1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2 *
3 * This software is available to you under a choice of one of two
4 * licenses. You may choose to be licensed under the terms of the GNU
5 * General Public License (GPL) Version 2, available from the file
6 * COPYING in the main directory of this source tree, or the
7 * OpenIB.org BSD license below:
8 *
9 * Redistribution and use in source and binary forms, with or
10 * without modification, are permitted provided that the following
11 * conditions are met:
12 *
13 * - Redistributions of source code must retain the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer.
16 *
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40 #include <linux/skbuff_ref.h>
41
42 #include "tls.h"
43 #include "trace.h"
44
45 /* device_offload_lock is used to synchronize tls_dev_add
46 * against NETDEV_DOWN notifications.
47 */
48 static DECLARE_RWSEM(device_offload_lock);
49
50 static struct workqueue_struct *destruct_wq __read_mostly;
51
52 static LIST_HEAD(tls_device_list);
53 static LIST_HEAD(tls_device_down_list);
54 static DEFINE_SPINLOCK(tls_device_lock);
55
56 static struct page *dummy_page;
57
tls_device_free_ctx(struct tls_context * ctx)58 static void tls_device_free_ctx(struct tls_context *ctx)
59 {
60 if (ctx->tx_conf == TLS_HW)
61 kfree(tls_offload_ctx_tx(ctx));
62
63 if (ctx->rx_conf == TLS_HW)
64 kfree(tls_offload_ctx_rx(ctx));
65
66 tls_ctx_free(NULL, ctx);
67 }
68
tls_device_tx_del_task(struct work_struct * work)69 static void tls_device_tx_del_task(struct work_struct *work)
70 {
71 struct tls_offload_context_tx *offload_ctx =
72 container_of(work, struct tls_offload_context_tx, destruct_work);
73 struct tls_context *ctx = offload_ctx->ctx;
74 struct net_device *netdev;
75
76 /* Safe, because this is the destroy flow, refcount is 0, so
77 * tls_device_down can't store this field in parallel.
78 */
79 netdev = rcu_dereference_protected(ctx->netdev,
80 !refcount_read(&ctx->refcount));
81
82 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX);
83 dev_put(netdev);
84 ctx->netdev = NULL;
85 tls_device_free_ctx(ctx);
86 }
87
tls_device_queue_ctx_destruction(struct tls_context * ctx)88 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
89 {
90 struct net_device *netdev;
91 unsigned long flags;
92 bool async_cleanup;
93
94 spin_lock_irqsave(&tls_device_lock, flags);
95 if (unlikely(!refcount_dec_and_test(&ctx->refcount))) {
96 spin_unlock_irqrestore(&tls_device_lock, flags);
97 return;
98 }
99
100 list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */
101
102 /* Safe, because this is the destroy flow, refcount is 0, so
103 * tls_device_down can't store this field in parallel.
104 */
105 netdev = rcu_dereference_protected(ctx->netdev,
106 !refcount_read(&ctx->refcount));
107
108 async_cleanup = netdev && ctx->tx_conf == TLS_HW;
109 if (async_cleanup) {
110 struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx);
111
112 /* queue_work inside the spinlock
113 * to make sure tls_device_down waits for that work.
114 */
115 queue_work(destruct_wq, &offload_ctx->destruct_work);
116 }
117 spin_unlock_irqrestore(&tls_device_lock, flags);
118
119 if (!async_cleanup)
120 tls_device_free_ctx(ctx);
121 }
122
123 /* We assume that the socket is already connected */
get_netdev_for_sock(struct sock * sk)124 static struct net_device *get_netdev_for_sock(struct sock *sk)
125 {
126 struct net_device *dev, *lowest_dev = NULL;
127 struct dst_entry *dst;
128
129 rcu_read_lock();
130 dst = __sk_dst_get(sk);
131 dev = dst ? dst_dev_rcu(dst) : NULL;
132 if (likely(dev)) {
133 lowest_dev = netdev_sk_get_lowest_dev(dev, sk);
134 dev_hold(lowest_dev);
135 }
136 rcu_read_unlock();
137
138 return lowest_dev;
139 }
140
destroy_record(struct tls_record_info * record)141 static void destroy_record(struct tls_record_info *record)
142 {
143 int i;
144
145 for (i = 0; i < record->num_frags; i++)
146 __skb_frag_unref(&record->frags[i], false);
147 kfree(record);
148 }
149
delete_all_records(struct tls_offload_context_tx * offload_ctx)150 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
151 {
152 struct tls_record_info *info, *temp;
153
154 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
155 list_del(&info->list);
156 destroy_record(info);
157 }
158
159 offload_ctx->retransmit_hint = NULL;
160 }
161
tls_tcp_clean_acked(struct sock * sk,u32 acked_seq)162 static void tls_tcp_clean_acked(struct sock *sk, u32 acked_seq)
163 {
164 struct tls_context *tls_ctx = tls_get_ctx(sk);
165 struct tls_record_info *info, *temp;
166 struct tls_offload_context_tx *ctx;
167 u64 deleted_records = 0;
168 unsigned long flags;
169
170 if (!tls_ctx)
171 return;
172
173 ctx = tls_offload_ctx_tx(tls_ctx);
174
175 spin_lock_irqsave(&ctx->lock, flags);
176 info = ctx->retransmit_hint;
177 if (info && !before(acked_seq, info->end_seq))
178 ctx->retransmit_hint = NULL;
179
180 list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
181 if (before(acked_seq, info->end_seq))
182 break;
183 list_del(&info->list);
184
185 destroy_record(info);
186 deleted_records++;
187 }
188
189 ctx->unacked_record_sn += deleted_records;
190 spin_unlock_irqrestore(&ctx->lock, flags);
191 }
192
193 /* At this point, there should be no references on this
194 * socket and no in-flight SKBs associated with this
195 * socket, so it is safe to free all the resources.
