xref: /linux/net/sched/sch_taprio.c (revision 9410645520e9b820069761f3450ef6661418e279)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
4  *
5  * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8 
9 #include <linux/ethtool.h>
10 #include <linux/ethtool_netlink.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/string.h>
15 #include <linux/list.h>
16 #include <linux/errno.h>
17 #include <linux/skbuff.h>
18 #include <linux/math64.h>
19 #include <linux/module.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/time.h>
23 #include <net/gso.h>
24 #include <net/netlink.h>
25 #include <net/pkt_sched.h>
26 #include <net/pkt_cls.h>
27 #include <net/sch_generic.h>
28 #include <net/sock.h>
29 #include <net/tcp.h>
30 
31 #define TAPRIO_STAT_NOT_SET	(~0ULL)
32 
33 #include "sch_mqprio_lib.h"
34 
35 static LIST_HEAD(taprio_list);
36 static struct static_key_false taprio_have_broken_mqprio;
37 static struct static_key_false taprio_have_working_mqprio;
38 
39 #define TAPRIO_ALL_GATES_OPEN -1
40 
41 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
42 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
43 #define TAPRIO_SUPPORTED_FLAGS \
44 	(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
45 #define TAPRIO_FLAGS_INVALID U32_MAX
46 
47 struct sched_entry {
48 	/* Durations between this GCL entry and the GCL entry where the
49 	 * respective traffic class gate closes
50 	 */
51 	u64 gate_duration[TC_MAX_QUEUE];
52 	atomic_t budget[TC_MAX_QUEUE];
53 	/* The qdisc makes some effort so that no packet leaves
54 	 * after this time
55 	 */
56 	ktime_t gate_close_time[TC_MAX_QUEUE];
57 	struct list_head list;
58 	/* Used to calculate when to advance the schedule */
59 	ktime_t end_time;
60 	ktime_t next_txtime;
61 	int index;
62 	u32 gate_mask;
63 	u32 interval;
64 	u8 command;
65 };
66 
67 struct sched_gate_list {
68 	/* Longest non-zero contiguous gate durations per traffic class,
69 	 * or 0 if a traffic class gate never opens during the schedule.
70 	 */
71 	u64 max_open_gate_duration[TC_MAX_QUEUE];
72 	u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */
73 	u32 max_sdu[TC_MAX_QUEUE]; /* for dump */
74 	struct rcu_head rcu;
75 	struct list_head entries;
76 	size_t num_entries;
77 	ktime_t cycle_end_time;
78 	s64 cycle_time;
79 	s64 cycle_time_extension;
80 	s64 base_time;
81 };
82 
83 struct taprio_sched {
84 	struct Qdisc **qdiscs;
85 	struct Qdisc *root;
86 	u32 flags;
87 	enum tk_offsets tk_offset;
88 	int clockid;
89 	bool offloaded;
90 	bool detected_mqprio;
91 	bool broken_mqprio;
92 	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
93 				    * speeds it's sub-nanoseconds per byte
94 				    */
95 
96 	/* Protects the update side of the RCU protected current_entry */
97 	spinlock_t current_entry_lock;
98 	struct sched_entry __rcu *current_entry;
99 	struct sched_gate_list __rcu *oper_sched;
100 	struct sched_gate_list __rcu *admin_sched;
101 	struct hrtimer advance_timer;
102 	struct list_head taprio_list;
103 	int cur_txq[TC_MAX_QUEUE];
104 	u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */
105 	u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */
106 	u32 txtime_delay;
107 };
108 
109 struct __tc_taprio_qopt_offload {
110 	refcount_t users;
111 	struct tc_taprio_qopt_offload offload;
112 };
113 
taprio_calculate_gate_durations(struct taprio_sched * q,struct sched_gate_list * sched)114 static void taprio_calculate_gate_durations(struct taprio_sched *q,
115 					    struct sched_gate_list *sched)
116 {
117 	struct net_device *dev = qdisc_dev(q->root);
118 	int num_tc = netdev_get_num_tc(dev);
119 	struct sched_entry *entry, *cur;
120 	int tc;
121 
122 	list_for_each_entry(entry, &sched->entries, list) {
123 		u32 gates_still_open = entry->gate_mask;
124 
125 		/* For each traffic class, calculate each open gate duration,
126 		 * starting at this schedule entry and ending at the schedule
127 		 * entry containing a gate close event for that TC.
128 		 */
129 		cur = entry;
130 
131 		do {
132 			if (!gates_still_open)
133 				break;
134 
135 			for (tc = 0; tc < num_tc; tc++) {
136 				if (!(gates_still_open & BIT(tc)))
137 					continue;
138 
139 				if (cur->gate_mask & BIT(tc))
140 					entry->gate_duration[tc] += cur->interval;
141 				else
142 					gates_still_open &= ~BIT(tc);
143 			}
144 
145 			cur = list_next_entry_circular(cur, &sched->entries, list);
146 		} while (cur != entry);
147 
148 		/* Keep track of the maximum gate duration for each traffic
149 		 * class, taking care to not confuse a traffic class which is
150 		 * temporarily closed with one that is always closed.
151 		 */
152 		for (tc = 0; tc < num_tc; tc++)
153 			if (entry->gate_duration[tc] &&
154 			    sched->max_open_gate_duration[tc] < entry->gate_duration[tc])
155 				sched->max_open_gate_duration[tc] = entry->gate_duration[tc];
156 	}
157 }
158 
taprio_entry_allows_tx(ktime_t skb_end_time,struct sched_entry * entry,int tc)159 static bool taprio_entry_allows_tx(ktime_t skb_end_time,
160 				   struct sched_entry *entry, int tc)
161 {
162 	return ktime_before(skb_end_time, entry->gate_close_time[tc]);
163 }
164 
sched_base_time(const struct sched_gate_list * sched)165 static ktime_t sched_base_time(const struct sched_gate_list *sched)
166 {
167 	if (!sched)
168 		return KTIME_MAX;
169 
170 	return ns_to_ktime(sched->base_time);
171 }
172 
taprio_mono_to_any(const struct taprio_sched * q,ktime_t mono)173 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
174 {
175 	/* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
176 	enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
177 
178 	switch (tk_offset) {
179 	case TK_OFFS_MAX:
180 		return mono;
181 	default:
182 		return ktime_mono_to_any(mono, tk_offset);
183 	}
184 }
185 
taprio_get_time(const struct taprio_sched * q)186 static ktime_t taprio_get_time(const struct taprio_sched *q)
187 {
188 	return taprio_mono_to_any(q, ktime_get());
189 }
190 
taprio_free_sched_cb(struct rcu_head * head)191 static void taprio_free_sched_cb(struct rcu_head *head)
192 {
193 	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
194 	struct sched_entry *entry, *n;
195 
196 	list_for_each_entry_safe(entry, n, &sched->entries, list) {
197 		list_del(&entry->list);
198 		kfree(entry);
199 	}
200 
201 	kfree(sched);
202 }
203 
switch_schedules(struct taprio_sched * q,struct sched_gate_list ** admin,struct sched_gate_list ** oper)204 static void switch_schedules(struct taprio_sched *q,
205 			     struct sched_gate_list **admin,
206 			     struct sched_gate_list **oper)
207 {
208 	rcu_assign_pointer(q->oper_sched, *admin);
209 	rcu_assign_pointer(q->admin_sched, NULL);
210 
211 	if (*oper)
212 		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
213 
214 	*oper = *admin;
215 	*admin = NULL;
216 }
217 
218 /* Get how much time has been already elapsed in the current cycle. */
get_cycle_time_elapsed(struct sched_gate_list * sched,ktime_t time)219 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
220 {
221 	ktime_t time_since_sched_start;
222 	s32 time_elapsed;
223 
224 	time_since_sched_start = ktime_sub(time, sched->base_time);
225 	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
226 
227 	return time_elapsed;
228 }
229 
get_interval_end_time(struct sched_gate_list * sched,struct sched_gate_list * admin,struct sched_entry * entry,ktime_t intv_start)230 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
231 				     struct sched_gate_list *admin,
232 				     struct sched_entry *entry,
233 				     ktime_t intv_start)
234 {
235 	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
236 	ktime_t intv_end, cycle_ext_end, cycle_end;
237 
238 	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
239 	intv_end = ktime_add_ns(intv_start, entry->interval);
240 	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
241 
242 	if (ktime_before(intv_end, cycle_end))
243 		return intv_end;
244 	else if (admin && admin != sched &&
245 		 ktime_after(admin->base_time, cycle_end) &&
246 		 ktime_before(admin->base_time, cycle_ext_end))
247 		return admin->base_time;
248 	else
249 		return cycle_end;
250 }
251 
length_to_duration(struct taprio_sched * q,int len)252 static int length_to_duration(struct taprio_sched *q, int len)
253 {
254 	return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC);
255 }
256 
duration_to_length(struct taprio_sched * q,u64 duration)257 static int duration_to_length(struct taprio_sched *q, u64 duration)
258 {
259 	return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte));
260 }
261 
262 /* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the
263  * q->max_sdu[] requested by the user and the max_sdu dynamically determined by
264  * the maximum open gate durations at the given link speed.
265  */
taprio_update_queue_max_sdu(struct taprio_sched * q,struct sched_gate_list * sched,struct qdisc_size_table * stab)266 static void taprio_update_queue_max_sdu(struct taprio_sched *q,
267 					struct sched_gate_list *sched,
268 					struct qdisc_size_table *stab)
269 {
270 	struct net_device *dev = qdisc_dev(q->root);
271 	int num_tc = netdev_get_num_tc(dev);
272 	u32 max_sdu_from_user;
273 	u32 max_sdu_dynamic;
274 	u32 max_sdu;
275 	int tc;
276 
277 	for (tc = 0; tc < num_tc; tc++) {
278 		max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX;
279 
280 		/* TC gate never closes => keep the queueMaxSDU
281 		 * selected by the user
282 		 */
283 		if (sched->max_open_gate_duration[tc] == sched->cycle_time) {
284 			max_sdu_dynamic = U32_MAX;
285 		} else {
286 			u32 max_frm_len;
287 
288 			max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]);
289 			/* Compensate for L1 overhead from size table,
290 			 * but don't let the frame size go negative
291 			 */
292 			if (stab) {
293 				max_frm_len -= stab->szopts.overhead;
294 				max_frm_len = max_t(int, max_frm_len,
295 						    dev->hard_header_len + 1);
296 			}
297 			max_sdu_dynamic = max_frm_len - dev->hard_header_len;
298 			if (max_sdu_dynamic > dev->max_mtu)
299 				max_sdu_dynamic = U32_MAX;
300 		}
301 
302 		max_sdu = min(max_sdu_dynamic, max_sdu_from_user);
303 
304 		if (max_sdu != U32_MAX) {
305 			sched->max_frm_len[tc] = max_sdu + dev->hard_header_len;
306 			sched->max_sdu[tc] = max_sdu;
307 		} else {
308 			sched->max_frm_len[tc] = U32_MAX; /* never oversized */
309 			sched->max_sdu[tc] = 0;
310 		}
311 	}
312 }
313 
314 /* Returns the entry corresponding to next available interval. If
315  * validate_interval is set, it only validates whether the timestamp occurs
316  * when the gate corresponding to the skb's traffic class is open.
