xref: /linux/lib/maple_tree.c (revision e9ef810dfee7a2227da9d423aecb0ced35faddbe)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Maple Tree implementation
4  * Copyright (c) 2018-2022 Oracle Corporation
5  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6  *	    Matthew Wilcox <willy@infradead.org>
7  * Copyright (c) 2023 ByteDance
8  * Author: Peng Zhang <zhangpeng.00@bytedance.com>
9  */
10 
11 /*
12  * DOC: Interesting implementation details of the Maple Tree
13  *
14  * Each node type has a number of slots for entries and a number of slots for
15  * pivots.  In the case of dense nodes, the pivots are implied by the position
16  * and are simply the slot index + the minimum of the node.
17  *
18  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
19  * indicate that the tree is specifying ranges.  Pivots may appear in the
20  * subtree with an entry attached to the value whereas keys are unique to a
21  * specific position of a B-tree.  Pivot values are inclusive of the slot with
22  * the same index.
23  *
24  *
25  * The following illustrates the layout of a range64 nodes slots and pivots.
26  *
27  *
28  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
29  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
30  *           │   │   │   │     │    │    │    │    └─ Implied maximum
31  *           │   │   │   │     │    │    │    └─ Pivot 14
32  *           │   │   │   │     │    │    └─ Pivot 13
33  *           │   │   │   │     │    └─ Pivot 12
34  *           │   │   │   │     └─ Pivot 11
35  *           │   │   │   └─ Pivot 2
36  *           │   │   └─ Pivot 1
37  *           │   └─ Pivot 0
38  *           └─  Implied minimum
39  *
40  * Slot contents:
41  *  Internal (non-leaf) nodes contain pointers to other nodes.
42  *  Leaf nodes contain entries.
43  *
44  * The location of interest is often referred to as an offset.  All offsets have
45  * a slot, but the last offset has an implied pivot from the node above (or
46  * UINT_MAX for the root node.
47  *
48  * Ranges complicate certain write activities.  When modifying any of
49  * the B-tree variants, it is known that one entry will either be added or
50  * deleted.  When modifying the Maple Tree, one store operation may overwrite
51  * the entire data set, or one half of the tree, or the middle half of the tree.
52  *
53  */
54 
55 
56 #include <linux/maple_tree.h>
57 #include <linux/xarray.h>
58 #include <linux/types.h>
59 #include <linux/export.h>
60 #include <linux/slab.h>
61 #include <linux/limits.h>
62 #include <asm/barrier.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/maple_tree.h>
66 
67 /*
68  * Kernel pointer hashing renders much of the maple tree dump useless as tagged
69  * pointers get hashed to arbitrary values.
70  *
71  * If CONFIG_DEBUG_VM_MAPLE_TREE is set we are in a debug mode where it is
72  * permissible to bypass this. Otherwise remain cautious and retain the hashing.
73  *
74  * Userland doesn't know about %px so also use %p there.
75  */
76 #if defined(__KERNEL__) && defined(CONFIG_DEBUG_VM_MAPLE_TREE)
77 #define PTR_FMT "%px"
78 #else
79 #define PTR_FMT "%p"
80 #endif
81 
82 #define MA_ROOT_PARENT 1
83 
84 /*
85  * Maple state flags
86  * * MA_STATE_BULK		- Bulk insert mode
87  * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert
88  * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
89  */
90 #define MA_STATE_BULK		1
91 #define MA_STATE_REBALANCE	2
92 #define MA_STATE_PREALLOC	4
93 
94 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
95 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
96 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
97 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
98 static struct kmem_cache *maple_node_cache;
99 
100 #ifdef CONFIG_DEBUG_MAPLE_TREE
101 static const unsigned long mt_max[] = {
102 	[maple_dense]		= MAPLE_NODE_SLOTS,
103 	[maple_leaf_64]		= ULONG_MAX,
104 	[maple_range_64]	= ULONG_MAX,
105 	[maple_arange_64]	= ULONG_MAX,
106 };
107 #define mt_node_max(x) mt_max[mte_node_type(x)]
108 #endif
109 
110 static const unsigned char mt_slots[] = {
111 	[maple_dense]		= MAPLE_NODE_SLOTS,
112 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS,
113 	[maple_range_64]	= MAPLE_RANGE64_SLOTS,
114 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS,
115 };
116 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
117 
118 static const unsigned char mt_pivots[] = {
119 	[maple_dense]		= 0,
120 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1,
121 	[maple_range_64]	= MAPLE_RANGE64_SLOTS - 1,
122 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1,
123 };
124 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
125 
126 static const unsigned char mt_min_slots[] = {
127 	[maple_dense]		= MAPLE_NODE_SLOTS / 2,
128 	[maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2,
129 	[maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2,
130 	[maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1,
131 };
132 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
133 
134 #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2)
135 #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1)
136 
137 struct maple_big_node {
138 	unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
139 	union {
140 		struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
141 		struct {
142 			unsigned long padding[MAPLE_BIG_NODE_GAPS];
143 			unsigned long gap[MAPLE_BIG_NODE_GAPS];
144 		};
145 	};
146 	unsigned char b_end;
147 	enum maple_type type;
148 };
149 
150 /*
151  * The maple_subtree_state is used to build a tree to replace a segment of an
152  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
153  * dead node and restart on updates.
154  */
155 struct maple_subtree_state {
156 	struct ma_state *orig_l;	/* Original left side of subtree */
157 	struct ma_state *orig_r;	/* Original right side of subtree */
158 	struct ma_state *l;		/* New left side of subtree */
159 	struct ma_state *m;		/* New middle of subtree (rare) */
160 	struct ma_state *r;		/* New right side of subtree */
161 	struct ma_topiary *free;	/* nodes to be freed */
162 	struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */
163 	struct maple_big_node *bn;
164 };
165 
166 #ifdef CONFIG_KASAN_STACK
167 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
168 #define noinline_for_kasan noinline_for_stack
169 #else
170 #define noinline_for_kasan inline
171 #endif
172 
173 /* Functions */
mt_alloc_one(gfp_t gfp)174 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
175 {
176 	return kmem_cache_alloc(maple_node_cache, gfp);
177 }
178 
mt_alloc_bulk(gfp_t gfp,size_t size,void ** nodes)179 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
180 {
181 	return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
182 }
183 
mt_free_one(struct maple_node * node)184 static inline void mt_free_one(struct maple_node *node)
185 {
186 	kmem_cache_free(maple_node_cache, node);
187 }
188 
mt_free_bulk(size_t size,void __rcu ** nodes)189 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
190 {
191 	kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
192 }
193 
mt_free_rcu(struct rcu_head * head)194 static void mt_free_rcu(struct rcu_head *head)
195 {
196 	struct maple_node *node = container_of(head, struct maple_node, rcu);
197 
198 	kmem_cache_free(maple_node_cache, node);
199 }
200 
201 /*
202  * ma_free_rcu() - Use rcu callback to free a maple node
203  * @node: The node to free
204  *
205  * The maple tree uses the parent pointer to indicate this node is no longer in
206  * use and will be freed.
207  */
ma_free_rcu(struct maple_node * node)208 static void ma_free_rcu(struct maple_node *node)
209 {
210 	WARN_ON(node->parent != ma_parent_ptr(node));
211 	call_rcu(&node->rcu, mt_free_rcu);
212 }
213 
mt_set_height(struct maple_tree * mt,unsigned char height)214 static void mt_set_height(struct maple_tree *mt, unsigned char height)
215 {
216 	unsigned int new_flags = mt->ma_flags;
217 
218 	new_flags &= ~MT_FLAGS_HEIGHT_MASK;
219 	MT_BUG_ON(mt, height > MAPLE_HEIGHT_MAX);
220 	new_flags |= height << MT_FLAGS_HEIGHT_OFFSET;
221 	mt->ma_flags = new_flags;
222 }
223 
mas_mt_height(struct ma_state * mas)224 static unsigned int mas_mt_height(struct ma_state *mas)
225 {
226 	return mt_height(mas->tree);
227 }
228 
mt_attr(struct maple_tree * mt)229 static inline unsigned int mt_attr(struct maple_tree *mt)
230 {
231 	return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
232 }
233 
mte_node_type(const struct maple_enode * entry)234 static __always_inline enum maple_type mte_node_type(
235 		const struct maple_enode *entry)
236 {
237 	return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
238 		MAPLE_NODE_TYPE_MASK;
239 }
240 
ma_is_dense(const enum maple_type type)241 static __always_inline bool ma_is_dense(const enum maple_type type)
242 {
243 	return type < maple_leaf_64;
244 }
245 
ma_is_leaf(const enum maple_type type)246 static __always_inline bool ma_is_leaf(const enum maple_type type)
247 {
248 	return type < maple_range_64;
249 }
250 
mte_is_leaf(const struct maple_enode * entry)251 static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
252 {
253 	return ma_is_leaf(mte_node_type(entry));
254 }
255 
256 /*
257  * We also reserve values with the bottom two bits set to '10' which are
258  * below 4096
259  */
mt_is_reserved(const void * entry)260 static __always_inline bool mt_is_reserved(const void *entry)
261 {
262 	return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
263 		xa_is_internal(entry);
264 }
265 
mas_set_err(struct ma_state * mas,long err)266 static __always_inline void mas_set_err(struct ma_state *mas, long err)
267 {
268 	mas->node = MA_ERROR(err);
269 	mas->status = ma_error;
270 }
271 
mas_is_ptr(const struct ma_state * mas)272 static __always_inline bool mas_is_ptr(const struct ma_state *mas)
273 {
274 	return mas->status == ma_root;
275 }
276 
mas_is_start(const struct ma_state * mas)277 static __always_inline bool mas_is_start(const struct ma_state *mas)
278 {
279 	return mas->status == ma_start;
280 }
281 
mas_is_none(const struct ma_state * mas)282 static __always_inline bool mas_is_none(const struct ma_state *mas)
283 {
284 	return mas->status == ma_none;
285 }
286 
mas_is_paused(const struct ma_state * mas)287 static __always_inline bool mas_is_paused(const struct ma_state *mas)
288 {
289 	return mas->status == ma_pause;
290 }
291 
mas_is_overflow(struct ma_state * mas)292 static __always_inline bool mas_is_overflow(struct ma_state *mas)
293 {
294 	return mas->status == ma_overflow;
295 }
296 
mas_is_underflow(struct ma_state * mas)297 static inline bool mas_is_underflow(struct ma_state *mas)
298 {
299 	return mas->status == ma_underflow;
300 }
301 
mte_to_node(const struct maple_enode * entry)302 static __always_inline struct maple_node *mte_to_node(
303 		const struct maple_enode *entry)
304 {
305 	return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
306 }
307 
308 /*
309  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
310  * @entry: The maple encoded node
311  *
312  * Return: a maple topiary pointer
313  */
mte_to_mat(const struct maple_enode * entry)314 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
315 {
316 	return (struct maple_topiary *)
317 		((unsigned long)entry & ~MAPLE_NODE_MASK);
318 }
319 
320 /*
321  * mas_mn() - Get the maple state node.
322  * @mas: The maple state
323  *
324  * Return: the maple node (not encoded - bare pointer).
325  */
mas_mn(const struct ma_state * mas)326 static inline struct maple_node *mas_mn(const struct ma_state *mas)
327 {
328 	return mte_to_node(mas->node);
329 }
330 
331 /*
332  * mte_set_node_dead() - Set a maple encoded node as dead.
333  * @mn: The maple encoded node.
