr <<= shift;
703 		}
704 
705 		smca_extract_err_addr(m);
706 	}
707 
708 	if (mce_flags.smca) {
709 		m->ipid = mce_rdmsrq(MSR_AMD64_SMCA_MCx_IPID(i));
710 
711 		if (m->status & MCI_STATUS_SYNDV) {
712 			m->synd = mce_rdmsrq(MSR_AMD64_SMCA_MCx_SYND(i));
713 			err->vendor.amd.synd1 = mce_rdmsrq(MSR_AMD64_SMCA_MCx_SYND1(i));
714 			err->vendor.amd.synd2 = mce_rdmsrq(MSR_AMD64_SMCA_MCx_SYND2(i));
715 		}
716 	}
717 }
718 
719 DEFINE_PER_CPU(unsigned, mce_poll_count);
720 
721 /*
722  * We have three scenarios for checking for Deferred errors:
723  *
724  * 1) Non-SMCA systems check MCA_STATUS and log error if found.
725  * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
726  *    clear MCA_DESTAT.
727  * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
728  *    log it.
729  */
smca_should_log_poll_error(struct mce * m)730 static bool smca_should_log_poll_error(struct mce *m)
731 {
732 	if (m->status & MCI_STATUS_VAL)
733 		return true;
734 
735 	m->status = mce_rdmsrq(MSR_AMD64_SMCA_MCx_DESTAT(m->bank));
736 	if ((m->status & MCI_STATUS_VAL) && (m->status & MCI_STATUS_DEFERRED)) {
737 		m->kflags |= MCE_CHECK_DFR_REGS;
738 		return true;
739 	}
740 
741 	return false;
742 }
743 
744 /*
745  * Newer Intel systems that support software error
746  * recovery need to make additional checks. Other
747  * CPUs should skip over uncorrected errors, but log
748  * everything else.
749  */
ser_should_log_poll_error(struct mce * m)750 static bool ser_should_log_poll_error(struct mce *m)
751 {
752 	/* Log "not enabled" (speculative) errors */
753 	if (!(m->status & MCI_STATUS_EN))
754 		return true;
755 
756 	/*
757 	 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
758 	 * UC == 1 && PCC == 0 && S == 0
759 	 */
760 	if (!(m->status & MCI_STATUS_PCC) && !(m->status & MCI_STATUS_S))
761 		return true;
762 
763 	return false;
764 }
765 
should_log_poll_error(enum mcp_flags flags,struct mce_hw_err * err)766 static bool should_log_poll_error(enum mcp_flags flags, struct mce_hw_err *err)
767 {
768 	struct mce *m = &err->m;
769 
770 	if (mce_flags.smca)
771 		return smca_should_log_poll_error(m);
772 
773 	/* If this entry is not valid, ignore it. */
774 	if (!(m->status & MCI_STATUS_VAL))
775 		return false;
776 
777 	/*
778 	 * If we are logging everything (at CPU online) or this
779 	 * is a corrected error, then we must log it.
780 	 */
781 	if ((flags & MCP_UC) || !(m->status & MCI_STATUS_UC))
782 		return true;
783 
784 	if (mca_cfg.ser)
785 		return ser_should_log_poll_error(m);
786 
787 	if (m->status & MCI_STATUS_UC)
788 		return false;
789 
790 	return true;
791 }
792 
clear_bank(struct mce * m)793 static void clear_bank(struct mce *m)
794 {
795 	if (m->cpuvendor == X86_VENDOR_AMD)
796 		return amd_clear_bank(m);
797 
798 	mce_wrmsrq(mca_msr_reg(m->bank, MCA_STATUS), 0);
799 }
800 
801 /*
802  * Poll for corrected events or events that happened before reset.
803  * Those are just logged through /dev/mcelog.
804  *
805  * This is executed in standard interrupt context.
806  *
807  * Note: spec recommends to panic for fatal unsignalled
808  * errors here. However this would be quite problematic --
809  * we would need to reimplement the Monarch handling and
810  * it would mess up the exclusion between exception handler
811  * and poll handler -- * so we skip this for now.
812  * These cases should not happen anyways, or only when the CPU
813  * is already totally * confused. In this case it's likely it will
814  * not fully execute the machine check handler either.
815  */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)816 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
817 {
818 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
819 	struct mce_hw_err err;
820 	struct mce *m;
821 	int i;
822 
823 	this_cpu_inc(mce_poll_count);
824 
825 	mce_gather_info(&err, NULL);
826 	m = &err.m;
827 
828 	if (flags & MCP_TIMESTAMP)
829 		m->tsc = rdtsc();
830 
831 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
832 		if (!mce_banks[i].ctl || !test_bit(i, *b))
833 			continue;
834 
835 		m->misc = 0;
836 		m->addr = 0;
837 		m->bank = i;
838 
839 		barrier();
840 		m->status = mce_rdmsrq(mca_msr_reg(i, MCA_STATUS));
841 
842 		/*
843 		 * Update storm tracking here, before checking for the
844 		 * MCI_STATUS_VAL bit. Valid corrected errors count
845 		 * towards declaring, or maintaining, storm status. No
846 		 * error in a bank counts towards avoiding, or ending,
847 		 * storm status.
848 		 */
849 		if (!mca_cfg.cmci_disabled)
850 			mce_track_storm(m);
851 
852 		/* Verify that the error should be logged based on hardware conditions. */
853 		if (!should_log_poll_error(flags, &err))
854 			continue;
855 
856 		mce_read_aux(&err, i);
857 		m->severity = mce_severity(m, NULL, NULL, false);
858 		/*
859 		 * Don't get the IP here because it's unlikely to
860 		 * have anything to do with the actual error location.
861 		 */
862 
863 		if (mca_cfg.dont_log_ce && !mce_usable_address(m))
864 			goto clear_it;
865 
866 		if (flags & MCP_QUEUE_LOG)
867 			mce_gen_pool_add(&err);
868 		else
869 			mce_log(&err);
870 
871 clear_it:
872 		clear_bank(m);
873 	}
874 
875 	/*
876 	 * Don't clear MCG_STATUS here because it's only defined for
877 	 * exceptions.
878 	 */
879 
880 	sync_core();
881 }
882 EXPORT_SYMBOL_GPL(machine_check_poll);
883 
884 /*
885  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
886  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
887  * Vol 3B Table 15-20). But this confuses both the code that determines
888  * whether the machine check occurred in kernel or user mode, and also
889  * the severity assessment code. Pretend that EIPV was set, and take the
890  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
891  */
892 static __always_inline void
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)893 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
894 {
895 	if (bank != 0)
896 		return;
897 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
898 		return;
899 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
900 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
901 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
902 			  MCACOD)) !=
903 			 (MCI_STATUS_UC|MCI_STATUS_EN|
904 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
905 			  MCI_STATUS_AR|MCACOD_INSTR))
906 		return;
907 
908 	m->mcgstatus |= MCG_STATUS_EIPV;
909 	m->ip = regs->ip;
910 	m->cs = regs->cs;
911 }
912 
913 /*
914  * Disable fast string copy and return from the MCE handler upon the first SRAR
915  * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake
916  * CPUs.
917  * The fast string copy instructions ("REP; MOVS*") could consume an
918  * uncorrectable memory error in the cache line _right after_ the desired region
919  * to copy and raise an MCE with RIP pointing to the instruction _after_ the
920  * "REP; MOVS*".
921  * This mitigation addresses the issue completely with the caveat of performance
922  * degradation on the CPU affected. This is still better than the OS crashing on
923  * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a
924  * kernel context (e.g., copy_page).
925  *
926  * Returns true when fast string copy on CPU has been disabled.
927  */
quirk_skylake_repmov(void)928 static noinstr bool quirk_skylake_repmov(void)
929 {
930 	u64 mcgstatus   = mce_rdmsrq(MSR_IA32_MCG_STATUS);
931 	u64 misc_enable = mce_rdmsrq(MSR_IA32_MISC_ENABLE);
932 	u64 mc1_status;
933 
934 	/*
935 	 * Apply the quirk only to local machine checks, i.e., no broadcast
936 	 * sync is needed.
937 	 */
938 	if (!(mcgstatus & MCG_STATUS_LMCES) ||
939 	    !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
940 		return false;
941 
942 	mc1_status = mce_rdmsrq(MSR_IA32_MCx_STATUS(1));
943 
944 	/* Check for a software-recoverable data fetch error. */
945 	if ((mc1_status &
946 	     (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
947 	      MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
948 	      MCI_STATUS_AR | MCI_STATUS_S)) ==
949 	     (MCI_STATUS_VAL |                   MCI_STATUS_UC | MCI_STATUS_EN |
950 	      MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
951 	      MCI_STATUS_AR | MCI_STATUS_S)) {
952 		misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
953 		mce_wrmsrq(MSR_IA32_MISC_ENABLE, misc_enable);
954 		mce_wrmsrq(MSR_IA32_MCx_STATUS(1), 0);
955 
956 		instrumentation_begin();
957 		pr_err_once("Erratum detected, disable fast string copy instructions.\n");
958 		instrumentation_end();
959 
960 		return true;
961 	}
962 
963 	return false;
964 }
965 
966 /*
967  * Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption
968  * errors. This means mce_gather_info() will not save the "ip" and "cs" registers.
969  *
970  * However, the context is still valid, so save the "cs" register for later use.
971  *
972  * The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV.
973  *
974  * The Instruction Fetch Unit is at MCA bank 1 for all affected systems.
