1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * blk-mq scheduling framework 4 * 5 * Copyright (C) 2016 Jens Axboe 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/list_sort.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 #include "blk-mq.h" 15 #include "blk-mq-debugfs.h" 16 #include "blk-mq-sched.h" 17 #include "blk-wbt.h" 18 19 /* 20 * Mark a hardware queue as needing a restart. 21 */ 22 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) 23 { 24 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 25 return; 26 27 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 28 } 29 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx); 30 31 void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) 32 { 33 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 34 35 /* 36 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch) 37 * in blk_mq_run_hw_queue(). Its pair is the barrier in 38 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART, 39 * meantime new request added to hctx->dispatch is missed to check in 40 * blk_mq_run_hw_queue(). 41 */ 42 smp_mb(); 43 44 blk_mq_run_hw_queue(hctx, true); 45 } 46 47 static int sched_rq_cmp(void *priv, const struct list_head *a, 48 const struct list_head *b) 49 { 50 struct request *rqa = container_of(a, struct request, queuelist); 51 struct request *rqb = container_of(b, struct request, queuelist); 52 53 return rqa->mq_hctx > rqb->mq_hctx; 54 } 55 56 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list) 57 { 58 struct blk_mq_hw_ctx *hctx = 59 list_first_entry(rq_list, struct request, queuelist)->mq_hctx; 60 struct request *rq; 61 LIST_HEAD(hctx_list); 62 63 list_for_each_entry(rq, rq_list, queuelist) { 64 if (rq->mq_hctx != hctx) { 65 list_cut_before(&hctx_list, rq_list, &rq->queuelist); 66 goto dispatch; 67 } 68 } 69 list_splice_tail_init(rq_list, &hctx_list); 70 71 dispatch: 72 return blk_mq_dispatch_rq_list(hctx, &hctx_list, false); 73 } 74 75 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */ 76 77 /* 78 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 79 * its queue by itself in its completion handler, so we don't need to 80 * restart queue if .get_budget() fails to get the budget. 81 * 82 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 83 * be run again. This is necessary to avoid starving flushes. 84 */ 85 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 86 { 87 struct request_queue *q = hctx->queue; 88 struct elevator_queue *e = q->elevator; 89 bool multi_hctxs = false, run_queue = false; 90 bool dispatched = false, busy = false; 91 unsigned int max_dispatch; 92 LIST_HEAD(rq_list); 93 int count = 0; 94 95 if (hctx->dispatch_busy) 96 max_dispatch = 1; 97 else 98 max_dispatch = hctx->queue->nr_requests; 99 100 do { 101 struct request *rq; 102 int budget_token; 103 104 if (e->type->ops.has_work && !e->type->ops.has_work(hctx)) 105 break; 106 107 if (!list_empty_careful(&hctx->dispatch)) { 108 busy = true; 109 break; 110 } 111 112 budget_token = blk_mq_get_dispatch_budget(q); 113 if (budget_token < 0) 114 break; 115 116 rq = e->type->ops.dispatch_request(hctx); 117 if (!rq) { 118 blk_mq_put_dispatch_budget(q, budget_token); 119 /* 120 * We're releasing without dispatching. Holding the 121 * budget could have blocked any "hctx"s with the 122 * same queue and if we didn't dispatch then there's 123 * no guarantee anyone will kick the queue. Kick it 124 * ourselves. 125 */ 126 run_queue = true; 127 break; 128 } 129 130 blk_mq_set_rq_budget_token(rq, budget_token); 131 132 /* 133 * Now this rq owns the budget which has to be released 134 * if this rq won't be queued to driver via .queue_rq() 135 * in blk_mq_dispatch_rq_list(). 