1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/rcupdate_wait.h>
21 #include <linux/swapops.h>
22 #include <linux/shmem_fs.h>
23 #include <linux/ksm.h>
24
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28 #include "mm_slot.h"
29
30 enum scan_result {
31 SCAN_FAIL,
32 SCAN_SUCCEED,
33 SCAN_PMD_NULL,
34 SCAN_PMD_NONE,
35 SCAN_PMD_MAPPED,
36 SCAN_EXCEED_NONE_PTE,
37 SCAN_EXCEED_SWAP_PTE,
38 SCAN_EXCEED_SHARED_PTE,
39 SCAN_PTE_NON_PRESENT,
40 SCAN_PTE_UFFD_WP,
41 SCAN_PTE_MAPPED_HUGEPAGE,
42 SCAN_PAGE_RO,
43 SCAN_LACK_REFERENCED_PAGE,
44 SCAN_PAGE_NULL,
45 SCAN_SCAN_ABORT,
46 SCAN_PAGE_COUNT,
47 SCAN_PAGE_LRU,
48 SCAN_PAGE_LOCK,
49 SCAN_PAGE_ANON,
50 SCAN_PAGE_COMPOUND,
51 SCAN_ANY_PROCESS,
52 SCAN_VMA_NULL,
53 SCAN_VMA_CHECK,
54 SCAN_ADDRESS_RANGE,
55 SCAN_DEL_PAGE_LRU,
56 SCAN_ALLOC_HUGE_PAGE_FAIL,
57 SCAN_CGROUP_CHARGE_FAIL,
58 SCAN_TRUNCATED,
59 SCAN_PAGE_HAS_PRIVATE,
60 SCAN_STORE_FAILED,
61 SCAN_COPY_MC,
62 SCAN_PAGE_FILLED,
63 };
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/huge_memory.h>
67
68 static struct task_struct *khugepaged_thread __read_mostly;
69 static DEFINE_MUTEX(khugepaged_mutex);
70
71 /* default scan 8*512 pte (or vmas) every 30 second */
72 static unsigned int khugepaged_pages_to_scan __read_mostly;
73 static unsigned int khugepaged_pages_collapsed;
74 static unsigned int khugepaged_full_scans;
75 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
76 /* during fragmentation poll the hugepage allocator once every minute */
77 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
78 static unsigned long khugepaged_sleep_expire;
79 static DEFINE_SPINLOCK(khugepaged_mm_lock);
80 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
81 /*
82 * default collapse hugepages if there is at least one pte mapped like
83 * it would have happened if the vma was large enough during page
84 * fault.
85 *
86 * Note that these are only respected if collapse was initiated by khugepaged.
87 */
88 unsigned int khugepaged_max_ptes_none __read_mostly;
89 static unsigned int khugepaged_max_ptes_swap __read_mostly;
90 static unsigned int khugepaged_max_ptes_shared __read_mostly;
91
92 #define MM_SLOTS_HASH_BITS 10
93 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
94
95 static struct kmem_cache *mm_slot_cache __ro_after_init;
96
97 struct collapse_control {
98 bool is_khugepaged;
99
100 /* Num pages scanned per node */
101 u32 node_load[MAX_NUMNODES];
102
103 /* nodemask for allocation fallback */
104 nodemask_t alloc_nmask;
105 };
106
107 /**
108 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
109 * @slot: hash lookup from mm to mm_slot
110 */
111 struct khugepaged_mm_slot {
112 struct mm_slot slot;
113 };
114
115 /**
116 * struct khugepaged_scan - cursor for scanning
117 * @mm_head: the head of the mm list to scan
118 * @mm_slot: the current mm_slot we are scanning
119 * @address: the next address inside that to be scanned
120 *
121 * There is only the one khugepaged_scan instance of this cursor structure.
122 */
123 struct khugepaged_scan {
124 struct list_head mm_head;
125 struct khugepaged_mm_slot *mm_slot;
126 unsigned long address;
127 };
128
129 static struct khugepaged_scan khugepaged_scan = {
130 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
131 };
132
133 #ifdef CONFIG_SYSFS
scan_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)134 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
135 struct kobj_attribute *attr,
136 char *buf)
137 {
138 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
139 }
140
scan_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)141 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
142 struct kobj_attribute *attr,
143 const char *buf, size_t count)
144 {
145 unsigned int msecs;
146 int err;
147
148 err = kstrtouint(buf, 10, &msecs);
149 if (err)
150 return -EINVAL;
151
152 khugepaged_scan_sleep_millisecs = msecs;
153 khugepaged_sleep_expire = 0;
154 wake_up_interruptible(&khugepaged_wait);
155
156 return count;
157 }
158 static struct kobj_attribute scan_sleep_millisecs_attr =
159 __ATTR_RW(scan_sleep_millisecs);
160
alloc_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)161 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
162 struct kobj_attribute *attr,
163 char *buf)
164 {
165 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
166 }
167
alloc_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)168 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
169 struct kobj_attribute *attr,
170 const char *buf, size_t count)
171 {
172 unsigned int msecs;
173 int err;
174
175 err = kstrtouint(buf, 10, &msecs);
176 if (err)
177 return -EINVAL;
178
179 khugepaged_alloc_sleep_millisecs = msecs;
180 khugepaged_sleep_expire = 0;
181 wake_up_interruptible(&khugepaged_wait);
182
183 return count;
184 }
185 static struct kobj_attribute alloc_sleep_millisecs_attr =
186 __ATTR_RW(alloc_sleep_millisecs);
187
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)188 static ssize_t pages_to_scan_show(struct kobject *kobj,
189 struct kobj_attribute *attr,
190 char *buf)
191 {
192 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
193 }
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)194 static ssize_t pages_to_scan_store(struct kobject *kobj,
195 struct kobj_attribute *attr,
196 const char *buf, size_t count)
197 {
198 unsigned int pages;
199 int err;
200
201 err = kstrtouint(buf, 10, &pages);
202 if (err || !pages)
203 return -EINVAL;
204
205 khugepaged_pages_to_scan = pages;
206
207 return count;
208 }
209 static struct kobj_attribute pages_to_scan_attr =
210 __ATTR_RW(pages_to_scan);
211
pages_collapsed_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)212 static ssize_t pages_collapsed_show(struct kobject *kobj,
213 struct kobj_attribute *attr,
214 char *buf)
215 {
216 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
217 }
218 static struct kobj_attribute pages_collapsed_attr =
219 __ATTR_RO(pages_collapsed);
220
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)221 static ssize_t full_scans_show(struct kobject *kobj,
222 struct kobj_attribute *attr,
223 char *buf)
224 {
225 return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
226 }
227 static struct kobj_attribute full_scans_attr =
228 __ATTR_RO(full_scans);
229
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)230 static ssize_t defrag_show(struct kobject *kobj,
231 struct kobj_attribute *attr, char *buf)
232 {
233 return single_hugepage_flag_show(kobj, attr, buf,
234 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
235 }
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)236 static ssize_t defrag_store(struct kobject *kobj,
237 struct kobj_attribute *attr,
238 const char *buf, size_t count)
239 {
240 return single_hugepage_flag_store(kobj, attr, buf, count,
241 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
242 }
243 static struct kobj_attribute khugepaged_defrag_attr =
244 __ATTR_RW(defrag);
245
246 /*
247 * max_ptes_none controls if khugepaged should collapse hugepages over
248 * any unmapped ptes in turn potentially increasing the memory
249 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
250 * reduce the available free memory in the system as it
251 * runs. Increasing max_ptes_none will instead potentially reduce the
252 * free memory in the system during the khugepaged scan.
253 */
max_ptes_none_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)254 static ssize_t max_ptes_none_show(struct kobject *kobj,
255 struct kobj_attribute *attr,
256 char *buf)
257 {
258 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
259 }
max_ptes_none_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)260 static ssize_t max_ptes_none_store(struct kobject *kobj,
261 struct kobj_attribute *attr,
262 const char *buf, size_t count)
263 {
264 int err;
265 unsigned long max_ptes_none;
266
267 err = kstrtoul(buf, 10, &max_ptes_none);
268 if (err || max_ptes_none > HPAGE_PMD_NR - 1)
269 return -EINVAL;
270
271 khugepaged_max_ptes_none = max_ptes_none;
272
273 return count;
274 }
275 static struct kobj_attribute khugepaged_max_ptes_none_attr =
276 __ATTR_RW(max_ptes_none);
277
max_ptes_swap_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)278 static ssize_t max_ptes_swap_show(struct kobject *kobj,
279 struct kobj_attribute *attr,
280 char *buf)
281 {
282 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
283 }
284
max_ptes_swap_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)285 static ssize_t max_ptes_swap_store(struct kobject *kobj,
286 struct kobj_attribute *attr,
287 const char *buf, size_t count)
288 {
289 int err;
290 unsigned long max_ptes_swap;
291
292 err = kstrtoul(buf, 10, &max_ptes_swap);
293 if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
294 return -EINVAL;
295
296 khugepaged_max_ptes_swap = max_ptes_swap;
297
298 return count;
299 }
300
301 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
302 __ATTR_RW(max_ptes_swap);
303
max_ptes_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)304 static ssize_t max_ptes_shared_show(struct kobject *kobj,
305 struct kobj_attribute *attr,
306 char *buf)
307 {
308 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
309 }
310
max_ptes_shared_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)311 static ssize_t max_ptes_shared_store(struct kobject *kobj,
312 struct kobj_attribute *attr,
313 const char *buf, size_t count)
314 {
315 int err;
316 unsigned long max_ptes_shared;
317
318 err = kstrtoul(buf, 10, &max_ptes_shared);
319 if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
320 return -EINVAL;
321
322 khugepaged_max_ptes_shared = max_ptes_shared;
323
324 return count;
325 }
326
327 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
328 __ATTR_RW(max_ptes_shared);
329
330 static struct attribute *khugepaged_attr[] = {
331 &khugepaged_defrag_attr.attr,
332 &khugepaged_max_ptes_none_attr.attr,
333 &khugepaged_max_ptes_swap_attr.attr,
334 &khugepaged_max_ptes_shared_attr.attr,
335 &pages_to_scan_attr.attr,
336 &pages_collapsed_attr.attr,
337 &full_scans_attr.attr,
338 &scan_sleep_millisecs_attr.attr,
339 &alloc_sleep_millisecs_attr.attr,
340 NULL,
341 };
342
343 struct attribute_group khugepaged_attr_group = {
344 .attrs = khugepaged_attr,
345 .name = "khugepaged",
346 };
347 #endif /* CONFIG_SYSFS */
348
hugepage_madvise(struct vm_area_struct * vma,unsigned long * vm_flags,int advice)349 int hugepage_madvise(struct vm_area_struct *vma,
350 unsigned long *vm_flags, int advice)
351 {
352 switch (advice) {
353 case MADV_HUGEPAGE:
354 #ifdef CONFIG_S390
355 /*
356 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
357 * can't handle this properly after s390_enable_sie, so we simply
358 * ignore the madvise to prevent qemu from causing a SIGSEGV.
359 */
360 if (mm_has_pgste(vma->vm_mm))
361 return 0;
362 #endif
363 *vm_flags &= ~VM_NOHUGEPAGE;
364 *vm_flags |= VM_HUGEPAGE;
365 /*
366 * If the vma become good for khugepaged to scan,
367 * register it here without waiting a page fault that
368 * may not happen any time soon.