196 */
tls_device_sk_destruct(struct sock * sk)197 void tls_device_sk_destruct(struct sock *sk)
198 {
199 struct tls_context *tls_ctx = tls_get_ctx(sk);
200 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
201
202 tls_ctx->sk_destruct(sk);
203
204 if (tls_ctx->tx_conf == TLS_HW) {
205 if (ctx->open_record)
206 destroy_record(ctx->open_record);
207 delete_all_records(ctx);
208 crypto_free_aead(ctx->aead_send);
209 clean_acked_data_disable(tcp_sk(sk));
210 }
211
212 tls_device_queue_ctx_destruction(tls_ctx);
213 }
214 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
215
tls_device_free_resources_tx(struct sock * sk)216 void tls_device_free_resources_tx(struct sock *sk)
217 {
218 struct tls_context *tls_ctx = tls_get_ctx(sk);
219
220 tls_free_partial_record(sk, tls_ctx);
221 }
222
tls_offload_tx_resync_request(struct sock * sk,u32 got_seq,u32 exp_seq)223 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
224 {
225 struct tls_context *tls_ctx = tls_get_ctx(sk);
226
227 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
228 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
229 }
230 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
231
tls_device_resync_tx(struct sock * sk,struct tls_context * tls_ctx,u32 seq)232 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
233 u32 seq)
234 {
235 struct net_device *netdev;
236 int err = 0;
237 u8 *rcd_sn;
238
239 tcp_write_collapse_fence(sk);
240 rcd_sn = tls_ctx->tx.rec_seq;
241
242 trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
243 down_read(&device_offload_lock);
244 netdev = rcu_dereference_protected(tls_ctx->netdev,
245 lockdep_is_held(&device_offload_lock));
246 if (netdev)
247 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
248 rcd_sn,
249 TLS_OFFLOAD_CTX_DIR_TX);
250 up_read(&device_offload_lock);
251 if (err)
252 return;
253
254 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
255 }
256
tls_append_frag(struct tls_record_info * record,struct page_frag * pfrag,int size)257 static void tls_append_frag(struct tls_record_info *record,
258 struct page_frag *pfrag,
259 int size)
260 {
261 skb_frag_t *frag;
262
263 frag = &record->frags[record->num_frags - 1];
264 if (skb_frag_page(frag) == pfrag->page &&
265 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
266 skb_frag_size_add(frag, size);
267 } else {
268 ++frag;
269 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
270 size);
271 ++record->num_frags;
272 get_page(pfrag->page);
273 }
274
275 pfrag->offset += size;
276 record->len += size;
277 }
278
tls_push_record(struct sock * sk,struct tls_context * ctx,struct tls_offload_context_tx * offload_ctx,struct tls_record_info * record,int flags)279 static int tls_push_record(struct sock *sk,
280 struct tls_context *ctx,
281 struct tls_offload_context_tx *offload_ctx,
282 struct tls_record_info *record,
283 int flags)
284 {
285 struct tls_prot_info *prot = &ctx->prot_info;
286 struct tcp_sock *tp = tcp_sk(sk);
287 skb_frag_t *frag;
288 int i;
289
290 record->end_seq = tp->write_seq + record->len;
291 list_add_tail_rcu(&record->list, &offload_ctx->records_list);
292 offload_ctx->open_record = NULL;
293
294 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
295 tls_device_resync_tx(sk, ctx, tp->write_seq);
296
297 tls_advance_record_sn(sk, prot, &ctx->tx);
298
299 for (i = 0; i < record->num_frags; i++) {
300 frag = &record->frags[i];
301 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
302 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
303 skb_frag_size(frag), skb_frag_off(frag));
304 sk_mem_charge(sk, skb_frag_size(frag));
305 get_page(skb_frag_page(frag));
306 }
307 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
308
309 /* all ready, send */
310 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
311 }
312
tls_device_record_close(struct sock * sk,struct tls_context * ctx,struct tls_record_info * record,struct page_frag * pfrag,unsigned char record_type)313 static void tls_device_record_close(struct sock *sk,
314 struct tls_context *ctx,
315 struct tls_record_info *record,
316 struct page_frag *pfrag,
317 unsigned char record_type)
318 {
319 struct tls_prot_info *prot = &ctx->prot_info;
320 struct page_frag dummy_tag_frag;
321
322 /* append tag
323 * device will fill in the tag, we just need to append a placeholder
324 * use socket memory to improve coalescing (re-using a single buffer
325 * increases frag count)
326 * if we can't allocate memory now use the dummy page
327 */
328 if (unlikely(pfrag->size - pfrag->offset < prot->tag_size) &&
329 !skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation)) {
330 dummy_tag_frag.page = dummy_page;
331 dummy_tag_frag.offset = 0;
332 pfrag = &dummy_tag_frag;
333 }
334 tls_append_frag(record, pfrag, prot->tag_size);
335
336 /* fill prepend */
337 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
338 record->len - prot->overhead_size,
339 record_type);
340 }
341
tls_create_new_record(struct tls_offload_context_tx * offload_ctx,struct page_frag * pfrag,size_t prepend_size)342 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
343 struct page_frag *pfrag,
344 size_t prepend_size)
345 {
346 struct tls_record_info *record;
347 skb_frag_t *frag;
348
349 record = kmalloc(sizeof(*record), GFP_KERNEL);
350 if (!record)
351 return -ENOMEM;
352
353 frag = &record->frags[0];
354 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
355 prepend_size);
356
357 get_page(pfrag->page);
358 pfrag->offset += prepend_size;
359
360 record->num_frags = 1;
361 record->len = prepend_size;
362 offload_ctx->open_record = record;
363 return 0;
364 }
365