317  */
find_entry_to_transmit(struct sk_buff * skb,struct Qdisc * sch,struct sched_gate_list * sched,struct sched_gate_list * admin,ktime_t time,ktime_t * interval_start,ktime_t * interval_end,bool validate_interval)318 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
319 						  struct Qdisc *sch,
320 						  struct sched_gate_list *sched,
321 						  struct sched_gate_list *admin,
322 						  ktime_t time,
323 						  ktime_t *interval_start,
324 						  ktime_t *interval_end,
325 						  bool validate_interval)
326 {
327 	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
328 	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
329 	struct sched_entry *entry = NULL, *entry_found = NULL;
330 	struct taprio_sched *q = qdisc_priv(sch);
331 	struct net_device *dev = qdisc_dev(sch);
332 	bool entry_available = false;
333 	s32 cycle_elapsed;
334 	int tc, n;
335 
336 	tc = netdev_get_prio_tc_map(dev, skb->priority);
337 	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
338 
339 	*interval_start = 0;
340 	*interval_end = 0;
341 
342 	if (!sched)
343 		return NULL;
344 
345 	cycle = sched->cycle_time;
346 	cycle_elapsed = get_cycle_time_elapsed(sched, time);
347 	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
348 	cycle_end = ktime_add_ns(curr_intv_end, cycle);
349 
350 	list_for_each_entry(entry, &sched->entries, list) {
351 		curr_intv_start = curr_intv_end;
352 		curr_intv_end = get_interval_end_time(sched, admin, entry,
353 						      curr_intv_start);
354 
355 		if (ktime_after(curr_intv_start, cycle_end))
356 			break;
357 
358 		if (!(entry->gate_mask & BIT(tc)) ||
359 		    packet_transmit_time > entry->interval)
360 			continue;
361 
362 		txtime = entry->next_txtime;
363 
364 		if (ktime_before(txtime, time) || validate_interval) {
365 			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
366 			if ((ktime_before(curr_intv_start, time) &&
367 			     ktime_before(transmit_end_time, curr_intv_end)) ||
368 			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
369 				entry_found = entry;
370 				*interval_start = curr_intv_start;
371 				*interval_end = curr_intv_end;
372 				break;
373 			} else if (!entry_available && !validate_interval) {
374 				/* Here, we are just trying to find out the
375 				 * first available interval in the next cycle.
376 				 */
377 				entry_available = true;
378 				entry_found = entry;
379 				*interval_start = ktime_add_ns(curr_intv_start, cycle);
380 				*interval_end = ktime_add_ns(curr_intv_end, cycle);
381 			}
382 		} else if (ktime_before(txtime, earliest_txtime) &&
383 			   !entry_available) {
384 			earliest_txtime = txtime;
385 			entry_found = entry;
386 			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
387 			*interval_start = ktime_add(curr_intv_start, n * cycle);
388 			*interval_end = ktime_add(curr_intv_end, n * cycle);
389 		}
390 	}
391 
392 	return entry_found;
393 }
394 
is_valid_interval(struct sk_buff * skb,struct Qdisc * sch)395 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
396 {
397 	struct taprio_sched *q = qdisc_priv(sch);
398 	struct sched_gate_list *sched, *admin;
399 	ktime_t interval_start, interval_end;
400 	struct sched_entry *entry;
401 
402 	rcu_read_lock();
403 	sched = rcu_dereference(q->oper_sched);
404 	admin = rcu_dereference(q->admin_sched);
405 
406 	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
407 				       &interval_start, &interval_end, true);
408 	rcu_read_unlock();
409 
410 	return entry;
411 }
412 
413 /* This returns the tstamp value set by TCP in terms of the set clock. */
get_tcp_tstamp(struct taprio_sched * q,struct sk_buff * skb)414 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
415 {
416 	unsigned int offset = skb_network_offset(skb);
417 	const struct ipv6hdr *ipv6h;
418 	const struct iphdr *iph;
419 	struct ipv6hdr _ipv6h;
420 
421 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
422 	if (!ipv6h)
423 		return 0;
424 
425 	if (ipv6h->version == 4) {
426 		iph = (struct iphdr *)ipv6h;
427 		offset += iph->ihl * 4;
428 
429 		/* special-case 6in4 tunnelling, as that is a common way to get
430 		 * v6 connectivity in the home
431 		 */
432 		if (iph->protocol == IPPROTO_IPV6) {
433 			ipv6h = skb_header_pointer(skb, offset,
434 						   sizeof(_ipv6h), &_ipv6h);
435 
436 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
437 				return 0;
438 		} else if (iph->protocol != IPPROTO_TCP) {
439 			return 0;
440 		}
441 	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
442 		return 0;
443 	}
444 
445 	return taprio_mono_to_any(q, skb->skb_mstamp_ns);
446 }
447 
448 /* There are a few scenarios where we will have to modify the txtime from
449  * what is read from next_txtime in sched_entry. They are:
450  * 1. If txtime is in the past,
451  *    a. The gate for the traffic class is currently open and packet can be
452  *       transmitted before it closes, schedule the packet right away.
453  *    b. If the gate corresponding to the traffic class is going to open later
454  *       in the cycle, set the txtime of packet to the interval start.
455  * 2. If txtime is in the future, there are packets corresponding to the
456  *    current traffic class waiting to be transmitted. So, the following
457  *    possibilities exist:
458  *    a. We can transmit the packet before the window containing the txtime
459  *       closes.
460  *    b. The window might close before the transmission can be completed
461  *       successfully. So, schedule the packet in the next open window.
462  */
get_packet_txtime(struct sk_buff * skb,struct Qdisc * sch)463 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
464 {
465 	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
466 	struct taprio_sched *q = qdisc_priv(sch);
467 	struct sched_gate_list *sched, *admin;
468 	ktime_t minimum_time, now, txtime;
469 	int len, packet_transmit_time;
470 	struct sched_entry *entry;
471 	bool sched_changed;
472 
473 	now = taprio_get_time(q);
474 	minimum_time = ktime_add_ns(now, q->txtime_delay);
475 
476 	tcp_tstamp = get_tcp_tstamp(q, skb);
477 	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
478 
479 	rcu_read_lock();
480 	admin = rcu_dereference(q->admin_sched);
481 	sched = rcu_dereference(q->oper_sched);
482 	if (admin && ktime_after(minimum_time, admin->base_time))
483 		switch_schedules(q, &admin, &sched);
484 
485 	/* Until the schedule starts, all the queues are open */
486 	if (!sched || ktime_before(minimum_time, sched->base_time)) {
487 		txtime = minimum_time;
488 		goto done;
489 	}
490 
491 	len = qdisc_pkt_len(skb);
492 	packet_transmit_time = length_to_duration(q, len);
493 
494 	do {
495 		sched_changed = false;
496 
497 		entry = find_entry_to_transmit(skb, sch, sched, admin,
498 					       minimum_time,
499 					       &interval_start, &interval_end,
500 					       false);
501 		if (!entry) {
502 			txtime = 0;
503 			goto done;
504 		}
505 
506 		txtime = entry->next_txtime;
507 		txtime = max_t(ktime_t, txtime, minimum_time);
508 		txtime = max_t(ktime_t, txtime, interval_start);
509 
510 		if (admin && admin != sched &&
511 		    ktime_after(txtime, admin->base_time)) {
512 			sched = admin;
513 			sched_changed = true;
514 			continue;
515 		}
516 
517 		transmit_end_time = ktime_add(txtime, packet_transmit_time);
518 		minimum_time = transmit_end_time;
519 
520 		/* Update the txtime of current entry to the next time it's
521 		 * interval starts.
522 		 */
523 		if (ktime_after(transmit_end_time, interval_end))
524 			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
525 	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
526 
527 	entry->next_txtime = transmit_end_time;
528 
529 done:
530 	rcu_read_unlock();
531 	return txtime;
532 }
533 
534 /* Devices with full offload are expected to honor this in hardware */
taprio_skb_exceeds_queue_max_sdu(struct Qdisc * sch,struct sk_buff * skb)535 static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch,
536 					     struct sk_buff *skb)
537 {
538 	struct taprio_sched *q = qdisc_priv(sch);
539 	struct net_device *dev = qdisc_dev(sch);
540 	struct sched_gate_list *sched;
541 	int prio = skb->priority;
542 	bool exceeds = false;
543 	u8 tc;
544 
545 	tc = netdev_get_prio_tc_map(dev, prio);
546 
547 	rcu_read_lock();
548 	sched = rcu_dereference(q->oper_sched);
549 	if (sched && skb->len > sched->max_frm_len[tc])
550 		exceeds = true;
551 	rcu_read_unlock();
552 
553 	return exceeds;
554 }
555 
taprio_enqueue_one(struct sk_buff * skb,struct Qdisc * sch,struct Qdisc * child,struct sk_buff ** to_free)556 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
557 			      struct Qdisc *child, struct sk_buff **to_free)
558 {
559 	struct taprio_sched *q = qdisc_priv(sch);
560 
561 	/* sk_flags are only safe to use on full sockets. */
562 	if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
563 		if (!is_valid_interval(skb, sch))
564 			return qdisc_drop(skb, sch, to_free);
565 	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
566 		skb->tstamp = get_packet_txtime(skb, sch);
567 		if (!skb->tstamp)
568 			return qdisc_drop(skb, sch, to_free);
569 	}
570 
571 	qdisc_qstats_backlog_inc(sch, skb);
572 	sch->q.qlen++;
573 
574 	return qdisc_enqueue(skb, child, to_free);
575 }
576 
taprio_enqueue_segmented(struct sk_buff * skb,struct Qdisc * sch,struct Qdisc * child,struct sk_buff ** to_free)577 static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch,
578 				    struct Qdisc *child,
579 				    struct sk_buff **to_free)
580 {
581 	unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
582 	netdev_features_t features = netif_skb_features(skb);
583 	struct sk_buff *segs, *nskb;
584 	int ret;
585 
586 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
587 	if (IS_ERR_OR_NULL(segs))
588 		return qdisc_drop(skb, sch, to_free);
589 
590 	skb_list_walk_safe(segs, segs, nskb) {
591 		skb_mark_not_on_list(segs);
592 		qdisc_skb_cb(segs)->pkt_len = segs->len;
593 		slen += segs->len;
594 
595 		/* FIXME: we should be segmenting to a smaller size
596 		 * rather than dropping these
597 		 */
598 		if (taprio_skb_exceeds_queue_max_sdu(sch, segs))
599 			ret = qdisc_drop(segs, sch, to_free);
600 		else
601 			ret = taprio_enqueue_one(segs, sch, child, to_free);
602 
603 		if (ret != NET_XMIT_SUCCESS) {
604 			if (net_xmit_drop_count(ret))
605 				qdisc_qstats_drop(sch);
606 		} else {
607 			numsegs++;
608 		}
609 	}
610 
611 	if (numsegs > 1)
612 		qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
613 	consume_skb(skb);
614 
615 	return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
616 }
617 
618 /* Will not be called in the full offload case, since the TX queues are
619  * attached to the Qdisc created using qdisc_create_dflt()
620  */
taprio_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)621 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
622 			  struct sk_buff **to_free)
623 {
624 	struct taprio_sched *q = qdisc_priv(sch);
625 	struct Qdisc *child;
626 	int queue;
627 
628 	queue = skb_get_queue_mapping(skb);
629 
630 	child = q->qdiscs[queue];
631 	if (unlikely(!child))
632 		return qdisc_drop(skb, sch, to_free);
633 
634 	if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) {
635 		/* Large packets might not be transmitted when the transmission
636 		 * duration exceeds any configured interval. Therefore, segment
637 		 * the skb into smaller chunks. Drivers with full offload are
638 		 * expected to handle this in hardware.