369 */
370 khugepaged_enter_vma(vma, *vm_flags);
371 break;
372 case MADV_NOHUGEPAGE:
373 *vm_flags &= ~VM_HUGEPAGE;
374 *vm_flags |= VM_NOHUGEPAGE;
375 /*
376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377 * this vma even if we leave the mm registered in khugepaged if
378 * it got registered before VM_NOHUGEPAGE was set.
379 */
380 break;
381 }
382
383 return 0;
384 }
385
khugepaged_init(void)386 int __init khugepaged_init(void)
387 {
388 mm_slot_cache = KMEM_CACHE(khugepaged_mm_slot, 0);
389 if (!mm_slot_cache)
390 return -ENOMEM;
391
392 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
393 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
394 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
395 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
396
397 return 0;
398 }
399
khugepaged_destroy(void)400 void __init khugepaged_destroy(void)
401 {
402 kmem_cache_destroy(mm_slot_cache);
403 }
404
hpage_collapse_test_exit(struct mm_struct * mm)405 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
406 {
407 return atomic_read(&mm->mm_users) == 0;
408 }
409
hpage_collapse_test_exit_or_disable(struct mm_struct * mm)410 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm)
411 {
412 return hpage_collapse_test_exit(mm) ||
413 test_bit(MMF_DISABLE_THP, &mm->flags);
414 }
415
hugepage_pmd_enabled(void)416 static bool hugepage_pmd_enabled(void)
417 {
418 /*
419 * We cover both the anon and the file-backed case here; file-backed
420 * hugepages, when configured in, are determined by the global control.
421 * Anon pmd-sized hugepages are determined by the pmd-size control.
422 */
423 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
424 hugepage_global_enabled())
425 return true;
426 if (test_bit(PMD_ORDER, &huge_anon_orders_always))
427 return true;
428 if (test_bit(PMD_ORDER, &huge_anon_orders_madvise))
429 return true;
430 if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) &&
431 hugepage_global_enabled())
432 return true;
433 return false;
434 }
435
__khugepaged_enter(struct mm_struct * mm)436 void __khugepaged_enter(struct mm_struct *mm)
437 {
438 struct khugepaged_mm_slot *mm_slot;
439 struct mm_slot *slot;
440 int wakeup;
441
442 /* __khugepaged_exit() must not run from under us */
443 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
444 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags)))
445 return;
446
447 mm_slot = mm_slot_alloc(mm_slot_cache);
448 if (!mm_slot)
449 return;
450
451 slot = &mm_slot->slot;
452
453 spin_lock(&khugepaged_mm_lock);
454 mm_slot_insert(mm_slots_hash, mm, slot);
455 /*
456 * Insert just behind the scanning cursor, to let the area settle
457 * down a little.
458 */
459 wakeup = list_empty(&khugepaged_scan.mm_head);
460 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
461 spin_unlock(&khugepaged_mm_lock);
462
463 mmgrab(mm);
464 if (wakeup)
465 wake_up_interruptible(&khugepaged_wait);
466 }
467
khugepaged_enter_vma(struct vm_area_struct * vma,unsigned long vm_flags)468 void khugepaged_enter_vma(struct vm_area_struct *vma,
469 unsigned long vm_flags)
470 {
471 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
472 hugepage_pmd_enabled()) {
473 if (thp_vma_allowable_order(vma, vm_flags, TVA_ENFORCE_SYSFS,
474 PMD_ORDER))
475 __khugepaged_enter(vma->vm_mm);
476 }
477 }
478
__khugepaged_exit(struct mm_struct * mm)479 void __khugepaged_exit(struct mm_struct *mm)
480 {
481 struct khugepaged_mm_slot *mm_slot;
482 struct mm_slot *slot;
483 int free = 0;
484
485 spin_lock(&khugepaged_mm_lock);
486 slot = mm_slot_lookup(mm_slots_hash, mm);
487 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
488 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
489 hash_del(&slot->hash);
490 list_del(&slot->mm_node);
491 free = 1;
492 }
493 spin_unlock(&khugepaged_mm_lock);
494
495 if (free) {
496 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
497 mm_slot_free(mm_slot_cache, mm_slot);
498 mmdrop(mm);
499 } else if (mm_slot) {
500 /*
501 * This is required to serialize against
502 * hpage_collapse_test_exit() (which is guaranteed to run
503 * under mmap sem read mode). Stop here (after we return all
504 * pagetables will be destroyed) until khugepaged has finished
505 * working on the pagetables under the mmap_lock.
506 */
507 mmap_write_lock(mm);
508 mmap_write_unlock(mm);
509 }
510 }
511
release_pte_folio(struct folio * folio)512 static void release_pte_folio(struct folio *folio)
513 {
514 node_stat_mod_folio(folio,
515 NR_ISOLATED_ANON + folio_is_file_lru(folio),
516 -folio_nr_pages(folio));
517 folio_unlock(folio);
518 folio_putback_lru(folio);
519 }
520
release_pte_pages(pte_t * pte,pte_t * _pte,struct list_head * compound_pagelist)521 static void release_pte_pages(pte_t *pte, pte_t *_pte,
522 struct list_head *compound_pagelist)
523 {
524 struct folio *folio, *tmp;
525
526 while (--_pte >= pte) {
527 pte_t pteval = ptep_get(_pte);
528 unsigned long pfn;
529
530 if (pte_none(pteval))
531 continue;
532 pfn = pte_pfn(pteval);
533 if (is_zero_pfn(pfn))
534 continue;
535 folio = pfn_folio(pfn);
536 if (folio_test_large(folio))
537 continue;
538 release_pte_folio(folio);
539 }
540
541 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
542 list_del(&folio->lru);
543 release_pte_folio(folio);
544 }
545 }
546
is_refcount_suitable(struct folio * folio)547 static bool is_refcount_suitable(struct folio *folio)
548 {
549 int expected_refcount = folio_mapcount(folio);
550
551 if (!folio_test_anon(folio) || folio_test_swapcache(folio))
552 expected_refcount += folio_nr_pages(folio);
553
554 if (folio_test_private(folio))
555 expected_refcount++;
556
557 return folio_ref_count(folio) == expected_refcount;
558 }
559
__collapse_huge_page_isolate(struct vm_area_struct * vma,unsigned long address,pte_t * pte,struct collapse_control * cc,struct list_head * compound_pagelist)560 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
561 unsigned long address,
562 pte_t *pte,
563 struct collapse_control *cc,
564 struct list_head *compound_pagelist)
565 {
566 struct page *page = NULL;
567 struct folio *folio = NULL;
568 pte_t *_pte;
569 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
570 bool writable = false;
571
572 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
573 _pte++, address += PAGE_SIZE) {
574 pte_t pteval = ptep_get(_pte);
575 if (pte_none(pteval) || (pte_present(pteval) &&
576 is_zero_pfn(pte_pfn(pteval)))) {
577 ++none_or_zero;
578 if (!userfaultfd_armed(vma) &&
579 (!cc->is_khugepaged ||
580 none_or_zero <= khugepaged_max_ptes_none)) {
581 continue;
582 } else {
583 result = SCAN_EXCEED_NONE_PTE;
584 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
585 goto out;
586 }
587 }
588 if (!pte_present(pteval)) {
589 result = SCAN_PTE_NON_PRESENT;
590 goto out;
591 }
592 if (pte_uffd_wp(pteval)) {
593 result = SCAN_PTE_UFFD_WP;
594 goto out;
595 }
596 page = vm_normal_page(vma, address, pteval);
597 if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
598 result = SCAN_PAGE_NULL;
599 goto out;
600 }
601
602 folio = page_folio(page);
603 VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio);
604
605 /* See hpage_collapse_scan_pmd(). */
606 if (folio_likely_mapped_shared(folio)) {
607 ++shared;
608 if (cc->is_khugepaged &&
609 shared > khugepaged_max_ptes_shared) {
610 result = SCAN_EXCEED_SHARED_PTE;
611 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
612 goto out;
613 }
614 }
615
616 if (folio_test_large(folio)) {
617 struct folio *f;
618
619 /*
620 * Check if we have dealt with the compound page
621 * already
622 */
623 list_for_each_entry(f, compound_pagelist, lru) {
624 if (folio == f)
625 goto next;
626 }
627 }
628
629 /*
630 * We can do it before folio_isolate_lru because the
631 * folio can't be freed from under us. NOTE: PG_lock
632 * is needed to serialize against split_huge_page
633 * when invoked from the VM.
634 */
635 if (!folio_trylock(folio)) {
636 result = SCAN_PAGE_LOCK;
637 goto out;
638 }
639
640 /*
641 * Check if the page has any GUP (or other external) pins.
642 *
643 * The page table that maps the page has been already unlinked
644 * from the page table tree and this process cannot get
645 * an additional pin on the page.
646 *
647 * New pins can come later if the page is shared across fork,
648 * but not from this process. The other process cannot write to
649 * the page, only trigger CoW.
650 */
651 if (!is_refcount_suitable(folio)) {
652 folio_unlock(folio);
653 result = SCAN_PAGE_COUNT;
654 goto out;
655 }
656
657 /*
658 * Isolate the page to avoid collapsing an hugepage
659 * currently in use by the VM.
660 */
661 if (!folio_isolate_lru(folio)) {
662 folio_unlock(folio);
663 result = SCAN_DEL_PAGE_LRU;
664 goto out;
665 }
666 node_stat_mod_folio(folio,
667 NR_ISOLATED_ANON + folio_is_file_lru(folio),
668 folio_nr_pages(folio));
669 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
670 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
671
672 if (folio_test_large(folio))
673 list_add_tail(&folio->lru, compound_pagelist);
674 next:
675 /*
676 * If collapse was initiated by khugepaged, check that there is
677 * enough young pte to justify collapsing the page
678 */
679 if (cc->is_khugepaged &&
680 (pte_young(pteval) || folio_test_young(folio) ||
681 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
682 address)))
683 referenced++;
684
685 if (pte_write(pteval))
686 writable = true;
687 }
688
689 if (unlikely(!writable)) {
690 result = SCAN_PAGE_RO;
691 } else if (unlikely(cc->is_khugepaged && !referenced)) {
692 result = SCAN_LACK_REFERENCED_PAGE;
693 } else {
694 result = SCAN_SUCCEED;
695 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
696 referenced, writable, result);
697 return result;
698 }
699 out:
700 release_pte_pages(pte, _pte, compound_pagelist);
701 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
702 referenced, writable, result);
703 return result;
704 }
705
__collapse_huge_page_copy_succeeded(pte_t * pte,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl,struct list_head * compound_pagelist)706 static void __collapse_huge_page_copy_succeeded(pte_t *pte,
707 struct vm_area_struct *vma,
708 unsigned long address,
709 spinlock_t *ptl,
710 struct list_head *compound_pagelist)
711 {
712 struct folio *src, *tmp;
713 pte_t *_pte;
714 pte_t pteval;
715
716 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
717 _pte++, address += PAGE_SIZE) {
718 pteval = ptep_get(_pte);
719 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
720 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
721 if (is_zero_pfn(pte_pfn(pteval))) {
722 /*
723 * ptl mostly unnecessary.
724 */
725 spin_lock(ptl);
726 ptep_clear(vma->vm_mm, address, _pte);
727 spin_unlock(ptl);
728 ksm_might_unmap_zero_page(vma->vm_mm, pteval);
729 }
730 } else {
731 struct page *src_page = pte_page(pteval);
732
733 src = page_folio(src_page);
734 if (!folio_test_large(src))
735 release_pte_folio(src);
736 /*
737 * ptl mostly unnecessary, but preempt has to
738 * be disabled to update the per-cpu stats
739 * inside folio_remove_rmap_pte().
