1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Ethernet driver
3 *
4 * Copyright (C) 2020 Marvell.
5 *
6 */
7
8 #include <linux/interrupt.h>
9 #include <linux/pci.h>
10 #include <net/page_pool/helpers.h>
11 #include <net/tso.h>
12 #include <linux/bitfield.h>
13 #include <linux/dcbnl.h>
14 #include <net/xfrm.h>
15
16 #include "otx2_reg.h"
17 #include "otx2_common.h"
18 #include "otx2_struct.h"
19 #include "cn10k.h"
20 #include "otx2_xsk.h"
21
otx2_is_pfc_enabled(struct otx2_nic * pfvf)22 static bool otx2_is_pfc_enabled(struct otx2_nic *pfvf)
23 {
24 return IS_ENABLED(CONFIG_DCB) && !!pfvf->pfc_en;
25 }
26
otx2_nix_rq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)27 static void otx2_nix_rq_op_stats(struct queue_stats *stats,
28 struct otx2_nic *pfvf, int qidx)
29 {
30 u64 incr = (u64)qidx << 32;
31 u64 *ptr;
32
33 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS);
34 stats->bytes = otx2_atomic64_add(incr, ptr);
35
36 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS);
37 stats->pkts = otx2_atomic64_add(incr, ptr);
38 }
39
otx2_nix_sq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)40 static void otx2_nix_sq_op_stats(struct queue_stats *stats,
41 struct otx2_nic *pfvf, int qidx)
42 {
43 u64 incr = (u64)qidx << 32;
44 u64 *ptr;
45
46 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS);
47 stats->bytes = otx2_atomic64_add(incr, ptr);
48
49 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS);
50 stats->pkts = otx2_atomic64_add(incr, ptr);
51 }
52
otx2_update_lmac_stats(struct otx2_nic * pfvf)53 void otx2_update_lmac_stats(struct otx2_nic *pfvf)
54 {
55 struct msg_req *req;
56
57 if (!netif_running(pfvf->netdev))
58 return;
59
60 mutex_lock(&pfvf->mbox.lock);
61 req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox);
62 if (!req) {
63 mutex_unlock(&pfvf->mbox.lock);
64 return;
65 }
66
67 otx2_sync_mbox_msg(&pfvf->mbox);
68 mutex_unlock(&pfvf->mbox.lock);
69 }
70
otx2_update_lmac_fec_stats(struct otx2_nic * pfvf)71 void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf)
72 {
73 struct msg_req *req;
74
75 if (!netif_running(pfvf->netdev))
76 return;
77 mutex_lock(&pfvf->mbox.lock);
78 req = otx2_mbox_alloc_msg_cgx_fec_stats(&pfvf->mbox);
79 if (req)
80 otx2_sync_mbox_msg(&pfvf->mbox);
81 mutex_unlock(&pfvf->mbox.lock);
82 }
83
otx2_update_rq_stats(struct otx2_nic * pfvf,int qidx)84 int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx)
85 {
86 struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx];
87
88 if (!pfvf->qset.rq)
89 return 0;
90
91 otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx);
92 return 1;
93 }
94 EXPORT_SYMBOL(otx2_update_rq_stats);
95
otx2_update_sq_stats(struct otx2_nic * pfvf,int qidx)96 int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx)
97 {
98 struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx];
99
100 if (!pfvf->qset.sq)
101 return 0;
102
103 if (qidx >= pfvf->hw.non_qos_queues) {
104 if (!test_bit(qidx - pfvf->hw.non_qos_queues, pfvf->qos.qos_sq_bmap))
105 return 0;
106 }
107
108 otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx);
109 return 1;
110 }
111 EXPORT_SYMBOL(otx2_update_sq_stats);
112
otx2_get_dev_stats(struct otx2_nic * pfvf)113 void otx2_get_dev_stats(struct otx2_nic *pfvf)
114 {
115 struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats;
116
117 dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
118 dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP);
119 dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST);
120 dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST);
121 dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST);
122 dev_stats->rx_frames = dev_stats->rx_bcast_frames +
123 dev_stats->rx_mcast_frames +
124 dev_stats->rx_ucast_frames;
125
126 dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
127 dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP);
128 dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST);
129 dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST);
130 dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST);
131 dev_stats->tx_frames = dev_stats->tx_bcast_frames +
132 dev_stats->tx_mcast_frames +
133 dev_stats->tx_ucast_frames;
134 }
135
otx2_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)136 void otx2_get_stats64(struct net_device *netdev,
137 struct rtnl_link_stats64 *stats)
138 {
139 struct otx2_nic *pfvf = netdev_priv(netdev);
140 struct otx2_dev_stats *dev_stats;
141
142 otx2_get_dev_stats(pfvf);
143
144 dev_stats = &pfvf->hw.dev_stats;
145 stats->rx_bytes = dev_stats->rx_bytes;
146 stats->rx_packets = dev_stats->rx_frames;
147 stats->rx_dropped = dev_stats->rx_drops;
148 stats->multicast = dev_stats->rx_mcast_frames;
149
150 stats->tx_bytes = dev_stats->tx_bytes;
151 stats->tx_packets = dev_stats->tx_frames;
152 stats->tx_dropped = dev_stats->tx_drops;
153 }
154 EXPORT_SYMBOL(otx2_get_stats64);
155
156 /* Sync MAC address with RVU AF */
otx2_hw_set_mac_addr(struct otx2_nic * pfvf,u8 * mac)157 static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac)
158 {
159 struct nix_set_mac_addr *req;
160 int err;
161
162 mutex_lock(&pfvf->mbox.lock);
163 req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox);
164 if (!req) {
165 mutex_unlock(&pfvf->mbox.lock);
166 return -ENOMEM;
167 }
168
169 ether_addr_copy(req->mac_addr, mac);
170
171 err = otx2_sync_mbox_msg(&pfvf->mbox);
172 mutex_unlock(&pfvf->mbox.lock);
173 return err;
174 }
175
otx2_hw_get_mac_addr(struct otx2_nic * pfvf,struct net_device * netdev)176 static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf,
177 struct net_device *netdev)
178 {
179 struct nix_get_mac_addr_rsp *rsp;
180 struct mbox_msghdr *msghdr;
181 struct msg_req *req;
182 int err;
183
184 mutex_lock(&pfvf->mbox.lock);
185 req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox);
186 if (!req) {
187 mutex_unlock(&pfvf->mbox.lock);
188 return -ENOMEM;
189 }
190
191 err = otx2_sync_mbox_msg(&pfvf->mbox);
192 if (err) {
193 mutex_unlock(&pfvf->mbox.lock);
194 return err;
195 }
196
197 msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
198 if (IS_ERR(msghdr)) {
199 mutex_unlock(&pfvf->mbox.lock);
200 return PTR_ERR(msghdr);
201 }
202 rsp = (struct nix_get_mac_addr_rsp *)msghdr;
203 eth_hw_addr_set(netdev, rsp->mac_addr);
204 mutex_unlock(&pfvf->mbox.lock);
205
206 return 0;
207 }
208
otx2_set_mac_address(struct net_device * netdev,void * p)209 int otx2_set_mac_address(struct net_device *netdev, void *p)
210 {
211 struct otx2_nic *pfvf = netdev_priv(netdev);
212 struct sockaddr *addr = p;
213
214 if (!is_valid_ether_addr(addr->sa_data))
215 return -EADDRNOTAVAIL;
216
217 if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data)) {
218 eth_hw_addr_set(netdev, addr->sa_data);
219 /* update dmac field in vlan offload rule */
220 if (netif_running(netdev) &&
221 pfvf->flags & OTX2_FLAG_RX_VLAN_SUPPORT)
222 otx2_install_rxvlan_offload_flow(pfvf);
223 /* update dmac address in ntuple and DMAC filter list */
224 if (pfvf->flags & OTX2_FLAG_DMACFLTR_SUPPORT)
225 otx2_dmacflt_update_pfmac_flow(pfvf);
226 } else {
227 return -EPERM;
228 }
229
230 return 0;
231 }
232 EXPORT_SYMBOL(otx2_set_mac_address);
233
otx2_hw_set_mtu(struct otx2_nic * pfvf,int mtu)234 int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu)
235 {
236 struct nix_frs_cfg *req;
237 u16 maxlen;
238 int err;
239
240 maxlen = pfvf->hw.max_mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
241
242 mutex_lock(&pfvf->mbox.lock);
243 req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox);
244 if (!req) {
245 mutex_unlock(&pfvf->mbox.lock);
246 return -ENOMEM;
247 }
248
249 req->maxlen = mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
250
251 /* Use max receive length supported by hardware for loopback devices */
252 if (is_otx2_lbkvf(pfvf->pdev))
253 req->maxlen = maxlen;
254
255 err = otx2_sync_mbox_msg(&pfvf->mbox);
256 mutex_unlock(&pfvf->mbox.lock);
257 return err;
258 }
259 EXPORT_SYMBOL(otx2_hw_set_mtu);
260
otx2_config_pause_frm(struct otx2_nic * pfvf)261 int otx2_config_pause_frm(struct otx2_nic *pfvf)
262 {
263 struct cgx_pause_frm_cfg *req;
264 int err;
265
266 if (is_otx2_lbkvf(pfvf->pdev) || is_otx2_sdp_rep(pfvf->pdev))
267 return 0;
268
269 mutex_lock(&pfvf->mbox.lock);
270 req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox);
271 if (!req) {
272 err = -ENOMEM;
273 goto unlock;
274 }
275
276 req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED);
277 req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED);
278 req->set = 1;
279
280 err = otx2_sync_mbox_msg(&pfvf->mbox);
281 unlock:
282 mutex_unlock(&pfvf->mbox.lock);
283 return err;
284 }
285 EXPORT_SYMBOL(otx2_config_pause_frm);
286
otx2_set_flowkey_cfg(struct otx2_nic * pfvf)287 int otx2_set_flowkey_cfg(struct otx2_nic *pfvf)
288 {
289 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
290 struct nix_rss_flowkey_cfg_rsp *rsp;
291 struct nix_rss_flowkey_cfg *req;
292 int err;
293
294 mutex_lock(&pfvf->mbox.lock);
295 req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox);
296 if (!req) {
297 mutex_unlock(&pfvf->mbox.lock);
298 return -ENOMEM;
299 }
300 req->mcam_index = -1; /* Default or reserved index */
301 req->flowkey_cfg = rss->flowkey_cfg;
302 req->group = DEFAULT_RSS_CONTEXT_GROUP;
303
304 err = otx2_sync_mbox_msg(&pfvf->mbox);
305 if (err)
306 goto fail;
307
308 rsp = (struct nix_rss_flowkey_cfg_rsp *)
309 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
310 if (IS_ERR(rsp)) {
311 err = PTR_ERR(rsp);
312 goto fail;
313 }
314
315 pfvf->hw.flowkey_alg_idx = rsp->alg_idx;
316 fail:
317 mutex_unlock(&pfvf->mbox.lock);
318 return err;
319 }
320
otx2_set_rss_table(struct otx2_nic * pfvf,int ctx_id)321 int otx2_set_rss_table(struct otx2_nic *pfvf, int ctx_id)
322 {
323 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
324 const int index = rss->rss_size * ctx_id;
325 struct mbox *mbox = &pfvf->mbox;
326 struct otx2_rss_ctx *rss_ctx;
327 struct nix_aq_enq_req *aq;
328 int idx, err;
329
330 mutex_lock(&mbox->lock);
331 rss_ctx = rss->rss_ctx[ctx_id];
332 /* Get memory to put this msg */
333 for (idx = 0; idx < rss->rss_size; idx++) {
334 /* Ignore the queue if AF_XDP zero copy is enabled */
335 if (test_bit(rss_ctx->ind_tbl[idx], pfvf->af_xdp_zc_qidx))
336 continue;
337
338 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
339 if (!aq) {
340 /* The shared memory buffer can be full.