639 		 */
640 		if (skb_is_gso(skb))
641 			return taprio_enqueue_segmented(skb, sch, child,
642 							to_free);
643 
644 		return qdisc_drop(skb, sch, to_free);
645 	}
646 
647 	return taprio_enqueue_one(skb, sch, child, to_free);
648 }
649 
taprio_peek(struct Qdisc * sch)650 static struct sk_buff *taprio_peek(struct Qdisc *sch)
651 {
652 	WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented");
653 	return NULL;
654 }
655 
taprio_set_budgets(struct taprio_sched * q,struct sched_gate_list * sched,struct sched_entry * entry)656 static void taprio_set_budgets(struct taprio_sched *q,
657 			       struct sched_gate_list *sched,
658 			       struct sched_entry *entry)
659 {
660 	struct net_device *dev = qdisc_dev(q->root);
661 	int num_tc = netdev_get_num_tc(dev);
662 	int tc, budget;
663 
664 	for (tc = 0; tc < num_tc; tc++) {
665 		/* Traffic classes which never close have infinite budget */
666 		if (entry->gate_duration[tc] == sched->cycle_time)
667 			budget = INT_MAX;
668 		else
669 			budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC,
670 					   atomic64_read(&q->picos_per_byte));
671 
672 		atomic_set(&entry->budget[tc], budget);
673 	}
674 }
675 
676 /* When an skb is sent, it consumes from the budget of all traffic classes */
taprio_update_budgets(struct sched_entry * entry,size_t len,int tc_consumed,int num_tc)677 static int taprio_update_budgets(struct sched_entry *entry, size_t len,
678 				 int tc_consumed, int num_tc)
679 {
680 	int tc, budget, new_budget = 0;
681 
682 	for (tc = 0; tc < num_tc; tc++) {
683 		budget = atomic_read(&entry->budget[tc]);
684 		/* Don't consume from infinite budget */
685 		if (budget == INT_MAX) {
686 			if (tc == tc_consumed)
687 				new_budget = budget;
688 			continue;
689 		}
690 
691 		if (tc == tc_consumed)
692 			new_budget = atomic_sub_return(len, &entry->budget[tc]);
693 		else
694 			atomic_sub(len, &entry->budget[tc]);
695 	}
696 
697 	return new_budget;
698 }
699 
taprio_dequeue_from_txq(struct Qdisc * sch,int txq,struct sched_entry * entry,u32 gate_mask)700 static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq,
701 					       struct sched_entry *entry,
702 					       u32 gate_mask)
703 {
704 	struct taprio_sched *q = qdisc_priv(sch);
705 	struct net_device *dev = qdisc_dev(sch);
706 	struct Qdisc *child = q->qdiscs[txq];
707 	int num_tc = netdev_get_num_tc(dev);
708 	struct sk_buff *skb;
709 	ktime_t guard;
710 	int prio;
711 	int len;
712 	u8 tc;
713 
714 	if (unlikely(!child))
715 		return NULL;
716 
717 	if (TXTIME_ASSIST_IS_ENABLED(q->flags))
718 		goto skip_peek_checks;
719 
720 	skb = child->ops->peek(child);
721 	if (!skb)
722 		return NULL;
723 
724 	prio = skb->priority;
725 	tc = netdev_get_prio_tc_map(dev, prio);
726 
727 	if (!(gate_mask & BIT(tc)))
728 		return NULL;
729 
730 	len = qdisc_pkt_len(skb);
731 	guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len));
732 
733 	/* In the case that there's no gate entry, there's no
734 	 * guard band ...
735 	 */
736 	if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
737 	    !taprio_entry_allows_tx(guard, entry, tc))
738 		return NULL;
739 
740 	/* ... and no budget. */
741 	if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
742 	    taprio_update_budgets(entry, len, tc, num_tc) < 0)
743 		return NULL;
744 
745 skip_peek_checks:
746 	skb = child->ops->dequeue(child);
747 	if (unlikely(!skb))
748 		return NULL;
749 
750 	qdisc_bstats_update(sch, skb);
751 	qdisc_qstats_backlog_dec(sch, skb);
752 	sch->q.qlen--;
753 
754 	return skb;
755 }
756 
taprio_next_tc_txq(struct net_device * dev,int tc,int * txq)757 static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq)
758 {
759 	int offset = dev->tc_to_txq[tc].offset;
760 	int count = dev->tc_to_txq[tc].count;
761 
762 	(*txq)++;
763 	if (*txq == offset + count)
764 		*txq = offset;
765 }
766 
767 /* Prioritize higher traffic classes, and select among TXQs belonging to the
768  * same TC using round robin
769  */
taprio_dequeue_tc_priority(struct Qdisc * sch,struct sched_entry * entry,u32 gate_mask)770 static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch,
771 						  struct sched_entry *entry,
772 						  u32 gate_mask)
773 {
774 	struct taprio_sched *q = qdisc_priv(sch);
775 	struct net_device *dev = qdisc_dev(sch);
776 	int num_tc = netdev_get_num_tc(dev);
777 	struct sk_buff *skb;
778 	int tc;
779 
780 	for (tc = num_tc - 1; tc >= 0; tc--) {
781 		int first_txq = q->cur_txq[tc];
782 
783 		if (!(gate_mask & BIT(tc)))
784 			continue;
785 
786 		do {
787 			skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc],
788 						      entry, gate_mask);
789 
790 			taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]);
791 
792 			if (q->cur_txq[tc] >= dev->num_tx_queues)
793 				q->cur_txq[tc] = first_txq;
794 
795 			if (skb)
796 				return skb;
797 		} while (q->cur_txq[tc] != first_txq);
798 	}
799 
800 	return NULL;
801 }
802 
803 /* Broken way of prioritizing smaller TXQ indices and ignoring the traffic
804  * class other than to determine whether the gate is open or not
805  */
taprio_dequeue_txq_priority(struct Qdisc * sch,struct sched_entry * entry,u32 gate_mask)806 static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch,
807 						   struct sched_entry *entry,
808 						   u32 gate_mask)
809 {
810 	struct net_device *dev = qdisc_dev(sch);
811 	struct sk_buff *skb;
812 	int i;
813 
814 	for (i = 0; i < dev->num_tx_queues; i++) {
815 		skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask);
816 		if (skb)
817 			return skb;
818 	}
819 
820 	return NULL;
821 }
822 
823 /* Will not be called in the full offload case, since the TX queues are
824  * attached to the Qdisc created using qdisc_create_dflt()
825  */
taprio_dequeue(struct Qdisc * sch)826 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
827 {
828 	struct taprio_sched *q = qdisc_priv(sch);
829 	struct sk_buff *skb = NULL;
830 	struct sched_entry *entry;
831 	u32 gate_mask;
832 
833 	rcu_read_lock();
834 	entry = rcu_dereference(q->current_entry);
835 	/* if there's no entry, it means that the schedule didn't
836 	 * start yet, so force all gates to be open, this is in
837 	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
838 	 * "AdminGateStates"
839 	 */
840 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
841 	if (!gate_mask)
842 		goto done;
843 
844 	if (static_branch_unlikely(&taprio_have_broken_mqprio) &&
845 	    !static_branch_likely(&taprio_have_working_mqprio)) {
846 		/* Single NIC kind which is broken */
847 		skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
848 	} else if (static_branch_likely(&taprio_have_working_mqprio) &&
849 		   !static_branch_unlikely(&taprio_have_broken_mqprio)) {
850 		/* Single NIC kind which prioritizes properly */
851 		skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
852 	} else {
853 		/* Mixed NIC kinds present in system, need dynamic testing */
854 		if (q->broken_mqprio)
855 			skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
856 		else
857 			skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
858 	}
859 
860 done:
861 	rcu_read_unlock();
862 
863 	return skb;
864 }
865 
should_restart_cycle(const struct sched_gate_list * oper,const struct sched_entry * entry)866 static bool should_restart_cycle(const struct sched_gate_list *oper,
867 				 const struct sched_entry *entry)
868 {
869 	if (list_is_last(&entry->list, &oper->entries))
870 		return true;
871 
872 	if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0)
873 		return true;
874 
875 	return false;
876 }
877 
should_change_schedules(const struct sched_gate_list * admin,const struct sched_gate_list * oper,ktime_t end_time)878 static bool should_change_schedules(const struct sched_gate_list *admin,
879 				    const struct sched_gate_list *oper,
880 				    ktime_t end_time)
881 {
882 	ktime_t next_base_time, extension_time;
883 
884 	if (!admin)
885 		return false;
886 
887 	next_base_time = sched_base_time(admin);
888 
889 	/* This is the simple case, the end_time would fall after
890 	 * the next schedule base_time.
891 	 */
892 	if (ktime_compare(next_base_time, end_time) <= 0)
893 		return true;
894 
895 	/* This is the cycle_time_extension case, if the end_time
896 	 * plus the amount that can be extended would fall after the
897 	 * next schedule base_time, we can extend the current schedule
898 	 * for that amount.
899 	 */
900 	extension_time = ktime_add_ns(end_time, oper->cycle_time_extension);
901 
902 	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
903 	 * how precisely the extension should be made. So after
904 	 * conformance testing, this logic may change.
905 	 */
906 	if (ktime_compare(next_base_time, extension_time) <= 0)
907 		return true;
908 
909 	return false;
910 }
911 
advance_sched(struct hrtimer * timer)912 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
913 {
914 	struct taprio_sched *q = container_of(timer, struct taprio_sched,
915 					      advance_timer);
916 	struct net_device *dev = qdisc_dev(q->root);
917 	struct sched_gate_list *oper, *admin;
918 	int num_tc = netdev_get_num_tc(dev);
919 	struct sched_entry *entry, *next;
920 	struct Qdisc *sch = q->root;
921 	ktime_t end_time;
922 	int tc;
923 
924 	spin_lock(&q->current_entry_lock);
925 	entry = rcu_dereference_protected(q->current_entry,
926 					  lockdep_is_held(&q->current_entry_lock));
927 	oper = rcu_dereference_protected(q->oper_sched,
928 					 lockdep_is_held(&q->current_entry_lock));
929 	admin = rcu_dereference_protected(q->admin_sched,
930 					  lockdep_is_held(&q->current_entry_lock));
931 
932 	if (!oper)
933 		switch_schedules(q, &admin, &oper);
934 
935 	/* This can happen in two cases: 1. this is the very first run
936 	 * of this function (i.e. we weren't running any schedule
937 	 * previously); 2. The previous schedule just ended. The first
938 	 * entry of all schedules are pre-calculated during the
939 	 * schedule initialization.
940 	 */
941 	if (unlikely(!entry || entry->end_time == oper->base_time)) {
942 		next = list_first_entry(&oper->entries, struct sched_entry,
943 					list);
944 		end_time = next->end_time;
945 		goto first_run;
946 	}
947 
948 	if (should_restart_cycle(oper, entry)) {
949 		next = list_first_entry(&oper->entries, struct sched_entry,
950 					list);
951 		oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time,
952 						    oper->cycle_time);
953 	} else {
954 		next = list_next_entry(entry, list);
955 	}
956 
957 	end_time = ktime_add_ns(entry->end_time, next->interval);
958 	end_time = min_t(ktime_t, end_time, oper->cycle_end_time);
959 
960 	for (tc = 0; tc < num_tc; tc++) {
961 		if (next->gate_duration[tc] == oper->cycle_time)
962 			next->gate_close_time[tc] = KTIME_MAX;
963 		else
964 			next->gate_close_time[tc] = ktime_add_ns(entry->end_time,
965 								 next->gate_duration[tc]);
966 	}
967 
968 	if (should_change_schedules(admin, oper, end_time)) {
969 		/* Set things so the next time this runs, the new
970 		 * schedule runs.