740 */
741 spin_lock(ptl);
742 ptep_clear(vma->vm_mm, address, _pte);
743 folio_remove_rmap_pte(src, src_page, vma);
744 spin_unlock(ptl);
745 free_page_and_swap_cache(src_page);
746 }
747 }
748
749 list_for_each_entry_safe(src, tmp, compound_pagelist, lru) {
750 list_del(&src->lru);
751 node_stat_sub_folio(src, NR_ISOLATED_ANON +
752 folio_is_file_lru(src));
753 folio_unlock(src);
754 free_swap_cache(src);
755 folio_putback_lru(src);
756 }
757 }
758
__collapse_huge_page_copy_failed(pte_t * pte,pmd_t * pmd,pmd_t orig_pmd,struct vm_area_struct * vma,struct list_head * compound_pagelist)759 static void __collapse_huge_page_copy_failed(pte_t *pte,
760 pmd_t *pmd,
761 pmd_t orig_pmd,
762 struct vm_area_struct *vma,
763 struct list_head *compound_pagelist)
764 {
765 spinlock_t *pmd_ptl;
766
767 /*
768 * Re-establish the PMD to point to the original page table
769 * entry. Restoring PMD needs to be done prior to releasing
770 * pages. Since pages are still isolated and locked here,
771 * acquiring anon_vma_lock_write is unnecessary.
772 */
773 pmd_ptl = pmd_lock(vma->vm_mm, pmd);
774 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
775 spin_unlock(pmd_ptl);
776 /*
777 * Release both raw and compound pages isolated
778 * in __collapse_huge_page_isolate.
779 */
780 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
781 }
782
783 /*
784 * __collapse_huge_page_copy - attempts to copy memory contents from raw
785 * pages to a hugepage. Cleans up the raw pages if copying succeeds;
786 * otherwise restores the original page table and releases isolated raw pages.
787 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
788 *
789 * @pte: starting of the PTEs to copy from
790 * @folio: the new hugepage to copy contents to
791 * @pmd: pointer to the new hugepage's PMD
792 * @orig_pmd: the original raw pages' PMD
793 * @vma: the original raw pages' virtual memory area
794 * @address: starting address to copy
795 * @ptl: lock on raw pages' PTEs
796 * @compound_pagelist: list that stores compound pages
797 */
__collapse_huge_page_copy(pte_t * pte,struct folio * folio,pmd_t * pmd,pmd_t orig_pmd,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl,struct list_head * compound_pagelist)798 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio,
799 pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma,
800 unsigned long address, spinlock_t *ptl,
801 struct list_head *compound_pagelist)
802 {
803 unsigned int i;
804 int result = SCAN_SUCCEED;
805
806 /*
807 * Copying pages' contents is subject to memory poison at any iteration.
808 */
809 for (i = 0; i < HPAGE_PMD_NR; i++) {
810 pte_t pteval = ptep_get(pte + i);
811 struct page *page = folio_page(folio, i);
812 unsigned long src_addr = address + i * PAGE_SIZE;
813 struct page *src_page;
814
815 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
816 clear_user_highpage(page, src_addr);
817 continue;
818 }
819 src_page = pte_page(pteval);
820 if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) {
821 result = SCAN_COPY_MC;
822 break;
823 }
824 }
825
826 if (likely(result == SCAN_SUCCEED))
827 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
828 compound_pagelist);
829 else
830 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
831 compound_pagelist);
832
833 return result;
834 }
835
khugepaged_alloc_sleep(void)836 static void khugepaged_alloc_sleep(void)
837 {
838 DEFINE_WAIT(wait);
839
840 add_wait_queue(&khugepaged_wait, &wait);
841 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
842 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
843 remove_wait_queue(&khugepaged_wait, &wait);
844 }
845
846 struct collapse_control khugepaged_collapse_control = {
847 .is_khugepaged = true,
848 };
849
hpage_collapse_scan_abort(int nid,struct collapse_control * cc)850 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
851 {
852 int i;
853
854 /*
855 * If node_reclaim_mode is disabled, then no extra effort is made to
856 * allocate memory locally.
857 */
858 if (!node_reclaim_enabled())
859 return false;
860
861 /* If there is a count for this node already, it must be acceptable */
862 if (cc->node_load[nid])
863 return false;
864
865 for (i = 0; i < MAX_NUMNODES; i++) {
866 if (!cc->node_load[i])
867 continue;
868 if (node_distance(nid, i) > node_reclaim_distance)
869 return true;
870 }
871 return false;
872 }
873
874 #define khugepaged_defrag() \
875 (transparent_hugepage_flags & \
876 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
877
878 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
alloc_hugepage_khugepaged_gfpmask(void)879 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
880 {
881 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
882 }
883
884 #ifdef CONFIG_NUMA
hpage_collapse_find_target_node(struct collapse_control * cc)885 static int hpage_collapse_find_target_node(struct collapse_control *cc)
886 {
887 int nid, target_node = 0, max_value = 0;
888
889 /* find first node with max normal pages hit */
890 for (nid = 0; nid < MAX_NUMNODES; nid++)
891 if (cc->node_load[nid] > max_value) {
892 max_value = cc->node_load[nid];
893 target_node = nid;
894 }
895
896 for_each_online_node(nid) {
897 if (max_value == cc->node_load[nid])
898 node_set(nid, cc->alloc_nmask);
899 }
900
901 return target_node;
902 }
903 #else
hpage_collapse_find_target_node(struct collapse_control * cc)904 static int hpage_collapse_find_target_node(struct collapse_control *cc)
905 {
906 return 0;
907 }
908 #endif
909
910 /*
911 * If mmap_lock temporarily dropped, revalidate vma
912 * before taking mmap_lock.
913 * Returns enum scan_result value.
914 */
915
hugepage_vma_revalidate(struct mm_struct * mm,unsigned long address,bool expect_anon,struct vm_area_struct ** vmap,struct collapse_control * cc)916 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
917 bool expect_anon,
918 struct vm_area_struct **vmap,
919 struct collapse_control *cc)
920 {
921 struct vm_area_struct *vma;
922 unsigned long tva_flags = cc->is_khugepaged ? TVA_ENFORCE_SYSFS : 0;
923
924 if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
925 return SCAN_ANY_PROCESS;
926
927 *vmap = vma = find_vma(mm, address);
928 if (!vma)
929 return SCAN_VMA_NULL;
930
931 if (!thp_vma_suitable_order(vma, address, PMD_ORDER))
932 return SCAN_ADDRESS_RANGE;
933 if (!thp_vma_allowable_order(vma, vma->vm_flags, tva_flags, PMD_ORDER))
934 return SCAN_VMA_CHECK;
935 /*
936 * Anon VMA expected, the address may be unmapped then
937 * remapped to file after khugepaged reaquired the mmap_lock.
938 *
939 * thp_vma_allowable_order may return true for qualified file
940 * vmas.
941 */
942 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
943 return SCAN_PAGE_ANON;
944 return SCAN_SUCCEED;
945 }
946
find_pmd_or_thp_or_none(struct mm_struct * mm,unsigned long address,pmd_t ** pmd)947 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
948 unsigned long address,
949 pmd_t **pmd)
950 {
951 pmd_t pmde;
952
953 *pmd = mm_find_pmd(mm, address);
954 if (!*pmd)
955 return SCAN_PMD_NULL;
956
957 pmde = pmdp_get_lockless(*pmd);
958 if (pmd_none(pmde))
959 return SCAN_PMD_NONE;
960 if (!pmd_present(pmde))
961 return SCAN_PMD_NULL;
962 if (pmd_trans_huge(pmde))
963 return SCAN_PMD_MAPPED;
964 if (pmd_devmap(pmde))
965 return SCAN_PMD_NULL;
966 if (pmd_bad(pmde))
967 return SCAN_PMD_NULL;
968 return SCAN_SUCCEED;
969 }
970
check_pmd_still_valid(struct mm_struct * mm,unsigned long address,pmd_t * pmd)971 static int check_pmd_still_valid(struct mm_struct *mm,
972 unsigned long address,
973 pmd_t *pmd)
974 {
975 pmd_t *new_pmd;
976 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
977
978 if (result != SCAN_SUCCEED)
979 return result;
980 if (new_pmd != pmd)
981 return SCAN_FAIL;
982 return SCAN_SUCCEED;
983 }
984
985 /*
986 * Bring missing pages in from swap, to complete THP collapse.
987 * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
988 *
989 * Called and returns without pte mapped or spinlocks held.
990 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
991 */
__collapse_huge_page_swapin(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,int referenced)992 static int __collapse_huge_page_swapin(struct mm_struct *mm,
993 struct vm_area_struct *vma,
994 unsigned long haddr, pmd_t *pmd,
995 int referenced)
996 {
997 int swapped_in = 0;
998 vm_fault_t ret = 0;
999 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
1000 int result;
1001 pte_t *pte = NULL;
1002 spinlock_t *ptl;
1003
1004 for (address = haddr; address < end; address += PAGE_SIZE) {
1005 struct vm_fault vmf = {
1006 .vma = vma,
1007 .address = address,
1008 .pgoff = linear_page_index(vma, address),
1009 .flags = FAULT_FLAG_ALLOW_RETRY,
1010 .pmd = pmd,
1011 };
1012
1013 if (!pte++) {
1014 pte = pte_offset_map_nolock(mm, pmd, address, &ptl);
1015 if (!pte) {
1016 mmap_read_unlock(mm);
1017 result = SCAN_PMD_NULL;
1018 goto out;
1019 }
1020 }
1021
1022 vmf.orig_pte = ptep_get_lockless(pte);
1023 if (!is_swap_pte(vmf.orig_pte))
1024 continue;
1025
1026 vmf.pte = pte;
1027 vmf.ptl = ptl;
1028 ret = do_swap_page(&vmf);
1029 /* Which unmaps pte (after perhaps re-checking the entry) */
1030 pte = NULL;
1031
1032 /*
1033 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1034 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1035 * we do not retry here and swap entry will remain in pagetable
1036 * resulting in later failure.
1037 */
1038 if (ret & VM_FAULT_RETRY) {
1039 /* Likely, but not guaranteed, that page lock failed */
1040 result = SCAN_PAGE_LOCK;
1041 goto out;
1042 }
1043 if (ret & VM_FAULT_ERROR) {
1044 mmap_read_unlock(mm);
1045 result = SCAN_FAIL;
1046 goto out;
1047 }
1048 swapped_in++;
1049 }
1050
1051 if (pte)
1052 pte_unmap(pte);
1053
1054 /* Drain LRU cache to remove extra pin on the swapped in pages */
1055 if (swapped_in)
1056 lru_add_drain();
1057
1058 result = SCAN_SUCCEED;
1059 out:
1060 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1061 return result;
1062 }
1063
alloc_charge_folio(struct folio ** foliop,struct mm_struct * mm,struct collapse_control * cc)1064 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm,
1065 struct collapse_control *cc)
1066 {
1067 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1068 GFP_TRANSHUGE);
1069 int node = hpage_collapse_find_target_node(cc);
1070 struct folio *folio;
1071
1072 folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask);
1073 if (!folio) {
1074 *foliop = NULL;
1075 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1076 return SCAN_ALLOC_HUGE_PAGE_FAIL;
1077 }
1078
1079 count_vm_event(THP_COLLAPSE_ALLOC);
1080 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1081 folio_put(folio);
1082 *foliop = NULL;
1083 return SCAN_CGROUP_CHARGE_FAIL;
1084 }
1085
1086 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
1087
1088 *foliop = folio;
1089 return SCAN_SUCCEED;
1090 }
1091
collapse_huge_page(struct mm_struct * mm,unsigned long address,int referenced,int unmapped,struct collapse_control * cc)1092 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1093 int referenced, int unmapped,
1094 struct collapse_control *cc)
1095 {
1096 LIST_HEAD(compound_pagelist);
1097 pmd_t *pmd, _pmd;
1098 pte_t *pte;
1099 pgtable_t pgtable;
1100 struct folio *folio;
1101 spinlock_t *pmd_ptl, *pte_ptl;
1102 int result = SCAN_FAIL;
1103 struct vm_area_struct *vma;
1104 struct mmu_notifier_range range;
1105
1106 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1107
1108 /*
1109 * Before allocating the hugepage, release the mmap_lock read lock.
