xref: /linux/drivers/net/wireless/intel/iwlwifi/iwl-nvm-parse.c (revision 85502b2214d50ba0ddf2a5fb454e4d28a160d175)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2023, 2025 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 #include "mei/iwl-mei.h"
26 
27 /* NVM offsets (in words) definitions */
28 enum nvm_offsets {
29 	/* NVM HW-Section offset (in words) definitions */
30 	SUBSYSTEM_ID = 0x0A,
31 	HW_ADDR = 0x15,
32 
33 	/* NVM SW-Section offset (in words) definitions */
34 	NVM_SW_SECTION = 0x1C0,
35 	NVM_VERSION = 0,
36 	RADIO_CFG = 1,
37 	SKU = 2,
38 	N_HW_ADDRS = 3,
39 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40 
41 	/* NVM REGULATORY -Section offset (in words) definitions */
42 	NVM_CHANNELS_SDP = 0,
43 };
44 
45 enum ext_nvm_offsets {
46 	/* NVM HW-Section offset (in words) definitions */
47 
48 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
49 
50 	/* NVM SW-Section offset (in words) definitions */
51 	NVM_VERSION_EXT_NVM = 0,
52 	N_HW_ADDRS_FAMILY_8000 = 3,
53 
54 	/* NVM PHY_SKU-Section offset (in words) definitions */
55 	RADIO_CFG_FAMILY_EXT_NVM = 0,
56 	SKU_FAMILY_8000 = 2,
57 
58 	/* NVM REGULATORY -Section offset (in words) definitions */
59 	NVM_CHANNELS_EXTENDED = 0,
60 	NVM_LAR_OFFSET_OLD = 0x4C7,
61 	NVM_LAR_OFFSET = 0x507,
62 	NVM_LAR_ENABLED = 0x7,
63 };
64 
65 /* SKU Capabilities (actual values from NVM definition) */
66 enum nvm_sku_bits {
67 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
68 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
69 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
70 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
71 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
72 };
73 
74 /*
75  * These are the channel numbers in the order that they are stored in the NVM
76  */
77 static const u16 iwl_nvm_channels[] = {
78 	/* 2.4 GHz */
79 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
80 	/* 5 GHz */
81 	36, 40, 44, 48, 52, 56, 60, 64,
82 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
83 	149, 153, 157, 161, 165
84 };
85 
86 static const u16 iwl_ext_nvm_channels[] = {
87 	/* 2.4 GHz */
88 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
89 	/* 5 GHz */
90 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
91 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
92 	149, 153, 157, 161, 165, 169, 173, 177, 181
93 };
94 
95 static const u16 iwl_uhb_nvm_channels[] = {
96 	/* 2.4 GHz */
97 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
98 	/* 5 GHz */
99 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
100 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
101 	149, 153, 157, 161, 165, 169, 173, 177, 181,
102 	/* 6-7 GHz */
103 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
104 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
105 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
106 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
107 };
108 
109 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
110 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
111 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
112 #define NUM_2GHZ_CHANNELS		14
113 #define NUM_5GHZ_CHANNELS		37
114 #define FIRST_2GHZ_HT_MINUS		5
115 #define LAST_2GHZ_HT_PLUS		9
116 #define N_HW_ADDR_MASK			0xF
117 
118 /* rate data (static) */
119 static struct ieee80211_rate iwl_cfg80211_rates[] = {
120 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
121 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
122 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
123 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
124 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
125 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
126 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
127 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
128 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
129 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
130 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
131 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
132 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
133 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
134 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
135 };
136 #define RATES_24_OFFS	0
137 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
138 #define RATES_52_OFFS	4
139 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
140 
141 /**
142  * enum iwl_nvm_channel_flags - channel flags in NVM
143  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
144  * @NVM_CHANNEL_IBSS: usable as an IBSS channel and deprecated
145  *	when %IWL_NVM_SBANDS_FLAGS_LAR enabled.
146  * @NVM_CHANNEL_ALLOW_20MHZ_ACTIVITY: active scanning allowed and
147  *	AP allowed only in 20 MHz. Valid only
148  *	when %IWL_NVM_SBANDS_FLAGS_LAR enabled.
149  * @NVM_CHANNEL_ACTIVE: active scanning allowed and allows IBSS
150  *	when %IWL_NVM_SBANDS_FLAGS_LAR enabled.
151  * @NVM_CHANNEL_RADAR: radar detection required
152  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
153  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
154  *	on same channel on 2.4 or same UNII band on 5.2
155  * @NVM_CHANNEL_UNIFORM: uniform spreading required
156  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
157  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
158  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
159  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
160  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
161  * @NVM_CHANNEL_VLP: client support connection to UHB VLP AP
162  * @NVM_CHANNEL_AFC: client support connection to UHB AFC AP
163  */
164 enum iwl_nvm_channel_flags {
165 	NVM_CHANNEL_VALID                   = BIT(0),
166 	NVM_CHANNEL_IBSS                    = BIT(1),
167 	NVM_CHANNEL_ALLOW_20MHZ_ACTIVITY    = BIT(2),
168 	NVM_CHANNEL_ACTIVE                  = BIT(3),
169 	NVM_CHANNEL_RADAR                   = BIT(4),
170 	NVM_CHANNEL_INDOOR_ONLY             = BIT(5),
171 	NVM_CHANNEL_GO_CONCURRENT           = BIT(6),
172 	NVM_CHANNEL_UNIFORM                 = BIT(7),
173 	NVM_CHANNEL_20MHZ                   = BIT(8),
174 	NVM_CHANNEL_40MHZ                   = BIT(9),
175 	NVM_CHANNEL_80MHZ                   = BIT(10),
176 	NVM_CHANNEL_160MHZ                  = BIT(11),
177 	NVM_CHANNEL_DC_HIGH                 = BIT(12),
178 	NVM_CHANNEL_VLP                     = BIT(13),
179 	NVM_CHANNEL_AFC                     = BIT(14),
180 };
181 
182 /**
183  * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory
184  * domain.
185  * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
186  *	2.4Ghz band is allowed.
187  * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
188  *	5Ghz band is allowed.
189  * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
190  *	for this regulatory domain (valid only in 5Ghz).
191  * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
192  *	for this regulatory domain (valid only in 5Ghz).
193  * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
194  * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
195  * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
196  *	for this regulatory domain (valid only in 5Ghz).
197  * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed.
198  * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
199  */
200 enum iwl_reg_capa_flags_v1 {
201 	REG_CAPA_V1_BF_CCD_LOW_BAND	= BIT(0),
202 	REG_CAPA_V1_BF_CCD_HIGH_BAND	= BIT(1),
203 	REG_CAPA_V1_160MHZ_ALLOWED	= BIT(2),
204 	REG_CAPA_V1_80MHZ_ALLOWED	= BIT(3),
205 	REG_CAPA_V1_MCS_8_ALLOWED	= BIT(4),
206 	REG_CAPA_V1_MCS_9_ALLOWED	= BIT(5),
207 	REG_CAPA_V1_40MHZ_FORBIDDEN	= BIT(7),
208 	REG_CAPA_V1_DC_HIGH_ENABLED	= BIT(9),
209 	REG_CAPA_V1_11AX_DISABLED	= BIT(10),
210 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */
211 
212 /**
213  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
214  * domain (version 2).
215  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
216  *	disabled.
217  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
218  *	2.4Ghz band is allowed.
219  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
220  *	5Ghz band is allowed.
221  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
222  *	for this regulatory domain (valid only in 5Ghz).
223  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
224  *	for this regulatory domain (valid only in 5Ghz).
225  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
226  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
227  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
228  *	126, 122) are disabled.
229  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
230  *	for this regulatory domain (uvalid only in 5Ghz).
231  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
232  */
233 enum iwl_reg_capa_flags_v2 {
234 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
235 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
236 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
237 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
238 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
239 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
240 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
241 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
242 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
243 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
244 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */
245 
246 /**
247  * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory
248  * domain.
249  * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
250  *	for this regulatory domain (valid only in 5Ghz).
251  * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
252  *	for this regulatory domain (valid only in 5Ghz).
253  * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed.
254  * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed.
255  * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain.
256  * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
257  * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed
258  *	for this regulatory domain (valid only in 5GHz).
259  */
260 enum iwl_reg_capa_flags_v4 {
261 	REG_CAPA_V4_160MHZ_ALLOWED		= BIT(3),
262 	REG_CAPA_V4_80MHZ_ALLOWED		= BIT(4),
263 	REG_CAPA_V4_MCS_12_ALLOWED		= BIT(5),
264 	REG_CAPA_V4_MCS_13_ALLOWED		= BIT(6),
265 	REG_CAPA_V4_11BE_DISABLED		= BIT(8),
266 	REG_CAPA_V4_11AX_DISABLED		= BIT(13),
267 	REG_CAPA_V4_320MHZ_ALLOWED		= BIT(16),
268 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */
269 
270 /*
271 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
272 * MCC update command response.
273 */
274 #define REG_CAPA_V2_RESP_VER	6
275 
276 /* API v4 for reg_capa_flags is relevant from version 8 and onwards of the
277  * MCC update command response.