334  */
mte_set_node_dead(struct maple_enode * mn)335 static inline void mte_set_node_dead(struct maple_enode *mn)
336 {
337 	mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
338 	smp_wmb(); /* Needed for RCU */
339 }
340 
341 /* Bit 1 indicates the root is a node */
342 #define MAPLE_ROOT_NODE			0x02
343 /* maple_type stored bit 3-6 */
344 #define MAPLE_ENODE_TYPE_SHIFT		0x03
345 /* Bit 2 means a NULL somewhere below */
346 #define MAPLE_ENODE_NULL		0x04
347 
mt_mk_node(const struct maple_node * node,enum maple_type type)348 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
349 					     enum maple_type type)
350 {
351 	return (void *)((unsigned long)node |
352 			(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
353 }
354 
mte_mk_root(const struct maple_enode * node)355 static inline void *mte_mk_root(const struct maple_enode *node)
356 {
357 	return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
358 }
359 
mte_safe_root(const struct maple_enode * node)360 static inline void *mte_safe_root(const struct maple_enode *node)
361 {
362 	return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
363 }
364 
mte_set_full(const struct maple_enode * node)365 static inline void __maybe_unused *mte_set_full(const struct maple_enode *node)
366 {
367 	return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
368 }
369 
mte_clear_full(const struct maple_enode * node)370 static inline void __maybe_unused *mte_clear_full(const struct maple_enode *node)
371 {
372 	return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
373 }
374 
mte_has_null(const struct maple_enode * node)375 static inline bool __maybe_unused mte_has_null(const struct maple_enode *node)
376 {
377 	return (unsigned long)node & MAPLE_ENODE_NULL;
378 }
379 
ma_is_root(struct maple_node * node)380 static __always_inline bool ma_is_root(struct maple_node *node)
381 {
382 	return ((unsigned long)node->parent & MA_ROOT_PARENT);
383 }
384 
mte_is_root(const struct maple_enode * node)385 static __always_inline bool mte_is_root(const struct maple_enode *node)
386 {
387 	return ma_is_root(mte_to_node(node));
388 }
389 
mas_is_root_limits(const struct ma_state * mas)390 static inline bool mas_is_root_limits(const struct ma_state *mas)
391 {
392 	return !mas->min && mas->max == ULONG_MAX;
393 }
394 
mt_is_alloc(struct maple_tree * mt)395 static __always_inline bool mt_is_alloc(struct maple_tree *mt)
396 {
397 	return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
398 }
399 
400 /*
401  * The Parent Pointer
402  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
403  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
404  * bit values need an extra bit to store the offset.  This extra bit comes from
405  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
406  * indicate if bit 2 is part of the type or the slot.
407  *
408  * Note types:
409  *  0x??1 = Root
410  *  0x?00 = 16 bit nodes
411  *  0x010 = 32 bit nodes
412  *  0x110 = 64 bit nodes
413  *
414  * Slot size and alignment
415  *  0b??1 : Root
416  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
417  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
418  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
419  */
420 
421 #define MAPLE_PARENT_ROOT		0x01
422 
423 #define MAPLE_PARENT_SLOT_SHIFT		0x03
424 #define MAPLE_PARENT_SLOT_MASK		0xF8
425 
426 #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02
427 #define MAPLE_PARENT_16B_SLOT_MASK	0xFC
428 
429 #define MAPLE_PARENT_RANGE64		0x06
430 #define MAPLE_PARENT_RANGE32		0x04
431 #define MAPLE_PARENT_NOT_RANGE16	0x02
432 
433 /*
434  * mte_parent_shift() - Get the parent shift for the slot storage.
435  * @parent: The parent pointer cast as an unsigned long
436  * Return: The shift into that pointer to the star to of the slot
437  */
mte_parent_shift(unsigned long parent)438 static inline unsigned long mte_parent_shift(unsigned long parent)
439 {
440 	/* Note bit 1 == 0 means 16B */
441 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
442 		return MAPLE_PARENT_SLOT_SHIFT;
443 
444 	return MAPLE_PARENT_16B_SLOT_SHIFT;
445 }
446 
447 /*
448  * mte_parent_slot_mask() - Get the slot mask for the parent.
449  * @parent: The parent pointer cast as an unsigned long.
450  * Return: The slot mask for that parent.
451  */
mte_parent_slot_mask(unsigned long parent)452 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
453 {
454 	/* Note bit 1 == 0 means 16B */
455 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
456 		return MAPLE_PARENT_SLOT_MASK;
457 
458 	return MAPLE_PARENT_16B_SLOT_MASK;
459 }
460 
461 /*
462  * mas_parent_type() - Return the maple_type of the parent from the stored
463  * parent type.
464  * @mas: The maple state
465  * @enode: The maple_enode to extract the parent's enum
466  * Return: The node->parent maple_type
467  */
468 static inline
mas_parent_type(struct ma_state * mas,struct maple_enode * enode)469 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
470 {
471 	unsigned long p_type;
472 
473 	p_type = (unsigned long)mte_to_node(enode)->parent;
474 	if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
475 		return 0;
476 
477 	p_type &= MAPLE_NODE_MASK;
478 	p_type &= ~mte_parent_slot_mask(p_type);
479 	switch (p_type) {
480 	case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
481 		if (mt_is_alloc(mas->tree))
482 			return maple_arange_64;
483 		return maple_range_64;
484 	}
485 
486 	return 0;
487 }
488 
489 /*
490  * mas_set_parent() - Set the parent node and encode the slot
491  * @mas: The maple state
492  * @enode: The encoded maple node.
493  * @parent: The encoded maple node that is the parent of @enode.
494  * @slot: The slot that @enode resides in @parent.
495  *
496  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
497  * parent type.
498  */
499 static inline
mas_set_parent(struct ma_state * mas,struct maple_enode * enode,const struct maple_enode * parent,unsigned char slot)500 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
501 		    const struct maple_enode *parent, unsigned char slot)
502 {
503 	unsigned long val = (unsigned long)parent;
504 	unsigned long shift;
505 	unsigned long type;
506 	enum maple_type p_type = mte_node_type(parent);
507 
508 	MAS_BUG_ON(mas, p_type == maple_dense);
509 	MAS_BUG_ON(mas, p_type == maple_leaf_64);
510 
511 	switch (p_type) {
512 	case maple_range_64:
513 	case maple_arange_64:
514 		shift = MAPLE_PARENT_SLOT_SHIFT;
515 		type = MAPLE_PARENT_RANGE64;
516 		break;
517 	default:
518 	case maple_dense:
519 	case maple_leaf_64:
520 		shift = type = 0;
521 		break;
522 	}
523 
524 	val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
525 	val |= (slot << shift) | type;
526 	mte_to_node(enode)->parent = ma_parent_ptr(val);
527 }
528 
529 /*
530  * mte_parent_slot() - get the parent slot of @enode.
531  * @enode: The encoded maple node.
532  *
533  * Return: The slot in the parent node where @enode resides.
534  */
535 static __always_inline
mte_parent_slot(const struct maple_enode * enode)536 unsigned int mte_parent_slot(const struct maple_enode *enode)
537 {
538 	unsigned long val = (unsigned long)mte_to_node(enode)->parent;
539 
540 	if (unlikely(val & MA_ROOT_PARENT))
541 		return 0;
542 
543 	/*
544 	 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
545 	 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
546 	 */
547 	return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
548 }
549 
550 /*
551  * mte_parent() - Get the parent of @node.
552  * @enode: The encoded maple node.
553  *
554  * Return: The parent maple node.
555  */
556 static __always_inline
mte_parent(const struct maple_enode * enode)557 struct maple_node *mte_parent(const struct maple_enode *enode)
558 {
559 	return (void *)((unsigned long)
560 			(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
561 }
562 
563 /*
564  * ma_dead_node() - check if the @enode is dead.
565  * @enode: The encoded maple node
566  *
567  * Return: true if dead, false otherwise.
568  */
ma_dead_node(const struct maple_node * node)569 static __always_inline bool ma_dead_node(const struct maple_node *node)
570 {
571 	struct maple_node *parent;
572 
573 	/* Do not reorder reads from the node prior to the parent check */
574 	smp_rmb();
575 	parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
576 	return (parent == node);
577 }
578 
579 /*
580  * mte_dead_node() - check if the @enode is dead.
581  * @enode: The encoded maple node
582  *
583  * Return: true if dead, false otherwise.
584  */
mte_dead_node(const struct maple_enode * enode)585 static __always_inline bool mte_dead_node(const struct maple_enode *enode)
586 {
587 	struct maple_node *node;
588 
589 	node = mte_to_node(enode);
590 	return ma_dead_node(node);
591 }
592 
593 /*
594  * mas_allocated() - Get the number of nodes allocated in a maple state.
595  * @mas: The maple state
596  *
597  * The ma_state alloc member is overloaded to hold a pointer to the first
598  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
599  * set, then the alloc contains the number of requested nodes.  If there is an
600  * allocated node, then the total allocated nodes is in that node.
601  *
602  * Return: The total number of nodes allocated
603  */
mas_allocated(const struct ma_state * mas)604 static inline unsigned long mas_allocated(const struct ma_state *mas)
605 {
606 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
607 		return 0;
608 
609 	return mas->alloc->total;
610 }
611 
612 /*
613  * mas_set_alloc_req() - Set the requested number of allocations.
614  * @mas: the maple state
615  * @count: the number of allocations.
616  *
617  * The requested number of allocations is either in the first allocated node,
618  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
619  * no allocated node.  Set the request either in the node or do the necessary
620  * encoding to store in @mas->alloc directly.
621  */
mas_set_alloc_req(struct ma_state * mas,unsigned long count)622 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
623 {
624 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
625 		if (!count)
626 			mas->alloc = NULL;
627 		else
628 			mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
629 		return;
630 	}
631 
632 	mas->alloc->request_count = count;
633 }
634 
635 /*
636  * mas_alloc_req() - get the requested number of allocations.
637  * @mas: The maple state
638  *
639  * The alloc count is either stored directly in @mas, or in
640  * @mas->alloc->request_count if there is at least one node allocated.  Decode
641  * the request count if it's stored directly in @mas->alloc.
642  *
643  * Return: The allocation request count.
644  */
mas_alloc_req(const struct ma_state * mas)645 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
646 {
647 	if ((unsigned long)mas->alloc & 0x1)
648 		return (unsigned long)(mas->alloc) >> 1;
649 	else if (mas->alloc)
650 		return mas->alloc->request_count;
651 	return 0;
652 }
653 
654 /*
655  * ma_pivots() - Get a pointer to the maple node pivots.
656  * @node: the maple node
657  * @type: the node type
658  *
659  * In the event of a dead node, this array may be %NULL
660  *
661  * Return: A pointer to the maple node pivots
662  */
ma_pivots(struct maple_node * node,enum maple_type type)663 static inline unsigned long *ma_pivots(struct maple_node *node,
664 					   enum maple_type type)
665 {
666 	switch (type) {
667 	case maple_arange_64:
668 		return node->ma64.pivot;
669 	case maple_range_64:
670 	case maple_leaf_64:
671 		return node->mr64.pivot;
672 	case maple_dense:
673 		return NULL;
674 	}
675 	return NULL;
676 }
677 
678 /*
679  * ma_gaps() - Get a pointer to the maple node gaps.
680  * @node: the maple node
681  * @type: the node type
682  *
683  * Return: A pointer to the maple node gaps
684  */
ma_gaps(struct maple_node * node,enum maple_type type)685 static inline unsigned long *ma_gaps(struct maple_node *node,
686 				     enum maple_type type)
687 {
688 	switch (type) {
689 	case maple_arange_64:
690 		return node->ma64.gap;
691 	case maple_range_64:
692 	case maple_leaf_64:
693 	case maple_dense:
694 		return NULL;
695 	}
696 	return NULL;
697 }
698 
699 /*
700  * mas_safe_pivot() - get the pivot at @piv or mas->max.
701  * @mas: The maple state
702  * @pivots: The pointer to the maple node pivots
703  * @piv: The pivot to fetch
704  * @type: The maple node type
705  *
706  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
707  * otherwise.
708  */
709 static __always_inline unsigned long
mas_safe_pivot(const struct ma_state * mas,unsigned long * pivots,unsigned char piv,enum maple_type type)710 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
711 	       unsigned char piv, enum maple_type type)
712 {
713 	if (piv >= mt_pivots[type])
714 		return mas->max;
715 
716 	return pivots[piv];
717 }
718 
719 /*
720  * mas_safe_min() - Return the minimum for a given offset.