341 * Flush it and retry
342 */
343 err = otx2_sync_mbox_msg(mbox);
344 if (err) {
345 mutex_unlock(&mbox->lock);
346 return err;
347 }
348 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
349 if (!aq) {
350 mutex_unlock(&mbox->lock);
351 return -ENOMEM;
352 }
353 }
354
355 aq->rss.rq = rss_ctx->ind_tbl[idx];
356
357 /* Fill AQ info */
358 aq->qidx = index + idx;
359 aq->ctype = NIX_AQ_CTYPE_RSS;
360 aq->op = NIX_AQ_INSTOP_INIT;
361 }
362 err = otx2_sync_mbox_msg(mbox);
363 mutex_unlock(&mbox->lock);
364 return err;
365 }
366
otx2_set_rss_key(struct otx2_nic * pfvf)367 void otx2_set_rss_key(struct otx2_nic *pfvf)
368 {
369 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
370 u64 *key = (u64 *)&rss->key[4];
371 int idx;
372
373 /* 352bit or 44byte key needs to be configured as below
374 * NIX_LF_RX_SECRETX0 = key<351:288>
375 * NIX_LF_RX_SECRETX1 = key<287:224>
376 * NIX_LF_RX_SECRETX2 = key<223:160>
377 * NIX_LF_RX_SECRETX3 = key<159:96>
378 * NIX_LF_RX_SECRETX4 = key<95:32>
379 * NIX_LF_RX_SECRETX5<63:32> = key<31:0>
380 */
381 otx2_write64(pfvf, NIX_LF_RX_SECRETX(5),
382 (u64)(*((u32 *)&rss->key)) << 32);
383 idx = sizeof(rss->key) / sizeof(u64);
384 while (idx > 0) {
385 idx--;
386 otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++);
387 }
388 }
389
otx2_rss_init(struct otx2_nic * pfvf)390 int otx2_rss_init(struct otx2_nic *pfvf)
391 {
392 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
393 struct otx2_rss_ctx *rss_ctx;
394 int idx, ret = 0;
395
396 rss->rss_size = sizeof(*rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP]);
397
398 /* Init RSS key if it is not setup already */
399 if (!rss->enable)
400 netdev_rss_key_fill(rss->key, sizeof(rss->key));
401 otx2_set_rss_key(pfvf);
402
403 if (!netif_is_rxfh_configured(pfvf->netdev)) {
404 /* Set RSS group 0 as default indirection table */
405 rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP] = kzalloc(rss->rss_size,
406 GFP_KERNEL);
407 if (!rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP])
408 return -ENOMEM;
409
410 rss_ctx = rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP];
411 for (idx = 0; idx < rss->rss_size; idx++)
412 rss_ctx->ind_tbl[idx] =
413 ethtool_rxfh_indir_default(idx,
414 pfvf->hw.rx_queues);
415 }
416 ret = otx2_set_rss_table(pfvf, DEFAULT_RSS_CONTEXT_GROUP);
417 if (ret)
418 return ret;
419
420 /* Flowkey or hash config to be used for generating flow tag */
421 rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg :
422 NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 |
423 NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP |
424 NIX_FLOW_KEY_TYPE_SCTP | NIX_FLOW_KEY_TYPE_VLAN |
425 NIX_FLOW_KEY_TYPE_IPV4_PROTO;
426
427 ret = otx2_set_flowkey_cfg(pfvf);
428 if (ret)
429 return ret;
430
431 rss->enable = true;
432 return 0;
433 }
434
435 /* Setup UDP segmentation algorithm in HW */
otx2_setup_udp_segmentation(struct nix_lso_format_cfg * lso,bool v4)436 static void otx2_setup_udp_segmentation(struct nix_lso_format_cfg *lso, bool v4)
437 {
438 struct nix_lso_format *field;
439
440 field = (struct nix_lso_format *)&lso->fields[0];
441 lso->field_mask = GENMASK(18, 0);
442
443 /* IP's Length field */
444 field->layer = NIX_TXLAYER_OL3;
445 /* In ipv4, length field is at offset 2 bytes, for ipv6 it's 4 */
446 field->offset = v4 ? 2 : 4;
447 field->sizem1 = 1; /* i.e 2 bytes */
448 field->alg = NIX_LSOALG_ADD_PAYLEN;
449 field++;
450
451 /* No ID field in IPv6 header */
452 if (v4) {
453 /* Increment IPID */
454 field->layer = NIX_TXLAYER_OL3;
455 field->offset = 4;
456 field->sizem1 = 1; /* i.e 2 bytes */
457 field->alg = NIX_LSOALG_ADD_SEGNUM;
458 field++;
459 }
460
461 /* Update length in UDP header */
462 field->layer = NIX_TXLAYER_OL4;
463 field->offset = 4;
464 field->sizem1 = 1;
465 field->alg = NIX_LSOALG_ADD_PAYLEN;
466 }
467
468 /* Setup segmentation algorithms in HW and retrieve algorithm index */
otx2_setup_segmentation(struct otx2_nic * pfvf)469 void otx2_setup_segmentation(struct otx2_nic *pfvf)
470 {
471 struct nix_lso_format_cfg_rsp *rsp;
472 struct nix_lso_format_cfg *lso;
473 struct otx2_hw *hw = &pfvf->hw;
474 int err;
475
476 mutex_lock(&pfvf->mbox.lock);
477
478 /* UDPv4 segmentation */
479 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
480 if (!lso)
481 goto fail;
482
483 /* Setup UDP/IP header fields that HW should update per segment */
484 otx2_setup_udp_segmentation(lso, true);
485
486 err = otx2_sync_mbox_msg(&pfvf->mbox);
487 if (err)
488 goto fail;
489
490 rsp = (struct nix_lso_format_cfg_rsp *)
491 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
492 if (IS_ERR(rsp))
493 goto fail;
494
495 hw->lso_udpv4_idx = rsp->lso_format_idx;
496
497 /* UDPv6 segmentation */
498 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
499 if (!lso)
500 goto fail;
501
502 /* Setup UDP/IP header fields that HW should update per segment */
503 otx2_setup_udp_segmentation(lso, false);
504
505 err = otx2_sync_mbox_msg(&pfvf->mbox);
506 if (err)
507 goto fail;
508
509 rsp = (struct nix_lso_format_cfg_rsp *)
510 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
511 if (IS_ERR(rsp))
512 goto fail;
513
514 hw->lso_udpv6_idx = rsp->lso_format_idx;
515 mutex_unlock(&pfvf->mbox.lock);
516 return;
517 fail:
518 mutex_unlock(&pfvf->mbox.lock);
519 netdev_info(pfvf->netdev,
520 "Failed to get LSO index for UDP GSO offload, disabling\n");
521 pfvf->netdev->hw_features &= ~NETIF_F_GSO_UDP_L4;
522 }
523
otx2_config_irq_coalescing(struct otx2_nic * pfvf,int qidx)524 void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx)
525 {
526 /* Configure CQE interrupt coalescing parameters
527 *
528 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence
529 * set 1 less than cq_ecount_wait. And cq_time_wait is in
530 * usecs, convert that to 100ns count.
