xref: /linux/mm/page_alloc.c (revision 1110ce6a1e34fe1fdc1bfe4ad52405f327d5083b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94 
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96 /*
97  * On SMP, spin_trylock is sufficient protection.
98  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99  */
100 #define pcp_trylock_prepare(flags)	do { } while (0)
101 #define pcp_trylock_finish(flag)	do { } while (0)
102 #else
103 
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
106 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
107 #endif
108 
109 /*
110  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111  * a migration causing the wrong PCP to be locked and remote memory being
112  * potentially allocated, pin the task to the CPU for the lookup+lock.
113  * preempt_disable is used on !RT because it is faster than migrate_disable.
114  * migrate_disable is used on RT because otherwise RT spinlock usage is
115  * interfered with and a high priority task cannot preempt the allocator.
116  */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin()		preempt_disable()
119 #define pcpu_task_unpin()	preempt_enable()
120 #else
121 #define pcpu_task_pin()		migrate_disable()
122 #define pcpu_task_unpin()	migrate_enable()
123 #endif
124 
125 /*
126  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127  * Return value should be used with equivalent unlock helper.
128  */
129 #define pcpu_spin_lock(type, member, ptr)				\
130 ({									\
131 	type *_ret;							\
132 	pcpu_task_pin();						\
133 	_ret = this_cpu_ptr(ptr);					\
134 	spin_lock(&_ret->member);					\
135 	_ret;								\
136 })
137 
138 #define pcpu_spin_trylock(type, member, ptr)				\
139 ({									\
140 	type *_ret;							\
141 	pcpu_task_pin();						\
142 	_ret = this_cpu_ptr(ptr);					\
143 	if (!spin_trylock(&_ret->member)) {				\
144 		pcpu_task_unpin();					\
145 		_ret = NULL;						\
146 	}								\
147 	_ret;								\
148 })
149 
150 #define pcpu_spin_unlock(member, ptr)					\
151 ({									\
152 	spin_unlock(&ptr->member);					\
153 	pcpu_task_unpin();						\
154 })
155 
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr)						\
158 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_trylock(ptr)						\
161 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_unlock(ptr)						\
164 	pcpu_spin_unlock(lock, ptr)
165 
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170 
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172 
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178  * defined in <linux/topology.h>.
179  */
180 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183 
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185 
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190 
191 /*
192  * Array of node states.
193  */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 	[N_POSSIBLE] = NODE_MASK_ALL,
196 	[N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 	[N_MEMORY] = { { [0] = 1UL } },
203 	[N_CPU] = { { [0] = 1UL } },
204 #endif	/* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207 
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209 
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213 
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 			    fpi_t fpi_flags);
216 
217 /*
218  * results with 256, 32 in the lowmem_reserve sysctl:
219  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220  *	1G machine -> (16M dma, 784M normal, 224M high)
221  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224  *
225  * TBD: should special case ZONE_DMA32 machines here - in those we normally
226  * don't need any ZONE_NORMAL reservation
227  */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 	[ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 	[ZONE_DMA32] = 256,
234 #endif
235 	[ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 	[ZONE_HIGHMEM] = 0,
238 #endif
239 	[ZONE_MOVABLE] = 0,
240 };
241 
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 	 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 	 "DMA32",
248 #endif
249 	 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 	 "HighMem",
252 #endif
253 	 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 	 "Device",
256 #endif
257 };
258 
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 	"Unmovable",
261 	"Movable",
262 	"Reclaimable",
263 	"HighAtomic",
264 #ifdef CONFIG_CMA
265 	"CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 	"Isolate",
269 #endif
270 };
271 
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static bool cond_accept_memory(struct zone *zone, unsigned int order);
290 static bool __free_unaccepted(struct page *page);
291 
292 int page_group_by_mobility_disabled __read_mostly;
293 
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
295 /*
296  * During boot we initialize deferred pages on-demand, as needed, but once
297  * page_alloc_init_late() has finished, the deferred pages are all initialized,
298  * and we can permanently disable that path.
299  */
300 DEFINE_STATIC_KEY_TRUE(deferred_pages);
301 
deferred_pages_enabled(void)302 static inline bool deferred_pages_enabled(void)
303 {
304 	return static_branch_unlikely(&deferred_pages);
305 }
306 
307 /*
308  * deferred_grow_zone() is __init, but it is called from
309  * get_page_from_freelist() during early boot until deferred_pages permanently
310  * disables this call. This is why we have refdata wrapper to avoid warning,
311  * and to ensure that the function body gets unloaded.
312  */
313 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)314 _deferred_grow_zone(struct zone *zone, unsigned int order)
315 {
316 	return deferred_grow_zone(zone, order);
317 }
318 #else
deferred_pages_enabled(void)319 static inline bool deferred_pages_enabled(void)
320 {
321 	return false;
322 }
323 
_deferred_grow_zone(struct zone * zone,unsigned int order)324 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
325 {
326 	return false;
327 }
328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
329 
330 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)331 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
332 							unsigned long pfn)
333 {
334 #ifdef CONFIG_SPARSEMEM
335 	return section_to_usemap(__pfn_to_section(pfn));
336 #else
337 	return page_zone(page)->pageblock_flags;
338 #endif /* CONFIG_SPARSEMEM */
339 }
340 
pfn_to_bitidx(const struct page * page,unsigned long pfn)341 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
342 {
343 #ifdef CONFIG_SPARSEMEM
344 	pfn &= (PAGES_PER_SECTION-1);
345 #else
346 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
347 #endif /* CONFIG_SPARSEMEM */
348 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
349 }
350 
351 /**
352  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
353  * @page: The page within the block of interest
354  * @pfn: The target page frame number
355  * @mask: mask of bits that the caller is interested in
356  *
357  * Return: pageblock_bits flags
358  */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)359 unsigned long get_pfnblock_flags_mask(const struct page *page,
360 					unsigned long pfn, unsigned long mask)
361 {
362 	unsigned long *bitmap;
363 	unsigned long bitidx, word_bitidx;
364 	unsigned long word;
365 
366 	bitmap = get_pageblock_bitmap(page, pfn);
367 	bitidx = pfn_to_bitidx(page, pfn);
368 	word_bitidx = bitidx / BITS_PER_LONG;
369 	bitidx &= (BITS_PER_LONG-1);
370 	/*
371 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
372 	 * a consistent read of the memory array, so that results, even though
373 	 * racy, are not corrupted.
374 	 */
375 	word = READ_ONCE(bitmap[word_bitidx]);
376 	return (word >> bitidx) & mask;
377 }
378 
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)379 static __always_inline int get_pfnblock_migratetype(const struct page *page,
380 					unsigned long pfn)
381 {
382 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
383 }
384 
385 /**
386  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
387  * @page: The page within the block of interest
388  * @flags: The flags to set
389  * @pfn: The target page frame number
390  * @mask: mask of bits that the caller is interested in
391  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)392 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
393 					unsigned long pfn,
394 					unsigned long mask)
395 {
396 	unsigned long *bitmap;
397 	unsigned long bitidx, word_bitidx;
398 	unsigned long word;
399 
400 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
401 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
402 
403 	bitmap = get_pageblock_bitmap(page, pfn);
404 	bitidx = pfn_to_bitidx(page, pfn);
405 	word_bitidx = bitidx / BITS_PER_LONG;
406 	bitidx &= (BITS_PER_LONG-1);
407 
408 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
409 
410 	mask <<= bitidx;
411 	flags <<= bitidx;
412 
413 	word = READ_ONCE(bitmap[word_bitidx]);
414 	do {
415 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
416 }
417 
set_pageblock_migratetype(struct page * page,int migratetype)418 void set_pageblock_migratetype(struct page *page, int migratetype)
419 {
420 	if (unlikely(page_group_by_mobility_disabled &&
421 		     migratetype < MIGRATE_PCPTYPES))
422 		migratetype = MIGRATE_UNMOVABLE;
423 
424 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
425 				page_to_pfn(page), MIGRATETYPE_MASK);
426 }
427 
428 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)429 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
430 {
431 	int ret;
432 	unsigned seq;
433 	unsigned long pfn = page_to_pfn(page);
434 	unsigned long sp, start_pfn;
435 
436 	do {
437 		seq = zone_span_seqbegin(zone);
438 		start_pfn = zone->zone_start_pfn;
439 		sp = zone->spanned_pages;
440 		ret = !zone_spans_pfn(zone, pfn);
441 	} while (zone_span_seqretry(zone, seq));
442 
443 	if (ret)
444 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
445 			pfn, zone_to_nid(zone), zone->name,
446 			start_pfn, start_pfn + sp);
447 
448 	return ret;
449 }
450 
451 /*
452  * Temporary debugging check for pages not lying within a given zone.
453  */
bad_range(struct zone * zone,struct page * page)454 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
455 {
456 	if (page_outside_zone_boundaries(zone, page))
457 		return true;
458 	if (zone != page_zone(page))
459 		return true;
460 
461 	return false;
462 }
463 #else
bad_range(struct zone * zone,struct page * page)464 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
465 {
466 	return false;
467 }
468 #endif
469 
bad_page(struct page * page,const char * reason)470 static void bad_page(struct page *page, const char *reason)
471 {
472 	static unsigned long resume;
473 	static unsigned long nr_shown;
474 	static unsigned long nr_unshown;
475 
476 	/*
477 	 * Allow a burst of 60 reports, then keep quiet for that minute;
478 	 * or allow a steady drip of one report per second.
479 	 */
480 	if (nr_shown == 60) {
481 		if (time_before(jiffies, resume)) {
482 			nr_unshown++;
483 			goto out;
484 		}
485 		if (nr_unshown) {
486 			pr_alert(
487 			      "BUG: Bad page state: %lu messages suppressed\n",
488 				nr_unshown);
489 			nr_unshown = 0;
490 		}
491 		nr_shown = 0;
492 	}
493 	if (nr_shown++ == 0)
494 		resume = jiffies + 60 * HZ;
495 
496 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
497 		current->comm, page_to_pfn(page));
498 	dump_page(page, reason);
499 
500 	print_modules();
501 	dump_stack();
502 out:
503 	/* Leave bad fields for debug, except PageBuddy could make trouble */
504 	if (PageBuddy(page))
505 		__ClearPageBuddy(page);
506 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
507 }
508 
order_to_pindex(int migratetype,int order)509 static inline unsigned int order_to_pindex(int migratetype, int order)
510 {
511 	bool __maybe_unused movable;
512 
513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
515 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
516 
517 		movable = migratetype == MIGRATE_MOVABLE;
518 
519 		return NR_LOWORDER_PCP_LISTS + movable;
520 	}
521 #else
522 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
523 #endif
524 
525 	return (MIGRATE_PCPTYPES * order) + migratetype;
526 }
527 
pindex_to_order(unsigned int pindex)528 static inline int pindex_to_order(unsigned int pindex)
529 {
530 	int order = pindex / MIGRATE_PCPTYPES;
531 
532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
533 	if (pindex >= NR_LOWORDER_PCP_LISTS)
534 		order = HPAGE_PMD_ORDER;
535 #else
536 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
537 #endif
538 
539 	return order;
540 }
541 
pcp_allowed_order(unsigned int order)542 static inline bool pcp_allowed_order(unsigned int order)
543 {
544 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
545 		return true;
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 	if (order == HPAGE_PMD_ORDER)
548 		return true;
549 #endif
550 	return false;
551 }
552 
553 /*
554  * Higher-order pages are called "compound pages".  They are structured thusly:
555  *
556  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
557  *
558  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
559  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
560  *
561  * The first tail page's ->compound_order holds the order of allocation.
562  * This usage means that zero-order pages may not be compound.
563  */
564 
prep_compound_page(struct page * page,unsigned int order)565 void prep_compound_page(struct page *page, unsigned int order)
566 {
567 	int i;
568 	int nr_pages = 1 << order;
569 
570 	__SetPageHead(page);
571 	for (i = 1; i < nr_pages; i++)
572 		prep_compound_tail(page, i);
573 
574 	prep_compound_head(page, order);
575 }
576 
set_buddy_order(struct page * page,unsigned int order)577 static inline void set_buddy_order(struct page *page, unsigned int order)
578 {
579 	set_page_private(page, order);
580 	__SetPageBuddy(page);
581 }
582 
583 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)584 static inline struct capture_control *task_capc(struct zone *zone)
585 {
586 	struct capture_control *capc = current->capture_control;
587 
588 	return unlikely(capc) &&
589 		!(current->flags & PF_KTHREAD) &&
590 		!capc->page &&
591 		capc->cc->zone == zone ? capc : NULL;
592 }
593 
594 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)595 compaction_capture(struct capture_control *capc, struct page *page,
596 		   int order, int migratetype)
597 {
598 	if (!capc || order != capc->cc->order)
599 		return false;
600 
601 	/* Do not accidentally pollute CMA or isolated regions*/
602 	if (is_migrate_cma(migratetype) ||
603 	    is_migrate_isolate(migratetype))
604 		return false;
605 
606 	/*
607 	 * Do not let lower order allocations pollute a movable pageblock
608 	 * unless compaction is also requesting movable pages.
609 	 * This might let an unmovable request use a reclaimable pageblock
610 	 * and vice-versa but no more than normal fallback logic which can
611 	 * have trouble finding a high-order free page.
612 	 */
613 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
614 	    capc->cc->migratetype != MIGRATE_MOVABLE)
615 		return false;
616 
617 	capc->page = page;
618 	return true;
619 }
620 
621 #else
task_capc(struct zone * zone)622 static inline struct capture_control *task_capc(struct zone *zone)
623 {
624 	return NULL;
625 }
626 
627 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)628 compaction_capture(struct capture_control *capc, struct page *page,
629 		   int order, int migratetype)
630 {
631 	return false;
632 }
633 #endif /* CONFIG_COMPACTION */
634 
account_freepages(struct zone * zone,int nr_pages,int migratetype)635 static inline void account_freepages(struct zone *zone, int nr_pages,
636 				     int migratetype)
637 {
638 	lockdep_assert_held(&zone->lock);
639 
640 	if (is_migrate_isolate(migratetype))
641 		return;
642 
643 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
644 
645 	if (is_migrate_cma(migratetype))
646 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
647 	else if (is_migrate_highatomic(migratetype))
648 		WRITE_ONCE(zone->nr_free_highatomic,
649 			   zone->nr_free_highatomic + nr_pages);
650 }
651 
652 /* Used for pages not on another list */
__add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)653 static inline void __add_to_free_list(struct page *page, struct zone *zone,
654 				      unsigned int order, int migratetype,
655 				      bool tail)
656 {
657 	struct free_area *area = &zone->free_area[order];
658 
659 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
660 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
661 		     get_pageblock_migratetype(page), migratetype, 1 << order);
662 
663 	if (tail)
664 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
665 	else
666 		list_add(&page->buddy_list, &area->free_list[migratetype]);
667 	area->nr_free++;
668 }
669 
670 /*
671  * Used for pages which are on another list. Move the pages to the tail
672  * of the list - so the moved pages won't immediately be considered for
673  * allocation again (e.g., optimization for memory onlining).
674  */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int old_mt,int new_mt)675 static inline void move_to_free_list(struct page *page, struct zone *zone,
676 				     unsigned int order, int old_mt, int new_mt)
677 {
678 	struct free_area *area = &zone->free_area[order];
679 
680 	/* Free page moving can fail, so it happens before the type update */
681 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
682 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
683 		     get_pageblock_migratetype(page), old_mt, 1 << order);
684 
685 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
686 
687 	account_freepages(zone, -(1 << order), old_mt);
688 	account_freepages(zone, 1 << order, new_mt);
689 }
690 
__del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)691 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
692 					     unsigned int order, int migratetype)
693 {
694         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
695 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
696 		     get_pageblock_migratetype(page), migratetype, 1 << order);
697 
698 	/* clear reported state and update reported page count */
699 	if (page_reported(page))
700 		__ClearPageReported(page);
701 
702 	list_del(&page->buddy_list);
703 	__ClearPageBuddy(page);
704 	set_page_private(page, 0);
705 	zone->free_area[order].nr_free--;
706 }
707 
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)708 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
709 					   unsigned int order, int migratetype)
710 {
711 	__del_page_from_free_list(page, zone, order, migratetype);
712 	account_freepages(zone, -(1 << order), migratetype);
713 }
714 
get_page_from_free_area(struct free_area * area,int migratetype)715 static inline struct page *get_page_from_free_area(struct free_area *area,
716 					    int migratetype)
717 {
718 	return list_first_entry_or_null(&area->free_list[migratetype],
719 					struct page, buddy_list);
720 }
721 
722 /*
723  * If this is less than the 2nd largest possible page, check if the buddy
724  * of the next-higher order is free. If it is, it's possible
725  * that pages are being freed that will coalesce soon. In case,
726  * that is happening, add the free page to the tail of the list
727  * so it's less likely to be used soon and more likely to be merged
728  * as a 2-level higher order page
729  */
730 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)731 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
732 		   struct page *page, unsigned int order)
733 {
734 	unsigned long higher_page_pfn;
735 	struct page *higher_page;
736 
737 	if (order >= MAX_PAGE_ORDER - 1)
738 		return false;
739 
740 	higher_page_pfn = buddy_pfn & pfn;
741 	higher_page = page + (higher_page_pfn - pfn);
742 
743 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
744 			NULL) != NULL;
745 }
746 
747 /*
748  * Freeing function for a buddy system allocator.
749  *
750  * The concept of a buddy system is to maintain direct-mapped table
751  * (containing bit values) for memory blocks of various "orders".
752  * The bottom level table contains the map for the smallest allocatable
753  * units of memory (here, pages), and each level above it describes
754  * pairs of units from the levels below, hence, "buddies".
755  * At a high level, all that happens here is marking the table entry
756  * at the bottom level available, and propagating the changes upward
757  * as necessary, plus some accounting needed to play nicely with other
758  * parts of the VM system.
759  * At each level, we keep a list of pages, which are heads of continuous
760  * free pages of length of (1 << order) and marked with PageBuddy.
761  * Page's order is recorded in page_private(page) field.
762  * So when we are allocating or freeing one, we can derive the state of the
763  * other.  That is, if we allocate a small block, and both were
764  * free, the remainder of the region must be split into blocks.
765  * If a block is freed, and its buddy is also free, then this
766  * triggers coalescing into a block of larger size.
767  *
768  * -- nyc
769  */
770 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)771 static inline void __free_one_page(struct page *page,
772 		unsigned long pfn,
773 		struct zone *zone, unsigned int order,
774 		int migratetype, fpi_t fpi_flags)
775 {
776 	struct capture_control *capc = task_capc(zone);
777 	unsigned long buddy_pfn = 0;
778 	unsigned long combined_pfn;
779 	struct page *buddy;
780 	bool to_tail;
781 
782 	VM_BUG_ON(!zone_is_initialized(zone));
783 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
784 
785 	VM_BUG_ON(migratetype == -1);
786 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
787 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
788 
789 	account_freepages(zone, 1 << order, migratetype);
790 
791 	while (order < MAX_PAGE_ORDER) {
792 		int buddy_mt = migratetype;
793 
794 		if (compaction_capture(capc, page, order, migratetype)) {
795 			account_freepages(zone, -(1 << order), migratetype);
796 			return;
797 		}
798 
799 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
800 		if (!buddy)
801 			goto done_merging;
802 
803 		if (unlikely(order >= pageblock_order)) {
804 			/*
805 			 * We want to prevent merge between freepages on pageblock
806 			 * without fallbacks and normal pageblock. Without this,
807 			 * pageblock isolation could cause incorrect freepage or CMA
808 			 * accounting or HIGHATOMIC accounting.
809 			 */
810 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
811 
812 			if (migratetype != buddy_mt &&
813 			    (!migratetype_is_mergeable(migratetype) ||
814 			     !migratetype_is_mergeable(buddy_mt)))
815 				goto done_merging;
816 		}
817 
818 		/*
819 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 		 * merge with it and move up one order.
821 		 */
822 		if (page_is_guard(buddy))
823 			clear_page_guard(zone, buddy, order);
824 		else
825 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
826 
827 		if (unlikely(buddy_mt != migratetype)) {
828 			/*
829 			 * Match buddy type. This ensures that an
830 			 * expand() down the line puts the sub-blocks
831 			 * on the right freelists.
832 			 */
833 			set_pageblock_migratetype(buddy, migratetype);
834 		}
835 
836 		combined_pfn = buddy_pfn & pfn;
837 		page = page + (combined_pfn - pfn);
838 		pfn = combined_pfn;
839 		order++;
840 	}
841 
842 done_merging:
843 	set_buddy_order(page, order);
844 
845 	if (fpi_flags & FPI_TO_TAIL)
846 		to_tail = true;
847 	else if (is_shuffle_order(order))
848 		to_tail = shuffle_pick_tail();
849 	else
850 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
851 
852 	__add_to_free_list(page, zone, order, migratetype, to_tail);
853 
854 	/* Notify page reporting subsystem of freed page */
855 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
856 		page_reporting_notify_free(order);
857 }
858 
859 /*
860  * A bad page could be due to a number of fields. Instead of multiple branches,
861  * try and check multiple fields with one check. The caller must do a detailed
862  * check if necessary.
863  */
page_expected_state(struct page * page,unsigned long check_flags)864 static inline bool page_expected_state(struct page *page,
865 					unsigned long check_flags)
866 {
867 	if (unlikely(atomic_read(&page->_mapcount) != -1))
868 		return false;
869 
870 	if (unlikely((unsigned long)page->mapping |
871 			page_ref_count(page) |
872 #ifdef CONFIG_MEMCG
873 			page->memcg_data |
874 #endif
875 #ifdef CONFIG_PAGE_POOL
876 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
877 #endif
878 			(page->flags & check_flags)))
879 		return false;
880 
881 	return true;
882 }
883 
page_bad_reason(struct page * page,unsigned long flags)884 static const char *page_bad_reason(struct page *page, unsigned long flags)
885 {
886 	const char *bad_reason = NULL;
887 
888 	if (unlikely(atomic_read(&page->_mapcount) != -1))
889 		bad_reason = "nonzero mapcount";
890 	if (unlikely(page->mapping != NULL))
891 		bad_reason = "non-NULL mapping";
892 	if (unlikely(page_ref_count(page) != 0))
893 		bad_reason = "nonzero _refcount";
894 	if (unlikely(page->flags & flags)) {
895 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
896 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
897 		else
898 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
899 	}
900 #ifdef CONFIG_MEMCG
901 	if (unlikely(page->memcg_data))
902 		bad_reason = "page still charged to cgroup";
903 #endif
904 #ifdef CONFIG_PAGE_POOL
905 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
906 		bad_reason = "page_pool leak";
907 #endif
908 	return bad_reason;
909 }
910 
free_page_is_bad_report(struct page * page)911 static void free_page_is_bad_report(struct page *page)
912 {
913 	bad_page(page,
914 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
915 }
916 
free_page_is_bad(struct page * page)917 static inline bool free_page_is_bad(struct page *page)
918 {
919 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
920 		return false;
921 
922 	/* Something has gone sideways, find it */
923 	free_page_is_bad_report(page);
924 	return true;
925 }
926 
is_check_pages_enabled(void)927 static inline bool is_check_pages_enabled(void)
928 {
929 	return static_branch_unlikely(&check_pages_enabled);
930 }
931 
free_tail_page_prepare(struct page * head_page,struct page * page)932 static int free_tail_page_prepare(struct page *head_page, struct page *page)
933 {
934 	struct folio *folio = (struct folio *)head_page;
935 	int ret = 1;
936 
937 	/*
938 	 * We rely page->lru.next never has bit 0 set, unless the page
939 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
940 	 */
941 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
942 
943 	if (!is_check_pages_enabled()) {
944 		ret = 0;
945 		goto out;
946 	}
947 	switch (page - head_page) {
948 	case 1:
949 		/* the first tail page: these may be in place of ->mapping */
950 		if (unlikely(folio_entire_mapcount(folio))) {
951 			bad_page(page, "nonzero entire_mapcount");
952 			goto out;
953 		}
954 		if (unlikely(folio_large_mapcount(folio))) {
955 			bad_page(page, "nonzero large_mapcount");
956 			goto out;
957 		}
958 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
959 			bad_page(page, "nonzero nr_pages_mapped");
960 			goto out;
961 		}
962 		if (unlikely(atomic_read(&folio->_pincount))) {
963 			bad_page(page, "nonzero pincount");
964 			goto out;
965 		}
966 		break;
967 	case 2:
968 		/* the second tail page: deferred_list overlaps ->mapping */
969 		if (unlikely(!list_empty(&folio->_deferred_list))) {
970 			bad_page(page, "on deferred list");
971 			goto out;
972 		}
973 		break;
974 	default:
975 		if (page->mapping != TAIL_MAPPING) {
976 			bad_page(page, "corrupted mapping in tail page");
977 			goto out;
978 		}
979 		break;
980 	}
981 	if (unlikely(!PageTail(page))) {
982 		bad_page(page, "PageTail not set");
983 		goto out;
984 	}
985 	if (unlikely(compound_head(page) != head_page)) {
986 		bad_page(page, "compound_head not consistent");
987 		goto out;
988 	}
989 	ret = 0;
990 out:
991 	page->mapping = NULL;
992 	clear_compound_head(page);
993 	return ret;
994 }
995 
996 /*
997  * Skip KASAN memory poisoning when either:
998  *
999  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1000  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1001  *    using page tags instead (see below).
1002  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1003  *    that error detection is disabled for accesses via the page address.
1004  *
1005  * Pages will have match-all tags in the following circumstances:
1006  *
1007  * 1. Pages are being initialized for the first time, including during deferred
1008  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1009  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1010  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1011  * 3. The allocation was excluded from being checked due to sampling,
1012  *    see the call to kasan_unpoison_pages.
1013  *
1014  * Poisoning pages during deferred memory init will greatly lengthen the
1015  * process and cause problem in large memory systems as the deferred pages
1016  * initialization is done with interrupt disabled.
1017  *
1018  * Assuming that there will be no reference to those newly initialized
1019  * pages before they are ever allocated, this should have no effect on
1020  * KASAN memory tracking as the poison will be properly inserted at page
1021  * allocation time. The only corner case is when pages are allocated by
1022  * on-demand allocation and then freed again before the deferred pages
1023  * initialization is done, but this is not likely to happen.
1024  */
should_skip_kasan_poison(struct page * page)1025 static inline bool should_skip_kasan_poison(struct page *page)
1026 {
1027 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1028 		return deferred_pages_enabled();
1029 
1030 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1031 }
1032 
kernel_init_pages(struct page * page,int numpages)1033 static void kernel_init_pages(struct page *page, int numpages)
1034 {
1035 	int i;
1036 
1037 	/* s390's use of memset() could override KASAN redzones. */
1038 	kasan_disable_current();
1039 	for (i = 0; i < numpages; i++)
1040 		clear_highpage_kasan_tagged(page + i);
1041 	kasan_enable_current();
1042 }
1043 
free_pages_prepare(struct page * page,unsigned int order)1044 __always_inline bool free_pages_prepare(struct page *page,
1045 			unsigned int order)
1046 {
1047 	int bad = 0;
1048 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1049 	bool init = want_init_on_free();
1050 	bool compound = PageCompound(page);
1051 	struct folio *folio = page_folio(page);
1052 
1053 	VM_BUG_ON_PAGE(PageTail(page), page);
1054 
1055 	trace_mm_page_free(page, order);
1056 	kmsan_free_page(page, order);
1057 
1058 	if (memcg_kmem_online() && PageMemcgKmem(page))
1059 		__memcg_kmem_uncharge_page(page, order);
1060 
1061 	/*
1062 	 * In rare cases, when truncation or holepunching raced with
1063 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1064 	 * found set here.  This does not indicate a problem, unless
1065 	 * "unevictable_pgs_cleared" appears worryingly large.