tls_do_allocation(struct sock * sk,struct tls_offload_context_tx * offload_ctx,struct page_frag * pfrag,size_t prepend_size)366 static int tls_do_allocation(struct sock *sk,
367 struct tls_offload_context_tx *offload_ctx,
368 struct page_frag *pfrag,
369 size_t prepend_size)
370 {
371 int ret;
372
373 if (!offload_ctx->open_record) {
374 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
375 sk->sk_allocation))) {
376 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
377 sk_stream_moderate_sndbuf(sk);
378 return -ENOMEM;
379 }
380
381 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
382 if (ret)
383 return ret;
384
385 if (pfrag->size > pfrag->offset)
386 return 0;
387 }
388
389 if (!sk_page_frag_refill(sk, pfrag))
390 return -ENOMEM;
391
392 return 0;
393 }
394
tls_device_copy_data(void * addr,size_t bytes,struct iov_iter * i)395 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
396 {
397 size_t pre_copy, nocache;
398
399 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
400 if (pre_copy) {
401 pre_copy = min(pre_copy, bytes);
402 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
403 return -EFAULT;
404 bytes -= pre_copy;
405 addr += pre_copy;
406 }
407
408 nocache = round_down(bytes, SMP_CACHE_BYTES);
409 if (copy_from_iter_nocache(addr, nocache, i) != nocache)
410 return -EFAULT;
411 bytes -= nocache;
412 addr += nocache;
413
414 if (bytes && copy_from_iter(addr, bytes, i) != bytes)
415 return -EFAULT;
416
417 return 0;
418 }
419
tls_push_data(struct sock * sk,struct iov_iter * iter,size_t size,int flags,unsigned char record_type)420 static int tls_push_data(struct sock *sk,
421 struct iov_iter *iter,
422 size_t size, int flags,
423 unsigned char record_type)
424 {
425 struct tls_context *tls_ctx = tls_get_ctx(sk);
426 struct tls_prot_info *prot = &tls_ctx->prot_info;
427 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
428 struct tls_record_info *record;
429 int tls_push_record_flags;
430 struct page_frag *pfrag;
431 size_t orig_size = size;
432 u32 max_open_record_len;
433 bool more = false;
434 bool done = false;
435 int copy, rc = 0;
436 long timeo;
437
438 if (flags &
439 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
440 MSG_SPLICE_PAGES | MSG_EOR))
441 return -EOPNOTSUPP;
442
443 if ((flags & (MSG_MORE | MSG_EOR)) == (MSG_MORE | MSG_EOR))
444 return -EINVAL;
445
446 if (unlikely(sk->sk_err))
447 return -sk->sk_err;
448
449 flags |= MSG_SENDPAGE_DECRYPTED;
450 tls_push_record_flags = flags | MSG_MORE;
451
452 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
453 if (tls_is_partially_sent_record(tls_ctx)) {
454 rc = tls_push_partial_record(sk, tls_ctx, flags);
455 if (rc < 0)
456 return rc;
457 }
458
459 pfrag = sk_page_frag(sk);
460
461 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
462 * we need to leave room for an authentication tag.
463 */
464 max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
465 prot->prepend_size;
466 do {
467 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
468 if (unlikely(rc)) {
469 rc = sk_stream_wait_memory(sk, &timeo);
470 if (!rc)
471 continue;
472
473 record = ctx->open_record;
474 if (!record)
475 break;
476 handle_error:
477 if (record_type != TLS_RECORD_TYPE_DATA) {
478 /* avoid sending partial
479 * record with type !=
480 * application_data
481 */
482 size = orig_size;
483 destroy_record(record);
484 ctx->open_record = NULL;
485 } else if (record->len > prot->prepend_size) {
486 goto last_record;
487 }
488
489 break;
490 }
491
492 record = ctx->open_record;
493
494 copy = min_t(size_t, size, max_open_record_len - record->len);
495 if (copy && (flags & MSG_SPLICE_PAGES)) {
496 struct page_frag zc_pfrag;
497 struct page **pages = &zc_pfrag.page;
498 size_t off;
499
500 rc = iov_iter_extract_pages(iter, &pages,
501 copy, 1, 0, &off);
502 if (rc <= 0) {
503 if (rc == 0)
504 rc = -EIO;
505 goto handle_error;
506 }
507 copy = rc;
508
509 if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) {
510 iov_iter_revert(iter, copy);
511 rc = -EIO;
512 goto handle_error;
513 }
514
515 zc_pfrag.offset = off;
516 zc_pfrag.size = copy;
517 tls_append_frag(record, &zc_pfrag, copy);
518 } else if (copy) {
519 copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
520
521 rc = tls_device_copy_data(page_address(pfrag->page) +
522 pfrag->offset, copy,
523 iter);
524 if (rc)
525 goto handle_error;
526 tls_append_frag(record, pfrag, copy);
527 }
528
529 size -= copy;
530 if (!size) {
531 last_record:
532 tls_push_record_flags = flags;
533 if (flags & MSG_MORE) {
534 more = true;
535 break;
536 }
537
538 done = true;
539 }
540
541 if (done || record->len >= max_open_record_len ||
542 (record->num_frags >= MAX_SKB_FRAGS - 1)) {
543 tls_device_record_close(sk, tls_ctx, record,
544 pfrag, record_type);
545
546 rc = tls_push_record(sk,
547 tls_ctx,
548 ctx,
549 record,
550 tls_push_record_flags);
551 if (rc < 0)
552 break;
553 }
554 } while (!done);
555
556 tls_ctx->pending_open_record_frags = more;
557
558 if (orig_size - size > 0)
559 rc = orig_size - size;
560
561 return rc;
562 }
563
tls_device_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)564 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
565 {
566 unsigned char record_type = TLS_RECORD_TYPE_DATA;
567 struct tls_context *tls_ctx = tls_get_ctx(sk);
568 int rc;
569
570 if (!tls_ctx->zerocopy_sendfile)
571 msg->msg_flags &= ~MSG_SPLICE_PAGES;
572
573 mutex_lock(&tls_ctx->tx_lock);
574 lock_sock(sk);
575
576 if (unlikely(msg->msg_controllen)) {
577 rc = tls_process_cmsg(sk, msg, &record_type);
578 if (rc)
579 goto out;
580 }
581
582 rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags,