136 */ 137 list_add_tail(&rq->queuelist, &rq_list); 138 count++; 139 if (rq->mq_hctx != hctx) 140 multi_hctxs = true; 141 142 /* 143 * If we cannot get tag for the request, stop dequeueing 144 * requests from the IO scheduler. We are unlikely to be able 145 * to submit them anyway and it creates false impression for 146 * scheduling heuristics that the device can take more IO. 147 */ 148 if (!blk_mq_get_driver_tag(rq)) 149 break; 150 } while (count < max_dispatch); 151 152 if (!count) { 153 if (run_queue) 154 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 155 } else if (multi_hctxs) { 156 /* 157 * Requests from different hctx may be dequeued from some 158 * schedulers, such as bfq and deadline. 159 * 160 * Sort the requests in the list according to their hctx, 161 * dispatch batching requests from same hctx at a time. 162 */ 163 list_sort(NULL, &rq_list, sched_rq_cmp); 164 do { 165 dispatched |= blk_mq_dispatch_hctx_list(&rq_list); 166 } while (!list_empty(&rq_list)); 167 } else { 168 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, false); 169 } 170 171 if (busy) 172 return -EAGAIN; 173 return !!dispatched; 174 } 175 176 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 177 { 178 unsigned long end = jiffies + HZ; 179 int ret; 180 181 do { 182 ret = __blk_mq_do_dispatch_sched(hctx); 183 if (ret != 1) 184 break; 185 if (need_resched() || time_is_before_jiffies(end)) { 186 blk_mq_delay_run_hw_queue(hctx, 0); 187 break; 188 } 189 } while (1); 190 191 return ret; 192 } 193 194 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, 195 struct blk_mq_ctx *ctx) 196 { 197 unsigned short idx = ctx->index_hw[hctx->type]; 198 199 if (++idx == hctx->nr_ctx) 200 idx = 0; 201 202 return hctx->ctxs[idx]; 203 } 204 205 /* 206 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 207 * its queue by itself in its completion handler, so we don't need to 208 * restart queue if .get_budget() fails to get the budget. 209 * 210 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 211 * be run again. This is necessary to avoid starving flushes. 212 */ 213 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) 214 { 215 struct request_queue *q = hctx->queue; 216 LIST_HEAD(rq_list); 217 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); 218 int ret = 0; 219 struct request *rq; 220 221 do { 222 int budget_token; 223 224 if (!list_empty_careful(&hctx->dispatch)) { 225 ret = -EAGAIN; 226 break; 227 } 228 229 if (!sbitmap_any_bit_set(&hctx->ctx_map)) 230 break; 231 232 budget_token = blk_mq_get_dispatch_budget(q); 233 if (budget_token < 0) 234 break; 235 236 rq = blk_mq_dequeue_from_ctx(hctx, ctx); 237 if (!rq) { 238 blk_mq_put_dispatch_budget(q, budget_token); 239 /* 240 * We're releasing without dispatching. Holding the 241 * budget could have blocked any "hctx"s with the 242 * same queue and if we didn't dispatch then there's 243 * no guarantee anyone will kick the queue. Kick it 244 * ourselves. 245 */ 246 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 247 break; 248 } 249 250 blk_mq_set_rq_budget_token(rq, budget_token); 251 252 /* 253 * Now this rq owns the budget which has to be released 254 * if this rq won't be queued to driver via .queue_rq() 255 * in blk_mq_dispatch_rq_list(). 256 */ 257 list_add(&rq->queuelist, &rq_list); 258 259 /* round robin for fair dispatch */ 260 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx); 261 262 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, false)); 263 264 WRITE_ONCE(hctx->dispatch_from, ctx); 265 return ret; 266 } 267 268 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 269 { 270 bool need_dispatch = false; 271 LIST_HEAD(rq_list); 272 273 /* 274 * If we have previous entries on our dispatch list, grab them first for 275 * more fair dispatch. 