1066 	 */
1067 	if (unlikely(folio_test_mlocked(folio))) {
1068 		long nr_pages = folio_nr_pages(folio);
1069 
1070 		__folio_clear_mlocked(folio);
1071 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1072 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1073 	}
1074 
1075 	if (unlikely(PageHWPoison(page)) && !order) {
1076 		/* Do not let hwpoison pages hit pcplists/buddy */
1077 		reset_page_owner(page, order);
1078 		page_table_check_free(page, order);
1079 		pgalloc_tag_sub(page, 1 << order);
1080 
1081 		/*
1082 		 * The page is isolated and accounted for.
1083 		 * Mark the codetag as empty to avoid accounting error
1084 		 * when the page is freed by unpoison_memory().
1085 		 */
1086 		clear_page_tag_ref(page);
1087 		return false;
1088 	}
1089 
1090 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1091 
1092 	/*
1093 	 * Check tail pages before head page information is cleared to
1094 	 * avoid checking PageCompound for order-0 pages.
1095 	 */
1096 	if (unlikely(order)) {
1097 		int i;
1098 
1099 		if (compound)
1100 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1101 		for (i = 1; i < (1 << order); i++) {
1102 			if (compound)
1103 				bad += free_tail_page_prepare(page, page + i);
1104 			if (is_check_pages_enabled()) {
1105 				if (free_page_is_bad(page + i)) {
1106 					bad++;
1107 					continue;
1108 				}
1109 			}
1110 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1111 		}
1112 	}
1113 	if (PageMappingFlags(page)) {
1114 		if (PageAnon(page))
1115 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1116 		page->mapping = NULL;
1117 	}
1118 	if (is_check_pages_enabled()) {
1119 		if (free_page_is_bad(page))
1120 			bad++;
1121 		if (bad)
1122 			return false;
1123 	}
1124 
1125 	page_cpupid_reset_last(page);
1126 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1127 	reset_page_owner(page, order);
1128 	page_table_check_free(page, order);
1129 	pgalloc_tag_sub(page, 1 << order);
1130 
1131 	if (!PageHighMem(page)) {
1132 		debug_check_no_locks_freed(page_address(page),
1133 					   PAGE_SIZE << order);
1134 		debug_check_no_obj_freed(page_address(page),
1135 					   PAGE_SIZE << order);
1136 	}
1137 
1138 	kernel_poison_pages(page, 1 << order);
1139 
1140 	/*
1141 	 * As memory initialization might be integrated into KASAN,
1142 	 * KASAN poisoning and memory initialization code must be
1143 	 * kept together to avoid discrepancies in behavior.
1144 	 *
1145 	 * With hardware tag-based KASAN, memory tags must be set before the
1146 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1147 	 */
1148 	if (!skip_kasan_poison) {
1149 		kasan_poison_pages(page, order, init);
1150 
1151 		/* Memory is already initialized if KASAN did it internally. */
1152 		if (kasan_has_integrated_init())
1153 			init = false;
1154 	}
1155 	if (init)
1156 		kernel_init_pages(page, 1 << order);
1157 
1158 	/*
1159 	 * arch_free_page() can make the page's contents inaccessible.  s390
1160 	 * does this.  So nothing which can access the page's contents should
1161 	 * happen after this.
1162 	 */
1163 	arch_free_page(page, order);
1164 
1165 	debug_pagealloc_unmap_pages(page, 1 << order);
1166 
1167 	return true;
1168 }
1169 
1170 /*
1171  * Frees a number of pages from the PCP lists
1172  * Assumes all pages on list are in same zone.
1173  * count is the number of pages to free.
1174  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1175 static void free_pcppages_bulk(struct zone *zone, int count,
1176 					struct per_cpu_pages *pcp,
1177 					int pindex)
1178 {
1179 	unsigned long flags;
1180 	unsigned int order;
1181 	struct page *page;
1182 
1183 	/*
1184 	 * Ensure proper count is passed which otherwise would stuck in the
1185 	 * below while (list_empty(list)) loop.
1186 	 */
1187 	count = min(pcp->count, count);
1188 
1189 	/* Ensure requested pindex is drained first. */
1190 	pindex = pindex - 1;
1191 
1192 	spin_lock_irqsave(&zone->lock, flags);
1193 
1194 	while (count > 0) {
1195 		struct list_head *list;
1196 		int nr_pages;
1197 
1198 		/* Remove pages from lists in a round-robin fashion. */
1199 		do {
1200 			if (++pindex > NR_PCP_LISTS - 1)
1201 				pindex = 0;
1202 			list = &pcp->lists[pindex];
1203 		} while (list_empty(list));
1204 
1205 		order = pindex_to_order(pindex);
1206 		nr_pages = 1 << order;
1207 		do {
1208 			unsigned long pfn;
1209 			int mt;
1210 
1211 			page = list_last_entry(list, struct page, pcp_list);
1212 			pfn = page_to_pfn(page);
1213 			mt = get_pfnblock_migratetype(page, pfn);
1214 
1215 			/* must delete to avoid corrupting pcp list */
1216 			list_del(&page->pcp_list);
1217 			count -= nr_pages;
1218 			pcp->count -= nr_pages;
1219 
1220 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1221 			trace_mm_page_pcpu_drain(page, order, mt);
1222 		} while (count > 0 && !list_empty(list));
1223 	}
1224 
1225 	spin_unlock_irqrestore(&zone->lock, flags);
1226 }
1227 
1228 /* Split a multi-block free page into its individual pageblocks. */
split_large_buddy(struct zone * zone,struct page * page,unsigned long pfn,int order,fpi_t fpi)1229 static void split_large_buddy(struct zone *zone, struct page *page,
1230 			      unsigned long pfn, int order, fpi_t fpi)
1231 {
1232 	unsigned long end = pfn + (1 << order);
1233 
1234 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1235 	/* Caller removed page from freelist, buddy info cleared! */
1236 	VM_WARN_ON_ONCE(PageBuddy(page));
1237 
1238 	if (order > pageblock_order)
1239 		order = pageblock_order;
1240 
1241 	do {
1242 		int mt = get_pfnblock_migratetype(page, pfn);
1243 
1244 		__free_one_page(page, pfn, zone, order, mt, fpi);
1245 		pfn += 1 << order;
1246 		if (pfn == end)
1247 			break;
1248 		page = pfn_to_page(pfn);
1249 	} while (1);
1250 }
1251 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,fpi_t fpi_flags)1252 static void free_one_page(struct zone *zone, struct page *page,
1253 			  unsigned long pfn, unsigned int order,
1254 			  fpi_t fpi_flags)
1255 {
1256 	unsigned long flags;
1257 
1258 	spin_lock_irqsave(&zone->lock, flags);
1259 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1260 	spin_unlock_irqrestore(&zone->lock, flags);
1261 
1262 	__count_vm_events(PGFREE, 1 << order);
1263 }
1264 
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1265 static void __free_pages_ok(struct page *page, unsigned int order,
1266 			    fpi_t fpi_flags)
1267 {
1268 	unsigned long pfn = page_to_pfn(page);
1269 	struct zone *zone = page_zone(page);
1270 
1271 	if (free_pages_prepare(page, order))
1272 		free_one_page(zone, page, pfn, order, fpi_flags);
1273 }
1274 
__free_pages_core(struct page * page,unsigned int order,enum meminit_context context)1275 void __meminit __free_pages_core(struct page *page, unsigned int order,
1276 		enum meminit_context context)
1277 {
1278 	unsigned int nr_pages = 1 << order;
1279 	struct page *p = page;
1280 	unsigned int loop;
1281 
1282 	/*
1283 	 * When initializing the memmap, __init_single_page() sets the refcount
1284 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1285 	 * refcount of all involved pages to 0.
1286 	 *
1287 	 * Note that hotplugged memory pages are initialized to PageOffline().
1288 	 * Pages freed from memblock might be marked as reserved.
1289 	 */
1290 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1291 	    unlikely(context == MEMINIT_HOTPLUG)) {
1292 		for (loop = 0; loop < nr_pages; loop++, p++) {
1293 			VM_WARN_ON_ONCE(PageReserved(p));
1294 			__ClearPageOffline(p);
1295 			set_page_count(p, 0);
1296 		}
1297 
1298 		adjust_managed_page_count(page, nr_pages);
1299 	} else {
1300 		for (loop = 0; loop < nr_pages; loop++, p++) {
1301 			__ClearPageReserved(p);
1302 			set_page_count(p, 0);
1303 		}
1304 
1305 		/* memblock adjusts totalram_pages() manually. */
1306 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1307 	}
1308 
1309 	if (page_contains_unaccepted(page, order)) {
1310 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1311 			return;
1312 
1313 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1314 	}
1315 
1316 	/*
1317 	 * Bypass PCP and place fresh pages right to the tail, primarily
1318 	 * relevant for memory onlining.
1319 	 */
1320 	__free_pages_ok(page, order, FPI_TO_TAIL);
1321 }
1322 
1323 /*
1324  * Check that the whole (or subset of) a pageblock given by the interval of
1325  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1326  * with the migration of free compaction scanner.
1327  *
1328  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1329  *
1330  * It's possible on some configurations to have a setup like node0 node1 node0
1331  * i.e. it's possible that all pages within a zones range of pages do not
1332  * belong to a single zone. We assume that a border between node0 and node1
1333  * can occur within a single pageblock, but not a node0 node1 node0
1334  * interleaving within a single pageblock. It is therefore sufficient to check
1335  * the first and last page of a pageblock and avoid checking each individual
1336  * page in a pageblock.
1337  *
1338  * Note: the function may return non-NULL struct page even for a page block
1339  * which contains a memory hole (i.e. there is no physical memory for a subset
1340  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1341  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1342  * even though the start pfn is online and valid. This should be safe most of
1343  * the time because struct pages are still initialized via init_unavailable_range()
1344  * and pfn walkers shouldn't touch any physical memory range for which they do
1345  * not recognize any specific metadata in struct pages.
1346  */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1347 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1348 				     unsigned long end_pfn, struct zone *zone)
1349 {
1350 	struct page *start_page;
1351 	struct page *end_page;
1352 
1353 	/* end_pfn is one past the range we are checking */
1354 	end_pfn--;
1355 
1356 	if (!pfn_valid(end_pfn))
1357 		return NULL;
1358 
1359 	start_page = pfn_to_online_page(start_pfn);
1360 	if (!start_page)
1361 		return NULL;
1362 
1363 	if (page_zone(start_page) != zone)
1364 		return NULL;
1365 
1366 	end_page = pfn_to_page(end_pfn);
1367 
1368 	/* This gives a shorter code than deriving page_zone(end_page) */
1369 	if (page_zone_id(start_page) != page_zone_id(end_page))
1370 		return NULL;
1371 
1372 	return start_page;
1373 }
1374 
1375 /*
1376  * The order of subdivision here is critical for the IO subsystem.
1377  * Please do not alter this order without good reasons and regression
1378  * testing. Specifically, as large blocks of memory are subdivided,
1379  * the order in which smaller blocks are delivered depends on the order
1380  * they're subdivided in this function. This is the primary factor
1381  * influencing the order in which pages are delivered to the IO
1382  * subsystem according to empirical testing, and this is also justified
1383  * by considering the behavior of a buddy system containing a single
1384  * large block of memory acted on by a series of small allocations.
1385  * This behavior is a critical factor in sglist merging's success.
1386  *
1387  * -- nyc
1388  */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1389 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1390 				  int high, int migratetype)
1391 {
1392 	unsigned int size = 1 << high;
1393 	unsigned int nr_added = 0;
1394 
1395 	while (high > low) {
1396 		high--;
1397 		size >>= 1;
1398 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1399 
1400 		/*
1401 		 * Mark as guard pages (or page), that will allow to
1402 		 * merge back to allocator when buddy will be freed.
1403 		 * Corresponding page table entries will not be touched,
1404 		 * pages will stay not present in virtual address space
1405 		 */
1406 		if (set_page_guard(zone, &page[size], high))
1407 			continue;
1408 
1409 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1410 		set_buddy_order(&page[size], high);
1411 		nr_added += size;
1412 	}
1413 
1414 	return nr_added;
1415 }
1416 
page_del_and_expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1417 static __always_inline void page_del_and_expand(struct zone *zone,
1418 						struct page *page, int low,
1419 						int high, int migratetype)
1420 {
1421 	int nr_pages = 1 << high;
1422 
1423 	__del_page_from_free_list(page, zone, high, migratetype);
1424 	nr_pages -= expand(zone, page, low, high, migratetype);
1425 	account_freepages(zone, -nr_pages, migratetype);
1426 }
1427 
check_new_page_bad(struct page * page)1428 static void check_new_page_bad(struct page *page)
1429 {
1430 	if (unlikely(page->flags & __PG_HWPOISON)) {
1431 		/* Don't complain about hwpoisoned pages */
1432 		if (PageBuddy(page))
1433 			__ClearPageBuddy(page);
1434 		return;
1435 	}
1436 
1437 	bad_page(page,
1438 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1439 }
1440 
1441 /*
1442  * This page is about to be returned from the page allocator
1443  */
check_new_page(struct page * page)1444 static bool check_new_page(struct page *page)
1445 {
1446 	if (likely(page_expected_state(page,
1447 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1448 		return false;
1449 
1450 	check_new_page_bad(page);
1451 	return true;
1452 }
1453 
check_new_pages(struct page * page,unsigned int order)1454 static inline bool check_new_pages(struct page *page, unsigned int order)
1455 {
1456 	if (is_check_pages_enabled()) {
1457 		for (int i = 0; i < (1 << order); i++) {
1458 			struct page *p = page + i;
1459 
1460 			if (check_new_page(p))
1461 				return true;
1462 		}
1463 	}
1464 
1465 	return false;
1466 }
1467 
should_skip_kasan_unpoison(gfp_t flags)1468 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1469 {
1470 	/* Don't skip if a software KASAN mode is enabled. */
1471 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1472 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1473 		return false;
1474 
1475 	/* Skip, if hardware tag-based KASAN is not enabled. */
1476 	if (!kasan_hw_tags_enabled())
1477 		return true;
1478 
1479 	/*
1480 	 * With hardware tag-based KASAN enabled, skip if this has been
1481 	 * requested via __GFP_SKIP_KASAN.
1482 	 */
1483 	return flags & __GFP_SKIP_KASAN;
1484 }
1485 
should_skip_init(gfp_t flags)1486 static inline bool should_skip_init(gfp_t flags)
1487 {
1488 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1489 	if (!kasan_hw_tags_enabled())
1490 		return false;
1491 
1492 	/* For hardware tag-based KASAN, skip if requested. */
1493 	return (flags & __GFP_SKIP_ZERO);
1494 }
1495 
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1496 inline void post_alloc_hook(struct page *page, unsigned int order,
1497 				gfp_t gfp_flags)
1498 {
1499 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1500 			!should_skip_init(gfp_flags);
1501 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1502 	int i;
1503 
1504 	set_page_private(page, 0);
1505 
1506 	arch_alloc_page(page, order);
1507 	debug_pagealloc_map_pages(page, 1 << order);
1508 
1509 	/*
1510 	 * Page unpoisoning must happen before memory initialization.
1511 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1512 	 * allocations and the page unpoisoning code will complain.
1513 	 */
1514 	kernel_unpoison_pages(page, 1 << order);
1515 
1516 	/*
1517 	 * As memory initialization might be integrated into KASAN,
1518 	 * KASAN unpoisoning and memory initializion code must be
1519 	 * kept together to avoid discrepancies in behavior.
1520 	 */
1521 
1522 	/*
1523 	 * If memory tags should be zeroed
1524 	 * (which happens only when memory should be initialized as well).
1525 	 */
1526 	if (zero_tags) {
1527 		/* Initialize both memory and memory tags. */
1528 		for (i = 0; i != 1 << order; ++i)
1529 			tag_clear_highpage(page + i);
1530 
1531 		/* Take note that memory was initialized by the loop above. */
1532 		init = false;
1533 	}
1534 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1535 	    kasan_unpoison_pages(page, order, init)) {
1536 		/* Take note that memory was initialized by KASAN. */
1537 		if (kasan_has_integrated_init())
1538 			init = false;
1539 	} else {
1540 		/*
1541 		 * If memory tags have not been set by KASAN, reset the page
1542 		 * tags to ensure page_address() dereferencing does not fault.
1543 		 */
1544 		for (i = 0; i != 1 << order; ++i)
1545 			page_kasan_tag_reset(page + i);
1546 	}
1547 	/* If memory is still not initialized, initialize it now. */
1548 	if (init)
1549 		kernel_init_pages(page, 1 << order);
1550 
1551 	set_page_owner(page, order, gfp_flags);
1552 	page_table_check_alloc(page, order);
1553 	pgalloc_tag_add(page, current, 1 << order);
1554 }
1555 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1556 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1557 							unsigned int alloc_flags)
1558 {
1559 	post_alloc_hook(page, order, gfp_flags);
1560 
1561 	if (order && (gfp_flags & __GFP_COMP))
1562 		prep_compound_page(page, order);
1563 
1564 	/*
1565 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1566 	 * allocate the page. The expectation is that the caller is taking
1567 	 * steps that will free more memory. The caller should avoid the page
1568 	 * being used for !PFMEMALLOC purposes.
1569 	 */
1570 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1571 		set_page_pfmemalloc(page);
1572 	else
1573 		clear_page_pfmemalloc(page);
1574 }
1575 
1576 /*
1577  * Go through the free lists for the given migratetype and remove
1578  * the smallest available page from the freelists
1579  */
1580 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1581 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1582 						int migratetype)
1583 {
1584 	unsigned int current_order;
1585 	struct free_area *area;
1586 	struct page *page;
1587 
1588 	/* Find a page of the appropriate size in the preferred list */
1589 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1590 		area = &(zone->free_area[current_order]);
1591 		page = get_page_from_free_area(area, migratetype);
1592 		if (!page)
1593 			continue;
1594 
1595 		page_del_and_expand(zone, page, order, current_order,
1596 				    migratetype);
1597 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1598 				pcp_allowed_order(order) &&
1599 				migratetype < MIGRATE_PCPTYPES);
1600 		return page;
1601 	}
1602 
1603 	return NULL;
1604 }
1605 
1606 
1607 /*
1608  * This array describes the order lists are fallen back to when
1609  * the free lists for the desirable migrate type are depleted
1610  *
1611  * The other migratetypes do not have fallbacks.
1612  */
1613 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1614 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1615 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1616 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1617 };
1618 
1619 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1620 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1621 					unsigned int order)
1622 {
1623 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1624 }
1625 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1626 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1627 					unsigned int order) { return NULL; }
1628 #endif
1629 
1630 /*
1631  * Change the type of a block and move all its free pages to that
1632  * type's freelist.
1633  */
__move_freepages_block(struct zone * zone,unsigned long start_pfn,int old_mt,int new_mt)1634 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1635 				  int old_mt, int new_mt)
1636 {
1637 	struct page *page;
1638 	unsigned long pfn, end_pfn;
1639 	unsigned int order;
1640 	int pages_moved = 0;
1641 
1642 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1643 	end_pfn = pageblock_end_pfn(start_pfn);
1644 
1645 	for (pfn = start_pfn; pfn < end_pfn;) {
1646 		page = pfn_to_page(pfn);
1647 		if (!PageBuddy(page)) {
1648 			pfn++;
1649 			continue;
1650 		}
1651 
1652 		/* Make sure we are not inadvertently changing nodes */
1653 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1654 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1655 
1656 		order = buddy_order(page);
1657 
1658 		move_to_free_list(page, zone, order, old_mt, new_mt);
1659 
1660 		pfn += 1 << order;
1661 		pages_moved += 1 << order;
1662 	}
1663 
1664 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1665 
1666 	return pages_moved;
1667 }
1668 
prep_move_freepages_block(struct zone * zone,struct page * page,unsigned long * start_pfn,int * num_free,int * num_movable)1669 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1670 				      unsigned long *start_pfn,
1671 				      int *num_free, int *num_movable)
1672 {
1673 	unsigned long pfn, start, end;
1674 
1675 	pfn = page_to_pfn(page);
1676 	start = pageblock_start_pfn(pfn);
1677 	end = pageblock_end_pfn(pfn);
1678 
1679 	/*
1680 	 * The caller only has the lock for @zone, don't touch ranges
1681 	 * that straddle into other zones. While we could move part of
1682 	 * the range that's inside the zone, this call is usually
1683 	 * accompanied by other operations such as migratetype updates
1684 	 * which also should be locked.
1685 	 */
1686 	if (!zone_spans_pfn(zone, start))
1687 		return false;
1688 	if (!zone_spans_pfn(zone, end - 1))
1689 		return false;
1690 
1691 	*start_pfn = start;
1692 
1693 	if (num_free) {
1694 		*num_free = 0;
1695 		*num_movable = 0;
1696 		for (pfn = start; pfn < end;) {
1697 			page = pfn_to_page(pfn);
1698 			if (PageBuddy(page)) {
1699 				int nr = 1 << buddy_order(page);
1700 
1701 				*num_free += nr;
1702 				pfn += nr;
1703 				continue;
1704 			}
1705 			/*
1706 			 * We assume that pages that could be isolated for
1707 			 * migration are movable. But we don't actually try
1708 			 * isolating, as that would be expensive.
1709 			 */
1710 			if (PageLRU(page) || __PageMovable(page))
1711 				(*num_movable)++;
1712 			pfn++;
1713 		}
1714 	}
1715 
1716 	return true;
1717 }
1718 
move_freepages_block(struct zone * zone,struct page * page,int old_mt,int new_mt)1719 static int move_freepages_block(struct zone *zone, struct page *page,
1720 				int old_mt, int new_mt)
1721 {
1722 	unsigned long start_pfn;
1723 
1724 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1725 		return -1;
1726 
1727 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1728 }
1729 
1730 #ifdef CONFIG_MEMORY_ISOLATION
1731 /* Look for a buddy that straddles start_pfn */
find_large_buddy(unsigned long start_pfn)1732 static unsigned long find_large_buddy(unsigned long start_pfn)
1733 {
1734 	int order = 0;
1735 	struct page *page;
1736 	unsigned long pfn = start_pfn;
1737 
1738 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1739 		/* Nothing found */
1740 		if (++order > MAX_PAGE_ORDER)
1741 			return start_pfn;
1742 		pfn &= ~0UL << order;
1743 	}
1744 
1745 	/*
1746 	 * Found a preceding buddy, but does it straddle?
1747 	 */
1748 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1749 		return pfn;
1750 
1751 	/* Nothing found */
1752 	return start_pfn;
1753 }
1754 
1755 /**
1756  * move_freepages_block_isolate - move free pages in block for page isolation
1757  * @zone: the zone
1758  * @page: the pageblock page
1759  * @migratetype: migratetype to set on the pageblock
1760  *
1761  * This is similar to move_freepages_block(), but handles the special
1762  * case encountered in page isolation, where the block of interest
1763  * might be part of a larger buddy spanning multiple pageblocks.
1764  *
1765  * Unlike the regular page allocator path, which moves pages while
1766  * stealing buddies off the freelist, page isolation is interested in
1767  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1768  *
1769  * This function handles that. Straddling buddies are split into
1770  * individual pageblocks. Only the block of interest is moved.
1771  *
1772  * Returns %true if pages could be moved, %false otherwise.
1773  */
move_freepages_block_isolate(struct zone * zone,struct page * page,int migratetype)1774 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1775 				  int migratetype)
1776 {
1777 	unsigned long start_pfn, pfn;
1778 
1779 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1780 		return false;
1781 
1782 	/* No splits needed if buddies can't span multiple blocks */
1783 	if (pageblock_order == MAX_PAGE_ORDER)
1784 		goto move;
1785 
1786 	/* We're a tail block in a larger buddy */
1787 	pfn = find_large_buddy(start_pfn);
1788 	if (pfn != start_pfn) {
1789 		struct page *buddy = pfn_to_page(pfn);
1790 		int order = buddy_order(buddy);
1791 
1792 		del_page_from_free_list(buddy, zone, order,
1793 					get_pfnblock_migratetype(buddy, pfn));
1794 		set_pageblock_migratetype(page, migratetype);
1795 		split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1796 		return true;
1797 	}
1798 
1799 	/* We're the starting block of a larger buddy */
1800 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1801 		int order = buddy_order(page);
1802 
1803 		del_page_from_free_list(page, zone, order,
1804 					get_pfnblock_migratetype(page, pfn));
1805 		set_pageblock_migratetype(page, migratetype);
1806 		split_large_buddy(zone, page, pfn, order, FPI_NONE);
1807 		return true;
1808 	}
1809 move:
1810 	__move_freepages_block(zone, start_pfn,
1811 			       get_pfnblock_migratetype(page, start_pfn),
1812 			       migratetype);
1813 	return true;
1814 }
1815 #endif /* CONFIG_MEMORY_ISOLATION */
1816 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1817 static void change_pageblock_range(struct page *pageblock_page,
1818 					int start_order, int migratetype)
1819 {
1820 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1821 
1822 	while (nr_pageblocks--) {
1823 		set_pageblock_migratetype(pageblock_page, migratetype);
1824 		pageblock_page += pageblock_nr_pages;
1825 	}
1826 }
1827 
1828 /*
1829  * When we are falling back to another migratetype during allocation, try to
1830  * steal extra free pages from the same pageblocks to satisfy further
1831  * allocations, instead of polluting multiple pageblocks.
1832  *
1833  * If we are stealing a relatively large buddy page, it is likely there will
1834  * be more free pages in the pageblock, so try to steal them all. For
1835  * reclaimable and unmovable allocations, we steal regardless of page size,
1836  * as fragmentation caused by those allocations polluting movable pageblocks
1837  * is worse than movable allocations stealing from unmovable and reclaimable
1838  * pageblocks.
1839  */
can_steal_fallback(unsigned int order,int start_mt)1840 static bool can_steal_fallback(unsigned int order, int start_mt)
1841 {
1842 	/*
1843 	 * Leaving this order check is intended, although there is
1844 	 * relaxed order check in next check. The reason is that
1845 	 * we can actually steal whole pageblock if this condition met,
1846 	 * but, below check doesn't guarantee it and that is just heuristic
1847 	 * so could be changed anytime.
1848 	 */
1849 	if (order >= pageblock_order)
1850 		return true;
1851 
1852 	/*
1853 	 * Movable pages won't cause permanent fragmentation, so when you alloc
1854 	 * small pages, you just need to temporarily steal unmovable or
1855 	 * reclaimable pages that are closest to the request size.  After a
1856 	 * while, memory compaction may occur to form large contiguous pages,
1857 	 * and the next movable allocation may not need to steal.  Unmovable and
1858 	 * reclaimable allocations need to actually steal pages.
1859 	 */
1860 	if (order >= pageblock_order / 2 ||
1861 		start_mt == MIGRATE_RECLAIMABLE ||
1862 		start_mt == MIGRATE_UNMOVABLE ||
1863 		page_group_by_mobility_disabled)
1864 		return true;
1865 
1866 	return false;
1867 }
1868 
boost_watermark(struct zone * zone)1869 static inline bool boost_watermark(struct zone *zone)
1870 {
1871 	unsigned long max_boost;
1872 
1873 	if (!watermark_boost_factor)
1874 		return false;
1875 	/*
1876 	 * Don't bother in zones that are unlikely to produce results.
1877 	 * On small machines, including kdump capture kernels running
1878 	 * in a small area, boosting the watermark can cause an out of
1879 	 * memory situation immediately.
1880 	 */
1881 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1882 		return false;
1883 
1884 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1885 			watermark_boost_factor, 10000);
1886 
1887 	/*
1888 	 * high watermark may be uninitialised if fragmentation occurs
1889 	 * very early in boot so do not boost. We do not fall
1890 	 * through and boost by pageblock_nr_pages as failing
1891 	 * allocations that early means that reclaim is not going
1892 	 * to help and it may even be impossible to reclaim the
1893 	 * boosted watermark resulting in a hang.
