1 // SPDX-License-Identifier: GPL-2.0
2 /* Maximum size of each resync request */
3 #define RESYNC_BLOCK_SIZE (64*1024)
4 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
5
6 /*
7 * Number of guaranteed raid bios in case of extreme VM load:
8 */
9 #define NR_RAID_BIOS 256
10
11 /* when we get a read error on a read-only array, we redirect to another
12 * device without failing the first device, or trying to over-write to
13 * correct the read error. To keep track of bad blocks on a per-bio
14 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
15 */
16 #define IO_BLOCKED ((struct bio *)1)
17 /* When we successfully write to a known bad-block, we need to remove the
18 * bad-block marking which must be done from process context. So we record
19 * the success by setting devs[n].bio to IO_MADE_GOOD
20 */
21 #define IO_MADE_GOOD ((struct bio *)2)
22
23 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
24 #define MAX_PLUG_BIO 32
25
26 /* for managing resync I/O pages */
27 struct resync_pages {
28 void *raid_bio;
29 struct page *pages[RESYNC_PAGES];
30 };
31
32 struct raid1_plug_cb {
33 struct blk_plug_cb cb;
34 struct bio_list pending;
35 unsigned int count;
36 };
37
rbio_pool_free(void * rbio,void * data)38 static void rbio_pool_free(void *rbio, void *data)
39 {
40 kfree(rbio);
41 }
42
resync_alloc_pages(struct resync_pages * rp,gfp_t gfp_flags)43 static inline int resync_alloc_pages(struct resync_pages *rp,
44 gfp_t gfp_flags)
45 {
46 int i;
47
48 for (i = 0; i < RESYNC_PAGES; i++) {
49 rp->pages[i] = alloc_page(gfp_flags);
50 if (!rp->pages[i])
51 goto out_free;
52 }
53
54 return 0;
55
56 out_free:
57 while (--i >= 0)
58 put_page(rp->pages[i]);
59 return -ENOMEM;
60 }
61
resync_free_pages(struct resync_pages * rp)62 static inline void resync_free_pages(struct resync_pages *rp)
63 {
64 int i;
65
66 for (i = 0; i < RESYNC_PAGES; i++)
67 put_page(rp->pages[i]);
68 }
69
resync_get_all_pages(struct resync_pages * rp)70 static inline void resync_get_all_pages(struct resync_pages *rp)
71 {
72 int i;
73
74 for (i = 0; i < RESYNC_PAGES; i++)
75 get_page(rp->pages[i]);
76 }
77
resync_fetch_page(struct resync_pages * rp,unsigned idx)78 static inline struct page *resync_fetch_page(struct resync_pages *rp,
79 unsigned idx)
80 {
81 if (WARN_ON_ONCE(idx >= RESYNC_PAGES))
82 return NULL;
83 return rp->pages[idx];
84 }
85
86 /*
87 * 'strct resync_pages' stores actual pages used for doing the resync
88 * IO, and it is per-bio, so make .bi_private points to it.
89 */
get_resync_pages(struct bio * bio)90 static inline struct resync_pages *get_resync_pages(struct bio *bio)
91 {
92 return bio->bi_private;
93 }
94
95 /* generally called after bio_reset() for reseting bvec */
md_bio_reset_resync_pages(struct bio * bio,struct resync_pages * rp,int size)96 static void md_bio_reset_resync_pages(struct bio *bio, struct resync_pages *rp,
97 int size)
98 {
99 int idx = 0;
100
101 /* initialize bvec table again */
102 do {
103 struct page *page = resync_fetch_page(rp, idx);
104 int len = min_t(int, size, PAGE_SIZE);
105
106 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
107 bio->bi_status = BLK_STS_RESOURCE;
108 bio_endio(bio);
109 return;
110 }
111
112 size -= len;
113 } while (idx++ < RESYNC_PAGES && size > 0);
114 }
115
116
raid1_submit_write(struct bio * bio)117 static inline void raid1_submit_write(struct bio *bio)
118 {
119 struct md_rdev *rdev = (void *)bio->bi_bdev;
120
121 bio->bi_next = NULL;
122 bio_set_dev(bio, rdev->bdev);
123 if (test_bit(Faulty, &rdev->flags))
124 bio_io_error(bio);
125 else if (unlikely(bio_op(bio) == REQ_OP_DISCARD &&
126 !bdev_max_discard_sectors(bio->bi_bdev)))
127 /* Just ignore it */
128 bio_endio(bio);
129 else
130 submit_bio_noacct(bio);
131 }
132
raid1_add_bio_to_plug(struct mddev * mddev,struct bio * bio,blk_plug_cb_fn unplug,int copies)133 static inline bool raid1_add_bio_to_plug(struct mddev *mddev, struct bio *bio,
134 blk_plug_cb_fn unplug, int copies)
135 {
136 struct raid1_plug_cb *plug = NULL;
137 struct blk_plug_cb *cb;
138
139 /*
140 * If bitmap is not enabled, it's safe to submit the io directly, and
141 * this can get optimal performance.