278  */
279 #define REG_CAPA_V4_RESP_VER	8
280 
281 /**
282  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
283  * handling the different APIs of reg_capa_flags.
284  *
285  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
286  *	for this regulatory domain.
287  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
288  *	for this regulatory domain (valid only in 5 and 6 Ghz).
289  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
290  *	for this regulatory domain (valid only in 5 and 6 Ghz).
291  * @allow_320mhz: 11be channel with a width of 320Mhz is allowed
292  *	for this regulatory domain (valid only in 6 Ghz).
293  * @disable_11ax: 11ax is forbidden for this regulatory domain.
294  * @disable_11be: 11be is forbidden for this regulatory domain.
295  */
296 struct iwl_reg_capa {
297 	bool allow_40mhz;
298 	bool allow_80mhz;
299 	bool allow_160mhz;
300 	bool allow_320mhz;
301 	bool disable_11ax;
302 	bool disable_11be;
303 };
304 
iwl_nvm_print_channel_flags(struct device * dev,u32 level,int chan,u32 flags)305 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
306 					       int chan, u32 flags)
307 {
308 #define CHECK_AND_PRINT_I(x)	\
309 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
310 
311 	if (!(flags & NVM_CHANNEL_VALID)) {
312 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
313 			      chan, flags);
314 		return;
315 	}
316 
317 	/* Note: already can print up to 101 characters, 110 is the limit! */
318 	IWL_DEBUG_DEV(dev, level,
319 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
320 		      chan, flags,
321 		      CHECK_AND_PRINT_I(VALID),
322 		      CHECK_AND_PRINT_I(IBSS),
323 		      CHECK_AND_PRINT_I(ACTIVE),
324 		      CHECK_AND_PRINT_I(RADAR),
325 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
326 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
327 		      CHECK_AND_PRINT_I(UNIFORM),
328 		      CHECK_AND_PRINT_I(20MHZ),
329 		      CHECK_AND_PRINT_I(40MHZ),
330 		      CHECK_AND_PRINT_I(80MHZ),
331 		      CHECK_AND_PRINT_I(160MHZ),
332 		      CHECK_AND_PRINT_I(DC_HIGH),
333 		      CHECK_AND_PRINT_I(VLP),
334 		      CHECK_AND_PRINT_I(AFC));
335 #undef CHECK_AND_PRINT_I
336 }
337 
iwl_get_channel_flags(u8 ch_num,int ch_idx,enum nl80211_band band,u32 nvm_flags,const struct iwl_rf_cfg * cfg)338 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
339 				 u32 nvm_flags, const struct iwl_rf_cfg *cfg)
340 {
341 	u32 flags = IEEE80211_CHAN_NO_HT40;
342 
343 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
344 		if (ch_num <= LAST_2GHZ_HT_PLUS)
345 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
346 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
347 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
348 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
349 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
350 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
351 		else
352 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
353 	}
354 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
355 		flags |= IEEE80211_CHAN_NO_80MHZ;
356 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
357 		flags |= IEEE80211_CHAN_NO_160MHZ;
358 
359 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
360 		flags |= IEEE80211_CHAN_NO_IR;
361 
362 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
363 		flags |= IEEE80211_CHAN_NO_IR;
364 
365 	if (nvm_flags & NVM_CHANNEL_RADAR)
366 		flags |= IEEE80211_CHAN_RADAR;
367 
368 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
369 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
370 
371 	/* Set the GO concurrent flag only in case that NO_IR is set.
372 	 * Otherwise it is meaningless
373 	 */
374 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
375 	    (flags & IEEE80211_CHAN_NO_IR))
376 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
377 
378 	/* Set the AP type for the UHB case. */
379 	if (nvm_flags & NVM_CHANNEL_VLP)
380 		flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
381 	else
382 		flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
383 	if (!(nvm_flags & NVM_CHANNEL_AFC))
384 		flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
385 
386 	return flags;
387 }
388 
iwl_nl80211_band_from_channel_idx(int ch_idx)389 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
390 {
391 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
392 		return NL80211_BAND_6GHZ;
393 	}
394 
395 	if (ch_idx >= NUM_2GHZ_CHANNELS)
396 		return NL80211_BAND_5GHZ;
397 	return NL80211_BAND_2GHZ;
398 }
399 
iwl_init_channel_map(struct iwl_trans * trans,const struct iwl_fw * fw,struct iwl_nvm_data * data,const void * const nvm_ch_flags,u32 sbands_flags,bool v4)400 static int iwl_init_channel_map(struct iwl_trans *trans,
401 				const struct iwl_fw *fw,
402 				struct iwl_nvm_data *data,
403 				const void * const nvm_ch_flags,
404 				u32 sbands_flags, bool v4)
405 {
406 	const struct iwl_rf_cfg *cfg = trans->cfg;
407 	struct device *dev = trans->dev;
408 	int ch_idx;
409 	int n_channels = 0;
410 	struct ieee80211_channel *channel;
411 	u32 ch_flags;
412 	int num_of_ch;
413 	const u16 *nvm_chan;
414 
415 	if (cfg->uhb_supported) {
416 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
417 		nvm_chan = iwl_uhb_nvm_channels;
418 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
419 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
420 		nvm_chan = iwl_ext_nvm_channels;
421 	} else {
422 		num_of_ch = IWL_NVM_NUM_CHANNELS;
423 		nvm_chan = iwl_nvm_channels;
424 	}
425 
426 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
427 		enum nl80211_band band =
428 			iwl_nl80211_band_from_channel_idx(ch_idx);
429 
430 		if (v4)
431 			ch_flags =
432 				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
433 		else
434 			ch_flags =
435 				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
436 
437 		if (band == NL80211_BAND_5GHZ &&
438 		    !data->sku_cap_band_52ghz_enable)
439 			continue;
440 
441 		/* workaround to disable wide channels in 5GHz */
442 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
443 		    band == NL80211_BAND_5GHZ) {
444 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
445 				     NVM_CHANNEL_80MHZ |
446 				     NVM_CHANNEL_160MHZ);
447 		}
448 
449 		if (ch_flags & NVM_CHANNEL_160MHZ)
450 			data->vht160_supported = true;
451 
452 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
453 		    !(ch_flags & NVM_CHANNEL_VALID)) {
454 			/*
455 			 * Channels might become valid later if lar is
456 			 * supported, hence we still want to add them to
457 			 * the list of supported channels to cfg80211.