1894 	 */
1895 	if (!max_boost)
1896 		return false;
1897 
1898 	max_boost = max(pageblock_nr_pages, max_boost);
1899 
1900 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1901 		max_boost);
1902 
1903 	return true;
1904 }
1905 
1906 /*
1907  * This function implements actual steal behaviour. If order is large enough, we
1908  * can claim the whole pageblock for the requested migratetype. If not, we check
1909  * the pageblock for constituent pages; if at least half of the pages are free
1910  * or compatible, we can still claim the whole block, so pages freed in the
1911  * future will be put on the correct free list. Otherwise, we isolate exactly
1912  * the order we need from the fallback block and leave its migratetype alone.
1913  */
1914 static struct page *
steal_suitable_fallback(struct zone * zone,struct page * page,int current_order,int order,int start_type,unsigned int alloc_flags,bool whole_block)1915 steal_suitable_fallback(struct zone *zone, struct page *page,
1916 			int current_order, int order, int start_type,
1917 			unsigned int alloc_flags, bool whole_block)
1918 {
1919 	int free_pages, movable_pages, alike_pages;
1920 	unsigned long start_pfn;
1921 	int block_type;
1922 
1923 	block_type = get_pageblock_migratetype(page);
1924 
1925 	/*
1926 	 * This can happen due to races and we want to prevent broken
1927 	 * highatomic accounting.
1928 	 */
1929 	if (is_migrate_highatomic(block_type))
1930 		goto single_page;
1931 
1932 	/* Take ownership for orders >= pageblock_order */
1933 	if (current_order >= pageblock_order) {
1934 		unsigned int nr_added;
1935 
1936 		del_page_from_free_list(page, zone, current_order, block_type);
1937 		change_pageblock_range(page, current_order, start_type);
1938 		nr_added = expand(zone, page, order, current_order, start_type);
1939 		account_freepages(zone, nr_added, start_type);
1940 		return page;
1941 	}
1942 
1943 	/*
1944 	 * Boost watermarks to increase reclaim pressure to reduce the
1945 	 * likelihood of future fallbacks. Wake kswapd now as the node
1946 	 * may be balanced overall and kswapd will not wake naturally.
1947 	 */
1948 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1949 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1950 
1951 	/* We are not allowed to try stealing from the whole block */
1952 	if (!whole_block)
1953 		goto single_page;
1954 
1955 	/* moving whole block can fail due to zone boundary conditions */
1956 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1957 				       &movable_pages))
1958 		goto single_page;
1959 
1960 	/*
1961 	 * Determine how many pages are compatible with our allocation.
1962 	 * For movable allocation, it's the number of movable pages which
1963 	 * we just obtained. For other types it's a bit more tricky.
1964 	 */
1965 	if (start_type == MIGRATE_MOVABLE) {
1966 		alike_pages = movable_pages;
1967 	} else {
1968 		/*
1969 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1970 		 * to MOVABLE pageblock, consider all non-movable pages as
1971 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1972 		 * vice versa, be conservative since we can't distinguish the
1973 		 * exact migratetype of non-movable pages.
1974 		 */
1975 		if (block_type == MIGRATE_MOVABLE)
1976 			alike_pages = pageblock_nr_pages
1977 						- (free_pages + movable_pages);
1978 		else
1979 			alike_pages = 0;
1980 	}
1981 	/*
1982 	 * If a sufficient number of pages in the block are either free or of
1983 	 * compatible migratability as our allocation, claim the whole block.
1984 	 */
1985 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1986 			page_group_by_mobility_disabled) {
1987 		__move_freepages_block(zone, start_pfn, block_type, start_type);
1988 		return __rmqueue_smallest(zone, order, start_type);
1989 	}
1990 
1991 single_page:
1992 	page_del_and_expand(zone, page, order, current_order, block_type);
1993 	return page;
1994 }
1995 
1996 /*
1997  * Check whether there is a suitable fallback freepage with requested order.
1998  * If only_stealable is true, this function returns fallback_mt only if
1999  * we can steal other freepages all together. This would help to reduce
2000  * fragmentation due to mixed migratetype pages in one pageblock.
2001  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2002 int find_suitable_fallback(struct free_area *area, unsigned int order,
2003 			int migratetype, bool only_stealable, bool *can_steal)
2004 {
2005 	int i;
2006 	int fallback_mt;
2007 
2008 	if (area->nr_free == 0)
2009 		return -1;
2010 
2011 	*can_steal = false;
2012 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2013 		fallback_mt = fallbacks[migratetype][i];
2014 		if (free_area_empty(area, fallback_mt))
2015 			continue;
2016 
2017 		if (can_steal_fallback(order, migratetype))
2018 			*can_steal = true;
2019 
2020 		if (!only_stealable)
2021 			return fallback_mt;
2022 
2023 		if (*can_steal)
2024 			return fallback_mt;
2025 	}
2026 
2027 	return -1;
2028 }
2029 
2030 /*
2031  * Reserve the pageblock(s) surrounding an allocation request for
2032  * exclusive use of high-order atomic allocations if there are no
2033  * empty page blocks that contain a page with a suitable order
2034  */
reserve_highatomic_pageblock(struct page * page,int order,struct zone * zone)2035 static void reserve_highatomic_pageblock(struct page *page, int order,
2036 					 struct zone *zone)
2037 {
2038 	int mt;
2039 	unsigned long max_managed, flags;
2040 
2041 	/*
2042 	 * The number reserved as: minimum is 1 pageblock, maximum is
2043 	 * roughly 1% of a zone. But if 1% of a zone falls below a
2044 	 * pageblock size, then don't reserve any pageblocks.
2045 	 * Check is race-prone but harmless.
2046 	 */
2047 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2048 		return;
2049 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2050 	if (zone->nr_reserved_highatomic >= max_managed)
2051 		return;
2052 
2053 	spin_lock_irqsave(&zone->lock, flags);
2054 
2055 	/* Recheck the nr_reserved_highatomic limit under the lock */
2056 	if (zone->nr_reserved_highatomic >= max_managed)
2057 		goto out_unlock;
2058 
2059 	/* Yoink! */
2060 	mt = get_pageblock_migratetype(page);
2061 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2062 	if (!migratetype_is_mergeable(mt))
2063 		goto out_unlock;
2064 
2065 	if (order < pageblock_order) {
2066 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2067 			goto out_unlock;
2068 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2069 	} else {
2070 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2071 		zone->nr_reserved_highatomic += 1 << order;
2072 	}
2073 
2074 out_unlock:
2075 	spin_unlock_irqrestore(&zone->lock, flags);
2076 }
2077 
2078 /*
2079  * Used when an allocation is about to fail under memory pressure. This
2080  * potentially hurts the reliability of high-order allocations when under
2081  * intense memory pressure but failed atomic allocations should be easier
2082  * to recover from than an OOM.
2083  *
2084  * If @force is true, try to unreserve pageblocks even though highatomic
2085  * pageblock is exhausted.
2086  */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2087 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2088 						bool force)
2089 {
2090 	struct zonelist *zonelist = ac->zonelist;
2091 	unsigned long flags;
2092 	struct zoneref *z;
2093 	struct zone *zone;
2094 	struct page *page;
2095 	int order;
2096 	int ret;
2097 
2098 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2099 								ac->nodemask) {
2100 		/*
2101 		 * Preserve at least one pageblock unless memory pressure
2102 		 * is really high.
2103 		 */
2104 		if (!force && zone->nr_reserved_highatomic <=
2105 					pageblock_nr_pages)
2106 			continue;
2107 
2108 		spin_lock_irqsave(&zone->lock, flags);
2109 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
2110 			struct free_area *area = &(zone->free_area[order]);
2111 			int mt;
2112 
2113 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2114 			if (!page)
2115 				continue;
2116 
2117 			mt = get_pageblock_migratetype(page);
2118 			/*
2119 			 * In page freeing path, migratetype change is racy so
2120 			 * we can counter several free pages in a pageblock
2121 			 * in this loop although we changed the pageblock type
2122 			 * from highatomic to ac->migratetype. So we should
2123 			 * adjust the count once.
2124 			 */
2125 			if (is_migrate_highatomic(mt)) {
2126 				unsigned long size;
2127 				/*
2128 				 * It should never happen but changes to
2129 				 * locking could inadvertently allow a per-cpu
2130 				 * drain to add pages to MIGRATE_HIGHATOMIC
2131 				 * while unreserving so be safe and watch for
2132 				 * underflows.
2133 				 */
2134 				size = max(pageblock_nr_pages, 1UL << order);
2135 				size = min(size, zone->nr_reserved_highatomic);
2136 				zone->nr_reserved_highatomic -= size;
2137 			}
2138 
2139 			/*
2140 			 * Convert to ac->migratetype and avoid the normal
2141 			 * pageblock stealing heuristics. Minimally, the caller
2142 			 * is doing the work and needs the pages. More
2143 			 * importantly, if the block was always converted to
2144 			 * MIGRATE_UNMOVABLE or another type then the number
2145 			 * of pageblocks that cannot be completely freed
2146 			 * may increase.
2147 			 */
2148 			if (order < pageblock_order)
2149 				ret = move_freepages_block(zone, page, mt,
2150 							   ac->migratetype);
2151 			else {
2152 				move_to_free_list(page, zone, order, mt,
2153 						  ac->migratetype);
2154 				change_pageblock_range(page, order,
2155 						       ac->migratetype);
2156 				ret = 1;
2157 			}
2158 			/*
2159 			 * Reserving the block(s) already succeeded,
2160 			 * so this should not fail on zone boundaries.
2161 			 */
2162 			WARN_ON_ONCE(ret == -1);
2163 			if (ret > 0) {
2164 				spin_unlock_irqrestore(&zone->lock, flags);
2165 				return ret;
2166 			}
2167 		}
2168 		spin_unlock_irqrestore(&zone->lock, flags);
2169 	}
2170 
2171 	return false;
2172 }
2173 
2174 /*
2175  * Try finding a free buddy page on the fallback list and put it on the free
2176  * list of requested migratetype, possibly along with other pages from the same
2177  * block, depending on fragmentation avoidance heuristics. Returns true if
2178  * fallback was found so that __rmqueue_smallest() can grab it.
2179  *
2180  * The use of signed ints for order and current_order is a deliberate
2181  * deviation from the rest of this file, to make the for loop
2182  * condition simpler.
2183  */
2184 static __always_inline struct page *
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2185 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2186 						unsigned int alloc_flags)
2187 {
2188 	struct free_area *area;
2189 	int current_order;
2190 	int min_order = order;
2191 	struct page *page;
2192 	int fallback_mt;
2193 	bool can_steal;
2194 
2195 	/*
2196 	 * Do not steal pages from freelists belonging to other pageblocks
2197 	 * i.e. orders < pageblock_order. If there are no local zones free,
2198 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2199 	 */
2200 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2201 		min_order = pageblock_order;
2202 
2203 	/*
2204 	 * Find the largest available free page in the other list. This roughly
2205 	 * approximates finding the pageblock with the most free pages, which
2206 	 * would be too costly to do exactly.
2207 	 */
2208 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2209 				--current_order) {
2210 		area = &(zone->free_area[current_order]);
2211 		fallback_mt = find_suitable_fallback(area, current_order,
2212 				start_migratetype, false, &can_steal);
2213 		if (fallback_mt == -1)
2214 			continue;
2215 
2216 		/*
2217 		 * We cannot steal all free pages from the pageblock and the
2218 		 * requested migratetype is movable. In that case it's better to
2219 		 * steal and split the smallest available page instead of the
2220 		 * largest available page, because even if the next movable
2221 		 * allocation falls back into a different pageblock than this
2222 		 * one, it won't cause permanent fragmentation.
2223 		 */
2224 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2225 					&& current_order > order)
2226 			goto find_smallest;
2227 
2228 		goto do_steal;
2229 	}
2230 
2231 	return NULL;
2232 
2233 find_smallest:
2234 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2235 		area = &(zone->free_area[current_order]);
2236 		fallback_mt = find_suitable_fallback(area, current_order,
2237 				start_migratetype, false, &can_steal);
2238 		if (fallback_mt != -1)
2239 			break;
2240 	}
2241 
2242 	/*
2243 	 * This should not happen - we already found a suitable fallback
2244 	 * when looking for the largest page.
2245 	 */
2246 	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2247 
2248 do_steal:
2249 	page = get_page_from_free_area(area, fallback_mt);
2250 
2251 	/* take off list, maybe claim block, expand remainder */
2252 	page = steal_suitable_fallback(zone, page, current_order, order,
2253 				       start_migratetype, alloc_flags, can_steal);
2254 
2255 	trace_mm_page_alloc_extfrag(page, order, current_order,
2256 		start_migratetype, fallback_mt);
2257 
2258 	return page;
2259 }
2260 
2261 /*
2262  * Do the hard work of removing an element from the buddy allocator.
2263  * Call me with the zone->lock already held.
2264  */
2265 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2266 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2267 						unsigned int alloc_flags)
2268 {
2269 	struct page *page;
2270 
2271 	if (IS_ENABLED(CONFIG_CMA)) {
2272 		/*
2273 		 * Balance movable allocations between regular and CMA areas by
2274 		 * allocating from CMA when over half of the zone's free memory
2275 		 * is in the CMA area.
2276 		 */
2277 		if (alloc_flags & ALLOC_CMA &&
2278 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2279 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2280 			page = __rmqueue_cma_fallback(zone, order);
2281 			if (page)
2282 				return page;
2283 		}
2284 	}
2285 
2286 	page = __rmqueue_smallest(zone, order, migratetype);
2287 	if (unlikely(!page)) {
2288 		if (alloc_flags & ALLOC_CMA)
2289 			page = __rmqueue_cma_fallback(zone, order);
2290 
2291 		if (!page)
2292 			page = __rmqueue_fallback(zone, order, migratetype,
2293 						  alloc_flags);
2294 	}
2295 	return page;
2296 }
2297 
2298 /*
2299  * Obtain a specified number of elements from the buddy allocator, all under
2300  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2301  * Returns the number of new pages which were placed at *list.
2302  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2303 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2304 			unsigned long count, struct list_head *list,
2305 			int migratetype, unsigned int alloc_flags)
2306 {
2307 	unsigned long flags;
2308 	int i;
2309 
2310 	spin_lock_irqsave(&zone->lock, flags);
2311 	for (i = 0; i < count; ++i) {
2312 		struct page *page = __rmqueue(zone, order, migratetype,
2313 								alloc_flags);
2314 		if (unlikely(page == NULL))
2315 			break;
2316 
2317 		/*
2318 		 * Split buddy pages returned by expand() are received here in
2319 		 * physical page order. The page is added to the tail of
2320 		 * caller's list. From the callers perspective, the linked list
2321 		 * is ordered by page number under some conditions. This is
2322 		 * useful for IO devices that can forward direction from the
2323 		 * head, thus also in the physical page order. This is useful
2324 		 * for IO devices that can merge IO requests if the physical
2325 		 * pages are ordered properly.
2326 		 */
2327 		list_add_tail(&page->pcp_list, list);
2328 	}
2329 	spin_unlock_irqrestore(&zone->lock, flags);
2330 
2331 	return i;
2332 }
2333 
2334 /*
2335  * Called from the vmstat counter updater to decay the PCP high.
2336  * Return whether there are addition works to do.
2337  */
decay_pcp_high(struct zone * zone,struct per_cpu_pages * pcp)2338 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2339 {
2340 	int high_min, to_drain, batch;
2341 	int todo = 0;
2342 
2343 	high_min = READ_ONCE(pcp->high_min);
2344 	batch = READ_ONCE(pcp->batch);
2345 	/*
2346 	 * Decrease pcp->high periodically to try to free possible
2347 	 * idle PCP pages.  And, avoid to free too many pages to
2348 	 * control latency.  This caps pcp->high decrement too.
2349 	 */
2350 	if (pcp->high > high_min) {
2351 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2352 				 pcp->high - (pcp->high >> 3), high_min);
2353 		if (pcp->high > high_min)
2354 			todo++;
2355 	}
2356 
2357 	to_drain = pcp->count - pcp->high;
2358 	if (to_drain > 0) {
2359 		spin_lock(&pcp->lock);
2360 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2361 		spin_unlock(&pcp->lock);
2362 		todo++;
2363 	}
2364 
2365 	return todo;
2366 }
2367 
2368 #ifdef CONFIG_NUMA
2369 /*
2370  * Called from the vmstat counter updater to drain pagesets of this
2371  * currently executing processor on remote nodes after they have
2372  * expired.
2373  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2374 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2375 {
2376 	int to_drain, batch;
2377 
2378 	batch = READ_ONCE(pcp->batch);
2379 	to_drain = min(pcp->count, batch);
2380 	if (to_drain > 0) {
2381 		spin_lock(&pcp->lock);
2382 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2383 		spin_unlock(&pcp->lock);
2384 	}
2385 }
2386 #endif
2387 
2388 /*
2389  * Drain pcplists of the indicated processor and zone.
2390  */
drain_pages_zone(unsigned int cpu,struct zone * zone)2391 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2392 {
2393 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2394 	int count;
2395 
2396 	do {
2397 		spin_lock(&pcp->lock);
2398 		count = pcp->count;
2399 		if (count) {
2400 			int to_drain = min(count,
2401 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2402 
2403 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2404 			count -= to_drain;
2405 		}
2406 		spin_unlock(&pcp->lock);
2407 	} while (count);
2408 }
2409 
2410 /*
2411  * Drain pcplists of all zones on the indicated processor.
2412  */
drain_pages(unsigned int cpu)2413 static void drain_pages(unsigned int cpu)
2414 {
2415 	struct zone *zone;
2416 
2417 	for_each_populated_zone(zone) {
2418 		drain_pages_zone(cpu, zone);
2419 	}
2420 }
2421 
2422 /*
2423  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2424  */
drain_local_pages(struct zone * zone)2425 void drain_local_pages(struct zone *zone)
2426 {
2427 	int cpu = smp_processor_id();
2428 
2429 	if (zone)
2430 		drain_pages_zone(cpu, zone);
2431 	else
2432 		drain_pages(cpu);
2433 }
2434 
2435 /*
2436  * The implementation of drain_all_pages(), exposing an extra parameter to
2437  * drain on all cpus.
2438  *
2439  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2440  * not empty. The check for non-emptiness can however race with a free to
2441  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2442  * that need the guarantee that every CPU has drained can disable the
2443  * optimizing racy check.
2444  */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2445 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2446 {
2447 	int cpu;
2448 
2449 	/*
2450 	 * Allocate in the BSS so we won't require allocation in
2451 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2452 	 */
2453 	static cpumask_t cpus_with_pcps;
2454 
2455 	/*
2456 	 * Do not drain if one is already in progress unless it's specific to
2457 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2458 	 * the drain to be complete when the call returns.
2459 	 */
2460 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2461 		if (!zone)
2462 			return;
2463 		mutex_lock(&pcpu_drain_mutex);
2464 	}
2465 
2466 	/*
2467 	 * We don't care about racing with CPU hotplug event
2468 	 * as offline notification will cause the notified
2469 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2470 	 * disables preemption as part of its processing
2471 	 */
2472 	for_each_online_cpu(cpu) {
2473 		struct per_cpu_pages *pcp;
2474 		struct zone *z;
2475 		bool has_pcps = false;
2476 
2477 		if (force_all_cpus) {
2478 			/*
2479 			 * The pcp.count check is racy, some callers need a
2480 			 * guarantee that no cpu is missed.
2481 			 */
2482 			has_pcps = true;
2483 		} else if (zone) {
2484 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2485 			if (pcp->count)
2486 				has_pcps = true;
2487 		} else {
2488 			for_each_populated_zone(z) {
2489 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2490 				if (pcp->count) {
2491 					has_pcps = true;
2492 					break;
2493 				}
2494 			}
2495 		}
2496 
2497 		if (has_pcps)
2498 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2499 		else
2500 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2501 	}
2502 
2503 	for_each_cpu(cpu, &cpus_with_pcps) {
2504 		if (zone)
2505 			drain_pages_zone(cpu, zone);
2506 		else
2507 			drain_pages(cpu);
2508 	}
2509 
2510 	mutex_unlock(&pcpu_drain_mutex);
2511 }
2512 
2513 /*
2514  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2515  *
2516  * When zone parameter is non-NULL, spill just the single zone's pages.
2517  */
drain_all_pages(struct zone * zone)2518 void drain_all_pages(struct zone *zone)
2519 {
2520 	__drain_all_pages(zone, false);
2521 }
2522 
nr_pcp_free(struct per_cpu_pages * pcp,int batch,int high,bool free_high)2523 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2524 {
2525 	int min_nr_free, max_nr_free;
2526 
2527 	/* Free as much as possible if batch freeing high-order pages. */
2528 	if (unlikely(free_high))
2529 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2530 
2531 	/* Check for PCP disabled or boot pageset */
2532 	if (unlikely(high < batch))
2533 		return 1;
2534 
2535 	/* Leave at least pcp->batch pages on the list */
2536 	min_nr_free = batch;
2537 	max_nr_free = high - batch;
2538 
2539 	/*
2540 	 * Increase the batch number to the number of the consecutive
2541 	 * freed pages to reduce zone lock contention.
2542 	 */
2543 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2544 
2545 	return batch;
2546 }
2547 
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,int batch,bool free_high)2548 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2549 		       int batch, bool free_high)
2550 {
2551 	int high, high_min, high_max;
2552 
2553 	high_min = READ_ONCE(pcp->high_min);
2554 	high_max = READ_ONCE(pcp->high_max);
2555 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2556 
2557 	if (unlikely(!high))
2558 		return 0;
2559 
2560 	if (unlikely(free_high)) {
2561 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2562 				high_min);
2563 		return 0;
2564 	}
2565 
2566 	/*
2567 	 * If reclaim is active, limit the number of pages that can be
2568 	 * stored on pcp lists
2569 	 */
2570 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2571 		int free_count = max_t(int, pcp->free_count, batch);
2572 
2573 		pcp->high = max(high - free_count, high_min);
2574 		return min(batch << 2, pcp->high);
2575 	}
2576 
2577 	if (high_min == high_max)
2578 		return high;
2579 
2580 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2581 		int free_count = max_t(int, pcp->free_count, batch);
2582 
2583 		pcp->high = max(high - free_count, high_min);
2584 		high = max(pcp->count, high_min);
2585 	} else if (pcp->count >= high) {
2586 		int need_high = pcp->free_count + batch;
2587 
2588 		/* pcp->high should be large enough to hold batch freed pages */
2589 		if (pcp->high < need_high)
2590 			pcp->high = clamp(need_high, high_min, high_max);
2591 	}
2592 
2593 	return high;
2594 }
2595 
free_frozen_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order)2596 static void free_frozen_page_commit(struct zone *zone,
2597 		struct per_cpu_pages *pcp, struct page *page, int migratetype,
2598 		unsigned int order)
2599 {
2600 	int high, batch;
2601 	int pindex;
2602 	bool free_high = false;
2603 
2604 	/*
2605 	 * On freeing, reduce the number of pages that are batch allocated.
2606 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2607 	 * allocations.
2608 	 */
2609 	pcp->alloc_factor >>= 1;
2610 	__count_vm_events(PGFREE, 1 << order);
2611 	pindex = order_to_pindex(migratetype, order);
2612 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2613 	pcp->count += 1 << order;
2614 
2615 	batch = READ_ONCE(pcp->batch);
2616 	/*
2617 	 * As high-order pages other than THP's stored on PCP can contribute
2618 	 * to fragmentation, limit the number stored when PCP is heavily
2619 	 * freeing without allocation. The remainder after bulk freeing
2620 	 * stops will be drained from vmstat refresh context.
2621 	 */
2622 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2623 		free_high = (pcp->free_count >= batch &&
2624 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2625 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2626 			      pcp->count >= READ_ONCE(batch)));
2627 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2628 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2629 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2630 	}
2631 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2632 		pcp->free_count += (1 << order);
2633 	high = nr_pcp_high(pcp, zone, batch, free_high);
2634 	if (pcp->count >= high) {
2635 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2636 				   pcp, pindex);
2637 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2638 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2639 				      ZONE_MOVABLE, 0))
2640 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2641 	}
2642 }
2643 
2644 /*
2645  * Free a pcp page
2646  */
free_frozen_pages(struct page * page,unsigned int order)2647 void free_frozen_pages(struct page *page, unsigned int order)
2648 {
2649 	unsigned long __maybe_unused UP_flags;
2650 	struct per_cpu_pages *pcp;
2651 	struct zone *zone;
2652 	unsigned long pfn = page_to_pfn(page);
2653 	int migratetype;
2654 
2655 	if (!pcp_allowed_order(order)) {
2656 		__free_pages_ok(page, order, FPI_NONE);
2657 		return;
2658 	}
2659 
2660 	if (!free_pages_prepare(page, order))
2661 		return;
2662 
2663 	/*
2664 	 * We only track unmovable, reclaimable and movable on pcp lists.
2665 	 * Place ISOLATE pages on the isolated list because they are being
2666 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2667 	 * get those areas back if necessary. Otherwise, we may have to free
2668 	 * excessively into the page allocator
2669 	 */
2670 	zone = page_zone(page);
2671 	migratetype = get_pfnblock_migratetype(page, pfn);
2672 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2673 		if (unlikely(is_migrate_isolate(migratetype))) {
2674 			free_one_page(zone, page, pfn, order, FPI_NONE);
2675 			return;
2676 		}
2677 		migratetype = MIGRATE_MOVABLE;
2678 	}
2679 
2680 	pcp_trylock_prepare(UP_flags);
2681 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2682 	if (pcp) {
2683 		free_frozen_page_commit(zone, pcp, page, migratetype, order);
2684 		pcp_spin_unlock(pcp);
2685 	} else {
2686 		free_one_page(zone, page, pfn, order, FPI_NONE);
2687 	}
2688 	pcp_trylock_finish(UP_flags);
2689 }
2690 
2691 /*
2692  * Free a batch of folios
2693  */
free_unref_folios(struct folio_batch * folios)2694 void free_unref_folios(struct folio_batch *folios)
2695 {
2696 	unsigned long __maybe_unused UP_flags;
2697 	struct per_cpu_pages *pcp = NULL;
2698 	struct zone *locked_zone = NULL;
2699 	int i, j;
2700 
2701 	/* Prepare folios for freeing */
2702 	for (i = 0, j = 0; i < folios->nr; i++) {
2703 		struct folio *folio = folios->folios[i];
2704 		unsigned long pfn = folio_pfn(folio);
2705 		unsigned int order = folio_order(folio);
2706 
2707 		if (!free_pages_prepare(&folio->page, order))
2708 			continue;
2709 		/*
2710 		 * Free orders not handled on the PCP directly to the
2711 		 * allocator.
2712 		 */
2713 		if (!pcp_allowed_order(order)) {
2714 			free_one_page(folio_zone(folio), &folio->page,
2715 				      pfn, order, FPI_NONE);
2716 			continue;
2717 		}
2718 		folio->private = (void *)(unsigned long)order;
2719 		if (j != i)
2720 			folios->folios[j] = folio;
2721 		j++;
2722 	}
2723 	folios->nr = j;
2724 
2725 	for (i = 0; i < folios->nr; i++) {
2726 		struct folio *folio = folios->folios[i];
2727 		struct zone *zone = folio_zone(folio);
2728 		unsigned long pfn = folio_pfn(folio);
2729 		unsigned int order = (unsigned long)folio->private;
2730 		int migratetype;
2731 
2732 		folio->private = NULL;
2733 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2734 
2735 		/* Different zone requires a different pcp lock */
2736 		if (zone != locked_zone ||
2737 		    is_migrate_isolate(migratetype)) {
2738 			if (pcp) {
2739 				pcp_spin_unlock(pcp);
2740 				pcp_trylock_finish(UP_flags);
2741 				locked_zone = NULL;
2742 				pcp = NULL;
2743 			}
2744 
2745 			/*
2746 			 * Free isolated pages directly to the
2747 			 * allocator, see comment in free_frozen_pages.