531 */
532 otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx),
533 ((u64)(pfvf->hw.cq_time_wait * 10) << 48) |
534 ((u64)pfvf->hw.cq_qcount_wait << 32) |
535 (pfvf->hw.cq_ecount_wait - 1));
536 }
537
otx2_alloc_pool_buf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma)538 static int otx2_alloc_pool_buf(struct otx2_nic *pfvf, struct otx2_pool *pool,
539 dma_addr_t *dma)
540 {
541 unsigned int offset = 0;
542 struct page *page;
543 size_t sz;
544
545 sz = SKB_DATA_ALIGN(pool->rbsize);
546 sz = ALIGN(sz, OTX2_ALIGN);
547
548 page = page_pool_alloc_frag(pool->page_pool, &offset, sz, GFP_ATOMIC);
549 if (unlikely(!page))
550 return -ENOMEM;
551
552 *dma = page_pool_get_dma_addr(page) + offset;
553 return 0;
554 }
555
__otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma,int qidx,int idx)556 static int __otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
557 dma_addr_t *dma, int qidx, int idx)
558 {
559 u8 *buf;
560
561 if (pool->xsk_pool)
562 return otx2_xsk_pool_alloc_buf(pfvf, pool, dma, idx);
563
564 if (pool->page_pool)
565 return otx2_alloc_pool_buf(pfvf, pool, dma);
566
567 buf = napi_alloc_frag_align(pool->rbsize, OTX2_ALIGN);
568 if (unlikely(!buf))
569 return -ENOMEM;
570
571 *dma = dma_map_single_attrs(pfvf->dev, buf, pool->rbsize,
572 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
573 if (unlikely(dma_mapping_error(pfvf->dev, *dma))) {
574 page_frag_free(buf);
575 return -ENOMEM;
576 }
577
578 return 0;
579 }
580
otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma,int qidx,int idx)581 int otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
582 dma_addr_t *dma, int qidx, int idx)
583 {
584 int ret;
585
586 local_bh_disable();
587 ret = __otx2_alloc_rbuf(pfvf, pool, dma, qidx, idx);
588 local_bh_enable();
589 return ret;
590 }
591
otx2_alloc_buffer(struct otx2_nic * pfvf,struct otx2_cq_queue * cq,dma_addr_t * dma)592 int otx2_alloc_buffer(struct otx2_nic *pfvf, struct otx2_cq_queue *cq,
593 dma_addr_t *dma)
594 {
595 if (unlikely(__otx2_alloc_rbuf(pfvf, cq->rbpool, dma,
596 cq->cq_idx, cq->pool_ptrs - 1)))
597 return -ENOMEM;
598 return 0;
599 }
600
otx2_tx_timeout(struct net_device * netdev,unsigned int txq)601 void otx2_tx_timeout(struct net_device *netdev, unsigned int txq)
602 {
603 struct otx2_nic *pfvf = netdev_priv(netdev);
604
605 schedule_work(&pfvf->reset_task);
606 }
607 EXPORT_SYMBOL(otx2_tx_timeout);
608
otx2_get_mac_from_af(struct net_device * netdev)609 void otx2_get_mac_from_af(struct net_device *netdev)
610 {
611 struct otx2_nic *pfvf = netdev_priv(netdev);
612 int err;
613
614 err = otx2_hw_get_mac_addr(pfvf, netdev);
615 if (err)
616 dev_warn(pfvf->dev, "Failed to read mac from hardware\n");
617
618 /* If AF doesn't provide a valid MAC, generate a random one */
619 if (!is_valid_ether_addr(netdev->dev_addr))
620 eth_hw_addr_random(netdev);
621 }
622 EXPORT_SYMBOL(otx2_get_mac_from_af);
623
otx2_txschq_config(struct otx2_nic * pfvf,int lvl,int prio,bool txschq_for_pfc)624 int otx2_txschq_config(struct otx2_nic *pfvf, int lvl, int prio, bool txschq_for_pfc)
625 {
626 u16 (*schq_list)[MAX_TXSCHQ_PER_FUNC];
627 struct otx2_hw *hw = &pfvf->hw;
628 struct nix_txschq_config *req;
629 u64 schq, parent;
630 u64 dwrr_val;
631
632 dwrr_val = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
633
634 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
635 if (!req)
636 return -ENOMEM;
637
638 req->lvl = lvl;
639 req->num_regs = 1;
640
641 schq_list = hw->txschq_list;
642 #ifdef CONFIG_DCB
643 if (txschq_for_pfc)
644 schq_list = pfvf->pfc_schq_list;
645 #endif
646
647 schq = schq_list[lvl][prio];
648 /* Set topology e.t.c configuration */
649 if (lvl == NIX_TXSCH_LVL_SMQ) {
650 req->reg[0] = NIX_AF_SMQX_CFG(schq);
651 req->regval[0] = ((u64)pfvf->tx_max_pktlen << 8) | OTX2_MIN_MTU;
652 req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) |
653 (0x2ULL << 36);
654 /* Set link type for DWRR MTU selection on CN10K silicons */
655 if (!is_dev_otx2(pfvf->pdev))
656 req->regval[0] |= FIELD_PREP(GENMASK_ULL(58, 57),
657 (u64)hw->smq_link_type);
658 req->num_regs++;
659 /* MDQ config */
660 parent = schq_list[NIX_TXSCH_LVL_TL4][prio];
661 req->reg[1] = NIX_AF_MDQX_PARENT(schq);
662 req->regval[1] = parent << 16;
663 req->num_regs++;
664 /* Set DWRR quantum */
665 req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq);
666 req->regval[2] = dwrr_val;
667 } else if (lvl == NIX_TXSCH_LVL_TL4) {
668 int sdp_chan = hw->tx_chan_base + prio;
669
670 if (is_otx2_sdp_rep(pfvf->pdev))
671 prio = 0;
672 parent = schq_list[NIX_TXSCH_LVL_TL3][prio];
673 req->reg[0] = NIX_AF_TL4X_PARENT(schq);
674 req->regval[0] = (u64)parent << 16;
675 req->num_regs++;
676 req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq);
677 req->regval[1] = dwrr_val;
678 if (is_otx2_sdp_rep(pfvf->pdev)) {
679 req->num_regs++;
680 req->reg[2] = NIX_AF_TL4X_SDP_LINK_CFG(schq);
681 req->regval[2] = BIT_ULL(12) | BIT_ULL(13) |
682 (sdp_chan & 0xff);
683 }
684 } else if (lvl == NIX_TXSCH_LVL_TL3) {
685 parent = schq_list[NIX_TXSCH_LVL_TL2][prio];
686 req->reg[0] = NIX_AF_TL3X_PARENT(schq);
687 req->regval[0] = (u64)parent << 16;
688 req->num_regs++;
689 req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq);
690 req->regval[1] = dwrr_val;
691 if (lvl == hw->txschq_link_cfg_lvl &&
692 !is_otx2_sdp_rep(pfvf->pdev)) {
693 req->num_regs++;
694 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
695 /* Enable this queue and backpressure
696 * and set relative channel
697 */
698 req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio;
699 }
700 } else if (lvl == NIX_TXSCH_LVL_TL2) {
701 parent = schq_list[NIX_TXSCH_LVL_TL1][prio];
702 req->reg[0] = NIX_AF_TL2X_PARENT(schq);
703 req->regval[0] = (u64)parent << 16;
704
705 req->num_regs++;
706 req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq);
707 req->regval[1] = (u64)hw->txschq_aggr_lvl_rr_prio << 24 | dwrr_val;
708
709 if (lvl == hw->txschq_link_cfg_lvl &&
710 !is_otx2_sdp_rep(pfvf->pdev)) {
711 req->num_regs++;
712 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
713 /* Enable this queue and backpressure
714 * and set relative channel
715 */
716 req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio;
717 }
718 } else if (lvl == NIX_TXSCH_LVL_TL1) {
719 /* Default config for TL1.
720 * For VF this is always ignored.
721 */
722
723 /* On CN10K, if RR_WEIGHT is greater than 16384, HW will
724 * clip it to 16384, so configuring a 24bit max value
725 * will work on both OTx2 and CN10K.
726 */
727 req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq);
728 req->regval[0] = TXSCH_TL1_DFLT_RR_QTM;
729
730 req->num_regs++;
731 req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq);
732 req->regval[1] = hw->txschq_aggr_lvl_rr_prio << 1;
733
734 req->num_regs++;
735 req->reg[2] = NIX_AF_TL1X_CIR(schq);
736 req->regval[2] = 0;
737 }
738
739 return otx2_sync_mbox_msg(&pfvf->mbox);
740 }
741 EXPORT_SYMBOL(otx2_txschq_config);
742
otx2_smq_flush(struct otx2_nic * pfvf,int smq)743 int otx2_smq_flush(struct otx2_nic *pfvf, int smq)
744 {
745 struct nix_txschq_config *req;
746 int rc;
747
748 mutex_lock(&pfvf->mbox.lock);
749
750 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
751 if (!req) {
752 mutex_unlock(&pfvf->mbox.lock);
753 return -ENOMEM;
754 }
755
756 req->lvl = NIX_TXSCH_LVL_SMQ;
757 req->reg[0] = NIX_AF_SMQX_CFG(smq);
758 req->regval[0] |= BIT_ULL(49);
759 req->num_regs++;
760
761 rc = otx2_sync_mbox_msg(&pfvf->mbox);
762 mutex_unlock(&pfvf->mbox.lock);
763 return rc;
764 }
765 EXPORT_SYMBOL(otx2_smq_flush);
766
otx2_txsch_alloc(struct otx2_nic * pfvf)767 int otx2_txsch_alloc(struct otx2_nic *pfvf)
768 {
769 int chan_cnt = pfvf->hw.tx_chan_cnt;
770 struct nix_txsch_alloc_req *req;
771 struct nix_txsch_alloc_rsp *rsp;
772 int lvl, schq, rc;
773
774 /* Get memory to put this msg */
775 req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox);
776 if (!req)
777 return -ENOMEM;
778
779 /* Request one schq per level */
780 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
781 req->schq[lvl] = 1;
782
783 if (is_otx2_sdp_rep(pfvf->pdev) && chan_cnt > 1) {
784 req->schq[NIX_TXSCH_LVL_SMQ] = chan_cnt;
785 req->schq[NIX_TXSCH_LVL_TL4] = chan_cnt;
786 }
787
788 rc = otx2_sync_mbox_msg(&pfvf->mbox);
789 if (rc)
790 return rc;
791
792 rsp = (struct nix_txsch_alloc_rsp *)
793 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
794 if (IS_ERR(rsp))
795 return PTR_ERR(rsp);
796
797 /* Setup transmit scheduler list */
798 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
799 pfvf->hw.txschq_cnt[lvl] = rsp->schq[lvl];
800 for (schq = 0; schq < rsp->schq[lvl]; schq++)
801 pfvf->hw.txschq_list[lvl][schq] =
802 rsp->schq_list[lvl][schq];
803 }
804
805 pfvf->hw.txschq_link_cfg_lvl = rsp->link_cfg_lvl;
806 pfvf->hw.txschq_aggr_lvl_rr_prio = rsp->aggr_lvl_rr_prio;
807
808 return 0;
809 }
810
otx2_txschq_free_one(struct otx2_nic * pfvf,u16 lvl,u16 schq)811 void otx2_txschq_free_one(struct otx2_nic *pfvf, u16 lvl, u16 schq)
812 {
813 struct nix_txsch_free_req *free_req;
814 int err;
815
816 mutex_lock(&pfvf->mbox.lock);
817
818 free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox);
819 if (!free_req) {
820 mutex_unlock(&pfvf->mbox.lock);
821 netdev_err(pfvf->netdev,
822 "Failed alloc txschq free req\n");
823 return;
824 }
825
826 free_req->schq_lvl = lvl;
827 free_req->schq = schq;
828
829 err = otx2_sync_mbox_msg(&pfvf->mbox);
830 if (err) {
831 netdev_err(pfvf->netdev,
832 "Failed stop txschq %d at level %d\n", schq, lvl);
833 }
834
835 mutex_unlock(&pfvf->mbox.lock);
836 }
837 EXPORT_SYMBOL(otx2_txschq_free_one);
838
otx2_txschq_stop(struct otx2_nic * pfvf)839 void otx2_txschq_stop(struct otx2_nic *pfvf)
840 {
841 int lvl, schq, idx;
842
843 /* free non QOS TLx nodes */
844 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
845 for (idx = 0; idx < pfvf->hw.txschq_cnt[lvl]; idx++) {
846 otx2_txschq_free_one(pfvf, lvl,
847 pfvf->hw.txschq_list[lvl][idx]);
848 }
849 }
850
851 /* Clear the txschq list */
852 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
853 for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++)
854 pfvf->hw.txschq_list[lvl][schq] = 0;
855 }
856
857 }
858
otx2_sqb_flush(struct otx2_nic * pfvf)859 void otx2_sqb_flush(struct otx2_nic *pfvf)
860 {
861 int qidx, sqe_tail, sqe_head;
862 struct otx2_snd_queue *sq;
863 u64 incr, *ptr, val;
864
865 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS);
866 for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) {
867 sq = &pfvf->qset.sq[qidx];
868 if (!sq->sqb_ptrs)
869 continue;
870
871 incr = (u64)qidx << 32;
872 val = otx2_atomic64_add(incr, ptr);
873 sqe_head = (val >> 20) & 0x3F;
874 sqe_tail = (val >> 28) & 0x3F;
875 if (sqe_head != sqe_tail)
876 usleep_range(50, 60);
877 }
878 }
879
880 /* RED and drop levels of CQ on packet reception.