583 record_type);
584
585 out:
586 release_sock(sk);
587 mutex_unlock(&tls_ctx->tx_lock);
588 return rc;
589 }
590
tls_device_splice_eof(struct socket * sock)591 void tls_device_splice_eof(struct socket *sock)
592 {
593 struct sock *sk = sock->sk;
594 struct tls_context *tls_ctx = tls_get_ctx(sk);
595 struct iov_iter iter = {};
596
597 if (!tls_is_partially_sent_record(tls_ctx))
598 return;
599
600 mutex_lock(&tls_ctx->tx_lock);
601 lock_sock(sk);
602
603 if (tls_is_partially_sent_record(tls_ctx)) {
604 iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0);
605 tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA);
606 }
607
608 release_sock(sk);
609 mutex_unlock(&tls_ctx->tx_lock);
610 }
611
tls_get_record(struct tls_offload_context_tx * context,u32 seq,u64 * p_record_sn)612 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
613 u32 seq, u64 *p_record_sn)
614 {
615 u64 record_sn = context->hint_record_sn;
616 struct tls_record_info *info, *last;
617
618 info = context->retransmit_hint;
619 if (!info ||
620 before(seq, info->end_seq - info->len)) {
621 /* if retransmit_hint is irrelevant start
622 * from the beginning of the list
623 */
624 info = list_first_entry_or_null(&context->records_list,
625 struct tls_record_info, list);
626 if (!info)
627 return NULL;
628 /* send the start_marker record if seq number is before the
629 * tls offload start marker sequence number. This record is
630 * required to handle TCP packets which are before TLS offload
631 * started.
632 * And if it's not start marker, look if this seq number
633 * belongs to the list.
634 */
635 if (likely(!tls_record_is_start_marker(info))) {
636 /* we have the first record, get the last record to see
637 * if this seq number belongs to the list.
638 */
639 last = list_last_entry(&context->records_list,
640 struct tls_record_info, list);
641
642 if (!between(seq, tls_record_start_seq(info),
643 last->end_seq))
644 return NULL;
645 }
646 record_sn = context->unacked_record_sn;
647 }
648
649 /* We just need the _rcu for the READ_ONCE() */
650 rcu_read_lock();
651 list_for_each_entry_from_rcu(info, &context->records_list, list) {
652 if (before(seq, info->end_seq)) {
653 if (!context->retransmit_hint ||
654 after(info->end_seq,
655 context->retransmit_hint->end_seq)) {
656 context->hint_record_sn = record_sn;
657 context->retransmit_hint = info;
658 }
659 *p_record_sn = record_sn;
660 goto exit_rcu_unlock;
661 }
662 record_sn++;
663 }
664 info = NULL;
665
666 exit_rcu_unlock:
667 rcu_read_unlock();
668 return info;
669 }
670 EXPORT_SYMBOL(tls_get_record);
671
tls_device_push_pending_record(struct sock * sk,int flags)672 static int tls_device_push_pending_record(struct sock *sk, int flags)
673 {
674 struct iov_iter iter;
675
676 iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0);
677 return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA);
678 }
679
tls_device_write_space(struct sock * sk,struct tls_context * ctx)680 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
681 {
682 if (tls_is_partially_sent_record(ctx)) {
683 gfp_t sk_allocation = sk->sk_allocation;
684
685 WARN_ON_ONCE(sk->sk_write_pending);
686
687 sk->sk_allocation = GFP_ATOMIC;
688 tls_push_partial_record(sk, ctx,
689 MSG_DONTWAIT | MSG_NOSIGNAL |
690 MSG_SENDPAGE_DECRYPTED);
691 sk->sk_allocation = sk_allocation;
692 }
693 }
694
tls_device_resync_rx(struct tls_context * tls_ctx,struct sock * sk,u32 seq,u8 * rcd_sn)695 static void tls_device_resync_rx(struct tls_context *tls_ctx,
696 struct sock *sk, u32 seq, u8 *rcd_sn)
697 {
698 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
699 struct net_device *netdev;
700
701 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
702 rcu_read_lock();
703 netdev = rcu_dereference(tls_ctx->netdev);
704 if (netdev)
705 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
706 TLS_OFFLOAD_CTX_DIR_RX);
707 rcu_read_unlock();
708 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
709 }
710
711 static bool
tls_device_rx_resync_async(struct tls_offload_resync_async * resync_async,s64 resync_req,u32 * seq,u16 * rcd_delta)712 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
713 s64 resync_req, u32 *seq, u16 *rcd_delta)
714 {
715 u32 is_async = resync_req & RESYNC_REQ_ASYNC;
716 u32 req_seq = resync_req >> 32;
717 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
718 u16 i;
719
720 *rcd_delta = 0;
721
722 if (is_async) {
723 /* shouldn't get to wraparound:
724 * too long in async stage, something bad happened
725 */
726 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) {
727 tls_offload_rx_resync_async_request_cancel(resync_async);
728 return false;
729 }
730
731 /* asynchronous stage: log all headers seq such that
732 * req_seq <= seq <= end_seq, and wait for real resync request
733 */
734 if (before(*seq, req_seq))
735 return false;
736 if (!after(*seq, req_end) &&
737 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
738 resync_async->log[resync_async->loglen++] = *seq;
739
740 resync_async->rcd_delta++;
741
742 return false;
743 }
744
745 /* synchronous stage: check against the logged entries and
746 * proceed to check the next entries if no match was found
747 */
748 for (i = 0; i < resync_async->loglen; i++)
749 if (req_seq == resync_async->log[i] &&
750 atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
751 *rcd_delta = resync_async->rcd_delta - i;
752 *seq = req_seq;
753 resync_async->loglen = 0;
754 resync_async->rcd_delta = 0;
755 return true;
756 }
757
758 resync_async->loglen = 0;
759 resync_async->rcd_delta = 0;
760
761 if (req_seq == *seq &&
762 atomic64_try_cmpxchg(&resync_async->req,