2748 			 */
2749 			if (is_migrate_isolate(migratetype)) {
2750 				free_one_page(zone, &folio->page, pfn,
2751 					      order, FPI_NONE);
2752 				continue;
2753 			}
2754 
2755 			/*
2756 			 * trylock is necessary as folios may be getting freed
2757 			 * from IRQ or SoftIRQ context after an IO completion.
2758 			 */
2759 			pcp_trylock_prepare(UP_flags);
2760 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2761 			if (unlikely(!pcp)) {
2762 				pcp_trylock_finish(UP_flags);
2763 				free_one_page(zone, &folio->page, pfn,
2764 					      order, FPI_NONE);
2765 				continue;
2766 			}
2767 			locked_zone = zone;
2768 		}
2769 
2770 		/*
2771 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2772 		 * to the MIGRATE_MOVABLE pcp list.
2773 		 */
2774 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2775 			migratetype = MIGRATE_MOVABLE;
2776 
2777 		trace_mm_page_free_batched(&folio->page);
2778 		free_frozen_page_commit(zone, pcp, &folio->page, migratetype,
2779 				order);
2780 	}
2781 
2782 	if (pcp) {
2783 		pcp_spin_unlock(pcp);
2784 		pcp_trylock_finish(UP_flags);
2785 	}
2786 	folio_batch_reinit(folios);
2787 }
2788 
2789 /*
2790  * split_page takes a non-compound higher-order page, and splits it into
2791  * n (1<<order) sub-pages: page[0..n]
2792  * Each sub-page must be freed individually.
2793  *
2794  * Note: this is probably too low level an operation for use in drivers.
2795  * Please consult with lkml before using this in your driver.
2796  */
split_page(struct page * page,unsigned int order)2797 void split_page(struct page *page, unsigned int order)
2798 {
2799 	int i;
2800 
2801 	VM_BUG_ON_PAGE(PageCompound(page), page);
2802 	VM_BUG_ON_PAGE(!page_count(page), page);
2803 
2804 	for (i = 1; i < (1 << order); i++)
2805 		set_page_refcounted(page + i);
2806 	split_page_owner(page, order, 0);
2807 	pgalloc_tag_split(page_folio(page), order, 0);
2808 	split_page_memcg(page, order, 0);
2809 }
2810 EXPORT_SYMBOL_GPL(split_page);
2811 
__isolate_free_page(struct page * page,unsigned int order)2812 int __isolate_free_page(struct page *page, unsigned int order)
2813 {
2814 	struct zone *zone = page_zone(page);
2815 	int mt = get_pageblock_migratetype(page);
2816 
2817 	if (!is_migrate_isolate(mt)) {
2818 		unsigned long watermark;
2819 		/*
2820 		 * Obey watermarks as if the page was being allocated. We can
2821 		 * emulate a high-order watermark check with a raised order-0
2822 		 * watermark, because we already know our high-order page
2823 		 * exists.
2824 		 */
2825 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2826 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2827 			return 0;
2828 	}
2829 
2830 	del_page_from_free_list(page, zone, order, mt);
2831 
2832 	/*
2833 	 * Set the pageblock if the isolated page is at least half of a
2834 	 * pageblock
2835 	 */
2836 	if (order >= pageblock_order - 1) {
2837 		struct page *endpage = page + (1 << order) - 1;
2838 		for (; page < endpage; page += pageblock_nr_pages) {
2839 			int mt = get_pageblock_migratetype(page);
2840 			/*
2841 			 * Only change normal pageblocks (i.e., they can merge
2842 			 * with others)
2843 			 */
2844 			if (migratetype_is_mergeable(mt))
2845 				move_freepages_block(zone, page, mt,
2846 						     MIGRATE_MOVABLE);
2847 		}
2848 	}
2849 
2850 	return 1UL << order;
2851 }
2852 
2853 /**
2854  * __putback_isolated_page - Return a now-isolated page back where we got it
2855  * @page: Page that was isolated
2856  * @order: Order of the isolated page
2857  * @mt: The page's pageblock's migratetype
2858  *
2859  * This function is meant to return a page pulled from the free lists via
2860  * __isolate_free_page back to the free lists they were pulled from.
2861  */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2862 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2863 {
2864 	struct zone *zone = page_zone(page);
2865 
2866 	/* zone lock should be held when this function is called */
2867 	lockdep_assert_held(&zone->lock);
2868 
2869 	/* Return isolated page to tail of freelist. */
2870 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2871 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2872 }
2873 
2874 /*
2875  * Update NUMA hit/miss statistics
2876  */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2877 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2878 				   long nr_account)
2879 {
2880 #ifdef CONFIG_NUMA
2881 	enum numa_stat_item local_stat = NUMA_LOCAL;
2882 
2883 	/* skip numa counters update if numa stats is disabled */
2884 	if (!static_branch_likely(&vm_numa_stat_key))
2885 		return;
2886 
2887 	if (zone_to_nid(z) != numa_node_id())
2888 		local_stat = NUMA_OTHER;
2889 
2890 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2891 		__count_numa_events(z, NUMA_HIT, nr_account);
2892 	else {
2893 		__count_numa_events(z, NUMA_MISS, nr_account);
2894 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2895 	}
2896 	__count_numa_events(z, local_stat, nr_account);
2897 #endif
2898 }
2899 
2900 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2901 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2902 			   unsigned int order, unsigned int alloc_flags,
2903 			   int migratetype)
2904 {
2905 	struct page *page;
2906 	unsigned long flags;
2907 
2908 	do {
2909 		page = NULL;
2910 		spin_lock_irqsave(&zone->lock, flags);
2911 		if (alloc_flags & ALLOC_HIGHATOMIC)
2912 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2913 		if (!page) {
2914 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2915 
2916 			/*
2917 			 * If the allocation fails, allow OOM handling and
2918 			 * order-0 (atomic) allocs access to HIGHATOMIC
2919 			 * reserves as failing now is worse than failing a
2920 			 * high-order atomic allocation in the future.
2921 			 */
2922 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2923 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2924 
2925 			if (!page) {
2926 				spin_unlock_irqrestore(&zone->lock, flags);
2927 				return NULL;
2928 			}
2929 		}
2930 		spin_unlock_irqrestore(&zone->lock, flags);
2931 	} while (check_new_pages(page, order));
2932 
2933 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2934 	zone_statistics(preferred_zone, zone, 1);
2935 
2936 	return page;
2937 }
2938 
nr_pcp_alloc(struct per_cpu_pages * pcp,struct zone * zone,int order)2939 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2940 {
2941 	int high, base_batch, batch, max_nr_alloc;
2942 	int high_max, high_min;
2943 
2944 	base_batch = READ_ONCE(pcp->batch);
2945 	high_min = READ_ONCE(pcp->high_min);
2946 	high_max = READ_ONCE(pcp->high_max);
2947 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2948 
2949 	/* Check for PCP disabled or boot pageset */
2950 	if (unlikely(high < base_batch))
2951 		return 1;
2952 
2953 	if (order)
2954 		batch = base_batch;
2955 	else
2956 		batch = (base_batch << pcp->alloc_factor);
2957 
2958 	/*
2959 	 * If we had larger pcp->high, we could avoid to allocate from
2960 	 * zone.
2961 	 */
2962 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2963 		high = pcp->high = min(high + batch, high_max);
2964 
2965 	if (!order) {
2966 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2967 		/*
2968 		 * Double the number of pages allocated each time there is
2969 		 * subsequent allocation of order-0 pages without any freeing.
2970 		 */
2971 		if (batch <= max_nr_alloc &&
2972 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2973 			pcp->alloc_factor++;
2974 		batch = min(batch, max_nr_alloc);
2975 	}
2976 
2977 	/*
2978 	 * Scale batch relative to order if batch implies free pages
2979 	 * can be stored on the PCP. Batch can be 1 for small zones or
2980 	 * for boot pagesets which should never store free pages as
2981 	 * the pages may belong to arbitrary zones.
2982 	 */
2983 	if (batch > 1)
2984 		batch = max(batch >> order, 2);
2985 
2986 	return batch;
2987 }
2988 
2989 /* Remove page from the per-cpu list, caller must protect the list */
2990 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)2991 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2992 			int migratetype,
2993 			unsigned int alloc_flags,
2994 			struct per_cpu_pages *pcp,
2995 			struct list_head *list)
2996 {
2997 	struct page *page;
2998 
2999 	do {
3000 		if (list_empty(list)) {
3001 			int batch = nr_pcp_alloc(pcp, zone, order);
3002 			int alloced;
3003 
3004 			alloced = rmqueue_bulk(zone, order,
3005 					batch, list,
3006 					migratetype, alloc_flags);
3007 
3008 			pcp->count += alloced << order;
3009 			if (unlikely(list_empty(list)))
3010 				return NULL;
3011 		}
3012 
3013 		page = list_first_entry(list, struct page, pcp_list);
3014 		list_del(&page->pcp_list);
3015 		pcp->count -= 1 << order;
3016 	} while (check_new_pages(page, order));
3017 
3018 	return page;
3019 }
3020 
3021 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3022 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3023 			struct zone *zone, unsigned int order,
3024 			int migratetype, unsigned int alloc_flags)
3025 {
3026 	struct per_cpu_pages *pcp;
3027 	struct list_head *list;
3028 	struct page *page;
3029 	unsigned long __maybe_unused UP_flags;
3030 
3031 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3032 	pcp_trylock_prepare(UP_flags);
3033 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3034 	if (!pcp) {
3035 		pcp_trylock_finish(UP_flags);
3036 		return NULL;
3037 	}
3038 
3039 	/*
3040 	 * On allocation, reduce the number of pages that are batch freed.
3041 	 * See nr_pcp_free() where free_factor is increased for subsequent
3042 	 * frees.
3043 	 */
3044 	pcp->free_count >>= 1;
3045 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3046 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3047 	pcp_spin_unlock(pcp);
3048 	pcp_trylock_finish(UP_flags);
3049 	if (page) {
3050 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3051 		zone_statistics(preferred_zone, zone, 1);
3052 	}
3053 	return page;
3054 }
3055 
3056 /*
3057  * Allocate a page from the given zone.
3058  * Use pcplists for THP or "cheap" high-order allocations.
3059  */
3060 
3061 /*
3062  * Do not instrument rmqueue() with KMSAN. This function may call
3063  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3064  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3065  * may call rmqueue() again, which will result in a deadlock.
3066  */
3067 __no_sanitize_memory
3068 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3069 struct page *rmqueue(struct zone *preferred_zone,
3070 			struct zone *zone, unsigned int order,
3071 			gfp_t gfp_flags, unsigned int alloc_flags,
3072 			int migratetype)
3073 {
3074 	struct page *page;
3075 
3076 	if (likely(pcp_allowed_order(order))) {
3077 		page = rmqueue_pcplist(preferred_zone, zone, order,
3078 				       migratetype, alloc_flags);
3079 		if (likely(page))
3080 			goto out;
3081 	}
3082 
3083 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3084 							migratetype);
3085 
3086 out:
3087 	/* Separate test+clear to avoid unnecessary atomics */
3088 	if ((alloc_flags & ALLOC_KSWAPD) &&
3089 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3090 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3091 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3092 	}
3093 
3094 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3095 	return page;
3096 }
3097 
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3098 static inline long __zone_watermark_unusable_free(struct zone *z,
3099 				unsigned int order, unsigned int alloc_flags)
3100 {
3101 	long unusable_free = (1 << order) - 1;
3102 
3103 	/*
3104 	 * If the caller does not have rights to reserves below the min
3105 	 * watermark then subtract the free pages reserved for highatomic.
3106 	 */
3107 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3108 		unusable_free += READ_ONCE(z->nr_free_highatomic);
3109 
3110 #ifdef CONFIG_CMA
3111 	/* If allocation can't use CMA areas don't use free CMA pages */
3112 	if (!(alloc_flags & ALLOC_CMA))
3113 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3114 #endif
3115 
3116 	return unusable_free;
3117 }
3118 
3119 /*
3120  * Return true if free base pages are above 'mark'. For high-order checks it
3121  * will return true of the order-0 watermark is reached and there is at least
3122  * one free page of a suitable size. Checking now avoids taking the zone lock
3123  * to check in the allocation paths if no pages are free.
3124  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3125 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3126 			 int highest_zoneidx, unsigned int alloc_flags,
3127 			 long free_pages)
3128 {
3129 	long min = mark;
3130 	int o;
3131 
3132 	/* free_pages may go negative - that's OK */
3133 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3134 
3135 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3136 		/*
3137 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3138 		 * as OOM.
3139 		 */
3140 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3141 			min -= min / 2;
3142 
3143 			/*
3144 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3145 			 * access more reserves than just __GFP_HIGH. Other
3146 			 * non-blocking allocations requests such as GFP_NOWAIT
3147 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3148 			 * access to the min reserve.
3149 			 */
3150 			if (alloc_flags & ALLOC_NON_BLOCK)
3151 				min -= min / 4;
3152 		}
3153 
3154 		/*
3155 		 * OOM victims can try even harder than the normal reserve
3156 		 * users on the grounds that it's definitely going to be in
3157 		 * the exit path shortly and free memory. Any allocation it
3158 		 * makes during the free path will be small and short-lived.
3159 		 */
3160 		if (alloc_flags & ALLOC_OOM)
3161 			min -= min / 2;
3162 	}
3163 
3164 	/*
3165 	 * Check watermarks for an order-0 allocation request. If these
3166 	 * are not met, then a high-order request also cannot go ahead
3167 	 * even if a suitable page happened to be free.
3168 	 */
3169 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3170 		return false;
3171 
3172 	/* If this is an order-0 request then the watermark is fine */
3173 	if (!order)
3174 		return true;
3175 
3176 	/* For a high-order request, check at least one suitable page is free */
3177 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3178 		struct free_area *area = &z->free_area[o];
3179 		int mt;
3180 
3181 		if (!area->nr_free)
3182 			continue;
3183 
3184 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3185 			if (!free_area_empty(area, mt))
3186 				return true;
3187 		}
3188 
3189 #ifdef CONFIG_CMA
3190 		if ((alloc_flags & ALLOC_CMA) &&
3191 		    !free_area_empty(area, MIGRATE_CMA)) {
3192 			return true;
3193 		}
3194 #endif
3195 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3196 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3197 			return true;
3198 		}
3199 	}
3200 	return false;
3201 }
3202 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3203 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3204 		      int highest_zoneidx, unsigned int alloc_flags)
3205 {
3206 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3207 					zone_page_state(z, NR_FREE_PAGES));
3208 }
3209 
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3210 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3211 				unsigned long mark, int highest_zoneidx,
3212 				unsigned int alloc_flags, gfp_t gfp_mask)
3213 {
3214 	long free_pages;
3215 
3216 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3217 
3218 	/*
3219 	 * Fast check for order-0 only. If this fails then the reserves
3220 	 * need to be calculated.
3221 	 */
3222 	if (!order) {
3223 		long usable_free;
3224 		long reserved;
3225 
3226 		usable_free = free_pages;
3227 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3228 
3229 		/* reserved may over estimate high-atomic reserves. */
3230 		usable_free -= min(usable_free, reserved);
3231 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3232 			return true;
3233 	}
3234 
3235 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3236 					free_pages))
3237 		return true;
3238 
3239 	/*
3240 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3241 	 * when checking the min watermark. The min watermark is the
3242 	 * point where boosting is ignored so that kswapd is woken up
3243 	 * when below the low watermark.
3244 	 */
3245 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3246 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3247 		mark = z->_watermark[WMARK_MIN];
3248 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3249 					alloc_flags, free_pages);
3250 	}
3251 
3252 	return false;
3253 }
3254 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3255 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3256 			unsigned long mark, int highest_zoneidx)
3257 {
3258 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3259 
3260 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3261 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3262 
3263 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3264 								free_pages);
3265 }
3266 
3267 #ifdef CONFIG_NUMA
3268 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3269 
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3270 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3271 {
3272 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3273 				node_reclaim_distance;
3274 }
3275 #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3276 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3277 {
3278 	return true;
3279 }
3280 #endif	/* CONFIG_NUMA */
3281 
3282 /*
3283  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3284  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3285  * premature use of a lower zone may cause lowmem pressure problems that
3286  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3287  * probably too small. It only makes sense to spread allocations to avoid
3288  * fragmentation between the Normal and DMA32 zones.
3289  */
3290 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3291 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3292 {
3293 	unsigned int alloc_flags;
3294 
3295 	/*
3296 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3297 	 * to save a branch.
3298 	 */
3299 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3300 
3301 #ifdef CONFIG_ZONE_DMA32
3302 	if (!zone)
3303 		return alloc_flags;
3304 
3305 	if (zone_idx(zone) != ZONE_NORMAL)
3306 		return alloc_flags;
3307 
3308 	/*
3309 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3310 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3311 	 * on UMA that if Normal is populated then so is DMA32.
3312 	 */
3313 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3314 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3315 		return alloc_flags;
3316 
3317 	alloc_flags |= ALLOC_NOFRAGMENT;
3318 #endif /* CONFIG_ZONE_DMA32 */
3319 	return alloc_flags;
3320 }
3321 
3322 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3323 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3324 						  unsigned int alloc_flags)
3325 {
3326 #ifdef CONFIG_CMA
3327 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3328 		alloc_flags |= ALLOC_CMA;
3329 #endif
3330 	return alloc_flags;
3331 }
3332 
3333 /*
3334  * get_page_from_freelist goes through the zonelist trying to allocate
3335  * a page.
3336  */
3337 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3338 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3339 						const struct alloc_context *ac)
3340 {
3341 	struct zoneref *z;
3342 	struct zone *zone;
3343 	struct pglist_data *last_pgdat = NULL;
3344 	bool last_pgdat_dirty_ok = false;
3345 	bool no_fallback;
3346 
3347 retry:
3348 	/*
3349 	 * Scan zonelist, looking for a zone with enough free.
3350 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3351 	 */
3352 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3353 	z = ac->preferred_zoneref;
3354 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3355 					ac->nodemask) {
3356 		struct page *page;
3357 		unsigned long mark;
3358 
3359 		if (cpusets_enabled() &&
3360 			(alloc_flags & ALLOC_CPUSET) &&
3361 			!__cpuset_zone_allowed(zone, gfp_mask))
3362 				continue;
3363 		/*
3364 		 * When allocating a page cache page for writing, we
3365 		 * want to get it from a node that is within its dirty
3366 		 * limit, such that no single node holds more than its
3367 		 * proportional share of globally allowed dirty pages.
3368 		 * The dirty limits take into account the node's
3369 		 * lowmem reserves and high watermark so that kswapd
3370 		 * should be able to balance it without having to
3371 		 * write pages from its LRU list.
3372 		 *
3373 		 * XXX: For now, allow allocations to potentially
3374 		 * exceed the per-node dirty limit in the slowpath
3375 		 * (spread_dirty_pages unset) before going into reclaim,
3376 		 * which is important when on a NUMA setup the allowed
3377 		 * nodes are together not big enough to reach the
3378 		 * global limit.  The proper fix for these situations
3379 		 * will require awareness of nodes in the
3380 		 * dirty-throttling and the flusher threads.
3381 		 */
3382 		if (ac->spread_dirty_pages) {
3383 			if (last_pgdat != zone->zone_pgdat) {
3384 				last_pgdat = zone->zone_pgdat;
3385 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3386 			}
3387 
3388 			if (!last_pgdat_dirty_ok)
3389 				continue;
3390 		}
3391 
3392 		if (no_fallback && nr_online_nodes > 1 &&
3393 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3394 			int local_nid;
3395 
3396 			/*
3397 			 * If moving to a remote node, retry but allow
3398 			 * fragmenting fallbacks. Locality is more important
3399 			 * than fragmentation avoidance.
3400 			 */
3401 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3402 			if (zone_to_nid(zone) != local_nid) {
3403 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3404 				goto retry;
3405 			}
3406 		}
3407 
3408 		cond_accept_memory(zone, order);
3409 
3410 		/*
3411 		 * Detect whether the number of free pages is below high
3412 		 * watermark.  If so, we will decrease pcp->high and free
3413 		 * PCP pages in free path to reduce the possibility of
3414 		 * premature page reclaiming.  Detection is done here to
3415 		 * avoid to do that in hotter free path.
3416 		 */
3417 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3418 			goto check_alloc_wmark;
3419 
3420 		mark = high_wmark_pages(zone);
3421 		if (zone_watermark_fast(zone, order, mark,
3422 					ac->highest_zoneidx, alloc_flags,
3423 					gfp_mask))
3424 			goto try_this_zone;
3425 		else
3426 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3427 
3428 check_alloc_wmark:
3429 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3430 		if (!zone_watermark_fast(zone, order, mark,
3431 				       ac->highest_zoneidx, alloc_flags,
3432 				       gfp_mask)) {
3433 			int ret;
3434 
3435 			if (cond_accept_memory(zone, order))
3436 				goto try_this_zone;
3437 
3438 			/*
3439 			 * Watermark failed for this zone, but see if we can
3440 			 * grow this zone if it contains deferred pages.
3441 			 */
3442 			if (deferred_pages_enabled()) {
3443 				if (_deferred_grow_zone(zone, order))
3444 					goto try_this_zone;
3445 			}
3446 			/* Checked here to keep the fast path fast */
3447 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3448 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3449 				goto try_this_zone;
3450 
3451 			if (!node_reclaim_enabled() ||
3452 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3453 				continue;
3454 
3455 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3456 			switch (ret) {
3457 			case NODE_RECLAIM_NOSCAN:
3458 				/* did not scan */
3459 				continue;
3460 			case NODE_RECLAIM_FULL:
3461 				/* scanned but unreclaimable */
3462 				continue;
3463 			default:
3464 				/* did we reclaim enough */
3465 				if (zone_watermark_ok(zone, order, mark,
3466 					ac->highest_zoneidx, alloc_flags))
3467 					goto try_this_zone;
3468 
3469 				continue;
3470 			}
3471 		}
3472 
3473 try_this_zone:
3474 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3475 				gfp_mask, alloc_flags, ac->migratetype);
3476 		if (page) {
3477 			prep_new_page(page, order, gfp_mask, alloc_flags);
3478 
3479 			/*
3480 			 * If this is a high-order atomic allocation then check
3481 			 * if the pageblock should be reserved for the future
3482 			 */
3483 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3484 				reserve_highatomic_pageblock(page, order, zone);
3485 
3486 			return page;
3487 		} else {
3488 			if (cond_accept_memory(zone, order))
3489 				goto try_this_zone;
3490 
3491 			/* Try again if zone has deferred pages */
3492 			if (deferred_pages_enabled()) {
3493 				if (_deferred_grow_zone(zone, order))
3494 					goto try_this_zone;
3495 			}
3496 		}
3497 	}
3498 
3499 	/*
3500 	 * It's possible on a UMA machine to get through all zones that are
3501 	 * fragmented. If avoiding fragmentation, reset and try again.
3502 	 */
3503 	if (no_fallback) {
3504 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3505 		goto retry;
3506 	}
3507 
3508 	return NULL;
3509 }
3510 
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3511 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3512 {
3513 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3514 
3515 	/*
3516 	 * This documents exceptions given to allocations in certain
3517 	 * contexts that are allowed to allocate outside current's set
3518 	 * of allowed nodes.
3519 	 */
3520 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3521 		if (tsk_is_oom_victim(current) ||
3522 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3523 			filter &= ~SHOW_MEM_FILTER_NODES;
3524 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3525 		filter &= ~SHOW_MEM_FILTER_NODES;
3526 
3527 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3528 }
3529 
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3530 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3531 {
3532 	struct va_format vaf;
3533 	va_list args;
3534 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3535 
3536 	if ((gfp_mask & __GFP_NOWARN) ||
3537 	     !__ratelimit(&nopage_rs) ||
3538 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3539 		return;
3540 
3541 	va_start(args, fmt);
3542 	vaf.fmt = fmt;
3543 	vaf.va = &args;
3544 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3545 			current->comm, &vaf, gfp_mask, &gfp_mask,
3546 			nodemask_pr_args(nodemask));
3547 	va_end(args);
3548 
3549 	cpuset_print_current_mems_allowed();
3550 	pr_cont("\n");
3551 	dump_stack();
3552 	warn_alloc_show_mem(gfp_mask, nodemask);
3553 }
3554 
3555 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3556 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3557 			      unsigned int alloc_flags,
3558 			      const struct alloc_context *ac)
3559 {
3560 	struct page *page;
3561 
3562 	page = get_page_from_freelist(gfp_mask, order,
3563 			alloc_flags|ALLOC_CPUSET, ac);
3564 	/*
3565 	 * fallback to ignore cpuset restriction if our nodes
3566 	 * are depleted
3567 	 */
3568 	if (!page)
3569 		page = get_page_from_freelist(gfp_mask, order,
3570 				alloc_flags, ac);
3571 	return page;
3572 }
3573 
3574 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3575 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3576 	const struct alloc_context *ac, unsigned long *did_some_progress)
3577 {
3578 	struct oom_control oc = {
3579 		.zonelist = ac->zonelist,
3580 		.nodemask = ac->nodemask,
3581 		.memcg = NULL,
3582 		.gfp_mask = gfp_mask,
3583 		.order = order,
3584 	};
3585 	struct page *page;
3586 
3587 	*did_some_progress = 0;
3588 
3589 	/*
3590 	 * Acquire the oom lock.  If that fails, somebody else is
3591 	 * making progress for us.
3592 	 */
3593 	if (!mutex_trylock(&oom_lock)) {
3594 		*did_some_progress = 1;
3595 		schedule_timeout_uninterruptible(1);
3596 		return NULL;
3597 	}
3598 
3599 	/*
3600 	 * Go through the zonelist yet one more time, keep very high watermark
3601 	 * here, this is only to catch a parallel oom killing, we must fail if
3602 	 * we're still under heavy pressure. But make sure that this reclaim
3603 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3604 	 * allocation which will never fail due to oom_lock already held.
3605 	 */
3606 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3607 				      ~__GFP_DIRECT_RECLAIM, order,
3608 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3609 	if (page)
3610 		goto out;
3611 
3612 	/* Coredumps can quickly deplete all memory reserves */
3613 	if (current->flags & PF_DUMPCORE)
3614 		goto out;
3615 	/* The OOM killer will not help higher order allocs */
3616 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3617 		goto out;
3618 	/*
3619 	 * We have already exhausted all our reclaim opportunities without any
3620 	 * success so it is time to admit defeat. We will skip the OOM killer
3621 	 * because it is very likely that the caller has a more reasonable
3622 	 * fallback than shooting a random task.
3623 	 *
3624 	 * The OOM killer may not free memory on a specific node.
3625 	 */
3626 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3627 		goto out;
3628 	/* The OOM killer does not needlessly kill tasks for lowmem */
3629 	if (ac->highest_zoneidx < ZONE_NORMAL)
3630 		goto out;
3631 	if (pm_suspended_storage())
3632 		goto out;
3633 	/*
3634 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3635 	 * other request to make a forward progress.
3636 	 * We are in an unfortunate situation where out_of_memory cannot
3637 	 * do much for this context but let's try it to at least get
3638 	 * access to memory reserved if the current task is killed (see
3639 	 * out_of_memory). Once filesystems are ready to handle allocation
3640 	 * failures more gracefully we should just bail out here.