971 		 */
972 		end_time = sched_base_time(admin);
973 		switch_schedules(q, &admin, &oper);
974 	}
975 
976 	next->end_time = end_time;
977 	taprio_set_budgets(q, oper, next);
978 
979 first_run:
980 	rcu_assign_pointer(q->current_entry, next);
981 	spin_unlock(&q->current_entry_lock);
982 
983 	hrtimer_set_expires(&q->advance_timer, end_time);
984 
985 	rcu_read_lock();
986 	__netif_schedule(sch);
987 	rcu_read_unlock();
988 
989 	return HRTIMER_RESTART;
990 }
991 
992 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
993 	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
994 	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
995 	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
996 	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
997 };
998 
999 static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = {
1000 	[TCA_TAPRIO_TC_ENTRY_INDEX]	   = NLA_POLICY_MAX(NLA_U32,
1001 							    TC_QOPT_MAX_QUEUE),
1002 	[TCA_TAPRIO_TC_ENTRY_MAX_SDU]	   = { .type = NLA_U32 },
1003 	[TCA_TAPRIO_TC_ENTRY_FP]	   = NLA_POLICY_RANGE(NLA_U32,
1004 							      TC_FP_EXPRESS,
1005 							      TC_FP_PREEMPTIBLE),
1006 };
1007 
1008 static const struct netlink_range_validation_signed taprio_cycle_time_range = {
1009 	.min = 0,
1010 	.max = INT_MAX,
1011 };
1012 
1013 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
1014 	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
1015 		.len = sizeof(struct tc_mqprio_qopt)
1016 	},
1017 	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
1018 	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
1019 	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
1020 	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
1021 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           =
1022 		NLA_POLICY_FULL_RANGE_SIGNED(NLA_S64, &taprio_cycle_time_range),
1023 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
1024 	[TCA_TAPRIO_ATTR_FLAGS]                      =
1025 		NLA_POLICY_MASK(NLA_U32, TAPRIO_SUPPORTED_FLAGS),
1026 	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
1027 	[TCA_TAPRIO_ATTR_TC_ENTRY]		     = { .type = NLA_NESTED },
1028 };
1029 
fill_sched_entry(struct taprio_sched * q,struct nlattr ** tb,struct sched_entry * entry,struct netlink_ext_ack * extack)1030 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
1031 			    struct sched_entry *entry,
1032 			    struct netlink_ext_ack *extack)
1033 {
1034 	int min_duration = length_to_duration(q, ETH_ZLEN);
1035 	u32 interval = 0;
1036 
1037 	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
1038 		entry->command = nla_get_u8(
1039 			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
1040 
1041 	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
1042 		entry->gate_mask = nla_get_u32(
1043 			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
1044 
1045 	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
1046 		interval = nla_get_u32(
1047 			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
1048 
1049 	/* The interval should allow at least the minimum ethernet
1050 	 * frame to go out.
1051 	 */
1052 	if (interval < min_duration) {
1053 		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
1054 		return -EINVAL;
1055 	}
1056 
1057 	entry->interval = interval;
1058 
1059 	return 0;
1060 }
1061 
parse_sched_entry(struct taprio_sched * q,struct nlattr * n,struct sched_entry * entry,int index,struct netlink_ext_ack * extack)1062 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
1063 			     struct sched_entry *entry, int index,
1064 			     struct netlink_ext_ack *extack)
1065 {
1066 	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
1067 	int err;
1068 
1069 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
1070 					  entry_policy, NULL);
1071 	if (err < 0) {
1072 		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
1073 		return -EINVAL;
1074 	}
1075 
1076 	entry->index = index;
1077 
1078 	return fill_sched_entry(q, tb, entry, extack);
1079 }
1080 
parse_sched_list(struct taprio_sched * q,struct nlattr * list,struct sched_gate_list * sched,struct netlink_ext_ack * extack)1081 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
1082 			    struct sched_gate_list *sched,
1083 			    struct netlink_ext_ack *extack)
1084 {
1085 	struct nlattr *n;
1086 	int err, rem;
1087 	int i = 0;
1088 
1089 	if (!list)
1090 		return -EINVAL;
1091 
1092 	nla_for_each_nested(n, list, rem) {
1093 		struct sched_entry *entry;
1094 
1095 		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
1096 			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
1097 			continue;
1098 		}
1099 
1100 		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1101 		if (!entry) {
1102 			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
1103 			return -ENOMEM;
1104 		}
1105 
1106 		err = parse_sched_entry(q, n, entry, i, extack);
1107 		if (err < 0) {
1108 			kfree(entry);
1109 			return err;
1110 		}
1111 
1112 		list_add_tail(&entry->list, &sched->entries);
1113 		i++;
1114 	}
1115 
1116 	sched->num_entries = i;
1117 
1118 	return i;
1119 }
1120 
parse_taprio_schedule(struct taprio_sched * q,struct nlattr ** tb,struct sched_gate_list * new,struct netlink_ext_ack * extack)1121 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
1122 				 struct sched_gate_list *new,
1123 				 struct netlink_ext_ack *extack)
1124 {
1125 	int err = 0;
1126 
1127 	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
1128 		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
1129 		return -ENOTSUPP;
1130 	}
1131 
1132 	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
1133 		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
1134 
1135 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
1136 		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
1137 
1138 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
1139 		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
1140 
1141 	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
1142 		err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
1143 				       new, extack);
1144 	if (err < 0)
1145 		return err;
1146 
1147 	if (!new->cycle_time) {
1148 		struct sched_entry *entry;
1149 		ktime_t cycle = 0;
1150 
1151 		list_for_each_entry(entry, &new->entries, list)
1152 			cycle = ktime_add_ns(cycle, entry->interval);
1153 
1154 		if (cycle < 0 || cycle > INT_MAX) {
1155 			NL_SET_ERR_MSG(extack, "'cycle_time' is too big");
1156 			return -EINVAL;
1157 		}
1158 
1159 		new->cycle_time = cycle;
1160 	}
1161 
1162 	if (new->cycle_time < new->num_entries * length_to_duration(q, ETH_ZLEN)) {
1163 		NL_SET_ERR_MSG(extack, "'cycle_time' is too small");
1164 		return -EINVAL;
1165 	}
1166 
1167 	taprio_calculate_gate_durations(q, new);
1168 
1169 	return 0;
1170 }
1171 
taprio_parse_mqprio_opt(struct net_device * dev,struct tc_mqprio_qopt * qopt,struct netlink_ext_ack * extack,u32 taprio_flags)1172 static int taprio_parse_mqprio_opt(struct net_device *dev,
1173 				   struct tc_mqprio_qopt *qopt,
1174 				   struct netlink_ext_ack *extack,
1175 				   u32 taprio_flags)
1176 {
1177 	bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags);
1178 
1179 	if (!qopt) {
1180 		if (!dev->num_tc) {
1181 			NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
1182 			return -EINVAL;
1183 		}
1184 		return 0;
1185 	}
1186 
1187 	/* taprio imposes that traffic classes map 1:n to tx queues */
1188 	if (qopt->num_tc > dev->num_tx_queues) {
1189 		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
1190 		return -EINVAL;
1191 	}
1192 
1193 	/* For some reason, in txtime-assist mode, we allow TXQ ranges for
1194 	 * different TCs to overlap, and just validate the TXQ ranges.
1195 	 */
1196 	return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs,
1197 				    extack);
1198 }
1199 
taprio_get_start_time(struct Qdisc * sch,struct sched_gate_list * sched,ktime_t * start)1200 static int taprio_get_start_time(struct Qdisc *sch,
1201 				 struct sched_gate_list *sched,
1202 				 ktime_t *start)
1203 {
1204 	struct taprio_sched *q = qdisc_priv(sch);
1205 	ktime_t now, base, cycle;
1206 	s64 n;
1207 
1208 	base = sched_base_time(sched);
1209 	now = taprio_get_time(q);
1210 
1211 	if (ktime_after(base, now)) {
1212 		*start = base;
1213 		return 0;
1214 	}
1215 
1216 	cycle = sched->cycle_time;
1217 
1218 	/* The qdisc is expected to have at least one sched_entry.  Moreover,
1219 	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1220 	 * something went really wrong. In that case, we should warn about this
1221 	 * inconsistent state and return error.
1222 	 */
1223 	if (WARN_ON(!cycle))
1224 		return -EFAULT;
1225 
1226 	/* Schedule the start time for the beginning of the next
1227 	 * cycle.
1228 	 */
1229 	n = div64_s64(ktime_sub_ns(now, base), cycle);
1230 	*start = ktime_add_ns(base, (n + 1) * cycle);
1231 	return 0;
1232 }
1233 
setup_first_end_time(struct taprio_sched * q,struct sched_gate_list * sched,ktime_t base)1234 static void setup_first_end_time(struct taprio_sched *q,
1235 				 struct sched_gate_list *sched, ktime_t base)
1236 {
1237 	struct net_device *dev = qdisc_dev(q->root);
1238 	int num_tc = netdev_get_num_tc(dev);
1239 	struct sched_entry *first;
1240 	ktime_t cycle;
1241 	int tc;
1242 
1243 	first = list_first_entry(&sched->entries,
1244 				 struct sched_entry, list);
1245 
1246 	cycle = sched->cycle_time;
1247 
1248 	/* FIXME: find a better place to do this */
1249 	sched->cycle_end_time = ktime_add_ns(base, cycle);
1250 
1251 	first->end_time = ktime_add_ns(base, first->interval);
1252 	taprio_set_budgets(q, sched, first);
1253 
1254 	for (tc = 0; tc < num_tc; tc++) {
1255 		if (first->gate_duration[tc] == sched->cycle_time)
1256 			first->gate_close_time[tc] = KTIME_MAX;
1257 		else
1258 			first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]);
1259 	}
1260 
1261 	rcu_assign_pointer(q->current_entry, NULL);
1262 }
1263 
taprio_start_sched(struct Qdisc * sch,ktime_t start,struct sched_gate_list * new)1264 static void taprio_start_sched(struct Qdisc *sch,
1265 			       ktime_t start, struct sched_gate_list *new)
1266 {
1267 	struct taprio_sched *q = qdisc_priv(sch);
1268 	ktime_t expires;
1269 
1270 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1271 		return;
1272 
1273 	expires = hrtimer_get_expires(&q->advance_timer);
1274 	if (expires == 0)
1275 		expires = KTIME_MAX;
1276 
1277 	/* If the new schedule starts before the next expiration, we
1278 	 * reprogram it to the earliest one, so we change the admin
1279 	 * schedule to the operational one at the right time.