276 */ 277 if (!list_empty_careful(&hctx->dispatch)) { 278 spin_lock(&hctx->lock); 279 if (!list_empty(&hctx->dispatch)) 280 list_splice_init(&hctx->dispatch, &rq_list); 281 spin_unlock(&hctx->lock); 282 } 283 284 /* 285 * Only ask the scheduler for requests, if we didn't have residual 286 * requests from the dispatch list. This is to avoid the case where 287 * we only ever dispatch a fraction of the requests available because 288 * of low device queue depth. Once we pull requests out of the IO 289 * scheduler, we can no longer merge or sort them. So it's best to 290 * leave them there for as long as we can. Mark the hw queue as 291 * needing a restart in that case. 292 * 293 * We want to dispatch from the scheduler if there was nothing 294 * on the dispatch list or we were able to dispatch from the 295 * dispatch list. 296 */ 297 if (!list_empty(&rq_list)) { 298 blk_mq_sched_mark_restart_hctx(hctx); 299 if (!blk_mq_dispatch_rq_list(hctx, &rq_list, true)) 300 return 0; 301 need_dispatch = true; 302 } else { 303 need_dispatch = hctx->dispatch_busy; 304 } 305 306 if (hctx->queue->elevator) 307 return blk_mq_do_dispatch_sched(hctx); 308 309 /* dequeue request one by one from sw queue if queue is busy */ 310 if (need_dispatch) 311 return blk_mq_do_dispatch_ctx(hctx); 312 blk_mq_flush_busy_ctxs(hctx, &rq_list); 313 blk_mq_dispatch_rq_list(hctx, &rq_list, true); 314 return 0; 315 } 316 317 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 318 { 319 struct request_queue *q = hctx->queue; 320 321 /* RCU or SRCU read lock is needed before checking quiesced flag */ 322 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) 323 return; 324 325 /* 326 * A return of -EAGAIN is an indication that hctx->dispatch is not 327 * empty and we must run again in order to avoid starving flushes. 328 */ 329 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) { 330 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) 331 blk_mq_run_hw_queue(hctx, true); 332 } 333 } 334 335 bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, 336 unsigned int nr_segs) 337 { 338 struct elevator_queue *e = q->elevator; 339 struct blk_mq_ctx *ctx; 340 struct blk_mq_hw_ctx *hctx; 341 bool ret = false; 342 enum hctx_type type; 343 344 if (e && e->type->ops.bio_merge) { 345 ret = e->type->ops.bio_merge(q, bio, nr_segs); 346 goto out_put; 347 } 348 349 ctx = blk_mq_get_ctx(q); 350 hctx = blk_mq_map_queue(bio->bi_opf, ctx); 351 type = hctx->type; 352 if (list_empty_careful(&ctx->rq_lists[type])) 353 goto out_put; 354 355 /* default per sw-queue merge */ 356 spin_lock(&ctx->lock); 357 /* 358 * Reverse check our software queue for entries that we could 359 * potentially merge with. Currently includes a hand-wavy stop 360 * count of 8, to not spend too much time checking for merges. 361 */ 362 if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) 363 ret = true; 364 365 spin_unlock(&ctx->lock); 366 out_put: 367 return ret; 368 } 369 370 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq, 371 struct list_head *free) 372 { 373 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free); 374 } 375 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 376 377 /* called in queue's release handler, tagset has gone away */ 378 static void blk_mq_sched_tags_teardown(struct request_queue *q, unsigned int flags) 379 { 380 struct blk_mq_hw_ctx *hctx; 381 unsigned long i; 382 383 queue_for_each_hw_ctx(q, hctx, i) 384 hctx->sched_tags = NULL; 385 386 if (blk_mq_is_shared_tags(flags)) 387 q->sched_shared_tags = NULL; 388 } 389 390 void blk_mq_sched_reg_debugfs(struct request_queue *q) 391 { 392 struct blk_mq_hw_ctx *hctx; 393 unsigned long i; 394 395 mutex_lock(&q->debugfs_mutex); 396 blk_mq_debugfs_register_sched(q); 397 queue_for_each_hw_ctx(q, hctx, i) 398 blk_mq_debugfs_register_sched_hctx(q, hctx); 399 mutex_unlock(&q->debugfs_mutex); 400 } 401 402 void blk_mq_sched_unreg_debugfs(struct request_queue *q) 403 { 404 struct blk_mq_hw_ctx *hctx; 405 unsigned long i; 406 407 