975  */
quirk_zen_ifu(int bank,struct mce * m,struct pt_regs * regs)976 static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs)
977 {
978 	if (bank != 1)
979 		return;
980 	if (!(m->status & MCI_STATUS_POISON))
981 		return;
982 
983 	m->cs = regs->cs;
984 }
985 
986 /*
987  * Do a quick check if any of the events requires a panic.
988  * This decides if we keep the events around or clear them.
989  */
mce_no_way_out(struct mce_hw_err * err,char ** msg,unsigned long * validp,struct pt_regs * regs)990 static __always_inline int mce_no_way_out(struct mce_hw_err *err, char **msg, unsigned long *validp,
991 					  struct pt_regs *regs)
992 {
993 	struct mce *m = &err->m;
994 	char *tmp = *msg;
995 	int i;
996 
997 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
998 		m->status = mce_rdmsrq(mca_msr_reg(i, MCA_STATUS));
999 		if (!(m->status & MCI_STATUS_VAL))
1000 			continue;
1001 
1002 		arch___set_bit(i, validp);
1003 		if (mce_flags.snb_ifu_quirk)
1004 			quirk_sandybridge_ifu(i, m, regs);
1005 
1006 		if (mce_flags.zen_ifu_quirk)
1007 			quirk_zen_ifu(i, m, regs);
1008 
1009 		m->bank = i;
1010 		if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
1011 			mce_read_aux(err, i);
1012 			*msg = tmp;
1013 			return 1;
1014 		}
1015 	}
1016 	return 0;
1017 }
1018 
1019 /*
1020  * Variable to establish order between CPUs while scanning.
1021  * Each CPU spins initially until executing is equal its number.
1022  */
1023 static atomic_t mce_executing;
1024 
1025 /*
1026  * Defines order of CPUs on entry. First CPU becomes Monarch.
1027  */
1028 static atomic_t mce_callin;
1029 
1030 /*
1031  * Track which CPUs entered the MCA broadcast synchronization and which not in
1032  * order to print holdouts.
1033  */
1034 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
1035 
1036 /*
1037  * Check if a timeout waiting for other CPUs happened.
1038  */
mce_timed_out(u64 * t,const char * msg)1039 static noinstr int mce_timed_out(u64 *t, const char *msg)
1040 {
1041 	int ret = 0;
1042 
1043 	/* Enable instrumentation around calls to external facilities */
1044 	instrumentation_begin();
1045 
1046 	/*
1047 	 * The others already did panic for some reason.
1048 	 * Bail out like in a timeout.
1049 	 * rmb() to tell the compiler that system_state
1050 	 * might have been modified by someone else.
1051 	 */
1052 	rmb();
1053 	if (atomic_read(&mce_panicked))
1054 		wait_for_panic();
1055 	if (!mca_cfg.monarch_timeout)
1056 		goto out;
1057 	if ((s64)*t < SPINUNIT) {
1058 		if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
1059 			pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
1060 				 cpumask_pr_args(&mce_missing_cpus));
1061 		mce_panic(msg, NULL, NULL);
1062 
1063 		ret = 1;
1064 		goto out;
1065 	}
1066 	*t -= SPINUNIT;
1067 
1068 out:
1069 	touch_nmi_watchdog();
1070 
1071 	instrumentation_end();
1072 
1073 	return ret;
1074 }
1075 
1076 /*
1077  * The Monarch's reign.  The Monarch is the CPU who entered
1078  * the machine check handler first. It waits for the others to
1079  * raise the exception too and then grades them. When any
1080  * error is fatal panic. Only then let the others continue.
1081  *
1082  * The other CPUs entering the MCE handler will be controlled by the
1083  * Monarch. They are called Subjects.
1084  *
1085  * This way we prevent any potential data corruption in a unrecoverable case
1086  * and also makes sure always all CPU's errors are examined.
1087  *
1088  * Also this detects the case of a machine check event coming from outer
1089  * space (not detected by any CPUs) In this case some external agent wants
1090  * us to shut down, so panic too.
1091  *
1092  * The other CPUs might still decide to panic if the handler happens
1093  * in a unrecoverable place, but in this case the system is in a semi-stable
1094  * state and won't corrupt anything by itself. It's ok to let the others
1095  * continue for a bit first.
1096  *
1097  * All the spin loops have timeouts; when a timeout happens a CPU
1098  * typically elects itself to be Monarch.
1099  */
mce_reign(void)1100 static void mce_reign(void)
1101 {
1102 	struct mce_hw_err *err = NULL;
1103 	struct mce *m = NULL;
1104 	int global_worst = 0;
1105 	char *msg = NULL;
1106 	int cpu;
1107 
1108 	/*
1109 	 * This CPU is the Monarch and the other CPUs have run
1110 	 * through their handlers.
1111 	 * Grade the severity of the errors of all the CPUs.
1112 	 */
1113 	for_each_possible_cpu(cpu) {
1114 		struct mce_hw_err *etmp = &per_cpu(hw_errs_seen, cpu);
1115 		struct mce *mtmp = &etmp->m;
1116 
1117 		if (mtmp->severity > global_worst) {
1118 			global_worst = mtmp->severity;
1119 			err = &per_cpu(hw_errs_seen, cpu);
1120 			m = &err->m;
1121 		}
1122 	}
1123 
1124 	/*
1125 	 * Cannot recover? Panic here then.
1126 	 * This dumps all the mces in the log buffer and stops the
1127 	 * other CPUs.
1128 	 */
1129 	if (m && global_worst >= MCE_PANIC_SEVERITY) {
1130 		/* call mce_severity() to get "msg" for panic */
1131 		mce_severity(m, NULL, &msg, true);
1132 		mce_panic("Fatal machine check", err, msg);
1133 	}
1134 
1135 	/*
1136 	 * For UC somewhere we let the CPU who detects it handle it.
1137 	 * Also must let continue the others, otherwise the handling
1138 	 * CPU could deadlock on a lock.
1139 	 */
1140 
1141 	/*
1142 	 * No machine check event found. Must be some external
1143 	 * source or one CPU is hung. Panic.
1144 	 */
1145 	if (global_worst <= MCE_KEEP_SEVERITY)
1146 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
1147 
1148 	/*
1149 	 * Now clear all the hw_errs_seen so that they don't reappear on
1150 	 * the next mce.
1151 	 */
1152 	for_each_possible_cpu(cpu)
1153 		memset(&per_cpu(hw_errs_seen, cpu), 0, sizeof(struct mce_hw_err));
1154 }
1155 
1156 static atomic_t global_nwo;
1157 
1158 /*
1159  * Start of Monarch synchronization. This waits until all CPUs have
1160  * entered the exception handler and then determines if any of them
1161  * saw a fatal event that requires panic. Then it executes them
1162  * in the entry order.
1163  * TBD double check parallel CPU hotunplug
1164  */
mce_start(int * no_way_out)1165 static noinstr int mce_start(int *no_way_out)
1166 {
1167 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1168 	int order, ret = -1;
1169 
1170 	if (!timeout)
1171 		return ret;
1172 
1173 	raw_atomic_add(*no_way_out, &global_nwo);
1174 	/*
1175 	 * Rely on the implied barrier below, such that global_nwo
1176 	 * is updated before mce_callin.
1177 	 */
1178 	order = raw_atomic_inc_return(&mce_callin);
1179 	arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1180 
1181 	/* Enable instrumentation around calls to external facilities */
1182 	instrumentation_begin();
1183 
1184 	/*
1185 	 * Wait for everyone.
1186 	 */
1187 	while (raw_atomic_read(&mce_callin) != num_online_cpus()) {
1188 		if (mce_timed_out(&timeout,
1189 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1190 			raw_atomic_set(&global_nwo, 0);
1191 			goto out;
1192 		}
1193 		ndelay(SPINUNIT);
1194 	}
1195 
1196 	/*
1197 	 * mce_callin should be read before global_nwo
1198 	 */
1199 	smp_rmb();
1200 
1201 	if (order == 1) {
1202 		/*
1203 		 * Monarch: Starts executing now, the others wait.
1204 		 */
1205 		raw_atomic_set(&mce_executing, 1);
1206 	} else {
1207 		/*
1208 		 * Subject: Now start the scanning loop one by one in
1209 		 * the original callin order.
1210 		 * This way when there are any shared banks it will be
1211 		 * only seen by one CPU before cleared, avoiding duplicates.
1212 		 */
1213 		while (raw_atomic_read(&mce_executing) < order) {
1214 			if (mce_timed_out(&timeout,
1215 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1216 				raw_atomic_set(&global_nwo, 0);
1217 				goto out;
1218 			}
1219 			ndelay(SPINUNIT);
1220 		}
1221 	}
1222 
1223 	/*
1224 	 * Cache the global no_way_out state.
1225 	 */
1226 	*no_way_out = raw_atomic_read(&global_nwo);
1227 
1228 	ret = order;
1229 
1230 out:
1231 	instrumentation_end();
1232 
1233 	return ret;
1234 }
1235 
1236 /*
1237  * Synchronize between CPUs after main scanning loop.
1238  * This invokes the bulk of the Monarch processing.
1239  */
mce_end(int order)1240 static noinstr int mce_end(int order)
1241 {
1242 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1243 	int ret = -1;
1244 
1245 	/* Allow instrumentation around external facilities. */
1246 	instrumentation_begin();
1247 
1248 	if (!timeout)
1249 		goto reset;
1250 	if (order < 0)
1251 		goto reset;
1252 
1253 	/*
1254 	 * Allow others to run.