763 &resync_req, 0))
764 return true;
765
766 return false;
767 }
768
tls_device_rx_resync_new_rec(struct sock * sk,u32 rcd_len,u32 seq)769 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
770 {
771 struct tls_context *tls_ctx = tls_get_ctx(sk);
772 struct tls_offload_context_rx *rx_ctx;
773 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
774 u32 sock_data, is_req_pending;
775 struct tls_prot_info *prot;
776 s64 resync_req;
777 u16 rcd_delta;
778 u32 req_seq;
779
780 if (tls_ctx->rx_conf != TLS_HW)
781 return;
782 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
783 return;
784
785 prot = &tls_ctx->prot_info;
786 rx_ctx = tls_offload_ctx_rx(tls_ctx);
787 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
788
789 switch (rx_ctx->resync_type) {
790 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
791 resync_req = atomic64_read(&rx_ctx->resync_req);
792 req_seq = resync_req >> 32;
793 seq += TLS_HEADER_SIZE - 1;
794 is_req_pending = resync_req;
795
796 if (likely(!is_req_pending) || req_seq != seq ||
797 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
798 return;
799 break;
800 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
801 if (likely(!rx_ctx->resync_nh_do_now))
802 return;
803
804 /* head of next rec is already in, note that the sock_inq will
805 * include the currently parsed message when called from parser
806 */
807 sock_data = tcp_inq(sk);
808 if (sock_data > rcd_len) {
809 trace_tls_device_rx_resync_nh_delay(sk, sock_data,
810 rcd_len);
811 return;
812 }
813
814 rx_ctx->resync_nh_do_now = 0;
815 seq += rcd_len;
816 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
817 break;
818 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
819 resync_req = atomic64_read(&rx_ctx->resync_async->req);
820 is_req_pending = resync_req;
821 if (likely(!is_req_pending))
822 return;
823
824 if (!tls_device_rx_resync_async(rx_ctx->resync_async,
825 resync_req, &seq, &rcd_delta))
826 return;
827 tls_bigint_subtract(rcd_sn, rcd_delta);
828 break;
829 }
830
831 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
832 }
833
tls_device_core_ctrl_rx_resync(struct tls_context * tls_ctx,struct tls_offload_context_rx * ctx,struct sock * sk,struct sk_buff * skb)834 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
835 struct tls_offload_context_rx *ctx,
836 struct sock *sk, struct sk_buff *skb)
837 {
838 struct strp_msg *rxm;
839
840 /* device will request resyncs by itself based on stream scan */
841 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
842 return;
843 /* already scheduled */
844 if (ctx->resync_nh_do_now)
845 return;
846 /* seen decrypted fragments since last fully-failed record */
847 if (ctx->resync_nh_reset) {
848 ctx->resync_nh_reset = 0;
849 ctx->resync_nh.decrypted_failed = 1;
850 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
851 return;
852 }
853
854 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
855 return;
856
857 /* doing resync, bump the next target in case it fails */
858 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
859 ctx->resync_nh.decrypted_tgt *= 2;
860 else
861 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
862
863 rxm = strp_msg(skb);
864
865 /* head of next rec is already in, parser will sync for us */
866 if (tcp_inq(sk) > rxm->full_len) {
867 trace_tls_device_rx_resync_nh_schedule(sk);
868 ctx->resync_nh_do_now = 1;
869 } else {
870 struct tls_prot_info *prot = &tls_ctx->prot_info;
871 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
872
873 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
874 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
875
876 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
877 rcd_sn);
878 }
879 }
880
881 static int
tls_device_reencrypt(struct sock * sk,struct tls_context * tls_ctx)882 tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx)
883 {
884 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
885 const struct tls_cipher_desc *cipher_desc;
886 int err, offset, copy, data_len, pos;
887 struct sk_buff *skb, *skb_iter;
888 struct scatterlist sg[1];
889 struct strp_msg *rxm;
890 char *orig_buf, *buf;
891
892 cipher_desc = get_cipher_desc(tls_ctx->crypto_recv.info.cipher_type);
893 DEBUG_NET_WARN_ON_ONCE(!cipher_desc || !cipher_desc->offloadable);
894
895 rxm = strp_msg(tls_strp_msg(sw_ctx));
896 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv,
897 sk->sk_allocation);
898 if (!orig_buf)
899 return -ENOMEM;
900 buf = orig_buf;
901
902 err = tls_strp_msg_cow(sw_ctx);
903 if (unlikely(err))
904 goto free_buf;
905
906 skb = tls_strp_msg(sw_ctx);
907 rxm = strp_msg(skb);
908 offset = rxm->offset;
909
910 sg_init_table(sg, 1);
911 sg_set_buf(&sg[0], buf,
912 rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv);
913 err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_desc->iv);
914 if (err)
915 goto free_buf;
916
917 /* We are interested only in the decrypted data not the auth */
918 err = decrypt_skb(sk, sg);
919 if (err != -EBADMSG)
920 goto free_buf;
921 else
922 err = 0;
923
924 data_len = rxm->full_len - cipher_desc->tag;
925
926 if (skb_pagelen(skb) > offset) {
927 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
928
929 if (skb->decrypted) {
930 err = skb_store_bits(skb, offset, buf, copy);
931 if (err)
932 goto free_buf;
933 }
934
935 offset += copy;
936 buf += copy;
937 }
938
939 pos = skb_pagelen(skb);
940 skb_walk_frags(skb, skb_iter) {
941 int frag_pos;
942
943 /* Practically all frags must belong to msg if reencrypt
944 * is needed with current strparser and coalescing logic,
945 * but strparser may "get optimized", so let's be safe.