881 * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty).
882 */
883 #define RQ_PASS_LVL_CQ(skid, qsize) ((((skid) + 16) * 256) / (qsize))
884 #define RQ_DROP_LVL_CQ(skid, qsize) (((skid) * 256) / (qsize))
885
886 /* RED and drop levels of AURA for packet reception.
887 * For AURA level is measure of fullness (0x0 = empty, 255 = full).
888 * Eg: For RQ length 1K, for pass/drop level 204/230.
889 * RED accepts pkts if free pointers > 102 & <= 205.
890 * Drops pkts if free pointers < 102.
891 */
892 #define RQ_BP_LVL_AURA (255 - ((85 * 256) / 100)) /* BP when 85% is full */
893 #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */
894 #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */
895
otx2_rq_init(struct otx2_nic * pfvf,u16 qidx,u16 lpb_aura)896 int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura)
897 {
898 struct otx2_qset *qset = &pfvf->qset;
899 struct nix_aq_enq_req *aq;
900
901 /* Get memory to put this msg */
902 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
903 if (!aq)
904 return -ENOMEM;
905
906 aq->rq.cq = qidx;
907 aq->rq.ena = 1;
908 aq->rq.pb_caching = 1;
909 aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */
910 aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1;
911 aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */
912 aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */
913 aq->rq.qint_idx = 0;
914 aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */
915 aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */
916 aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
917 aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
918 aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA;
919 aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA;
920
921 /* Fill AQ info */
922 aq->qidx = qidx;
923 aq->ctype = NIX_AQ_CTYPE_RQ;
924 aq->op = NIX_AQ_INSTOP_INIT;
925
926 return otx2_sync_mbox_msg(&pfvf->mbox);
927 }
928
otx2_sq_aq_init(void * dev,u16 qidx,u8 chan_offset,u16 sqb_aura)929 int otx2_sq_aq_init(void *dev, u16 qidx, u8 chan_offset, u16 sqb_aura)
930 {
931 struct otx2_nic *pfvf = dev;
932 struct otx2_snd_queue *sq;
933 struct nix_aq_enq_req *aq;
934
935 sq = &pfvf->qset.sq[qidx];
936 sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx));
937 /* Get memory to put this msg */
938 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
939 if (!aq)
940 return -ENOMEM;
941
942 aq->sq.cq = pfvf->hw.rx_queues + qidx;
943 aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
944 aq->sq.cq_ena = 1;
945 aq->sq.ena = 1;
946 aq->sq.smq = otx2_get_smq_idx(pfvf, qidx);
947 aq->sq.smq_rr_quantum = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
948 aq->sq.default_chan = pfvf->hw.tx_chan_base + chan_offset;
949 aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
950 aq->sq.sqb_aura = sqb_aura;
951 aq->sq.sq_int_ena = NIX_SQINT_BITS;
952 aq->sq.qint_idx = 0;
953 /* Due pipelining impact minimum 2000 unused SQ CQE's
954 * need to maintain to avoid CQ overflow.
955 */
956 aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (pfvf->qset.sqe_cnt));
957
958 /* Fill AQ info */
959 aq->qidx = qidx;
960 aq->ctype = NIX_AQ_CTYPE_SQ;
961 aq->op = NIX_AQ_INSTOP_INIT;
962
963 return otx2_sync_mbox_msg(&pfvf->mbox);
964 }
965
otx2_sq_init(struct otx2_nic * pfvf,u16 qidx,u16 sqb_aura)966 int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura)
967 {
968 struct otx2_qset *qset = &pfvf->qset;
969 struct otx2_snd_queue *sq;
970 struct otx2_pool *pool;
971 u8 chan_offset;
972 int err;
973
974 pool = &pfvf->qset.pool[sqb_aura];
975 sq = &qset->sq[qidx];
976 sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128;
977 sq->sqe_cnt = qset->sqe_cnt;
978
979 err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size);
980 if (err)
981 return err;
982
983 /* Allocate memory for NIX SQE (which includes NIX SG) and CPT SG.
984 * SG of NIX and CPT are same in size. Allocate memory for CPT SG
985 * same as NIX SQE for base address alignment.
986 * Layout of a NIX SQE and CPT SG entry:
987 * -----------------------------
988 * | CPT Scatter Gather |
989 * | (SQE SIZE) |
990 * | |
991 * -----------------------------
992 * | NIX SQE |
993 * | (SQE SIZE) |
994 * | |
995 * -----------------------------
996 */
997 err = qmem_alloc(pfvf->dev, &sq->sqe_ring, qset->sqe_cnt,
998 sq->sqe_size * 2);
999 if (err)
1000 return err;
1001
1002 err = qmem_alloc(pfvf->dev, &sq->cpt_resp, qset->sqe_cnt, 64);
1003 if (err)
1004 return err;
1005
1006 if (qidx < pfvf->hw.tx_queues) {
1007 err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt,
1008 TSO_HEADER_SIZE);
1009 if (err)
1010 return err;
1011 }
1012
1013 sq->sqe_base = sq->sqe->base;
1014 sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL);
1015 if (!sq->sg)
1016 return -ENOMEM;
1017
1018 if (pfvf->ptp && qidx < pfvf->hw.tx_queues) {
1019 err = qmem_alloc(pfvf->dev, &sq->timestamps, qset->sqe_cnt,
1020 sizeof(*sq->timestamps));
1021 if (err) {
1022 kfree(sq->sg);
1023 sq->sg = NULL;
1024 return err;
1025 }
1026 }
1027
1028 sq->head = 0;
1029 sq->cons_head = 0;
1030 sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1;
1031 sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb;
1032 /* Set SQE threshold to 10% of total SQEs */
1033 sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100;
1034 sq->aura_id = sqb_aura;
1035 sq->aura_fc_addr = pool->fc_addr->base;
1036 sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0));
1037
1038 sq->stats.bytes = 0;
1039 sq->stats.pkts = 0;
1040 /* Attach XSK_BUFF_POOL to XDP queue */
1041 if (qidx > pfvf->hw.xdp_queues)
1042 otx2_attach_xsk_buff(pfvf, sq, (qidx - pfvf->hw.xdp_queues));
1043
1044
1045 chan_offset = qidx % pfvf->hw.tx_chan_cnt;
1046 err = pfvf->hw_ops->sq_aq_init(pfvf, qidx, chan_offset, sqb_aura);
1047 if (err) {
1048 kfree(sq->sg);
1049 sq->sg = NULL;
1050 return err;
1051 }
1052
1053 return 0;
1054
1055 }
1056
otx2_cq_init(struct otx2_nic * pfvf,u16 qidx)1057 int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx)
1058 {
1059 struct otx2_qset *qset = &pfvf->qset;
1060 int err, pool_id, non_xdp_queues;
1061 struct nix_aq_enq_req *aq;
1062 struct otx2_cq_queue *cq;
1063 struct otx2_pool *pool;
1064
1065 cq = &qset->cq[qidx];
1066 cq->cq_idx = qidx;
1067 non_xdp_queues = pfvf->hw.rx_queues + pfvf->hw.tx_queues;
1068 if (qidx < pfvf->hw.rx_queues) {
1069 cq->cq_type = CQ_RX;
1070 cq->cint_idx = qidx;
1071 cq->cqe_cnt = qset->rqe_cnt;
1072 if (pfvf->xdp_prog) {
1073 xdp_rxq_info_reg(&cq->xdp_rxq, pfvf->netdev, qidx, 0);
1074 pool = &qset->pool[qidx];
1075 if (pool->xsk_pool) {
1076 xdp_rxq_info_reg_mem_model(&cq->xdp_rxq,
1077 MEM_TYPE_XSK_BUFF_POOL,
1078 NULL);
1079 xsk_pool_set_rxq_info(pool->xsk_pool, &cq->xdp_rxq);
1080 } else if (pool->page_pool) {
1081 xdp_rxq_info_reg_mem_model(&cq->xdp_rxq,
1082 MEM_TYPE_PAGE_POOL,
1083 pool->page_pool);
1084 }
1085 }
1086 } else if (qidx < non_xdp_queues) {
1087 cq->cq_type = CQ_TX;
1088 cq->cint_idx = qidx - pfvf->hw.rx_queues;
1089 cq->cqe_cnt = qset->sqe_cnt;
1090 } else {
1091 if (pfvf->hw.xdp_queues &&
1092 qidx < non_xdp_queues + pfvf->hw.xdp_queues) {
1093 cq->cq_type = CQ_XDP;
1094 cq->cint_idx = qidx - non_xdp_queues;
1095 cq->cqe_cnt = qset->sqe_cnt;
1096 } else {
1097 cq->cq_type = CQ_QOS;
1098 cq->cint_idx = qidx - non_xdp_queues -
1099 pfvf->hw.xdp_queues;
1100 cq->cqe_cnt = qset->sqe_cnt;
1101 }
1102 }
1103 cq->cqe_size = pfvf->qset.xqe_size;
1104
1105 /* Allocate memory for CQEs */
1106 err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size);
1107 if (err)
1108 return err;
1109
1110 /* Save CQE CPU base for faster reference */
1111 cq->cqe_base = cq->cqe->base;
1112 /* In case where all RQs auras point to single pool,
1113 * all CQs receive buffer pool also point to same pool.