1255 	 */
1256 	atomic_inc(&mce_executing);
1257 
1258 	if (order == 1) {
1259 		/*
1260 		 * Monarch: Wait for everyone to go through their scanning
1261 		 * loops.
1262 		 */
1263 		while (atomic_read(&mce_executing) <= num_online_cpus()) {
1264 			if (mce_timed_out(&timeout,
1265 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1266 				goto reset;
1267 			ndelay(SPINUNIT);
1268 		}
1269 
1270 		mce_reign();
1271 		barrier();
1272 		ret = 0;
1273 	} else {
1274 		/*
1275 		 * Subject: Wait for Monarch to finish.
1276 		 */
1277 		while (atomic_read(&mce_executing) != 0) {
1278 			if (mce_timed_out(&timeout,
1279 					  "Timeout: Monarch CPU did not finish machine check processing"))
1280 				goto reset;
1281 			ndelay(SPINUNIT);
1282 		}
1283 
1284 		/*
1285 		 * Don't reset anything. That's done by the Monarch.
1286 		 */
1287 		ret = 0;
1288 		goto out;
1289 	}
1290 
1291 	/*
1292 	 * Reset all global state.
1293 	 */
1294 reset:
1295 	atomic_set(&global_nwo, 0);
1296 	atomic_set(&mce_callin, 0);
1297 	cpumask_setall(&mce_missing_cpus);
1298 	barrier();
1299 
1300 	/*
1301 	 * Let others run again.
1302 	 */
1303 	atomic_set(&mce_executing, 0);
1304 
1305 out:
1306 	instrumentation_end();
1307 
1308 	return ret;
1309 }
1310 
mce_clear_state(unsigned long * toclear)1311 static __always_inline void mce_clear_state(unsigned long *toclear)
1312 {
1313 	int i;
1314 
1315 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1316 		if (arch_test_bit(i, toclear))
1317 			mce_wrmsrq(mca_msr_reg(i, MCA_STATUS), 0);
1318 	}
1319 }
1320 
1321 /*
1322  * Cases where we avoid rendezvous handler timeout:
1323  * 1) If this CPU is offline.
1324  *
1325  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1326  *  skip those CPUs which remain looping in the 1st kernel - see
1327  *  crash_nmi_callback().
1328  *
1329  * Note: there still is a small window between kexec-ing and the new,
1330  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1331  * might not get handled properly.
1332  */
mce_check_crashing_cpu(void)1333 static noinstr bool mce_check_crashing_cpu(void)
1334 {
1335 	unsigned int cpu = smp_processor_id();
1336 
1337 	if (arch_cpu_is_offline(cpu) ||
1338 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1339 		u64 mcgstatus;
1340 
1341 		mcgstatus = native_rdmsrq(MSR_IA32_MCG_STATUS);
1342 
1343 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1344 			if (mcgstatus & MCG_STATUS_LMCES)
1345 				return false;
1346 		}
1347 
1348 		if (mcgstatus & MCG_STATUS_RIPV) {
1349 			native_wrmsrq(MSR_IA32_MCG_STATUS, 0);
1350 			return true;
1351 		}
1352 	}
1353 	return false;
1354 }
1355 
1356 static __always_inline int
__mc_scan_banks(struct mce_hw_err * err,struct pt_regs * regs,struct mce_hw_err * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1357 __mc_scan_banks(struct mce_hw_err *err, struct pt_regs *regs,
1358 		struct mce_hw_err *final, unsigned long *toclear,
1359 		unsigned long *valid_banks, int no_way_out, int *worst)
1360 {
1361 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1362 	struct mca_config *cfg = &mca_cfg;
1363 	int severity, i, taint = 0;
1364 	struct mce *m = &err->m;
1365 
1366 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1367 		arch___clear_bit(i, toclear);
1368 		if (!arch_test_bit(i, valid_banks))
1369 			continue;
1370 
1371 		if (!mce_banks[i].ctl)
1372 			continue;
1373 
1374 		m->misc = 0;
1375 		m->addr = 0;
1376 		m->bank = i;
1377 
1378 		m->status = mce_rdmsrq(mca_msr_reg(i, MCA_STATUS));
1379 		if (!(m->status & MCI_STATUS_VAL))
1380 			continue;
1381 
1382 		/*
1383 		 * Corrected or non-signaled errors are handled by
1384 		 * machine_check_poll(). Leave them alone, unless this panics.
1385 		 */
1386 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1387 			!no_way_out)
1388 			continue;
1389 
1390 		/* Set taint even when machine check was not enabled. */
1391 		taint++;
1392 
1393 		severity = mce_severity(m, regs, NULL, true);
1394 
1395 		/*
1396 		 * When machine check was for corrected/deferred handler don't
1397 		 * touch, unless we're panicking.
1398 		 */
1399 		if ((severity == MCE_KEEP_SEVERITY ||
1400 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1401 			continue;
1402 
1403 		arch___set_bit(i, toclear);
1404 
1405 		/* Machine check event was not enabled. Clear, but ignore. */
1406 		if (severity == MCE_NO_SEVERITY)
1407 			continue;
1408 
1409 		mce_read_aux(err, i);
1410 
1411 		/* assuming valid severity level != 0 */
1412 		m->severity = severity;
1413 
1414 		/*
1415 		 * Enable instrumentation around the mce_log() call which is
1416 		 * done in #MC context, where instrumentation is disabled.
1417 		 */
1418 		instrumentation_begin();
1419 		mce_log(err);
1420 		instrumentation_end();
1421 
1422 		if (severity > *worst) {
1423 			*final = *err;
1424 			*worst = severity;
1425 		}
1426 	}
1427 
1428 	/* mce_clear_state will clear *final, save locally for use later */
1429 	*err = *final;
1430 
1431 	return taint;
1432 }
1433 
kill_me_now(struct callback_head * ch)1434 static void kill_me_now(struct callback_head *ch)
1435 {
1436 	struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1437 
1438 	p->mce_count = 0;
1439 	force_sig(SIGBUS);
1440 }
1441 
kill_me_maybe(struct callback_head * cb)1442 static void kill_me_maybe(struct callback_head *cb)
1443 {
1444 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1445 	int flags = MF_ACTION_REQUIRED;
1446 	unsigned long pfn;
1447 	int ret;
1448 
1449 	p->mce_count = 0;
1450 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1451 
1452 	if (!p->mce_ripv)
1453 		flags |= MF_MUST_KILL;
1454 
1455 	pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1456 	ret = memory_failure(pfn, flags);
1457 	if (!ret) {
1458 		set_mce_nospec(pfn);
1459 		sync_core();
1460 		return;
1461 	}
1462 
1463 	/*
1464 	 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1465 	 * to the current process with the proper error info,
1466 	 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1467 	 *
1468 	 * In both cases, no further processing is required.
1469 	 */
1470 	if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1471 		return;
1472 
1473 	pr_err("Memory error not recovered");
1474 	kill_me_now(cb);
1475 }
1476 
kill_me_never(struct callback_head * cb)1477 static void kill_me_never(struct callback_head *cb)
1478 {
1479 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1480 	unsigned long pfn;
1481 
1482 	p->mce_count = 0;
1483 	pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1484 	pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1485 	if (!memory_failure(pfn, 0))
1486 		set_mce_nospec(pfn);
1487 }
1488 
queue_task_work(struct mce_hw_err * err,char * msg,void (* func)(struct callback_head *))1489 static void queue_task_work(struct mce_hw_err *err, char *msg, void (*func)(struct callback_head *))
1490 {
1491 	int count = ++current->mce_count;
1492 	struct mce *m = &err->m;
1493 
1494 	/* First call, save all the details */
1495 	if (count == 1) {
1496 		current->mce_addr = m->addr;
1497 		current->mce_kflags = m->kflags;
1498 		current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1499 		current->mce_whole_page = whole_page(m);
1500 		current->mce_kill_me.func = func;
1501 	}
1502 
1503 	/* Ten is likely overkill. Don't expect more than two faults before task_work() */
1504 	if (count > 10)
1505 		mce_panic("Too many consecutive machine checks while accessing user data",
1506 			  err, msg);
1507 
1508 	/* Second or later call, make sure page address matches the one from first call */
1509 	if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1510 		mce_panic("Consecutive machine checks to different user pages", err, msg);
1511 
1512 	/* Do not call task_work_add() more than once */
1513 	if (count > 1)
1514 		return;
1515 
1516 	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1517 }
1518 
1519 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs)1520 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1521 {
1522 	instrumentation_begin();
1523 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1524 	       smp_processor_id());
1525 	instrumentation_end();
1526 }
1527 
1528 /*
1529  * The actual machine check handler. This only handles real exceptions when
1530  * something got corrupted coming in through int 18.
1531  *
1532  * This is executed in #MC context not subject to normal locking rules.
1533  * This implies that most kernel services cannot be safely used. Don't even
1534  * think about putting a printk in there!
1535  *
1536  * On Intel systems this is entered on all CPUs in parallel through
1537  * MCE broadcast. However some CPUs might be broken beyond repair,
1538  * so be always careful when synchronizing with others.
1539  *
1540  * Tracing and kprobes are disabled: if we interrupted a kernel context
1541  * with IF=1, we need to minimize stack usage.  There are also recursion
1542  * issues: if the machine check was due to a failure of the memory
1543  * backing the user stack, tracing that reads the user stack will cause
1544  * potentially infinite recursion.