946 */
947 if (pos + skb_iter->len <= offset)
948 goto done_with_frag;
949 if (pos >= data_len + rxm->offset)
950 break;
951
952 frag_pos = offset - pos;
953 copy = min_t(int, skb_iter->len - frag_pos,
954 data_len + rxm->offset - offset);
955
956 if (skb_iter->decrypted) {
957 err = skb_store_bits(skb_iter, frag_pos, buf, copy);
958 if (err)
959 goto free_buf;
960 }
961
962 offset += copy;
963 buf += copy;
964 done_with_frag:
965 pos += skb_iter->len;
966 }
967
968 free_buf:
969 kfree(orig_buf);
970 return err;
971 }
972
tls_device_decrypted(struct sock * sk,struct tls_context * tls_ctx)973 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
974 {
975 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
976 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
977 struct sk_buff *skb = tls_strp_msg(sw_ctx);
978 struct strp_msg *rxm = strp_msg(skb);
979 int is_decrypted, is_encrypted;
980
981 if (!tls_strp_msg_mixed_decrypted(sw_ctx)) {
982 is_decrypted = skb->decrypted;
983 is_encrypted = !is_decrypted;
984 } else {
985 is_decrypted = 0;
986 is_encrypted = 0;
987 }
988
989 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
990 tls_ctx->rx.rec_seq, rxm->full_len,
991 is_encrypted, is_decrypted);
992
993 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
994 if (likely(is_encrypted || is_decrypted))
995 return is_decrypted;
996
997 /* After tls_device_down disables the offload, the next SKB will
998 * likely have initial fragments decrypted, and final ones not
999 * decrypted. We need to reencrypt that single SKB.
1000 */
1001 return tls_device_reencrypt(sk, tls_ctx);
1002 }
1003
1004 /* Return immediately if the record is either entirely plaintext or
1005 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1006 * record.
1007 */
1008 if (is_decrypted) {
1009 ctx->resync_nh_reset = 1;
1010 return is_decrypted;
1011 }
1012 if (is_encrypted) {
1013 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1014 return 0;
1015 }
1016
1017 ctx->resync_nh_reset = 1;
1018 return tls_device_reencrypt(sk, tls_ctx);
1019 }
1020
tls_device_attach(struct tls_context * ctx,struct sock * sk,struct net_device * netdev)1021 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1022 struct net_device *netdev)
1023 {
1024 if (sk->sk_destruct != tls_device_sk_destruct) {
1025 refcount_set(&ctx->refcount, 1);
1026 dev_hold(netdev);
1027 RCU_INIT_POINTER(ctx->netdev, netdev);
1028 spin_lock_irq(&tls_device_lock);
1029 list_add_tail(&ctx->list, &tls_device_list);
1030 spin_unlock_irq(&tls_device_lock);
1031
1032 ctx->sk_destruct = sk->sk_destruct;
1033 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1034 }
1035 }
1036
alloc_offload_ctx_tx(struct tls_context * ctx)1037 static struct tls_offload_context_tx *alloc_offload_ctx_tx(struct tls_context *ctx)
1038 {
1039 struct tls_offload_context_tx *offload_ctx;
1040 __be64 rcd_sn;
1041
1042 offload_ctx = kzalloc(sizeof(*offload_ctx), GFP_KERNEL);
1043 if (!offload_ctx)
1044 return NULL;
1045
1046 INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task);
1047 INIT_LIST_HEAD(&offload_ctx->records_list);
1048 spin_lock_init(&offload_ctx->lock);
1049 sg_init_table(offload_ctx->sg_tx_data,
1050 ARRAY_SIZE(offload_ctx->sg_tx_data));
1051
1052 /* start at rec_seq - 1 to account for the start marker record */
1053 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1054 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1055
1056 offload_ctx->ctx = ctx;
1057
1058 return offload_ctx;
1059 }
1060
tls_set_device_offload(struct sock * sk)1061 int tls_set_device_offload(struct sock *sk)
1062 {
1063 struct tls_record_info *start_marker_record;
1064 struct tls_offload_context_tx *offload_ctx;
1065 const struct tls_cipher_desc *cipher_desc;
1066 struct tls_crypto_info *crypto_info;
1067 struct tls_prot_info *prot;
1068 struct net_device *netdev;
1069 struct tls_context *ctx;
1070 char *iv, *rec_seq;
1071 int rc;
1072
1073 ctx = tls_get_ctx(sk);
1074 prot = &ctx->prot_info;
1075
1076 if (ctx->priv_ctx_tx)
1077 return -EEXIST;
1078
1079 netdev = get_netdev_for_sock(sk);
1080 if (!netdev) {
1081 pr_err_ratelimited("%s: netdev not found\n", __func__);
1082 return -EINVAL;
1083 }
1084
1085 if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1086 rc = -EOPNOTSUPP;
1087 goto release_netdev;
1088 }
1089
1090 crypto_info = &ctx->crypto_send.info;
1091 if (crypto_info->version != TLS_1_2_VERSION) {
1092 rc = -EOPNOTSUPP;
1093 goto release_netdev;
1094 }
1095
1096 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
1097 if (!cipher_desc || !cipher_desc->offloadable) {
1098 rc = -EINVAL;
1099 goto release_netdev;
1100 }
1101
1102 rc = init_prot_info(prot, crypto_info, cipher_desc);
1103 if (rc)
1104 goto release_netdev;
1105
1106 iv = crypto_info_iv(crypto_info, cipher_desc);
1107 rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
1108
1109 memcpy(ctx->tx.iv + cipher_desc->salt, iv, cipher_desc->iv);
1110 memcpy(ctx->tx.rec_seq, rec_seq, cipher_desc->rec_seq);
1111
1112 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1113 if (!start_marker_record) {
1114 rc = -ENOMEM;
1115 goto release_netdev;
1116 }
1117
1118 offload_ctx = alloc_offload_ctx_tx(ctx);
1119 if (!offload_ctx) {
1120 rc = -ENOMEM;
1121 goto free_marker_record;
1122 }
1123
1124 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1125 if (rc)
1126 goto free_offload_ctx;
1127
1128 start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1129 start_marker_record->len = 0;
1130 start_marker_record->num_frags = 0;
1131 list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1132
1133 clean_acked_data_enable(tcp_sk(sk), &tls_tcp_clean_acked);
1134 ctx->push_pending_record = tls_device_push_pending_record;
1135
1136 /* TLS offload is greatly simplified if we don't send
1137 * SKBs where only part of the payload needs to be encrypted.