3641 	 */
3642 
3643 	/* Exhausted what can be done so it's blame time */
3644 	if (out_of_memory(&oc) ||
3645 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3646 		*did_some_progress = 1;
3647 
3648 		/*
3649 		 * Help non-failing allocations by giving them access to memory
3650 		 * reserves
3651 		 */
3652 		if (gfp_mask & __GFP_NOFAIL)
3653 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3654 					ALLOC_NO_WATERMARKS, ac);
3655 	}
3656 out:
3657 	mutex_unlock(&oom_lock);
3658 	return page;
3659 }
3660 
3661 /*
3662  * Maximum number of compaction retries with a progress before OOM
3663  * killer is consider as the only way to move forward.
3664  */
3665 #define MAX_COMPACT_RETRIES 16
3666 
3667 #ifdef CONFIG_COMPACTION
3668 /* Try memory compaction for high-order allocations before reclaim */
3669 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3670 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3671 		unsigned int alloc_flags, const struct alloc_context *ac,
3672 		enum compact_priority prio, enum compact_result *compact_result)
3673 {
3674 	struct page *page = NULL;
3675 	unsigned long pflags;
3676 	unsigned int noreclaim_flag;
3677 
3678 	if (!order)
3679 		return NULL;
3680 
3681 	psi_memstall_enter(&pflags);
3682 	delayacct_compact_start();
3683 	noreclaim_flag = memalloc_noreclaim_save();
3684 
3685 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3686 								prio, &page);
3687 
3688 	memalloc_noreclaim_restore(noreclaim_flag);
3689 	psi_memstall_leave(&pflags);
3690 	delayacct_compact_end();
3691 
3692 	if (*compact_result == COMPACT_SKIPPED)
3693 		return NULL;
3694 	/*
3695 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3696 	 * count a compaction stall
3697 	 */
3698 	count_vm_event(COMPACTSTALL);
3699 
3700 	/* Prep a captured page if available */
3701 	if (page)
3702 		prep_new_page(page, order, gfp_mask, alloc_flags);
3703 
3704 	/* Try get a page from the freelist if available */
3705 	if (!page)
3706 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3707 
3708 	if (page) {
3709 		struct zone *zone = page_zone(page);
3710 
3711 		zone->compact_blockskip_flush = false;
3712 		compaction_defer_reset(zone, order, true);
3713 		count_vm_event(COMPACTSUCCESS);
3714 		return page;
3715 	}
3716 
3717 	/*
3718 	 * It's bad if compaction run occurs and fails. The most likely reason
3719 	 * is that pages exist, but not enough to satisfy watermarks.
3720 	 */
3721 	count_vm_event(COMPACTFAIL);
3722 
3723 	cond_resched();
3724 
3725 	return NULL;
3726 }
3727 
3728 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3729 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3730 		     enum compact_result compact_result,
3731 		     enum compact_priority *compact_priority,
3732 		     int *compaction_retries)
3733 {
3734 	int max_retries = MAX_COMPACT_RETRIES;
3735 	int min_priority;
3736 	bool ret = false;
3737 	int retries = *compaction_retries;
3738 	enum compact_priority priority = *compact_priority;
3739 
3740 	if (!order)
3741 		return false;
3742 
3743 	if (fatal_signal_pending(current))
3744 		return false;
3745 
3746 	/*
3747 	 * Compaction was skipped due to a lack of free order-0
3748 	 * migration targets. Continue if reclaim can help.
3749 	 */
3750 	if (compact_result == COMPACT_SKIPPED) {
3751 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3752 		goto out;
3753 	}
3754 
3755 	/*
3756 	 * Compaction managed to coalesce some page blocks, but the
3757 	 * allocation failed presumably due to a race. Retry some.
3758 	 */
3759 	if (compact_result == COMPACT_SUCCESS) {
3760 		/*
3761 		 * !costly requests are much more important than
3762 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3763 		 * facto nofail and invoke OOM killer to move on while
3764 		 * costly can fail and users are ready to cope with
3765 		 * that. 1/4 retries is rather arbitrary but we would
3766 		 * need much more detailed feedback from compaction to
3767 		 * make a better decision.
3768 		 */
3769 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3770 			max_retries /= 4;
3771 
3772 		if (++(*compaction_retries) <= max_retries) {
3773 			ret = true;
3774 			goto out;
3775 		}
3776 	}
3777 
3778 	/*
3779 	 * Compaction failed. Retry with increasing priority.
3780 	 */
3781 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3782 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3783 
3784 	if (*compact_priority > min_priority) {
3785 		(*compact_priority)--;
3786 		*compaction_retries = 0;
3787 		ret = true;
3788 	}
3789 out:
3790 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3791 	return ret;
3792 }
3793 #else
3794 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3795 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3796 		unsigned int alloc_flags, const struct alloc_context *ac,
3797 		enum compact_priority prio, enum compact_result *compact_result)
3798 {
3799 	*compact_result = COMPACT_SKIPPED;
3800 	return NULL;
3801 }
3802 
3803 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3804 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3805 		     enum compact_result compact_result,
3806 		     enum compact_priority *compact_priority,
3807 		     int *compaction_retries)
3808 {
3809 	struct zone *zone;
3810 	struct zoneref *z;
3811 
3812 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3813 		return false;
3814 
3815 	/*
3816 	 * There are setups with compaction disabled which would prefer to loop
3817 	 * inside the allocator rather than hit the oom killer prematurely.
3818 	 * Let's give them a good hope and keep retrying while the order-0
3819 	 * watermarks are OK.
3820 	 */
3821 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3822 				ac->highest_zoneidx, ac->nodemask) {
3823 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3824 					ac->highest_zoneidx, alloc_flags))
3825 			return true;
3826 	}
3827 	return false;
3828 }
3829 #endif /* CONFIG_COMPACTION */
3830 
3831 #ifdef CONFIG_LOCKDEP
3832 static struct lockdep_map __fs_reclaim_map =
3833 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3834 
__need_reclaim(gfp_t gfp_mask)3835 static bool __need_reclaim(gfp_t gfp_mask)
3836 {
3837 	/* no reclaim without waiting on it */
3838 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3839 		return false;
3840 
3841 	/* this guy won't enter reclaim */
3842 	if (current->flags & PF_MEMALLOC)
3843 		return false;
3844 
3845 	if (gfp_mask & __GFP_NOLOCKDEP)
3846 		return false;
3847 
3848 	return true;
3849 }
3850 
__fs_reclaim_acquire(unsigned long ip)3851 void __fs_reclaim_acquire(unsigned long ip)
3852 {
3853 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3854 }
3855 
__fs_reclaim_release(unsigned long ip)3856 void __fs_reclaim_release(unsigned long ip)
3857 {
3858 	lock_release(&__fs_reclaim_map, ip);
3859 }
3860 
fs_reclaim_acquire(gfp_t gfp_mask)3861 void fs_reclaim_acquire(gfp_t gfp_mask)
3862 {
3863 	gfp_mask = current_gfp_context(gfp_mask);
3864 
3865 	if (__need_reclaim(gfp_mask)) {
3866 		if (gfp_mask & __GFP_FS)
3867 			__fs_reclaim_acquire(_RET_IP_);
3868 
3869 #ifdef CONFIG_MMU_NOTIFIER
3870 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3871 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3872 #endif
3873 
3874 	}
3875 }
3876 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3877 
fs_reclaim_release(gfp_t gfp_mask)3878 void fs_reclaim_release(gfp_t gfp_mask)
3879 {
3880 	gfp_mask = current_gfp_context(gfp_mask);
3881 
3882 	if (__need_reclaim(gfp_mask)) {
3883 		if (gfp_mask & __GFP_FS)
3884 			__fs_reclaim_release(_RET_IP_);
3885 	}
3886 }
3887 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3888 #endif
3889 
3890 /*
3891  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3892  * have been rebuilt so allocation retries. Reader side does not lock and
3893  * retries the allocation if zonelist changes. Writer side is protected by the
3894  * embedded spin_lock.
3895  */
3896 static DEFINE_SEQLOCK(zonelist_update_seq);
3897 
zonelist_iter_begin(void)3898 static unsigned int zonelist_iter_begin(void)
3899 {
3900 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3901 		return read_seqbegin(&zonelist_update_seq);
3902 
3903 	return 0;
3904 }
3905 
check_retry_zonelist(unsigned int seq)3906 static unsigned int check_retry_zonelist(unsigned int seq)
3907 {
3908 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3909 		return read_seqretry(&zonelist_update_seq, seq);
3910 
3911 	return seq;
3912 }
3913 
3914 /* Perform direct synchronous page reclaim */
3915 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3916 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3917 					const struct alloc_context *ac)
3918 {
3919 	unsigned int noreclaim_flag;
3920 	unsigned long progress;
3921 
3922 	cond_resched();
3923 
3924 	/* We now go into synchronous reclaim */
3925 	cpuset_memory_pressure_bump();
3926 	fs_reclaim_acquire(gfp_mask);
3927 	noreclaim_flag = memalloc_noreclaim_save();
3928 
3929 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3930 								ac->nodemask);
3931 
3932 	memalloc_noreclaim_restore(noreclaim_flag);
3933 	fs_reclaim_release(gfp_mask);
3934 
3935 	cond_resched();
3936 
3937 	return progress;
3938 }
3939 
3940 /* The really slow allocator path where we enter direct reclaim */
3941 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3942 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3943 		unsigned int alloc_flags, const struct alloc_context *ac,
3944 		unsigned long *did_some_progress)
3945 {
3946 	struct page *page = NULL;
3947 	unsigned long pflags;
3948 	bool drained = false;
3949 
3950 	psi_memstall_enter(&pflags);
3951 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3952 	if (unlikely(!(*did_some_progress)))
3953 		goto out;
3954 
3955 retry:
3956 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3957 
3958 	/*
3959 	 * If an allocation failed after direct reclaim, it could be because
3960 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3961 	 * Shrink them and try again
3962 	 */
3963 	if (!page && !drained) {
3964 		unreserve_highatomic_pageblock(ac, false);
3965 		drain_all_pages(NULL);
3966 		drained = true;
3967 		goto retry;
3968 	}
3969 out:
3970 	psi_memstall_leave(&pflags);
3971 
3972 	return page;
3973 }
3974 
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)3975 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3976 			     const struct alloc_context *ac)
3977 {
3978 	struct zoneref *z;
3979 	struct zone *zone;
3980 	pg_data_t *last_pgdat = NULL;
3981 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3982 
3983 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3984 					ac->nodemask) {
3985 		if (!managed_zone(zone))
3986 			continue;
3987 		if (last_pgdat != zone->zone_pgdat) {
3988 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3989 			last_pgdat = zone->zone_pgdat;
3990 		}
3991 	}
3992 }
3993 
3994 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)3995 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3996 {
3997 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3998 
3999 	/*
4000 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4001 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4002 	 * to save two branches.
4003 	 */
4004 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4005 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4006 
4007 	/*
4008 	 * The caller may dip into page reserves a bit more if the caller
4009 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4010 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4011 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4012 	 */
4013 	alloc_flags |= (__force int)
4014 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4015 
4016 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4017 		/*
4018 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4019 		 * if it can't schedule.
4020 		 */
4021 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4022 			alloc_flags |= ALLOC_NON_BLOCK;
4023 
4024 			if (order > 0)
4025 				alloc_flags |= ALLOC_HIGHATOMIC;
4026 		}
4027 
4028 		/*
4029 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4030 		 * GFP_ATOMIC) rather than fail, see the comment for
4031 		 * cpuset_node_allowed().
4032 		 */
4033 		if (alloc_flags & ALLOC_MIN_RESERVE)
4034 			alloc_flags &= ~ALLOC_CPUSET;
4035 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4036 		alloc_flags |= ALLOC_MIN_RESERVE;
4037 
4038 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4039 
4040 	return alloc_flags;
4041 }
4042 
oom_reserves_allowed(struct task_struct * tsk)4043 static bool oom_reserves_allowed(struct task_struct *tsk)
4044 {
4045 	if (!tsk_is_oom_victim(tsk))
4046 		return false;
4047 
4048 	/*
4049 	 * !MMU doesn't have oom reaper so give access to memory reserves
4050 	 * only to the thread with TIF_MEMDIE set
4051 	 */
4052 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4053 		return false;
4054 
4055 	return true;
4056 }
4057 
4058 /*
4059  * Distinguish requests which really need access to full memory
4060  * reserves from oom victims which can live with a portion of it
4061  */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4062 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4063 {
4064 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4065 		return 0;
4066 	if (gfp_mask & __GFP_MEMALLOC)
4067 		return ALLOC_NO_WATERMARKS;
4068 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4069 		return ALLOC_NO_WATERMARKS;
4070 	if (!in_interrupt()) {
4071 		if (current->flags & PF_MEMALLOC)
4072 			return ALLOC_NO_WATERMARKS;
4073 		else if (oom_reserves_allowed(current))
4074 			return ALLOC_OOM;
4075 	}
4076 
4077 	return 0;
4078 }
4079 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4080 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4081 {
4082 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4083 }
4084 
4085 /*
4086  * Checks whether it makes sense to retry the reclaim to make a forward progress
4087  * for the given allocation request.
4088  *
4089  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4090  * without success, or when we couldn't even meet the watermark if we
4091  * reclaimed all remaining pages on the LRU lists.
4092  *
4093  * Returns true if a retry is viable or false to enter the oom path.
4094  */
4095 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4096 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4097 		     struct alloc_context *ac, int alloc_flags,
4098 		     bool did_some_progress, int *no_progress_loops)
4099 {
4100 	struct zone *zone;
4101 	struct zoneref *z;
4102 	bool ret = false;
4103 
4104 	/*
4105 	 * Costly allocations might have made a progress but this doesn't mean
4106 	 * their order will become available due to high fragmentation so
4107 	 * always increment the no progress counter for them
4108 	 */
4109 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4110 		*no_progress_loops = 0;
4111 	else
4112 		(*no_progress_loops)++;
4113 
4114 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4115 		goto out;
4116 
4117 
4118 	/*
4119 	 * Keep reclaiming pages while there is a chance this will lead
4120 	 * somewhere.  If none of the target zones can satisfy our allocation
4121 	 * request even if all reclaimable pages are considered then we are
4122 	 * screwed and have to go OOM.
4123 	 */
4124 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4125 				ac->highest_zoneidx, ac->nodemask) {
4126 		unsigned long available;
4127 		unsigned long reclaimable;
4128 		unsigned long min_wmark = min_wmark_pages(zone);
4129 		bool wmark;
4130 
4131 		if (cpusets_enabled() &&
4132 			(alloc_flags & ALLOC_CPUSET) &&
4133 			!__cpuset_zone_allowed(zone, gfp_mask))
4134 				continue;
4135 
4136 		available = reclaimable = zone_reclaimable_pages(zone);
4137 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4138 
4139 		/*
4140 		 * Would the allocation succeed if we reclaimed all
4141 		 * reclaimable pages?
4142 		 */
4143 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4144 				ac->highest_zoneidx, alloc_flags, available);
4145 		trace_reclaim_retry_zone(z, order, reclaimable,
4146 				available, min_wmark, *no_progress_loops, wmark);
4147 		if (wmark) {
4148 			ret = true;
4149 			break;
4150 		}
4151 	}
4152 
4153 	/*
4154 	 * Memory allocation/reclaim might be called from a WQ context and the
4155 	 * current implementation of the WQ concurrency control doesn't
4156 	 * recognize that a particular WQ is congested if the worker thread is
4157 	 * looping without ever sleeping. Therefore we have to do a short sleep
4158 	 * here rather than calling cond_resched().
4159 	 */
4160 	if (current->flags & PF_WQ_WORKER)
4161 		schedule_timeout_uninterruptible(1);
4162 	else
4163 		cond_resched();
4164 out:
4165 	/* Before OOM, exhaust highatomic_reserve */
4166 	if (!ret)
4167 		return unreserve_highatomic_pageblock(ac, true);
4168 
4169 	return ret;
4170 }
4171 
4172 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4173 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4174 {
4175 	/*
4176 	 * It's possible that cpuset's mems_allowed and the nodemask from
4177 	 * mempolicy don't intersect. This should be normally dealt with by
4178 	 * policy_nodemask(), but it's possible to race with cpuset update in
4179 	 * such a way the check therein was true, and then it became false
4180 	 * before we got our cpuset_mems_cookie here.
4181 	 * This assumes that for all allocations, ac->nodemask can come only
4182 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4183 	 * when it does not intersect with the cpuset restrictions) or the
4184 	 * caller can deal with a violated nodemask.
4185 	 */
4186 	if (cpusets_enabled() && ac->nodemask &&
4187 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4188 		ac->nodemask = NULL;
4189 		return true;
4190 	}
4191 
4192 	/*
4193 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4194 	 * possible to race with parallel threads in such a way that our
4195 	 * allocation can fail while the mask is being updated. If we are about
4196 	 * to fail, check if the cpuset changed during allocation and if so,
4197 	 * retry.
4198 	 */
4199 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4200 		return true;
4201 
4202 	return false;
4203 }
4204 
4205 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4206 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4207 						struct alloc_context *ac)
4208 {
4209 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4210 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4211 	bool nofail = gfp_mask & __GFP_NOFAIL;
4212 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4213 	struct page *page = NULL;
4214 	unsigned int alloc_flags;
4215 	unsigned long did_some_progress;
4216 	enum compact_priority compact_priority;
4217 	enum compact_result compact_result;
4218 	int compaction_retries;
4219 	int no_progress_loops;
4220 	unsigned int cpuset_mems_cookie;
4221 	unsigned int zonelist_iter_cookie;
4222 	int reserve_flags;
4223 
4224 	if (unlikely(nofail)) {
4225 		/*
4226 		 * We most definitely don't want callers attempting to
4227 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4228 		 */
4229 		WARN_ON_ONCE(order > 1);
4230 		/*
4231 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4232 		 * otherwise, we may result in lockup.
4233 		 */
4234 		WARN_ON_ONCE(!can_direct_reclaim);
4235 		/*
4236 		 * PF_MEMALLOC request from this context is rather bizarre
4237 		 * because we cannot reclaim anything and only can loop waiting
4238 		 * for somebody to do a work for us.
4239 		 */
4240 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4241 	}
4242 
4243 restart:
4244 	compaction_retries = 0;
4245 	no_progress_loops = 0;
4246 	compact_result = COMPACT_SKIPPED;
4247 	compact_priority = DEF_COMPACT_PRIORITY;
4248 	cpuset_mems_cookie = read_mems_allowed_begin();
4249 	zonelist_iter_cookie = zonelist_iter_begin();
4250 
4251 	/*
4252 	 * The fast path uses conservative alloc_flags to succeed only until
4253 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4254 	 * alloc_flags precisely. So we do that now.
4255 	 */
4256 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4257 
4258 	/*
4259 	 * We need to recalculate the starting point for the zonelist iterator
4260 	 * because we might have used different nodemask in the fast path, or
4261 	 * there was a cpuset modification and we are retrying - otherwise we
4262 	 * could end up iterating over non-eligible zones endlessly.
4263 	 */
4264 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4265 					ac->highest_zoneidx, ac->nodemask);
4266 	if (!zonelist_zone(ac->preferred_zoneref))
4267 		goto nopage;
4268 
4269 	/*
4270 	 * Check for insane configurations where the cpuset doesn't contain
4271 	 * any suitable zone to satisfy the request - e.g. non-movable
4272 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4273 	 */
4274 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4275 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4276 					ac->highest_zoneidx,
4277 					&cpuset_current_mems_allowed);
4278 		if (!zonelist_zone(z))
4279 			goto nopage;
4280 	}
4281 
4282 	if (alloc_flags & ALLOC_KSWAPD)
4283 		wake_all_kswapds(order, gfp_mask, ac);
4284 
4285 	/*
4286 	 * The adjusted alloc_flags might result in immediate success, so try
4287 	 * that first
4288 	 */
4289 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4290 	if (page)
4291 		goto got_pg;
4292 
4293 	/*
4294 	 * For costly allocations, try direct compaction first, as it's likely
4295 	 * that we have enough base pages and don't need to reclaim. For non-
4296 	 * movable high-order allocations, do that as well, as compaction will
4297 	 * try prevent permanent fragmentation by migrating from blocks of the
4298 	 * same migratetype.
4299 	 * Don't try this for allocations that are allowed to ignore
4300 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4301 	 */
4302 	if (can_direct_reclaim && can_compact &&
4303 			(costly_order ||
4304 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4305 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4306 		page = __alloc_pages_direct_compact(gfp_mask, order,
4307 						alloc_flags, ac,
4308 						INIT_COMPACT_PRIORITY,
4309 						&compact_result);
4310 		if (page)
4311 			goto got_pg;
4312 
4313 		/*
4314 		 * Checks for costly allocations with __GFP_NORETRY, which
4315 		 * includes some THP page fault allocations
4316 		 */
4317 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4318 			/*
4319 			 * If allocating entire pageblock(s) and compaction
4320 			 * failed because all zones are below low watermarks
4321 			 * or is prohibited because it recently failed at this
4322 			 * order, fail immediately unless the allocator has
4323 			 * requested compaction and reclaim retry.
4324 			 *
4325 			 * Reclaim is
4326 			 *  - potentially very expensive because zones are far
4327 			 *    below their low watermarks or this is part of very
4328 			 *    bursty high order allocations,
4329 			 *  - not guaranteed to help because isolate_freepages()
4330 			 *    may not iterate over freed pages as part of its
4331 			 *    linear scan, and
4332 			 *  - unlikely to make entire pageblocks free on its
4333 			 *    own.
4334 			 */
4335 			if (compact_result == COMPACT_SKIPPED ||
4336 			    compact_result == COMPACT_DEFERRED)
4337 				goto nopage;
4338 
4339 			/*
4340 			 * Looks like reclaim/compaction is worth trying, but
4341 			 * sync compaction could be very expensive, so keep
4342 			 * using async compaction.
4343 			 */
4344 			compact_priority = INIT_COMPACT_PRIORITY;
4345 		}
4346 	}
4347 
4348 retry:
4349 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4350 	if (alloc_flags & ALLOC_KSWAPD)
4351 		wake_all_kswapds(order, gfp_mask, ac);
4352 
4353 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4354 	if (reserve_flags)
4355 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4356 					  (alloc_flags & ALLOC_KSWAPD);
4357 
4358 	/*
4359 	 * Reset the nodemask and zonelist iterators if memory policies can be
4360 	 * ignored. These allocations are high priority and system rather than
4361 	 * user oriented.
4362 	 */
4363 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4364 		ac->nodemask = NULL;
4365 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4366 					ac->highest_zoneidx, ac->nodemask);
4367 	}
4368 
4369 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4370 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4371 	if (page)
4372 		goto got_pg;
4373 
4374 	/* Caller is not willing to reclaim, we can't balance anything */
4375 	if (!can_direct_reclaim)
4376 		goto nopage;
4377 
4378 	/* Avoid recursion of direct reclaim */
4379 	if (current->flags & PF_MEMALLOC)
4380 		goto nopage;
4381 
4382 	/* Try direct reclaim and then allocating */
4383 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4384 							&did_some_progress);
4385 	if (page)
4386 		goto got_pg;
4387 
4388 	/* Try direct compaction and then allocating */
4389 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4390 					compact_priority, &compact_result);
4391 	if (page)
4392 		goto got_pg;
4393 
4394 	/* Do not loop if specifically requested */
4395 	if (gfp_mask & __GFP_NORETRY)
4396 		goto nopage;
4397 
4398 	/*
4399 	 * Do not retry costly high order allocations unless they are
4400 	 * __GFP_RETRY_MAYFAIL and we can compact
4401 	 */
4402 	if (costly_order && (!can_compact ||
4403 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4404 		goto nopage;
4405 
4406 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4407 				 did_some_progress > 0, &no_progress_loops))
4408 		goto retry;
4409 
4410 	/*
4411 	 * It doesn't make any sense to retry for the compaction if the order-0
4412 	 * reclaim is not able to make any progress because the current
4413 	 * implementation of the compaction depends on the sufficient amount
4414 	 * of free memory (see __compaction_suitable)
4415 	 */
4416 	if (did_some_progress > 0 && can_compact &&
4417 			should_compact_retry(ac, order, alloc_flags,
4418 				compact_result, &compact_priority,
4419 				&compaction_retries))
4420 		goto retry;
4421 
4422 
4423 	/*
4424 	 * Deal with possible cpuset update races or zonelist updates to avoid
4425 	 * a unnecessary OOM kill.
4426 	 */
4427 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4428 	    check_retry_zonelist(zonelist_iter_cookie))
4429 		goto restart;
4430 
4431 	/* Reclaim has failed us, start killing things */
4432 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4433 	if (page)
4434 		goto got_pg;
4435 
4436 	/* Avoid allocations with no watermarks from looping endlessly */
4437 	if (tsk_is_oom_victim(current) &&
4438 	    (alloc_flags & ALLOC_OOM ||
4439 	     (gfp_mask & __GFP_NOMEMALLOC)))
4440 		goto nopage;
4441 
4442 	/* Retry as long as the OOM killer is making progress */
4443 	if (did_some_progress) {
4444 		no_progress_loops = 0;
4445 		goto retry;
4446 	}
4447 
4448 nopage:
4449 	/*
4450 	 * Deal with possible cpuset update races or zonelist updates to avoid
4451 	 * a unnecessary OOM kill.
4452 	 */
4453 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4454 	    check_retry_zonelist(zonelist_iter_cookie))
4455 		goto restart;
4456 
4457 	/*
4458 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4459 	 * we always retry
4460 	 */
4461 	if (unlikely(nofail)) {
4462 		/*
4463 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4464 		 * we disregard these unreasonable nofail requests and still
4465 		 * return NULL
4466 		 */
4467 		if (!can_direct_reclaim)
4468 			goto fail;
4469 
4470 		/*
4471 		 * Help non-failing allocations by giving some access to memory
4472 		 * reserves normally used for high priority non-blocking
4473 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4474 		 * could deplete whole memory reserves which would just make
4475 		 * the situation worse.
4476 		 */
4477 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4478 		if (page)
4479 			goto got_pg;
4480 
4481 		cond_resched();
4482 		goto retry;
4483 	}
4484 fail:
4485 	warn_alloc(gfp_mask, ac->nodemask,
4486 			"page allocation failure: order:%u", order);
4487 got_pg:
4488 	return page;
4489 }
4490 
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4491 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4492 		int preferred_nid, nodemask_t *nodemask,
4493 		struct alloc_context *ac, gfp_t *alloc_gfp,
4494 		unsigned int *alloc_flags)
4495 {
4496 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4497 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4498 	ac->nodemask = nodemask;
4499 	ac->migratetype = gfp_migratetype(gfp_mask);
4500 
4501 	if (cpusets_enabled()) {
4502 		*alloc_gfp |= __GFP_HARDWALL;
4503 		/*
4504 		 * When we are in the interrupt context, it is irrelevant
4505 		 * to the current task context. It means that any node ok.
4506 		 */
4507 		if (in_task() && !ac->nodemask)
4508 			ac->nodemask = &cpuset_current_mems_allowed;
4509 		else
4510 			*alloc_flags |= ALLOC_CPUSET;
4511 	}
4512 
4513 	might_alloc(gfp_mask);
4514 
4515 	if (should_fail_alloc_page(gfp_mask, order))
4516 		return false;
4517 
4518 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4519 
4520 	/* Dirty zone balancing only done in the fast path */
4521 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4522 
4523 	/*
4524 	 * The preferred zone is used for statistics but crucially it is
4525 	 * also used as the starting point for the zonelist iterator. It
4526 	 * may get reset for allocations that ignore memory policies.
4527 	 */
4528 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4529 					ac->highest_zoneidx, ac->nodemask);
4530 
4531 	return true;
4532 }
4533 
4534 /*
4535  * __alloc_pages_bulk - Allocate a number of order-0 pages to an array
4536  * @gfp: GFP flags for the allocation
4537  * @preferred_nid: The preferred NUMA node ID to allocate from
4538  * @nodemask: Set of nodes to allocate from, may be NULL
4539  * @nr_pages: The number of pages desired in the array
4540  * @page_array: Array to store the pages
4541  *
4542  * This is a batched version of the page allocator that attempts to
4543  * allocate nr_pages quickly. Pages are added to the page_array.