1280 	 */
1281 	start = min_t(ktime_t, start, expires);
1282 
1283 	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1284 }
1285 
taprio_set_picos_per_byte(struct net_device * dev,struct taprio_sched * q)1286 static void taprio_set_picos_per_byte(struct net_device *dev,
1287 				      struct taprio_sched *q)
1288 {
1289 	struct ethtool_link_ksettings ecmd;
1290 	int speed = SPEED_10;
1291 	int picos_per_byte;
1292 	int err;
1293 
1294 	err = __ethtool_get_link_ksettings(dev, &ecmd);
1295 	if (err < 0)
1296 		goto skip;
1297 
1298 	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1299 		speed = ecmd.base.speed;
1300 
1301 skip:
1302 	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1303 
1304 	atomic64_set(&q->picos_per_byte, picos_per_byte);
1305 	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1306 		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1307 		   ecmd.base.speed);
1308 }
1309 
taprio_dev_notifier(struct notifier_block * nb,unsigned long event,void * ptr)1310 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1311 			       void *ptr)
1312 {
1313 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1314 	struct sched_gate_list *oper, *admin;
1315 	struct qdisc_size_table *stab;
1316 	struct taprio_sched *q;
1317 
1318 	ASSERT_RTNL();
1319 
1320 	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1321 		return NOTIFY_DONE;
1322 
1323 	list_for_each_entry(q, &taprio_list, taprio_list) {
1324 		if (dev != qdisc_dev(q->root))
1325 			continue;
1326 
1327 		taprio_set_picos_per_byte(dev, q);
1328 
1329 		stab = rtnl_dereference(q->root->stab);
1330 
1331 		oper = rtnl_dereference(q->oper_sched);
1332 		if (oper)
1333 			taprio_update_queue_max_sdu(q, oper, stab);
1334 
1335 		admin = rtnl_dereference(q->admin_sched);
1336 		if (admin)
1337 			taprio_update_queue_max_sdu(q, admin, stab);
1338 
1339 		break;
1340 	}
1341 
1342 	return NOTIFY_DONE;
1343 }
1344 
setup_txtime(struct taprio_sched * q,struct sched_gate_list * sched,ktime_t base)1345 static void setup_txtime(struct taprio_sched *q,
1346 			 struct sched_gate_list *sched, ktime_t base)
1347 {
1348 	struct sched_entry *entry;
1349 	u64 interval = 0;
1350 
1351 	list_for_each_entry(entry, &sched->entries, list) {
1352 		entry->next_txtime = ktime_add_ns(base, interval);
1353 		interval += entry->interval;
1354 	}
1355 }
1356 
taprio_offload_alloc(int num_entries)1357 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1358 {
1359 	struct __tc_taprio_qopt_offload *__offload;
1360 
1361 	__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1362 			    GFP_KERNEL);
1363 	if (!__offload)
1364 		return NULL;
1365 
1366 	refcount_set(&__offload->users, 1);
1367 
1368 	return &__offload->offload;
1369 }
1370 
taprio_offload_get(struct tc_taprio_qopt_offload * offload)1371 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1372 						  *offload)
1373 {
1374 	struct __tc_taprio_qopt_offload *__offload;
1375 
1376 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1377 				 offload);
1378 
1379 	refcount_inc(&__offload->users);
1380 
1381 	return offload;
1382 }
1383 EXPORT_SYMBOL_GPL(taprio_offload_get);
1384 
taprio_offload_free(struct tc_taprio_qopt_offload * offload)1385 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1386 {
1387 	struct __tc_taprio_qopt_offload *__offload;
1388 
1389 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1390 				 offload);
1391 
1392 	if (!refcount_dec_and_test(&__offload->users))
1393 		return;
1394 
1395 	kfree(__offload);
1396 }
1397 EXPORT_SYMBOL_GPL(taprio_offload_free);
1398 
1399 /* The function will only serve to keep the pointers to the "oper" and "admin"
1400  * schedules valid in relation to their base times, so when calling dump() the
1401  * users looks at the right schedules.
1402  * When using full offload, the admin configuration is promoted to oper at the
1403  * base_time in the PHC time domain.  But because the system time is not
1404  * necessarily in sync with that, we can't just trigger a hrtimer to call
1405  * switch_schedules at the right hardware time.
1406  * At the moment we call this by hand right away from taprio, but in the future
1407  * it will be useful to create a mechanism for drivers to notify taprio of the
1408  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1409  * This is left as TODO.
1410  */
taprio_offload_config_changed(struct taprio_sched * q)1411 static void taprio_offload_config_changed(struct taprio_sched *q)
1412 {
1413 	struct sched_gate_list *oper, *admin;
1414 
1415 	oper = rtnl_dereference(q->oper_sched);
1416 	admin = rtnl_dereference(q->admin_sched);
1417 
1418 	switch_schedules(q, &admin, &oper);
1419 }
1420 
tc_map_to_queue_mask(struct net_device * dev,u32 tc_mask)1421 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1422 {
1423 	u32 i, queue_mask = 0;
1424 
1425 	for (i = 0; i < dev->num_tc; i++) {
1426 		u32 offset, count;
1427 
1428 		if (!(tc_mask & BIT(i)))
1429 			continue;
1430 
1431 		offset = dev->tc_to_txq[i].offset;
1432 		count = dev->tc_to_txq[i].count;
1433 
1434 		queue_mask |= GENMASK(offset + count - 1, offset);
1435 	}
1436 
1437 	return queue_mask;
1438 }
1439 
taprio_sched_to_offload(struct net_device * dev,struct sched_gate_list * sched,struct tc_taprio_qopt_offload * offload,const struct tc_taprio_caps * caps)1440 static void taprio_sched_to_offload(struct net_device *dev,
1441 				    struct sched_gate_list *sched,
1442 				    struct tc_taprio_qopt_offload *offload,
1443 				    const struct tc_taprio_caps *caps)
1444 {
1445 	struct sched_entry *entry;
1446 	int i = 0;
1447 
1448 	offload->base_time = sched->base_time;
1449 	offload->cycle_time = sched->cycle_time;
1450 	offload->cycle_time_extension = sched->cycle_time_extension;
1451 
1452 	list_for_each_entry(entry, &sched->entries, list) {
1453 		struct tc_taprio_sched_entry *e = &offload->entries[i];
1454 
1455 		e->command = entry->command;
1456 		e->interval = entry->interval;
1457 		if (caps->gate_mask_per_txq)
1458 			e->gate_mask = tc_map_to_queue_mask(dev,
1459 							    entry->gate_mask);
1460 		else
1461 			e->gate_mask = entry->gate_mask;
1462 
1463 		i++;
1464 	}
1465 
1466 	offload->num_entries = i;
1467 }
1468 
taprio_detect_broken_mqprio(struct taprio_sched * q)1469 static void taprio_detect_broken_mqprio(struct taprio_sched *q)
1470 {
1471 	struct net_device *dev = qdisc_dev(q->root);
1472 	struct tc_taprio_caps caps;
1473 
1474 	qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1475 				 &caps, sizeof(caps));
1476 
1477 	q->broken_mqprio = caps.broken_mqprio;
1478 	if (q->broken_mqprio)
1479 		static_branch_inc(&taprio_have_broken_mqprio);
1480 	else
1481 		static_branch_inc(&taprio_have_working_mqprio);
1482 
1483 	q->detected_mqprio = true;
1484 }
1485 
taprio_cleanup_broken_mqprio(struct taprio_sched * q)1486 static void taprio_cleanup_broken_mqprio(struct taprio_sched *q)
1487 {
1488 	if (!q->detected_mqprio)
1489 		return;
1490 
1491 	if (q->broken_mqprio)
1492 		static_branch_dec(&taprio_have_broken_mqprio);
1493 	else
1494 		static_branch_dec(&taprio_have_working_mqprio);
1495 }
1496 
taprio_enable_offload(struct net_device * dev,struct taprio_sched * q,struct sched_gate_list * sched,struct netlink_ext_ack * extack)1497 static int taprio_enable_offload(struct net_device *dev,
1498 				 struct taprio_sched *q,
1499 				 struct sched_gate_list *sched,
1500 				 struct netlink_ext_ack *extack)
1501 {
1502 	const struct net_device_ops *ops = dev->netdev_ops;
1503 	struct tc_taprio_qopt_offload *offload;
1504 	struct tc_taprio_caps caps;
1505 	int tc, err = 0;
1506 
1507 	if (!ops->ndo_setup_tc) {
1508 		NL_SET_ERR_MSG(extack,
1509 			       "Device does not support taprio offload");
1510 		return -EOPNOTSUPP;
1511 	}
1512 
1513 	qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1514 				 &caps, sizeof(caps));
1515 
1516 	if (!caps.supports_queue_max_sdu) {
1517 		for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
1518 			if (q->max_sdu[tc]) {
1519 				NL_SET_ERR_MSG_MOD(extack,
1520 						   "Device does not handle queueMaxSDU");
1521 				return -EOPNOTSUPP;
1522 			}
1523 		}
1524 	}
1525 
1526 	offload = taprio_offload_alloc(sched->num_entries);
1527 	if (!offload) {
1528 		NL_SET_ERR_MSG(extack,
1529 			       "Not enough memory for enabling offload mode");
1530 		return -ENOMEM;
1531 	}
1532 	offload->cmd = TAPRIO_CMD_REPLACE;
1533 	offload->extack = extack;
1534 	mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt);
1535 	offload->mqprio.extack = extack;
1536 	taprio_sched_to_offload(dev, sched, offload, &caps);
1537 	mqprio_fp_to_offload(q->fp, &offload->mqprio);
1538 
1539 	for (tc = 0; tc < TC_MAX_QUEUE; tc++)
1540 		offload->max_sdu[tc] = q->max_sdu[tc];
1541 
1542 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1543 	if (err < 0) {
1544 		NL_SET_ERR_MSG_WEAK(extack,
1545 				    "Device failed to setup taprio offload");
1546 		goto done;
1547 	}
1548 
1549 	q->offloaded = true;
1550 
1551 done:
1552 	/* The offload structure may linger around via a reference taken by the
1553 	 * device driver, so clear up the netlink extack pointer so that the
1554 	 * driver isn't tempted to dereference data which stopped being valid
1555 	 */
1556 	offload->extack = NULL;
1557 	offload->mqprio.extack = NULL;
1558 	taprio_offload_free(offload);
1559 
1560 	return err;
1561 }
1562 
taprio_disable_offload(struct net_device * dev,struct taprio_sched * q,struct netlink_ext_ack * extack)1563 static int taprio_disable_offload(struct net_device *dev,
1564 				  struct taprio_sched *q,
1565 				  struct netlink_ext_ack *extack)
1566 {
1567 	const struct net_device_ops *ops = dev->netdev_ops;
1568 	struct tc_taprio_qopt_offload *offload;
1569 	int err;
1570 
1571 	if (!q->offloaded)
1572 		return 0;
1573 
1574 	offload = taprio_offload_alloc(0);
1575 	if (!offload) {
1576 		NL_SET_ERR_MSG(extack,
1577 			       "Not enough memory to disable offload mode");
1578 		return -ENOMEM;
1579 	}
1580 	offload->cmd = TAPRIO_CMD_DESTROY;
1581 
1582 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1583 	if (err < 0) {
1584 		NL_SET_ERR_MSG(extack,
1585 			       "Device failed to disable offload");
1586 		goto out;
1587 	}
1588 
1589 	q->offloaded = false;
1590 
1591 out:
1592 	taprio_offload_free(offload);
1593 
1594 	return err;
1595 }
1596 
1597 /* If full offload is enabled, the only possible clockid is the net device's
1598  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1599  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1600  * in sync with the specified clockid via a user space daemon such as phc2sys.