1138 * So mark the last skb in the write queue as end of record.
1139 */
1140 tcp_write_collapse_fence(sk);
1141
1142 /* Avoid offloading if the device is down
1143 * We don't want to offload new flows after
1144 * the NETDEV_DOWN event
1145 *
1146 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1147 * handler thus protecting from the device going down before
1148 * ctx was added to tls_device_list.
1149 */
1150 down_read(&device_offload_lock);
1151 if (!(netdev->flags & IFF_UP)) {
1152 rc = -EINVAL;
1153 goto release_lock;
1154 }
1155
1156 ctx->priv_ctx_tx = offload_ctx;
1157 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1158 &ctx->crypto_send.info,
1159 tcp_sk(sk)->write_seq);
1160 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1161 tcp_sk(sk)->write_seq, rec_seq, rc);
1162 if (rc)
1163 goto release_lock;
1164
1165 tls_device_attach(ctx, sk, netdev);
1166 up_read(&device_offload_lock);
1167
1168 /* following this assignment tls_is_skb_tx_device_offloaded
1169 * will return true and the context might be accessed
1170 * by the netdev's xmit function.
1171 */
1172 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1173 dev_put(netdev);
1174
1175 return 0;
1176
1177 release_lock:
1178 up_read(&device_offload_lock);
1179 clean_acked_data_disable(tcp_sk(sk));
1180 crypto_free_aead(offload_ctx->aead_send);
1181 free_offload_ctx:
1182 kfree(offload_ctx);
1183 ctx->priv_ctx_tx = NULL;
1184 free_marker_record:
1185 kfree(start_marker_record);
1186 release_netdev:
1187 dev_put(netdev);
1188 return rc;
1189 }
1190
tls_set_device_offload_rx(struct sock * sk,struct tls_context * ctx)1191 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1192 {
1193 struct tls12_crypto_info_aes_gcm_128 *info;
1194 struct tls_offload_context_rx *context;
1195 struct net_device *netdev;
1196 int rc = 0;
1197
1198 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1199 return -EOPNOTSUPP;
1200
1201 netdev = get_netdev_for_sock(sk);
1202 if (!netdev) {
1203 pr_err_ratelimited("%s: netdev not found\n", __func__);
1204 return -EINVAL;
1205 }
1206
1207 if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1208 rc = -EOPNOTSUPP;
1209 goto release_netdev;
1210 }
1211
1212 /* Avoid offloading if the device is down
1213 * We don't want to offload new flows after
1214 * the NETDEV_DOWN event
1215 *
1216 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1217 * handler thus protecting from the device going down before
1218 * ctx was added to tls_device_list.
1219 */
1220 down_read(&device_offload_lock);
1221 if (!(netdev->flags & IFF_UP)) {
1222 rc = -EINVAL;
1223 goto release_lock;
1224 }
1225
1226 context = kzalloc(sizeof(*context), GFP_KERNEL);
1227 if (!context) {
1228 rc = -ENOMEM;
1229 goto release_lock;
1230 }
1231 context->resync_nh_reset = 1;
1232
1233 ctx->priv_ctx_rx = context;
1234 rc = tls_set_sw_offload(sk, 0, NULL);
1235 if (rc)
1236 goto release_ctx;
1237
1238 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1239 &ctx->crypto_recv.info,
1240 tcp_sk(sk)->copied_seq);
1241 info = (void *)&ctx->crypto_recv.info;
1242 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1243 tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1244 if (rc)
1245 goto free_sw_resources;
1246
1247 tls_device_attach(ctx, sk, netdev);
1248 up_read(&device_offload_lock);
1249
1250 dev_put(netdev);
1251
1252 return 0;
1253
1254 free_sw_resources:
1255 up_read(&device_offload_lock);
1256 tls_sw_free_resources_rx(sk);
1257 down_read(&device_offload_lock);
1258 release_ctx:
1259 ctx->priv_ctx_rx = NULL;
1260 release_lock:
1261 up_read(&device_offload_lock);
1262 release_netdev:
1263 dev_put(netdev);
1264 return rc;
1265 }
1266
tls_device_offload_cleanup_rx(struct sock * sk)1267 void tls_device_offload_cleanup_rx(struct sock *sk)
1268 {
1269 struct tls_context *tls_ctx = tls_get_ctx(sk);
1270 struct net_device *netdev;
1271
1272 down_read(&device_offload_lock);
1273 netdev = rcu_dereference_protected(tls_ctx->netdev,
1274 lockdep_is_held(&device_offload_lock));
1275 if (!netdev)
1276 goto out;
1277
1278 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1279 TLS_OFFLOAD_CTX_DIR_RX);
1280
1281 if (tls_ctx->tx_conf != TLS_HW) {
1282 dev_put(netdev);
1283 rcu_assign_pointer(tls_ctx->netdev, NULL);
1284 } else {
1285 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1286 }
1287 out:
1288 up_read(&device_offload_lock);
1289 tls_sw_release_resources_rx(sk);
1290 }
1291
tls_device_down(struct net_device * netdev)1292 static int tls_device_down(struct net_device *netdev)
1293 {
1294 struct tls_context *ctx, *tmp;
1295 unsigned long flags;
1296 LIST_HEAD(list);
1297
1298 /* Request a write lock to block new offload attempts */
1299 down_write(&device_offload_lock);
1300
1301 spin_lock_irqsave(&tls_device_lock, flags);
1302 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1303 struct net_device *ctx_netdev =
1304 rcu_dereference_protected(ctx->netdev,
1305 lockdep_is_held(&device_offload_lock));
1306
1307 if (ctx_netdev != netdev ||
1308 !refcount_inc_not_zero(&ctx->refcount))
1309 continue;
1310
1311 list_move(&ctx->list, &list);
1312 }
1313 spin_unlock_irqrestore(&tls_device_lock, flags);
1314
1315 list_for_each_entry_safe(ctx, tmp, &list, list) {
1316 /* Stop offloaded TX and switch to the fallback.