721  * @mas: The maple state
722  * @pivots: The pointer to the maple node pivots
723  * @offset: The offset into the pivot array
724  *
725  * Return: The minimum range value that is contained in @offset.
726  */
727 static inline unsigned long
mas_safe_min(struct ma_state * mas,unsigned long * pivots,unsigned char offset)728 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
729 {
730 	if (likely(offset))
731 		return pivots[offset - 1] + 1;
732 
733 	return mas->min;
734 }
735 
736 /*
737  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
738  * @mn: The encoded maple node
739  * @piv: The pivot offset
740  * @val: The value of the pivot
741  */
mte_set_pivot(struct maple_enode * mn,unsigned char piv,unsigned long val)742 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
743 				unsigned long val)
744 {
745 	struct maple_node *node = mte_to_node(mn);
746 	enum maple_type type = mte_node_type(mn);
747 
748 	BUG_ON(piv >= mt_pivots[type]);
749 	switch (type) {
750 	case maple_range_64:
751 	case maple_leaf_64:
752 		node->mr64.pivot[piv] = val;
753 		break;
754 	case maple_arange_64:
755 		node->ma64.pivot[piv] = val;
756 		break;
757 	case maple_dense:
758 		break;
759 	}
760 
761 }
762 
763 /*
764  * ma_slots() - Get a pointer to the maple node slots.
765  * @mn: The maple node
766  * @mt: The maple node type
767  *
768  * Return: A pointer to the maple node slots
769  */
ma_slots(struct maple_node * mn,enum maple_type mt)770 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
771 {
772 	switch (mt) {
773 	case maple_arange_64:
774 		return mn->ma64.slot;
775 	case maple_range_64:
776 	case maple_leaf_64:
777 		return mn->mr64.slot;
778 	case maple_dense:
779 		return mn->slot;
780 	}
781 
782 	return NULL;
783 }
784 
mt_write_locked(const struct maple_tree * mt)785 static inline bool mt_write_locked(const struct maple_tree *mt)
786 {
787 	return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
788 		lockdep_is_held(&mt->ma_lock);
789 }
790 
mt_locked(const struct maple_tree * mt)791 static __always_inline bool mt_locked(const struct maple_tree *mt)
792 {
793 	return mt_external_lock(mt) ? mt_lock_is_held(mt) :
794 		lockdep_is_held(&mt->ma_lock);
795 }
796 
mt_slot(const struct maple_tree * mt,void __rcu ** slots,unsigned char offset)797 static __always_inline void *mt_slot(const struct maple_tree *mt,
798 		void __rcu **slots, unsigned char offset)
799 {
800 	return rcu_dereference_check(slots[offset], mt_locked(mt));
801 }
802 
mt_slot_locked(struct maple_tree * mt,void __rcu ** slots,unsigned char offset)803 static __always_inline void *mt_slot_locked(struct maple_tree *mt,
804 		void __rcu **slots, unsigned char offset)
805 {
806 	return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
807 }
808 /*
809  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
810  * @mas: The maple state
811  * @slots: The pointer to the slots
812  * @offset: The offset into the slots array to fetch
813  *
814  * Return: The entry stored in @slots at the @offset.
815  */
mas_slot_locked(struct ma_state * mas,void __rcu ** slots,unsigned char offset)816 static __always_inline void *mas_slot_locked(struct ma_state *mas,
817 		void __rcu **slots, unsigned char offset)
818 {
819 	return mt_slot_locked(mas->tree, slots, offset);
820 }
821 
822 /*
823  * mas_slot() - Get the slot value when not holding the maple tree lock.
824  * @mas: The maple state
825  * @slots: The pointer to the slots
826  * @offset: The offset into the slots array to fetch
827  *
828  * Return: The entry stored in @slots at the @offset
829  */
mas_slot(struct ma_state * mas,void __rcu ** slots,unsigned char offset)830 static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
831 		unsigned char offset)
832 {
833 	return mt_slot(mas->tree, slots, offset);
834 }
835 
836 /*
837  * mas_root() - Get the maple tree root.
838  * @mas: The maple state.
839  *
840  * Return: The pointer to the root of the tree
841  */
mas_root(struct ma_state * mas)842 static __always_inline void *mas_root(struct ma_state *mas)
843 {
844 	return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
845 }
846 
mt_root_locked(struct maple_tree * mt)847 static inline void *mt_root_locked(struct maple_tree *mt)
848 {
849 	return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
850 }
851 
852 /*
853  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
854  * @mas: The maple state.
855  *
856  * Return: The pointer to the root of the tree
857  */
mas_root_locked(struct ma_state * mas)858 static inline void *mas_root_locked(struct ma_state *mas)
859 {
860 	return mt_root_locked(mas->tree);
861 }
862 
ma_meta(struct maple_node * mn,enum maple_type mt)863 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
864 					     enum maple_type mt)
865 {
866 	switch (mt) {
867 	case maple_arange_64:
868 		return &mn->ma64.meta;
869 	default:
870 		return &mn->mr64.meta;
871 	}
872 }
873 
874 /*
875  * ma_set_meta() - Set the metadata information of a node.
876  * @mn: The maple node
877  * @mt: The maple node type
878  * @offset: The offset of the highest sub-gap in this node.
879  * @end: The end of the data in this node.
880  */
ma_set_meta(struct maple_node * mn,enum maple_type mt,unsigned char offset,unsigned char end)881 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
882 			       unsigned char offset, unsigned char end)
883 {
884 	struct maple_metadata *meta = ma_meta(mn, mt);
885 
886 	meta->gap = offset;
887 	meta->end = end;
888 }
889 
890 /*
891  * mt_clear_meta() - clear the metadata information of a node, if it exists
892  * @mt: The maple tree
893  * @mn: The maple node
894  * @type: The maple node type
895  */
mt_clear_meta(struct maple_tree * mt,struct maple_node * mn,enum maple_type type)896 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
897 				  enum maple_type type)
898 {
899 	struct maple_metadata *meta;
900 	unsigned long *pivots;
901 	void __rcu **slots;
902 	void *next;
903 
904 	switch (type) {
905 	case maple_range_64:
906 		pivots = mn->mr64.pivot;
907 		if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
908 			slots = mn->mr64.slot;
909 			next = mt_slot_locked(mt, slots,
910 					      MAPLE_RANGE64_SLOTS - 1);
911 			if (unlikely((mte_to_node(next) &&
912 				      mte_node_type(next))))
913 				return; /* no metadata, could be node */
914 		}
915 		fallthrough;
916 	case maple_arange_64:
917 		meta = ma_meta(mn, type);
918 		break;
919 	default:
920 		return;
921 	}
922 
923 	meta->gap = 0;
924 	meta->end = 0;
925 }
926 
927 /*
928  * ma_meta_end() - Get the data end of a node from the metadata
929  * @mn: The maple node
930  * @mt: The maple node type
931  */
ma_meta_end(struct maple_node * mn,enum maple_type mt)932 static inline unsigned char ma_meta_end(struct maple_node *mn,
933 					enum maple_type mt)
934 {
935 	struct maple_metadata *meta = ma_meta(mn, mt);
936 
937 	return meta->end;
938 }
939 
940 /*
941  * ma_meta_gap() - Get the largest gap location of a node from the metadata
942  * @mn: The maple node
943  */
ma_meta_gap(struct maple_node * mn)944 static inline unsigned char ma_meta_gap(struct maple_node *mn)
945 {
946 	return mn->ma64.meta.gap;
947 }
948 
949 /*
950  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
951  * @mn: The maple node
952  * @mt: The maple node type
953  * @offset: The location of the largest gap.
954  */
ma_set_meta_gap(struct maple_node * mn,enum maple_type mt,unsigned char offset)955 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
956 				   unsigned char offset)
957 {
958 
959 	struct maple_metadata *meta = ma_meta(mn, mt);
960 
961 	meta->gap = offset;
962 }
963 
964 /*
965  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
966  * @mat: the ma_topiary, a linked list of dead nodes.
967  * @dead_enode: the node to be marked as dead and added to the tail of the list
968  *
969  * Add the @dead_enode to the linked list in @mat.
970  */
mat_add(struct ma_topiary * mat,struct maple_enode * dead_enode)971 static inline void mat_add(struct ma_topiary *mat,
972 			   struct maple_enode *dead_enode)
973 {
974 	mte_set_node_dead(dead_enode);
975 	mte_to_mat(dead_enode)->next = NULL;
976 	if (!mat->tail) {
977 		mat->tail = mat->head = dead_enode;
978 		return;
979 	}
980 
981 	mte_to_mat(mat->tail)->next = dead_enode;
982 	mat->tail = dead_enode;
983 }
984 
985 static void mt_free_walk(struct rcu_head *head);
986 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
987 			    bool free);
988 /*
989  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
990  * @mas: the maple state
991  * @mat: the ma_topiary linked list of dead nodes to free.
992  *
993  * Destroy walk a dead list.
994  */
mas_mat_destroy(struct ma_state * mas,struct ma_topiary * mat)995 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
996 {
997 	struct maple_enode *next;
998 	struct maple_node *node;
999 	bool in_rcu = mt_in_rcu(mas->tree);
1000 
1001 	while (mat->head) {
1002 		next = mte_to_mat(mat->head)->next;
1003 		node = mte_to_node(mat->head);
1004 		mt_destroy_walk(mat->head, mas->tree, !in_rcu);
1005 		if (in_rcu)
1006 			call_rcu(&node->rcu, mt_free_walk);
1007 		mat->head = next;
1008 	}
1009 }
1010 /*
1011  * mas_descend() - Descend into the slot stored in the ma_state.
1012  * @mas: the maple state.
1013  *
1014  * Note: Not RCU safe, only use in write side or debug code.
1015  */
mas_descend(struct ma_state * mas)1016 static inline void mas_descend(struct ma_state *mas)
1017 {
1018 	enum maple_type type;
1019 	unsigned long *pivots;
1020 	struct maple_node *node;
1021 	void __rcu **slots;
1022 
1023 	node = mas_mn(mas);
1024 	type = mte_node_type(mas->node);
1025 	pivots = ma_pivots(node, type);
1026 	slots = ma_slots(node, type);
1027 
1028 	if (mas->offset)
1029 		mas->min = pivots[mas->offset - 1] + 1;
1030 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1031 	mas->node = mas_slot(mas, slots, mas->offset);
1032 }
1033 
1034 /*
1035  * mte_set_gap() - Set a maple node gap.
1036  * @mn: The encoded maple node
1037  * @gap: The offset of the gap to set
1038  * @val: The gap value
1039  */
mte_set_gap(const struct maple_enode * mn,unsigned char gap,unsigned long val)1040 static inline void mte_set_gap(const struct maple_enode *mn,
1041 				 unsigned char gap, unsigned long val)
1042 {
1043 	switch (mte_node_type(mn)) {
1044 	default:
1045 		break;
1046 	case maple_arange_64:
1047 		mte_to_node(mn)->ma64.gap[gap] = val;
1048 		break;
1049 	}
1050 }
1051 
1052 /*
1053  * mas_ascend() - Walk up a level of the tree.
1054  * @mas: The maple state
1055  *
1056  * Sets the @mas->max and @mas->min for the parent node of mas->node.  This
1057  * may cause several levels of walking up to find the correct min and max.
1058  * May find a dead node which will cause a premature return.