4544  *
4545  * Note that only NULL elements are populated with pages and nr_pages
4546  * is the maximum number of pages that will be stored in the array.
4547  *
4548  * Returns the number of pages in the array.
4549  */
alloc_pages_bulk_noprof(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct page ** page_array)4550 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4551 			nodemask_t *nodemask, int nr_pages,
4552 			struct page **page_array)
4553 {
4554 	struct page *page;
4555 	unsigned long __maybe_unused UP_flags;
4556 	struct zone *zone;
4557 	struct zoneref *z;
4558 	struct per_cpu_pages *pcp;
4559 	struct list_head *pcp_list;
4560 	struct alloc_context ac;
4561 	gfp_t alloc_gfp;
4562 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4563 	int nr_populated = 0, nr_account = 0;
4564 
4565 	/*
4566 	 * Skip populated array elements to determine if any pages need
4567 	 * to be allocated before disabling IRQs.
4568 	 */
4569 	while (nr_populated < nr_pages && page_array[nr_populated])
4570 		nr_populated++;
4571 
4572 	/* No pages requested? */
4573 	if (unlikely(nr_pages <= 0))
4574 		goto out;
4575 
4576 	/* Already populated array? */
4577 	if (unlikely(nr_pages - nr_populated == 0))
4578 		goto out;
4579 
4580 	/* Bulk allocator does not support memcg accounting. */
4581 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4582 		goto failed;
4583 
4584 	/* Use the single page allocator for one page. */
4585 	if (nr_pages - nr_populated == 1)
4586 		goto failed;
4587 
4588 #ifdef CONFIG_PAGE_OWNER
4589 	/*
4590 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4591 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4592 	 * removes much of the performance benefit of bulk allocation so
4593 	 * force the caller to allocate one page at a time as it'll have
4594 	 * similar performance to added complexity to the bulk allocator.
4595 	 */
4596 	if (static_branch_unlikely(&page_owner_inited))
4597 		goto failed;
4598 #endif
4599 
4600 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4601 	gfp &= gfp_allowed_mask;
4602 	alloc_gfp = gfp;
4603 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4604 		goto out;
4605 	gfp = alloc_gfp;
4606 
4607 	/* Find an allowed local zone that meets the low watermark. */
4608 	z = ac.preferred_zoneref;
4609 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4610 		unsigned long mark;
4611 
4612 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4613 		    !__cpuset_zone_allowed(zone, gfp)) {
4614 			continue;
4615 		}
4616 
4617 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4618 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4619 			goto failed;
4620 		}
4621 
4622 		cond_accept_memory(zone, 0);
4623 retry_this_zone:
4624 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4625 		if (zone_watermark_fast(zone, 0,  mark,
4626 				zonelist_zone_idx(ac.preferred_zoneref),
4627 				alloc_flags, gfp)) {
4628 			break;
4629 		}
4630 
4631 		if (cond_accept_memory(zone, 0))
4632 			goto retry_this_zone;
4633 
4634 		/* Try again if zone has deferred pages */
4635 		if (deferred_pages_enabled()) {
4636 			if (_deferred_grow_zone(zone, 0))
4637 				goto retry_this_zone;
4638 		}
4639 	}
4640 
4641 	/*
4642 	 * If there are no allowed local zones that meets the watermarks then
4643 	 * try to allocate a single page and reclaim if necessary.
4644 	 */
4645 	if (unlikely(!zone))
4646 		goto failed;
4647 
4648 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4649 	pcp_trylock_prepare(UP_flags);
4650 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4651 	if (!pcp)
4652 		goto failed_irq;
4653 
4654 	/* Attempt the batch allocation */
4655 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4656 	while (nr_populated < nr_pages) {
4657 
4658 		/* Skip existing pages */
4659 		if (page_array[nr_populated]) {
4660 			nr_populated++;
4661 			continue;
4662 		}
4663 
4664 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4665 								pcp, pcp_list);
4666 		if (unlikely(!page)) {
4667 			/* Try and allocate at least one page */
4668 			if (!nr_account) {
4669 				pcp_spin_unlock(pcp);
4670 				goto failed_irq;
4671 			}
4672 			break;
4673 		}
4674 		nr_account++;
4675 
4676 		prep_new_page(page, 0, gfp, 0);
4677 		set_page_refcounted(page);
4678 		page_array[nr_populated++] = page;
4679 	}
4680 
4681 	pcp_spin_unlock(pcp);
4682 	pcp_trylock_finish(UP_flags);
4683 
4684 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4685 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4686 
4687 out:
4688 	return nr_populated;
4689 
4690 failed_irq:
4691 	pcp_trylock_finish(UP_flags);
4692 
4693 failed:
4694 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4695 	if (page)
4696 		page_array[nr_populated++] = page;
4697 	goto out;
4698 }
4699 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4700 
4701 /*
4702  * This is the 'heart' of the zoned buddy allocator.
4703  */
__alloc_frozen_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4704 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order,
4705 		int preferred_nid, nodemask_t *nodemask)
4706 {
4707 	struct page *page;
4708 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4709 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4710 	struct alloc_context ac = { };
4711 
4712 	/*
4713 	 * There are several places where we assume that the order value is sane
4714 	 * so bail out early if the request is out of bound.
4715 	 */
4716 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4717 		return NULL;
4718 
4719 	gfp &= gfp_allowed_mask;
4720 	/*
4721 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4722 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4723 	 * from a particular context which has been marked by
4724 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4725 	 * movable zones are not used during allocation.
4726 	 */
4727 	gfp = current_gfp_context(gfp);
4728 	alloc_gfp = gfp;
4729 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4730 			&alloc_gfp, &alloc_flags))
4731 		return NULL;
4732 
4733 	/*
4734 	 * Forbid the first pass from falling back to types that fragment
4735 	 * memory until all local zones are considered.
4736 	 */
4737 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4738 
4739 	/* First allocation attempt */
4740 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4741 	if (likely(page))
4742 		goto out;
4743 
4744 	alloc_gfp = gfp;
4745 	ac.spread_dirty_pages = false;
4746 
4747 	/*
4748 	 * Restore the original nodemask if it was potentially replaced with
4749 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4750 	 */
4751 	ac.nodemask = nodemask;
4752 
4753 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4754 
4755 out:
4756 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4757 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4758 		free_frozen_pages(page, order);
4759 		page = NULL;
4760 	}
4761 
4762 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4763 	kmsan_alloc_page(page, order, alloc_gfp);
4764 
4765 	return page;
4766 }
4767 EXPORT_SYMBOL(__alloc_frozen_pages_noprof);
4768 
__alloc_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4769 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4770 		int preferred_nid, nodemask_t *nodemask)
4771 {
4772 	struct page *page;
4773 
4774 	page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask);
4775 	if (page)
4776 		set_page_refcounted(page);
4777 	return page;
4778 }
4779 EXPORT_SYMBOL(__alloc_pages_noprof);
4780 
__folio_alloc_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4781 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4782 		nodemask_t *nodemask)
4783 {
4784 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4785 					preferred_nid, nodemask);
4786 	return page_rmappable_folio(page);
4787 }
4788 EXPORT_SYMBOL(__folio_alloc_noprof);
4789 
4790 /*
4791  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4792  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4793  * you need to access high mem.
4794  */
get_free_pages_noprof(gfp_t gfp_mask,unsigned int order)4795 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4796 {
4797 	struct page *page;
4798 
4799 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4800 	if (!page)
4801 		return 0;
4802 	return (unsigned long) page_address(page);
4803 }
4804 EXPORT_SYMBOL(get_free_pages_noprof);
4805 
get_zeroed_page_noprof(gfp_t gfp_mask)4806 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4807 {
4808 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4809 }
4810 EXPORT_SYMBOL(get_zeroed_page_noprof);
4811 
4812 /**
4813  * __free_pages - Free pages allocated with alloc_pages().
4814  * @page: The page pointer returned from alloc_pages().
4815  * @order: The order of the allocation.
4816  *
4817  * This function can free multi-page allocations that are not compound
4818  * pages.  It does not check that the @order passed in matches that of
4819  * the allocation, so it is easy to leak memory.  Freeing more memory
4820  * than was allocated will probably emit a warning.
4821  *
4822  * If the last reference to this page is speculative, it will be released
4823  * by put_page() which only frees the first page of a non-compound
4824  * allocation.  To prevent the remaining pages from being leaked, we free
4825  * the subsequent pages here.  If you want to use the page's reference
4826  * count to decide when to free the allocation, you should allocate a
4827  * compound page, and use put_page() instead of __free_pages().
4828  *
4829  * Context: May be called in interrupt context or while holding a normal
4830  * spinlock, but not in NMI context or while holding a raw spinlock.
4831  */
__free_pages(struct page * page,unsigned int order)4832 void __free_pages(struct page *page, unsigned int order)
4833 {
4834 	/* get PageHead before we drop reference */
4835 	int head = PageHead(page);
4836 	struct alloc_tag *tag = pgalloc_tag_get(page);
4837 
4838 	if (put_page_testzero(page))
4839 		free_frozen_pages(page, order);
4840 	else if (!head) {
4841 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4842 		while (order-- > 0)
4843 			free_frozen_pages(page + (1 << order), order);
4844 	}
4845 }
4846 EXPORT_SYMBOL(__free_pages);
4847 
free_pages(unsigned long addr,unsigned int order)4848 void free_pages(unsigned long addr, unsigned int order)
4849 {
4850 	if (addr != 0) {
4851 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4852 		__free_pages(virt_to_page((void *)addr), order);
4853 	}
4854 }
4855 
4856 EXPORT_SYMBOL(free_pages);
4857 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4858 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4859 		size_t size)
4860 {
4861 	if (addr) {
4862 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4863 		struct page *page = virt_to_page((void *)addr);
4864 		struct page *last = page + nr;
4865 
4866 		split_page_owner(page, order, 0);
4867 		pgalloc_tag_split(page_folio(page), order, 0);
4868 		split_page_memcg(page, order, 0);
4869 		while (page < --last)
4870 			set_page_refcounted(last);
4871 
4872 		last = page + (1UL << order);
4873 		for (page += nr; page < last; page++)
4874 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4875 	}
4876 	return (void *)addr;
4877 }
4878 
4879 /**
4880  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4881  * @size: the number of bytes to allocate
4882  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4883  *
4884  * This function is similar to alloc_pages(), except that it allocates the
4885  * minimum number of pages to satisfy the request.  alloc_pages() can only
4886  * allocate memory in power-of-two pages.
4887  *
4888  * This function is also limited by MAX_PAGE_ORDER.
4889  *
4890  * Memory allocated by this function must be released by free_pages_exact().
4891  *
4892  * Return: pointer to the allocated area or %NULL in case of error.
4893  */
alloc_pages_exact_noprof(size_t size,gfp_t gfp_mask)4894 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4895 {
4896 	unsigned int order = get_order(size);
4897 	unsigned long addr;
4898 
4899 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4900 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4901 
4902 	addr = get_free_pages_noprof(gfp_mask, order);
4903 	return make_alloc_exact(addr, order, size);
4904 }
4905 EXPORT_SYMBOL(alloc_pages_exact_noprof);
4906 
4907 /**
4908  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4909  *			   pages on a node.
4910  * @nid: the preferred node ID where memory should be allocated
4911  * @size: the number of bytes to allocate
4912  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4913  *
4914  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4915  * back.
4916  *
4917  * Return: pointer to the allocated area or %NULL in case of error.
4918  */
alloc_pages_exact_nid_noprof(int nid,size_t size,gfp_t gfp_mask)4919 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
4920 {
4921 	unsigned int order = get_order(size);
4922 	struct page *p;
4923 
4924 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4925 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4926 
4927 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
4928 	if (!p)
4929 		return NULL;
4930 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4931 }
4932 
4933 /**
4934  * free_pages_exact - release memory allocated via alloc_pages_exact()
4935  * @virt: the value returned by alloc_pages_exact.
4936  * @size: size of allocation, same value as passed to alloc_pages_exact().
4937  *
4938  * Release the memory allocated by a previous call to alloc_pages_exact.
4939  */
free_pages_exact(void * virt,size_t size)4940 void free_pages_exact(void *virt, size_t size)
4941 {
4942 	unsigned long addr = (unsigned long)virt;
4943 	unsigned long end = addr + PAGE_ALIGN(size);
4944 
4945 	while (addr < end) {
4946 		free_page(addr);
4947 		addr += PAGE_SIZE;
4948 	}
4949 }
4950 EXPORT_SYMBOL(free_pages_exact);
4951 
4952 /**
4953  * nr_free_zone_pages - count number of pages beyond high watermark
4954  * @offset: The zone index of the highest zone
4955  *
4956  * nr_free_zone_pages() counts the number of pages which are beyond the
4957  * high watermark within all zones at or below a given zone index.  For each
4958  * zone, the number of pages is calculated as:
4959  *
4960  *     nr_free_zone_pages = managed_pages - high_pages
4961  *
4962  * Return: number of pages beyond high watermark.
4963  */
nr_free_zone_pages(int offset)4964 static unsigned long nr_free_zone_pages(int offset)
4965 {
4966 	struct zoneref *z;
4967 	struct zone *zone;
4968 
4969 	/* Just pick one node, since fallback list is circular */
4970 	unsigned long sum = 0;
4971 
4972 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4973 
4974 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4975 		unsigned long size = zone_managed_pages(zone);
4976 		unsigned long high = high_wmark_pages(zone);
4977 		if (size > high)
4978 			sum += size - high;
4979 	}
4980 
4981 	return sum;
4982 }
4983 
4984 /**
4985  * nr_free_buffer_pages - count number of pages beyond high watermark
4986  *
4987  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4988  * watermark within ZONE_DMA and ZONE_NORMAL.
4989  *
4990  * Return: number of pages beyond high watermark within ZONE_DMA and
4991  * ZONE_NORMAL.
4992  */
nr_free_buffer_pages(void)4993 unsigned long nr_free_buffer_pages(void)
4994 {
4995 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4996 }
4997 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4998 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)4999 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5000 {
5001 	zoneref->zone = zone;
5002 	zoneref->zone_idx = zone_idx(zone);
5003 }
5004 
5005 /*
5006  * Builds allocation fallback zone lists.
5007  *
5008  * Add all populated zones of a node to the zonelist.
5009  */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5010 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5011 {
5012 	struct zone *zone;
5013 	enum zone_type zone_type = MAX_NR_ZONES;
5014 	int nr_zones = 0;
5015 
5016 	do {
5017 		zone_type--;
5018 		zone = pgdat->node_zones + zone_type;
5019 		if (populated_zone(zone)) {
5020 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5021 			check_highest_zone(zone_type);
5022 		}
5023 	} while (zone_type);
5024 
5025 	return nr_zones;
5026 }
5027 
5028 #ifdef CONFIG_NUMA
5029 
__parse_numa_zonelist_order(char * s)5030 static int __parse_numa_zonelist_order(char *s)
5031 {
5032 	/*
5033 	 * We used to support different zonelists modes but they turned
5034 	 * out to be just not useful. Let's keep the warning in place
5035 	 * if somebody still use the cmd line parameter so that we do
5036 	 * not fail it silently
5037 	 */
5038 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5039 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5040 		return -EINVAL;
5041 	}
5042 	return 0;
5043 }
5044 
5045 static char numa_zonelist_order[] = "Node";
5046 #define NUMA_ZONELIST_ORDER_LEN	16
5047 /*
5048  * sysctl handler for numa_zonelist_order
5049  */
numa_zonelist_order_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5050 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5051 		void *buffer, size_t *length, loff_t *ppos)
5052 {
5053 	if (write)
5054 		return __parse_numa_zonelist_order(buffer);
5055 	return proc_dostring(table, write, buffer, length, ppos);
5056 }
5057 
5058 static int node_load[MAX_NUMNODES];
5059 
5060 /**
5061  * find_next_best_node - find the next node that should appear in a given node's fallback list
5062  * @node: node whose fallback list we're appending
5063  * @used_node_mask: nodemask_t of already used nodes
5064  *
5065  * We use a number of factors to determine which is the next node that should
5066  * appear on a given node's fallback list.  The node should not have appeared
5067  * already in @node's fallback list, and it should be the next closest node
5068  * according to the distance array (which contains arbitrary distance values
5069  * from each node to each node in the system), and should also prefer nodes
5070  * with no CPUs, since presumably they'll have very little allocation pressure
5071  * on them otherwise.
5072  *
5073  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5074  */
find_next_best_node(int node,nodemask_t * used_node_mask)5075 int find_next_best_node(int node, nodemask_t *used_node_mask)
5076 {
5077 	int n, val;
5078 	int min_val = INT_MAX;
5079 	int best_node = NUMA_NO_NODE;
5080 
5081 	/*
5082 	 * Use the local node if we haven't already, but for memoryless local
5083 	 * node, we should skip it and fall back to other nodes.
5084 	 */
5085 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5086 		node_set(node, *used_node_mask);
5087 		return node;
5088 	}
5089 
5090 	for_each_node_state(n, N_MEMORY) {
5091 
5092 		/* Don't want a node to appear more than once */
5093 		if (node_isset(n, *used_node_mask))
5094 			continue;
5095 
5096 		/* Use the distance array to find the distance */
5097 		val = node_distance(node, n);
5098 
5099 		/* Penalize nodes under us ("prefer the next node") */
5100 		val += (n < node);
5101 
5102 		/* Give preference to headless and unused nodes */
5103 		if (!cpumask_empty(cpumask_of_node(n)))
5104 			val += PENALTY_FOR_NODE_WITH_CPUS;
5105 
5106 		/* Slight preference for less loaded node */
5107 		val *= MAX_NUMNODES;
5108 		val += node_load[n];
5109 
5110 		if (val < min_val) {
5111 			min_val = val;
5112 			best_node = n;
5113 		}
5114 	}
5115 
5116 	if (best_node >= 0)
5117 		node_set(best_node, *used_node_mask);
5118 
5119 	return best_node;
5120 }
5121 
5122 
5123 /*
5124  * Build zonelists ordered by node and zones within node.
5125  * This results in maximum locality--normal zone overflows into local
5126  * DMA zone, if any--but risks exhausting DMA zone.
5127  */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5128 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5129 		unsigned nr_nodes)
5130 {
5131 	struct zoneref *zonerefs;
5132 	int i;
5133 
5134 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5135 
5136 	for (i = 0; i < nr_nodes; i++) {
5137 		int nr_zones;
5138 
5139 		pg_data_t *node = NODE_DATA(node_order[i]);
5140 
5141 		nr_zones = build_zonerefs_node(node, zonerefs);
5142 		zonerefs += nr_zones;
5143 	}
5144 	zonerefs->zone = NULL;
5145 	zonerefs->zone_idx = 0;
5146 }
5147 
5148 /*
5149  * Build __GFP_THISNODE zonelists
5150  */
build_thisnode_zonelists(pg_data_t * pgdat)5151 static void build_thisnode_zonelists(pg_data_t *pgdat)
5152 {
5153 	struct zoneref *zonerefs;
5154 	int nr_zones;
5155 
5156 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5157 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5158 	zonerefs += nr_zones;
5159 	zonerefs->zone = NULL;
5160 	zonerefs->zone_idx = 0;
5161 }
5162 
build_zonelists(pg_data_t * pgdat)5163 static void build_zonelists(pg_data_t *pgdat)
5164 {
5165 	static int node_order[MAX_NUMNODES];
5166 	int node, nr_nodes = 0;
5167 	nodemask_t used_mask = NODE_MASK_NONE;
5168 	int local_node, prev_node;
5169 
5170 	/* NUMA-aware ordering of nodes */
5171 	local_node = pgdat->node_id;
5172 	prev_node = local_node;
5173 
5174 	memset(node_order, 0, sizeof(node_order));
5175 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5176 		/*
5177 		 * We don't want to pressure a particular node.
5178 		 * So adding penalty to the first node in same
5179 		 * distance group to make it round-robin.
5180 		 */
5181 		if (node_distance(local_node, node) !=
5182 		    node_distance(local_node, prev_node))
5183 			node_load[node] += 1;
5184 
5185 		node_order[nr_nodes++] = node;
5186 		prev_node = node;
5187 	}
5188 
5189 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5190 	build_thisnode_zonelists(pgdat);
5191 	pr_info("Fallback order for Node %d: ", local_node);
5192 	for (node = 0; node < nr_nodes; node++)
5193 		pr_cont("%d ", node_order[node]);
5194 	pr_cont("\n");
5195 }
5196 
5197 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5198 /*
5199  * Return node id of node used for "local" allocations.
5200  * I.e., first node id of first zone in arg node's generic zonelist.
5201  * Used for initializing percpu 'numa_mem', which is used primarily
5202  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5203  */
local_memory_node(int node)5204 int local_memory_node(int node)
5205 {
5206 	struct zoneref *z;
5207 
5208 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5209 				   gfp_zone(GFP_KERNEL),
5210 				   NULL);
5211 	return zonelist_node_idx(z);
5212 }
5213 #endif
5214 
5215 static void setup_min_unmapped_ratio(void);
5216 static void setup_min_slab_ratio(void);
5217 #else	/* CONFIG_NUMA */
5218 
build_zonelists(pg_data_t * pgdat)5219 static void build_zonelists(pg_data_t *pgdat)
5220 {
5221 	struct zoneref *zonerefs;
5222 	int nr_zones;
5223 
5224 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5225 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5226 	zonerefs += nr_zones;
5227 
5228 	zonerefs->zone = NULL;
5229 	zonerefs->zone_idx = 0;
5230 }
5231 
5232 #endif	/* CONFIG_NUMA */
5233 
5234 /*
5235  * Boot pageset table. One per cpu which is going to be used for all
5236  * zones and all nodes. The parameters will be set in such a way
5237  * that an item put on a list will immediately be handed over to
5238  * the buddy list. This is safe since pageset manipulation is done
5239  * with interrupts disabled.
5240  *
5241  * The boot_pagesets must be kept even after bootup is complete for
5242  * unused processors and/or zones. They do play a role for bootstrapping
5243  * hotplugged processors.
5244  *
5245  * zoneinfo_show() and maybe other functions do
5246  * not check if the processor is online before following the pageset pointer.
5247  * Other parts of the kernel may not check if the zone is available.
5248  */
5249 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5250 /* These effectively disable the pcplists in the boot pageset completely */
5251 #define BOOT_PAGESET_HIGH	0
5252 #define BOOT_PAGESET_BATCH	1
5253 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5254 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5255 
__build_all_zonelists(void * data)5256 static void __build_all_zonelists(void *data)
5257 {
5258 	int nid;
5259 	int __maybe_unused cpu;
5260 	pg_data_t *self = data;
5261 	unsigned long flags;
5262 
5263 	/*
5264 	 * The zonelist_update_seq must be acquired with irqsave because the
5265 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5266 	 */
5267 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5268 	/*
5269 	 * Also disable synchronous printk() to prevent any printk() from
5270 	 * trying to hold port->lock, for
5271 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5272 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5273 	 */
5274 	printk_deferred_enter();
5275 
5276 #ifdef CONFIG_NUMA
5277 	memset(node_load, 0, sizeof(node_load));
5278 #endif
5279 
5280 	/*
5281 	 * This node is hotadded and no memory is yet present.   So just
5282 	 * building zonelists is fine - no need to touch other nodes.
5283 	 */
5284 	if (self && !node_online(self->node_id)) {
5285 		build_zonelists(self);
5286 	} else {
5287 		/*
5288 		 * All possible nodes have pgdat preallocated
5289 		 * in free_area_init
5290 		 */
5291 		for_each_node(nid) {
5292 			pg_data_t *pgdat = NODE_DATA(nid);
5293 
5294 			build_zonelists(pgdat);
5295 		}
5296 
5297 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5298 		/*
5299 		 * We now know the "local memory node" for each node--
5300 		 * i.e., the node of the first zone in the generic zonelist.
5301 		 * Set up numa_mem percpu variable for on-line cpus.  During
5302 		 * boot, only the boot cpu should be on-line;  we'll init the
5303 		 * secondary cpus' numa_mem as they come on-line.  During
5304 		 * node/memory hotplug, we'll fixup all on-line cpus.
5305 		 */
5306 		for_each_online_cpu(cpu)
5307 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5308 #endif
5309 	}
5310 
5311 	printk_deferred_exit();
5312 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5313 }
5314 
5315 static noinline void __init
build_all_zonelists_init(void)5316 build_all_zonelists_init(void)
5317 {
5318 	int cpu;
5319 
5320 	__build_all_zonelists(NULL);
5321 
5322 	/*
5323 	 * Initialize the boot_pagesets that are going to be used
5324 	 * for bootstrapping processors. The real pagesets for
5325 	 * each zone will be allocated later when the per cpu
5326 	 * allocator is available.
5327 	 *
5328 	 * boot_pagesets are used also for bootstrapping offline
5329 	 * cpus if the system is already booted because the pagesets
5330 	 * are needed to initialize allocators on a specific cpu too.
5331 	 * F.e. the percpu allocator needs the page allocator which
5332 	 * needs the percpu allocator in order to allocate its pagesets
5333 	 * (a chicken-egg dilemma).
5334 	 */
5335 	for_each_possible_cpu(cpu)
5336 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5337 
5338 	mminit_verify_zonelist();
5339 	cpuset_init_current_mems_allowed();
5340 }
5341 
5342 /*
5343  * unless system_state == SYSTEM_BOOTING.
5344  *
5345  * __ref due to call of __init annotated helper build_all_zonelists_init
5346  * [protected by SYSTEM_BOOTING].
5347  */
build_all_zonelists(pg_data_t * pgdat)5348 void __ref build_all_zonelists(pg_data_t *pgdat)
5349 {
5350 	unsigned long vm_total_pages;
5351 
5352 	if (system_state == SYSTEM_BOOTING) {
5353 		build_all_zonelists_init();
5354 	} else {
5355 		__build_all_zonelists(pgdat);
5356 		/* cpuset refresh routine should be here */
5357 	}
5358 	/* Get the number of free pages beyond high watermark in all zones. */
5359 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5360 	/*
5361 	 * Disable grouping by mobility if the number of pages in the
5362 	 * system is too low to allow the mechanism to work. It would be
5363 	 * more accurate, but expensive to check per-zone. This check is
5364 	 * made on memory-hotadd so a system can start with mobility
5365 	 * disabled and enable it later
5366 	 */
5367 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5368 		page_group_by_mobility_disabled = 1;
5369 	else
5370 		page_group_by_mobility_disabled = 0;
5371 
5372 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5373 		nr_online_nodes,
5374 		str_off_on(page_group_by_mobility_disabled),
5375 		vm_total_pages);
5376 #ifdef CONFIG_NUMA
5377 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5378 #endif
5379 }
5380 
zone_batchsize(struct zone * zone)5381 static int zone_batchsize(struct zone *zone)
5382 {
5383 #ifdef CONFIG_MMU
5384 	int batch;
5385 
5386 	/*
5387 	 * The number of pages to batch allocate is either ~0.1%
5388 	 * of the zone or 1MB, whichever is smaller. The batch
5389 	 * size is striking a balance between allocation latency
5390 	 * and zone lock contention.
5391 	 */
5392 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5393 	batch /= 4;		/* We effectively *= 4 below */
5394 	if (batch < 1)
5395 		batch = 1;
5396 
5397 	/*
5398 	 * Clamp the batch to a 2^n - 1 value. Having a power
5399 	 * of 2 value was found to be more likely to have
5400 	 * suboptimal cache aliasing properties in some cases.
5401 	 *
5402 	 * For example if 2 tasks are alternately allocating
5403 	 * batches of pages, one task can end up with a lot
5404 	 * of pages of one half of the possible page colors
5405 	 * and the other with pages of the other colors.