mutex_lock(&q->debugfs_mutex); 408 queue_for_each_hw_ctx(q, hctx, i) 409 blk_mq_debugfs_unregister_sched_hctx(hctx); 410 blk_mq_debugfs_unregister_sched(q); 411 mutex_unlock(&q->debugfs_mutex); 412 } 413 414 void blk_mq_free_sched_tags(struct elevator_tags *et, 415 struct blk_mq_tag_set *set) 416 { 417 unsigned long i; 418 419 /* Shared tags are stored at index 0 in @tags. */ 420 if (blk_mq_is_shared_tags(set->flags)) 421 blk_mq_free_map_and_rqs(set, et->tags[0], BLK_MQ_NO_HCTX_IDX); 422 else { 423 for (i = 0; i < et->nr_hw_queues; i++) 424 blk_mq_free_map_and_rqs(set, et->tags[i], i); 425 } 426 427 kfree(et); 428 } 429 430 void blk_mq_free_sched_res(struct elevator_resources *res, 431 struct elevator_type *type, 432 struct blk_mq_tag_set *set) 433 { 434 if (res->et) { 435 blk_mq_free_sched_tags(res->et, set); 436 res->et = NULL; 437 } 438 if (res->data) { 439 blk_mq_free_sched_data(type, res->data); 440 res->data = NULL; 441 } 442 } 443 444 void blk_mq_free_sched_res_batch(struct xarray *elv_tbl, 445 struct blk_mq_tag_set *set) 446 { 447 struct request_queue *q; 448 struct elv_change_ctx *ctx; 449 450 lockdep_assert_held_write(&set->update_nr_hwq_lock); 451 452 list_for_each_entry(q, &set->tag_list, tag_set_list) { 453 /* 454 * Accessing q->elevator without holding q->elevator_lock is 455 * safe because we're holding here set->update_nr_hwq_lock in 456 * the writer context. So, scheduler update/switch code (which 457 * acquires the same lock but in the reader context) can't run 458 * concurrently. 459 */ 460 if (q->elevator) { 461 ctx = xa_load(elv_tbl, q->id); 462 if (!ctx) { 463 WARN_ON_ONCE(1); 464 continue; 465 } 466 blk_mq_free_sched_res(&ctx->res, ctx->type, set); 467 } 468 } 469 } 470 471 void blk_mq_free_sched_ctx_batch(struct xarray *elv_tbl) 472 { 473 unsigned long i; 474 struct elv_change_ctx *ctx; 475 476 xa_for_each(elv_tbl, i, ctx) { 477 xa_erase(elv_tbl, i); 478 kfree(ctx); 479 } 480 } 481 482 int blk_mq_alloc_sched_ctx_batch(struct xarray *elv_tbl, 483 struct blk_mq_tag_set *set) 484 { 485 struct request_queue *q; 486 struct elv_change_ctx *ctx; 487 488 lockdep_assert_held_write(&set->update_nr_hwq_lock); 489 490 list_for_each_entry(q, &set->tag_list, tag_set_list) { 491 ctx = kzalloc(sizeof(struct elv_change_ctx), GFP_KERNEL); 492 if (!ctx) 493 return -ENOMEM; 494 495 if (xa_insert(elv_tbl, q->id, ctx, GFP_KERNEL)) { 496 kfree(ctx); 497 return -ENOMEM; 498 } 499 } 500 return 0; 501 } 502 503 struct elevator_tags *blk_mq_alloc_sched_tags(struct blk_mq_tag_set *set, 504 unsigned int nr_hw_queues, unsigned int nr_requests) 505 { 506 unsigned int nr_tags; 507 int i; 508 struct elevator_tags *et; 509 gfp_t gfp = GFP_NOIO | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 510 511 if (blk_mq_is_shared_tags(set->flags)) 512 nr_tags = 1; 513 else 514 nr_tags = nr_hw_queues; 515 516 et = kmalloc(struct_size(et, tags, nr_tags), gfp); 517 if (!et) 518 return NULL; 519 520 et->nr_requests = nr_requests; 521 et->nr_hw_queues = nr_hw_queues; 522 523 if (blk_mq_is_shared_tags(set->flags)) { 524 /* Shared tags are stored at index 0 in @tags. */ 525 et->tags[0] = blk_mq_alloc_map_and_rqs(set, BLK_MQ_NO_HCTX_IDX, 526 MAX_SCHED_RQ); 527 if (!et->tags[0]) 528 goto out; 529 } else { 530 for (i = 0; i < et->nr_hw_queues; i++) { 531 et->tags[i] = blk_mq_alloc_map_and_rqs(set, i, 532 et->nr_requests); 533 if (!et->tags[i]) 534 goto out_unwind; 535 } 536 } 537 538 return et; 539 out_unwind: 540 while (--i >= 0) 541 blk_mq_free_map_and_rqs(set, et->tags[i], i); 542 out: 543 kfree(et); 544 return NULL; 545 } 546 547 int blk_mq_alloc_sched_res(struct request_queue *q, 548 struct elevator_type *type, 549 struct elevator_resources *res, 550 unsigned int nr_hw_queues) 551 { 552 struct blk_mq_tag_set *set = q->tag_set; 553 554 res->et = blk_mq_alloc_sched_tags(set, nr_hw_queues, 