458 			 */
459 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
460 						    nvm_chan[ch_idx], ch_flags);
461 			continue;
462 		}
463 
464 		channel = &data->channels[n_channels];
465 		n_channels++;
466 
467 		channel->hw_value = nvm_chan[ch_idx];
468 		channel->band = band;
469 		channel->center_freq =
470 			ieee80211_channel_to_frequency(
471 				channel->hw_value, channel->band);
472 
473 		/* Initialize regulatory-based run-time data */
474 
475 		/*
476 		 * Default value - highest tx power value.  max_power
477 		 * is not used in mvm, and is used for backwards compatibility
478 		 */
479 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
480 
481 		/* don't put limitations in case we're using LAR */
482 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
483 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
484 							       ch_idx, band,
485 							       ch_flags, cfg);
486 		else
487 			channel->flags = 0;
488 
489 		if (fw_has_capa(&fw->ucode_capa,
490 				IWL_UCODE_TLV_CAPA_MONITOR_PASSIVE_CHANS))
491 			channel->flags |= IEEE80211_CHAN_CAN_MONITOR;
492 
493 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
494 					    channel->hw_value, ch_flags);
495 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
496 				 channel->hw_value, channel->max_power);
497 	}
498 
499 	return n_channels;
500 }
501 
iwl_init_vht_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_sta_vht_cap * vht_cap,u8 tx_chains,u8 rx_chains)502 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
503 				  struct iwl_nvm_data *data,
504 				  struct ieee80211_sta_vht_cap *vht_cap,
505 				  u8 tx_chains, u8 rx_chains)
506 {
507 	const struct iwl_rf_cfg *cfg = trans->cfg;
508 	int num_rx_ants = num_of_ant(rx_chains);
509 	int num_tx_ants = num_of_ant(tx_chains);
510 
511 	vht_cap->vht_supported = true;
512 
513 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
514 		       IEEE80211_VHT_CAP_RXSTBC_1 |
515 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
516 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
517 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
518 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
519 
520 	if (!trans->cfg->ht_params.stbc)
521 		vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
522 
523 	if (data->vht160_supported)
524 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
525 				IEEE80211_VHT_CAP_SHORT_GI_160;
526 
527 	if (cfg->vht_mu_mimo_supported)
528 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
529 
530 	if (cfg->ht_params.ldpc)
531 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
532 
533 	if (data->sku_cap_mimo_disabled) {
534 		num_rx_ants = 1;
535 		num_tx_ants = 1;
536 	}
537 
538 	if (trans->cfg->ht_params.stbc && num_tx_ants > 1)
539 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
540 	else
541 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
542 
543 	switch (iwlwifi_mod_params.amsdu_size) {
544 	case IWL_AMSDU_DEF:
545 		if (trans->mac_cfg->mq_rx_supported)
546 			vht_cap->cap |=
547 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
548 		else
549 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
550 		break;
551 	case IWL_AMSDU_2K:
552 		if (trans->mac_cfg->mq_rx_supported)
553 			vht_cap->cap |=
554 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
555 		else
556 			WARN(1, "RB size of 2K is not supported by this device\n");
557 		break;
558 	case IWL_AMSDU_4K:
559 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
560 		break;
561 	case IWL_AMSDU_8K:
562 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
563 		break;
564 	case IWL_AMSDU_12K:
565 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
566 		break;
567 	default:
568 		break;
569 	}
570 
571 	vht_cap->vht_mcs.rx_mcs_map =
572 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
573 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
574 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
575 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
576 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
577 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
578 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
579 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
580 
581 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
582 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
583 		/* this works because NOT_SUPPORTED == 3 */
584 		vht_cap->vht_mcs.rx_mcs_map |=
585 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
586 	}
587 
588 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
589 
590 	vht_cap->vht_mcs.tx_highest |=
591 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
592 }
593 
594 static const u8 iwl_vendor_caps[] = {
595 	0xdd,			/* vendor element */
596 	0x06,			/* length */
597 	0x00, 0x17, 0x35,	/* Intel OUI */
598 	0x08,			/* type (Intel Capabilities) */
599 	/* followed by 16 bits of capabilities */
600 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
601 	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
602 	0x00
603 };
604 
605 static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
606 	{
607 		.types_mask = BIT(NL80211_IFTYPE_STATION) |
608 			      BIT(NL80211_IFTYPE_P2P_CLIENT),
609 		.he_cap = {
610 			.has_he = true,
611 			.he_cap_elem = {
612 				.mac_cap_info[0] =
613 					IEEE80211_HE_MAC_CAP0_HTC_HE,
614 				.mac_cap_info[1] =
615 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
616 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
617 				.mac_cap_info[2] =
618 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
619 				.mac_cap_info[3] =
620 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
621 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
622 				.mac_cap_info[4] =
623 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
624 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
625 				.mac_cap_info[5] =
626 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
627 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
628 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
629 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
630 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
631 				.phy_cap_info[1] =
632 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
633 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
634 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
635 				.phy_cap_info[2] =
636 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
637 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
638 				.phy_cap_info[3] =
639 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
640 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
641 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
642 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
643 				.phy_cap_info[4] =
644 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
645 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
646 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
647 				.phy_cap_info[6] =
648 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
649 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
650 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
651 				.phy_cap_info[7] =
652 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
653 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
654 				.phy_cap_info[8] =
655 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
656 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
657 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
658 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
659 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
660 				.phy_cap_info[9] =
661 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
662 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
663 					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
664 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
665 				.phy_cap_info[10] =
666 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
667 			},
668 			/*
669 			 * Set default Tx/Rx HE MCS NSS Support field.
670 			 * Indicate support for up to 2 spatial streams and all
671 			 * MCS, without any special cases
672 			 */
673 			.he_mcs_nss_supp = {
674 				.rx_mcs_80 = cpu_to_le16(0xfffa),
675 				.tx_mcs_80 = cpu_to_le16(0xfffa),
676 				.rx_mcs_160 = cpu_to_le16(0xfffa),
677 				.tx_mcs_160 = cpu_to_le16(0xfffa),
678 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
679 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
680 			},
681 			/*
682 			 * Set default PPE thresholds, with PPET16 set to 0,
683 			 * PPET8 set to 7
684 			 */
685 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
686 		},
687 		.eht_cap = {
688 			.has_eht = true,
689 			.eht_cap_elem = {
690 				.mac_cap_info[0] =
691 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
692 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
693 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
694 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 |
695 					IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC,
696 				.mac_cap_info[1] =
697 					IEEE80211_EHT_MAC_CAP1_UNSOL_EPCS_PRIO_ACCESS,
698 				.phy_cap_info[0] =
699 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
700 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
701 					IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
702 					IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
703 					IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
704 				.phy_cap_info[1] =
705 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK  |
706 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
707 				.phy_cap_info[3] =
708 					IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
709 					IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
710 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
711 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
712 					IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
713 					IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
714 					IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
715 
716 				.phy_cap_info[4] =
717 					IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
718 					IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
719 					IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
720 				.phy_cap_info[5] =
721 					FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK,
722 							 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US) |
723 					IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
724 					IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
725 					IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP,
726 				.phy_cap_info[6] =
727 					IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
728 					IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
729 				.phy_cap_info[8] =
730 					IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
731 					IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
732 			},
733 
734 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
735 			 * Rx - note we don't set the only_20mhz, but due to this
736 			 * being a union, it gets set correctly anyway.
737 			 */
738 			.eht_mcs_nss_supp = {
739 				.bw._80 = {
740 					.rx_tx_mcs9_max_nss = 0x22,
741 					.rx_tx_mcs11_max_nss = 0x22,
742 					.rx_tx_mcs13_max_nss = 0x22,
743 				},
744 				.bw._160 = {
745 					.rx_tx_mcs9_max_nss = 0x22,
746 					.rx_tx_mcs11_max_nss = 0x22,
747 					.rx_tx_mcs13_max_nss = 0x22,
748 				},
749 				.bw._320 = {
750 					.rx_tx_mcs9_max_nss = 0x22,
751 					.rx_tx_mcs11_max_nss = 0x22,
752 					.rx_tx_mcs13_max_nss = 0x22,
753 				},
754 			},
755 
756 			/*
757 			 * PPE thresholds for NSS = 2, and RU index bitmap set
758 			 * to 0xc.
759 			 * Note: just for stating what we want, not present in
760 			 * the transmitted data due to not including
761 			 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT.
762 			 */
763 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
764 		},
765 	},
766 	{
767 		.types_mask = BIT(NL80211_IFTYPE_AP) |
768 			      BIT(NL80211_IFTYPE_P2P_GO),
769 		.he_cap = {
770 			.has_he = true,
771 			.he_cap_elem = {
772 				.mac_cap_info[0] =
773 					IEEE80211_HE_MAC_CAP0_HTC_HE,
774 				.mac_cap_info[1] =
775 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
776 				.mac_cap_info[3] =
777 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
778 				.phy_cap_info[1] =
779 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
780 				.phy_cap_info[2] =
781 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
782 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
783 				.phy_cap_info[3] =
784 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
785 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
786 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
787 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
788 				.phy_cap_info[6] =
789 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
790 				.phy_cap_info[7] =
791 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
792 				.phy_cap_info[8] =
793 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
794 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
795 				.phy_cap_info[9] =
796 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
797 					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
798 			},
799 			/*
800 			 * Set default Tx/Rx HE MCS NSS Support field.
801 			 * Indicate support for up to 2 spatial streams and all
802 			 * MCS, without any special cases
803 			 */
804 			.he_mcs_nss_supp = {
805 				.rx_mcs_80 = cpu_to_le16(0xfffa),
806 				.tx_mcs_80 = cpu_to_le16(0xfffa),
807 				.rx_mcs_160 = cpu_to_le16(0xfffa),
808 				.tx_mcs_160 = cpu_to_le16(0xfffa),
809 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
810 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
811 			},
812 			/*
813 			 * Set default PPE thresholds, with PPET16 set to 0,
814 			 * PPET8 set to 7
815 			 */
816 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
817 		},
818 		.eht_cap = {
819 			.has_eht = true,
820 			.eht_cap_elem = {
821 				.mac_cap_info[0] =
822 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
823 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
824 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
825 				.phy_cap_info[0] =
826 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
827 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
828 				.phy_cap_info[5] =
829 					FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK,
830 							 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US),
831 			},
832 
833 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
834 			 * Rx - note we don't set the only_20mhz, but due to this
835 			 * being a union, it gets set correctly anyway.
836 			 */
837 			.eht_mcs_nss_supp = {
838 				.bw._80 = {
839 					.rx_tx_mcs9_max_nss = 0x22,
840 					.rx_tx_mcs11_max_nss = 0x22,
841 					.rx_tx_mcs13_max_nss = 0x22,
842 				},
843 				.bw._160 = {
844 					.rx_tx_mcs9_max_nss = 0x22,
845 					.rx_tx_mcs11_max_nss = 0x22,
846 					.rx_tx_mcs13_max_nss = 0x22,
847 				},
848 				.bw._320 = {
849 					.rx_tx_mcs9_max_nss = 0x22,
850 					.rx_tx_mcs11_max_nss = 0x22,
851 					.rx_tx_mcs13_max_nss = 0x22,
852 				},
853 			},
854 
855 			/*
856 			 * PPE thresholds for NSS = 2, and RU index bitmap set
857 			 * to 0xc.
858 			 * Note: just for stating what we want, not present in
859 			 * the transmitted data due to not including
860 			 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT.