1110 * The allocation can take potentially a long time if it involves
1111 * sync compaction, and we do not need to hold the mmap_lock during
1112 * that. We will recheck the vma after taking it again in write mode.
1113 */
1114 mmap_read_unlock(mm);
1115
1116 result = alloc_charge_folio(&folio, mm, cc);
1117 if (result != SCAN_SUCCEED)
1118 goto out_nolock;
1119
1120 mmap_read_lock(mm);
1121 result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1122 if (result != SCAN_SUCCEED) {
1123 mmap_read_unlock(mm);
1124 goto out_nolock;
1125 }
1126
1127 result = find_pmd_or_thp_or_none(mm, address, &pmd);
1128 if (result != SCAN_SUCCEED) {
1129 mmap_read_unlock(mm);
1130 goto out_nolock;
1131 }
1132
1133 if (unmapped) {
1134 /*
1135 * __collapse_huge_page_swapin will return with mmap_lock
1136 * released when it fails. So we jump out_nolock directly in
1137 * that case. Continuing to collapse causes inconsistency.
1138 */
1139 result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1140 referenced);
1141 if (result != SCAN_SUCCEED)
1142 goto out_nolock;
1143 }
1144
1145 mmap_read_unlock(mm);
1146 /*
1147 * Prevent all access to pagetables with the exception of
1148 * gup_fast later handled by the ptep_clear_flush and the VM
1149 * handled by the anon_vma lock + PG_lock.
1150 *
1151 * UFFDIO_MOVE is prevented to race as well thanks to the
1152 * mmap_lock.
1153 */
1154 mmap_write_lock(mm);
1155 result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1156 if (result != SCAN_SUCCEED)
1157 goto out_up_write;
1158 /* check if the pmd is still valid */
1159 result = check_pmd_still_valid(mm, address, pmd);
1160 if (result != SCAN_SUCCEED)
1161 goto out_up_write;
1162
1163 vma_start_write(vma);
1164 anon_vma_lock_write(vma->anon_vma);
1165
1166 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1167 address + HPAGE_PMD_SIZE);
1168 mmu_notifier_invalidate_range_start(&range);
1169
1170 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1171 /*
1172 * This removes any huge TLB entry from the CPU so we won't allow
1173 * huge and small TLB entries for the same virtual address to
1174 * avoid the risk of CPU bugs in that area.
1175 *
1176 * Parallel GUP-fast is fine since GUP-fast will back off when
1177 * it detects PMD is changed.
1178 */
1179 _pmd = pmdp_collapse_flush(vma, address, pmd);
1180 spin_unlock(pmd_ptl);
1181 mmu_notifier_invalidate_range_end(&range);
1182 tlb_remove_table_sync_one();
1183
1184 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1185 if (pte) {
1186 result = __collapse_huge_page_isolate(vma, address, pte, cc,
1187 &compound_pagelist);
1188 spin_unlock(pte_ptl);
1189 } else {
1190 result = SCAN_PMD_NULL;
1191 }
1192
1193 if (unlikely(result != SCAN_SUCCEED)) {
1194 if (pte)
1195 pte_unmap(pte);
1196 spin_lock(pmd_ptl);
1197 BUG_ON(!pmd_none(*pmd));
1198 /*
1199 * We can only use set_pmd_at when establishing
1200 * hugepmds and never for establishing regular pmds that
1201 * points to regular pagetables. Use pmd_populate for that
1202 */
1203 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1204 spin_unlock(pmd_ptl);
1205 anon_vma_unlock_write(vma->anon_vma);
1206 goto out_up_write;
1207 }
1208
1209 /*
1210 * All pages are isolated and locked so anon_vma rmap
1211 * can't run anymore.
1212 */
1213 anon_vma_unlock_write(vma->anon_vma);
1214
1215 result = __collapse_huge_page_copy(pte, folio, pmd, _pmd,
1216 vma, address, pte_ptl,
1217 &compound_pagelist);
1218 pte_unmap(pte);
1219 if (unlikely(result != SCAN_SUCCEED))
1220 goto out_up_write;
1221
1222 /*
1223 * The smp_wmb() inside __folio_mark_uptodate() ensures the
1224 * copy_huge_page writes become visible before the set_pmd_at()
1225 * write.
1226 */
1227 __folio_mark_uptodate(folio);
1228 pgtable = pmd_pgtable(_pmd);
1229
1230 _pmd = mk_huge_pmd(&folio->page, vma->vm_page_prot);
1231 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1232
1233 spin_lock(pmd_ptl);
1234 BUG_ON(!pmd_none(*pmd));
1235 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
1236 folio_add_lru_vma(folio, vma);
1237 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1238 set_pmd_at(mm, address, pmd, _pmd);
1239 update_mmu_cache_pmd(vma, address, pmd);
1240 deferred_split_folio(folio, false);
1241 spin_unlock(pmd_ptl);
1242
1243 folio = NULL;
1244
1245 result = SCAN_SUCCEED;
1246 out_up_write:
1247 mmap_write_unlock(mm);
1248 out_nolock:
1249 if (folio)
1250 folio_put(folio);
1251 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1252 return result;
1253 }
1254
hpage_collapse_scan_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,bool * mmap_locked,struct collapse_control * cc)1255 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1256 struct vm_area_struct *vma,
1257 unsigned long address, bool *mmap_locked,
1258 struct collapse_control *cc)
1259 {
1260 pmd_t *pmd;
1261 pte_t *pte, *_pte;
1262 int result = SCAN_FAIL, referenced = 0;
1263 int none_or_zero = 0, shared = 0;
1264 struct page *page = NULL;
1265 struct folio *folio = NULL;
1266 unsigned long _address;
1267 spinlock_t *ptl;
1268 int node = NUMA_NO_NODE, unmapped = 0;
1269 bool writable = false;
1270
1271 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1272
1273 result = find_pmd_or_thp_or_none(mm, address, &pmd);
1274 if (result != SCAN_SUCCEED)
1275 goto out;
1276
1277 memset(cc->node_load, 0, sizeof(cc->node_load));
1278 nodes_clear(cc->alloc_nmask);
1279 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1280 if (!pte) {
1281 result = SCAN_PMD_NULL;
1282 goto out;
1283 }
1284
1285 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1286 _pte++, _address += PAGE_SIZE) {
1287 pte_t pteval = ptep_get(_pte);
1288 if (is_swap_pte(pteval)) {
1289 ++unmapped;
1290 if (!cc->is_khugepaged ||
1291 unmapped <= khugepaged_max_ptes_swap) {
1292 /*
1293 * Always be strict with uffd-wp
1294 * enabled swap entries. Please see
1295 * comment below for pte_uffd_wp().
1296 */
1297 if (pte_swp_uffd_wp_any(pteval)) {
1298 result = SCAN_PTE_UFFD_WP;
1299 goto out_unmap;
1300 }
1301 continue;
1302 } else {
1303 result = SCAN_EXCEED_SWAP_PTE;
1304 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1305 goto out_unmap;
1306 }
1307 }
1308 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1309 ++none_or_zero;
1310 if (!userfaultfd_armed(vma) &&
1311 (!cc->is_khugepaged ||
1312 none_or_zero <= khugepaged_max_ptes_none)) {
1313 continue;
1314 } else {
1315 result = SCAN_EXCEED_NONE_PTE;
1316 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1317 goto out_unmap;
1318 }
1319 }
1320 if (pte_uffd_wp(pteval)) {
1321 /*
1322 * Don't collapse the page if any of the small
1323 * PTEs are armed with uffd write protection.
1324 * Here we can also mark the new huge pmd as
1325 * write protected if any of the small ones is
1326 * marked but that could bring unknown
1327 * userfault messages that falls outside of
1328 * the registered range. So, just be simple.
1329 */
1330 result = SCAN_PTE_UFFD_WP;
1331 goto out_unmap;
1332 }
1333 if (pte_write(pteval))
1334 writable = true;
1335
1336 page = vm_normal_page(vma, _address, pteval);
1337 if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1338 result = SCAN_PAGE_NULL;
1339 goto out_unmap;
1340 }
1341 folio = page_folio(page);
1342
1343 if (!folio_test_anon(folio)) {
1344 result = SCAN_PAGE_ANON;
1345 goto out_unmap;
1346 }
1347
1348 /*
1349 * We treat a single page as shared if any part of the THP
1350 * is shared. "False negatives" from
1351 * folio_likely_mapped_shared() are not expected to matter
1352 * much in practice.
1353 */
1354 if (folio_likely_mapped_shared(folio)) {
1355 ++shared;
1356 if (cc->is_khugepaged &&
1357 shared > khugepaged_max_ptes_shared) {
1358 result = SCAN_EXCEED_SHARED_PTE;
1359 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1360 goto out_unmap;
1361 }
1362 }
1363
1364 /*
1365 * Record which node the original page is from and save this
1366 * information to cc->node_load[].
1367 * Khugepaged will allocate hugepage from the node has the max
1368 * hit record.
1369 */
1370 node = folio_nid(folio);
1371 if (hpage_collapse_scan_abort(node, cc)) {
1372 result = SCAN_SCAN_ABORT;
1373 goto out_unmap;
1374 }
1375 cc->node_load[node]++;
1376 if (!folio_test_lru(folio)) {
1377 result = SCAN_PAGE_LRU;
1378 goto out_unmap;
1379 }
1380 if (folio_test_locked(folio)) {
1381 result = SCAN_PAGE_LOCK;
1382 goto out_unmap;
1383 }
1384
1385 /*
1386 * Check if the page has any GUP (or other external) pins.
1387 *
1388 * Here the check may be racy:
1389 * it may see folio_mapcount() > folio_ref_count().
1390 * But such case is ephemeral we could always retry collapse
1391 * later. However it may report false positive if the page
1392 * has excessive GUP pins (i.e. 512). Anyway the same check
1393 * will be done again later the risk seems low.
1394 */
1395 if (!is_refcount_suitable(folio)) {
1396 result = SCAN_PAGE_COUNT;
1397 goto out_unmap;
1398 }
1399
1400 /*
1401 * If collapse was initiated by khugepaged, check that there is
1402 * enough young pte to justify collapsing the page
1403 */
1404 if (cc->is_khugepaged &&
1405 (pte_young(pteval) || folio_test_young(folio) ||
1406 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
1407 address)))
1408 referenced++;
1409 }
1410 if (!writable) {
1411 result = SCAN_PAGE_RO;
1412 } else if (cc->is_khugepaged &&
1413 (!referenced ||
1414 (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1415 result = SCAN_LACK_REFERENCED_PAGE;
1416 } else {
1417 result = SCAN_SUCCEED;
1418 }
1419 out_unmap:
1420 pte_unmap_unlock(pte, ptl);
1421 if (result == SCAN_SUCCEED) {
1422 result = collapse_huge_page(mm, address, referenced,
1423 unmapped, cc);
1424 /* collapse_huge_page will return with the mmap_lock released */
1425 *mmap_locked = false;
1426 }
1427 out:
1428 trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced,
1429 none_or_zero, result, unmapped);
1430 return result;
1431 }
1432
collect_mm_slot(struct khugepaged_mm_slot * mm_slot)1433 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1434 {
1435 struct mm_slot *slot = &mm_slot->slot;
1436 struct mm_struct *mm = slot->mm;
1437
1438 lockdep_assert_held(&khugepaged_mm_lock);
1439
1440 if (hpage_collapse_test_exit(mm)) {
1441 /* free mm_slot */
1442 hash_del(&slot->hash);
1443 list_del(&slot->mm_node);
1444
1445 /*
1446 * Not strictly needed because the mm exited already.