5406 	 */
5407 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5408 
5409 	return batch;
5410 
5411 #else
5412 	/* The deferral and batching of frees should be suppressed under NOMMU
5413 	 * conditions.
5414 	 *
5415 	 * The problem is that NOMMU needs to be able to allocate large chunks
5416 	 * of contiguous memory as there's no hardware page translation to
5417 	 * assemble apparent contiguous memory from discontiguous pages.
5418 	 *
5419 	 * Queueing large contiguous runs of pages for batching, however,
5420 	 * causes the pages to actually be freed in smaller chunks.  As there
5421 	 * can be a significant delay between the individual batches being
5422 	 * recycled, this leads to the once large chunks of space being
5423 	 * fragmented and becoming unavailable for high-order allocations.
5424 	 */
5425 	return 0;
5426 #endif
5427 }
5428 
5429 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online,int high_fraction)5430 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5431 			 int high_fraction)
5432 {
5433 #ifdef CONFIG_MMU
5434 	int high;
5435 	int nr_split_cpus;
5436 	unsigned long total_pages;
5437 
5438 	if (!high_fraction) {
5439 		/*
5440 		 * By default, the high value of the pcp is based on the zone
5441 		 * low watermark so that if they are full then background
5442 		 * reclaim will not be started prematurely.
5443 		 */
5444 		total_pages = low_wmark_pages(zone);
5445 	} else {
5446 		/*
5447 		 * If percpu_pagelist_high_fraction is configured, the high
5448 		 * value is based on a fraction of the managed pages in the
5449 		 * zone.
5450 		 */
5451 		total_pages = zone_managed_pages(zone) / high_fraction;
5452 	}
5453 
5454 	/*
5455 	 * Split the high value across all online CPUs local to the zone. Note
5456 	 * that early in boot that CPUs may not be online yet and that during
5457 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5458 	 * onlined. For memory nodes that have no CPUs, split the high value
5459 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5460 	 * prematurely due to pages stored on pcp lists.
5461 	 */
5462 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5463 	if (!nr_split_cpus)
5464 		nr_split_cpus = num_online_cpus();
5465 	high = total_pages / nr_split_cpus;
5466 
5467 	/*
5468 	 * Ensure high is at least batch*4. The multiple is based on the
5469 	 * historical relationship between high and batch.
5470 	 */
5471 	high = max(high, batch << 2);
5472 
5473 	return high;
5474 #else
5475 	return 0;
5476 #endif
5477 }
5478 
5479 /*
5480  * pcp->high and pcp->batch values are related and generally batch is lower
5481  * than high. They are also related to pcp->count such that count is lower
5482  * than high, and as soon as it reaches high, the pcplist is flushed.
5483  *
5484  * However, guaranteeing these relations at all times would require e.g. write
5485  * barriers here but also careful usage of read barriers at the read side, and
5486  * thus be prone to error and bad for performance. Thus the update only prevents
5487  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5488  * should ensure they can cope with those fields changing asynchronously, and
5489  * fully trust only the pcp->count field on the local CPU with interrupts
5490  * disabled.
5491  *
5492  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5493  * outside of boot time (or some other assurance that no concurrent updaters
5494  * exist).
5495  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high_min,unsigned long high_max,unsigned long batch)5496 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5497 			   unsigned long high_max, unsigned long batch)
5498 {
5499 	WRITE_ONCE(pcp->batch, batch);
5500 	WRITE_ONCE(pcp->high_min, high_min);
5501 	WRITE_ONCE(pcp->high_max, high_max);
5502 }
5503 
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5504 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5505 {
5506 	int pindex;
5507 
5508 	memset(pcp, 0, sizeof(*pcp));
5509 	memset(pzstats, 0, sizeof(*pzstats));
5510 
5511 	spin_lock_init(&pcp->lock);
5512 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5513 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5514 
5515 	/*
5516 	 * Set batch and high values safe for a boot pageset. A true percpu
5517 	 * pageset's initialization will update them subsequently. Here we don't
5518 	 * need to be as careful as pageset_update() as nobody can access the
5519 	 * pageset yet.
5520 	 */
5521 	pcp->high_min = BOOT_PAGESET_HIGH;
5522 	pcp->high_max = BOOT_PAGESET_HIGH;
5523 	pcp->batch = BOOT_PAGESET_BATCH;
5524 	pcp->free_count = 0;
5525 }
5526 
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high_min,unsigned long high_max,unsigned long batch)5527 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5528 					      unsigned long high_max, unsigned long batch)
5529 {
5530 	struct per_cpu_pages *pcp;
5531 	int cpu;
5532 
5533 	for_each_possible_cpu(cpu) {
5534 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5535 		pageset_update(pcp, high_min, high_max, batch);
5536 	}
5537 }
5538 
5539 /*
5540  * Calculate and set new high and batch values for all per-cpu pagesets of a
5541  * zone based on the zone's size.
5542  */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5543 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5544 {
5545 	int new_high_min, new_high_max, new_batch;
5546 
5547 	new_batch = max(1, zone_batchsize(zone));
5548 	if (percpu_pagelist_high_fraction) {
5549 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5550 					     percpu_pagelist_high_fraction);
5551 		/*
5552 		 * PCP high is tuned manually, disable auto-tuning via
5553 		 * setting high_min and high_max to the manual value.
5554 		 */
5555 		new_high_max = new_high_min;
5556 	} else {
5557 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5558 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5559 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5560 	}
5561 
5562 	if (zone->pageset_high_min == new_high_min &&
5563 	    zone->pageset_high_max == new_high_max &&
5564 	    zone->pageset_batch == new_batch)
5565 		return;
5566 
5567 	zone->pageset_high_min = new_high_min;
5568 	zone->pageset_high_max = new_high_max;
5569 	zone->pageset_batch = new_batch;
5570 
5571 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5572 					  new_batch);
5573 }
5574 
setup_zone_pageset(struct zone * zone)5575 void __meminit setup_zone_pageset(struct zone *zone)
5576 {
5577 	int cpu;
5578 
5579 	/* Size may be 0 on !SMP && !NUMA */
5580 	if (sizeof(struct per_cpu_zonestat) > 0)
5581 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5582 
5583 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5584 	for_each_possible_cpu(cpu) {
5585 		struct per_cpu_pages *pcp;
5586 		struct per_cpu_zonestat *pzstats;
5587 
5588 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5589 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5590 		per_cpu_pages_init(pcp, pzstats);
5591 	}
5592 
5593 	zone_set_pageset_high_and_batch(zone, 0);
5594 }
5595 
5596 /*
5597  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5598  * page high values need to be recalculated.
5599  */
zone_pcp_update(struct zone * zone,int cpu_online)5600 static void zone_pcp_update(struct zone *zone, int cpu_online)
5601 {
5602 	mutex_lock(&pcp_batch_high_lock);
5603 	zone_set_pageset_high_and_batch(zone, cpu_online);
5604 	mutex_unlock(&pcp_batch_high_lock);
5605 }
5606 
zone_pcp_update_cacheinfo(struct zone * zone,unsigned int cpu)5607 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5608 {
5609 	struct per_cpu_pages *pcp;
5610 	struct cpu_cacheinfo *cci;
5611 
5612 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5613 	cci = get_cpu_cacheinfo(cpu);
5614 	/*
5615 	 * If data cache slice of CPU is large enough, "pcp->batch"
5616 	 * pages can be preserved in PCP before draining PCP for
5617 	 * consecutive high-order pages freeing without allocation.
5618 	 * This can reduce zone lock contention without hurting
5619 	 * cache-hot pages sharing.
5620 	 */
5621 	spin_lock(&pcp->lock);
5622 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5623 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5624 	else
5625 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5626 	spin_unlock(&pcp->lock);
5627 }
5628 
setup_pcp_cacheinfo(unsigned int cpu)5629 void setup_pcp_cacheinfo(unsigned int cpu)
5630 {
5631 	struct zone *zone;
5632 
5633 	for_each_populated_zone(zone)
5634 		zone_pcp_update_cacheinfo(zone, cpu);
5635 }
5636 
5637 /*
5638  * Allocate per cpu pagesets and initialize them.
5639  * Before this call only boot pagesets were available.
5640  */
setup_per_cpu_pageset(void)5641 void __init setup_per_cpu_pageset(void)
5642 {
5643 	struct pglist_data *pgdat;
5644 	struct zone *zone;
5645 	int __maybe_unused cpu;
5646 
5647 	for_each_populated_zone(zone)
5648 		setup_zone_pageset(zone);
5649 
5650 #ifdef CONFIG_NUMA
5651 	/*
5652 	 * Unpopulated zones continue using the boot pagesets.
5653 	 * The numa stats for these pagesets need to be reset.
5654 	 * Otherwise, they will end up skewing the stats of
5655 	 * the nodes these zones are associated with.
5656 	 */
5657 	for_each_possible_cpu(cpu) {
5658 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5659 		memset(pzstats->vm_numa_event, 0,
5660 		       sizeof(pzstats->vm_numa_event));
5661 	}
5662 #endif
5663 
5664 	for_each_online_pgdat(pgdat)
5665 		pgdat->per_cpu_nodestats =
5666 			alloc_percpu(struct per_cpu_nodestat);
5667 }
5668 
zone_pcp_init(struct zone * zone)5669 __meminit void zone_pcp_init(struct zone *zone)
5670 {
5671 	/*
5672 	 * per cpu subsystem is not up at this point. The following code
5673 	 * relies on the ability of the linker to provide the
5674 	 * offset of a (static) per cpu variable into the per cpu area.
5675 	 */
5676 	zone->per_cpu_pageset = &boot_pageset;
5677 	zone->per_cpu_zonestats = &boot_zonestats;
5678 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5679 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5680 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5681 
5682 	if (populated_zone(zone))
5683 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5684 			 zone->present_pages, zone_batchsize(zone));
5685 }
5686 
5687 static void setup_per_zone_lowmem_reserve(void);
5688 
adjust_managed_page_count(struct page * page,long count)5689 void adjust_managed_page_count(struct page *page, long count)
5690 {
5691 	atomic_long_add(count, &page_zone(page)->managed_pages);
5692 	totalram_pages_add(count);
5693 	setup_per_zone_lowmem_reserve();
5694 }
5695 EXPORT_SYMBOL(adjust_managed_page_count);
5696 
free_reserved_area(void * start,void * end,int poison,const char * s)5697 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5698 {
5699 	void *pos;
5700 	unsigned long pages = 0;
5701 
5702 	start = (void *)PAGE_ALIGN((unsigned long)start);
5703 	end = (void *)((unsigned long)end & PAGE_MASK);
5704 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5705 		struct page *page = virt_to_page(pos);
5706 		void *direct_map_addr;
5707 
5708 		/*
5709 		 * 'direct_map_addr' might be different from 'pos'
5710 		 * because some architectures' virt_to_page()
5711 		 * work with aliases.  Getting the direct map
5712 		 * address ensures that we get a _writeable_
5713 		 * alias for the memset().
5714 		 */
5715 		direct_map_addr = page_address(page);
5716 		/*
5717 		 * Perform a kasan-unchecked memset() since this memory
5718 		 * has not been initialized.
5719 		 */
5720 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5721 		if ((unsigned int)poison <= 0xFF)
5722 			memset(direct_map_addr, poison, PAGE_SIZE);
5723 
5724 		free_reserved_page(page);
5725 	}
5726 
5727 	if (pages && s)
5728 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5729 
5730 	return pages;
5731 }
5732 
free_reserved_page(struct page * page)5733 void free_reserved_page(struct page *page)
5734 {
5735 	clear_page_tag_ref(page);
5736 	ClearPageReserved(page);
5737 	init_page_count(page);
5738 	__free_page(page);
5739 	adjust_managed_page_count(page, 1);
5740 }
5741 EXPORT_SYMBOL(free_reserved_page);
5742 
page_alloc_cpu_dead(unsigned int cpu)5743 static int page_alloc_cpu_dead(unsigned int cpu)
5744 {
5745 	struct zone *zone;
5746 
5747 	lru_add_drain_cpu(cpu);
5748 	mlock_drain_remote(cpu);
5749 	drain_pages(cpu);
5750 
5751 	/*
5752 	 * Spill the event counters of the dead processor
5753 	 * into the current processors event counters.
5754 	 * This artificially elevates the count of the current
5755 	 * processor.
5756 	 */
5757 	vm_events_fold_cpu(cpu);
5758 
5759 	/*
5760 	 * Zero the differential counters of the dead processor
5761 	 * so that the vm statistics are consistent.
5762 	 *
5763 	 * This is only okay since the processor is dead and cannot
5764 	 * race with what we are doing.
5765 	 */
5766 	cpu_vm_stats_fold(cpu);
5767 
5768 	for_each_populated_zone(zone)
5769 		zone_pcp_update(zone, 0);
5770 
5771 	return 0;
5772 }
5773 
page_alloc_cpu_online(unsigned int cpu)5774 static int page_alloc_cpu_online(unsigned int cpu)
5775 {
5776 	struct zone *zone;
5777 
5778 	for_each_populated_zone(zone)
5779 		zone_pcp_update(zone, 1);
5780 	return 0;
5781 }
5782 
page_alloc_init_cpuhp(void)5783 void __init page_alloc_init_cpuhp(void)
5784 {
5785 	int ret;
5786 
5787 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5788 					"mm/page_alloc:pcp",
5789 					page_alloc_cpu_online,
5790 					page_alloc_cpu_dead);
5791 	WARN_ON(ret < 0);
5792 }
5793 
5794 /*
5795  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5796  *	or min_free_kbytes changes.
5797  */
calculate_totalreserve_pages(void)5798 static void calculate_totalreserve_pages(void)
5799 {
5800 	struct pglist_data *pgdat;
5801 	unsigned long reserve_pages = 0;
5802 	enum zone_type i, j;
5803 
5804 	for_each_online_pgdat(pgdat) {
5805 
5806 		pgdat->totalreserve_pages = 0;
5807 
5808 		for (i = 0; i < MAX_NR_ZONES; i++) {
5809 			struct zone *zone = pgdat->node_zones + i;
5810 			long max = 0;
5811 			unsigned long managed_pages = zone_managed_pages(zone);
5812 
5813 			/* Find valid and maximum lowmem_reserve in the zone */
5814 			for (j = i; j < MAX_NR_ZONES; j++) {
5815 				if (zone->lowmem_reserve[j] > max)
5816 					max = zone->lowmem_reserve[j];
5817 			}
5818 
5819 			/* we treat the high watermark as reserved pages. */
5820 			max += high_wmark_pages(zone);
5821 
5822 			if (max > managed_pages)
5823 				max = managed_pages;
5824 
5825 			pgdat->totalreserve_pages += max;
5826 
5827 			reserve_pages += max;
5828 		}
5829 	}
5830 	totalreserve_pages = reserve_pages;
5831 }
5832 
5833 /*
5834  * setup_per_zone_lowmem_reserve - called whenever
5835  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5836  *	has a correct pages reserved value, so an adequate number of
5837  *	pages are left in the zone after a successful __alloc_pages().
5838  */
setup_per_zone_lowmem_reserve(void)5839 static void setup_per_zone_lowmem_reserve(void)
5840 {
5841 	struct pglist_data *pgdat;
5842 	enum zone_type i, j;
5843 
5844 	for_each_online_pgdat(pgdat) {
5845 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5846 			struct zone *zone = &pgdat->node_zones[i];
5847 			int ratio = sysctl_lowmem_reserve_ratio[i];
5848 			bool clear = !ratio || !zone_managed_pages(zone);
5849 			unsigned long managed_pages = 0;
5850 
5851 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5852 				struct zone *upper_zone = &pgdat->node_zones[j];
5853 
5854 				managed_pages += zone_managed_pages(upper_zone);
5855 
5856 				if (clear)
5857 					zone->lowmem_reserve[j] = 0;
5858 				else
5859 					zone->lowmem_reserve[j] = managed_pages / ratio;
5860 			}
5861 		}
5862 	}
5863 
5864 	/* update totalreserve_pages */
5865 	calculate_totalreserve_pages();
5866 }
5867 
__setup_per_zone_wmarks(void)5868 static void __setup_per_zone_wmarks(void)
5869 {
5870 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5871 	unsigned long lowmem_pages = 0;
5872 	struct zone *zone;
5873 	unsigned long flags;
5874 
5875 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5876 	for_each_zone(zone) {
5877 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5878 			lowmem_pages += zone_managed_pages(zone);
5879 	}
5880 
5881 	for_each_zone(zone) {
5882 		u64 tmp;
5883 
5884 		spin_lock_irqsave(&zone->lock, flags);
5885 		tmp = (u64)pages_min * zone_managed_pages(zone);
5886 		tmp = div64_ul(tmp, lowmem_pages);
5887 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5888 			/*
5889 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5890 			 * need highmem and movable zones pages, so cap pages_min
5891 			 * to a small  value here.
5892 			 *
5893 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5894 			 * deltas control async page reclaim, and so should
5895 			 * not be capped for highmem and movable zones.
5896 			 */
5897 			unsigned long min_pages;
5898 
5899 			min_pages = zone_managed_pages(zone) / 1024;
5900 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5901 			zone->_watermark[WMARK_MIN] = min_pages;
5902 		} else {
5903 			/*
5904 			 * If it's a lowmem zone, reserve a number of pages
5905 			 * proportionate to the zone's size.
5906 			 */
5907 			zone->_watermark[WMARK_MIN] = tmp;
5908 		}
5909 
5910 		/*
5911 		 * Set the kswapd watermarks distance according to the
5912 		 * scale factor in proportion to available memory, but
5913 		 * ensure a minimum size on small systems.
5914 		 */
5915 		tmp = max_t(u64, tmp >> 2,
5916 			    mult_frac(zone_managed_pages(zone),
5917 				      watermark_scale_factor, 10000));
5918 
5919 		zone->watermark_boost = 0;
5920 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5921 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5922 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5923 
5924 		spin_unlock_irqrestore(&zone->lock, flags);
5925 	}
5926 
5927 	/* update totalreserve_pages */
5928 	calculate_totalreserve_pages();
5929 }
5930 
5931 /**
5932  * setup_per_zone_wmarks - called when min_free_kbytes changes
5933  * or when memory is hot-{added|removed}
5934  *
5935  * Ensures that the watermark[min,low,high] values for each zone are set
5936  * correctly with respect to min_free_kbytes.
5937  */
setup_per_zone_wmarks(void)5938 void setup_per_zone_wmarks(void)
5939 {
5940 	struct zone *zone;
5941 	static DEFINE_SPINLOCK(lock);
5942 
5943 	spin_lock(&lock);
5944 	__setup_per_zone_wmarks();
5945 	spin_unlock(&lock);
5946 
5947 	/*
5948 	 * The watermark size have changed so update the pcpu batch
5949 	 * and high limits or the limits may be inappropriate.
5950 	 */
5951 	for_each_zone(zone)
5952 		zone_pcp_update(zone, 0);
5953 }
5954 
5955 /*
5956  * Initialise min_free_kbytes.
5957  *
5958  * For small machines we want it small (128k min).  For large machines
5959  * we want it large (256MB max).  But it is not linear, because network
5960  * bandwidth does not increase linearly with machine size.  We use
5961  *
5962  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5963  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5964  *
5965  * which yields
5966  *
5967  * 16MB:	512k
5968  * 32MB:	724k
5969  * 64MB:	1024k
5970  * 128MB:	1448k
5971  * 256MB:	2048k
5972  * 512MB:	2896k
5973  * 1024MB:	4096k
5974  * 2048MB:	5792k
5975  * 4096MB:	8192k
5976  * 8192MB:	11584k
5977  * 16384MB:	16384k
5978  */
calculate_min_free_kbytes(void)5979 void calculate_min_free_kbytes(void)
5980 {
5981 	unsigned long lowmem_kbytes;
5982 	int new_min_free_kbytes;
5983 
5984 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5985 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5986 
5987 	if (new_min_free_kbytes > user_min_free_kbytes)
5988 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5989 	else
5990 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5991 				new_min_free_kbytes, user_min_free_kbytes);
5992 
5993 }
5994 
init_per_zone_wmark_min(void)5995 int __meminit init_per_zone_wmark_min(void)
5996 {
5997 	calculate_min_free_kbytes();
5998 	setup_per_zone_wmarks();
5999 	refresh_zone_stat_thresholds();
6000 	setup_per_zone_lowmem_reserve();
6001 
6002 #ifdef CONFIG_NUMA
6003 	setup_min_unmapped_ratio();
6004 	setup_min_slab_ratio();
6005 #endif
6006 
6007 	khugepaged_min_free_kbytes_update();
6008 
6009 	return 0;
6010 }
postcore_initcall(init_per_zone_wmark_min)6011 postcore_initcall(init_per_zone_wmark_min)
6012 
6013 /*
6014  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6015  *	that we can call two helper functions whenever min_free_kbytes
6016  *	changes.
6017  */
6018 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6019 		void *buffer, size_t *length, loff_t *ppos)
6020 {
6021 	int rc;
6022 
6023 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6024 	if (rc)
6025 		return rc;
6026 
6027 	if (write) {
6028 		user_min_free_kbytes = min_free_kbytes;
6029 		setup_per_zone_wmarks();
6030 	}
6031 	return 0;
6032 }
6033 
watermark_scale_factor_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6034 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6035 		void *buffer, size_t *length, loff_t *ppos)
6036 {
6037 	int rc;
6038 
6039 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6040 	if (rc)
6041 		return rc;
6042 
6043 	if (write)
6044 		setup_per_zone_wmarks();
6045 
6046 	return 0;
6047 }
6048 
6049 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)6050 static void setup_min_unmapped_ratio(void)
6051 {
6052 	pg_data_t *pgdat;
6053 	struct zone *zone;
6054 
6055 	for_each_online_pgdat(pgdat)
6056 		pgdat->min_unmapped_pages = 0;
6057 
6058 	for_each_zone(zone)
6059 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6060 						         sysctl_min_unmapped_ratio) / 100;
6061 }
6062 
6063 
sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6064 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6065 		void *buffer, size_t *length, loff_t *ppos)
6066 {
6067 	int rc;
6068 
6069 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6070 	if (rc)
6071 		return rc;
6072 
6073 	setup_min_unmapped_ratio();
6074 
6075 	return 0;
6076 }
6077 
setup_min_slab_ratio(void)6078 static void setup_min_slab_ratio(void)
6079 {
6080 	pg_data_t *pgdat;
6081 	struct zone *zone;
6082 
6083 	for_each_online_pgdat(pgdat)
6084 		pgdat->min_slab_pages = 0;
6085 
6086 	for_each_zone(zone)
6087 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6088 						     sysctl_min_slab_ratio) / 100;
6089 }
6090 
sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6091 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6092 		void *buffer, size_t *length, loff_t *ppos)
6093 {
6094 	int rc;
6095 
6096 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6097 	if (rc)
6098 		return rc;
6099 
6100 	setup_min_slab_ratio();
6101 
6102 	return 0;
6103 }
6104 #endif
6105 
6106 /*
6107  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6108  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6109  *	whenever sysctl_lowmem_reserve_ratio changes.
6110  *
6111  * The reserve ratio obviously has absolutely no relation with the
6112  * minimum watermarks. The lowmem reserve ratio can only make sense
6113  * if in function of the boot time zone sizes.
6114  */
lowmem_reserve_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6115 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6116 		int write, void *buffer, size_t *length, loff_t *ppos)
6117 {
6118 	int i;
6119 
6120 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6121 
6122 	for (i = 0; i < MAX_NR_ZONES; i++) {
6123 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6124 			sysctl_lowmem_reserve_ratio[i] = 0;
6125 	}
6126 
6127 	setup_per_zone_lowmem_reserve();
6128 	return 0;
6129 }
6130 
6131 /*
6132  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6133  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6134  * pagelist can have before it gets flushed back to buddy allocator.
6135  */
percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6136 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6137 		int write, void *buffer, size_t *length, loff_t *ppos)
6138 {
6139 	struct zone *zone;
6140 	int old_percpu_pagelist_high_fraction;
6141 	int ret;
6142 
6143 	mutex_lock(&pcp_batch_high_lock);
6144 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6145 
6146 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6147 	if (!write || ret < 0)
6148 		goto out;
6149 
6150 	/* Sanity checking to avoid pcp imbalance */
6151 	if (percpu_pagelist_high_fraction &&
6152 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6153 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6154 		ret = -EINVAL;
6155 		goto out;
6156 	}
6157 
6158 	/* No change? */
6159 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6160 		goto out;
6161 
6162 	for_each_populated_zone(zone)
6163 		zone_set_pageset_high_and_batch(zone, 0);
6164 out:
6165 	mutex_unlock(&pcp_batch_high_lock);
6166 	return ret;
6167 }
6168 
6169 static const struct ctl_table page_alloc_sysctl_table[] = {
6170 	{
6171 		.procname	= "min_free_kbytes",
6172 		.data		= &min_free_kbytes,
6173 		.maxlen		= sizeof(min_free_kbytes),
6174 		.mode		= 0644,
6175 		.proc_handler	= min_free_kbytes_sysctl_handler,
6176 		.extra1		= SYSCTL_ZERO,
6177 	},
6178 	{
6179 		.procname	= "watermark_boost_factor",
6180 		.data		= &watermark_boost_factor,
6181 		.maxlen		= sizeof(watermark_boost_factor),
6182 		.mode		= 0644,
6183 		.proc_handler	= proc_dointvec_minmax,
6184 		.extra1		= SYSCTL_ZERO,
6185 	},
6186 	{
6187 		.procname	= "watermark_scale_factor",
6188 		.data		= &watermark_scale_factor,
6189 		.maxlen		= sizeof(watermark_scale_factor),
6190 		.mode		= 0644,
6191 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6192 		.extra1		= SYSCTL_ONE,
6193 		.extra2		= SYSCTL_THREE_THOUSAND,
6194 	},
6195 	{
6196 		.procname	= "percpu_pagelist_high_fraction",
6197 		.data		= &percpu_pagelist_high_fraction,
6198 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6199 		.mode		= 0644,
6200 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6201 		.extra1		= SYSCTL_ZERO,
6202 	},
6203 	{
6204 		.procname	= "lowmem_reserve_ratio",
6205 		.data		= &sysctl_lowmem_reserve_ratio,
6206 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6207 		.mode		= 0644,
6208 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6209 	},
6210 #ifdef CONFIG_NUMA
6211 	{
6212 		.procname	= "numa_zonelist_order",
6213 		.data		= &numa_zonelist_order,
6214 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6215 		.mode		= 0644,
6216 		.proc_handler	= numa_zonelist_order_handler,
6217 	},
6218 	{
6219 		.procname	= "min_unmapped_ratio",
6220 		.data		= &sysctl_min_unmapped_ratio,
6221 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6222 		.mode		= 0644,
6223 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6224 		.extra1		= SYSCTL_ZERO,
6225 		.extra2		= SYSCTL_ONE_HUNDRED,
6226 	},
6227 	{
6228 		.procname	= "min_slab_ratio",
6229 		.data		= &sysctl_min_slab_ratio,
6230 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6231 		.mode		= 0644,
6232 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6233 		.extra1		= SYSCTL_ZERO,
6234 		.extra2		= SYSCTL_ONE_HUNDRED,
6235 	},
6236 #endif
6237 };
6238 
page_alloc_sysctl_init(void)6239 void __init page_alloc_sysctl_init(void)
6240 {
6241 	register_sysctl_init("vm", page_alloc_sysctl_table);
6242 }
6243 
6244 #ifdef CONFIG_CONTIG_ALLOC
6245 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6246 static void alloc_contig_dump_pages(struct list_head *page_list)
6247 {
6248 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6249 
6250 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6251 		struct page *page;
6252 
6253 		dump_stack();
6254 		list_for_each_entry(page, page_list, lru)
6255 			dump_page(page, "migration failure");
6256 	}
6257 }
6258 
6259 /*
6260  * [start, end) must belong to a single zone.