1601  * For both software taprio and txtime-assist, the clockid is used for the
1602  * hrtimer that advances the schedule and hence mandatory.
1603  */
taprio_parse_clockid(struct Qdisc * sch,struct nlattr ** tb,struct netlink_ext_ack * extack)1604 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1605 				struct netlink_ext_ack *extack)
1606 {
1607 	struct taprio_sched *q = qdisc_priv(sch);
1608 	struct net_device *dev = qdisc_dev(sch);
1609 	int err = -EINVAL;
1610 
1611 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1612 		const struct ethtool_ops *ops = dev->ethtool_ops;
1613 		struct kernel_ethtool_ts_info info = {
1614 			.cmd = ETHTOOL_GET_TS_INFO,
1615 			.phc_index = -1,
1616 		};
1617 
1618 		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1619 			NL_SET_ERR_MSG(extack,
1620 				       "The 'clockid' cannot be specified for full offload");
1621 			goto out;
1622 		}
1623 
1624 		if (ops && ops->get_ts_info)
1625 			err = ops->get_ts_info(dev, &info);
1626 
1627 		if (err || info.phc_index < 0) {
1628 			NL_SET_ERR_MSG(extack,
1629 				       "Device does not have a PTP clock");
1630 			err = -ENOTSUPP;
1631 			goto out;
1632 		}
1633 	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1634 		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1635 		enum tk_offsets tk_offset;
1636 
1637 		/* We only support static clockids and we don't allow
1638 		 * for it to be modified after the first init.
1639 		 */
1640 		if (clockid < 0 ||
1641 		    (q->clockid != -1 && q->clockid != clockid)) {
1642 			NL_SET_ERR_MSG(extack,
1643 				       "Changing the 'clockid' of a running schedule is not supported");
1644 			err = -ENOTSUPP;
1645 			goto out;
1646 		}
1647 
1648 		switch (clockid) {
1649 		case CLOCK_REALTIME:
1650 			tk_offset = TK_OFFS_REAL;
1651 			break;
1652 		case CLOCK_MONOTONIC:
1653 			tk_offset = TK_OFFS_MAX;
1654 			break;
1655 		case CLOCK_BOOTTIME:
1656 			tk_offset = TK_OFFS_BOOT;
1657 			break;
1658 		case CLOCK_TAI:
1659 			tk_offset = TK_OFFS_TAI;
1660 			break;
1661 		default:
1662 			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1663 			err = -EINVAL;
1664 			goto out;
1665 		}
1666 		/* This pairs with READ_ONCE() in taprio_mono_to_any */
1667 		WRITE_ONCE(q->tk_offset, tk_offset);
1668 
1669 		q->clockid = clockid;
1670 	} else {
1671 		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1672 		goto out;
1673 	}
1674 
1675 	/* Everything went ok, return success. */
1676 	err = 0;
1677 
1678 out:
1679 	return err;
1680 }
1681 
taprio_parse_tc_entry(struct Qdisc * sch,struct nlattr * opt,u32 max_sdu[TC_QOPT_MAX_QUEUE],u32 fp[TC_QOPT_MAX_QUEUE],unsigned long * seen_tcs,struct netlink_ext_ack * extack)1682 static int taprio_parse_tc_entry(struct Qdisc *sch,
1683 				 struct nlattr *opt,
1684 				 u32 max_sdu[TC_QOPT_MAX_QUEUE],
1685 				 u32 fp[TC_QOPT_MAX_QUEUE],
1686 				 unsigned long *seen_tcs,
1687 				 struct netlink_ext_ack *extack)
1688 {
1689 	struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { };
1690 	struct net_device *dev = qdisc_dev(sch);
1691 	int err, tc;
1692 	u32 val;
1693 
1694 	err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt,
1695 			       taprio_tc_policy, extack);
1696 	if (err < 0)
1697 		return err;
1698 
1699 	if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) {
1700 		NL_SET_ERR_MSG_MOD(extack, "TC entry index missing");
1701 		return -EINVAL;
1702 	}
1703 
1704 	tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]);
1705 	if (tc >= TC_QOPT_MAX_QUEUE) {
1706 		NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range");
1707 		return -ERANGE;
1708 	}
1709 
1710 	if (*seen_tcs & BIT(tc)) {
1711 		NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry");
1712 		return -EINVAL;
1713 	}
1714 
1715 	*seen_tcs |= BIT(tc);
1716 
1717 	if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) {
1718 		val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]);
1719 		if (val > dev->max_mtu) {
1720 			NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU");
1721 			return -ERANGE;
1722 		}
1723 
1724 		max_sdu[tc] = val;
1725 	}
1726 
1727 	if (tb[TCA_TAPRIO_TC_ENTRY_FP])
1728 		fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]);
1729 
1730 	return 0;
1731 }
1732 
taprio_parse_tc_entries(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1733 static int taprio_parse_tc_entries(struct Qdisc *sch,
1734 				   struct nlattr *opt,
1735 				   struct netlink_ext_ack *extack)
1736 {
1737 	struct taprio_sched *q = qdisc_priv(sch);
1738 	struct net_device *dev = qdisc_dev(sch);
1739 	u32 max_sdu[TC_QOPT_MAX_QUEUE];
1740 	bool have_preemption = false;
1741 	unsigned long seen_tcs = 0;
1742 	u32 fp[TC_QOPT_MAX_QUEUE];
1743 	struct nlattr *n;
1744 	int tc, rem;
1745 	int err = 0;
1746 
1747 	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
1748 		max_sdu[tc] = q->max_sdu[tc];
1749 		fp[tc] = q->fp[tc];
1750 	}
1751 
1752 	nla_for_each_nested_type(n, TCA_TAPRIO_ATTR_TC_ENTRY, opt, rem) {
1753 		err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs,
1754 					    extack);
1755 		if (err)
1756 			return err;
1757 	}
1758 
1759 	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
1760 		q->max_sdu[tc] = max_sdu[tc];
1761 		q->fp[tc] = fp[tc];
1762 		if (fp[tc] != TC_FP_EXPRESS)
1763 			have_preemption = true;
1764 	}
1765 
1766 	if (have_preemption) {
1767 		if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1768 			NL_SET_ERR_MSG(extack,
1769 				       "Preemption only supported with full offload");
1770 			return -EOPNOTSUPP;
1771 		}
1772 
1773 		if (!ethtool_dev_mm_supported(dev)) {
1774 			NL_SET_ERR_MSG(extack,
1775 				       "Device does not support preemption");
1776 			return -EOPNOTSUPP;
1777 		}
1778 	}
1779 
1780 	return err;
1781 }
1782 
taprio_mqprio_cmp(const struct net_device * dev,const struct tc_mqprio_qopt * mqprio)1783 static int taprio_mqprio_cmp(const struct net_device *dev,
1784 			     const struct tc_mqprio_qopt *mqprio)
1785 {
1786 	int i;
1787 
1788 	if (!mqprio || mqprio->num_tc != dev->num_tc)
1789 		return -1;
1790 
1791 	for (i = 0; i < mqprio->num_tc; i++)
1792 		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1793 		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1794 			return -1;
1795 
1796 	for (i = 0; i <= TC_BITMASK; i++)
1797 		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1798 			return -1;
1799 
1800 	return 0;
1801 }
1802 
taprio_change(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1803 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1804 			 struct netlink_ext_ack *extack)
1805 {
1806 	struct qdisc_size_table *stab = rtnl_dereference(sch->stab);
1807 	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1808 	struct sched_gate_list *oper, *admin, *new_admin;
1809 	struct taprio_sched *q = qdisc_priv(sch);
1810 	struct net_device *dev = qdisc_dev(sch);
1811 	struct tc_mqprio_qopt *mqprio = NULL;
1812 	unsigned long flags;
1813 	u32 taprio_flags;
1814 	ktime_t start;
1815 	int i, err;
1816 
1817 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1818 					  taprio_policy, extack);
1819 	if (err < 0)
1820 		return err;
1821 
1822 	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1823 		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1824 
1825 	/* The semantics of the 'flags' argument in relation to 'change()'
1826 	 * requests, are interpreted following two rules (which are applied in
1827 	 * this order): (1) an omitted 'flags' argument is interpreted as
1828 	 * zero; (2) the 'flags' of a "running" taprio instance cannot be
1829 	 * changed.