1059  * Return: 1 on dead node, 0 otherwise
1060  */
mas_ascend(struct ma_state * mas)1061 static int mas_ascend(struct ma_state *mas)
1062 {
1063 	struct maple_enode *p_enode; /* parent enode. */
1064 	struct maple_enode *a_enode; /* ancestor enode. */
1065 	struct maple_node *a_node; /* ancestor node. */
1066 	struct maple_node *p_node; /* parent node. */
1067 	unsigned char a_slot;
1068 	enum maple_type a_type;
1069 	unsigned long min, max;
1070 	unsigned long *pivots;
1071 	bool set_max = false, set_min = false;
1072 
1073 	a_node = mas_mn(mas);
1074 	if (ma_is_root(a_node)) {
1075 		mas->offset = 0;
1076 		return 0;
1077 	}
1078 
1079 	p_node = mte_parent(mas->node);
1080 	if (unlikely(a_node == p_node))
1081 		return 1;
1082 
1083 	a_type = mas_parent_type(mas, mas->node);
1084 	mas->offset = mte_parent_slot(mas->node);
1085 	a_enode = mt_mk_node(p_node, a_type);
1086 
1087 	/* Check to make sure all parent information is still accurate */
1088 	if (p_node != mte_parent(mas->node))
1089 		return 1;
1090 
1091 	mas->node = a_enode;
1092 
1093 	if (mte_is_root(a_enode)) {
1094 		mas->max = ULONG_MAX;
1095 		mas->min = 0;
1096 		return 0;
1097 	}
1098 
1099 	min = 0;
1100 	max = ULONG_MAX;
1101 
1102 	/*
1103 	 * !mas->offset implies that parent node min == mas->min.
1104 	 * mas->offset > 0 implies that we need to walk up to find the
1105 	 * implied pivot min.
1106 	 */
1107 	if (!mas->offset) {
1108 		min = mas->min;
1109 		set_min = true;
1110 	}
1111 
1112 	if (mas->max == ULONG_MAX)
1113 		set_max = true;
1114 
1115 	do {
1116 		p_enode = a_enode;
1117 		a_type = mas_parent_type(mas, p_enode);
1118 		a_node = mte_parent(p_enode);
1119 		a_slot = mte_parent_slot(p_enode);
1120 		a_enode = mt_mk_node(a_node, a_type);
1121 		pivots = ma_pivots(a_node, a_type);
1122 
1123 		if (unlikely(ma_dead_node(a_node)))
1124 			return 1;
1125 
1126 		if (!set_min && a_slot) {
1127 			set_min = true;
1128 			min = pivots[a_slot - 1] + 1;
1129 		}
1130 
1131 		if (!set_max && a_slot < mt_pivots[a_type]) {
1132 			set_max = true;
1133 			max = pivots[a_slot];
1134 		}
1135 
1136 		if (unlikely(ma_dead_node(a_node)))
1137 			return 1;
1138 
1139 		if (unlikely(ma_is_root(a_node)))
1140 			break;
1141 
1142 	} while (!set_min || !set_max);
1143 
1144 	mas->max = max;
1145 	mas->min = min;
1146 	return 0;
1147 }
1148 
1149 /*
1150  * mas_pop_node() - Get a previously allocated maple node from the maple state.
1151  * @mas: The maple state
1152  *
1153  * Return: A pointer to a maple node.
1154  */
mas_pop_node(struct ma_state * mas)1155 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1156 {
1157 	struct maple_alloc *ret, *node = mas->alloc;
1158 	unsigned long total = mas_allocated(mas);
1159 	unsigned int req = mas_alloc_req(mas);
1160 
1161 	/* nothing or a request pending. */
1162 	if (WARN_ON(!total))
1163 		return NULL;
1164 
1165 	if (total == 1) {
1166 		/* single allocation in this ma_state */
1167 		mas->alloc = NULL;
1168 		ret = node;
1169 		goto single_node;
1170 	}
1171 
1172 	if (node->node_count == 1) {
1173 		/* Single allocation in this node. */
1174 		mas->alloc = node->slot[0];
1175 		mas->alloc->total = node->total - 1;
1176 		ret = node;
1177 		goto new_head;
1178 	}
1179 	node->total--;
1180 	ret = node->slot[--node->node_count];
1181 	node->slot[node->node_count] = NULL;
1182 
1183 single_node:
1184 new_head:
1185 	if (req) {
1186 		req++;
1187 		mas_set_alloc_req(mas, req);
1188 	}
1189 
1190 	memset(ret, 0, sizeof(*ret));
1191 	return (struct maple_node *)ret;
1192 }
1193 
1194 /*
1195  * mas_push_node() - Push a node back on the maple state allocation.
1196  * @mas: The maple state
1197  * @used: The used maple node
1198  *
1199  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
1200  * requested node count as necessary.
1201  */
mas_push_node(struct ma_state * mas,struct maple_node * used)1202 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1203 {
1204 	struct maple_alloc *reuse = (struct maple_alloc *)used;
1205 	struct maple_alloc *head = mas->alloc;
1206 	unsigned long count;
1207 	unsigned int requested = mas_alloc_req(mas);
1208 
1209 	count = mas_allocated(mas);
1210 
1211 	reuse->request_count = 0;
1212 	reuse->node_count = 0;
1213 	if (count) {
1214 		if (head->node_count < MAPLE_ALLOC_SLOTS) {
1215 			head->slot[head->node_count++] = reuse;
1216 			head->total++;
1217 			goto done;
1218 		}
1219 		reuse->slot[0] = head;
1220 		reuse->node_count = 1;
1221 	}
1222 
1223 	reuse->total = count + 1;
1224 	mas->alloc = reuse;
1225 done:
1226 	if (requested > 1)
1227 		mas_set_alloc_req(mas, requested - 1);
1228 }
1229 
1230 /*
1231  * mas_alloc_nodes() - Allocate nodes into a maple state
1232  * @mas: The maple state
1233  * @gfp: The GFP Flags
1234  */
mas_alloc_nodes(struct ma_state * mas,gfp_t gfp)1235 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1236 {
1237 	struct maple_alloc *node;
1238 	unsigned long allocated = mas_allocated(mas);
1239 	unsigned int requested = mas_alloc_req(mas);
1240 	unsigned int count;
1241 	void **slots = NULL;
1242 	unsigned int max_req = 0;
1243 
1244 	if (!requested)
1245 		return;
1246 
1247 	mas_set_alloc_req(mas, 0);
1248 	if (mas->mas_flags & MA_STATE_PREALLOC) {
1249 		if (allocated)
1250 			return;
1251 		WARN_ON(!allocated);
1252 	}
1253 
1254 	if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1255 		node = (struct maple_alloc *)mt_alloc_one(gfp);
1256 		if (!node)
1257 			goto nomem_one;
1258 
1259 		if (allocated) {
1260 			node->slot[0] = mas->alloc;
1261 			node->node_count = 1;
1262 		} else {
1263 			node->node_count = 0;
1264 		}
1265 
1266 		mas->alloc = node;
1267 		node->total = ++allocated;
1268 		node->request_count = 0;
1269 		requested--;
1270 	}
1271 
1272 	node = mas->alloc;
1273 	while (requested) {
1274 		max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1275 		slots = (void **)&node->slot[node->node_count];
1276 		max_req = min(requested, max_req);
1277 		count = mt_alloc_bulk(gfp, max_req, slots);
1278 		if (!count)
1279 			goto nomem_bulk;
1280 
1281 		if (node->node_count == 0) {
1282 			node->slot[0]->node_count = 0;
1283 			node->slot[0]->request_count = 0;
1284 		}
1285 
1286 		node->node_count += count;
1287 		allocated += count;
1288 		/* find a non-full node*/
1289 		do {
1290 			node = node->slot[0];
1291 		} while (unlikely(node->node_count == MAPLE_ALLOC_SLOTS));
1292 		requested -= count;
1293 	}
1294 	mas->alloc->total = allocated;
1295 	return;
1296 
1297 nomem_bulk:
1298 	/* Clean up potential freed allocations on bulk failure */
1299 	memset(slots, 0, max_req * sizeof(unsigned long));
1300 	mas->alloc->total = allocated;
1301 nomem_one:
1302 	mas_set_alloc_req(mas, requested);
1303 	mas_set_err(mas, -ENOMEM);
1304 }
1305 
1306 /*
1307  * mas_free() - Free an encoded maple node
1308  * @mas: The maple state
1309  * @used: The encoded maple node to free.
1310  *
1311  * Uses rcu free if necessary, pushes @used back on the maple state allocations
1312  * otherwise.
1313  */
mas_free(struct ma_state * mas,struct maple_enode * used)1314 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1315 {
1316 	struct maple_node *tmp = mte_to_node(used);
1317 
1318 	if (mt_in_rcu(mas->tree))
1319 		ma_free_rcu(tmp);
1320 	else
1321 		mas_push_node(mas, tmp);
1322 }
1323 
1324 /*
1325  * mas_node_count_gfp() - Check if enough nodes are allocated and request more
1326  * if there is not enough nodes.
1327  * @mas: The maple state
1328  * @count: The number of nodes needed
1329  * @gfp: the gfp flags
1330  */
mas_node_count_gfp(struct ma_state * mas,int count,gfp_t gfp)1331 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1332 {
1333 	unsigned long allocated = mas_allocated(mas);
1334 
1335 	if (allocated < count) {
1336 		mas_set_alloc_req(mas, count - allocated);
1337 		mas_alloc_nodes(mas, gfp);
1338 	}
1339 }
1340 
1341 /*
1342  * mas_node_count() - Check if enough nodes are allocated and request more if
1343  * there is not enough nodes.
1344  * @mas: The maple state
1345  * @count: The number of nodes needed
1346  *
1347  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1348  */
mas_node_count(struct ma_state * mas,int count)1349 static void mas_node_count(struct ma_state *mas, int count)
1350 {
1351 	return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1352 }
1353 
1354 /*
1355  * mas_start() - Sets up maple state for operations.
1356  * @mas: The maple state.
1357  *
1358  * If mas->status == ma_start, then set the min, max and depth to
1359  * defaults.
1360  *
1361  * Return:
1362  * - If mas->node is an error or not mas_start, return NULL.
1363  * - If it's an empty tree:     NULL & mas->status == ma_none
1364  * - If it's a single entry:    The entry & mas->status == ma_root
1365  * - If it's a tree:            NULL & mas->status == ma_active
1366  */
mas_start(struct ma_state * mas)1367 static inline struct maple_enode *mas_start(struct ma_state *mas)
1368 {
1369 	if (likely(mas_is_start(mas))) {
1370 		struct maple_enode *root;
1371 
1372 		mas->min = 0;
1373 		mas->max = ULONG_MAX;
1374 
1375 retry:
1376 		mas->depth = 0;
1377 		root = mas_root(mas);
1378 		/* Tree with nodes */
1379 		if (likely(xa_is_node(root))) {
1380 			mas->depth = 0;
1381 			mas->status = ma_active;
1382 			mas->node = mte_safe_root(root);
1383 			mas->offset = 0;
1384 			if (mte_dead_node(mas->node))
1385 				goto retry;
1386 
1387 			return NULL;
1388 		}
1389 
1390 		mas->node = NULL;
1391 		/* empty tree */
1392 		if (unlikely(!root)) {
1393 			mas->status = ma_none;
1394 			mas->offset = MAPLE_NODE_SLOTS;
1395 			return NULL;
1396 		}
1397 
1398 		/* Single entry tree */
1399 		mas->status = ma_root;
1400 		mas->offset = MAPLE_NODE_SLOTS;
1401 
1402 		/* Single entry tree. */
1403 		if (mas->index > 0)
1404 			return NULL;
1405 
1406 		return root;
1407 	}
1408 
1409 	return NULL;
1410 }
1411 
1412 /*
1413  * ma_data_end() - Find the end of the data in a node.
1414  * @node: The maple node
1415  * @type: The maple node type
1416  * @pivots: The array of pivots in the node
1417  * @max: The maximum value in the node
1418  *
1419  * Uses metadata to find the end of the data when possible.
1420  * Return: The zero indexed last slot with data (may be null).
1421  */
ma_data_end(struct maple_node * node,enum maple_type type,unsigned long * pivots,unsigned long max)1422 static __always_inline unsigned char ma_data_end(struct maple_node *node,
1423 		enum maple_type type, unsigned long *pivots, unsigned long max)
1424 {
1425 	unsigned char offset;
1426 
1427 	if (!pivots)
1428 		return 0;
1429 
1430 	if (type == maple_arange_64)
1431 		return ma_meta_end(node, type);
1432 
1433 	offset = mt_pivots[type] - 1;
1434 	if (likely(!pivots[offset]))
1435 		return ma_meta_end(node, type);
1436 
1437 	if (likely(pivots[offset] == max))
1438 		return offset;
1439 
1440 	return mt_pivots[type];
1441 }
1442 
1443 /*
1444  * mas_data_end() - Find the end of the data (slot).