861 			 */
862 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
863 		},
864 	},
865 };
866 
iwl_init_he_6ghz_capa(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains)867 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
868 				  struct iwl_nvm_data *data,
869 				  struct ieee80211_supported_band *sband,
870 				  u8 tx_chains, u8 rx_chains)
871 {
872 	struct ieee80211_sta_ht_cap ht_cap;
873 	struct ieee80211_sta_vht_cap vht_cap = {};
874 	struct ieee80211_sband_iftype_data *iftype_data;
875 	u16 he_6ghz_capa = 0;
876 	u32 exp;
877 	int i;
878 
879 	if (sband->band != NL80211_BAND_6GHZ)
880 		return;
881 
882 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
883 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
884 			     tx_chains, rx_chains);
885 	WARN_ON(!ht_cap.ht_supported);
886 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
887 	WARN_ON(!vht_cap.vht_supported);
888 
889 	he_6ghz_capa |=
890 		u16_encode_bits(ht_cap.ampdu_density,
891 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
892 	exp = u32_get_bits(vht_cap.cap,
893 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
894 	he_6ghz_capa |=
895 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
896 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
897 	he_6ghz_capa |=
898 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
899 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
900 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
901 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
902 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
903 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
904 
905 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
906 
907 	/* we know it's writable - we set it before ourselves */
908 	iftype_data = (void *)(uintptr_t)sband->iftype_data;
909 	for (i = 0; i < sband->n_iftype_data; i++)
910 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
911 }
912 
913 static void
iwl_nvm_fixup_sband_iftd(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,struct ieee80211_sband_iftype_data * iftype_data,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)914 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
915 			 struct iwl_nvm_data *data,
916 			 struct ieee80211_supported_band *sband,
917 			 struct ieee80211_sband_iftype_data *iftype_data,
918 			 u8 tx_chains, u8 rx_chains,
919 			 const struct iwl_fw *fw)
920 {
921 	bool is_ap = iftype_data->types_mask & (BIT(NL80211_IFTYPE_AP) |
922 						BIT(NL80211_IFTYPE_P2P_GO));
923 	bool slow_pcie = (!trans->mac_cfg->integrated &&
924 			  trans->info.pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB);
925 
926 	if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
927 		iftype_data->eht_cap.has_eht = false;
928 
929 	/* Advertise an A-MPDU exponent extension based on
930 	 * operating band
931 	 */
932 	if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
933 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
934 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
935 	else if (sband->band != NL80211_BAND_2GHZ)
936 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
937 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
938 	else
939 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
940 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
941 
942 	switch (sband->band) {
943 	case NL80211_BAND_2GHZ:
944 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
945 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
946 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
947 			u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
948 				       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
949 		break;
950 	case NL80211_BAND_6GHZ:
951 		if (!trans->reduced_cap_sku &&
952 		    (!trans->cfg->bw_limit || trans->cfg->bw_limit >= 320)) {
953 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
954 				IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
955 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |=
956 				IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
957 		}
958 		fallthrough;
959 	case NL80211_BAND_5GHZ:
960 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
961 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
962 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
963 		break;
964 	default:
965 		WARN_ON(1);
966 		break;
967 	}
968 
969 	if ((tx_chains & rx_chains) == ANT_AB) {
970 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
971 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
972 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
973 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
974 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
975 		if (!is_ap) {
976 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
977 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
978 
979 			if (iftype_data->eht_cap.has_eht) {
980 				/*
981 				 * Set the number of sounding dimensions for each
982 				 * bandwidth to 1 to indicate the maximal supported
983 				 * value of TXVECTOR parameter NUM_STS of 2
984 				 */
985 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
986 
987 				/*
988 				 * Set the MAX NC to 1 to indicate sounding feedback of
989 				 * 2 supported by the beamfomee.
990 				 */
991 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
992 			}
993 		}
994 
995 		if (slow_pcie) {
996 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
997 				&iftype_data->eht_cap.eht_mcs_nss_supp;
998 
999 			mcs_nss->bw._320.rx_tx_mcs11_max_nss = 0;
1000 			mcs_nss->bw._320.rx_tx_mcs13_max_nss = 0;
1001 		}
1002 	} else {
1003 		struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp =
1004 			&iftype_data->he_cap.he_mcs_nss_supp;
1005 
1006 		if (iftype_data->eht_cap.has_eht) {
1007 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
1008 				&iftype_data->eht_cap.eht_mcs_nss_supp;
1009 
1010 			memset(mcs_nss, 0x11, sizeof(*mcs_nss));
1011 		}
1012 
1013 		if (!is_ap) {
1014 			/* If not 2x2, we need to indicate 1x1 in the
1015 			 * Midamble RX Max NSTS - but not for AP mode
1016 			 */
1017 			iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
1018 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
1019 			iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1020 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
1021 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
1022 				IEEE80211_HE_PHY_CAP7_MAX_NC_1;
1023 		}
1024 
1025 		he_mcs_nss_supp->rx_mcs_80 |=
1026 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1027 		he_mcs_nss_supp->tx_mcs_80 |=
1028 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1029 		he_mcs_nss_supp->rx_mcs_160 |=
1030 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1031 		he_mcs_nss_supp->tx_mcs_160 |=
1032 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1033 		he_mcs_nss_supp->rx_mcs_80p80 |=
1034 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1035 		he_mcs_nss_supp->tx_mcs_80p80 |=
1036 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1037 	}
1038 
1039 	if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
1040 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
1041 			IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
1042 
1043 	switch (CSR_HW_RFID_TYPE(trans->info.hw_rf_id)) {
1044 	case IWL_CFG_RF_TYPE_GF:
1045 	case IWL_CFG_RF_TYPE_FM:
1046 	case IWL_CFG_RF_TYPE_WH:
1047 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1048 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
1049 		if (!is_ap)
1050 			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1051 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1052 		break;
1053 	}
1054 
1055 	if (CSR_HW_REV_TYPE(trans->info.hw_rev) == IWL_CFG_MAC_TYPE_GL &&
1056 	    iftype_data->eht_cap.has_eht) {
1057 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
1058 			~(IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
1059 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
1060 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
1061 			~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
1062 			  IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1063 			  IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1064 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1065 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
1066 			  IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
1067 			  IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK);
1068 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
1069 			~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
1070 			  IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
1071 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
1072 			~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
1073 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
1074 			~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
1075 			  IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
1076 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] |=
1077 			IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF;
1078 	}
1079 
1080 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
1081 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
1082 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
1083 
1084 	if (trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
1085 	    !is_ap) {
1086 		iftype_data->vendor_elems.data = iwl_vendor_caps;
1087 		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
1088 	}
1089 
1090 	if (!trans->cfg->ht_params.stbc) {
1091 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1092 			~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1093 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
1094 			~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1095 	}
1096 
1097 	if (trans->step_urm) {
1098 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs11_max_nss = 0;
1099 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs13_max_nss = 0;
1100 	}
1101 
1102 	if (trans->cfg->bw_limit && trans->cfg->bw_limit < 160)
1103 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] &=
1104 			~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
1105 
1106 	if ((trans->cfg->bw_limit && trans->cfg->bw_limit < 320) ||
1107 	    trans->reduced_cap_sku) {
1108 		memset(&iftype_data->eht_cap.eht_mcs_nss_supp.bw._320, 0,
1109 		       sizeof(iftype_data->eht_cap.eht_mcs_nss_supp.bw._320));
1110 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] &=
1111 			~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK;
1112 	}
1113 
1114 	if (trans->reduced_cap_sku) {
1115 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss = 0;
1116 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._160.rx_tx_mcs13_max_nss = 0;
1117 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[8] &=
1118 			~IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA;
1119 	}
1120 }
1121 
iwl_init_he_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)1122 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1123 				 struct iwl_nvm_data *data,
1124 				 struct ieee80211_supported_band *sband,
1125 				 u8 tx_chains, u8 rx_chains,
1126 				 const struct iwl_fw *fw)
1127 {
1128 	struct ieee80211_sband_iftype_data *iftype_data;
1129 	int i;
1130 
1131 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1132 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1133 	BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
1134 
1135 	switch (sband->band) {
1136 	case NL80211_BAND_2GHZ:
1137 		iftype_data = data->iftd.low;
1138 		break;
1139 	case NL80211_BAND_5GHZ:
1140 		iftype_data = data->iftd.high;
1141 		break;
1142 	case NL80211_BAND_6GHZ:
1143 		iftype_data = data->iftd.uhb;
1144 		break;
1145 	default:
1146 		WARN_ON(1);
1147 		return;
1148 	}
1149 
1150 	memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1151 
1152 	_ieee80211_set_sband_iftype_data(sband, iftype_data,
1153 					 ARRAY_SIZE(iwl_he_eht_capa));
1154 
1155 	for (i = 0; i < sband->n_iftype_data; i++)
1156 		iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1157 					 tx_chains, rx_chains, fw);
1158 
1159 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1160 }
1161 
iwl_reinit_cab(struct iwl_trans * trans,struct iwl_nvm_data * data,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)1162 void iwl_reinit_cab(struct iwl_trans *trans, struct iwl_nvm_data *data,
1163 		    u8 tx_chains, u8 rx_chains, const struct iwl_fw *fw)
1164 {
1165 	struct ieee80211_supported_band *sband;
1166 
1167 	sband = &data->bands[NL80211_BAND_2GHZ];
1168 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1169 			     tx_chains, rx_chains);
1170 
1171 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1172 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1173 				     fw);
1174 
1175 	sband = &data->bands[NL80211_BAND_5GHZ];
1176 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1177 			     tx_chains, rx_chains);
1178 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1179 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1180 				      tx_chains, rx_chains);
1181 
1182 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1183 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1184 				     fw);
1185 
1186 	sband = &data->bands[NL80211_BAND_6GHZ];
1187 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1188 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1189 				     fw);
1190 }
1191 IWL_EXPORT_SYMBOL(iwl_reinit_cab);
1192 
iwl_init_sbands(struct iwl_trans * trans,struct iwl_nvm_data * data,const void * nvm_ch_flags,u8 tx_chains,u8 rx_chains,u32 sbands_flags,bool v4,const struct iwl_fw * fw)1193 static void iwl_init_sbands(struct iwl_trans *trans,
1194 			    struct iwl_nvm_data *data,
1195 			    const void *nvm_ch_flags, u8 tx_chains,
1196 			    u8 rx_chains, u32 sbands_flags, bool v4,
1197 			    const struct iwl_fw *fw)
1198 {
1199 	struct device *dev = trans->dev;
1200 	int n_channels;
1201 	int n_used = 0;
1202 	struct ieee80211_supported_band *sband;
1203 
1204 	n_channels = iwl_init_channel_map(trans, fw, data, nvm_ch_flags,
1205 					  sbands_flags, v4);
1206 	sband = &data->bands[NL80211_BAND_2GHZ];
1207 	sband->band = NL80211_BAND_2GHZ;
1208 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1209 	sband->n_bitrates = N_RATES_24;
1210 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1211 					  NL80211_BAND_2GHZ);
1212 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1213 			     tx_chains, rx_chains);
1214 
1215 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1216 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1217 				     fw);
1218 
1219 	sband = &data->bands[NL80211_BAND_5GHZ];
1220 	sband->band = NL80211_BAND_5GHZ;
1221 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1222 	sband->n_bitrates = N_RATES_52;
1223 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1224 					  NL80211_BAND_5GHZ);
1225 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1226 			     tx_chains, rx_chains);
1227 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1228 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1229 				      tx_chains, rx_chains);
1230 
1231 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1232 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1233 				     fw);
1234 
1235 	/* 6GHz band. */
1236 	sband = &data->bands[NL80211_BAND_6GHZ];
1237 	sband->band = NL80211_BAND_6GHZ;
1238 	/* use the same rates as 5GHz band */
1239 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1240 	sband->n_bitrates = N_RATES_52;
1241 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1242 					  NL80211_BAND_6GHZ);
1243 
1244 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1245 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1246 				     fw);
1247 	else
1248 		sband->n_channels = 0;
1249 	if (n_channels != n_used)
1250 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1251 			    n_used, n_channels);
1252 }
1253 
iwl_get_sku(const struct iwl_rf_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)1254 static int iwl_get_sku(const struct iwl_rf_cfg *cfg, const __le16 *nvm_sw,
1255 		       const __le16 *phy_sku)
1256 {
1257 	if (cfg->nvm_type != IWL_NVM_EXT)
1258 		return le16_to_cpup(nvm_sw + SKU);
1259 
1260 	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1261 }
1262 
iwl_get_nvm_version(const struct iwl_rf_cfg * cfg,const __le16 * nvm_sw)1263 static int iwl_get_nvm_version(const struct iwl_rf_cfg *cfg, const __le16 *nvm_sw)
1264 {
1265 	if (cfg->nvm_type != IWL_NVM_EXT)
1266 		return le16_to_cpup(nvm_sw + NVM_VERSION);
1267 	else
1268 		return le32_to_cpup((const __le32 *)(nvm_sw +
1269 						     NVM_VERSION_EXT_NVM));
1270 }
1271 
iwl_get_radio_cfg(const struct iwl_rf_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)1272 static int iwl_get_radio_cfg(const struct iwl_rf_cfg *cfg, const __le16 *nvm_sw,
1273 			     const __le16 *phy_sku)
1274 {
1275 	if (cfg->nvm_type != IWL_NVM_EXT)
1276 		return le16_to_cpup(nvm_sw + RADIO_CFG);
1277 
1278 	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1279 
1280 }
1281 
iwl_get_n_hw_addrs(const struct iwl_rf_cfg * cfg,const __le16 * nvm_sw)1282 static int iwl_get_n_hw_addrs(const struct iwl_rf_cfg *cfg, const __le16 *nvm_sw)
1283 {
1284 	int n_hw_addr;
1285 
1286 	if (cfg->nvm_type != IWL_NVM_EXT)
1287 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1288 
1289 	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1290 
1291 	return n_hw_addr & N_HW_ADDR_MASK;
1292 }
1293 
iwl_set_radio_cfg(const struct iwl_rf_cfg * cfg,struct iwl_nvm_data * data,u32 radio_cfg)1294 static void iwl_set_radio_cfg(const struct iwl_rf_cfg *cfg,
1295 			      struct iwl_nvm_data *data,
1296 			      u32 radio_cfg)
1297 {
1298 	if (cfg->nvm_type != IWL_NVM_EXT) {
1299 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1300 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1301 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1302 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1303 		return;
1304 	}
1305 
1306 	/* set the radio configuration for family 8000 */
1307 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1308 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1309 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1310 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1311 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1312 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1313 }
1314 
iwl_flip_hw_address(__le32 mac_addr0,__le32 mac_addr1,u8 * dest)1315 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1316 {
1317 	const u8 *hw_addr;
1318 
1319 	hw_addr = (const u8 *)&mac_addr0;
1320 	dest[0] = hw_addr[3];
1321 	dest[1] = hw_addr[2];
1322 	dest[2] = hw_addr[1];
1323 	dest[3] = hw_addr[0];
1324 
1325 	hw_addr = (const u8 *)&mac_addr1;
1326 	dest[4] = hw_addr[1];
1327 	dest[5] = hw_addr[0];
1328 }
1329 
iwl_set_hw_address_from_csr(struct iwl_trans * trans,struct iwl_nvm_data * data)1330 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1331 					struct iwl_nvm_data *data)
1332 {
1333 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1334 						  CSR_MAC_ADDR0_STRAP(trans)));
1335 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1336 						  CSR_MAC_ADDR1_STRAP(trans)));
1337 
1338 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1339 	/*
1340 	 * If the OEM fused a valid address, use it instead of the one in the
1341 	 * OTP
1342 	 */
1343 	if (is_valid_ether_addr(data->hw_addr))
1344 		return;
1345 
1346 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1347 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1348 
1349 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1350 }
1351 
iwl_set_hw_address_family_8000(struct iwl_trans * trans,const struct iwl_rf_cfg * cfg,struct iwl_nvm_data * data,const __le16 * mac_override,const __be16 * nvm_hw)1352 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1353 					   const struct iwl_rf_cfg *cfg,
1354 					   struct iwl_nvm_data *data,
1355 					   const __le16 *mac_override,
1356 					   const __be16 *nvm_hw)
1357 {
1358 	const u8 *hw_addr;
1359 
1360 	if (mac_override) {
1361 		static const u8 reserved_mac[] = {
1362 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1363 		};
1364 
1365 		hw_addr = (const u8 *)(mac_override +
1366 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1367 
1368 		/*
1369 		 * Store the MAC address from MAO section.
1370 		 * No byte swapping is required in MAO section
1371 		 */
1372 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1373 
1374 		/*
1375 		 * Force the use of the OTP MAC address in case of reserved MAC
1376 		 * address in the NVM, or if address is given but invalid.
1377 		 */
1378 		if (is_valid_ether_addr(data->hw_addr) &&
1379 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1380 			return;
1381 
1382 		IWL_ERR(trans,
1383 			"mac address from nvm override section is not valid\n");
1384 	}
1385 
1386 	if (nvm_hw) {
1387 		/* read the mac address from WFMP registers */
1388 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1389 						WFMP_MAC_ADDR_0));
1390 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1391 						WFMP_MAC_ADDR_1));
1392 
1393 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1394 
1395 		return;
1396 	}
1397 
1398 	IWL_ERR(trans, "mac address is not found\n");
1399 }
1400 
iwl_set_hw_address(struct iwl_trans * trans,const struct iwl_rf_cfg * cfg,struct iwl_nvm_data * data,const __be16 * nvm_hw,const __le16 * mac_override)1401 static int iwl_set_hw_address(struct iwl_trans *trans,
1402 			      const struct iwl_rf_cfg *cfg,
1403 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1404 			      const __le16 *mac_override)
1405 {
1406 	const struct iwl_mac_cfg *mac_cfg = trans->mac_cfg;
1407 	if (mac_cfg->base->mac_addr_from_csr) {
1408 		iwl_set_hw_address_from_csr(trans, data);
1409 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1410 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1411 
1412 		/* The byte order is little endian 16 bit, meaning 214365 */
1413 		data->hw_addr[0] = hw_addr[1];
1414 		data->hw_addr[1] = hw_addr[0];
1415 		data->hw_addr[2] = hw_addr[3];
1416 		data->hw_addr[3] = hw_addr[2];
1417 		data->hw_addr[4] = hw_addr[5];
1418 		data->hw_addr[5] = hw_addr[4];
1419 	} else {
1420 		iwl_set_hw_address_family_8000(trans, cfg, data,
1421 					       mac_override, nvm_hw);
1422 	}
1423 
1424 	if (!is_valid_ether_addr(data->hw_addr)) {
1425 		IWL_ERR(trans, "no valid mac address was found\n");
1426 		return -EINVAL;
1427 	}
1428 
1429 	if (!trans->csme_own)
1430 		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1431 			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1432 
1433 	return 0;
1434 }
1435 
1436 static bool
iwl_nvm_no_wide_in_5ghz(struct iwl_trans * trans,const struct iwl_rf_cfg * cfg,const __be16 * nvm_hw)1437 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_rf_cfg *cfg,
1438 			const __be16 *nvm_hw)
1439 {
1440 	/*
1441 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1442 	 * some 7000-family OTPs erroneously allow wide channels in
1443 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1444 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1445 	 * 9.  In those cases, we need to force-disable wide channels
1446 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1447 	 * to use them.