1830 	 */
1831 	taprio_flags = tb[TCA_TAPRIO_ATTR_FLAGS] ? nla_get_u32(tb[TCA_TAPRIO_ATTR_FLAGS]) : 0;
1832 
1833 	/* txtime-assist and full offload are mutually exclusive */
1834 	if ((taprio_flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
1835 	    (taprio_flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) {
1836 		NL_SET_ERR_MSG_ATTR(extack, tb[TCA_TAPRIO_ATTR_FLAGS],
1837 				    "TXTIME_ASSIST and FULL_OFFLOAD are mutually exclusive");
1838 		return -EINVAL;
1839 	}
1840 
1841 	if (q->flags != TAPRIO_FLAGS_INVALID && q->flags != taprio_flags) {
1842 		NL_SET_ERR_MSG_MOD(extack,
1843 				   "Changing 'flags' of a running schedule is not supported");
1844 		return -EOPNOTSUPP;
1845 	}
1846 	q->flags = taprio_flags;
1847 
1848 	/* Needed for length_to_duration() during netlink attribute parsing */
1849 	taprio_set_picos_per_byte(dev, q);
1850 
1851 	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1852 	if (err < 0)
1853 		return err;
1854 
1855 	err = taprio_parse_tc_entries(sch, opt, extack);
1856 	if (err)
1857 		return err;
1858 
1859 	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1860 	if (!new_admin) {
1861 		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1862 		return -ENOMEM;
1863 	}
1864 	INIT_LIST_HEAD(&new_admin->entries);
1865 
1866 	oper = rtnl_dereference(q->oper_sched);
1867 	admin = rtnl_dereference(q->admin_sched);
1868 
1869 	/* no changes - no new mqprio settings */
1870 	if (!taprio_mqprio_cmp(dev, mqprio))
1871 		mqprio = NULL;
1872 
1873 	if (mqprio && (oper || admin)) {
1874 		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1875 		err = -ENOTSUPP;
1876 		goto free_sched;
1877 	}
1878 
1879 	if (mqprio) {
1880 		err = netdev_set_num_tc(dev, mqprio->num_tc);
1881 		if (err)
1882 			goto free_sched;
1883 		for (i = 0; i < mqprio->num_tc; i++) {
1884 			netdev_set_tc_queue(dev, i,
1885 					    mqprio->count[i],
1886 					    mqprio->offset[i]);
1887 			q->cur_txq[i] = mqprio->offset[i];
1888 		}
1889 
1890 		/* Always use supplied priority mappings */
1891 		for (i = 0; i <= TC_BITMASK; i++)
1892 			netdev_set_prio_tc_map(dev, i,
1893 					       mqprio->prio_tc_map[i]);
1894 	}
1895 
1896 	err = parse_taprio_schedule(q, tb, new_admin, extack);
1897 	if (err < 0)
1898 		goto free_sched;
1899 
1900 	if (new_admin->num_entries == 0) {
1901 		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1902 		err = -EINVAL;
1903 		goto free_sched;
1904 	}
1905 
1906 	err = taprio_parse_clockid(sch, tb, extack);
1907 	if (err < 0)
1908 		goto free_sched;
1909 
1910 	taprio_update_queue_max_sdu(q, new_admin, stab);
1911 
1912 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1913 		err = taprio_enable_offload(dev, q, new_admin, extack);
1914 	else
1915 		err = taprio_disable_offload(dev, q, extack);
1916 	if (err)
1917 		goto free_sched;
1918 
1919 	/* Protects against enqueue()/dequeue() */
1920 	spin_lock_bh(qdisc_lock(sch));
1921 
1922 	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1923 		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1924 			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1925 			err = -EINVAL;
1926 			goto unlock;
1927 		}
1928 
1929 		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1930 	}
1931 
1932 	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1933 	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1934 	    !hrtimer_active(&q->advance_timer)) {
1935 		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1936 		q->advance_timer.function = advance_sched;
1937 	}
1938 
1939 	err = taprio_get_start_time(sch, new_admin, &start);
1940 	if (err < 0) {
1941 		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1942 		goto unlock;
1943 	}
1944 
1945 	setup_txtime(q, new_admin, start);
1946 
1947 	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1948 		if (!oper) {
1949 			rcu_assign_pointer(q->oper_sched, new_admin);
1950 			err = 0;
1951 			new_admin = NULL;
1952 			goto unlock;
1953 		}
1954 
1955 		/* Not going to race against advance_sched(), but still */
1956 		admin = rcu_replace_pointer(q->admin_sched, new_admin,
1957 					    lockdep_rtnl_is_held());
1958 		if (admin)
1959 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1960 	} else {
1961 		setup_first_end_time(q, new_admin, start);
1962 
1963 		/* Protects against advance_sched() */
1964 		spin_lock_irqsave(&q->current_entry_lock, flags);
1965 
1966 		taprio_start_sched(sch, start, new_admin);
1967 
1968 		rcu_assign_pointer(q->admin_sched, new_admin);
1969 		if (admin)
1970 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1971 
1972 		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1973 
1974 		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1975 			taprio_offload_config_changed(q);
1976 	}
1977 
1978 	new_admin = NULL;
1979 	err = 0;
1980 
1981 	if (!stab)
1982 		NL_SET_ERR_MSG_MOD(extack,
1983 				   "Size table not specified, frame length estimations may be inaccurate");
1984 
1985 unlock:
1986 	spin_unlock_bh(qdisc_lock(sch));
1987 
1988 free_sched:
1989 	if (new_admin)
1990 		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1991 
1992 	return err;
1993 }
1994 
taprio_reset(struct Qdisc * sch)1995 static void taprio_reset(struct Qdisc *sch)
1996 {
1997 	struct taprio_sched *q = qdisc_priv(sch);
1998 	struct net_device *dev = qdisc_dev(sch);
1999 	int i;
2000 
2001 	hrtimer_cancel(&q->advance_timer);
2002 
2003 	if (q->qdiscs) {
2004 		for (i = 0; i < dev->num_tx_queues; i++)
2005 			if (q->qdiscs[i])
2006 				qdisc_reset(q->qdiscs[i]);
2007 	}
2008 }
2009 
taprio_destroy(struct Qdisc * sch)2010 static void taprio_destroy(struct Qdisc *sch)
2011 {
2012 	struct taprio_sched *q = qdisc_priv(sch);
2013 	struct net_device *dev = qdisc_dev(sch);
2014 	struct sched_gate_list *oper, *admin;
2015 	unsigned int i;
2016 
2017 	list_del(&q->taprio_list);
2018 
2019 	/* Note that taprio_reset() might not be called if an error
2020 	 * happens in qdisc_create(), after taprio_init() has been called.
2021 	 */
2022 	hrtimer_cancel(&q->advance_timer);
2023 	qdisc_synchronize(sch);
2024 
2025 	taprio_disable_offload(dev, q, NULL);
2026 
2027 	if (q->qdiscs) {
2028 		for (i = 0; i < dev->num_tx_queues; i++)
2029 			qdisc_put(q->qdiscs[i]);
2030 
2031 		kfree(q->qdiscs);
2032 	}
2033 	q->qdiscs = NULL;
2034 
2035 	netdev_reset_tc(dev);
2036 
2037 	oper = rtnl_dereference(q->oper_sched);
2038 	admin = rtnl_dereference(q->admin_sched);
2039 
2040 	if (oper)
2041 		call_rcu(&oper->rcu, taprio_free_sched_cb);
2042 
2043 	if (admin)
2044 		call_rcu(&admin->rcu, taprio_free_sched_cb);
2045 
2046 	taprio_cleanup_broken_mqprio(q);
2047 }
2048 
taprio_init(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)2049 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
2050 		       struct netlink_ext_ack *extack)
2051 {
2052 	struct taprio_sched *q = qdisc_priv(sch);
2053 	struct net_device *dev = qdisc_dev(sch);
2054 	int i, tc;
2055 
2056 	spin_lock_init(&q->current_entry_lock);
2057 
2058 	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
2059 	q->advance_timer.function = advance_sched;
2060 
2061 	q->root = sch;
2062 
2063 	/* We only support static clockids. Use an invalid value as default
2064 	 * and get the valid one on taprio_change().
2065 	 */
2066 	q->clockid = -1;
2067 	q->flags = TAPRIO_FLAGS_INVALID;
2068 
2069 	list_add(&q->taprio_list, &taprio_list);
2070 
2071 	if (sch->parent != TC_H_ROOT) {
2072 		NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc");
2073 		return -EOPNOTSUPP;
2074 	}
2075 
2076 	if (!netif_is_multiqueue(dev)) {
2077 		NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required");
2078 		return -EOPNOTSUPP;
2079 	}
2080 
2081 	q->qdiscs = kcalloc(dev->num_tx_queues, sizeof(q->qdiscs[0]),
2082 			    GFP_KERNEL);
2083 	if (!q->qdiscs)
2084 		return -ENOMEM;
2085 
2086 	if (!opt)
2087 		return -EINVAL;
2088 
2089 	for (i = 0; i < dev->num_tx_queues; i++) {
2090 		struct netdev_queue *dev_queue;
2091 		struct Qdisc *qdisc;
2092 
2093 		dev_queue = netdev_get_tx_queue(dev, i);
2094 		qdisc = qdisc_create_dflt(dev_queue,
2095 					  &pfifo_qdisc_ops,
2096 					  TC_H_MAKE(TC_H_MAJ(sch->handle),
2097 						    TC_H_MIN(i + 1)),
2098 					  extack);
2099 		if (!qdisc)
2100 			return -ENOMEM;
2101 
2102 		if (i < dev->real_num_tx_queues)
2103 			qdisc_hash_add(qdisc, false);
2104 
2105 		q->qdiscs[i] = qdisc;
2106 	}
2107 
2108 	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++)
2109 		q->fp[tc] = TC_FP_EXPRESS;
2110 
2111 	taprio_detect_broken_mqprio(q);
2112 
2113 	return taprio_change(sch, opt, extack);
2114 }
2115 
taprio_attach(struct Qdisc * sch)2116 static void taprio_attach(struct Qdisc *sch)
2117 {
2118 	struct taprio_sched *q = qdisc_priv(sch);
2119 	struct net_device *dev = qdisc_dev(sch);
2120 	unsigned int ntx;
2121 
2122 	/* Attach underlying qdisc */
2123 	for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
2124 		struct netdev_queue *dev_queue = netdev_get_tx_queue(dev, ntx);
2125 		struct Qdisc *old, *dev_queue_qdisc;
2126 
2127 		if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2128 			struct Qdisc *qdisc = q->qdiscs[ntx];
2129 
2130 			/* In offload mode, the root taprio qdisc is bypassed
2131 			 * and the netdev TX queues see the children directly
2132 			 */
2133 			qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
2134 			dev_queue_qdisc = qdisc;
2135 		} else {
2136 			/* In software mode, attach the root taprio qdisc
2137 			 * to all netdev TX queues, so that dev_qdisc_enqueue()
2138 			 * goes through taprio_enqueue().
2139 			 */
2140 			dev_queue_qdisc = sch;
2141 		}
2142 		old = dev_graft_qdisc(dev_queue, dev_queue_qdisc);
2143 		/* The qdisc's refcount requires to be elevated once
2144 		 * for each netdev TX queue it is grafted onto
2145 		 */
2146 		qdisc_refcount_inc(dev_queue_qdisc);
2147 		if (old)
2148 			qdisc_put(old);
2149 	}
2150 }
2151 
taprio_queue_get(struct Qdisc * sch,unsigned long cl)2152 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
2153 					     unsigned long cl)
2154 {
2155 	struct net_device *dev = qdisc_dev(sch);
2156 	unsigned long ntx = cl - 1;
2157 
2158 	if (ntx >= dev->num_tx_queues)
2159 		return NULL;
2160 
2161 	return netdev_get_tx_queue(dev, ntx);
2162 }
2163 
taprio_graft(struct Qdisc * sch,unsigned long cl,struct Qdisc * new,struct Qdisc ** old,struct netlink_ext_ack * extack)2164 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
2165 			struct Qdisc *new, struct Qdisc **old,
2166 			struct netlink_ext_ack *extack)
2167 {
2168 	struct taprio_sched *q = qdisc_priv(sch);
2169 	struct net_device *dev = qdisc_dev(sch);
2170 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2171 
2172 	if (!dev_queue)
2173 		return -EINVAL;
2174 
2175 	if (dev->flags & IFF_UP)
2176 		dev_deactivate(dev);
2177 
2178 	/* In offload mode, the child Qdisc is directly attached to the netdev
2179 	 * TX queue, and thus, we need to keep its refcount elevated in order
2180 	 * to counteract qdisc_graft()'s call to qdisc_put() once per TX queue.
2181 	 * However, save the reference to the new qdisc in the private array in
2182 	 * both software and offload cases, to have an up-to-date reference to
2183 	 * our children.