1317 * tls_is_skb_tx_device_offloaded will return false.
1318 */
1319 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1320
1321 /* Stop the RX and TX resync.
1322 * tls_dev_resync must not be called after tls_dev_del.
1323 */
1324 rcu_assign_pointer(ctx->netdev, NULL);
1325
1326 /* Start skipping the RX resync logic completely. */
1327 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1328
1329 /* Sync with inflight packets. After this point:
1330 * TX: no non-encrypted packets will be passed to the driver.
1331 * RX: resync requests from the driver will be ignored.
1332 */
1333 synchronize_net();
1334
1335 /* Release the offload context on the driver side. */
1336 if (ctx->tx_conf == TLS_HW)
1337 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1338 TLS_OFFLOAD_CTX_DIR_TX);
1339 if (ctx->rx_conf == TLS_HW &&
1340 !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1341 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1342 TLS_OFFLOAD_CTX_DIR_RX);
1343
1344 dev_put(netdev);
1345
1346 /* Move the context to a separate list for two reasons:
1347 * 1. When the context is deallocated, list_del is called.
1348 * 2. It's no longer an offloaded context, so we don't want to
1349 * run offload-specific code on this context.
1350 */
1351 spin_lock_irqsave(&tls_device_lock, flags);
1352 list_move_tail(&ctx->list, &tls_device_down_list);
1353 spin_unlock_irqrestore(&tls_device_lock, flags);
1354
1355 /* Device contexts for RX and TX will be freed in on sk_destruct
1356 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1357 * Now release the ref taken above.
1358 */
1359 if (refcount_dec_and_test(&ctx->refcount)) {
1360 /* sk_destruct ran after tls_device_down took a ref, and
1361 * it returned early. Complete the destruction here.
1362 */
1363 list_del(&ctx->list);
1364 tls_device_free_ctx(ctx);
1365 }
1366 }
1367
1368 up_write(&device_offload_lock);
1369
1370 flush_workqueue(destruct_wq);
1371
1372 return NOTIFY_DONE;
1373 }
1374
tls_dev_event(struct notifier_block * this,unsigned long event,void * ptr)1375 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1376 void *ptr)
1377 {
1378 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1379
1380 if (!dev->tlsdev_ops &&
1381 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1382 return NOTIFY_DONE;
1383
1384 switch (event) {
1385 case NETDEV_REGISTER:
1386 case NETDEV_FEAT_CHANGE:
1387 if (netif_is_bond_master(dev))
1388 return NOTIFY_DONE;
1389 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1390 !dev->tlsdev_ops->tls_dev_resync)
1391 return NOTIFY_BAD;
1392
1393 if (dev->tlsdev_ops &&
1394 dev->tlsdev_ops->tls_dev_add &&
1395 dev->tlsdev_ops->tls_dev_del)
1396 return NOTIFY_DONE;
1397 else
1398 return NOTIFY_BAD;
1399 case NETDEV_DOWN:
1400 return tls_device_down(dev);
1401 }
1402 return NOTIFY_DONE;
1403 }
1404
1405 static struct notifier_block tls_dev_notifier = {
1406 .notifier_call = tls_dev_event,
1407 };
1408
tls_device_init(void)1409 int __init tls_device_init(void)
1410 {
1411 int err;
1412
1413 dummy_page = alloc_page(GFP_KERNEL);
1414 if (!dummy_page)
1415 return -ENOMEM;
1416
1417 destruct_wq = alloc_workqueue("ktls_device_destruct", WQ_PERCPU, 0);
1418 if (!destruct_wq) {
1419 err = -ENOMEM;
1420 goto err_free_dummy;
1421 }
1422
1423 err = register_netdevice_notifier(&tls_dev_notifier);
1424 if (err)
1425 goto err_destroy_wq;
1426
1427 return 0;
1428
1429 err_destroy_wq:
1430 destroy_workqueue(destruct_wq);
1431 err_free_dummy:
1432 put_page(dummy_page);
1433 return err;
1434 }
1435
tls_device_cleanup(void)1436 void __exit tls_device_cleanup(void)
1437 {
1438 unregister_netdevice_notifier(&tls_dev_notifier);
1439 destroy_workqueue(destruct_wq);
1440 clean_acked_data_flush();
1441 put_page(dummy_page);
1442 }
1443