1447 *
1448 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1449 */
1450
1451 /* khugepaged_mm_lock actually not necessary for the below */
1452 mm_slot_free(mm_slot_cache, mm_slot);
1453 mmdrop(mm);
1454 }
1455 }
1456
1457 #ifdef CONFIG_SHMEM
1458 /* hpage must be locked, and mmap_lock must be held */
set_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct page * hpage)1459 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1460 pmd_t *pmdp, struct page *hpage)
1461 {
1462 struct vm_fault vmf = {
1463 .vma = vma,
1464 .address = addr,
1465 .flags = 0,
1466 .pmd = pmdp,
1467 };
1468
1469 VM_BUG_ON(!PageTransHuge(hpage));
1470 mmap_assert_locked(vma->vm_mm);
1471
1472 if (do_set_pmd(&vmf, hpage))
1473 return SCAN_FAIL;
1474
1475 get_page(hpage);
1476 return SCAN_SUCCEED;
1477 }
1478
1479 /**
1480 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1481 * address haddr.
1482 *
1483 * @mm: process address space where collapse happens
1484 * @addr: THP collapse address
1485 * @install_pmd: If a huge PMD should be installed
1486 *
1487 * This function checks whether all the PTEs in the PMD are pointing to the
1488 * right THP. If so, retract the page table so the THP can refault in with
1489 * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1490 */
collapse_pte_mapped_thp(struct mm_struct * mm,unsigned long addr,bool install_pmd)1491 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1492 bool install_pmd)
1493 {
1494 struct mmu_notifier_range range;
1495 bool notified = false;
1496 unsigned long haddr = addr & HPAGE_PMD_MASK;
1497 struct vm_area_struct *vma = vma_lookup(mm, haddr);
1498 struct folio *folio;
1499 pte_t *start_pte, *pte;
1500 pmd_t *pmd, pgt_pmd;
1501 spinlock_t *pml = NULL, *ptl;
1502 int nr_ptes = 0, result = SCAN_FAIL;
1503 int i;
1504
1505 mmap_assert_locked(mm);
1506
1507 /* First check VMA found, in case page tables are being torn down */
1508 if (!vma || !vma->vm_file ||
1509 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1510 return SCAN_VMA_CHECK;
1511
1512 /* Fast check before locking page if already PMD-mapped */
1513 result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1514 if (result == SCAN_PMD_MAPPED)
1515 return result;
1516
1517 /*
1518 * If we are here, we've succeeded in replacing all the native pages
1519 * in the page cache with a single hugepage. If a mm were to fault-in
1520 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1521 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1522 * analogously elide sysfs THP settings here.
1523 */
1524 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER))
1525 return SCAN_VMA_CHECK;
1526
1527 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1528 if (userfaultfd_wp(vma))
1529 return SCAN_PTE_UFFD_WP;
1530
1531 folio = filemap_lock_folio(vma->vm_file->f_mapping,
1532 linear_page_index(vma, haddr));
1533 if (IS_ERR(folio))
1534 return SCAN_PAGE_NULL;
1535
1536 if (folio_order(folio) != HPAGE_PMD_ORDER) {
1537 result = SCAN_PAGE_COMPOUND;
1538 goto drop_folio;
1539 }
1540
1541 result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1542 switch (result) {
1543 case SCAN_SUCCEED:
1544 break;
1545 case SCAN_PMD_NONE:
1546 /*
1547 * All pte entries have been removed and pmd cleared.
1548 * Skip all the pte checks and just update the pmd mapping.
1549 */
1550 goto maybe_install_pmd;
1551 default:
1552 goto drop_folio;
1553 }
1554
1555 result = SCAN_FAIL;
1556 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1557 if (!start_pte) /* mmap_lock + page lock should prevent this */
1558 goto drop_folio;
1559
1560 /* step 1: check all mapped PTEs are to the right huge page */
1561 for (i = 0, addr = haddr, pte = start_pte;
1562 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1563 struct page *page;
1564 pte_t ptent = ptep_get(pte);
1565
1566 /* empty pte, skip */
1567 if (pte_none(ptent))
1568 continue;
1569
1570 /* page swapped out, abort */
1571 if (!pte_present(ptent)) {
1572 result = SCAN_PTE_NON_PRESENT;
1573 goto abort;
1574 }
1575
1576 page = vm_normal_page(vma, addr, ptent);
1577 if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1578 page = NULL;
1579 /*
1580 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1581 * page table, but the new page will not be a subpage of hpage.
1582 */
1583 if (folio_page(folio, i) != page)
1584 goto abort;
1585 }
1586
1587 pte_unmap_unlock(start_pte, ptl);
1588 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1589 haddr, haddr + HPAGE_PMD_SIZE);
1590 mmu_notifier_invalidate_range_start(&range);
1591 notified = true;
1592
1593 /*
1594 * pmd_lock covers a wider range than ptl, and (if split from mm's
1595 * page_table_lock) ptl nests inside pml. The less time we hold pml,
1596 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA
1597 * inserts a valid as-if-COWed PTE without even looking up page cache.
1598 * So page lock of folio does not protect from it, so we must not drop
1599 * ptl before pgt_pmd is removed, so uffd private needs pml taken now.
1600 */
1601 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
1602 pml = pmd_lock(mm, pmd);
1603
1604 start_pte = pte_offset_map_nolock(mm, pmd, haddr, &ptl);
1605 if (!start_pte) /* mmap_lock + page lock should prevent this */
1606 goto abort;
1607 if (!pml)
1608 spin_lock(ptl);
1609 else if (ptl != pml)
1610 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1611
1612 /* step 2: clear page table and adjust rmap */
1613 for (i = 0, addr = haddr, pte = start_pte;
1614 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1615 struct page *page;
1616 pte_t ptent = ptep_get(pte);
1617
1618 if (pte_none(ptent))
1619 continue;
1620 /*
1621 * We dropped ptl after the first scan, to do the mmu_notifier:
1622 * page lock stops more PTEs of the folio being faulted in, but
1623 * does not stop write faults COWing anon copies from existing
1624 * PTEs; and does not stop those being swapped out or migrated.
1625 */
1626 if (!pte_present(ptent)) {
1627 result = SCAN_PTE_NON_PRESENT;
1628 goto abort;
1629 }
1630 page = vm_normal_page(vma, addr, ptent);
1631 if (folio_page(folio, i) != page)
1632 goto abort;
1633
1634 /*
1635 * Must clear entry, or a racing truncate may re-remove it.
1636 * TLB flush can be left until pmdp_collapse_flush() does it.
1637 * PTE dirty? Shmem page is already dirty; file is read-only.
1638 */
1639 ptep_clear(mm, addr, pte);
1640 folio_remove_rmap_pte(folio, page, vma);
1641 nr_ptes++;
1642 }
1643
1644 pte_unmap(start_pte);
1645 if (!pml)
1646 spin_unlock(ptl);
1647
1648 /* step 3: set proper refcount and mm_counters. */
1649 if (nr_ptes) {
1650 folio_ref_sub(folio, nr_ptes);
1651 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
1652 }
1653
1654 /* step 4: remove empty page table */
1655 if (!pml) {
1656 pml = pmd_lock(mm, pmd);
1657 if (ptl != pml)
1658 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1659 }
1660 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1661 pmdp_get_lockless_sync();
1662 if (ptl != pml)
1663 spin_unlock(ptl);
1664 spin_unlock(pml);
1665
1666 mmu_notifier_invalidate_range_end(&range);
1667
1668 mm_dec_nr_ptes(mm);
1669 page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1670 pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1671
1672 maybe_install_pmd:
1673 /* step 5: install pmd entry */
1674 result = install_pmd
1675 ? set_huge_pmd(vma, haddr, pmd, &folio->page)
1676 : SCAN_SUCCEED;
1677 goto drop_folio;
1678 abort:
1679 if (nr_ptes) {
1680 flush_tlb_mm(mm);
1681 folio_ref_sub(folio, nr_ptes);
1682 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
1683 }
1684 if (start_pte)
1685 pte_unmap_unlock(start_pte, ptl);
1686 if (pml && pml != ptl)
1687 spin_unlock(pml);
1688 if (notified)
1689 mmu_notifier_invalidate_range_end(&range);
1690 drop_folio:
1691 folio_unlock(folio);
1692 folio_put(folio);
1693 return result;
1694 }
1695
retract_page_tables(struct address_space * mapping,pgoff_t pgoff)1696 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1697 {
1698 struct vm_area_struct *vma;
1699
1700 i_mmap_lock_read(mapping);
1701 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1702 struct mmu_notifier_range range;
1703 struct mm_struct *mm;
1704 unsigned long addr;
1705 pmd_t *pmd, pgt_pmd;
1706 spinlock_t *pml;
1707 spinlock_t *ptl;
1708 bool skipped_uffd = false;
1709
1710 /*
1711 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1712 * got written to. These VMAs are likely not worth removing
1713 * page tables from, as PMD-mapping is likely to be split later.
1714 */
1715 if (READ_ONCE(vma->anon_vma))
1716 continue;
1717
1718 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1719 if (addr & ~HPAGE_PMD_MASK ||
1720 vma->vm_end < addr + HPAGE_PMD_SIZE)
1721 continue;
1722
1723 mm = vma->vm_mm;
1724 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1725 continue;
1726
1727 if (hpage_collapse_test_exit(mm))
1728 continue;
1729 /*
1730 * When a vma is registered with uffd-wp, we cannot recycle
1731 * the page table because there may be pte markers installed.
1732 * Other vmas can still have the same file mapped hugely, but
1733 * skip this one: it will always be mapped in small page size
1734 * for uffd-wp registered ranges.
1735 */
1736 if (userfaultfd_wp(vma))
1737 continue;
1738
1739 /* PTEs were notified when unmapped; but now for the PMD? */
1740 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1741 addr, addr + HPAGE_PMD_SIZE);
1742 mmu_notifier_invalidate_range_start(&range);
1743
1744 pml = pmd_lock(mm, pmd);
1745 ptl = pte_lockptr(mm, pmd);
1746 if (ptl != pml)
1747 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1748
1749 /*
1750 * Huge page lock is still held, so normally the page table
1751 * must remain empty; and we have already skipped anon_vma
1752 * and userfaultfd_wp() vmas. But since the mmap_lock is not
1753 * held, it is still possible for a racing userfaultfd_ioctl()
1754 * to have inserted ptes or markers. Now that we hold ptlock,
1755 * repeating the anon_vma check protects from one category,
1756 * and repeating the userfaultfd_wp() check from another.