142 */
143 if (!mddev->bitmap_ops->enabled(mddev)) {
144 raid1_submit_write(bio);
145 return true;
146 }
147
148 cb = blk_check_plugged(unplug, mddev, sizeof(*plug));
149 if (!cb)
150 return false;
151
152 plug = container_of(cb, struct raid1_plug_cb, cb);
153 bio_list_add(&plug->pending, bio);
154 if (++plug->count / MAX_PLUG_BIO >= copies) {
155 list_del(&cb->list);
156 cb->callback(cb, false);
157 }
158
159
160 return true;
161 }
162
163 /*
164 * current->bio_list will be set under submit_bio() context, in this case bitmap
165 * io will be added to the list and wait for current io submission to finish,
166 * while current io submission must wait for bitmap io to be done. In order to
167 * avoid such deadlock, submit bitmap io asynchronously.
168 */
raid1_prepare_flush_writes(struct mddev * mddev)169 static inline void raid1_prepare_flush_writes(struct mddev *mddev)
170 {
171 mddev->bitmap_ops->unplug(mddev, current->bio_list == NULL);
172 }
173
174 /*
175 * Used by fix_read_error() to decay the per rdev read_errors.
176 * We halve the read error count for every hour that has elapsed
177 * since the last recorded read error.
178 */
check_decay_read_errors(struct mddev * mddev,struct md_rdev * rdev)179 static inline void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
180 {
181 long cur_time_mon;
182 unsigned long hours_since_last;
183 unsigned int read_errors = atomic_read(&rdev->read_errors);
184
185 cur_time_mon = ktime_get_seconds();
186
187 if (rdev->last_read_error == 0) {
188 /* first time we've seen a read error */
189 rdev->last_read_error = cur_time_mon;
190 return;
191 }
192
193 hours_since_last = (long)(cur_time_mon -
194 rdev->last_read_error) / 3600;
195
196 rdev->last_read_error = cur_time_mon;
197
198 /*
199 * if hours_since_last is > the number of bits in read_errors
200 * just set read errors to 0. We do this to avoid
201 * overflowing the shift of read_errors by hours_since_last.
202 */
203 if (hours_since_last >= 8 * sizeof(read_errors))
204 atomic_set(&rdev->read_errors, 0);
205 else
206 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
207 }
208
exceed_read_errors(struct mddev * mddev,struct md_rdev * rdev)209 static inline bool exceed_read_errors(struct mddev *mddev, struct md_rdev *rdev)
210 {
211 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
212 int read_errors;
213
214 check_decay_read_errors(mddev, rdev);
215 read_errors = atomic_inc_return(&rdev->read_errors);
216 if (read_errors > max_read_errors) {
217 pr_notice("md/"RAID_1_10_NAME":%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
218 mdname(mddev), rdev->bdev, read_errors, max_read_errors);
219 pr_notice("md/"RAID_1_10_NAME":%s: %pg: Failing raid device\n",
220 mdname(mddev), rdev->bdev);
221 md_error(mddev, rdev);
222 return true;
223 }
224
225 return false;
226 }
227
228 /**
229 * raid1_check_read_range() - check a given read range for bad blocks,
230 * available read length is returned;
231 * @rdev: the rdev to read;
232 * @this_sector: read position;
233 * @len: read length;
234 *
235 * helper function for read_balance()
236 *
237 * 1) If there are no bad blocks in the range, @len is returned;
238 * 2) If the range are all bad blocks, 0 is returned;
239 * 3) If there are partial bad blocks:
240 * - If the bad block range starts after @this_sector, the length of first
241 * good region is returned;
242 * - If the bad block range starts before @this_sector, 0 is returned and
243 * the @len is updated to the offset into the region before we get to the
244 * good blocks;
245 */
raid1_check_read_range(struct md_rdev * rdev,sector_t this_sector,int * len)246 static inline int raid1_check_read_range(struct md_rdev *rdev,
247 sector_t this_sector, int *len)
248 {
249 sector_t first_bad;
250 int bad_sectors;
251
252 /* no bad block overlap */
253 if (!is_badblock(rdev, this_sector, *len, &first_bad, &bad_sectors))
254 return *len;
255
256 /*
257 * bad block range starts offset into our range so we can return the
258 * number of sectors before the bad blocks start.
259 */
260 if (first_bad > this_sector)
261 return first_bad - this_sector;
262
263 /* read range is fully consumed by bad blocks. */
264 if (this_sector + *len <= first_bad + bad_sectors)
265 return 0;
266
267 /*
268 * final case, bad block range starts before or at the start of our
269 * range but does not cover our entire range so we still return 0 but
270 * update the length with the number of sectors before we get to the
271 * good ones.
272 */
273 *len = first_bad + bad_sectors - this_sector;
274 return 0;
275 }
276
277 /*
278 * Check if read should choose the first rdev.
279 *
280 * Balance on the whole device if no resync is going on (recovery is ok) or
281 * below the resync window. Otherwise, take the first readable disk.
282 */
raid1_should_read_first(struct mddev * mddev,sector_t this_sector,int len)283 static inline bool raid1_should_read_first(struct mddev *mddev,
284 sector_t this_sector, int len)
285 {
286 if ((mddev->recovery_cp < this_sector + len))
287 return true;
288
289 if (mddev_is_clustered(mddev) &&
290 md_cluster_ops->area_resyncing(mddev, READ, this_sector,
291 this_sector + len))
292 return true;
293
294 return false;
295 }
296