1545  *
1546  * Currently, the #MC handler calls out to a number of external facilities
1547  * and, therefore, allows instrumentation around them. The optimal thing to
1548  * have would be to do the absolutely minimal work required in #MC context
1549  * and have instrumentation disabled only around that. Further processing can
1550  * then happen in process context where instrumentation is allowed. Achieving
1551  * that requires careful auditing and modifications. Until then, the code
1552  * allows instrumentation temporarily, where required. *
1553  */
do_machine_check(struct pt_regs * regs)1554 noinstr void do_machine_check(struct pt_regs *regs)
1555 {
1556 	int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1557 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1558 	DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1559 	struct mce_hw_err *final;
1560 	struct mce_hw_err err;
1561 	char *msg = NULL;
1562 	struct mce *m;
1563 
1564 	if (unlikely(mce_flags.p5))
1565 		return pentium_machine_check(regs);
1566 	else if (unlikely(mce_flags.winchip))
1567 		return winchip_machine_check(regs);
1568 	else if (unlikely(!mca_cfg.initialized))
1569 		return unexpected_machine_check(regs);
1570 
1571 	if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
1572 		goto clear;
1573 
1574 	/*
1575 	 * Establish sequential order between the CPUs entering the machine
1576 	 * check handler.
1577 	 */
1578 	order = -1;
1579 
1580 	/*
1581 	 * If no_way_out gets set, there is no safe way to recover from this
1582 	 * MCE.
1583 	 */
1584 	no_way_out = 0;
1585 
1586 	/*
1587 	 * If kill_current_task is not set, there might be a way to recover from this
1588 	 * error.
1589 	 */
1590 	kill_current_task = 0;
1591 
1592 	/*
1593 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1594 	 * on Intel.
1595 	 */
1596 	lmce = 1;
1597 
1598 	this_cpu_inc(mce_exception_count);
1599 
1600 	mce_gather_info(&err, regs);
1601 	m = &err.m;
1602 	m->tsc = rdtsc();
1603 
1604 	final = this_cpu_ptr(&hw_errs_seen);
1605 	*final = err;
1606 
1607 	no_way_out = mce_no_way_out(&err, &msg, valid_banks, regs);
1608 
1609 	barrier();
1610 
1611 	/*
1612 	 * When no restart IP might need to kill or panic.
1613 	 * Assume the worst for now, but if we find the
1614 	 * severity is MCE_AR_SEVERITY we have other options.
1615 	 */
1616 	if (!(m->mcgstatus & MCG_STATUS_RIPV))
1617 		kill_current_task = 1;
1618 	/*
1619 	 * Check if this MCE is signaled to only this logical processor,
1620 	 * on Intel, Zhaoxin only.
1621 	 */
1622 	if (m->cpuvendor == X86_VENDOR_INTEL ||
1623 	    m->cpuvendor == X86_VENDOR_ZHAOXIN)
1624 		lmce = m->mcgstatus & MCG_STATUS_LMCES;
1625 
1626 	/*
1627 	 * Local machine check may already know that we have to panic.
1628 	 * Broadcast machine check begins rendezvous in mce_start()
1629 	 * Go through all banks in exclusion of the other CPUs. This way we
1630 	 * don't report duplicated events on shared banks because the first one
1631 	 * to see it will clear it.
1632 	 */
1633 	if (lmce) {
1634 		if (no_way_out)
1635 			mce_panic("Fatal local machine check", &err, msg);
1636 	} else {
1637 		order = mce_start(&no_way_out);
1638 	}
1639 
1640 	taint = __mc_scan_banks(&err, regs, final, toclear, valid_banks, no_way_out, &worst);
1641 
1642 	if (!no_way_out)
1643 		mce_clear_state(toclear);
1644 
1645 	/*
1646 	 * Do most of the synchronization with other CPUs.
1647 	 * When there's any problem use only local no_way_out state.
1648 	 */
1649 	if (!lmce) {
1650 		if (mce_end(order) < 0) {
1651 			if (!no_way_out)
1652 				no_way_out = worst >= MCE_PANIC_SEVERITY;
1653 
1654 			if (no_way_out)
1655 				mce_panic("Fatal machine check on current CPU", &err, msg);
1656 		}
1657 	} else {
1658 		/*
1659 		 * If there was a fatal machine check we should have
1660 		 * already called mce_panic earlier in this function.
1661 		 * Since we re-read the banks, we might have found
1662 		 * something new. Check again to see if we found a
1663 		 * fatal error. We call "mce_severity()" again to
1664 		 * make sure we have the right "msg".
1665 		 */
1666 		if (worst >= MCE_PANIC_SEVERITY) {
1667 			mce_severity(m, regs, &msg, true);
1668 			mce_panic("Local fatal machine check!", &err, msg);
1669 		}
1670 	}
1671 
1672 	/*
1673 	 * Enable instrumentation around the external facilities like task_work_add()
1674 	 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1675 	 * properly would need a lot more involved reorganization.
1676 	 */
1677 	instrumentation_begin();
1678 
1679 	if (taint)
1680 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1681 
1682 	if (worst != MCE_AR_SEVERITY && !kill_current_task)
1683 		goto out;
1684 
1685 	/* Fault was in user mode and we need to take some action */
1686 	if ((m->cs & 3) == 3) {
1687 		/* If this triggers there is no way to recover. Die hard. */
1688 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1689 
1690 		if (!mce_usable_address(m))
1691 			queue_task_work(&err, msg, kill_me_now);
1692 		else
1693 			queue_task_work(&err, msg, kill_me_maybe);
1694 
1695 	} else if (m->mcgstatus & MCG_STATUS_SEAM_NR) {
1696 		/*
1697 		 * Saved RIP on stack makes it look like the machine check
1698 		 * was taken in the kernel on the instruction following
1699 		 * the entry to SEAM mode. But MCG_STATUS_SEAM_NR indicates
1700 		 * that the machine check was taken inside SEAM non-root
1701 		 * mode.  CPU core has already marked that guest as dead.
1702 		 * It is OK for the kernel to resume execution at the
1703 		 * apparent point of the machine check as the fault did
1704 		 * not occur there. Mark the page as poisoned so it won't
1705 		 * be added to free list when the guest is terminated.
1706 		 */
1707 		if (mce_usable_address(m)) {
1708 			struct page *p = pfn_to_online_page(m->addr >> PAGE_SHIFT);
1709 
1710 			if (p)
1711 				SetPageHWPoison(p);
1712 		}
1713 	} else {
1714 		/*
1715 		 * Handle an MCE which has happened in kernel space but from
1716 		 * which the kernel can recover: ex_has_fault_handler() has
1717 		 * already verified that the rIP at which the error happened is
1718 		 * a rIP from which the kernel can recover (by jumping to
1719 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1720 		 * corresponding exception handler which would do that is the
1721 		 * proper one.
1722 		 */
1723 		if (m->kflags & MCE_IN_KERNEL_RECOV) {
1724 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1725 				mce_panic("Failed kernel mode recovery", &err, msg);
1726 		}
1727 
1728 		if (m->kflags & MCE_IN_KERNEL_COPYIN)
1729 			queue_task_work(&err, msg, kill_me_never);
1730 	}
1731 
1732 out:
1733 	/* Given it didn't panic, mark it as recoverable */
1734 	hwerr_log_error_type(HWERR_RECOV_OTHERS);
1735 
1736 	instrumentation_end();
1737 
1738 clear:
1739 	mce_wrmsrq(MSR_IA32_MCG_STATUS, 0);
1740 }
1741 EXPORT_SYMBOL_GPL(do_machine_check);
1742 
1743 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1744 int memory_failure(unsigned long pfn, int flags)
1745 {
1746 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1747 	BUG_ON(flags & MF_ACTION_REQUIRED);
1748 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1749 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1750 	       pfn);
1751 
1752 	return 0;
1753 }
1754 #endif
1755 
1756 /*
1757  * Periodic polling timer for "silent" machine check errors.  If the
1758  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1759  * errors, poll 2x slower (up to check_interval seconds).
1760  */
1761 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1762 
1763 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1764 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1765 
__start_timer(struct timer_list * t,unsigned long interval)1766 static void __start_timer(struct timer_list *t, unsigned long interval)
1767 {
1768 	unsigned long when = jiffies + interval;
1769 	unsigned long flags;
1770 
1771 	local_irq_save(flags);
1772 
1773 	if (!timer_pending(t) || time_before(when, t->expires))
1774 		mod_timer(t, round_jiffies(when));
1775 
1776 	local_irq_restore(flags);
1777 }
1778 
mc_poll_banks_default(void)1779 static void mc_poll_banks_default(void)
1780 {
1781 	machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1782 }
1783 
1784 void (*mc_poll_banks)(void) = mc_poll_banks_default;
1785 
should_enable_timer(unsigned long iv)1786 static bool should_enable_timer(unsigned long iv)
1787 {
1788 	return !mca_cfg.ignore_ce && iv;
1789 }
1790 
mce_timer_fn(struct timer_list * t)1791 static void mce_timer_fn(struct timer_list *t)
1792 {
1793 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1794 	unsigned long iv;
1795 
1796 	WARN_ON(cpu_t != t);
1797 
1798 	iv = __this_cpu_read(mce_next_interval);
1799 
1800 	if (mce_available(this_cpu_ptr(&cpu_info)))
1801 		mc_poll_banks();
1802 
1803 	/*
1804 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1805 	 * interval, otherwise increase the polling interval.