1445  * @mas: the maple state
1446  *
1447  * This method is optimized to check the metadata of a node if the node type
1448  * supports data end metadata.
1449  *
1450  * Return: The zero indexed last slot with data (may be null).
1451  */
mas_data_end(struct ma_state * mas)1452 static inline unsigned char mas_data_end(struct ma_state *mas)
1453 {
1454 	enum maple_type type;
1455 	struct maple_node *node;
1456 	unsigned char offset;
1457 	unsigned long *pivots;
1458 
1459 	type = mte_node_type(mas->node);
1460 	node = mas_mn(mas);
1461 	if (type == maple_arange_64)
1462 		return ma_meta_end(node, type);
1463 
1464 	pivots = ma_pivots(node, type);
1465 	if (unlikely(ma_dead_node(node)))
1466 		return 0;
1467 
1468 	offset = mt_pivots[type] - 1;
1469 	if (likely(!pivots[offset]))
1470 		return ma_meta_end(node, type);
1471 
1472 	if (likely(pivots[offset] == mas->max))
1473 		return offset;
1474 
1475 	return mt_pivots[type];
1476 }
1477 
1478 /*
1479  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1480  * @mas: the maple state
1481  *
1482  * Return: The maximum gap in the leaf.
1483  */
mas_leaf_max_gap(struct ma_state * mas)1484 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1485 {
1486 	enum maple_type mt;
1487 	unsigned long pstart, gap, max_gap;
1488 	struct maple_node *mn;
1489 	unsigned long *pivots;
1490 	void __rcu **slots;
1491 	unsigned char i;
1492 	unsigned char max_piv;
1493 
1494 	mt = mte_node_type(mas->node);
1495 	mn = mas_mn(mas);
1496 	slots = ma_slots(mn, mt);
1497 	max_gap = 0;
1498 	if (unlikely(ma_is_dense(mt))) {
1499 		gap = 0;
1500 		for (i = 0; i < mt_slots[mt]; i++) {
1501 			if (slots[i]) {
1502 				if (gap > max_gap)
1503 					max_gap = gap;
1504 				gap = 0;
1505 			} else {
1506 				gap++;
1507 			}
1508 		}
1509 		if (gap > max_gap)
1510 			max_gap = gap;
1511 		return max_gap;
1512 	}
1513 
1514 	/*
1515 	 * Check the first implied pivot optimizes the loop below and slot 1 may
1516 	 * be skipped if there is a gap in slot 0.
1517 	 */
1518 	pivots = ma_pivots(mn, mt);
1519 	if (likely(!slots[0])) {
1520 		max_gap = pivots[0] - mas->min + 1;
1521 		i = 2;
1522 	} else {
1523 		i = 1;
1524 	}
1525 
1526 	/* reduce max_piv as the special case is checked before the loop */
1527 	max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1528 	/*
1529 	 * Check end implied pivot which can only be a gap on the right most
1530 	 * node.
1531 	 */
1532 	if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1533 		gap = ULONG_MAX - pivots[max_piv];
1534 		if (gap > max_gap)
1535 			max_gap = gap;
1536 
1537 		if (max_gap > pivots[max_piv] - mas->min)
1538 			return max_gap;
1539 	}
1540 
1541 	for (; i <= max_piv; i++) {
1542 		/* data == no gap. */
1543 		if (likely(slots[i]))
1544 			continue;
1545 
1546 		pstart = pivots[i - 1];
1547 		gap = pivots[i] - pstart;
1548 		if (gap > max_gap)
1549 			max_gap = gap;
1550 
1551 		/* There cannot be two gaps in a row. */
1552 		i++;
1553 	}
1554 	return max_gap;
1555 }
1556 
1557 /*
1558  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1559  * @node: The maple node
1560  * @gaps: The pointer to the gaps
1561  * @mt: The maple node type
1562  * @off: Pointer to store the offset location of the gap.
1563  *
1564  * Uses the metadata data end to scan backwards across set gaps.
1565  *
1566  * Return: The maximum gap value
1567  */
1568 static inline unsigned long
ma_max_gap(struct maple_node * node,unsigned long * gaps,enum maple_type mt,unsigned char * off)1569 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1570 	    unsigned char *off)
1571 {
1572 	unsigned char offset, i;
1573 	unsigned long max_gap = 0;
1574 
1575 	i = offset = ma_meta_end(node, mt);
1576 	do {
1577 		if (gaps[i] > max_gap) {
1578 			max_gap = gaps[i];
1579 			offset = i;
1580 		}
1581 	} while (i--);
1582 
1583 	*off = offset;
1584 	return max_gap;
1585 }
1586 
1587 /*
1588  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1589  * @mas: The maple state.
1590  *
1591  * Return: The gap value.
1592  */
mas_max_gap(struct ma_state * mas)1593 static inline unsigned long mas_max_gap(struct ma_state *mas)
1594 {
1595 	unsigned long *gaps;
1596 	unsigned char offset;
1597 	enum maple_type mt;
1598 	struct maple_node *node;
1599 
1600 	mt = mte_node_type(mas->node);
1601 	if (ma_is_leaf(mt))
1602 		return mas_leaf_max_gap(mas);
1603 
1604 	node = mas_mn(mas);
1605 	MAS_BUG_ON(mas, mt != maple_arange_64);
1606 	offset = ma_meta_gap(node);
1607 	gaps = ma_gaps(node, mt);
1608 	return gaps[offset];
1609 }
1610 
1611 /*
1612  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1613  * @mas: The maple state
1614  * @offset: The gap offset in the parent to set
1615  * @new: The new gap value.
1616  *
1617  * Set the parent gap then continue to set the gap upwards, using the metadata
1618  * of the parent to see if it is necessary to check the node above.
1619  */
mas_parent_gap(struct ma_state * mas,unsigned char offset,unsigned long new)1620 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1621 		unsigned long new)
1622 {
1623 	unsigned long meta_gap = 0;
1624 	struct maple_node *pnode;
1625 	struct maple_enode *penode;
1626 	unsigned long *pgaps;
1627 	unsigned char meta_offset;
1628 	enum maple_type pmt;
1629 
1630 	pnode = mte_parent(mas->node);
1631 	pmt = mas_parent_type(mas, mas->node);
1632 	penode = mt_mk_node(pnode, pmt);
1633 	pgaps = ma_gaps(pnode, pmt);
1634 
1635 ascend:
1636 	MAS_BUG_ON(mas, pmt != maple_arange_64);
1637 	meta_offset = ma_meta_gap(pnode);
1638 	meta_gap = pgaps[meta_offset];
1639 
1640 	pgaps[offset] = new;
1641 
1642 	if (meta_gap == new)
1643 		return;
1644 
1645 	if (offset != meta_offset) {
1646 		if (meta_gap > new)
1647 			return;
1648 
1649 		ma_set_meta_gap(pnode, pmt, offset);
1650 	} else if (new < meta_gap) {
1651 		new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1652 		ma_set_meta_gap(pnode, pmt, meta_offset);
1653 	}
1654 
1655 	if (ma_is_root(pnode))
1656 		return;
1657 
1658 	/* Go to the parent node. */
1659 	pnode = mte_parent(penode);
1660 	pmt = mas_parent_type(mas, penode);
1661 	pgaps = ma_gaps(pnode, pmt);
1662 	offset = mte_parent_slot(penode);
1663 	penode = mt_mk_node(pnode, pmt);
1664 	goto ascend;
1665 }
1666 
1667 /*
1668  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1669  * @mas: the maple state.
1670  */
mas_update_gap(struct ma_state * mas)1671 static inline void mas_update_gap(struct ma_state *mas)
1672 {
1673 	unsigned char pslot;
1674 	unsigned long p_gap;
1675 	unsigned long max_gap;
1676 
1677 	if (!mt_is_alloc(mas->tree))
1678 		return;
1679 
1680 	if (mte_is_root(mas->node))
1681 		return;
1682 
1683 	max_gap = mas_max_gap(mas);
1684 
1685 	pslot = mte_parent_slot(mas->node);
1686 	p_gap = ma_gaps(mte_parent(mas->node),
1687 			mas_parent_type(mas, mas->node))[pslot];
1688 
1689 	if (p_gap != max_gap)
1690 		mas_parent_gap(mas, pslot, max_gap);
1691 }
1692 
1693 /*
1694  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1695  * @parent with the slot encoded.
1696  * @mas: the maple state (for the tree)
1697  * @parent: the maple encoded node containing the children.
1698  */
mas_adopt_children(struct ma_state * mas,struct maple_enode * parent)1699 static inline void mas_adopt_children(struct ma_state *mas,
1700 		struct maple_enode *parent)
1701 {
1702 	enum maple_type type = mte_node_type(parent);
1703 	struct maple_node *node = mte_to_node(parent);
1704 	void __rcu **slots = ma_slots(node, type);
1705 	unsigned long *pivots = ma_pivots(node, type);
1706 	struct maple_enode *child;
1707 	unsigned char offset;
1708 
1709 	offset = ma_data_end(node, type, pivots, mas->max);
1710 	do {
1711 		child = mas_slot_locked(mas, slots, offset);
1712 		mas_set_parent(mas, child, parent, offset);
1713 	} while (offset--);
1714 }
1715 
1716 /*
1717  * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1718  * node as dead.
1719  * @mas: the maple state with the new node
1720  * @old_enode: The old maple encoded node to replace.
1721  * @new_height: if we are inserting a root node, update the height of the tree
1722  */
mas_put_in_tree(struct ma_state * mas,struct maple_enode * old_enode,char new_height)1723 static inline void mas_put_in_tree(struct ma_state *mas,
1724 		struct maple_enode *old_enode, char new_height)
1725 	__must_hold(mas->tree->ma_lock)
1726 {
1727 	unsigned char offset;
1728 	void __rcu **slots;
1729 
1730 	if (mte_is_root(mas->node)) {
1731 		mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1732 		rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1733 		mt_set_height(mas->tree, new_height);
1734 	} else {
1735 
1736 		offset = mte_parent_slot(mas->node);
1737 		slots = ma_slots(mte_parent(mas->node),
1738 				 mas_parent_type(mas, mas->node));
1739 		rcu_assign_pointer(slots[offset], mas->node);
1740 	}
1741 
1742 	mte_set_node_dead(old_enode);
1743 }
1744 
1745 /*
1746  * mas_replace_node() - Replace a node by putting it in the tree, marking it
1747  * dead, and freeing it.
1748  * the parent encoding to locate the maple node in the tree.
1749  * @mas: the ma_state with @mas->node pointing to the new node.
1750  * @old_enode: The old maple encoded node.
1751  * @new_height: The new height of the tree as a result of the operation
1752  */
mas_replace_node(struct ma_state * mas,struct maple_enode * old_enode,unsigned char new_height)1753 static inline void mas_replace_node(struct ma_state *mas,
1754 		struct maple_enode *old_enode, unsigned char new_height)
1755 	__must_hold(mas->tree->ma_lock)
1756 {
1757 	mas_put_in_tree(mas, old_enode, new_height);
1758 	mas_free(mas, old_enode);
1759 }
1760 
1761 /*
1762  * mas_find_child() - Find a child who has the parent @mas->node.
1763  * @mas: the maple state with the parent.
1764  * @child: the maple state to store the child.