1757 */
1758 if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) {
1759 skipped_uffd = true;
1760 } else {
1761 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1762 pmdp_get_lockless_sync();
1763 }
1764
1765 if (ptl != pml)
1766 spin_unlock(ptl);
1767 spin_unlock(pml);
1768
1769 mmu_notifier_invalidate_range_end(&range);
1770
1771 if (!skipped_uffd) {
1772 mm_dec_nr_ptes(mm);
1773 page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1774 pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1775 }
1776 }
1777 i_mmap_unlock_read(mapping);
1778 }
1779
1780 /**
1781 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1782 *
1783 * @mm: process address space where collapse happens
1784 * @addr: virtual collapse start address
1785 * @file: file that collapse on
1786 * @start: collapse start address
1787 * @cc: collapse context and scratchpad
1788 *
1789 * Basic scheme is simple, details are more complex:
1790 * - allocate and lock a new huge page;
1791 * - scan page cache, locking old pages
1792 * + swap/gup in pages if necessary;
1793 * - copy data to new page
1794 * - handle shmem holes
1795 * + re-validate that holes weren't filled by someone else
1796 * + check for userfaultfd
1797 * - finalize updates to the page cache;
1798 * - if replacing succeeds:
1799 * + unlock huge page;
1800 * + free old pages;
1801 * - if replacing failed;
1802 * + unlock old pages
1803 * + unlock and free huge page;
1804 */
collapse_file(struct mm_struct * mm,unsigned long addr,struct file * file,pgoff_t start,struct collapse_control * cc)1805 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1806 struct file *file, pgoff_t start,
1807 struct collapse_control *cc)
1808 {
1809 struct address_space *mapping = file->f_mapping;
1810 struct page *dst;
1811 struct folio *folio, *tmp, *new_folio;
1812 pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1813 LIST_HEAD(pagelist);
1814 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1815 int nr_none = 0, result = SCAN_SUCCEED;
1816 bool is_shmem = shmem_file(file);
1817
1818 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1819 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1820
1821 result = alloc_charge_folio(&new_folio, mm, cc);
1822 if (result != SCAN_SUCCEED)
1823 goto out;
1824
1825 __folio_set_locked(new_folio);
1826 if (is_shmem)
1827 __folio_set_swapbacked(new_folio);
1828 new_folio->index = start;
1829 new_folio->mapping = mapping;
1830
1831 /*
1832 * Ensure we have slots for all the pages in the range. This is
1833 * almost certainly a no-op because most of the pages must be present
1834 */
1835 do {
1836 xas_lock_irq(&xas);
1837 xas_create_range(&xas);
1838 if (!xas_error(&xas))
1839 break;
1840 xas_unlock_irq(&xas);
1841 if (!xas_nomem(&xas, GFP_KERNEL)) {
1842 result = SCAN_FAIL;
1843 goto rollback;
1844 }
1845 } while (1);
1846
1847 for (index = start; index < end;) {
1848 xas_set(&xas, index);
1849 folio = xas_load(&xas);
1850
1851 VM_BUG_ON(index != xas.xa_index);
1852 if (is_shmem) {
1853 if (!folio) {
1854 /*
1855 * Stop if extent has been truncated or
1856 * hole-punched, and is now completely
1857 * empty.
1858 */
1859 if (index == start) {
1860 if (!xas_next_entry(&xas, end - 1)) {
1861 result = SCAN_TRUNCATED;
1862 goto xa_locked;
1863 }
1864 }
1865 nr_none++;
1866 index++;
1867 continue;
1868 }
1869
1870 if (xa_is_value(folio) || !folio_test_uptodate(folio)) {
1871 xas_unlock_irq(&xas);
1872 /* swap in or instantiate fallocated page */
1873 if (shmem_get_folio(mapping->host, index, 0,
1874 &folio, SGP_NOALLOC)) {
1875 result = SCAN_FAIL;
1876 goto xa_unlocked;
1877 }
1878 /* drain lru cache to help folio_isolate_lru() */
1879 lru_add_drain();
1880 } else if (folio_trylock(folio)) {
1881 folio_get(folio);
1882 xas_unlock_irq(&xas);
1883 } else {
1884 result = SCAN_PAGE_LOCK;
1885 goto xa_locked;
1886 }
1887 } else { /* !is_shmem */
1888 if (!folio || xa_is_value(folio)) {
1889 xas_unlock_irq(&xas);
1890 page_cache_sync_readahead(mapping, &file->f_ra,
1891 file, index,
1892 end - index);
1893 /* drain lru cache to help folio_isolate_lru() */
1894 lru_add_drain();
1895 folio = filemap_lock_folio(mapping, index);
1896 if (IS_ERR(folio)) {
1897 result = SCAN_FAIL;
1898 goto xa_unlocked;
1899 }
1900 } else if (folio_test_dirty(folio)) {
1901 /*
1902 * khugepaged only works on read-only fd,
1903 * so this page is dirty because it hasn't
1904 * been flushed since first write. There
1905 * won't be new dirty pages.
1906 *
1907 * Trigger async flush here and hope the
1908 * writeback is done when khugepaged
1909 * revisits this page.
1910 *
1911 * This is a one-off situation. We are not
1912 * forcing writeback in loop.
1913 */
1914 xas_unlock_irq(&xas);
1915 filemap_flush(mapping);
1916 result = SCAN_FAIL;
1917 goto xa_unlocked;
1918 } else if (folio_test_writeback(folio)) {
1919 xas_unlock_irq(&xas);
1920 result = SCAN_FAIL;
1921 goto xa_unlocked;
1922 } else if (folio_trylock(folio)) {
1923 folio_get(folio);
1924 xas_unlock_irq(&xas);
1925 } else {
1926 result = SCAN_PAGE_LOCK;
1927 goto xa_locked;
1928 }
1929 }
1930
1931 /*
1932 * The folio must be locked, so we can drop the i_pages lock
1933 * without racing with truncate.
1934 */
1935 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1936
1937 /* make sure the folio is up to date */
1938 if (unlikely(!folio_test_uptodate(folio))) {
1939 result = SCAN_FAIL;
1940 goto out_unlock;
1941 }
1942
1943 /*
1944 * If file was truncated then extended, or hole-punched, before
1945 * we locked the first folio, then a THP might be there already.
1946 * This will be discovered on the first iteration.
1947 */
1948 if (folio_order(folio) == HPAGE_PMD_ORDER &&
1949 folio->index == start) {
1950 /* Maybe PMD-mapped */
1951 result = SCAN_PTE_MAPPED_HUGEPAGE;
1952 goto out_unlock;
1953 }
1954
1955 if (folio_mapping(folio) != mapping) {
1956 result = SCAN_TRUNCATED;
1957 goto out_unlock;
1958 }
1959
1960 if (!is_shmem && (folio_test_dirty(folio) ||
1961 folio_test_writeback(folio))) {
1962 /*
1963 * khugepaged only works on read-only fd, so this
1964 * folio is dirty because it hasn't been flushed
1965 * since first write.
1966 */
1967 result = SCAN_FAIL;
1968 goto out_unlock;
1969 }
1970
1971 if (!folio_isolate_lru(folio)) {
1972 result = SCAN_DEL_PAGE_LRU;
1973 goto out_unlock;
1974 }
1975
1976 if (!filemap_release_folio(folio, GFP_KERNEL)) {
1977 result = SCAN_PAGE_HAS_PRIVATE;
1978 folio_putback_lru(folio);
1979 goto out_unlock;
1980 }
1981
1982 if (folio_mapped(folio))
1983 try_to_unmap(folio,
1984 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1985
1986 xas_lock_irq(&xas);
1987
1988 VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio);
1989
1990 /*
1991 * We control 2 + nr_pages references to the folio:
1992 * - we hold a pin on it;
1993 * - nr_pages reference from page cache;
1994 * - one from lru_isolate_folio;
1995 * If those are the only references, then any new usage
1996 * of the folio will have to fetch it from the page
1997 * cache. That requires locking the folio to handle
1998 * truncate, so any new usage will be blocked until we
1999 * unlock folio after collapse/during rollback.
2000 */
2001 if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) {
2002 result = SCAN_PAGE_COUNT;
2003 xas_unlock_irq(&xas);
2004 folio_putback_lru(folio);
2005 goto out_unlock;
2006 }
2007
2008 /*
2009 * Accumulate the folios that are being collapsed.
2010 */
2011 list_add_tail(&folio->lru, &pagelist);
2012 index += folio_nr_pages(folio);
2013 continue;
2014 out_unlock:
2015 folio_unlock(folio);
2016 folio_put(folio);
2017 goto xa_unlocked;
2018 }
2019
2020 if (!is_shmem) {
2021 filemap_nr_thps_inc(mapping);
2022 /*
2023 * Paired with the fence in do_dentry_open() -> get_write_access()
2024 * to ensure i_writecount is up to date and the update to nr_thps
2025 * is visible. Ensures the page cache will be truncated if the
2026 * file is opened writable.
2027 */
2028 smp_mb();
2029 if (inode_is_open_for_write(mapping->host)) {
2030 result = SCAN_FAIL;
2031 filemap_nr_thps_dec(mapping);
2032 }
2033 }
2034
2035 xa_locked:
2036 xas_unlock_irq(&xas);
2037 xa_unlocked:
2038
2039 /*
2040 * If collapse is successful, flush must be done now before copying.
2041 * If collapse is unsuccessful, does flush actually need to be done?
2042 * Do it anyway, to clear the state.
2043 */
2044 try_to_unmap_flush();
2045
2046 if (result == SCAN_SUCCEED && nr_none &&
2047 !shmem_charge(mapping->host, nr_none))
2048 result = SCAN_FAIL;
2049 if (result != SCAN_SUCCEED) {
2050 nr_none = 0;
2051 goto rollback;
2052 }
2053
2054 /*
2055 * The old folios are locked, so they won't change anymore.
2056 */
2057 index = start;
2058 dst = folio_page(new_folio, 0);
2059 list_for_each_entry(folio, &pagelist, lru) {
2060 int i, nr_pages = folio_nr_pages(folio);
2061
2062 while (index < folio->index) {
2063 clear_highpage(dst);
2064 index++;
2065 dst++;
2066 }
2067
2068 for (i = 0; i < nr_pages; i++) {
2069 if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) {
2070 result = SCAN_COPY_MC;
2071 goto rollback;
2072 }
2073 index++;
2074 dst++;
2075 }
2076 }
2077 while (index < end) {
2078 clear_highpage(dst);
2079 index++;
2080 dst++;
2081 }
2082
2083 if (nr_none) {
2084 struct vm_area_struct *vma;
2085 int nr_none_check = 0;
2086
2087 i_mmap_lock_read(mapping);
2088 xas_lock_irq(&xas);
2089
2090 xas_set(&xas, start);
2091 for (index = start; index < end; index++) {
2092 if (!xas_next(&xas)) {
2093 xas_store(&xas, XA_RETRY_ENTRY);
2094 if (xas_error(&xas)) {
2095 result = SCAN_STORE_FAILED;
2096 goto immap_locked;
2097 }
2098 nr_none_check++;
2099 }
2100 }
2101
2102 if (nr_none != nr_none_check) {
2103 result = SCAN_PAGE_FILLED;
2104 goto immap_locked;
2105 }
2106
2107 /*
2108 * If userspace observed a missing page in a VMA with
2109 * a MODE_MISSING userfaultfd, then it might expect a
2110 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to
2111 * roll back to avoid suppressing such an event. Since
2112 * wp/minor userfaultfds don't give userspace any
2113 * guarantees that the kernel doesn't fill a missing
2114 * page with a zero page, so they don't matter here.
2115 *
2116 * Any userfaultfds registered after this point will
2117 * not be able to observe any missing pages due to the
2118 * previously inserted retry entries.