1806 	 */
1807 	if (mce_notify_irq())
1808 		iv = max(iv / 2, (unsigned long) HZ/100);
1809 	else
1810 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1811 
1812 	if (mce_get_storm_mode()) {
1813 		__start_timer(t, HZ);
1814 	} else if (should_enable_timer(iv)) {
1815 		__this_cpu_write(mce_next_interval, iv);
1816 		__start_timer(t, iv);
1817 	}
1818 }
1819 
1820 /*
1821  * When a storm starts on any bank on this CPU, switch to polling
1822  * once per second. When the storm ends, revert to the default
1823  * polling interval.
1824  */
mce_timer_kick(bool storm)1825 void mce_timer_kick(bool storm)
1826 {
1827 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1828 
1829 	mce_set_storm_mode(storm);
1830 
1831 	if (storm)
1832 		__start_timer(t, HZ);
1833 	else
1834 		__this_cpu_write(mce_next_interval, check_interval * HZ);
1835 }
1836 
1837 /* Must not be called in IRQ context where timer_delete_sync() can deadlock */
mce_timer_delete_all(void)1838 static void mce_timer_delete_all(void)
1839 {
1840 	int cpu;
1841 
1842 	for_each_online_cpu(cpu)
1843 		timer_delete_sync(&per_cpu(mce_timer, cpu));
1844 }
1845 
__mcheck_cpu_mce_banks_init(void)1846 static void __mcheck_cpu_mce_banks_init(void)
1847 {
1848 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1849 	u8 n_banks = this_cpu_read(mce_num_banks);
1850 	int i;
1851 
1852 	for (i = 0; i < n_banks; i++) {
1853 		struct mce_bank *b = &mce_banks[i];
1854 
1855 		/*
1856 		 * Init them all by default.
1857 		 *
1858 		 * The required vendor quirks will be applied before
1859 		 * __mcheck_cpu_init_prepare_banks() does the final bank setup.
1860 		 */
1861 		b->ctl = -1ULL;
1862 		b->init = true;
1863 	}
1864 }
1865 
1866 /*
1867  * Initialize Machine Checks for a CPU.
1868  */
__mcheck_cpu_cap_init(void)1869 static void __mcheck_cpu_cap_init(void)
1870 {
1871 	u64 cap;
1872 	u8 b;
1873 
1874 	rdmsrq(MSR_IA32_MCG_CAP, cap);
1875 
1876 	b = cap & MCG_BANKCNT_MASK;
1877 
1878 	if (b > MAX_NR_BANKS) {
1879 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1880 			smp_processor_id(), MAX_NR_BANKS, b);
1881 		b = MAX_NR_BANKS;
1882 	}
1883 
1884 	this_cpu_write(mce_num_banks, b);
1885 
1886 	__mcheck_cpu_mce_banks_init();
1887 }
1888 
__mcheck_cpu_init_generic(void)1889 static void __mcheck_cpu_init_generic(void)
1890 {
1891 	u64 cap;
1892 
1893 	rdmsrq(MSR_IA32_MCG_CAP, cap);
1894 	if (cap & MCG_CTL_P)
1895 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1896 }
1897 
__mcheck_cpu_init_prepare_banks(void)1898 static void __mcheck_cpu_init_prepare_banks(void)
1899 {
1900 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1901 	u64 msrval;
1902 	int i;
1903 
1904 	/*
1905 	 * Log the machine checks left over from the previous reset. Log them
1906 	 * only, do not start processing them. That will happen in mcheck_late_init()
1907 	 * when all consumers have been registered on the notifier chain.
1908 	 */
1909 	if (mca_cfg.bootlog) {
1910 		mce_banks_t all_banks;
1911 
1912 		bitmap_fill(all_banks, MAX_NR_BANKS);
1913 		machine_check_poll(MCP_UC | MCP_QUEUE_LOG, &all_banks);
1914 	}
1915 
1916 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1917 		struct mce_bank *b = &mce_banks[i];
1918 
1919 		if (!b->init)
1920 			continue;
1921 
1922 		wrmsrq(mca_msr_reg(i, MCA_CTL), b->ctl);
1923 		wrmsrq(mca_msr_reg(i, MCA_STATUS), 0);
1924 
1925 		rdmsrq(mca_msr_reg(i, MCA_CTL), msrval);
1926 		b->init = !!msrval;
1927 	}
1928 }
1929 
amd_apply_global_quirks(struct cpuinfo_x86 * c)1930 static void amd_apply_global_quirks(struct cpuinfo_x86 *c)
1931 {
1932 	if (c->x86 < 0x11 && mca_cfg.bootlog < 0) {
1933 		/*
1934 		 * Lots of broken BIOS around that don't clear them
1935 		 * by default and leave crap in there. Don't log:
1936 		 */
1937 		mca_cfg.bootlog = 0;
1938 	}
1939 
1940 	/*
1941 	 * overflow_recov is supported for F15h Models 00h-0fh
1942 	 * even though we don't have a CPUID bit for it.
1943 	 */
1944 	if (c->x86 == 0x15 && c->x86_model <= 0xf)
1945 		mce_flags.overflow_recov = 1;
1946 
1947 	if (c->x86 >= 0x17 && c->x86 <= 0x1A)
1948 		mce_flags.zen_ifu_quirk = 1;
1949 }
1950 
intel_apply_global_quirks(struct cpuinfo_x86 * c)1951 static void intel_apply_global_quirks(struct cpuinfo_x86 *c)
1952 {
1953 	/* Older CPUs (prior to family 6) don't need quirks. */
1954 	if (c->x86_vfm < INTEL_PENTIUM_PRO)
1955 		return;
1956 
1957 	/*
1958 	 * All newer Intel systems support MCE broadcasting. Enable
1959 	 * synchronization with a one second timeout.
1960 	 */
1961 	if (c->x86_vfm >= INTEL_CORE_YONAH && mca_cfg.monarch_timeout < 0)
1962 		mca_cfg.monarch_timeout = USEC_PER_SEC;
1963 
1964 	/*
1965 	 * There are also broken BIOSes on some Pentium M and
1966 	 * earlier systems:
1967 	 */
1968 	if (c->x86_vfm < INTEL_CORE_YONAH && mca_cfg.bootlog < 0)
1969 		mca_cfg.bootlog = 0;
1970 
1971 	if (c->x86_vfm == INTEL_SANDYBRIDGE_X)
1972 		mce_flags.snb_ifu_quirk = 1;
1973 
1974 	/*
1975 	 * Skylake, Cascacde Lake and Cooper Lake require a quirk on
1976 	 * rep movs.
1977 	 */
1978 	if (c->x86_vfm == INTEL_SKYLAKE_X)
1979 		mce_flags.skx_repmov_quirk = 1;
1980 }
1981 
zhaoxin_apply_global_quirks(struct cpuinfo_x86 * c)1982 static void zhaoxin_apply_global_quirks(struct cpuinfo_x86 *c)
1983 {
1984 	/*
1985 	 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1986 	 * synchronization with a one second timeout.
1987 	 */
1988 	if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1989 		if (mca_cfg.monarch_timeout < 0)
1990 			mca_cfg.monarch_timeout = USEC_PER_SEC;
1991 	}
1992 }
1993 
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1994 static bool __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1995 {
1996 	if (c->x86 != 5)
1997 		return false;
1998 
1999 	switch (c->x86_vendor) {
2000 	case X86_VENDOR_INTEL:
2001 		intel_p5_mcheck_init(c);
2002 		mce_flags.p5 = 1;
2003 		return true;
2004 	case X86_VENDOR_CENTAUR:
2005 		winchip_mcheck_init(c);
2006 		mce_flags.winchip = 1;
2007 		return true;
2008 	default:
2009 		return false;
2010 	}
2011 
2012 	return false;
2013 }
2014 
mce_centaur_feature_init(struct cpuinfo_x86 * c)2015 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
2016 {
2017 	struct mca_config *cfg = &mca_cfg;
2018 
2019 	 /*
2020 	  * All newer Centaur CPUs support MCE broadcasting. Enable
2021 	  * synchronization with a one second timeout.
2022 	  */
2023 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
2024 	     c->x86 > 6) {
2025 		if (cfg->monarch_timeout < 0)
2026 			cfg->monarch_timeout = USEC_PER_SEC;
2027 	}
2028 }
2029 
mce_zhaoxin_feature_init(struct cpuinfo_x86 * c)2030 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
2031 {
2032 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2033 
2034 	/*
2035 	 * These CPUs have MCA bank 8 which reports only one error type called
2036 	 * SVAD (System View Address Decoder). The reporting of that error is
2037 	 * controlled by IA32_MC8.CTL.0.
2038 	 *
2039 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
2040 	 * virtual machines start and result in a system  panic. Always disable
2041 	 * bank 8 SVAD error by default.