1114 */
1115 pool_id = ((cq->cq_type == CQ_RX) &&
1116 (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx;
1117 cq->rbpool = &qset->pool[pool_id];
1118 cq->refill_task_sched = false;
1119
1120 /* Get memory to put this msg */
1121 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
1122 if (!aq)
1123 return -ENOMEM;
1124
1125 aq->cq.ena = 1;
1126 aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4);
1127 aq->cq.caching = 1;
1128 aq->cq.base = cq->cqe->iova;
1129 aq->cq.cint_idx = cq->cint_idx;
1130 aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS;
1131 aq->cq.qint_idx = 0;
1132 aq->cq.avg_level = 255;
1133
1134 if (qidx < pfvf->hw.rx_queues) {
1135 aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt);
1136 aq->cq.drop_ena = 1;
1137
1138 if (!is_otx2_lbkvf(pfvf->pdev)) {
1139 /* Enable receive CQ backpressure */
1140 aq->cq.bp_ena = 1;
1141 #ifdef CONFIG_DCB
1142 aq->cq.bpid = pfvf->bpid[pfvf->queue_to_pfc_map[qidx]];
1143 #else
1144 aq->cq.bpid = pfvf->bpid[0];
1145 #endif
1146
1147 /* Set backpressure level is same as cq pass level */
1148 aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
1149 }
1150 }
1151
1152 /* Fill AQ info */
1153 aq->qidx = qidx;
1154 aq->ctype = NIX_AQ_CTYPE_CQ;
1155 aq->op = NIX_AQ_INSTOP_INIT;
1156
1157 return otx2_sync_mbox_msg(&pfvf->mbox);
1158 }
1159
otx2_pool_refill_task(struct work_struct * work)1160 static void otx2_pool_refill_task(struct work_struct *work)
1161 {
1162 struct otx2_cq_queue *cq;
1163 struct refill_work *wrk;
1164 struct otx2_nic *pfvf;
1165 int qidx;
1166
1167 wrk = container_of(work, struct refill_work, pool_refill_work.work);
1168 pfvf = wrk->pf;
1169 qidx = wrk - pfvf->refill_wrk;
1170 cq = &pfvf->qset.cq[qidx];
1171
1172 cq->refill_task_sched = false;
1173
1174 local_bh_disable();
1175 napi_schedule(wrk->napi);
1176 local_bh_enable();
1177 }
1178
otx2_config_nix_queues(struct otx2_nic * pfvf)1179 int otx2_config_nix_queues(struct otx2_nic *pfvf)
1180 {
1181 int qidx, err;
1182
1183 /* Initialize RX queues */
1184 for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) {
1185 u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
1186
1187 err = otx2_rq_init(pfvf, qidx, lpb_aura);
1188 if (err)
1189 return err;
1190 }
1191
1192 /* Initialize TX queues */
1193 for (qidx = 0; qidx < pfvf->hw.non_qos_queues; qidx++) {
1194 u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1195
1196 err = otx2_sq_init(pfvf, qidx, sqb_aura);
1197 if (err)
1198 return err;
1199 }
1200
1201 /* Initialize completion queues */
1202 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1203 err = otx2_cq_init(pfvf, qidx);
1204 if (err)
1205 return err;
1206 }
1207
1208 pfvf->cq_op_addr = (__force u64 *)otx2_get_regaddr(pfvf,
1209 NIX_LF_CQ_OP_STATUS);
1210
1211 /* Initialize work queue for receive buffer refill */
1212 pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt,
1213 sizeof(struct refill_work), GFP_KERNEL);
1214 if (!pfvf->refill_wrk)
1215 return -ENOMEM;
1216
1217 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1218 pfvf->refill_wrk[qidx].pf = pfvf;
1219 INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work,
1220 otx2_pool_refill_task);
1221 }
1222 return 0;
1223 }
1224
otx2_config_nix(struct otx2_nic * pfvf)1225 int otx2_config_nix(struct otx2_nic *pfvf)
1226 {
1227 struct nix_lf_alloc_req *nixlf;
1228 struct nix_lf_alloc_rsp *rsp;
1229 int err;
1230
1231 pfvf->qset.xqe_size = pfvf->hw.xqe_size;
1232
1233 /* Get memory to put this msg */
1234 nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox);
1235 if (!nixlf)
1236 return -ENOMEM;
1237
1238 /* Set RQ/SQ/CQ counts */
1239 nixlf->rq_cnt = pfvf->hw.rx_queues;
1240 nixlf->sq_cnt = otx2_get_total_tx_queues(pfvf);
1241 nixlf->cq_cnt = pfvf->qset.cq_cnt;
1242 nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE;
1243 nixlf->rss_grps = MAX_RSS_GROUPS;
1244 nixlf->xqe_sz = pfvf->hw.xqe_size == 128 ? NIX_XQESZ_W16 : NIX_XQESZ_W64;
1245 /* We don't know absolute NPA LF idx attached.
1246 * AF will replace 'RVU_DEFAULT_PF_FUNC' with
1247 * NPA LF attached to this RVU PF/VF.
1248 */
1249 nixlf->npa_func = RVU_DEFAULT_PF_FUNC;
1250 /* Disable alignment pad, enable L2 length check,
1251 * enable L4 TCP/UDP checksum verification.
1252 */
1253 nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37);
1254
1255 err = otx2_sync_mbox_msg(&pfvf->mbox);
1256 if (err)
1257 return err;
1258
1259 rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0,
1260 &nixlf->hdr);
1261 if (IS_ERR(rsp))
1262 return PTR_ERR(rsp);
1263
1264 if (rsp->qints < 1)
1265 return -ENXIO;
1266
1267 return rsp->hdr.rc;
1268 }
1269
otx2_sq_free_sqbs(struct otx2_nic * pfvf)1270 void otx2_sq_free_sqbs(struct otx2_nic *pfvf)
1271 {
1272 struct otx2_qset *qset = &pfvf->qset;
1273 struct otx2_hw *hw = &pfvf->hw;
1274 struct otx2_snd_queue *sq;
1275 int sqb, qidx;
1276 u64 iova, pa;
1277
1278 for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) {
1279 sq = &qset->sq[qidx];
1280 if (!sq->sqb_ptrs)
1281 continue;
1282 for (sqb = 0; sqb < sq->sqb_count; sqb++) {
1283 if (!sq->sqb_ptrs[sqb])
1284 continue;
1285 iova = sq->sqb_ptrs[sqb];
1286 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1287 dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size,
1288 DMA_FROM_DEVICE,
1289 DMA_ATTR_SKIP_CPU_SYNC);
1290 put_page(virt_to_page(phys_to_virt(pa)));
1291 }
1292 sq->sqb_count = 0;
1293 }
1294 }
1295
otx2_free_bufs(struct otx2_nic * pfvf,struct otx2_pool * pool,u64 iova,int size)1296 void otx2_free_bufs(struct otx2_nic *pfvf, struct otx2_pool *pool,
1297 u64 iova, int size)
1298 {
1299 struct page *page;
1300 u64 pa;
1301
1302 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1303 page = virt_to_head_page(phys_to_virt(pa));
1304 if (pool->page_pool) {
1305 page_pool_put_full_page(pool->page_pool, page, true);
1306 } else if (pool->xsk_pool) {
1307 /* Note: No way of identifying xdp_buff */
1308 } else {
1309 dma_unmap_page_attrs(pfvf->dev, iova, size,
1310 DMA_FROM_DEVICE,
1311 DMA_ATTR_SKIP_CPU_SYNC);
1312
1313 put_page(page);
1314 }
1315 }
1316
otx2_free_aura_ptr(struct otx2_nic * pfvf,int type)1317 void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type)
1318 {
1319 int pool_id, pool_start = 0, pool_end = 0, size = 0;
1320 struct otx2_pool *pool;
1321 u64 iova;
1322 int idx;
1323
1324 if (type == AURA_NIX_SQ) {
1325 pool_start = otx2_get_pool_idx(pfvf, type, 0);
1326 pool_end = pool_start + pfvf->hw.sqpool_cnt;
1327 size = pfvf->hw.sqb_size;
1328 }
1329 if (type == AURA_NIX_RQ) {
1330 pool_start = otx2_get_pool_idx(pfvf, type, 0);
1331 pool_end = pfvf->hw.rqpool_cnt;
1332 size = pfvf->rbsize;
1333 }
1334
1335 /* Free SQB and RQB pointers from the aura pool */
1336 for (pool_id = pool_start; pool_id < pool_end; pool_id++) {
1337 pool = &pfvf->qset.pool[pool_id];
1338 iova = otx2_aura_allocptr(pfvf, pool_id);
1339 while (iova) {
1340 if (type == AURA_NIX_RQ)
1341 iova -= OTX2_HEAD_ROOM;
1342 otx2_free_bufs(pfvf, pool, iova, size);
1343 iova = otx2_aura_allocptr(pfvf, pool_id);
1344 }
1345
1346 for (idx = 0 ; idx < pool->xdp_cnt; idx++) {
1347 if (!pool->xdp[idx])
1348 continue;
1349
1350 xsk_buff_free(pool->xdp[idx]);
1351 }
1352 }
1353 }
1354
otx2_aura_pool_free(struct otx2_nic * pfvf)1355 void otx2_aura_pool_free(struct otx2_nic *pfvf)
1356 {
1357 struct otx2_pool *pool;
1358 int pool_id;
1359
1360 if (!pfvf->qset.pool)
1361 return;
1362
1363 for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) {
1364 pool = &pfvf->qset.pool[pool_id];
1365 qmem_free(pfvf->dev, pool->stack);
1366 qmem_free(pfvf->dev, pool->fc_addr);
1367 page_pool_destroy(pool->page_pool);
1368 devm_kfree(pfvf->dev, pool->xdp);
1369 pool->xsk_pool = NULL;
1370 }
1371 devm_kfree(pfvf->dev, pfvf->qset.pool);
1372 pfvf->qset.pool = NULL;
1373 }
1374
otx2_aura_init(struct otx2_nic * pfvf,int aura_id,int pool_id,int numptrs)1375 int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
1376 int pool_id, int numptrs)
1377 {
1378 struct npa_aq_enq_req *aq;
1379 struct otx2_pool *pool;
1380 int err;
1381
1382 pool = &pfvf->qset.pool[pool_id];
1383
1384 /* Allocate memory for HW to update Aura count.