6261  * @migratetype: using migratetype to filter the type of migration in
6262  *		trace_mm_alloc_contig_migrate_range_info.
6263  */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end,int migratetype)6264 static int __alloc_contig_migrate_range(struct compact_control *cc,
6265 		unsigned long start, unsigned long end, int migratetype)
6266 {
6267 	/* This function is based on compact_zone() from compaction.c. */
6268 	unsigned int nr_reclaimed;
6269 	unsigned long pfn = start;
6270 	unsigned int tries = 0;
6271 	int ret = 0;
6272 	struct migration_target_control mtc = {
6273 		.nid = zone_to_nid(cc->zone),
6274 		.gfp_mask = cc->gfp_mask,
6275 		.reason = MR_CONTIG_RANGE,
6276 	};
6277 	struct page *page;
6278 	unsigned long total_mapped = 0;
6279 	unsigned long total_migrated = 0;
6280 	unsigned long total_reclaimed = 0;
6281 
6282 	lru_cache_disable();
6283 
6284 	while (pfn < end || !list_empty(&cc->migratepages)) {
6285 		if (fatal_signal_pending(current)) {
6286 			ret = -EINTR;
6287 			break;
6288 		}
6289 
6290 		if (list_empty(&cc->migratepages)) {
6291 			cc->nr_migratepages = 0;
6292 			ret = isolate_migratepages_range(cc, pfn, end);
6293 			if (ret && ret != -EAGAIN)
6294 				break;
6295 			pfn = cc->migrate_pfn;
6296 			tries = 0;
6297 		} else if (++tries == 5) {
6298 			ret = -EBUSY;
6299 			break;
6300 		}
6301 
6302 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6303 							&cc->migratepages);
6304 		cc->nr_migratepages -= nr_reclaimed;
6305 
6306 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6307 			total_reclaimed += nr_reclaimed;
6308 			list_for_each_entry(page, &cc->migratepages, lru) {
6309 				struct folio *folio = page_folio(page);
6310 
6311 				total_mapped += folio_mapped(folio) *
6312 						folio_nr_pages(folio);
6313 			}
6314 		}
6315 
6316 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6317 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6318 
6319 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6320 			total_migrated += cc->nr_migratepages;
6321 
6322 		/*
6323 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6324 		 * to retry again over this error, so do the same here.
6325 		 */
6326 		if (ret == -ENOMEM)
6327 			break;
6328 	}
6329 
6330 	lru_cache_enable();
6331 	if (ret < 0) {
6332 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6333 			alloc_contig_dump_pages(&cc->migratepages);
6334 		putback_movable_pages(&cc->migratepages);
6335 	}
6336 
6337 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6338 						 total_migrated,
6339 						 total_reclaimed,
6340 						 total_mapped);
6341 	return (ret < 0) ? ret : 0;
6342 }
6343 
split_free_pages(struct list_head * list,gfp_t gfp_mask)6344 static void split_free_pages(struct list_head *list, gfp_t gfp_mask)
6345 {
6346 	int order;
6347 
6348 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6349 		struct page *page, *next;
6350 		int nr_pages = 1 << order;
6351 
6352 		list_for_each_entry_safe(page, next, &list[order], lru) {
6353 			int i;
6354 
6355 			post_alloc_hook(page, order, gfp_mask);
6356 			set_page_refcounted(page);
6357 			if (!order)
6358 				continue;
6359 
6360 			split_page(page, order);
6361 
6362 			/* Add all subpages to the order-0 head, in sequence. */
6363 			list_del(&page->lru);
6364 			for (i = 0; i < nr_pages; i++)
6365 				list_add_tail(&page[i].lru, &list[0]);
6366 		}
6367 	}
6368 }
6369 
__alloc_contig_verify_gfp_mask(gfp_t gfp_mask,gfp_t * gfp_cc_mask)6370 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask)
6371 {
6372 	const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
6373 	const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
6374 				  __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO;
6375 	const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
6376 
6377 	/*
6378 	 * We are given the range to allocate; node, mobility and placement
6379 	 * hints are irrelevant at this point. We'll simply ignore them.
6380 	 */
6381 	gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE |
6382 		      __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE);
6383 
6384 	/*
6385 	 * We only support most reclaim flags (but not NOFAIL/NORETRY), and
6386 	 * selected action flags.
6387 	 */
6388 	if (gfp_mask & ~(reclaim_mask | action_mask))
6389 		return -EINVAL;
6390 
6391 	/*
6392 	 * Flags to control page compaction/migration/reclaim, to free up our
6393 	 * page range. Migratable pages are movable, __GFP_MOVABLE is implied
6394 	 * for them.
6395 	 *
6396 	 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that
6397 	 * to not degrade callers.
6398 	 */
6399 	*gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) |
6400 			__GFP_MOVABLE | __GFP_RETRY_MAYFAIL;
6401 	return 0;
6402 }
6403 
6404 /**
6405  * alloc_contig_range() -- tries to allocate given range of pages
6406  * @start:	start PFN to allocate
6407  * @end:	one-past-the-last PFN to allocate
6408  * @migratetype:	migratetype of the underlying pageblocks (either
6409  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6410  *			in range must have the same migratetype and it must
6411  *			be either of the two.
6412  * @gfp_mask:	GFP mask. Node/zone/placement hints are ignored; only some
6413  *		action and reclaim modifiers are supported. Reclaim modifiers
6414  *		control allocation behavior during compaction/migration/reclaim.
6415  *
6416  * The PFN range does not have to be pageblock aligned. The PFN range must
6417  * belong to a single zone.
6418  *
6419  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6420  * pageblocks in the range.  Once isolated, the pageblocks should not
6421  * be modified by others.
6422  *
6423  * Return: zero on success or negative error code.  On success all
6424  * pages which PFN is in [start, end) are allocated for the caller and
6425  * need to be freed with free_contig_range().
6426  */
alloc_contig_range_noprof(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6427 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6428 		       unsigned migratetype, gfp_t gfp_mask)
6429 {
6430 	unsigned long outer_start, outer_end;
6431 	int ret = 0;
6432 
6433 	struct compact_control cc = {
6434 		.nr_migratepages = 0,
6435 		.order = -1,
6436 		.zone = page_zone(pfn_to_page(start)),
6437 		.mode = MIGRATE_SYNC,
6438 		.ignore_skip_hint = true,
6439 		.no_set_skip_hint = true,
6440 		.alloc_contig = true,
6441 	};
6442 	INIT_LIST_HEAD(&cc.migratepages);
6443 
6444 	gfp_mask = current_gfp_context(gfp_mask);
6445 	if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask))
6446 		return -EINVAL;
6447 
6448 	/*
6449 	 * What we do here is we mark all pageblocks in range as
6450 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6451 	 * have different sizes, and due to the way page allocator
6452 	 * work, start_isolate_page_range() has special handlings for this.
6453 	 *
6454 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6455 	 * migrate the pages from an unaligned range (ie. pages that
6456 	 * we are interested in). This will put all the pages in
6457 	 * range back to page allocator as MIGRATE_ISOLATE.
6458 	 *
6459 	 * When this is done, we take the pages in range from page
6460 	 * allocator removing them from the buddy system.  This way
6461 	 * page allocator will never consider using them.
6462 	 *
6463 	 * This lets us mark the pageblocks back as
6464 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6465 	 * aligned range but not in the unaligned, original range are
6466 	 * put back to page allocator so that buddy can use them.
6467 	 */
6468 
6469 	ret = start_isolate_page_range(start, end, migratetype, 0);
6470 	if (ret)
6471 		goto done;
6472 
6473 	drain_all_pages(cc.zone);
6474 
6475 	/*
6476 	 * In case of -EBUSY, we'd like to know which page causes problem.
6477 	 * So, just fall through. test_pages_isolated() has a tracepoint
6478 	 * which will report the busy page.
6479 	 *
6480 	 * It is possible that busy pages could become available before
6481 	 * the call to test_pages_isolated, and the range will actually be
6482 	 * allocated.  So, if we fall through be sure to clear ret so that
6483 	 * -EBUSY is not accidentally used or returned to caller.
6484 	 */
6485 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6486 	if (ret && ret != -EBUSY)
6487 		goto done;
6488 
6489 	/*
6490 	 * When in-use hugetlb pages are migrated, they may simply be released
6491 	 * back into the free hugepage pool instead of being returned to the
6492 	 * buddy system.  After the migration of in-use huge pages is completed,
6493 	 * we will invoke replace_free_hugepage_folios() to ensure that these
6494 	 * hugepages are properly released to the buddy system.
6495 	 */
6496 	ret = replace_free_hugepage_folios(start, end);
6497 	if (ret)
6498 		goto done;
6499 
6500 	/*
6501 	 * Pages from [start, end) are within a pageblock_nr_pages
6502 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6503 	 * more, all pages in [start, end) are free in page allocator.
6504 	 * What we are going to do is to allocate all pages from
6505 	 * [start, end) (that is remove them from page allocator).
6506 	 *
6507 	 * The only problem is that pages at the beginning and at the
6508 	 * end of interesting range may be not aligned with pages that
6509 	 * page allocator holds, ie. they can be part of higher order
6510 	 * pages.  Because of this, we reserve the bigger range and
6511 	 * once this is done free the pages we are not interested in.
6512 	 *
6513 	 * We don't have to hold zone->lock here because the pages are
6514 	 * isolated thus they won't get removed from buddy.
6515 	 */
6516 	outer_start = find_large_buddy(start);
6517 
6518 	/* Make sure the range is really isolated. */
6519 	if (test_pages_isolated(outer_start, end, 0)) {
6520 		ret = -EBUSY;
6521 		goto done;
6522 	}
6523 
6524 	/* Grab isolated pages from freelists. */
6525 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6526 	if (!outer_end) {
6527 		ret = -EBUSY;
6528 		goto done;
6529 	}
6530 
6531 	if (!(gfp_mask & __GFP_COMP)) {
6532 		split_free_pages(cc.freepages, gfp_mask);
6533 
6534 		/* Free head and tail (if any) */
6535 		if (start != outer_start)
6536 			free_contig_range(outer_start, start - outer_start);
6537 		if (end != outer_end)
6538 			free_contig_range(end, outer_end - end);
6539 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6540 		struct page *head = pfn_to_page(start);
6541 		int order = ilog2(end - start);
6542 
6543 		check_new_pages(head, order);
6544 		prep_new_page(head, order, gfp_mask, 0);
6545 		set_page_refcounted(head);
6546 	} else {
6547 		ret = -EINVAL;
6548 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6549 		     start, end, outer_start, outer_end);
6550 	}
6551 done:
6552 	undo_isolate_page_range(start, end, migratetype);
6553 	return ret;
6554 }
6555 EXPORT_SYMBOL(alloc_contig_range_noprof);
6556 
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6557 static int __alloc_contig_pages(unsigned long start_pfn,
6558 				unsigned long nr_pages, gfp_t gfp_mask)
6559 {
6560 	unsigned long end_pfn = start_pfn + nr_pages;
6561 
6562 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6563 				   gfp_mask);
6564 }
6565 
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6566 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6567 				   unsigned long nr_pages)
6568 {
6569 	unsigned long i, end_pfn = start_pfn + nr_pages;
6570 	struct page *page;
6571 
6572 	for (i = start_pfn; i < end_pfn; i++) {
6573 		page = pfn_to_online_page(i);
6574 		if (!page)
6575 			return false;
6576 
6577 		if (page_zone(page) != z)
6578 			return false;
6579 
6580 		if (PageReserved(page))
6581 			return false;
6582 
6583 		if (PageHuge(page))
6584 			return false;
6585 	}
6586 	return true;
6587 }
6588 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6589 static bool zone_spans_last_pfn(const struct zone *zone,
6590 				unsigned long start_pfn, unsigned long nr_pages)
6591 {
6592 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6593 
6594 	return zone_spans_pfn(zone, last_pfn);
6595 }
6596 
6597 /**
6598  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6599  * @nr_pages:	Number of contiguous pages to allocate
6600  * @gfp_mask:	GFP mask. Node/zone/placement hints limit the search; only some
6601  *		action and reclaim modifiers are supported. Reclaim modifiers
6602  *		control allocation behavior during compaction/migration/reclaim.
6603  * @nid:	Target node
6604  * @nodemask:	Mask for other possible nodes
6605  *
6606  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6607  * on an applicable zonelist to find a contiguous pfn range which can then be
6608  * tried for allocation with alloc_contig_range(). This routine is intended
6609  * for allocation requests which can not be fulfilled with the buddy allocator.
6610  *
6611  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6612  * power of two, then allocated range is also guaranteed to be aligned to same
6613  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6614  *
6615  * Allocated pages can be freed with free_contig_range() or by manually calling
6616  * __free_page() on each allocated page.
6617  *
6618  * Return: pointer to contiguous pages on success, or NULL if not successful.
6619  */
alloc_contig_pages_noprof(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6620 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6621 				 int nid, nodemask_t *nodemask)
6622 {
6623 	unsigned long ret, pfn, flags;
6624 	struct zonelist *zonelist;
6625 	struct zone *zone;
6626 	struct zoneref *z;
6627 
6628 	zonelist = node_zonelist(nid, gfp_mask);
6629 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6630 					gfp_zone(gfp_mask), nodemask) {
6631 		spin_lock_irqsave(&zone->lock, flags);
6632 
6633 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6634 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6635 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6636 				/*
6637 				 * We release the zone lock here because
6638 				 * alloc_contig_range() will also lock the zone
6639 				 * at some point. If there's an allocation
6640 				 * spinning on this lock, it may win the race
6641 				 * and cause alloc_contig_range() to fail...
6642 				 */
6643 				spin_unlock_irqrestore(&zone->lock, flags);
6644 				ret = __alloc_contig_pages(pfn, nr_pages,
6645 							gfp_mask);
6646 				if (!ret)
6647 					return pfn_to_page(pfn);
6648 				spin_lock_irqsave(&zone->lock, flags);
6649 			}
6650 			pfn += nr_pages;
6651 		}
6652 		spin_unlock_irqrestore(&zone->lock, flags);
6653 	}
6654 	return NULL;
6655 }
6656 #endif /* CONFIG_CONTIG_ALLOC */
6657 
free_contig_range(unsigned long pfn,unsigned long nr_pages)6658 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6659 {
6660 	unsigned long count = 0;
6661 	struct folio *folio = pfn_folio(pfn);
6662 
6663 	if (folio_test_large(folio)) {
6664 		int expected = folio_nr_pages(folio);
6665 
6666 		if (nr_pages == expected)
6667 			folio_put(folio);
6668 		else
6669 			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6670 			     pfn, nr_pages, expected);
6671 		return;
6672 	}
6673 
6674 	for (; nr_pages--; pfn++) {
6675 		struct page *page = pfn_to_page(pfn);
6676 
6677 		count += page_count(page) != 1;
6678 		__free_page(page);
6679 	}
6680 	WARN(count != 0, "%lu pages are still in use!\n", count);
6681 }
6682 EXPORT_SYMBOL(free_contig_range);
6683 
6684 /*
6685  * Effectively disable pcplists for the zone by setting the high limit to 0
6686  * and draining all cpus. A concurrent page freeing on another CPU that's about
6687  * to put the page on pcplist will either finish before the drain and the page
6688  * will be drained, or observe the new high limit and skip the pcplist.
6689  *
6690  * Must be paired with a call to zone_pcp_enable().
6691  */
zone_pcp_disable(struct zone * zone)6692 void zone_pcp_disable(struct zone *zone)
6693 {
6694 	mutex_lock(&pcp_batch_high_lock);
6695 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6696 	__drain_all_pages(zone, true);
6697 }
6698 
zone_pcp_enable(struct zone * zone)6699 void zone_pcp_enable(struct zone *zone)
6700 {
6701 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6702 		zone->pageset_high_max, zone->pageset_batch);
6703 	mutex_unlock(&pcp_batch_high_lock);
6704 }
6705 
zone_pcp_reset(struct zone * zone)6706 void zone_pcp_reset(struct zone *zone)
6707 {
6708 	int cpu;
6709 	struct per_cpu_zonestat *pzstats;
6710 
6711 	if (zone->per_cpu_pageset != &boot_pageset) {
6712 		for_each_online_cpu(cpu) {
6713 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6714 			drain_zonestat(zone, pzstats);
6715 		}
6716 		free_percpu(zone->per_cpu_pageset);
6717 		zone->per_cpu_pageset = &boot_pageset;
6718 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6719 			free_percpu(zone->per_cpu_zonestats);
6720 			zone->per_cpu_zonestats = &boot_zonestats;
6721 		}
6722 	}
6723 }
6724 
6725 #ifdef CONFIG_MEMORY_HOTREMOVE
6726 /*
6727  * All pages in the range must be in a single zone, must not contain holes,
6728  * must span full sections, and must be isolated before calling this function.
6729  *
6730  * Returns the number of managed (non-PageOffline()) pages in the range: the
6731  * number of pages for which memory offlining code must adjust managed page
6732  * counters using adjust_managed_page_count().
6733  */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6734 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6735 		unsigned long end_pfn)
6736 {
6737 	unsigned long already_offline = 0, flags;
6738 	unsigned long pfn = start_pfn;
6739 	struct page *page;
6740 	struct zone *zone;
6741 	unsigned int order;
6742 
6743 	offline_mem_sections(pfn, end_pfn);
6744 	zone = page_zone(pfn_to_page(pfn));
6745 	spin_lock_irqsave(&zone->lock, flags);
6746 	while (pfn < end_pfn) {
6747 		page = pfn_to_page(pfn);
6748 		/*
6749 		 * The HWPoisoned page may be not in buddy system, and
6750 		 * page_count() is not 0.
6751 		 */
6752 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6753 			pfn++;
6754 			continue;
6755 		}
6756 		/*
6757 		 * At this point all remaining PageOffline() pages have a
6758 		 * reference count of 0 and can simply be skipped.
6759 		 */
6760 		if (PageOffline(page)) {
6761 			BUG_ON(page_count(page));
6762 			BUG_ON(PageBuddy(page));
6763 			already_offline++;
6764 			pfn++;
6765 			continue;
6766 		}
6767 
6768 		BUG_ON(page_count(page));
6769 		BUG_ON(!PageBuddy(page));
6770 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6771 		order = buddy_order(page);
6772 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6773 		pfn += (1 << order);
6774 	}
6775 	spin_unlock_irqrestore(&zone->lock, flags);
6776 
6777 	return end_pfn - start_pfn - already_offline;
6778 }
6779 #endif
6780 
6781 /*
6782  * This function returns a stable result only if called under zone lock.
6783  */
is_free_buddy_page(const struct page * page)6784 bool is_free_buddy_page(const struct page *page)
6785 {
6786 	unsigned long pfn = page_to_pfn(page);
6787 	unsigned int order;
6788 
6789 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6790 		const struct page *head = page - (pfn & ((1 << order) - 1));
6791 
6792 		if (PageBuddy(head) &&
6793 		    buddy_order_unsafe(head) >= order)
6794 			break;
6795 	}
6796 
6797 	return order <= MAX_PAGE_ORDER;
6798 }
6799 EXPORT_SYMBOL(is_free_buddy_page);
6800 
6801 #ifdef CONFIG_MEMORY_FAILURE
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)6802 static inline void add_to_free_list(struct page *page, struct zone *zone,
6803 				    unsigned int order, int migratetype,
6804 				    bool tail)
6805 {
6806 	__add_to_free_list(page, zone, order, migratetype, tail);
6807 	account_freepages(zone, 1 << order, migratetype);
6808 }
6809 
6810 /*
6811  * Break down a higher-order page in sub-pages, and keep our target out of
6812  * buddy allocator.
6813  */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)6814 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6815 				   struct page *target, int low, int high,
6816 				   int migratetype)
6817 {
6818 	unsigned long size = 1 << high;
6819 	struct page *current_buddy;
6820 
6821 	while (high > low) {
6822 		high--;
6823 		size >>= 1;
6824 
6825 		if (target >= &page[size]) {
6826 			current_buddy = page;
6827 			page = page + size;
6828 		} else {
6829 			current_buddy = page + size;
6830 		}
6831 
6832 		if (set_page_guard(zone, current_buddy, high))
6833 			continue;
6834 
6835 		add_to_free_list(current_buddy, zone, high, migratetype, false);
6836 		set_buddy_order(current_buddy, high);
6837 	}
6838 }
6839 
6840 /*
6841  * Take a page that will be marked as poisoned off the buddy allocator.
6842  */
take_page_off_buddy(struct page * page)6843 bool take_page_off_buddy(struct page *page)
6844 {
6845 	struct zone *zone = page_zone(page);
6846 	unsigned long pfn = page_to_pfn(page);
6847 	unsigned long flags;
6848 	unsigned int order;
6849 	bool ret = false;
6850 
6851 	spin_lock_irqsave(&zone->lock, flags);
6852 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6853 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6854 		int page_order = buddy_order(page_head);
6855 
6856 		if (PageBuddy(page_head) && page_order >= order) {
6857 			unsigned long pfn_head = page_to_pfn(page_head);
6858 			int migratetype = get_pfnblock_migratetype(page_head,
6859 								   pfn_head);
6860 
6861 			del_page_from_free_list(page_head, zone, page_order,
6862 						migratetype);
6863 			break_down_buddy_pages(zone, page_head, page, 0,
6864 						page_order, migratetype);
6865 			SetPageHWPoisonTakenOff(page);
6866 			ret = true;
6867 			break;
6868 		}
6869 		if (page_count(page_head) > 0)
6870 			break;
6871 	}
6872 	spin_unlock_irqrestore(&zone->lock, flags);
6873 	return ret;
6874 }
6875 
6876 /*
6877  * Cancel takeoff done by take_page_off_buddy().
6878  */
put_page_back_buddy(struct page * page)6879 bool put_page_back_buddy(struct page *page)
6880 {
6881 	struct zone *zone = page_zone(page);
6882 	unsigned long flags;
6883 	bool ret = false;
6884 
6885 	spin_lock_irqsave(&zone->lock, flags);
6886 	if (put_page_testzero(page)) {
6887 		unsigned long pfn = page_to_pfn(page);
6888 		int migratetype = get_pfnblock_migratetype(page, pfn);
6889 
6890 		ClearPageHWPoisonTakenOff(page);
6891 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6892 		if (TestClearPageHWPoison(page)) {
6893 			ret = true;
6894 		}
6895 	}
6896 	spin_unlock_irqrestore(&zone->lock, flags);
6897 
6898 	return ret;
6899 }
6900 #endif
6901 
6902 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)6903 bool has_managed_dma(void)
6904 {
6905 	struct pglist_data *pgdat;
6906 
6907 	for_each_online_pgdat(pgdat) {
6908 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6909 
6910 		if (managed_zone(zone))
6911 			return true;
6912 	}
6913 	return false;
6914 }
6915 #endif /* CONFIG_ZONE_DMA */
6916 
6917 #ifdef CONFIG_UNACCEPTED_MEMORY
6918 
6919 /* Counts number of zones with unaccepted pages. */
6920 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6921 
6922 static bool lazy_accept = true;
6923 
accept_memory_parse(char * p)6924 static int __init accept_memory_parse(char *p)
6925 {
6926 	if (!strcmp(p, "lazy")) {
6927 		lazy_accept = true;
6928 		return 0;
6929 	} else if (!strcmp(p, "eager")) {
6930 		lazy_accept = false;
6931 		return 0;
6932 	} else {
6933 		return -EINVAL;
6934 	}
6935 }
6936 early_param("accept_memory", accept_memory_parse);
6937 
page_contains_unaccepted(struct page * page,unsigned int order)6938 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6939 {
6940 	phys_addr_t start = page_to_phys(page);
6941 
6942 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
6943 }
6944 
__accept_page(struct zone * zone,unsigned long * flags,struct page * page)6945 static void __accept_page(struct zone *zone, unsigned long *flags,
6946 			  struct page *page)
6947 {
6948 	bool last;
6949 
6950 	list_del(&page->lru);
6951 	last = list_empty(&zone->unaccepted_pages);
6952 
6953 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6954 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6955 	__ClearPageUnaccepted(page);
6956 	spin_unlock_irqrestore(&zone->lock, *flags);
6957 
6958 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
6959 
6960 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6961 
6962 	if (last)
6963 		static_branch_dec(&zones_with_unaccepted_pages);
6964 }
6965 
accept_page(struct page * page)6966 void accept_page(struct page *page)
6967 {
6968 	struct zone *zone = page_zone(page);
6969 	unsigned long flags;
6970 
6971 	spin_lock_irqsave(&zone->lock, flags);
6972 	if (!PageUnaccepted(page)) {
6973 		spin_unlock_irqrestore(&zone->lock, flags);
6974 		return;
6975 	}
6976 
6977 	/* Unlocks zone->lock */
6978 	__accept_page(zone, &flags, page);
6979 }
6980 
try_to_accept_memory_one(struct zone * zone)6981 static bool try_to_accept_memory_one(struct zone *zone)
6982 {
6983 	unsigned long flags;
6984 	struct page *page;
6985 
6986 	spin_lock_irqsave(&zone->lock, flags);
6987 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6988 					struct page, lru);
6989 	if (!page) {
6990 		spin_unlock_irqrestore(&zone->lock, flags);
6991 		return false;
6992 	}
6993 
6994 	/* Unlocks zone->lock */
6995 	__accept_page(zone, &flags, page);
6996 
6997 	return true;
6998 }
6999 
has_unaccepted_memory(void)7000 static inline bool has_unaccepted_memory(void)
7001 {
7002 	return static_branch_unlikely(&zones_with_unaccepted_pages);
7003 }
7004 
cond_accept_memory(struct zone * zone,unsigned int order)7005 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7006 {
7007 	long to_accept;
7008 	bool ret = false;
7009 
7010 	if (!has_unaccepted_memory())
7011 		return false;
7012 
7013 	if (list_empty(&zone->unaccepted_pages))
7014 		return false;
7015 
7016 	/* How much to accept to get to promo watermark? */
7017 	to_accept = promo_wmark_pages(zone) -
7018 		    (zone_page_state(zone, NR_FREE_PAGES) -
7019 		    __zone_watermark_unusable_free(zone, order, 0) -
7020 		    zone_page_state(zone, NR_UNACCEPTED));
7021 
7022 	while (to_accept > 0) {
7023 		if (!try_to_accept_memory_one(zone))
7024 			break;
7025 		ret = true;
7026 		to_accept -= MAX_ORDER_NR_PAGES;
7027 	}
7028 
7029 	return ret;
7030 }
7031 
__free_unaccepted(struct page * page)7032 static bool __free_unaccepted(struct page *page)
7033 {
7034 	struct zone *zone = page_zone(page);
7035 	unsigned long flags;
7036 	bool first = false;
7037 
7038 	if (!lazy_accept)
7039 		return false;
7040 
7041 	spin_lock_irqsave(&zone->lock, flags);
7042 	first = list_empty(&zone->unaccepted_pages);
7043 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7044 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7045 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7046 	__SetPageUnaccepted(page);
7047 	spin_unlock_irqrestore(&zone->lock, flags);
7048 
7049 	if (first)
7050 		static_branch_inc(&zones_with_unaccepted_pages);
7051 
7052 	return true;
7053 }
7054 
7055 #else
7056 
page_contains_unaccepted(struct page * page,unsigned int order)7057 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7058 {
7059 	return false;
7060 }
7061 
cond_accept_memory(struct zone * zone,unsigned int order)7062 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7063 {
7064 	return false;
7065 }
7066 
__free_unaccepted(struct page * page)7067 static bool __free_unaccepted(struct page *page)
7068 {
7069 	BUILD_BUG();
7070 	return false;
7071 }
7072 
7073 #endif /* CONFIG_UNACCEPTED_MEMORY */
7074