2042 	 */
2043 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
2044 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
2045 		if (this_cpu_read(mce_num_banks) > 8)
2046 			mce_banks[8].ctl = 0;
2047 	}
2048 
2049 	intel_init_cmci();
2050 	intel_init_lmce();
2051 }
2052 
mce_zhaoxin_feature_clear(struct cpuinfo_x86 * c)2053 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
2054 {
2055 	intel_clear_lmce();
2056 }
2057 
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)2058 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
2059 {
2060 	switch (c->x86_vendor) {
2061 	case X86_VENDOR_INTEL:
2062 		mce_intel_feature_init(c);
2063 		break;
2064 
2065 	case X86_VENDOR_AMD:
2066 	case X86_VENDOR_HYGON:
2067 		mce_amd_feature_init(c);
2068 		break;
2069 
2070 	case X86_VENDOR_CENTAUR:
2071 		mce_centaur_feature_init(c);
2072 		break;
2073 
2074 	case X86_VENDOR_ZHAOXIN:
2075 		mce_zhaoxin_feature_init(c);
2076 		break;
2077 
2078 	default:
2079 		break;
2080 	}
2081 }
2082 
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)2083 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
2084 {
2085 	switch (c->x86_vendor) {
2086 	case X86_VENDOR_INTEL:
2087 		mce_intel_feature_clear(c);
2088 		break;
2089 
2090 	case X86_VENDOR_ZHAOXIN:
2091 		mce_zhaoxin_feature_clear(c);
2092 		break;
2093 
2094 	default:
2095 		break;
2096 	}
2097 }
2098 
mce_start_timer(struct timer_list * t)2099 static void mce_start_timer(struct timer_list *t)
2100 {
2101 	unsigned long iv = check_interval * HZ;
2102 
2103 	if (should_enable_timer(iv)) {
2104 		this_cpu_write(mce_next_interval, iv);
2105 		__start_timer(t, iv);
2106 	}
2107 }
2108 
__mcheck_cpu_setup_timer(void)2109 static void __mcheck_cpu_setup_timer(void)
2110 {
2111 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2112 
2113 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2114 }
2115 
__mcheck_cpu_init_timer(void)2116 static void __mcheck_cpu_init_timer(void)
2117 {
2118 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2119 
2120 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2121 	mce_start_timer(t);
2122 }
2123 
filter_mce(struct mce * m)2124 bool filter_mce(struct mce *m)
2125 {
2126 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2127 		return amd_filter_mce(m);
2128 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2129 		return intel_filter_mce(m);
2130 
2131 	return false;
2132 }
2133 
exc_machine_check_kernel(struct pt_regs * regs)2134 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2135 {
2136 	irqentry_state_t irq_state;
2137 
2138 	WARN_ON_ONCE(user_mode(regs));
2139 
2140 	/*
2141 	 * Only required when from kernel mode. See
2142 	 * mce_check_crashing_cpu() for details.
2143 	 */
2144 	if (mca_cfg.initialized && mce_check_crashing_cpu())
2145 		return;
2146 
2147 	irq_state = irqentry_nmi_enter(regs);
2148 
2149 	do_machine_check(regs);
2150 
2151 	irqentry_nmi_exit(regs, irq_state);
2152 }
2153 
exc_machine_check_user(struct pt_regs * regs)2154 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2155 {
2156 	irqentry_enter_from_user_mode(regs);
2157 
2158 	do_machine_check(regs);
2159 
2160 	irqentry_exit_to_user_mode(regs);
2161 }
2162 
2163 #ifdef CONFIG_X86_64
2164 /* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)2165 DEFINE_IDTENTRY_MCE(exc_machine_check)
2166 {
2167 	unsigned long dr7;
2168 
2169 	dr7 = local_db_save();
2170 	exc_machine_check_kernel(regs);
2171 	local_db_restore(dr7);
2172 }
2173 
2174 /* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)2175 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2176 {
2177 	unsigned long dr7;
2178 
2179 	dr7 = local_db_save();
2180 	exc_machine_check_user(regs);
2181 	local_db_restore(dr7);
2182 }
2183 
2184 #ifdef CONFIG_X86_FRED
2185 /*
2186  * When occurred on different ring level, i.e., from user or kernel
2187  * context, #MCE needs to be handled on different stack: User #MCE
2188  * on current task stack, while kernel #MCE on a dedicated stack.
2189  *
2190  * This is exactly how FRED event delivery invokes an exception
2191  * handler: ring 3 event on level 0 stack, i.e., current task stack;
2192  * ring 0 event on the #MCE dedicated stack specified in the
2193  * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED machine check entry
2194  * stub doesn't do stack switch.
2195  */
DEFINE_FREDENTRY_MCE(exc_machine_check)2196 DEFINE_FREDENTRY_MCE(exc_machine_check)
2197 {
2198 	unsigned long dr7;
2199 
2200 	dr7 = local_db_save();
2201 	if (user_mode(regs))
2202 		exc_machine_check_user(regs);
2203 	else
2204 		exc_machine_check_kernel(regs);
2205 	local_db_restore(dr7);
2206 }
2207 #endif
2208 #else
2209 /* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)2210 DEFINE_IDTENTRY_RAW(exc_machine_check)
2211 {
2212 	unsigned long dr7;
2213 
2214 	dr7 = local_db_save();
2215 	if (user_mode(regs))
2216 		exc_machine_check_user(regs);
2217 	else
2218 		exc_machine_check_kernel(regs);
2219 	local_db_restore(dr7);
2220 }
2221 #endif
2222 
mca_bsp_init(struct cpuinfo_x86 * c)2223 void mca_bsp_init(struct cpuinfo_x86 *c)
2224 {
2225 	u64 cap;
2226 
2227 	if (!mce_available(c))
2228 		return;
2229 
2230 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
2231 		mca_cfg.disabled = 1;
2232 		pr_info("unknown CPU type - not enabling MCE support\n");
2233 		return;
2234 	}
2235 
2236 	mce_flags.overflow_recov = cpu_feature_enabled(X86_FEATURE_OVERFLOW_RECOV);
2237 	mce_flags.succor	 = cpu_feature_enabled(X86_FEATURE_SUCCOR);
2238 	mce_flags.smca		 = cpu_feature_enabled(X86_FEATURE_SMCA);
2239 
2240 	if (mce_flags.smca)
2241 		smca_bsp_init();
2242 
2243 	rdmsrq(MSR_IA32_MCG_CAP, cap);
2244 
2245 	/* Use accurate RIP reporting if available. */
2246 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
2247 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
2248 
2249 	if (cap & MCG_SER_P)
2250 		mca_cfg.ser = 1;
2251 
2252 	switch (c->x86_vendor) {
2253 	case X86_VENDOR_AMD:
2254 		amd_apply_global_quirks(c);
2255 		break;
2256 	case X86_VENDOR_INTEL:
2257 		intel_apply_global_quirks(c);
2258 		break;
2259 	case X86_VENDOR_ZHAOXIN:
2260 		zhaoxin_apply_global_quirks(c);
2261 		break;
2262 	}
2263 
2264 	if (mca_cfg.monarch_timeout < 0)
2265 		mca_cfg.monarch_timeout = 0;
2266 	if (mca_cfg.bootlog != 0)
2267 		mca_cfg.panic_timeout = 30;
2268 }
2269 
2270 /*
2271  * Called for each booted CPU to set up machine checks.
2272  * Must be called with preempt off:
2273  */
mcheck_cpu_init(struct cpuinfo_x86 * c)2274 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2275 {
2276 	if (mca_cfg.disabled)
2277 		return;
2278 
2279 	if (__mcheck_cpu_ancient_init(c))
2280 		return;
2281 
2282 	if (!mce_available(c))
2283 		return;
2284 
2285 	__mcheck_cpu_cap_init();
2286 
2287 	if (!mce_gen_pool_init()) {
2288 		mca_cfg.disabled = 1;
2289 		pr_emerg("Couldn't allocate MCE records pool!\n");
2290 		return;
2291 	}
2292 
2293 	mca_cfg.initialized = 1;
2294 
2295 	__mcheck_cpu_init_generic();
2296 	__mcheck_cpu_init_vendor(c);
2297 	__mcheck_cpu_init_prepare_banks();
2298 	__mcheck_cpu_setup_timer();
2299 	cr4_set_bits(X86_CR4_MCE);
2300 }
2301 
2302 /*
2303  * Called for each booted CPU to clear some machine checks opt-ins
2304  */
mcheck_cpu_clear(struct cpuinfo_x86 * c)2305 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2306 {
2307 	if (mca_cfg.disabled)
2308 		return;
2309 
2310 	if (!mce_available(c))
2311 		return;
2312 
2313 	/*
2314 	 * Possibly to clear general settings generic to x86
2315 	 * __mcheck_cpu_clear_generic(c);
2316 	 */
2317 	__mcheck_cpu_clear_vendor(c);
2318 
2319 }
2320 
__mce_disable_bank(void * arg)2321 static void __mce_disable_bank(void *arg)
2322 {
2323 	int bank = *((int *)arg);
2324 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2325 	cmci_disable_bank(bank);
2326 }
2327 
mce_disable_bank(int bank)2328 void mce_disable_bank(int bank)
2329 {
2330 	if (bank >= this_cpu_read(mce_num_banks)) {
2331 		pr_warn(FW_BUG
2332 			"Ignoring request to disable invalid MCA bank %d.\n",
2333 			bank);
2334 		return;
2335 	}
2336 	set_bit(bank, mce_banks_ce_disabled);
2337 	on_each_cpu(__mce_disable_bank, &bank, 1);
2338 }
2339 
2340 /*
2341  * mce=off Disables machine check
2342  * mce=no_cmci Disables CMCI
2343  * mce=no_lmce Disables LMCE
2344  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2345  * mce=print_all Print all machine check logs to console
2346  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2347  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2348  *	monarchtimeout is how long to wait for other CPUs on machine
2349  *	check, or 0 to not wait
2350  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2351 	and older.
2352  * mce=nobootlog Don't log MCEs from before booting.