1448 	 */
1449 	if (trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1450 		/*
1451 		 * Unlike the other sections in the NVM, the hw
1452 		 * section uses big-endian.
1453 		 */
1454 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1455 		u8 sku = (subsystem_id & 0x1e) >> 1;
1456 
1457 		if (sku == 5 || sku == 9) {
1458 			IWL_DEBUG_EEPROM(trans->dev,
1459 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1460 					 subsystem_id, sku);
1461 			return true;
1462 		}
1463 	}
1464 
1465 	return false;
1466 }
1467 
1468 struct iwl_nvm_data *
iwl_parse_mei_nvm_data(struct iwl_trans * trans,const struct iwl_rf_cfg * cfg,const struct iwl_mei_nvm * mei_nvm,const struct iwl_fw * fw,u8 tx_ant,u8 rx_ant)1469 iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_rf_cfg *cfg,
1470 		       const struct iwl_mei_nvm *mei_nvm,
1471 		       const struct iwl_fw *fw, u8 tx_ant, u8 rx_ant)
1472 {
1473 	struct iwl_nvm_data *data;
1474 	u32 sbands_flags = 0;
1475 	u8 rx_chains = fw->valid_rx_ant;
1476 	u8 tx_chains = fw->valid_rx_ant;
1477 
1478 	if (cfg->uhb_supported)
1479 		data = kzalloc(struct_size(data, channels,
1480 					   IWL_NVM_NUM_CHANNELS_UHB),
1481 					   GFP_KERNEL);
1482 	else
1483 		data = kzalloc(struct_size(data, channels,
1484 					   IWL_NVM_NUM_CHANNELS_EXT),
1485 					   GFP_KERNEL);
1486 	if (!data)
1487 		return NULL;
1488 
1489 	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1490 		     IWL_NVM_NUM_CHANNELS_UHB);
1491 	data->nvm_version = mei_nvm->nvm_version;
1492 
1493 	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1494 	if (data->valid_tx_ant)
1495 		tx_chains &= data->valid_tx_ant;
1496 	if (data->valid_rx_ant)
1497 		rx_chains &= data->valid_rx_ant;
1498 	if (tx_ant)
1499 		tx_chains &= tx_ant;
1500 	if (rx_ant)
1501 		rx_chains &= rx_ant;
1502 
1503 	data->sku_cap_mimo_disabled = false;
1504 	data->sku_cap_band_24ghz_enable = true;
1505 	data->sku_cap_band_52ghz_enable = true;
1506 	data->sku_cap_11n_enable =
1507 		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1508 	data->sku_cap_11ac_enable = true;
1509 	data->sku_cap_11ax_enable =
1510 		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1511 
1512 	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1513 
1514 	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1515 	/* If no valid mac address was found - bail out */
1516 	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1517 		kfree(data);
1518 		return NULL;
1519 	}
1520 
1521 	if (data->lar_enabled &&
1522 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1523 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1524 
1525 	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1526 			sbands_flags, true, fw);
1527 
1528 	return data;
1529 }
1530 IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1531 
1532 struct iwl_nvm_data *
iwl_parse_nvm_data(struct iwl_trans * trans,const struct iwl_rf_cfg * cfg,const struct iwl_fw * fw,const __be16 * nvm_hw,const __le16 * nvm_sw,const __le16 * nvm_calib,const __le16 * regulatory,const __le16 * mac_override,const __le16 * phy_sku,u8 tx_chains,u8 rx_chains)1533 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_rf_cfg *cfg,
1534 		   const struct iwl_fw *fw,
1535 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1536 		   const __le16 *nvm_calib, const __le16 *regulatory,
1537 		   const __le16 *mac_override, const __le16 *phy_sku,
1538 		   u8 tx_chains, u8 rx_chains)
1539 {
1540 	struct iwl_nvm_data *data;
1541 	bool lar_enabled;
1542 	u32 sku, radio_cfg;
1543 	u32 sbands_flags = 0;
1544 	u16 lar_config;
1545 	const __le16 *ch_section;
1546 
1547 	if (cfg->uhb_supported)
1548 		data = kzalloc(struct_size(data, channels,
1549 					   IWL_NVM_NUM_CHANNELS_UHB),
1550 					   GFP_KERNEL);
1551 	else if (cfg->nvm_type != IWL_NVM_EXT)
1552 		data = kzalloc(struct_size(data, channels,
1553 					   IWL_NVM_NUM_CHANNELS),
1554 					   GFP_KERNEL);
1555 	else
1556 		data = kzalloc(struct_size(data, channels,
1557 					   IWL_NVM_NUM_CHANNELS_EXT),
1558 					   GFP_KERNEL);
1559 	if (!data)
1560 		return NULL;
1561 
1562 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1563 
1564 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1565 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1566 	if (data->valid_tx_ant)
1567 		tx_chains &= data->valid_tx_ant;
1568 	if (data->valid_rx_ant)
1569 		rx_chains &= data->valid_rx_ant;
1570 
1571 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1572 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1573 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1574 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1575 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1576 		data->sku_cap_11n_enable = false;
1577 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1578 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1579 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1580 
1581 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1582 
1583 	if (cfg->nvm_type != IWL_NVM_EXT) {
1584 		/* Checking for required sections */
1585 		if (!nvm_calib) {
1586 			IWL_ERR(trans,
1587 				"Can't parse empty Calib NVM sections\n");
1588 			kfree(data);
1589 			return NULL;
1590 		}
1591 
1592 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1593 			     &regulatory[NVM_CHANNELS_SDP] :
1594 			     &nvm_sw[NVM_CHANNELS];
1595 
1596 		lar_enabled = true;
1597 	} else {
1598 		u16 lar_offset = data->nvm_version < 0xE39 ?
1599 				 NVM_LAR_OFFSET_OLD :
1600 				 NVM_LAR_OFFSET;
1601 
1602 		lar_config = le16_to_cpup(regulatory + lar_offset);
1603 		data->lar_enabled = !!(lar_config &
1604 				       NVM_LAR_ENABLED);
1605 		lar_enabled = data->lar_enabled;
1606 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1607 	}
1608 
1609 	/* If no valid mac address was found - bail out */
1610 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1611 		kfree(data);
1612 		return NULL;
1613 	}
1614 
1615 	if (lar_enabled &&
1616 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1617 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1618 
1619 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1620 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1621 
1622 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1623 			sbands_flags, false, fw);
1624 	data->calib_version = 255;
1625 
1626 	return data;
1627 }
1628 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1629 
iwl_nvm_get_regdom_bw_flags(const u16 * nvm_chan,int ch_idx,u16 nvm_flags,struct iwl_reg_capa reg_capa,const struct iwl_rf_cfg * cfg)1630 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1631 				       int ch_idx, u16 nvm_flags,
1632 				       struct iwl_reg_capa reg_capa,
1633 				       const struct iwl_rf_cfg *cfg)
1634 {
1635 	u32 flags = NL80211_RRF_NO_HT40;
1636 
1637 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1638 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1639 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1640 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1641 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1642 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1643 	} else if (ch_idx < NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS &&
1644 		   nvm_flags & NVM_CHANNEL_40MHZ) {
1645 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1646 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1647 		else
1648 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1649 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1650 		flags &= ~NL80211_RRF_NO_HT40PLUS;
1651 		flags &= ~NL80211_RRF_NO_HT40MINUS;
1652 	}
1653 
1654 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1655 		flags |= NL80211_RRF_NO_80MHZ;
1656 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1657 		flags |= NL80211_RRF_NO_160MHZ;
1658 
1659 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1660 		flags |= NL80211_RRF_NO_IR;
1661 
1662 	if (nvm_flags & NVM_CHANNEL_RADAR)
1663 		flags |= NL80211_RRF_DFS;
1664 
1665 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1666 		flags |= NL80211_RRF_NO_OUTDOOR;
1667 
1668 	if (nvm_flags & NVM_CHANNEL_ALLOW_20MHZ_ACTIVITY &&
1669 	    flags & NL80211_RRF_NO_IR)
1670 		flags |= NL80211_RRF_ALLOW_20MHZ_ACTIVITY;
1671 
1672 	/* Set the GO concurrent flag only in case that NO_IR is set.