1385 * Alloc one cache line, so that it fits all FC_STYPE modes.
1386 */
1387 if (!pool->fc_addr) {
1388 err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN);
1389 if (err)
1390 return err;
1391 }
1392
1393 /* Initialize this aura's context via AF */
1394 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1395 if (!aq) {
1396 /* Shared mbox memory buffer is full, flush it and retry */
1397 err = otx2_sync_mbox_msg(&pfvf->mbox);
1398 if (err)
1399 return err;
1400 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1401 if (!aq)
1402 return -ENOMEM;
1403 }
1404
1405 aq->aura_id = aura_id;
1406 /* Will be filled by AF with correct pool context address */
1407 aq->aura.pool_addr = pool_id;
1408 aq->aura.pool_caching = 1;
1409 aq->aura.shift = ilog2(numptrs) - 8;
1410 aq->aura.count = numptrs;
1411 aq->aura.limit = numptrs;
1412 aq->aura.avg_level = 255;
1413 aq->aura.ena = 1;
1414 aq->aura.fc_ena = 1;
1415 aq->aura.fc_addr = pool->fc_addr->iova;
1416 aq->aura.fc_hyst_bits = 0; /* Store count on all updates */
1417
1418 /* Enable backpressure for RQ aura */
1419 if (aura_id < pfvf->hw.rqpool_cnt && !is_otx2_lbkvf(pfvf->pdev)) {
1420 aq->aura.bp_ena = 0;
1421 /* If NIX1 LF is attached then specify NIX1_RX.
1422 *
1423 * Below NPA_AURA_S[BP_ENA] is set according to the
1424 * NPA_BPINTF_E enumeration given as:
1425 * 0x0 + a*0x1 where 'a' is 0 for NIX0_RX and 1 for NIX1_RX so
1426 * NIX0_RX is 0x0 + 0*0x1 = 0
1427 * NIX1_RX is 0x0 + 1*0x1 = 1
1428 * But in HRM it is given that
1429 * "NPA_AURA_S[BP_ENA](w1[33:32]) - Enable aura backpressure to
1430 * NIX-RX based on [BP] level. One bit per NIX-RX; index
1431 * enumerated by NPA_BPINTF_E."
1432 */
1433 if (pfvf->nix_blkaddr == BLKADDR_NIX1)
1434 aq->aura.bp_ena = 1;
1435 #ifdef CONFIG_DCB
1436 aq->aura.nix0_bpid = pfvf->bpid[pfvf->queue_to_pfc_map[aura_id]];
1437 #else
1438 aq->aura.nix0_bpid = pfvf->bpid[0];
1439 #endif
1440
1441 /* Set backpressure level for RQ's Aura */
1442 aq->aura.bp = RQ_BP_LVL_AURA;
1443 }
1444
1445 /* Fill AQ info */
1446 aq->ctype = NPA_AQ_CTYPE_AURA;
1447 aq->op = NPA_AQ_INSTOP_INIT;
1448
1449 return 0;
1450 }
1451
otx2_pool_init(struct otx2_nic * pfvf,u16 pool_id,int stack_pages,int numptrs,int buf_size,int type)1452 int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
1453 int stack_pages, int numptrs, int buf_size, int type)
1454 {
1455 struct page_pool_params pp_params = { 0 };
1456 struct xsk_buff_pool *xsk_pool;
1457 struct npa_aq_enq_req *aq;
1458 struct otx2_pool *pool;
1459 int err;
1460
1461 pool = &pfvf->qset.pool[pool_id];
1462 /* Alloc memory for stack which is used to store buffer pointers */
1463 err = qmem_alloc(pfvf->dev, &pool->stack,
1464 stack_pages, pfvf->hw.stack_pg_bytes);
1465 if (err)
1466 return err;
1467
1468 pool->rbsize = buf_size;
1469
1470 /* Initialize this pool's context via AF */
1471 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1472 if (!aq) {
1473 /* Shared mbox memory buffer is full, flush it and retry */
1474 err = otx2_sync_mbox_msg(&pfvf->mbox);
1475 if (err) {
1476 qmem_free(pfvf->dev, pool->stack);
1477 return err;
1478 }
1479 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1480 if (!aq) {
1481 qmem_free(pfvf->dev, pool->stack);
1482 return -ENOMEM;
1483 }
1484 }
1485
1486 aq->aura_id = pool_id;
1487 aq->pool.stack_base = pool->stack->iova;
1488 aq->pool.stack_caching = 1;
1489 aq->pool.ena = 1;
1490 aq->pool.buf_size = buf_size / 128;
1491 aq->pool.stack_max_pages = stack_pages;
1492 aq->pool.shift = ilog2(numptrs) - 8;
1493 aq->pool.ptr_start = 0;
1494 aq->pool.ptr_end = ~0ULL;
1495
1496 /* Fill AQ info */
1497 aq->ctype = NPA_AQ_CTYPE_POOL;
1498 aq->op = NPA_AQ_INSTOP_INIT;
1499
1500 if (type != AURA_NIX_RQ)
1501 return 0;
1502
1503 if (!test_bit(pool_id, pfvf->af_xdp_zc_qidx)) {
1504 pp_params.order = get_order(buf_size);
1505 pp_params.flags = PP_FLAG_DMA_MAP;
1506 pp_params.pool_size = min(OTX2_PAGE_POOL_SZ, numptrs);
1507 pp_params.nid = NUMA_NO_NODE;
1508 pp_params.dev = pfvf->dev;
1509 pp_params.dma_dir = DMA_FROM_DEVICE;
1510 pool->page_pool = page_pool_create(&pp_params);
1511 if (IS_ERR(pool->page_pool)) {
1512 netdev_err(pfvf->netdev, "Creation of page pool failed\n");
1513 return PTR_ERR(pool->page_pool);
1514 }
1515 return 0;
1516 }
1517
1518 /* Set XSK pool to support AF_XDP zero-copy */
1519 xsk_pool = xsk_get_pool_from_qid(pfvf->netdev, pool_id);
1520 if (xsk_pool) {
1521 pool->xsk_pool = xsk_pool;
1522 pool->xdp_cnt = numptrs;
1523 pool->xdp = devm_kcalloc(pfvf->dev,
1524 numptrs, sizeof(struct xdp_buff *), GFP_KERNEL);
1525 if (IS_ERR(pool->xdp)) {
1526 netdev_err(pfvf->netdev, "Creation of xsk pool failed\n");
1527 return PTR_ERR(pool->xdp);
1528 }
1529 }
1530
1531 return 0;
1532 }
1533
otx2_sq_aura_pool_init(struct otx2_nic * pfvf)1534 int otx2_sq_aura_pool_init(struct otx2_nic *pfvf)
1535 {
1536 int qidx, pool_id, stack_pages, num_sqbs;
1537 struct otx2_qset *qset = &pfvf->qset;
1538 struct otx2_hw *hw = &pfvf->hw;
1539 struct otx2_snd_queue *sq;
1540 struct otx2_pool *pool;
1541 dma_addr_t bufptr;
1542 int err, ptr;
1543
1544 /* Calculate number of SQBs needed.
1545 *
1546 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB.
1547 * Last SQE is used for pointing to next SQB.