2119 */
2120 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2121 if (userfaultfd_missing(vma)) {
2122 result = SCAN_EXCEED_NONE_PTE;
2123 goto immap_locked;
2124 }
2125 }
2126
2127 immap_locked:
2128 i_mmap_unlock_read(mapping);
2129 if (result != SCAN_SUCCEED) {
2130 xas_set(&xas, start);
2131 for (index = start; index < end; index++) {
2132 if (xas_next(&xas) == XA_RETRY_ENTRY)
2133 xas_store(&xas, NULL);
2134 }
2135
2136 xas_unlock_irq(&xas);
2137 goto rollback;
2138 }
2139 } else {
2140 xas_lock_irq(&xas);
2141 }
2142
2143 if (is_shmem)
2144 __lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR);
2145 else
2146 __lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR);
2147
2148 if (nr_none) {
2149 __lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none);
2150 /* nr_none is always 0 for non-shmem. */
2151 __lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none);
2152 }
2153
2154 /*
2155 * Mark new_folio as uptodate before inserting it into the
2156 * page cache so that it isn't mistaken for an fallocated but
2157 * unwritten page.
2158 */
2159 folio_mark_uptodate(new_folio);
2160 folio_ref_add(new_folio, HPAGE_PMD_NR - 1);
2161
2162 if (is_shmem)
2163 folio_mark_dirty(new_folio);
2164 folio_add_lru(new_folio);
2165
2166 /* Join all the small entries into a single multi-index entry. */
2167 xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2168 xas_store(&xas, new_folio);
2169 WARN_ON_ONCE(xas_error(&xas));
2170 xas_unlock_irq(&xas);
2171
2172 /*
2173 * Remove pte page tables, so we can re-fault the page as huge.
2174 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
2175 */
2176 retract_page_tables(mapping, start);
2177 if (cc && !cc->is_khugepaged)
2178 result = SCAN_PTE_MAPPED_HUGEPAGE;
2179 folio_unlock(new_folio);
2180
2181 /*
2182 * The collapse has succeeded, so free the old folios.
2183 */
2184 list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2185 list_del(&folio->lru);
2186 folio->mapping = NULL;
2187 folio_clear_active(folio);
2188 folio_clear_unevictable(folio);
2189 folio_unlock(folio);
2190 folio_put_refs(folio, 2 + folio_nr_pages(folio));
2191 }
2192
2193 goto out;
2194
2195 rollback:
2196 /* Something went wrong: roll back page cache changes */
2197 if (nr_none) {
2198 xas_lock_irq(&xas);
2199 mapping->nrpages -= nr_none;
2200 xas_unlock_irq(&xas);
2201 shmem_uncharge(mapping->host, nr_none);
2202 }
2203
2204 list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2205 list_del(&folio->lru);
2206 folio_unlock(folio);
2207 folio_putback_lru(folio);
2208 folio_put(folio);
2209 }
2210 /*
2211 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
2212 * file only. This undo is not needed unless failure is
2213 * due to SCAN_COPY_MC.
2214 */
2215 if (!is_shmem && result == SCAN_COPY_MC) {
2216 filemap_nr_thps_dec(mapping);
2217 /*
2218 * Paired with the fence in do_dentry_open() -> get_write_access()
2219 * to ensure the update to nr_thps is visible.
2220 */
2221 smp_mb();
2222 }
2223
2224 new_folio->mapping = NULL;
2225
2226 folio_unlock(new_folio);
2227 folio_put(new_folio);
2228 out:
2229 VM_BUG_ON(!list_empty(&pagelist));
2230 trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result);
2231 return result;
2232 }
2233
hpage_collapse_scan_file(struct mm_struct * mm,unsigned long addr,struct file * file,pgoff_t start,struct collapse_control * cc)2234 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2235 struct file *file, pgoff_t start,
2236 struct collapse_control *cc)
2237 {
2238 struct folio *folio = NULL;
2239 struct address_space *mapping = file->f_mapping;
2240 XA_STATE(xas, &mapping->i_pages, start);
2241 int present, swap;
2242 int node = NUMA_NO_NODE;
2243 int result = SCAN_SUCCEED;
2244
2245 present = 0;
2246 swap = 0;
2247 memset(cc->node_load, 0, sizeof(cc->node_load));
2248 nodes_clear(cc->alloc_nmask);
2249 rcu_read_lock();
2250 xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) {
2251 if (xas_retry(&xas, folio))
2252 continue;
2253
2254 if (xa_is_value(folio)) {
2255 swap += 1 << xas_get_order(&xas);
2256 if (cc->is_khugepaged &&
2257 swap > khugepaged_max_ptes_swap) {
2258 result = SCAN_EXCEED_SWAP_PTE;
2259 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2260 break;
2261 }
2262 continue;
2263 }
2264
2265 if (folio_order(folio) == HPAGE_PMD_ORDER &&
2266 folio->index == start) {
2267 /* Maybe PMD-mapped */
2268 result = SCAN_PTE_MAPPED_HUGEPAGE;
2269 /*
2270 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2271 * by the caller won't touch the page cache, and so
2272 * it's safe to skip LRU and refcount checks before
2273 * returning.
2274 */
2275 break;
2276 }
2277
2278 node = folio_nid(folio);
2279 if (hpage_collapse_scan_abort(node, cc)) {
2280 result = SCAN_SCAN_ABORT;
2281 break;
2282 }
2283 cc->node_load[node]++;
2284
2285 if (!folio_test_lru(folio)) {
2286 result = SCAN_PAGE_LRU;
2287 break;
2288 }
2289
2290 if (!is_refcount_suitable(folio)) {
2291 result = SCAN_PAGE_COUNT;
2292 break;
2293 }
2294
2295 /*
2296 * We probably should check if the folio is referenced
2297 * here, but nobody would transfer pte_young() to
2298 * folio_test_referenced() for us. And rmap walk here
2299 * is just too costly...
2300 */
2301
2302 present += folio_nr_pages(folio);
2303
2304 if (need_resched()) {
2305 xas_pause(&xas);
2306 cond_resched_rcu();
2307 }
2308 }
2309 rcu_read_unlock();
2310
2311 if (result == SCAN_SUCCEED) {
2312 if (cc->is_khugepaged &&
2313 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2314 result = SCAN_EXCEED_NONE_PTE;
2315 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2316 } else {
2317 result = collapse_file(mm, addr, file, start, cc);
2318 }
2319 }
2320
2321 trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result);
2322 return result;
2323 }
2324 #else
hpage_collapse_scan_file(struct mm_struct * mm,unsigned long addr,struct file * file,pgoff_t start,struct collapse_control * cc)2325 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2326 struct file *file, pgoff_t start,
2327 struct collapse_control *cc)
2328 {
2329 BUILD_BUG();
2330 }
2331 #endif
2332
khugepaged_scan_mm_slot(unsigned int pages,int * result,struct collapse_control * cc)2333 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2334 struct collapse_control *cc)
2335 __releases(&khugepaged_mm_lock)
2336 __acquires(&khugepaged_mm_lock)
2337 {
2338 struct vma_iterator vmi;
2339 struct khugepaged_mm_slot *mm_slot;
2340 struct mm_slot *slot;
2341 struct mm_struct *mm;
2342 struct vm_area_struct *vma;
2343 int progress = 0;
2344
2345 VM_BUG_ON(!pages);
2346 lockdep_assert_held(&khugepaged_mm_lock);
2347 *result = SCAN_FAIL;
2348
2349 if (khugepaged_scan.mm_slot) {
2350 mm_slot = khugepaged_scan.mm_slot;
2351 slot = &mm_slot->slot;
2352 } else {
2353 slot = list_entry(khugepaged_scan.mm_head.next,
2354 struct mm_slot, mm_node);
2355 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2356 khugepaged_scan.address = 0;
2357 khugepaged_scan.mm_slot = mm_slot;
2358 }
2359 spin_unlock(&khugepaged_mm_lock);
2360
2361 mm = slot->mm;
2362 /*
2363 * Don't wait for semaphore (to avoid long wait times). Just move to
2364 * the next mm on the list.
2365 */
2366 vma = NULL;
2367 if (unlikely(!mmap_read_trylock(mm)))
2368 goto breakouterloop_mmap_lock;
2369
2370 progress++;
2371 if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2372 goto breakouterloop;
2373
2374 vma_iter_init(&vmi, mm, khugepaged_scan.address);
2375 for_each_vma(vmi, vma) {
2376 unsigned long hstart, hend;
2377
2378 cond_resched();
2379 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) {
2380 progress++;
2381 break;
2382 }
2383 if (!thp_vma_allowable_order(vma, vma->vm_flags,
2384 TVA_ENFORCE_SYSFS, PMD_ORDER)) {
2385 skip:
2386 progress++;
2387 continue;
2388 }
2389 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2390 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2391 if (khugepaged_scan.address > hend)
2392 goto skip;
2393 if (khugepaged_scan.address < hstart)
2394 khugepaged_scan.address = hstart;
2395 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2396
2397 while (khugepaged_scan.address < hend) {
2398 bool mmap_locked = true;
2399
2400 cond_resched();
2401 if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2402 goto breakouterloop;
2403
2404 VM_BUG_ON(khugepaged_scan.address < hstart ||
2405 khugepaged_scan.address + HPAGE_PMD_SIZE >
2406 hend);
2407 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2408 struct file *file = get_file(vma->vm_file);
2409 pgoff_t pgoff = linear_page_index(vma,
2410 khugepaged_scan.address);
2411
2412 mmap_read_unlock(mm);
2413 mmap_locked = false;
2414 *result = hpage_collapse_scan_file(mm,
2415 khugepaged_scan.address, file, pgoff, cc);
2416 fput(file);
2417 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2418 mmap_read_lock(mm);
2419 if (hpage_collapse_test_exit_or_disable(mm))
2420 goto breakouterloop;
2421 *result = collapse_pte_mapped_thp(mm,
2422 khugepaged_scan.address, false);
2423 if (*result == SCAN_PMD_MAPPED)
2424 *result = SCAN_SUCCEED;
2425 mmap_read_unlock(mm);
2426 }
2427 } else {
2428 *result = hpage_collapse_scan_pmd(mm, vma,
2429 khugepaged_scan.address, &mmap_locked, cc);
2430 }
2431
2432 if (*result == SCAN_SUCCEED)
2433 ++khugepaged_pages_collapsed;
2434
2435 /* move to next address */
2436 khugepaged_scan.address += HPAGE_PMD_SIZE;
2437 progress += HPAGE_PMD_NR;
2438 if (!mmap_locked)
2439 /*
2440 * We released mmap_lock so break loop. Note
2441 * that we drop mmap_lock before all hugepage
2442 * allocations, so if allocation fails, we are
2443 * guaranteed to break here and report the
2444 * correct result back to caller.
2445 */
2446 goto breakouterloop_mmap_lock;
2447 if (progress >= pages)
2448 goto breakouterloop;
2449 }
2450 }
2451 breakouterloop:
2452 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2453 breakouterloop_mmap_lock:
2454
2455 spin_lock(&khugepaged_mm_lock);
2456 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2457 /*
2458 * Release the current mm_slot if this mm is about to die, or
2459 * if we scanned all vmas of this mm.
2460 */
2461 if (hpage_collapse_test_exit(mm) || !vma) {
2462 /*
2463 * Make sure that if mm_users is reaching zero while
2464 * khugepaged runs here, khugepaged_exit will find
2465 * mm_slot not pointing to the exiting mm.