1673 	 * Otherwise it is meaningless
1674 	 */
1675 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT)) {
1676 		if (flags & NL80211_RRF_NO_IR)
1677 			flags |= NL80211_RRF_GO_CONCURRENT;
1678 		if (flags & NL80211_RRF_DFS) {
1679 			flags |= NL80211_RRF_DFS_CONCURRENT;
1680 			/* Our device doesn't set active bit for DFS channels
1681 			 * however, once marked as DFS no-ir is not needed.
1682 			 */
1683 			flags &= ~NL80211_RRF_NO_IR;
1684 		}
1685 	}
1686 
1687 	/* Set the AP type for the UHB case. */
1688 	if (nvm_flags & NVM_CHANNEL_VLP)
1689 		flags |= NL80211_RRF_ALLOW_6GHZ_VLP_AP;
1690 	else
1691 		flags |= NL80211_RRF_NO_6GHZ_VLP_CLIENT;
1692 
1693 	if (!(nvm_flags & NVM_CHANNEL_AFC))
1694 		flags |= NL80211_RRF_NO_6GHZ_AFC_CLIENT;
1695 
1696 	/*
1697 	 * reg_capa is per regulatory domain so apply it for every channel
1698 	 */
1699 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1700 		if (!reg_capa.allow_40mhz)
1701 			flags |= NL80211_RRF_NO_HT40;
1702 
1703 		if (!reg_capa.allow_80mhz)
1704 			flags |= NL80211_RRF_NO_80MHZ;
1705 
1706 		if (!reg_capa.allow_160mhz)
1707 			flags |= NL80211_RRF_NO_160MHZ;
1708 
1709 		if (!reg_capa.allow_320mhz)
1710 			flags |= NL80211_RRF_NO_320MHZ;
1711 	}
1712 
1713 	if (reg_capa.disable_11ax)
1714 		flags |= NL80211_RRF_NO_HE;
1715 
1716 	if (reg_capa.disable_11be)
1717 		flags |= NL80211_RRF_NO_EHT;
1718 
1719 	return flags;
1720 }
1721 
iwl_get_reg_capa(u32 flags,u8 resp_ver)1722 static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver)
1723 {
1724 	struct iwl_reg_capa reg_capa = {};
1725 
1726 	if (resp_ver >= REG_CAPA_V4_RESP_VER) {
1727 		reg_capa.allow_40mhz = true;
1728 		reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED;
1729 		reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED;
1730 		reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED;
1731 		reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED;
1732 		reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED;
1733 	} else if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1734 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1735 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1736 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1737 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1738 	} else {
1739 		reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN);
1740 		reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED;
1741 		reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED;
1742 		reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED;
1743 	}
1744 	return reg_capa;
1745 }
1746 
1747 struct ieee80211_regdomain *
iwl_parse_nvm_mcc_info(struct iwl_trans * trans,int num_of_ch,__le32 * channels,u16 fw_mcc,u16 geo_info,u32 cap,u8 resp_ver)1748 iwl_parse_nvm_mcc_info(struct iwl_trans *trans,
1749 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1750 		       u16 geo_info, u32 cap, u8 resp_ver)
1751 {
1752 	const struct iwl_rf_cfg *cfg = trans->cfg;
1753 	struct device *dev = trans->dev;
1754 	int ch_idx;
1755 	u16 ch_flags;
1756 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1757 	const u16 *nvm_chan;
1758 	struct ieee80211_regdomain *regd, *copy_rd;
1759 	struct ieee80211_reg_rule *rule;
1760 	int center_freq, prev_center_freq = 0;
1761 	int valid_rules = 0;
1762 	bool new_rule;
1763 	int max_num_ch;
1764 	struct iwl_reg_capa reg_capa;
1765 
1766 	if (cfg->uhb_supported) {
1767 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1768 		nvm_chan = iwl_uhb_nvm_channels;
1769 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1770 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1771 		nvm_chan = iwl_ext_nvm_channels;
1772 	} else {
1773 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1774 		nvm_chan = iwl_nvm_channels;
1775 	}
1776 
1777 	if (num_of_ch > max_num_ch) {
1778 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1779 			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1780 			      num_of_ch, max_num_ch);
1781 		num_of_ch = max_num_ch;
1782 	}
1783 
1784 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1785 		return ERR_PTR(-EINVAL);
1786 
1787 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1788 		      num_of_ch);
1789 
1790 	/* build a regdomain rule for every valid channel */
1791 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1792 	if (!regd)
1793 		return ERR_PTR(-ENOMEM);
1794 
1795 	/* set alpha2 from FW. */
1796 	regd->alpha2[0] = fw_mcc >> 8;
1797 	regd->alpha2[1] = fw_mcc & 0xff;
1798 
1799 	/* parse regulatory capability flags */
1800 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1801 
1802 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1803 		enum nl80211_band band =
1804 			iwl_nl80211_band_from_channel_idx(ch_idx);
1805 
1806 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1807 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1808 							     band);
1809 		new_rule = false;
1810 
1811 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1812 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1813 						    nvm_chan[ch_idx], ch_flags);
1814 			continue;
1815 		}
1816 
1817 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1818 							     ch_flags, reg_capa,
1819 							     cfg);
1820 
1821 		/* we can't continue the same rule */
1822 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1823 		    center_freq - prev_center_freq > 20) {
1824 			valid_rules++;
1825 			new_rule = true;
1826 		}
1827 
1828 		rule = &regd->reg_rules[valid_rules - 1];
1829 
1830 		if (new_rule)
1831 			rule->freq_range.start_freq_khz =
1832 						MHZ_TO_KHZ(center_freq - 10);
1833 
1834 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1835 
1836 		/* this doesn't matter - not used by FW */
1837 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1838 		rule->power_rule.max_eirp =
1839 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1840 
1841 		rule->flags = reg_rule_flags;
1842 
1843 		/* rely on auto-calculation to merge BW of contiguous chans */
1844 		rule->flags |= NL80211_RRF_AUTO_BW;
1845 		rule->freq_range.max_bandwidth_khz = 0;
1846 
1847 		prev_center_freq = center_freq;
1848 		prev_reg_rule_flags = reg_rule_flags;
1849 
1850 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1851 					    nvm_chan[ch_idx], ch_flags);
1852 
1853 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1854 		    band == NL80211_BAND_2GHZ)
1855 			continue;
1856 
1857 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1858 	}
1859 
1860 	/*
1861 	 * Certain firmware versions might report no valid channels
1862 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1863 	 * running. We'll get out of this situation later when the
1864 	 * rfkill is removed and we update the regdomain again, but
1865 	 * since cfg80211 doesn't accept an empty regdomain, add a
1866 	 * dummy (unusable) rule here in this case so we can init.
1867 	 */
1868 	if (!valid_rules) {
1869 		valid_rules = 1;
1870 		rule = &regd->reg_rules[valid_rules - 1];
1871 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1872 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1873 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1874 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1875 		rule->power_rule.max_eirp =
1876 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1877 	}
1878 
1879 	regd->n_reg_rules = valid_rules;
1880 
1881 	/*
1882 	 * Narrow down regdom for unused regulatory rules to prevent hole
1883 	 * between reg rules to wmm rules.
1884 	 */
1885 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1886 			  GFP_KERNEL);
1887 	if (!copy_rd)
1888 		copy_rd = ERR_PTR(-ENOMEM);
1889 
1890 	kfree(regd);
1891 	return copy_rd;
1892 }
1893 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1894 
1895 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1896 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1897 #define MAX_NVM_FILE_LEN	16384
1898 
iwl_nvm_fixups(u32 hw_id,unsigned int section,u8 * data,unsigned int len)1899 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1900 		    unsigned int len)
1901 {
1902 #define IWL_4165_DEVICE_ID	0x5501
1903 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1904 
1905 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1906 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1907 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1908 		/* OTP 0x52 bug work around: it's a 1x1 device */
1909 		data[3] = ANT_B | (ANT_B << 4);
1910 }
1911 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1912 
1913 /*
1914  * Reads external NVM from a file into mvm->nvm_sections
1915  *
1916  * HOW TO CREATE THE NVM FILE FORMAT:
1917  * ------------------------------
1918  * 1. create hex file, format:
1919  *      3800 -> header
1920  *      0000 -> header
1921  *      5a40 -> data
1922  *
1923  *   rev - 6 bit (word1)
1924  *   len - 10 bit (word1)
1925  *   id - 4 bit (word2)
1926  *   rsv - 12 bit (word2)
1927  *
1928  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1929  *
1930  * 3. create binary file from the hex file
1931  *
1932  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1933  */
iwl_read_external_nvm(struct iwl_trans * trans,const char * nvm_file_name,struct iwl_nvm_section * nvm_sections)1934 int iwl_read_external_nvm(struct iwl_trans *trans,
1935 			  const char *nvm_file_name,
1936 			  struct iwl_nvm_section *nvm_sections)
1937 {
1938 	int ret, section_size;
1939 	u16 section_id;
1940 	const struct firmware *fw_entry;
1941 	const struct {
1942 		__le16 word1;
1943 		__le16 word2;
1944 		u8 data[];
1945 	} *file_sec;
1946 	const u8 *eof;
1947 	u8 *temp;
1948 	int max_section_size;
1949 	const __le32 *dword_buff;
1950 
1951 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1952 #define NVM_WORD2_ID(x) (x >> 12)
1953 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1954 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1955 #define NVM_HEADER_0	(0x2A504C54)
1956 #define NVM_HEADER_1	(0x4E564D2A)
1957 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1958 
1959 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1960 
1961 	/* Maximal size depends on NVM version */
1962 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1963 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1964 	else
1965 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1966 
1967 	/*
1968 	 * Obtain NVM image via request_firmware. Since we already used
1969 	 * request_firmware_nowait() for the firmware binary load and only
1970 	 * get here after that we assume the NVM request can be satisfied
1971 	 * synchronously.