2353  * mce=bios_cmci_threshold Don't program the CMCI threshold
2354  * mce=recovery force enable copy_mc_fragile()
2355  */
mcheck_enable(char * str)2356 static int __init mcheck_enable(char *str)
2357 {
2358 	struct mca_config *cfg = &mca_cfg;
2359 
2360 	if (*str == 0) {
2361 		enable_p5_mce();
2362 		return 1;
2363 	}
2364 	if (*str == '=')
2365 		str++;
2366 	if (!strcmp(str, "off"))
2367 		cfg->disabled = 1;
2368 	else if (!strcmp(str, "no_cmci"))
2369 		cfg->cmci_disabled = true;
2370 	else if (!strcmp(str, "no_lmce"))
2371 		cfg->lmce_disabled = 1;
2372 	else if (!strcmp(str, "dont_log_ce"))
2373 		cfg->dont_log_ce = true;
2374 	else if (!strcmp(str, "print_all"))
2375 		cfg->print_all = true;
2376 	else if (!strcmp(str, "ignore_ce"))
2377 		cfg->ignore_ce = true;
2378 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2379 		cfg->bootlog = (str[0] == 'b');
2380 	else if (!strcmp(str, "bios_cmci_threshold"))
2381 		cfg->bios_cmci_threshold = 1;
2382 	else if (!strcmp(str, "recovery"))
2383 		cfg->recovery = 1;
2384 	else if (isdigit(str[0]))
2385 		get_option(&str, &(cfg->monarch_timeout));
2386 	else {
2387 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2388 		return 0;
2389 	}
2390 	return 1;
2391 }
2392 __setup("mce", mcheck_enable);
2393 
mcheck_init(void)2394 int __init mcheck_init(void)
2395 {
2396 	mce_register_decode_chain(&early_nb);
2397 	mce_register_decode_chain(&mce_uc_nb);
2398 	mce_register_decode_chain(&mce_default_nb);
2399 
2400 	INIT_WORK(&mce_work, mce_gen_pool_process);
2401 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2402 
2403 	return 0;
2404 }
2405 
2406 /*
2407  * mce_syscore: PM support
2408  */
2409 
2410 /*
2411  * Disable machine checks on suspend and shutdown. We can't really handle
2412  * them later.
2413  */
mce_disable_error_reporting(void)2414 static void mce_disable_error_reporting(void)
2415 {
2416 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2417 	int i;
2418 
2419 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2420 		struct mce_bank *b = &mce_banks[i];
2421 
2422 		if (b->init)
2423 			wrmsrq(mca_msr_reg(i, MCA_CTL), 0);
2424 	}
2425 	return;
2426 }
2427 
vendor_disable_error_reporting(void)2428 static void vendor_disable_error_reporting(void)
2429 {
2430 	/*
2431 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2432 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2433 	 * is bad, since it will inhibit reporting for all shared resources on
2434 	 * the socket like the last level cache (LLC), the integrated memory
2435 	 * controller (iMC), etc.
2436 	 */
2437 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2438 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2439 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2440 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2441 		return;
2442 
2443 	mce_disable_error_reporting();
2444 }
2445 
mce_syscore_suspend(void * data)2446 static int mce_syscore_suspend(void *data)
2447 {
2448 	vendor_disable_error_reporting();
2449 	return 0;
2450 }
2451 
mce_syscore_shutdown(void * data)2452 static void mce_syscore_shutdown(void *data)
2453 {
2454 	vendor_disable_error_reporting();
2455 }
2456 
2457 /*
2458  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2459  * Only one CPU is active at this time, the others get re-added later using
2460  * CPU hotplug:
2461  */
mce_syscore_resume(void * data)2462 static void mce_syscore_resume(void *data)
2463 {
2464 	__mcheck_cpu_init_generic();
2465 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2466 	__mcheck_cpu_init_prepare_banks();
2467 	cr4_set_bits(X86_CR4_MCE);
2468 }
2469 
2470 static const struct syscore_ops mce_syscore_ops = {
2471 	.suspend	= mce_syscore_suspend,
2472 	.shutdown	= mce_syscore_shutdown,
2473 	.resume		= mce_syscore_resume,
2474 };
2475 
2476 static struct syscore mce_syscore = {
2477 	.ops = &mce_syscore_ops,
2478 };
2479 
2480 /*
2481  * mce_device: Sysfs support
2482  */
2483 
mce_cpu_restart(void * data)2484 static void mce_cpu_restart(void *data)
2485 {
2486 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2487 		return;
2488 	__mcheck_cpu_init_generic();
2489 	__mcheck_cpu_init_prepare_banks();
2490 	__mcheck_cpu_init_timer();
2491 	cr4_set_bits(X86_CR4_MCE);
2492 }
2493 
2494 /* Reinit MCEs after user configuration changes */
mce_restart(void)2495 static void mce_restart(void)
2496 {
2497 	mce_timer_delete_all();
2498 	on_each_cpu(mce_cpu_restart, NULL, 1);
2499 	mce_schedule_work();
2500 }
2501 
2502 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2503 static void mce_disable_cmci(void *data)
2504 {
2505 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2506 		return;
2507 	cmci_clear();
2508 }
2509 
mce_enable_ce(void * all)2510 static void mce_enable_ce(void *all)
2511 {
2512 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2513 		return;
2514 	cmci_reenable();
2515 	cmci_recheck();
2516 	if (all)
2517 		__mcheck_cpu_init_timer();
2518 }
2519 
2520 static const struct bus_type mce_subsys = {
2521 	.name		= "machinecheck",
2522 	.dev_name	= "machinecheck",
2523 };
2524 
2525 DEFINE_PER_CPU(struct device *, mce_device);
2526 
attr_to_bank(struct device_attribute * attr)2527 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2528 {
2529 	return container_of(attr, struct mce_bank_dev, attr);
2530 }
2531 
show_bank(struct device * s,struct device_attribute * attr,char * buf)2532 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2533 			 char *buf)
2534 {
2535 	u8 bank = attr_to_bank(attr)->bank;
2536 	struct mce_bank *b;
2537 
2538 	if (bank >= per_cpu(mce_num_banks, s->id))
2539 		return -EINVAL;
2540 
2541 	b = &per_cpu(mce_banks_array, s->id)[bank];
2542 
2543 	if (!b->init)
2544 		return -ENODEV;
2545 
2546 	return sprintf(buf, "%llx\n", b->ctl);
2547 }
2548 
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2549 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2550 			const char *buf, size_t size)
2551 {
2552 	u8 bank = attr_to_bank(attr)->bank;
2553 	struct mce_bank *b;
2554 	u64 new;
2555 
2556 	if (kstrtou64(buf, 0, &new) < 0)
2557 		return -EINVAL;
2558 
2559 	if (bank >= per_cpu(mce_num_banks, s->id))
2560 		return -EINVAL;
2561 
2562 	b = &per_cpu(mce_banks_array, s->id)[bank];
2563 	if (!b->init)
2564 		return -ENODEV;
2565 
2566 	b->ctl = new;
2567 
2568 	mutex_lock(&mce_sysfs_mutex);
2569 	mce_restart();
2570 	mutex_unlock(&mce_sysfs_mutex);
2571 
2572 	return size;
2573 }
2574 
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2575 static ssize_t set_ignore_ce(struct device *s,
2576 			     struct device_attribute *attr,
2577 			     const char *buf, size_t size)
2578 {
2579 	u64 new;
2580 
2581 	if (kstrtou64(buf, 0, &new) < 0)
2582 		return -EINVAL;
2583 
2584 	mutex_lock(&mce_sysfs_mutex);
2585 	if (mca_cfg.ignore_ce ^ !!new) {
2586 		if (new) {
2587 			/* disable ce features */
2588 			mce_timer_delete_all();
2589 			on_each_cpu(mce_disable_cmci, NULL, 1);
2590 			mca_cfg.ignore_ce = true;
2591 		} else {
2592 			/* enable ce features */
2593 			mca_cfg.ignore_ce = false;
2594 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2595 		}
2596 	}
2597 	mutex_unlock(&mce_sysfs_mutex);
2598 
2599 	return size;
2600 }
2601 
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2602 static ssize_t set_cmci_disabled(struct device *s,
2603 				 struct device_attribute *attr,
2604 				 const char *buf, size_t size)
2605 {
2606 	u64 new;
2607 
2608 	if (kstrtou64(buf, 0, &new) < 0)
2609 		return -EINVAL;
2610 
2611 	mutex_lock(&mce_sysfs_mutex);
2612 	if (mca_cfg.cmci_disabled ^ !!new) {
2613 		if (new) {
2614 			/* disable cmci */
2615 			on_each_cpu(mce_disable_cmci, NULL, 1);
2616 			mca_cfg.cmci_disabled = true;
2617 		} else {
2618 			/* enable cmci */
2619 			mca_cfg.cmci_disabled = false;
2620 			on_each_cpu(mce_enable_ce, NULL, 1);
2621 		}
2622 	}
2623 	mutex_unlock(&mce_sysfs_mutex);
2624 
2625 	return size;
2626 }
2627 
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2628 static ssize_t store_int_with_restart(struct device *s,
2629 				      struct device_attribute *attr,
2630 				      const char *buf, size_t size)
2631 {
2632 	unsigned long old_check_interval = check_interval;
2633 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2634 
2635 	if (check_interval == old_check_interval)
2636 		return ret;
2637 
2638 	mutex_lock(&mce_sysfs_mutex);
2639 	mce_restart();
2640 	mutex_unlock(&mce_sysfs_mutex);
2641 
2642 	return ret;
2643 }
2644 
2645 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2646 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2647 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2648 