2466 */
2467 if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2468 slot = list_entry(slot->mm_node.next,
2469 struct mm_slot, mm_node);
2470 khugepaged_scan.mm_slot =
2471 mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2472 khugepaged_scan.address = 0;
2473 } else {
2474 khugepaged_scan.mm_slot = NULL;
2475 khugepaged_full_scans++;
2476 }
2477
2478 collect_mm_slot(mm_slot);
2479 }
2480
2481 return progress;
2482 }
2483
khugepaged_has_work(void)2484 static int khugepaged_has_work(void)
2485 {
2486 return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled();
2487 }
2488
khugepaged_wait_event(void)2489 static int khugepaged_wait_event(void)
2490 {
2491 return !list_empty(&khugepaged_scan.mm_head) ||
2492 kthread_should_stop();
2493 }
2494
khugepaged_do_scan(struct collapse_control * cc)2495 static void khugepaged_do_scan(struct collapse_control *cc)
2496 {
2497 unsigned int progress = 0, pass_through_head = 0;
2498 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2499 bool wait = true;
2500 int result = SCAN_SUCCEED;
2501
2502 lru_add_drain_all();
2503
2504 while (true) {
2505 cond_resched();
2506
2507 if (unlikely(kthread_should_stop()))
2508 break;
2509
2510 spin_lock(&khugepaged_mm_lock);
2511 if (!khugepaged_scan.mm_slot)
2512 pass_through_head++;
2513 if (khugepaged_has_work() &&
2514 pass_through_head < 2)
2515 progress += khugepaged_scan_mm_slot(pages - progress,
2516 &result, cc);
2517 else
2518 progress = pages;
2519 spin_unlock(&khugepaged_mm_lock);
2520
2521 if (progress >= pages)
2522 break;
2523
2524 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2525 /*
2526 * If fail to allocate the first time, try to sleep for
2527 * a while. When hit again, cancel the scan.
2528 */
2529 if (!wait)
2530 break;
2531 wait = false;
2532 khugepaged_alloc_sleep();
2533 }
2534 }
2535 }
2536
khugepaged_should_wakeup(void)2537 static bool khugepaged_should_wakeup(void)
2538 {
2539 return kthread_should_stop() ||
2540 time_after_eq(jiffies, khugepaged_sleep_expire);
2541 }
2542
khugepaged_wait_work(void)2543 static void khugepaged_wait_work(void)
2544 {
2545 if (khugepaged_has_work()) {
2546 const unsigned long scan_sleep_jiffies =
2547 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2548
2549 if (!scan_sleep_jiffies)
2550 return;
2551
2552 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2553 wait_event_freezable_timeout(khugepaged_wait,
2554 khugepaged_should_wakeup(),
2555 scan_sleep_jiffies);
2556 return;
2557 }
2558
2559 if (hugepage_pmd_enabled())
2560 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2561 }
2562
khugepaged(void * none)2563 static int khugepaged(void *none)
2564 {
2565 struct khugepaged_mm_slot *mm_slot;
2566
2567 set_freezable();
2568 set_user_nice(current, MAX_NICE);
2569
2570 while (!kthread_should_stop()) {
2571 khugepaged_do_scan(&khugepaged_collapse_control);
2572 khugepaged_wait_work();
2573 }
2574
2575 spin_lock(&khugepaged_mm_lock);
2576 mm_slot = khugepaged_scan.mm_slot;
2577 khugepaged_scan.mm_slot = NULL;
2578 if (mm_slot)
2579 collect_mm_slot(mm_slot);
2580 spin_unlock(&khugepaged_mm_lock);
2581 return 0;
2582 }
2583
set_recommended_min_free_kbytes(void)2584 static void set_recommended_min_free_kbytes(void)
2585 {
2586 struct zone *zone;
2587 int nr_zones = 0;
2588 unsigned long recommended_min;
2589
2590 if (!hugepage_pmd_enabled()) {
2591 calculate_min_free_kbytes();
2592 goto update_wmarks;
2593 }
2594
2595 for_each_populated_zone(zone) {
2596 /*
2597 * We don't need to worry about fragmentation of
2598 * ZONE_MOVABLE since it only has movable pages.
2599 */
2600 if (zone_idx(zone) > gfp_zone(GFP_USER))
2601 continue;
2602
2603 nr_zones++;
2604 }
2605
2606 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2607 recommended_min = pageblock_nr_pages * nr_zones * 2;
2608
2609 /*
2610 * Make sure that on average at least two pageblocks are almost free
2611 * of another type, one for a migratetype to fall back to and a
2612 * second to avoid subsequent fallbacks of other types There are 3
2613 * MIGRATE_TYPES we care about.
2614 */
2615 recommended_min += pageblock_nr_pages * nr_zones *
2616 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2617
2618 /* don't ever allow to reserve more than 5% of the lowmem */
2619 recommended_min = min(recommended_min,
2620 (unsigned long) nr_free_buffer_pages() / 20);
2621 recommended_min <<= (PAGE_SHIFT-10);
2622
2623 if (recommended_min > min_free_kbytes) {
2624 if (user_min_free_kbytes >= 0)
2625 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2626 min_free_kbytes, recommended_min);
2627
2628 min_free_kbytes = recommended_min;
2629 }
2630
2631 update_wmarks:
2632 setup_per_zone_wmarks();
2633 }
2634
start_stop_khugepaged(void)2635 int start_stop_khugepaged(void)
2636 {
2637 int err = 0;
2638
2639 mutex_lock(&khugepaged_mutex);
2640 if (hugepage_pmd_enabled()) {
2641 if (!khugepaged_thread)
2642 khugepaged_thread = kthread_run(khugepaged, NULL,
2643 "khugepaged");
2644 if (IS_ERR(khugepaged_thread)) {
2645 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2646 err = PTR_ERR(khugepaged_thread);
2647 khugepaged_thread = NULL;
2648 goto fail;
2649 }
2650
2651 if (!list_empty(&khugepaged_scan.mm_head))
2652 wake_up_interruptible(&khugepaged_wait);
2653 } else if (khugepaged_thread) {
2654 kthread_stop(khugepaged_thread);
2655 khugepaged_thread = NULL;
2656 }
2657 set_recommended_min_free_kbytes();
2658 fail:
2659 mutex_unlock(&khugepaged_mutex);
2660 return err;
2661 }
2662
khugepaged_min_free_kbytes_update(void)2663 void khugepaged_min_free_kbytes_update(void)
2664 {
2665 mutex_lock(&khugepaged_mutex);
2666 if (hugepage_pmd_enabled() && khugepaged_thread)
2667 set_recommended_min_free_kbytes();
2668 mutex_unlock(&khugepaged_mutex);
2669 }
2670
current_is_khugepaged(void)2671 bool current_is_khugepaged(void)
2672 {
2673 return kthread_func(current) == khugepaged;
2674 }
2675
madvise_collapse_errno(enum scan_result r)2676 static int madvise_collapse_errno(enum scan_result r)
2677 {
2678 /*
2679 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2680 * actionable feedback to caller, so they may take an appropriate
2681 * fallback measure depending on the nature of the failure.
2682 */
2683 switch (r) {
2684 case SCAN_ALLOC_HUGE_PAGE_FAIL:
2685 return -ENOMEM;
2686 case SCAN_CGROUP_CHARGE_FAIL:
2687 case SCAN_EXCEED_NONE_PTE:
2688 return -EBUSY;
2689 /* Resource temporary unavailable - trying again might succeed */
2690 case SCAN_PAGE_COUNT:
2691 case SCAN_PAGE_LOCK:
2692 case SCAN_PAGE_LRU:
2693 case SCAN_DEL_PAGE_LRU:
2694 case SCAN_PAGE_FILLED:
2695 return -EAGAIN;
2696 /*
2697 * Other: Trying again likely not to succeed / error intrinsic to
2698 * specified memory range. khugepaged likely won't be able to collapse
2699 * either.
2700 */
2701 default:
2702 return -EINVAL;
2703 }
2704 }
2705
madvise_collapse(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)2706 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2707 unsigned long start, unsigned long end)
2708 {
2709 struct collapse_control *cc;
2710 struct mm_struct *mm = vma->vm_mm;
2711 unsigned long hstart, hend, addr;
2712 int thps = 0, last_fail = SCAN_FAIL;
2713 bool mmap_locked = true;
2714
2715 BUG_ON(vma->vm_start > start);
2716 BUG_ON(vma->vm_end < end);
2717
2718 *prev = vma;
2719
2720 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER))
2721 return -EINVAL;
2722
2723 cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2724 if (!cc)
2725 return -ENOMEM;
2726 cc->is_khugepaged = false;
2727
2728 mmgrab(mm);
2729 lru_add_drain_all();
2730
2731 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2732 hend = end & HPAGE_PMD_MASK;
2733
2734 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2735 int result = SCAN_FAIL;
2736
2737 if (!mmap_locked) {
2738 cond_resched();
2739 mmap_read_lock(mm);
2740 mmap_locked = true;
2741 result = hugepage_vma_revalidate(mm, addr, false, &vma,
2742 cc);
2743 if (result != SCAN_SUCCEED) {
2744 last_fail = result;
2745 goto out_nolock;
2746 }
2747
2748 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2749 }
2750 mmap_assert_locked(mm);
2751 memset(cc->node_load, 0, sizeof(cc->node_load));
2752 nodes_clear(cc->alloc_nmask);
2753 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2754 struct file *file = get_file(vma->vm_file);
2755 pgoff_t pgoff = linear_page_index(vma, addr);
2756
2757 mmap_read_unlock(mm);
2758 mmap_locked = false;
2759 result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2760 cc);
2761 fput(file);
2762 } else {
2763 result = hpage_collapse_scan_pmd(mm, vma, addr,
2764 &mmap_locked, cc);
2765 }
2766 if (!mmap_locked)
2767 *prev = NULL; /* Tell caller we dropped mmap_lock */
2768
2769 handle_result:
2770 switch (result) {
2771 case SCAN_SUCCEED:
2772 case SCAN_PMD_MAPPED:
2773 ++thps;
2774 break;
2775 case SCAN_PTE_MAPPED_HUGEPAGE:
2776 BUG_ON(mmap_locked);
2777 BUG_ON(*prev);
2778 mmap_read_lock(mm);
2779 result = collapse_pte_mapped_thp(mm, addr, true);
2780 mmap_read_unlock(mm);
2781 goto handle_result;
2782 /* Whitelisted set of results where continuing OK */
2783 case SCAN_PMD_NULL:
2784 case SCAN_PTE_NON_PRESENT:
2785 case SCAN_PTE_UFFD_WP:
2786 case SCAN_PAGE_RO:
2787 case SCAN_LACK_REFERENCED_PAGE:
2788 case SCAN_PAGE_NULL:
2789 case SCAN_PAGE_COUNT:
2790 case SCAN_PAGE_LOCK:
2791 case SCAN_PAGE_COMPOUND:
2792 case SCAN_PAGE_LRU:
2793 case SCAN_DEL_PAGE_LRU:
2794 last_fail = result;
2795 break;
2796 default:
2797 last_fail = result;
2798 /* Other error, exit */
2799 goto out_maybelock;
2800 }
2801 }
2802
2803 out_maybelock:
2804 /* Caller expects us to hold mmap_lock on return */
2805 if (!mmap_locked)
2806 mmap_read_lock(mm);
2807 out_nolock:
2808 mmap_assert_locked(mm);
2809 mmdrop(mm);
2810 kfree(cc);
2811
2812 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2813 : madvise_collapse_errno(last_fail);
2814 }
2815