1972 	 */
1973 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1974 	if (ret) {
1975 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1976 			nvm_file_name, ret);
1977 		return ret;
1978 	}
1979 
1980 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1981 		 nvm_file_name, fw_entry->size);
1982 
1983 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1984 		IWL_ERR(trans, "NVM file too large\n");
1985 		ret = -EINVAL;
1986 		goto out;
1987 	}
1988 
1989 	eof = fw_entry->data + fw_entry->size;
1990 	dword_buff = (const __le32 *)fw_entry->data;
1991 
1992 	/* some NVM file will contain a header.
1993 	 * The header is identified by 2 dwords header as follow:
1994 	 * dword[0] = 0x2A504C54
1995 	 * dword[1] = 0x4E564D2A
1996 	 *
1997 	 * This header must be skipped when providing the NVM data to the FW.
1998 	 */
1999 	if (fw_entry->size > NVM_HEADER_SIZE &&
2000 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
2001 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
2002 		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
2003 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
2004 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
2005 			 le32_to_cpu(dword_buff[3]));
2006 
2007 		/* nvm file validation, dword_buff[2] holds the file version */
2008 		if (trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
2009 		    trans->info.hw_rev_step == SILICON_C_STEP &&
2010 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
2011 			ret = -EFAULT;
2012 			goto out;
2013 		}
2014 	} else {
2015 		file_sec = (const void *)fw_entry->data;
2016 	}
2017 
2018 	while (true) {
2019 		if (file_sec->data > eof) {
2020 			IWL_ERR(trans,
2021 				"ERROR - NVM file too short for section header\n");
2022 			ret = -EINVAL;
2023 			break;
2024 		}
2025 
2026 		/* check for EOF marker */
2027 		if (!file_sec->word1 && !file_sec->word2) {
2028 			ret = 0;
2029 			break;
2030 		}
2031 
2032 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
2033 			section_size =
2034 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
2035 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
2036 		} else {
2037 			section_size = 2 * EXT_NVM_WORD2_LEN(
2038 						le16_to_cpu(file_sec->word2));
2039 			section_id = EXT_NVM_WORD1_ID(
2040 						le16_to_cpu(file_sec->word1));
2041 		}
2042 
2043 		if (section_size > max_section_size) {
2044 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
2045 				section_size);
2046 			ret = -EINVAL;
2047 			break;
2048 		}
2049 
2050 		if (!section_size) {
2051 			IWL_ERR(trans, "ERROR - section empty\n");
2052 			ret = -EINVAL;
2053 			break;
2054 		}
2055 
2056 		if (file_sec->data + section_size > eof) {
2057 			IWL_ERR(trans,
2058 				"ERROR - NVM file too short for section (%d bytes)\n",
2059 				section_size);
2060 			ret = -EINVAL;
2061 			break;
2062 		}
2063 
2064 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
2065 			 "Invalid NVM section ID %d\n", section_id)) {
2066 			ret = -EINVAL;
2067 			break;
2068 		}
2069 
2070 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
2071 		if (!temp) {
2072 			ret = -ENOMEM;
2073 			break;
2074 		}
2075 
2076 		iwl_nvm_fixups(trans->info.hw_id, section_id, temp, section_size);
2077 
2078 		kfree(nvm_sections[section_id].data);
2079 		nvm_sections[section_id].data = temp;
2080 		nvm_sections[section_id].length = section_size;
2081 
2082 		/* advance to the next section */
2083 		file_sec = (const void *)(file_sec->data + section_size);
2084 	}
2085 out:
2086 	release_firmware(fw_entry);
2087 	return ret;
2088 }
2089 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
2090 
iwl_get_nvm(struct iwl_trans * trans,const struct iwl_fw * fw,u8 set_tx_ant,u8 set_rx_ant)2091 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
2092 				 const struct iwl_fw *fw,
2093 				 u8 set_tx_ant, u8 set_rx_ant)
2094 {
2095 	struct iwl_nvm_get_info cmd = {};
2096 	struct iwl_nvm_data *nvm;
2097 	struct iwl_host_cmd hcmd = {
2098 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
2099 		.data = { &cmd, },
2100 		.len = { sizeof(cmd) },
2101 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
2102 	};
2103 	int  ret;
2104 	bool empty_otp;
2105 	u32 mac_flags;
2106 	u32 sbands_flags = 0;
2107 	u8 tx_ant;
2108 	u8 rx_ant;
2109 
2110 	/*
2111 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
2112 	 * in v3, except for the channel profile part of the
2113 	 * regulatory.  So we can just access the new struct, with the
2114 	 * exception of the latter.
2115 	 */
2116 	struct iwl_nvm_get_info_rsp *rsp;
2117 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
2118 	bool v4 = fw_has_api(&fw->ucode_capa,
2119 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
2120 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
2121 	void *channel_profile;
2122 
2123 	ret = iwl_trans_send_cmd(trans, &hcmd);
2124 	if (ret)
2125 		return ERR_PTR(ret);
2126 
2127 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
2128 		 "Invalid payload len in NVM response from FW %d",
2129 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
2130 		ret = -EINVAL;
2131 		goto out;
2132 	}
2133 
2134 	rsp = (void *)hcmd.resp_pkt->data;
2135 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
2136 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
2137 	if (empty_otp)
2138 		IWL_INFO(trans, "OTP is empty\n");
2139 
2140 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
2141 	if (!nvm) {
2142 		ret = -ENOMEM;
2143 		goto out;
2144 	}
2145 
2146 	iwl_set_hw_address_from_csr(trans, nvm);
2147 	/* TODO: if platform NVM has MAC address - override it here */
2148 
2149 	if (!is_valid_ether_addr(nvm->hw_addr)) {
2150 		IWL_ERR(trans, "no valid mac address was found\n");
2151 		ret = -EINVAL;
2152 		goto err_free;
2153 	}
2154 
2155 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
2156 
2157 	/* Initialize general data */
2158 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
2159 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
2160 	if (nvm->n_hw_addrs == 0)
2161 		IWL_WARN(trans,
2162 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
2163 			 empty_otp);
2164 
2165 	/* Initialize MAC sku data */
2166 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
2167 	nvm->sku_cap_11ac_enable =
2168 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
2169 	nvm->sku_cap_11n_enable =
2170 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
2171 	nvm->sku_cap_11ax_enable =
2172 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
2173 	nvm->sku_cap_band_24ghz_enable =
2174 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
2175 	nvm->sku_cap_band_52ghz_enable =
2176 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
2177 	nvm->sku_cap_mimo_disabled =
2178 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
2179 	if (CSR_HW_RFID_TYPE(trans->info.hw_rf_id) >= IWL_CFG_RF_TYPE_FM)
2180 		nvm->sku_cap_11be_enable = true;
2181 
2182 	/* Initialize PHY sku data */
2183 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
2184 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
2185 
2186 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
2187 	    fw_has_capa(&fw->ucode_capa,
2188 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
2189 		nvm->lar_enabled = true;
2190 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
2191 	}
2192 
2193 	rsp_v3 = (void *)rsp;
2194 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2195 			  (void *)rsp_v3->regulatory.channel_profile;
2196 
2197 	tx_ant = nvm->valid_tx_ant & fw->valid_tx_ant;
2198 	rx_ant = nvm->valid_rx_ant & fw->valid_rx_ant;
2199 
2200 	if (set_tx_ant)
2201 		tx_ant &= set_tx_ant;
2202 	if (set_rx_ant)
2203 		rx_ant &= set_rx_ant;
2204 
2205 	iwl_init_sbands(trans, nvm, channel_profile, tx_ant, rx_ant,
2206 			sbands_flags, v4, fw);
2207 
2208 	iwl_free_resp(&hcmd);
2209 	return nvm;
2210 
2211 err_free:
2212 	kfree(nvm);
2213 out:
2214 	iwl_free_resp(&hcmd);
2215 	return ERR_PTR(ret);
2216 }
2217 IWL_EXPORT_SYMBOL(iwl_get_nvm);
2218