2184 	 */
2185 	*old = q->qdiscs[cl - 1];
2186 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2187 		WARN_ON_ONCE(dev_graft_qdisc(dev_queue, new) != *old);
2188 		if (new)
2189 			qdisc_refcount_inc(new);
2190 		if (*old)
2191 			qdisc_put(*old);
2192 	}
2193 
2194 	q->qdiscs[cl - 1] = new;
2195 	if (new)
2196 		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
2197 
2198 	if (dev->flags & IFF_UP)
2199 		dev_activate(dev);
2200 
2201 	return 0;
2202 }
2203 
dump_entry(struct sk_buff * msg,const struct sched_entry * entry)2204 static int dump_entry(struct sk_buff *msg,
2205 		      const struct sched_entry *entry)
2206 {
2207 	struct nlattr *item;
2208 
2209 	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
2210 	if (!item)
2211 		return -ENOSPC;
2212 
2213 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
2214 		goto nla_put_failure;
2215 
2216 	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
2217 		goto nla_put_failure;
2218 
2219 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
2220 			entry->gate_mask))
2221 		goto nla_put_failure;
2222 
2223 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
2224 			entry->interval))
2225 		goto nla_put_failure;
2226 
2227 	return nla_nest_end(msg, item);
2228 
2229 nla_put_failure:
2230 	nla_nest_cancel(msg, item);
2231 	return -1;
2232 }
2233 
dump_schedule(struct sk_buff * msg,const struct sched_gate_list * root)2234 static int dump_schedule(struct sk_buff *msg,
2235 			 const struct sched_gate_list *root)
2236 {
2237 	struct nlattr *entry_list;
2238 	struct sched_entry *entry;
2239 
2240 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
2241 			root->base_time, TCA_TAPRIO_PAD))
2242 		return -1;
2243 
2244 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
2245 			root->cycle_time, TCA_TAPRIO_PAD))
2246 		return -1;
2247 
2248 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
2249 			root->cycle_time_extension, TCA_TAPRIO_PAD))
2250 		return -1;
2251 
2252 	entry_list = nla_nest_start_noflag(msg,
2253 					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
2254 	if (!entry_list)
2255 		goto error_nest;
2256 
2257 	list_for_each_entry(entry, &root->entries, list) {
2258 		if (dump_entry(msg, entry) < 0)
2259 			goto error_nest;
2260 	}
2261 
2262 	nla_nest_end(msg, entry_list);
2263 	return 0;
2264 
2265 error_nest:
2266 	nla_nest_cancel(msg, entry_list);
2267 	return -1;
2268 }
2269 
taprio_dump_tc_entries(struct sk_buff * skb,struct taprio_sched * q,struct sched_gate_list * sched)2270 static int taprio_dump_tc_entries(struct sk_buff *skb,
2271 				  struct taprio_sched *q,
2272 				  struct sched_gate_list *sched)
2273 {
2274 	struct nlattr *n;
2275 	int tc;
2276 
2277 	for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
2278 		n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY);
2279 		if (!n)
2280 			return -EMSGSIZE;
2281 
2282 		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc))
2283 			goto nla_put_failure;
2284 
2285 		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU,
2286 				sched->max_sdu[tc]))
2287 			goto nla_put_failure;
2288 
2289 		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc]))
2290 			goto nla_put_failure;
2291 
2292 		nla_nest_end(skb, n);
2293 	}
2294 
2295 	return 0;
2296 
2297 nla_put_failure:
2298 	nla_nest_cancel(skb, n);
2299 	return -EMSGSIZE;
2300 }
2301 
taprio_put_stat(struct sk_buff * skb,u64 val,u16 attrtype)2302 static int taprio_put_stat(struct sk_buff *skb, u64 val, u16 attrtype)
2303 {
2304 	if (val == TAPRIO_STAT_NOT_SET)
2305 		return 0;
2306 	if (nla_put_u64_64bit(skb, attrtype, val, TCA_TAPRIO_OFFLOAD_STATS_PAD))
2307 		return -EMSGSIZE;
2308 	return 0;
2309 }
2310 
taprio_dump_xstats(struct Qdisc * sch,struct gnet_dump * d,struct tc_taprio_qopt_offload * offload,struct tc_taprio_qopt_stats * stats)2311 static int taprio_dump_xstats(struct Qdisc *sch, struct gnet_dump *d,
2312 			      struct tc_taprio_qopt_offload *offload,
2313 			      struct tc_taprio_qopt_stats *stats)
2314 {
2315 	struct net_device *dev = qdisc_dev(sch);
2316 	const struct net_device_ops *ops;
2317 	struct sk_buff *skb = d->skb;
2318 	struct nlattr *xstats;
2319 	int err;
2320 
2321 	ops = qdisc_dev(sch)->netdev_ops;
2322 
2323 	/* FIXME I could use qdisc_offload_dump_helper(), but that messes
2324 	 * with sch->flags depending on whether the device reports taprio
2325 	 * stats, and I'm not sure whether that's a good idea, considering
2326 	 * that stats are optional to the offload itself
2327 	 */
2328 	if (!ops->ndo_setup_tc)
2329 		return 0;
2330 
2331 	memset(stats, 0xff, sizeof(*stats));
2332 
2333 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
2334 	if (err == -EOPNOTSUPP)
2335 		return 0;
2336 	if (err)
2337 		return err;
2338 
2339 	xstats = nla_nest_start(skb, TCA_STATS_APP);
2340 	if (!xstats)
2341 		goto err;
2342 
2343 	if (taprio_put_stat(skb, stats->window_drops,
2344 			    TCA_TAPRIO_OFFLOAD_STATS_WINDOW_DROPS) ||
2345 	    taprio_put_stat(skb, stats->tx_overruns,
2346 			    TCA_TAPRIO_OFFLOAD_STATS_TX_OVERRUNS))
2347 		goto err_cancel;
2348 
2349 	nla_nest_end(skb, xstats);
2350 
2351 	return 0;
2352 
2353 err_cancel:
2354 	nla_nest_cancel(skb, xstats);
2355 err:
2356 	return -EMSGSIZE;
2357 }
2358 
taprio_dump_stats(struct Qdisc * sch,struct gnet_dump * d)2359 static int taprio_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2360 {
2361 	struct tc_taprio_qopt_offload offload = {
2362 		.cmd = TAPRIO_CMD_STATS,
2363 	};
2364 
2365 	return taprio_dump_xstats(sch, d, &offload, &offload.stats);
2366 }
2367 
taprio_dump(struct Qdisc * sch,struct sk_buff * skb)2368 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
2369 {
2370 	struct taprio_sched *q = qdisc_priv(sch);
2371 	struct net_device *dev = qdisc_dev(sch);
2372 	struct sched_gate_list *oper, *admin;
2373 	struct tc_mqprio_qopt opt = { 0 };
2374 	struct nlattr *nest, *sched_nest;
2375 
2376 	oper = rtnl_dereference(q->oper_sched);
2377 	admin = rtnl_dereference(q->admin_sched);
2378 
2379 	mqprio_qopt_reconstruct(dev, &opt);
2380 
2381 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
2382 	if (!nest)
2383 		goto start_error;
2384 
2385 	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
2386 		goto options_error;
2387 
2388 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
2389 	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
2390 		goto options_error;
2391 
2392 	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
2393 		goto options_error;
2394 
2395 	if (q->txtime_delay &&
2396 	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
2397 		goto options_error;
2398 
2399 	if (oper && taprio_dump_tc_entries(skb, q, oper))
2400 		goto options_error;
2401 
2402 	if (oper && dump_schedule(skb, oper))
2403 		goto options_error;
2404 
2405 	if (!admin)
2406 		goto done;
2407 
2408 	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
2409 	if (!sched_nest)
2410 		goto options_error;
2411 
2412 	if (dump_schedule(skb, admin))
2413 		goto admin_error;
2414 
2415 	nla_nest_end(skb, sched_nest);
2416 
2417 done:
2418 	return nla_nest_end(skb, nest);
2419 
2420 admin_error:
2421 	nla_nest_cancel(skb, sched_nest);
2422 
2423 options_error:
2424 	nla_nest_cancel(skb, nest);
2425 
2426 start_error:
2427 	return -ENOSPC;
2428 }
2429 
taprio_leaf(struct Qdisc * sch,unsigned long cl)2430 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
2431 {
2432 	struct taprio_sched *q = qdisc_priv(sch);
2433 	struct net_device *dev = qdisc_dev(sch);
2434 	unsigned int ntx = cl - 1;
2435 
2436 	if (ntx >= dev->num_tx_queues)
2437 		return NULL;
2438 
2439 	return q->qdiscs[ntx];
2440 }
2441 
taprio_find(struct Qdisc * sch,u32 classid)2442 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
2443 {
2444 	unsigned int ntx = TC_H_MIN(classid);
2445 
2446 	if (!taprio_queue_get(sch, ntx))
2447 		return 0;
2448 	return ntx;
2449 }
2450 
taprio_dump_class(struct Qdisc * sch,unsigned long cl,struct sk_buff * skb,struct tcmsg * tcm)2451 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
2452 			     struct sk_buff *skb, struct tcmsg *tcm)
2453 {
2454 	struct Qdisc *child = taprio_leaf(sch, cl);
2455 
2456 	tcm->tcm_parent = TC_H_ROOT;
2457 	tcm->tcm_handle |= TC_H_MIN(cl);
2458 	tcm->tcm_info = child->handle;
2459 
2460 	return 0;
2461 }
2462 
taprio_dump_class_stats(struct Qdisc * sch,unsigned long cl,struct gnet_dump * d)2463 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2464 				   struct gnet_dump *d)
2465 	__releases(d->lock)
2466 	__acquires(d->lock)
2467 {
2468 	struct Qdisc *child = taprio_leaf(sch, cl);
2469 	struct tc_taprio_qopt_offload offload = {
2470 		.cmd = TAPRIO_CMD_QUEUE_STATS,
2471 		.queue_stats = {
2472 			.queue = cl - 1,
2473 		},
2474 	};
2475 
2476 	if (gnet_stats_copy_basic(d, NULL, &child->bstats, true) < 0 ||
2477 	    qdisc_qstats_copy(d, child) < 0)
2478 		return -1;
2479 
2480 	return taprio_dump_xstats(sch, d, &offload, &offload.queue_stats.stats);
2481 }
2482 
taprio_walk(struct Qdisc * sch,struct qdisc_walker * arg)2483 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
2484 {
2485 	struct net_device *dev = qdisc_dev(sch);
2486 	unsigned long ntx;
2487 
2488 	if (arg->stop)
2489 		return;
2490 
2491 	arg->count = arg->skip;
2492 	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
2493 		if (!tc_qdisc_stats_dump(sch, ntx + 1, arg))
2494 			break;
2495 	}
2496 }
2497 
taprio_select_queue(struct Qdisc * sch,struct tcmsg * tcm)2498 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2499 						struct tcmsg *tcm)
2500 {
2501 	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2502 }
2503 
2504 static const struct Qdisc_class_ops taprio_class_ops = {
2505 	.graft		= taprio_graft,
2506 	.leaf		= taprio_leaf,
2507 	.find		= taprio_find,
2508 	.walk		= taprio_walk,
2509 	.dump		= taprio_dump_class,
2510 	.dump_stats	= taprio_dump_class_stats,
2511 	.select_queue	= taprio_select_queue,
2512 };
2513 
2514 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2515 	.cl_ops		= &taprio_class_ops,
2516 	.id		= "taprio",
2517 	.priv_size	= sizeof(struct taprio_sched),
2518 	.init		= taprio_init,
2519 	.change		= taprio_change,
2520 	.destroy	= taprio_destroy,
2521 	.reset		= taprio_reset,
2522 	.attach		= taprio_attach,
2523 	.peek		= taprio_peek,
2524 	.dequeue	= taprio_dequeue,
2525 	.enqueue	= taprio_enqueue,
2526 	.dump		= taprio_dump,
2527 	.dump_stats	= taprio_dump_stats,
2528 	.owner		= THIS_MODULE,
2529 };
2530 MODULE_ALIAS_NET_SCH("taprio");
2531 
2532 static struct notifier_block taprio_device_notifier = {
2533 	.notifier_call = taprio_dev_notifier,
2534 };
2535 
taprio_module_init(void)2536 static int __init taprio_module_init(void)
2537 {
2538 	int err = register_netdevice_notifier(&taprio_device_notifier);
2539 
2540 	if (err)
2541 		return err;
2542 
2543 	return register_qdisc(&taprio_qdisc_ops);
2544 }
2545 
taprio_module_exit(void)2546 static void __exit taprio_module_exit(void)
2547 {
2548 	unregister_qdisc(&taprio_qdisc_ops);
2549 	unregister_netdevice_notifier(&taprio_device_notifier);
2550 }
2551 
2552 module_init(taprio_module_init);
2553 module_exit(taprio_module_exit);
2554 MODULE_LICENSE("GPL");
2555 MODULE_DESCRIPTION("Time Aware Priority qdisc");
2556