555 blk_mq_default_nr_requests(set)); 556 if (!res->et) 557 return -ENOMEM; 558 559 res->data = blk_mq_alloc_sched_data(q, type); 560 if (IS_ERR(res->data)) { 561 blk_mq_free_sched_tags(res->et, set); 562 return -ENOMEM; 563 } 564 565 return 0; 566 } 567 568 int blk_mq_alloc_sched_res_batch(struct xarray *elv_tbl, 569 struct blk_mq_tag_set *set, unsigned int nr_hw_queues) 570 { 571 struct elv_change_ctx *ctx; 572 struct request_queue *q; 573 int ret = -ENOMEM; 574 575 lockdep_assert_held_write(&set->update_nr_hwq_lock); 576 577 list_for_each_entry(q, &set->tag_list, tag_set_list) { 578 /* 579 * Accessing q->elevator without holding q->elevator_lock is 580 * safe because we're holding here set->update_nr_hwq_lock in 581 * the writer context. So, scheduler update/switch code (which 582 * acquires the same lock but in the reader context) can't run 583 * concurrently. 584 */ 585 if (q->elevator) { 586 ctx = xa_load(elv_tbl, q->id); 587 if (WARN_ON_ONCE(!ctx)) { 588 ret = -ENOENT; 589 goto out_unwind; 590 } 591 592 ret = blk_mq_alloc_sched_res(q, q->elevator->type, 593 &ctx->res, nr_hw_queues); 594 if (ret) 595 goto out_unwind; 596 } 597 } 598 return 0; 599 600 out_unwind: 601 list_for_each_entry_continue_reverse(q, &set->tag_list, tag_set_list) { 602 if (q->elevator) { 603 ctx = xa_load(elv_tbl, q->id); 604 if (ctx) 605 blk_mq_free_sched_res(&ctx->res, 606 ctx->type, set); 607 } 608 } 609 return ret; 610 } 611 612 /* caller must have a reference to @e, will grab another one if successful */ 613 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e, 614 struct elevator_resources *res) 615 { 616 unsigned int flags = q->tag_set->flags; 617 struct elevator_tags *et = res->et; 618 struct blk_mq_hw_ctx *hctx; 619 struct elevator_queue *eq; 620 unsigned long i; 621 int ret; 622 623 eq = elevator_alloc(q, e, res); 624 if (!eq) 625 return -ENOMEM; 626 627 q->nr_requests = et->nr_requests; 628 629 if (blk_mq_is_shared_tags(flags)) { 630 /* Shared tags are stored at index 0 in @et->tags. */ 631 q->sched_shared_tags = et->tags[0]; 632 blk_mq_tag_update_sched_shared_tags(q, et->nr_requests); 633 } 634 635 queue_for_each_hw_ctx(q, hctx, i) { 636 if (blk_mq_is_shared_tags(flags)) 637 hctx->sched_tags = q->sched_shared_tags; 638 else 639 hctx->sched_tags = et->tags[i]; 640 } 641 642 ret = e->ops.init_sched(q, eq); 643 if (ret) 644 goto out; 645 646 queue_for_each_hw_ctx(q, hctx, i) { 647 if (e->ops.init_hctx) { 648 ret = e->ops.init_hctx(hctx, i); 649 if (ret) { 650 blk_mq_exit_sched(q, eq); 651 kobject_put(&eq->kobj); 652 return ret; 653 } 654 } 655 } 656 return 0; 657 658 out: 659 blk_mq_sched_tags_teardown(q, flags); 660 kobject_put(&eq->kobj); 661 q->elevator = NULL; 662 return ret; 663 } 664 665 /* 666 * called in either blk_queue_cleanup or elevator_switch, tagset 667 * is required for freeing requests 668 */ 669 void blk_mq_sched_free_rqs(struct request_queue *q) 670 { 671 struct blk_mq_hw_ctx *hctx; 672 unsigned long i; 673 674 if (blk_mq_is_shared_tags(q->tag_set->flags)) { 675 blk_mq_free_rqs(q->tag_set, q->sched_shared_tags, 676 BLK_MQ_NO_HCTX_IDX); 677 } else { 678 queue_for_each_hw_ctx(q, hctx, i) { 679 if (hctx->sched_tags) 680 blk_mq_free_rqs(q->tag_set, 681 hctx->sched_tags, i); 682 } 683 } 684 } 685 686 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 687 { 688 struct blk_mq_hw_ctx *hctx; 689 unsigned long i; 690 unsigned int flags = 0; 691 692 queue_for_each_hw_ctx(q, hctx, i) { 693 if (e->type->ops.exit_hctx && hctx->sched_data) { 694 e->type->ops.exit_hctx(hctx, i); 695 hctx->sched_data = NULL; 696 } 697 flags = hctx->flags; 698 } 699 700 if (e->type->ops.exit_sched) 701 e->type->ops.exit_sched(e); 702 blk_mq_sched_tags_teardown(q, flags); 703 set_bit(ELEVATOR_FLAG_DYING, &q->elevator->flags); 704 q->elevator = NULL; 705 } 706