2649 static struct dev_ext_attribute dev_attr_check_interval = {
2650 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2651 	&check_interval
2652 };
2653 
2654 static struct dev_ext_attribute dev_attr_ignore_ce = {
2655 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2656 	&mca_cfg.ignore_ce
2657 };
2658 
2659 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2660 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2661 	&mca_cfg.cmci_disabled
2662 };
2663 
2664 static struct device_attribute *mce_device_attrs[] = {
2665 	&dev_attr_check_interval.attr,
2666 #ifdef CONFIG_X86_MCELOG_LEGACY
2667 	&dev_attr_trigger,
2668 #endif
2669 	&dev_attr_monarch_timeout.attr,
2670 	&dev_attr_dont_log_ce.attr,
2671 	&dev_attr_print_all.attr,
2672 	&dev_attr_ignore_ce.attr,
2673 	&dev_attr_cmci_disabled.attr,
2674 	NULL
2675 };
2676 
2677 static cpumask_var_t mce_device_initialized;
2678 
mce_device_release(struct device * dev)2679 static void mce_device_release(struct device *dev)
2680 {
2681 	kfree(dev);
2682 }
2683 
2684 /* Per CPU device init. All of the CPUs still share the same bank device: */
mce_device_create(unsigned int cpu)2685 static int mce_device_create(unsigned int cpu)
2686 {
2687 	struct device *dev;
2688 	int err;
2689 	int i, j;
2690 
2691 	dev = per_cpu(mce_device, cpu);
2692 	if (dev)
2693 		return 0;
2694 
2695 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2696 	if (!dev)
2697 		return -ENOMEM;
2698 	dev->id  = cpu;
2699 	dev->bus = &mce_subsys;
2700 	dev->release = &mce_device_release;
2701 
2702 	err = device_register(dev);
2703 	if (err) {
2704 		put_device(dev);
2705 		return err;
2706 	}
2707 
2708 	for (i = 0; mce_device_attrs[i]; i++) {
2709 		err = device_create_file(dev, mce_device_attrs[i]);
2710 		if (err)
2711 			goto error;
2712 	}
2713 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2714 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2715 		if (err)
2716 			goto error2;
2717 	}
2718 	cpumask_set_cpu(cpu, mce_device_initialized);
2719 	per_cpu(mce_device, cpu) = dev;
2720 
2721 	return 0;
2722 error2:
2723 	while (--j >= 0)
2724 		device_remove_file(dev, &mce_bank_devs[j].attr);
2725 error:
2726 	while (--i >= 0)
2727 		device_remove_file(dev, mce_device_attrs[i]);
2728 
2729 	device_unregister(dev);
2730 
2731 	return err;
2732 }
2733 
mce_device_remove(unsigned int cpu)2734 static void mce_device_remove(unsigned int cpu)
2735 {
2736 	struct device *dev = per_cpu(mce_device, cpu);
2737 	int i;
2738 
2739 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2740 		return;
2741 
2742 	for (i = 0; mce_device_attrs[i]; i++)
2743 		device_remove_file(dev, mce_device_attrs[i]);
2744 
2745 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2746 		device_remove_file(dev, &mce_bank_devs[i].attr);
2747 
2748 	device_unregister(dev);
2749 	cpumask_clear_cpu(cpu, mce_device_initialized);
2750 	per_cpu(mce_device, cpu) = NULL;
2751 }
2752 
2753 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2754 static void mce_disable_cpu(void)
2755 {
2756 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2757 		return;
2758 
2759 	if (!cpuhp_tasks_frozen)
2760 		cmci_clear();
2761 
2762 	vendor_disable_error_reporting();
2763 }
2764 
mce_reenable_cpu(void)2765 static void mce_reenable_cpu(void)
2766 {
2767 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2768 	int i;
2769 
2770 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2771 		return;
2772 
2773 	if (!cpuhp_tasks_frozen)
2774 		cmci_reenable();
2775 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2776 		struct mce_bank *b = &mce_banks[i];
2777 
2778 		if (b->init)
2779 			wrmsrq(mca_msr_reg(i, MCA_CTL), b->ctl);
2780 	}
2781 }
2782 
mce_cpu_dead(unsigned int cpu)2783 static int mce_cpu_dead(unsigned int cpu)
2784 {
2785 	/* intentionally ignoring frozen here */
2786 	if (!cpuhp_tasks_frozen)
2787 		cmci_rediscover();
2788 	return 0;
2789 }
2790 
mce_cpu_online(unsigned int cpu)2791 static int mce_cpu_online(unsigned int cpu)
2792 {
2793 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2794 
2795 	mce_device_create(cpu);
2796 	mce_threshold_create_device(cpu);
2797 	mce_reenable_cpu();
2798 	mce_start_timer(t);
2799 	return 0;
2800 }
2801 
mce_cpu_pre_down(unsigned int cpu)2802 static int mce_cpu_pre_down(unsigned int cpu)
2803 {
2804 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2805 
2806 	mce_disable_cpu();
2807 	timer_delete_sync(t);
2808 	mce_threshold_remove_device(cpu);
2809 	mce_device_remove(cpu);
2810 	return 0;
2811 }
2812 
mce_init_banks(void)2813 static __init void mce_init_banks(void)
2814 {
2815 	int i;
2816 
2817 	for (i = 0; i < MAX_NR_BANKS; i++) {
2818 		struct mce_bank_dev *b = &mce_bank_devs[i];
2819 		struct device_attribute *a = &b->attr;
2820 
2821 		b->bank = i;
2822 
2823 		sysfs_attr_init(&a->attr);
2824 		a->attr.name	= b->attrname;
2825 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2826 
2827 		a->attr.mode	= 0644;
2828 		a->show		= show_bank;
2829 		a->store	= set_bank;
2830 	}
2831 }
2832 
2833 /*
2834  * When running on XEN, this initcall is ordered against the XEN mcelog
2835  * initcall:
2836  *
2837  *   device_initcall(xen_late_init_mcelog);
2838  *   device_initcall_sync(mcheck_init_device);
2839  */
mcheck_init_device(void)2840 static __init int mcheck_init_device(void)
2841 {
2842 	int err;
2843 
2844 	/*
2845 	 * Check if we have a spare virtual bit. This will only become
2846 	 * a problem if/when we move beyond 5-level page tables.
2847 	 */
2848 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2849 
2850 	if (!mce_available(&boot_cpu_data)) {
2851 		err = -EIO;
2852 		goto err_out;
2853 	}
2854 
2855 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2856 		err = -ENOMEM;
2857 		goto err_out;
2858 	}
2859 
2860 	mce_init_banks();
2861 
2862 	err = subsys_system_register(&mce_subsys, NULL);
2863 	if (err)
2864 		goto err_out_mem;
2865 
2866 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2867 				mce_cpu_dead);
2868 	if (err)
2869 		goto err_out_mem;
2870 
2871 	/*
2872 	 * Invokes mce_cpu_online() on all CPUs which are online when
2873 	 * the state is installed.
2874 	 */
2875 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2876 				mce_cpu_online, mce_cpu_pre_down);
2877 	if (err < 0)
2878 		goto err_out_online;
2879 
2880 	register_syscore(&mce_syscore);
2881 
2882 	return 0;
2883 
2884 err_out_online:
2885 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2886 
2887 err_out_mem:
2888 	free_cpumask_var(mce_device_initialized);
2889 
2890 err_out:
2891 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2892 
2893 	return err;
2894 }
2895 device_initcall_sync(mcheck_init_device);
2896 
2897 /*
2898  * Old style boot options parsing. Only for compatibility.
2899  */
mcheck_disable(char * str)2900 static int __init mcheck_disable(char *str)
2901 {
2902 	mca_cfg.disabled = 1;
2903 	return 1;
2904 }
2905 __setup("nomce", mcheck_disable);
2906 
2907 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2908 struct dentry *mce_get_debugfs_dir(void)
2909 {
2910 	static struct dentry *dmce;
2911 
2912 	if (!dmce)
2913 		dmce = debugfs_create_dir("mce", NULL);
2914 
2915 	return dmce;
2916 }
2917 
mce_reset(void)2918 static void mce_reset(void)
2919 {
2920 	atomic_set(&mce_fake_panicked, 0);
2921 	atomic_set(&mce_executing, 0);
2922 	atomic_set(&mce_callin, 0);
2923 	atomic_set(&global_nwo, 0);
2924 	cpumask_setall(&mce_missing_cpus);
2925 }
2926 
fake_panic_get(void * data,u64 * val)2927 static int fake_panic_get(void *data, u64 *val)
2928 {
2929 	*val = fake_panic;
2930 	return 0;
2931 }
2932 
fake_panic_set(void * data,u64 val)2933 static int fake_panic_set(void *data, u64 val)
2934 {
2935 	mce_reset();
2936 	fake_panic = val;
2937 	return 0;
2938 }
2939 
2940 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2941 			 "%llu\n");
2942 
mcheck_debugfs_init(void)2943 static void __init mcheck_debugfs_init(void)
2944 {
2945 	struct dentry *dmce;
2946 
2947 	dmce = mce_get_debugfs_dir();
2948 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2949 				   &fake_panic_fops);
2950 }
2951 #else
mcheck_debugfs_init(void)2952 static void __init mcheck_debugfs_init(void) { }
2953 #endif
2954 
mcheck_late_init(void)2955 static int __init mcheck_late_init(void)
2956 {
2957 	if (mca_cfg.recovery)
2958 		enable_copy_mc_fragile();
2959 
2960 	mcheck_debugfs_init();
2961 
2962 	/*
2963 	 * Flush out everything that has been logged during early boot, now that
2964 	 * everything has been initialized (workqueues, decoders, ...).
2965 	 */
2966 	mce_schedule_work();
2967 
2968 	return 0;
2969 }
2970 late_initcall(mcheck_late_init);
2971