1765  */
mas_find_child(struct ma_state * mas,struct ma_state * child)1766 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1767 	__must_hold(mas->tree->ma_lock)
1768 {
1769 	enum maple_type mt;
1770 	unsigned char offset;
1771 	unsigned char end;
1772 	unsigned long *pivots;
1773 	struct maple_enode *entry;
1774 	struct maple_node *node;
1775 	void __rcu **slots;
1776 
1777 	mt = mte_node_type(mas->node);
1778 	node = mas_mn(mas);
1779 	slots = ma_slots(node, mt);
1780 	pivots = ma_pivots(node, mt);
1781 	end = ma_data_end(node, mt, pivots, mas->max);
1782 	for (offset = mas->offset; offset <= end; offset++) {
1783 		entry = mas_slot_locked(mas, slots, offset);
1784 		if (mte_parent(entry) == node) {
1785 			*child = *mas;
1786 			mas->offset = offset + 1;
1787 			child->offset = offset;
1788 			mas_descend(child);
1789 			child->offset = 0;
1790 			return true;
1791 		}
1792 	}
1793 	return false;
1794 }
1795 
1796 /*
1797  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1798  * old data or set b_node->b_end.
1799  * @b_node: the maple_big_node
1800  * @shift: the shift count
1801  */
mab_shift_right(struct maple_big_node * b_node,unsigned char shift)1802 static inline void mab_shift_right(struct maple_big_node *b_node,
1803 				 unsigned char shift)
1804 {
1805 	unsigned long size = b_node->b_end * sizeof(unsigned long);
1806 
1807 	memmove(b_node->pivot + shift, b_node->pivot, size);
1808 	memmove(b_node->slot + shift, b_node->slot, size);
1809 	if (b_node->type == maple_arange_64)
1810 		memmove(b_node->gap + shift, b_node->gap, size);
1811 }
1812 
1813 /*
1814  * mab_middle_node() - Check if a middle node is needed (unlikely)
1815  * @b_node: the maple_big_node that contains the data.
1816  * @split: the potential split location
1817  * @slot_count: the size that can be stored in a single node being considered.
1818  *
1819  * Return: true if a middle node is required.
1820  */
mab_middle_node(struct maple_big_node * b_node,int split,unsigned char slot_count)1821 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1822 				   unsigned char slot_count)
1823 {
1824 	unsigned char size = b_node->b_end;
1825 
1826 	if (size >= 2 * slot_count)
1827 		return true;
1828 
1829 	if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1830 		return true;
1831 
1832 	return false;
1833 }
1834 
1835 /*
1836  * mab_no_null_split() - ensure the split doesn't fall on a NULL
1837  * @b_node: the maple_big_node with the data
1838  * @split: the suggested split location
1839  * @slot_count: the number of slots in the node being considered.
1840  *
1841  * Return: the split location.
1842  */
mab_no_null_split(struct maple_big_node * b_node,unsigned char split,unsigned char slot_count)1843 static inline int mab_no_null_split(struct maple_big_node *b_node,
1844 				    unsigned char split, unsigned char slot_count)
1845 {
1846 	if (!b_node->slot[split]) {
1847 		/*
1848 		 * If the split is less than the max slot && the right side will
1849 		 * still be sufficient, then increment the split on NULL.
1850 		 */
1851 		if ((split < slot_count - 1) &&
1852 		    (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1853 			split++;
1854 		else
1855 			split--;
1856 	}
1857 	return split;
1858 }
1859 
1860 /*
1861  * mab_calc_split() - Calculate the split location and if there needs to be two
1862  * splits.
1863  * @mas: The maple state
1864  * @bn: The maple_big_node with the data
1865  * @mid_split: The second split, if required.  0 otherwise.
1866  *
1867  * Return: The first split location.  The middle split is set in @mid_split.
1868  */
mab_calc_split(struct ma_state * mas,struct maple_big_node * bn,unsigned char * mid_split)1869 static inline int mab_calc_split(struct ma_state *mas,
1870 	 struct maple_big_node *bn, unsigned char *mid_split)
1871 {
1872 	unsigned char b_end = bn->b_end;
1873 	int split = b_end / 2; /* Assume equal split. */
1874 	unsigned char slot_count = mt_slots[bn->type];
1875 
1876 	/*
1877 	 * To support gap tracking, all NULL entries are kept together and a node cannot
1878 	 * end on a NULL entry, with the exception of the left-most leaf.  The
1879 	 * limitation means that the split of a node must be checked for this condition
1880 	 * and be able to put more data in one direction or the other.
1881 	 */
1882 	if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1883 		*mid_split = 0;
1884 		split = b_end - mt_min_slots[bn->type];
1885 
1886 		if (!ma_is_leaf(bn->type))
1887 			return split;
1888 
1889 		mas->mas_flags |= MA_STATE_REBALANCE;
1890 		if (!bn->slot[split])
1891 			split--;
1892 		return split;
1893 	}
1894 
1895 	/*
1896 	 * Although extremely rare, it is possible to enter what is known as the 3-way
1897 	 * split scenario.  The 3-way split comes about by means of a store of a range
1898 	 * that overwrites the end and beginning of two full nodes.  The result is a set
1899 	 * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
1900 	 * also be located in different parent nodes which are also full.  This can
1901 	 * carry upwards all the way to the root in the worst case.
1902 	 */
1903 	if (unlikely(mab_middle_node(bn, split, slot_count))) {
1904 		split = b_end / 3;
1905 		*mid_split = split * 2;
1906 	} else {
1907 		*mid_split = 0;
1908 	}
1909 
1910 	/* Avoid ending a node on a NULL entry */
1911 	split = mab_no_null_split(bn, split, slot_count);
1912 
1913 	if (unlikely(*mid_split))
1914 		*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1915 
1916 	return split;
1917 }
1918 
1919 /*
1920  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1921  * and set @b_node->b_end to the next free slot.
1922  * @mas: The maple state
1923  * @mas_start: The starting slot to copy
1924  * @mas_end: The end slot to copy (inclusively)
1925  * @b_node: The maple_big_node to place the data
1926  * @mab_start: The starting location in maple_big_node to store the data.
1927  */
mas_mab_cp(struct ma_state * mas,unsigned char mas_start,unsigned char mas_end,struct maple_big_node * b_node,unsigned char mab_start)1928 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1929 			unsigned char mas_end, struct maple_big_node *b_node,
1930 			unsigned char mab_start)
1931 {
1932 	enum maple_type mt;
1933 	struct maple_node *node;
1934 	void __rcu **slots;
1935 	unsigned long *pivots, *gaps;
1936 	int i = mas_start, j = mab_start;
1937 	unsigned char piv_end;
1938 
1939 	node = mas_mn(mas);
1940 	mt = mte_node_type(mas->node);
1941 	pivots = ma_pivots(node, mt);
1942 	if (!i) {
1943 		b_node->pivot[j] = pivots[i++];
1944 		if (unlikely(i > mas_end))
1945 			goto complete;
1946 		j++;
1947 	}
1948 
1949 	piv_end = min(mas_end, mt_pivots[mt]);
1950 	for (; i < piv_end; i++, j++) {
1951 		b_node->pivot[j] = pivots[i];
1952 		if (unlikely(!b_node->pivot[j]))
1953 			goto complete;
1954 
1955 		if (unlikely(mas->max == b_node->pivot[j]))
1956 			goto complete;
1957 	}
1958 
1959 	b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1960 
1961 complete:
1962 	b_node->b_end = ++j;
1963 	j -= mab_start;
1964 	slots = ma_slots(node, mt);
1965 	memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1966 	if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1967 		gaps = ma_gaps(node, mt);
1968 		memcpy(b_node->gap + mab_start, gaps + mas_start,
1969 		       sizeof(unsigned long) * j);
1970 	}
1971 }
1972 
1973 /*
1974  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1975  * @node: The maple node
1976  * @mt: The maple type
1977  * @end: The node end
1978  */
mas_leaf_set_meta(struct maple_node * node,enum maple_type mt,unsigned char end)1979 static inline void mas_leaf_set_meta(struct maple_node *node,
1980 		enum maple_type mt, unsigned char end)
1981 {
1982 	if (end < mt_slots[mt] - 1)
1983 		ma_set_meta(node, mt, 0, end);
1984 }
1985 
1986 /*
1987  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1988  * @b_node: the maple_big_node that has the data
1989  * @mab_start: the start location in @b_node.
1990  * @mab_end: The end location in @b_node (inclusively)
1991  * @mas: The maple state with the maple encoded node.
1992  */
mab_mas_cp(struct maple_big_node * b_node,unsigned char mab_start,unsigned char mab_end,struct ma_state * mas,bool new_max)1993 static inline void mab_mas_cp(struct maple_big_node *b_node,
1994 			      unsigned char mab_start, unsigned char mab_end,
1995 			      struct ma_state *mas, bool new_max)
1996 {
1997 	int i, j = 0;
1998 	enum maple_type mt = mte_node_type(mas->node);
1999 	struct maple_node *node = mte_to_node(mas->node);
2000 	void __rcu **slots = ma_slots(node, mt);
2001 	unsigned long *pivots = ma_pivots(node, mt);
2002 	unsigned long *gaps = NULL;
2003 	unsigned char end;
2004 
2005 	if (mab_end - mab_start > mt_pivots[mt])
2006 		mab_end--;
2007 
2008 	if (!pivots[mt_pivots[mt] - 1])
2009 		slots[mt_pivots[mt]] = NULL;
2010 
2011 	i = mab_start;
2012 	do {
2013 		pivots[j++] = b_node->pivot[i++];
2014 	} while (i <= mab_end && likely(b_node->pivot[i]));
2015 
2016 	memcpy(slots, b_node->slot + mab_start,
2017 	       sizeof(void *) * (i - mab_start));
2018 
2019 	if (new_max)
2020 		mas->max = b_node->pivot[i - 1];
2021 
2022 	end = j - 1;
2023 	if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2024 		unsigned long max_gap = 0;
2025 		unsigned char offset = 0;
2026 
2027 		gaps = ma_gaps(node, mt);
2028 		do {
2029 			gaps[--j] = b_node->gap[--i];
2030 			if (gaps[j] > max_gap) {
2031 				offset = j;
2032 				max_gap = gaps[j];
2033 			}
2034 		} while (j);
2035 
2036 		ma_set_meta(node, mt, offset, end);
2037 	} else {
2038 		mas_leaf_set_meta(node, mt, end);
2039 	}
2040 }
2041 
2042 /*
2043  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2044  * @mas: The maple state
2045  * @end: The maple node end
2046  * @mt: The maple node type
2047  */
mas_bulk_rebalance(struct ma_state * mas,unsigned char end,enum maple_type mt)2048 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2049 				      enum maple_type mt)
2050 {
2051 	if (!(mas->mas_flags & MA_STATE_BULK))
2052 		return;
2053 
2054 	if (mte_is_root(mas->node))
2055 		return;
2056 
2057 	if (end > mt_min_slots[mt]) {
2058 		mas->mas_flags &= ~MA_STATE_REBALANCE;
2059 		return;
2060 	}
2061 }
2062 
2063 /*
2064  * mas_store_b_node() - Store an @entry into the b_node while also copying the
2065  * data from a maple encoded node.
2066  * @wr_mas: the maple write state
2067  * @b_node: the maple_big_node to fill with data
2068  * @offset_end: the offset to end copying
2069  *
2070  * Return: The actual end of the data stored in @b_node
2071  */
mas_store_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node,unsigned char offset_end)2072 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2073 		struct maple_big_node *b_node, unsigned char offset_end)
2074 {
2075 	unsigned char slot;
2076 	unsigned char b_end;
2077 	/* Possible underflow of piv will wrap back to 0 before use. */
2078 	unsigned long piv;
2079 	struct ma_state *mas = wr_mas->mas;
2080 
2081 	b_node->type = wr_mas->type;
2082 	b_end = 0;
2083 	slot = mas->offset;
2084 	if (slot) {
2085 		/* Copy start data up to insert. */
2086 		mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2087 		b_end = b_node->b_end;
2088 		piv = b_node->pivot[b_end - 1];
2089 	} else
2090 		piv = mas->min - 1;
2091 
2092 	if (piv + 1 < mas->index) {
2093 		/* Handle range starting after old range */
2094 		b_node->slot[b_end] = wr_mas->content;
2095 		if (!wr_mas->content)
2096 			b_node->gap[b_end] = mas->index - 1 - piv;
2097 		b_node->pivot[b_end++] = mas->index - 1;
2098 	}
2099 
2100 	/* Store the new entry. */
2101 	mas->offset = b_end;
2102 	b_node->slot[b_end] = wr_mas->entry;
2103 	b_node->pivot[b_end] = mas->last;
2104 
2105 	/* Appended. */
2106 	if (mas->last >= mas->max)
2107 		goto b_end;
2108 
2109 	/* Handle new range ending before old range ends */
2110 	piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2111 	if (piv > mas->last) {
2112 		if (piv == ULONG_MAX)
2113 			mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2114 
2115 		if (offset_end != slot)
2116 			wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2117 							  offset_end);
2118 
2119 		b_node->slot[++b_end] = wr_mas->content;
2120 		if (!wr_mas->content)
2121 			b_node->gap[b_end] = piv - mas->last + 1;
2122 		b_node->pivot[b_end] = piv;
2123 	}
2124 
2125 	slot = offset_end + 1;
2126 	if (slot > mas->end)
2127 		goto b_end;
2128 
2129 	/* Copy end data to the end of the node. */
2130 	mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end);
2131 	b_node->b_end--;
2132 	return;
2133 
2134 b_end:
2135 	b_node->b_end = b_end;
2136 }
2137 
2138 /*
2139  * mas_prev_sibling() - Find the previous node with the same parent.