1548 */
1549 num_sqbs = (hw->sqb_size / 128) - 1;
1550 num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs;
1551
1552 /* Get no of stack pages needed */
1553 stack_pages =
1554 (num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1555
1556 for (qidx = 0; qidx < hw->non_qos_queues; qidx++) {
1557 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1558 /* Initialize aura context */
1559 err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs);
1560 if (err)
1561 goto fail;
1562
1563 /* Initialize pool context */
1564 err = otx2_pool_init(pfvf, pool_id, stack_pages,
1565 num_sqbs, hw->sqb_size, AURA_NIX_SQ);
1566 if (err)
1567 goto fail;
1568 }
1569
1570 /* Flush accumulated messages */
1571 err = otx2_sync_mbox_msg(&pfvf->mbox);
1572 if (err)
1573 goto fail;
1574
1575 /* Allocate pointers and free them to aura/pool */
1576 for (qidx = 0; qidx < hw->non_qos_queues; qidx++) {
1577 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1578 pool = &pfvf->qset.pool[pool_id];
1579
1580 sq = &qset->sq[qidx];
1581 sq->sqb_count = 0;
1582 sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(*sq->sqb_ptrs), GFP_KERNEL);
1583 if (!sq->sqb_ptrs) {
1584 err = -ENOMEM;
1585 goto err_mem;
1586 }
1587
1588 for (ptr = 0; ptr < num_sqbs; ptr++) {
1589 err = otx2_alloc_rbuf(pfvf, pool, &bufptr, pool_id, ptr);
1590 if (err) {
1591 if (pool->xsk_pool) {
1592 ptr--;
1593 while (ptr >= 0) {
1594 xsk_buff_free(pool->xdp[ptr]);
1595 ptr--;
1596 }
1597 }
1598 goto err_mem;
1599 }
1600
1601 pfvf->hw_ops->aura_freeptr(pfvf, pool_id, bufptr);
1602 sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr;
1603 }
1604 }
1605
1606 err_mem:
1607 return err ? -ENOMEM : 0;
1608
1609 fail:
1610 otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1611 otx2_aura_pool_free(pfvf);
1612 return err;
1613 }
1614
otx2_rq_aura_pool_init(struct otx2_nic * pfvf)1615 int otx2_rq_aura_pool_init(struct otx2_nic *pfvf)
1616 {
1617 struct otx2_hw *hw = &pfvf->hw;
1618 int stack_pages, pool_id, rq;
1619 struct otx2_pool *pool;
1620 int err, ptr, num_ptrs;
1621 dma_addr_t bufptr;
1622
1623 num_ptrs = pfvf->qset.rqe_cnt;
1624
1625 stack_pages =
1626 (num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1627
1628 for (rq = 0; rq < hw->rx_queues; rq++) {
1629 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq);
1630 /* Initialize aura context */
1631 err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs);
1632 if (err)
1633 goto fail;
1634 }
1635 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1636 err = otx2_pool_init(pfvf, pool_id, stack_pages,
1637 num_ptrs, pfvf->rbsize, AURA_NIX_RQ);
1638 if (err)
1639 goto fail;
1640 }
1641
1642 /* Flush accumulated messages */
1643 err = otx2_sync_mbox_msg(&pfvf->mbox);
1644 if (err)
1645 goto fail;
1646
1647 /* Allocate pointers and free them to aura/pool */
1648 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1649 pool = &pfvf->qset.pool[pool_id];
1650
1651 for (ptr = 0; ptr < num_ptrs; ptr++) {
1652 err = otx2_alloc_rbuf(pfvf, pool, &bufptr, pool_id, ptr);
1653 if (err) {
1654 if (pool->xsk_pool) {
1655 while (ptr)
1656 xsk_buff_free(pool->xdp[--ptr]);
1657 }
1658 return -ENOMEM;
1659 }
1660
1661 pfvf->hw_ops->aura_freeptr(pfvf, pool_id,
1662 pool->xsk_pool ? bufptr :
1663 bufptr + OTX2_HEAD_ROOM);
1664 }
1665 }
1666 return 0;
1667 fail:
1668 otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1669 otx2_aura_pool_free(pfvf);
1670 return err;
1671 }
1672
otx2_config_npa(struct otx2_nic * pfvf)1673 int otx2_config_npa(struct otx2_nic *pfvf)
1674 {
1675 struct otx2_qset *qset = &pfvf->qset;
1676 struct npa_lf_alloc_req *npalf;
1677 struct otx2_hw *hw = &pfvf->hw;
1678 int aura_cnt;
1679
1680 /* Pool - Stack of free buffer pointers
1681 * Aura - Alloc/frees pointers from/to pool for NIX DMA.
1682 */
1683
1684 if (!hw->pool_cnt)
1685 return -EINVAL;
1686
1687 qset->pool = devm_kcalloc(pfvf->dev, hw->pool_cnt,
1688 sizeof(struct otx2_pool), GFP_KERNEL);
1689 if (!qset->pool)
1690 return -ENOMEM;
1691
1692 /* Get memory to put this msg */
1693 npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox);
1694 if (!npalf)
1695 return -ENOMEM;
1696
1697 /* Set aura and pool counts */
1698 npalf->nr_pools = hw->pool_cnt;
1699 aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt));
1700 npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1;
1701
1702 return otx2_sync_mbox_msg(&pfvf->mbox);
1703 }
1704
otx2_detach_resources(struct mbox * mbox)1705 int otx2_detach_resources(struct mbox *mbox)
1706 {
1707 struct rsrc_detach *detach;
1708
1709 mutex_lock(&mbox->lock);
1710 detach = otx2_mbox_alloc_msg_detach_resources(mbox);
1711 if (!detach) {
1712 mutex_unlock(&mbox->lock);
1713 return -ENOMEM;
1714 }
1715
1716 /* detach all */
1717 detach->partial = false;
1718
1719 /* Send detach request to AF */
1720 otx2_sync_mbox_msg(mbox);
1721 mutex_unlock(&mbox->lock);
1722 return 0;
1723 }
1724 EXPORT_SYMBOL(otx2_detach_resources);
1725
otx2_attach_npa_nix(struct otx2_nic * pfvf)1726 int otx2_attach_npa_nix(struct otx2_nic *pfvf)
1727 {
1728 struct rsrc_attach *attach;
1729 struct msg_req *msix;
1730 int err;
1731
1732 mutex_lock(&pfvf->mbox.lock);
1733 /* Get memory to put this msg */
1734 attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox);
1735 if (!attach) {
1736 mutex_unlock(&pfvf->mbox.lock);
1737 return -ENOMEM;
1738 }
1739
1740 attach->npalf = true;
1741 attach->nixlf = true;
1742
1743 /* Send attach request to AF */
1744 err = otx2_sync_mbox_msg(&pfvf->mbox);
1745 if (err) {
1746 mutex_unlock(&pfvf->mbox.lock);
1747 return err;
1748 }
1749
1750 pfvf->nix_blkaddr = BLKADDR_NIX0;
1751
1752 /* If the platform has two NIX blocks then LF may be
1753 * allocated from NIX1.
1754 */
1755 if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL)
1756 pfvf->nix_blkaddr = BLKADDR_NIX1;
1757
1758 /* Get NPA and NIX MSIX vector offsets */
1759 msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox);
1760 if (!msix) {
1761 mutex_unlock(&pfvf->mbox.lock);
1762 return -ENOMEM;
1763 }
1764
1765 err = otx2_sync_mbox_msg(&pfvf->mbox);
1766 if (err) {
1767 mutex_unlock(&pfvf->mbox.lock);
1768 return err;
1769 }
1770 mutex_unlock(&pfvf->mbox.lock);
1771
1772 if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID ||
1773 pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) {
1774 dev_err(pfvf->dev,
1775 "RVUPF: Invalid MSIX vector offset for NPA/NIX\n");
1776 return -EINVAL;
1777 }
1778
1779 return 0;
1780 }
1781 EXPORT_SYMBOL(otx2_attach_npa_nix);
1782
otx2_ctx_disable(struct mbox * mbox,int type,bool npa)1783 void otx2_ctx_disable(struct mbox *mbox, int type, bool npa)
1784 {
1785 struct hwctx_disable_req *req;
1786
1787 mutex_lock(&mbox->lock);
1788 /* Request AQ to disable this context */
1789 if (npa)
1790 req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox);
1791 else
1792 req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox);
1793
1794 if (!req) {
1795 mutex_unlock(&mbox->lock);
1796 return;
1797 }
1798
1799 req->ctype = type;
1800
1801 if (otx2_sync_mbox_msg(mbox))
1802 dev_err(mbox->pfvf->dev, "%s failed to disable context\n",
1803 __func__);
1804
1805 mutex_unlock(&mbox->lock);
1806 }
1807
otx2_nix_config_bp(struct otx2_nic * pfvf,bool enable)1808 int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable)
1809 {
1810 struct nix_bp_cfg_req *req;
1811
1812 if (enable)
1813 req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox);
1814 else
1815 req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox);
1816
1817 if (!req)
1818 return -ENOMEM;
1819
1820 req->chan_base = 0;
1821 if (otx2_is_pfc_enabled(pfvf)) {
1822 req->chan_cnt = IEEE_8021QAZ_MAX_TCS;
1823 req->bpid_per_chan = 1;
1824 } else {
1825 req->chan_cnt = 1;
1826 req->bpid_per_chan = 0;
1827 }
1828
1829 return otx2_sync_mbox_msg(&pfvf->mbox);
1830 }
1831 EXPORT_SYMBOL(otx2_nix_config_bp);
1832
otx2_nix_cpt_config_bp(struct otx2_nic * pfvf,bool enable)1833 int otx2_nix_cpt_config_bp(struct otx2_nic *pfvf, bool enable)
1834 {
1835 struct nix_bp_cfg_req *req;
1836
1837 if (enable)
1838 req = otx2_mbox_alloc_msg_nix_cpt_bp_enable(&pfvf->mbox);
1839 else
1840 req = otx2_mbox_alloc_msg_nix_cpt_bp_disable(&pfvf->mbox);
1841
1842 if (!req)
1843 return -ENOMEM;
1844
1845 req->chan_base = 0;
1846 if (otx2_is_pfc_enabled(pfvf)) {
1847 req->chan_cnt = IEEE_8021QAZ_MAX_TCS;
1848 req->bpid_per_chan = 1;
1849 } else {
1850 req->chan_cnt = 1;
1851 req->bpid_per_chan = 0;
1852 }
1853
1854 return otx2_sync_mbox_msg(&pfvf->mbox);
1855 }
1856 EXPORT_SYMBOL(otx2_nix_cpt_config_bp);
1857
1858 /* Mbox message handlers */
mbox_handler_cgx_stats(struct otx2_nic * pfvf,struct cgx_stats_rsp * rsp)1859 void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