2140  * @mas: the maple state
2141  *
2142  * Return: True if there is a previous sibling, false otherwise.
2143  */
mas_prev_sibling(struct ma_state * mas)2144 static inline bool mas_prev_sibling(struct ma_state *mas)
2145 {
2146 	unsigned int p_slot = mte_parent_slot(mas->node);
2147 
2148 	/* For root node, p_slot is set to 0 by mte_parent_slot(). */
2149 	if (!p_slot)
2150 		return false;
2151 
2152 	mas_ascend(mas);
2153 	mas->offset = p_slot - 1;
2154 	mas_descend(mas);
2155 	return true;
2156 }
2157 
2158 /*
2159  * mas_next_sibling() - Find the next node with the same parent.
2160  * @mas: the maple state
2161  *
2162  * Return: true if there is a next sibling, false otherwise.
2163  */
mas_next_sibling(struct ma_state * mas)2164 static inline bool mas_next_sibling(struct ma_state *mas)
2165 {
2166 	MA_STATE(parent, mas->tree, mas->index, mas->last);
2167 
2168 	if (mte_is_root(mas->node))
2169 		return false;
2170 
2171 	parent = *mas;
2172 	mas_ascend(&parent);
2173 	parent.offset = mte_parent_slot(mas->node) + 1;
2174 	if (parent.offset > mas_data_end(&parent))
2175 		return false;
2176 
2177 	*mas = parent;
2178 	mas_descend(mas);
2179 	return true;
2180 }
2181 
2182 /*
2183  * mas_node_or_none() - Set the enode and state.
2184  * @mas: the maple state
2185  * @enode: The encoded maple node.
2186  *
2187  * Set the node to the enode and the status.
2188  */
mas_node_or_none(struct ma_state * mas,struct maple_enode * enode)2189 static inline void mas_node_or_none(struct ma_state *mas,
2190 		struct maple_enode *enode)
2191 {
2192 	if (enode) {
2193 		mas->node = enode;
2194 		mas->status = ma_active;
2195 	} else {
2196 		mas->node = NULL;
2197 		mas->status = ma_none;
2198 	}
2199 }
2200 
2201 /*
2202  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2203  *                      If @mas->index cannot be found within the containing
2204  *                      node, we traverse to the last entry in the node.
2205  * @wr_mas: The maple write state
2206  *
2207  * Uses mas_slot_locked() and does not need to worry about dead nodes.
2208  */
mas_wr_node_walk(struct ma_wr_state * wr_mas)2209 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2210 {
2211 	struct ma_state *mas = wr_mas->mas;
2212 	unsigned char count, offset;
2213 
2214 	if (unlikely(ma_is_dense(wr_mas->type))) {
2215 		wr_mas->r_max = wr_mas->r_min = mas->index;
2216 		mas->offset = mas->index = mas->min;
2217 		return;
2218 	}
2219 
2220 	wr_mas->node = mas_mn(wr_mas->mas);
2221 	wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2222 	count = mas->end = ma_data_end(wr_mas->node, wr_mas->type,
2223 				       wr_mas->pivots, mas->max);
2224 	offset = mas->offset;
2225 
2226 	while (offset < count && mas->index > wr_mas->pivots[offset])
2227 		offset++;
2228 
2229 	wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2230 	wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2231 	wr_mas->offset_end = mas->offset = offset;
2232 }
2233 
2234 /*
2235  * mast_rebalance_next() - Rebalance against the next node
2236  * @mast: The maple subtree state
2237  */
mast_rebalance_next(struct maple_subtree_state * mast)2238 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2239 {
2240 	unsigned char b_end = mast->bn->b_end;
2241 
2242 	mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2243 		   mast->bn, b_end);
2244 	mast->orig_r->last = mast->orig_r->max;
2245 }
2246 
2247 /*
2248  * mast_rebalance_prev() - Rebalance against the previous node
2249  * @mast: The maple subtree state
2250  */
mast_rebalance_prev(struct maple_subtree_state * mast)2251 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2252 {
2253 	unsigned char end = mas_data_end(mast->orig_l) + 1;
2254 	unsigned char b_end = mast->bn->b_end;
2255 
2256 	mab_shift_right(mast->bn, end);
2257 	mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2258 	mast->l->min = mast->orig_l->min;
2259 	mast->orig_l->index = mast->orig_l->min;
2260 	mast->bn->b_end = end + b_end;
2261 	mast->l->offset += end;
2262 }
2263 
2264 /*
2265  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2266  * the node to the right.  Checking the nodes to the right then the left at each
2267  * level upwards until root is reached.
2268  * Data is copied into the @mast->bn.
2269  * @mast: The maple_subtree_state.
2270  */
2271 static inline
mast_spanning_rebalance(struct maple_subtree_state * mast)2272 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2273 {
2274 	struct ma_state r_tmp = *mast->orig_r;
2275 	struct ma_state l_tmp = *mast->orig_l;
2276 	unsigned char depth = 0;
2277 
2278 	do {
2279 		mas_ascend(mast->orig_r);
2280 		mas_ascend(mast->orig_l);
2281 		depth++;
2282 		if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2283 			mast->orig_r->offset++;
2284 			do {
2285 				mas_descend(mast->orig_r);
2286 				mast->orig_r->offset = 0;
2287 			} while (--depth);
2288 
2289 			mast_rebalance_next(mast);
2290 			*mast->orig_l = l_tmp;
2291 			return true;
2292 		} else if (mast->orig_l->offset != 0) {
2293 			mast->orig_l->offset--;
2294 			do {
2295 				mas_descend(mast->orig_l);
2296 				mast->orig_l->offset =
2297 					mas_data_end(mast->orig_l);
2298 			} while (--depth);
2299 
2300 			mast_rebalance_prev(mast);
2301 			*mast->orig_r = r_tmp;
2302 			return true;
2303 		}
2304 	} while (!mte_is_root(mast->orig_r->node));
2305 
2306 	*mast->orig_r = r_tmp;
2307 	*mast->orig_l = l_tmp;
2308 	return false;
2309 }
2310 
2311 /*
2312  * mast_ascend() - Ascend the original left and right maple states.
2313  * @mast: the maple subtree state.
2314  *
2315  * Ascend the original left and right sides.  Set the offsets to point to the
2316  * data already in the new tree (@mast->l and @mast->r).
2317  */
mast_ascend(struct maple_subtree_state * mast)2318 static inline void mast_ascend(struct maple_subtree_state *mast)
2319 {
2320 	MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
2321 	mas_ascend(mast->orig_l);
2322 	mas_ascend(mast->orig_r);
2323 
2324 	mast->orig_r->offset = 0;
2325 	mast->orig_r->index = mast->r->max;
2326 	/* last should be larger than or equal to index */
2327 	if (mast->orig_r->last < mast->orig_r->index)
2328 		mast->orig_r->last = mast->orig_r->index;
2329 
2330 	wr_mas.type = mte_node_type(mast->orig_r->node);
2331 	mas_wr_node_walk(&wr_mas);
2332 	/* Set up the left side of things */
2333 	mast->orig_l->offset = 0;
2334 	mast->orig_l->index = mast->l->min;
2335 	wr_mas.mas = mast->orig_l;
2336 	wr_mas.type = mte_node_type(mast->orig_l->node);
2337 	mas_wr_node_walk(&wr_mas);
2338 
2339 	mast->bn->type = wr_mas.type;
2340 }
2341 
2342 /*
2343  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
2344  * @mas: the maple state with the allocations.
2345  * @b_node: the maple_big_node with the type encoding.
2346  *
2347  * Use the node type from the maple_big_node to allocate a new node from the
2348  * ma_state.  This function exists mainly for code readability.
2349  *
2350  * Return: A new maple encoded node
2351  */
2352 static inline struct maple_enode
mas_new_ma_node(struct ma_state * mas,struct maple_big_node * b_node)2353 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2354 {
2355 	return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2356 }
2357 
2358 /*
2359  * mas_mab_to_node() - Set up right and middle nodes
2360  *
2361  * @mas: the maple state that contains the allocations.
2362  * @b_node: the node which contains the data.
2363  * @left: The pointer which will have the left node
2364  * @right: The pointer which may have the right node
2365  * @middle: the pointer which may have the middle node (rare)
2366  * @mid_split: the split location for the middle node
2367  *
2368  * Return: the split of left.
2369  */
mas_mab_to_node(struct ma_state * mas,struct maple_big_node * b_node,struct maple_enode ** left,struct maple_enode ** right,struct maple_enode ** middle,unsigned char * mid_split)2370 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2371 	struct maple_big_node *b_node, struct maple_enode **left,
2372 	struct maple_enode **right, struct maple_enode **middle,
2373 	unsigned char *mid_split)
2374 {
2375 	unsigned char split = 0;
2376 	unsigned char slot_count = mt_slots[b_node->type];
2377 
2378 	*left = mas_new_ma_node(mas, b_node);
2379 	*right = NULL;
2380 	*middle = NULL;
2381 	*mid_split = 0;
2382 
2383 	if (b_node->b_end < slot_count) {
2384 		split = b_node->b_end;
2385 	} else {
2386 		split = mab_calc_split(mas, b_node, mid_split);
2387 		*right = mas_new_ma_node(mas, b_node);
2388 	}
2389 
2390 	if (*mid_split)
2391 		*middle = mas_new_ma_node(mas, b_node);
2392 
2393 	return split;
2394 
2395 }
2396 
2397 /*
2398  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2399  * pointer.
2400  * @b_node: the big node to add the entry
2401  * @mas: the maple state to get the pivot (mas->max)
2402  * @entry: the entry to add, if NULL nothing happens.
2403  */
mab_set_b_end(struct maple_big_node * b_node,struct ma_state * mas,void * entry)2404 static inline void mab_set_b_end(struct maple_big_node *b_node,
2405 				 struct ma_state *mas,
2406 				 void *entry)
2407 {
2408 	if (!entry)
2409 		return;
2410 
2411 	b_node->slot[b_node->b_end] = entry;
2412 	if (mt_is_alloc(mas->tree))
2413 		b_node->gap[b_node->b_end] = mas_max_gap(mas);
2414 	b_node->pivot[b_node->b_end++] = mas->max;
2415 }
2416 
2417 /*
2418  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
2419  * of @mas->node to either @left or @right, depending on @slot and @split
2420  *
2421  * @mas: the maple state with the node that needs a parent
2422  * @left: possible parent 1
2423  * @right: possible parent 2
2424  * @slot: the slot the mas->node was placed
2425  * @split: the split location between @left and @right
2426  */
mas_set_split_parent(struct ma_state * mas,struct maple_enode * left,struct maple_enode * right,unsigned char * slot,unsigned char split)2427 static inline void mas_set_split_parent(struct ma_state *mas,
2428 					struct maple_enode *left,
2429 					struct maple_enode *right,
2430 					unsigned char *slot, unsigned char split)
2431 {
2432 	if (mas_is_none(mas))
2433 		return;
2434 
2435 	if ((*slot) <= split)
2436 		mas_set_parent(mas, mas->node, left, *slot);
2437 	else if (right)
2438 		mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2439 
2440 	(*slot)++;
2441 }
2442 
2443 /*
2444  * mte_mid_split_check() - Check if the next node passes the mid-split
2445  * @l: Pointer to left encoded maple node.