1860 struct cgx_stats_rsp *rsp)
1861 {
1862 int id;
1863
1864 for (id = 0; id < CGX_RX_STATS_COUNT; id++)
1865 pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id];
1866 for (id = 0; id < CGX_TX_STATS_COUNT; id++)
1867 pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id];
1868 }
1869
mbox_handler_cgx_fec_stats(struct otx2_nic * pfvf,struct cgx_fec_stats_rsp * rsp)1870 void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf,
1871 struct cgx_fec_stats_rsp *rsp)
1872 {
1873 pfvf->hw.cgx_fec_corr_blks += rsp->fec_corr_blks;
1874 pfvf->hw.cgx_fec_uncorr_blks += rsp->fec_uncorr_blks;
1875 }
1876
mbox_handler_npa_lf_alloc(struct otx2_nic * pfvf,struct npa_lf_alloc_rsp * rsp)1877 void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
1878 struct npa_lf_alloc_rsp *rsp)
1879 {
1880 pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs;
1881 pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes;
1882 }
1883 EXPORT_SYMBOL(mbox_handler_npa_lf_alloc);
1884
mbox_handler_nix_lf_alloc(struct otx2_nic * pfvf,struct nix_lf_alloc_rsp * rsp)1885 void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
1886 struct nix_lf_alloc_rsp *rsp)
1887 {
1888 pfvf->hw.sqb_size = rsp->sqb_size;
1889 pfvf->hw.rx_chan_base = rsp->rx_chan_base;
1890 pfvf->hw.tx_chan_base = rsp->tx_chan_base;
1891 pfvf->hw.rx_chan_cnt = rsp->rx_chan_cnt;
1892 pfvf->hw.tx_chan_cnt = rsp->tx_chan_cnt;
1893 pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx;
1894 pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx;
1895 pfvf->hw.cgx_links = rsp->cgx_links;
1896 pfvf->hw.lbk_links = rsp->lbk_links;
1897 pfvf->hw.tx_link = rsp->tx_link;
1898 }
1899 EXPORT_SYMBOL(mbox_handler_nix_lf_alloc);
1900
mbox_handler_msix_offset(struct otx2_nic * pfvf,struct msix_offset_rsp * rsp)1901 void mbox_handler_msix_offset(struct otx2_nic *pfvf,
1902 struct msix_offset_rsp *rsp)
1903 {
1904 pfvf->hw.npa_msixoff = rsp->npa_msixoff;
1905 pfvf->hw.nix_msixoff = rsp->nix_msixoff;
1906 }
1907 EXPORT_SYMBOL(mbox_handler_msix_offset);
1908
mbox_handler_nix_bp_enable(struct otx2_nic * pfvf,struct nix_bp_cfg_rsp * rsp)1909 void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
1910 struct nix_bp_cfg_rsp *rsp)
1911 {
1912 int chan, chan_id;
1913
1914 for (chan = 0; chan < rsp->chan_cnt; chan++) {
1915 chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F);
1916 pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF;
1917 }
1918 }
1919 EXPORT_SYMBOL(mbox_handler_nix_bp_enable);
1920
otx2_free_cints(struct otx2_nic * pfvf,int n)1921 void otx2_free_cints(struct otx2_nic *pfvf, int n)
1922 {
1923 struct otx2_qset *qset = &pfvf->qset;
1924 struct otx2_hw *hw = &pfvf->hw;
1925 int irq, qidx;
1926
1927 for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1928 qidx < n;
1929 qidx++, irq++) {
1930 int vector = pci_irq_vector(pfvf->pdev, irq);
1931
1932 irq_set_affinity_hint(vector, NULL);
1933 free_cpumask_var(hw->affinity_mask[irq]);
1934 free_irq(vector, &qset->napi[qidx]);
1935 }
1936 }
1937 EXPORT_SYMBOL(otx2_free_cints);
1938
otx2_set_cints_affinity(struct otx2_nic * pfvf)1939 void otx2_set_cints_affinity(struct otx2_nic *pfvf)
1940 {
1941 struct otx2_hw *hw = &pfvf->hw;
1942 int vec, cpu, irq, cint;
1943
1944 vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1945 cpu = cpumask_first(cpu_online_mask);
1946
1947 /* CQ interrupts */
1948 for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) {
1949 if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL))
1950 return;
1951
1952 cpumask_set_cpu(cpu, hw->affinity_mask[vec]);
1953
1954 irq = pci_irq_vector(pfvf->pdev, vec);
1955 irq_set_affinity_hint(irq, hw->affinity_mask[vec]);
1956
1957 cpu = cpumask_next(cpu, cpu_online_mask);
1958 if (unlikely(cpu >= nr_cpu_ids))
1959 cpu = 0;
1960 }
1961 }
1962
get_dwrr_mtu(struct otx2_nic * pfvf,struct nix_hw_info * hw)1963 static u32 get_dwrr_mtu(struct otx2_nic *pfvf, struct nix_hw_info *hw)
1964 {
1965 if (is_otx2_lbkvf(pfvf->pdev)) {
1966 pfvf->hw.smq_link_type = SMQ_LINK_TYPE_LBK;
1967 return hw->lbk_dwrr_mtu;
1968 }
1969
1970 pfvf->hw.smq_link_type = SMQ_LINK_TYPE_RPM;
1971 return hw->rpm_dwrr_mtu;
1972 }
1973
otx2_get_max_mtu(struct otx2_nic * pfvf)1974 u16 otx2_get_max_mtu(struct otx2_nic *pfvf)
1975 {
1976 struct nix_hw_info *rsp;
1977 struct msg_req *req;
1978 u16 max_mtu;
1979 int rc;
1980
1981 mutex_lock(&pfvf->mbox.lock);
1982
1983 req = otx2_mbox_alloc_msg_nix_get_hw_info(&pfvf->mbox);
1984 if (!req) {
1985 rc = -ENOMEM;
1986 goto out;
1987 }
1988
1989 rc = otx2_sync_mbox_msg(&pfvf->mbox);
1990 if (!rc) {
1991 rsp = (struct nix_hw_info *)
1992 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
1993 if (IS_ERR(rsp)) {
1994 rc = PTR_ERR(rsp);
1995 goto out;
1996 }
1997
1998 /* HW counts VLAN insertion bytes (8 for double tag)
1999 * irrespective of whether SQE is requesting to insert VLAN
2000 * in the packet or not. Hence these 8 bytes have to be
2001 * discounted from max packet size otherwise HW will throw
2002 * SMQ errors
2003 */
2004 max_mtu = rsp->max_mtu - 8 - OTX2_ETH_HLEN;
2005
2006 /* Also save DWRR MTU, needed for DWRR weight calculation */
2007 pfvf->hw.dwrr_mtu = get_dwrr_mtu(pfvf, rsp);
2008 if (!pfvf->hw.dwrr_mtu)
2009 pfvf->hw.dwrr_mtu = 1;
2010 }
2011
2012 out:
2013 mutex_unlock(&pfvf->mbox.lock);
2014 if (rc) {
2015 dev_warn(pfvf->dev,
2016 "Failed to get MTU from hardware setting default value(1500)\n");
2017 max_mtu = 1500;
2018 }
2019 return max_mtu;
2020 }
2021 EXPORT_SYMBOL(otx2_get_max_mtu);
2022
otx2_handle_ntuple_tc_features(struct net_device * netdev,netdev_features_t features)2023 int otx2_handle_ntuple_tc_features(struct net_device *netdev, netdev_features_t features)
2024 {
2025 netdev_features_t changed = features ^ netdev->features;
2026 struct otx2_nic *pfvf = netdev_priv(netdev);
2027 bool ntuple = !!(features & NETIF_F_NTUPLE);
2028 bool tc = !!(features & NETIF_F_HW_TC);
2029
2030 if ((changed & NETIF_F_NTUPLE) && !ntuple)
2031 otx2_destroy_ntuple_flows(pfvf);
2032
2033 if ((changed & NETIF_F_NTUPLE) && ntuple) {
2034 if (!pfvf->flow_cfg->max_flows) {
2035 netdev_err(netdev,
2036 "Can't enable NTUPLE, MCAM entries not allocated\n");
2037 return -EINVAL;
2038 }
2039 }
2040
2041 if ((changed & NETIF_F_HW_TC) && !tc &&
2042 otx2_tc_flower_rule_cnt(pfvf)) {
2043 netdev_err(netdev, "Can't disable TC hardware offload while flows are active\n");
2044 return -EBUSY;
2045 }
2046
2047 if ((changed & NETIF_F_NTUPLE) && ntuple &&
2048 otx2_tc_flower_rule_cnt(pfvf) && !(changed & NETIF_F_HW_TC)) {
2049 netdev_err(netdev,
2050 "Can't enable NTUPLE when TC flower offload is active, disable TC rules and retry\n");
2051 return -EINVAL;
2052 }
2053
2054 return 0;
2055 }
2056 EXPORT_SYMBOL(otx2_handle_ntuple_tc_features);
2057
2058 #define M(_name, _id, _fn_name, _req_type, _rsp_type) \
2059 int __weak \
2060 otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf, \
2061 struct _req_type *req, \
2062 struct _rsp_type *rsp) \
2063 { \
2064 /* Nothing to do here */ \
2065 return 0; \
2066 } \
2067 EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name);
2068 MBOX_UP_CGX_MESSAGES
2069 MBOX_UP_MCS_MESSAGES
2070 #undef M
2071
otx2_dma_map_skb_frag(struct otx2_nic * pfvf,struct sk_buff * skb,int seg,int * len)2072 dma_addr_t otx2_dma_map_skb_frag(struct otx2_nic *pfvf,
2073 struct sk_buff *skb, int seg, int *len)
2074 {
2075 enum dma_data_direction dir = DMA_TO_DEVICE;
2076 const skb_frag_t *frag;
2077 struct page *page;
2078 int offset;
2079
2080 /* Crypto hardware need write permission for ipsec crypto offload */
2081 if (unlikely(xfrm_offload(skb))) {
2082 dir = DMA_BIDIRECTIONAL;
2083 skb = skb_unshare(skb, GFP_ATOMIC);
2084 }
2085
2086 /* First segment is always skb->data */
2087 if (!seg) {
2088 page = virt_to_page(skb->data);
2089 offset = offset_in_page(skb->data);
2090 *len = skb_headlen(skb);
2091 } else {
2092 frag = &skb_shinfo(skb)->frags[seg - 1];
2093 page = skb_frag_page(frag);
2094 offset = skb_frag_off(frag);
2095 *len = skb_frag_size(frag);
2096 }
2097 return otx2_dma_map_page(pfvf, page, offset, *len, dir);
2098 }
2099
otx2_dma_unmap_skb_frags(struct otx2_nic * pfvf,struct sg_list * sg)2100 void otx2_dma_unmap_skb_frags(struct otx2_nic *pfvf, struct sg_list *sg)
2101 {
2102 enum dma_data_direction dir = DMA_TO_DEVICE;
2103 struct sk_buff *skb = NULL;
2104 int seg;
2105
2106 skb = (struct sk_buff *)sg->skb;
2107 if (unlikely(xfrm_offload(skb)))
2108 dir = DMA_BIDIRECTIONAL;
2109
2110 for (seg = 0; seg < sg->num_segs; seg++) {
2111 otx2_dma_unmap_page(pfvf, sg->dma_addr[seg],
2112 sg->size[seg], dir);
2113 }
2114 sg->num_segs = 0;
2115 }
2116