2446  * @m: Pointer to middle encoded maple node.
2447  * @r: Pointer to right encoded maple node.
2448  * @slot: The offset
2449  * @split: The split location.
2450  * @mid_split: The middle split.
2451  */
mte_mid_split_check(struct maple_enode ** l,struct maple_enode ** r,struct maple_enode * right,unsigned char slot,unsigned char * split,unsigned char mid_split)2452 static inline void mte_mid_split_check(struct maple_enode **l,
2453 				       struct maple_enode **r,
2454 				       struct maple_enode *right,
2455 				       unsigned char slot,
2456 				       unsigned char *split,
2457 				       unsigned char mid_split)
2458 {
2459 	if (*r == right)
2460 		return;
2461 
2462 	if (slot < mid_split)
2463 		return;
2464 
2465 	*l = *r;
2466 	*r = right;
2467 	*split = mid_split;
2468 }
2469 
2470 /*
2471  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
2472  * is taken from @mast->l.
2473  * @mast: the maple subtree state
2474  * @left: the left node
2475  * @right: the right node
2476  * @split: the split location.
2477  */
mast_set_split_parents(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2478 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2479 					  struct maple_enode *left,
2480 					  struct maple_enode *middle,
2481 					  struct maple_enode *right,
2482 					  unsigned char split,
2483 					  unsigned char mid_split)
2484 {
2485 	unsigned char slot;
2486 	struct maple_enode *l = left;
2487 	struct maple_enode *r = right;
2488 
2489 	if (mas_is_none(mast->l))
2490 		return;
2491 
2492 	if (middle)
2493 		r = middle;
2494 
2495 	slot = mast->l->offset;
2496 
2497 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2498 	mas_set_split_parent(mast->l, l, r, &slot, split);
2499 
2500 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2501 	mas_set_split_parent(mast->m, l, r, &slot, split);
2502 
2503 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2504 	mas_set_split_parent(mast->r, l, r, &slot, split);
2505 }
2506 
2507 /*
2508  * mas_topiary_node() - Dispose of a single node
2509  * @mas: The maple state for pushing nodes
2510  * @in_rcu: If the tree is in rcu mode
2511  *
2512  * The node will either be RCU freed or pushed back on the maple state.
2513  */
mas_topiary_node(struct ma_state * mas,struct ma_state * tmp_mas,bool in_rcu)2514 static inline void mas_topiary_node(struct ma_state *mas,
2515 		struct ma_state *tmp_mas, bool in_rcu)
2516 {
2517 	struct maple_node *tmp;
2518 	struct maple_enode *enode;
2519 
2520 	if (mas_is_none(tmp_mas))
2521 		return;
2522 
2523 	enode = tmp_mas->node;
2524 	tmp = mte_to_node(enode);
2525 	mte_set_node_dead(enode);
2526 	if (in_rcu)
2527 		ma_free_rcu(tmp);
2528 	else
2529 		mas_push_node(mas, tmp);
2530 }
2531 
2532 /*
2533  * mas_topiary_replace() - Replace the data with new data, then repair the
2534  * parent links within the new tree.  Iterate over the dead sub-tree and collect
2535  * the dead subtrees and topiary the nodes that are no longer of use.
2536  *
2537  * The new tree will have up to three children with the correct parent.  Keep
2538  * track of the new entries as they need to be followed to find the next level
2539  * of new entries.
2540  *
2541  * The old tree will have up to three children with the old parent.  Keep track
2542  * of the old entries as they may have more nodes below replaced.  Nodes within
2543  * [index, last] are dead subtrees, others need to be freed and followed.
2544  *
2545  * @mas: The maple state pointing at the new data
2546  * @old_enode: The maple encoded node being replaced
2547  * @new_height: The new height of the tree as a result of the operation
2548  *
2549  */
mas_topiary_replace(struct ma_state * mas,struct maple_enode * old_enode,unsigned char new_height)2550 static inline void mas_topiary_replace(struct ma_state *mas,
2551 		struct maple_enode *old_enode, unsigned char new_height)
2552 {
2553 	struct ma_state tmp[3], tmp_next[3];
2554 	MA_TOPIARY(subtrees, mas->tree);
2555 	bool in_rcu;
2556 	int i, n;
2557 
2558 	/* Place data in tree & then mark node as old */
2559 	mas_put_in_tree(mas, old_enode, new_height);
2560 
2561 	/* Update the parent pointers in the tree */
2562 	tmp[0] = *mas;
2563 	tmp[0].offset = 0;
2564 	tmp[1].status = ma_none;
2565 	tmp[2].status = ma_none;
2566 	while (!mte_is_leaf(tmp[0].node)) {
2567 		n = 0;
2568 		for (i = 0; i < 3; i++) {
2569 			if (mas_is_none(&tmp[i]))
2570 				continue;
2571 
2572 			while (n < 3) {
2573 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2574 					break;
2575 				n++;
2576 			}
2577 
2578 			mas_adopt_children(&tmp[i], tmp[i].node);
2579 		}
2580 
2581 		if (MAS_WARN_ON(mas, n == 0))
2582 			break;
2583 
2584 		while (n < 3)
2585 			tmp_next[n++].status = ma_none;
2586 
2587 		for (i = 0; i < 3; i++)
2588 			tmp[i] = tmp_next[i];
2589 	}
2590 
2591 	/* Collect the old nodes that need to be discarded */
2592 	if (mte_is_leaf(old_enode))
2593 		return mas_free(mas, old_enode);
2594 
2595 	tmp[0] = *mas;
2596 	tmp[0].offset = 0;
2597 	tmp[0].node = old_enode;
2598 	tmp[1].status = ma_none;
2599 	tmp[2].status = ma_none;
2600 	in_rcu = mt_in_rcu(mas->tree);
2601 	do {
2602 		n = 0;
2603 		for (i = 0; i < 3; i++) {
2604 			if (mas_is_none(&tmp[i]))
2605 				continue;
2606 
2607 			while (n < 3) {
2608 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2609 					break;
2610 
2611 				if ((tmp_next[n].min >= tmp_next->index) &&
2612 				    (tmp_next[n].max <= tmp_next->last)) {
2613 					mat_add(&subtrees, tmp_next[n].node);
2614 					tmp_next[n].status = ma_none;
2615 				} else {
2616 					n++;
2617 				}
2618 			}
2619 		}
2620 
2621 		if (MAS_WARN_ON(mas, n == 0))
2622 			break;
2623 
2624 		while (n < 3)
2625 			tmp_next[n++].status = ma_none;
2626 
2627 		for (i = 0; i < 3; i++) {
2628 			mas_topiary_node(mas, &tmp[i], in_rcu);
2629 			tmp[i] = tmp_next[i];
2630 		}
2631 	} while (!mte_is_leaf(tmp[0].node));
2632 
2633 	for (i = 0; i < 3; i++)
2634 		mas_topiary_node(mas, &tmp[i], in_rcu);
2635 
2636 	mas_mat_destroy(mas, &subtrees);
2637 }
2638 
2639 /*
2640  * mas_wmb_replace() - Write memory barrier and replace
2641  * @mas: The maple state
2642  * @old_enode: The old maple encoded node that is being replaced.
2643  * @new_height: The new height of the tree as a result of the operation
2644  *
2645  * Updates gap as necessary.
2646  */
mas_wmb_replace(struct ma_state * mas,struct maple_enode * old_enode,unsigned char new_height)2647 static inline void mas_wmb_replace(struct ma_state *mas,
2648 		struct maple_enode *old_enode, unsigned char new_height)
2649 {
2650 	/* Insert the new data in the tree */
2651 	mas_topiary_replace(mas, old_enode, new_height);
2652 
2653 	if (mte_is_leaf(mas->node))
2654 		return;
2655 
2656 	mas_update_gap(mas);
2657 }
2658 
2659 /*
2660  * mast_cp_to_nodes() - Copy data out to nodes.
2661  * @mast: The maple subtree state
2662  * @left: The left encoded maple node
2663  * @middle: The middle encoded maple node
2664  * @right: The right encoded maple node
2665  * @split: The location to split between left and (middle ? middle : right)
2666  * @mid_split: The location to split between middle and right.
2667  */
mast_cp_to_nodes(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2668 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2669 	struct maple_enode *left, struct maple_enode *middle,
2670 	struct maple_enode *right, unsigned char split, unsigned char mid_split)
2671 {
2672 	bool new_lmax = true;
2673 
2674 	mas_node_or_none(mast->l, left);
2675 	mas_node_or_none(mast->m, middle);
2676 	mas_node_or_none(mast->r, right);
2677 
2678 	mast->l->min = mast->orig_l->min;
2679 	if (split == mast->bn->b_end) {
2680 		mast->l->max = mast->orig_r->max;
2681 		new_lmax = false;
2682 	}
2683 
2684 	mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2685 
2686 	if (middle) {
2687 		mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2688 		mast->m->min = mast->bn->pivot[split] + 1;
2689 		split = mid_split;
2690 	}
2691 
2692 	mast->r->max = mast->orig_r->max;
2693 	if (right) {
2694 		mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2695 		mast->r->min = mast->bn->pivot[split] + 1;
2696 	}
2697 }
2698 
2699 /*
2700  * mast_combine_cp_left - Copy in the original left side of the tree into the
2701  * combined data set in the maple subtree state big node.
2702  * @mast: The maple subtree state
2703  */
mast_combine_cp_left(struct maple_subtree_state * mast)2704 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2705 {
2706 	unsigned char l_slot = mast->orig_l->offset;
2707 
2708 	if (!l_slot)
2709 		return;
2710 
2711 	mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2712 }
2713 
2714 /*
2715  * mast_combine_cp_right: Copy in the original right side of the tree into the
2716  * combined data set in the maple subtree state big node.
2717  * @mast: The maple subtree state
2718  */
mast_combine_cp_right(struct maple_subtree_state * mast)2719 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2720 {
2721 	if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2722 		return;
2723 
2724 	mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2725 		   mt_slot_count(mast->orig_r->node), mast->bn,
2726 		   mast->bn->b_end);
2727 	mast->orig_r->last = mast->orig_r->max;
2728 }
2729 
2730 /*
2731  * mast_sufficient: Check if the maple subtree state has enough data in the big
2732  * node to create at least one sufficient node
2733  * @mast: the maple subtree state
2734  */
mast_sufficient(struct maple_subtree_state * mast)2735 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2736 {
2737 	if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2738 		return true;
2739 
2740 	return false;
2741 }
2742 
2743 /*
2744  * mast_overflow: Check if there is too much data in the subtree state for a
2745  * single node.
2746  * @mast: The maple subtree state
2747  */
mast_overflow(struct maple_subtree_state * mast)2748 static inline bool mast_overflow(struct maple_subtree_state *mast)
2749 {
2750 	if (mast->bn->b_end > mt_slot_count(mast->orig_l->node))
2751 		return true;
2752 
2753 	return false;
2754 }
2755 
mtree_range_walk(struct ma_state * mas)2756 static inline void *mtree_range_walk(struct ma_state *mas)
2757 {
2758 	unsigned long *pivots;
2759 	unsigned char offset;
2760 	struct maple_node *node;
2761 	struct maple_enode *next, *last;
2762 	enum maple_type type;
2763 	void __rcu **slots;
2764 	unsigned char end;
2765 	unsigned long max, min;
2766 	unsigned long prev_max, prev_min;
2767 
2768 	next = mas->node;
2769 	min = mas->min;
2770 	max = mas->max;
2771 	do {
2772 		last = next;
2773 		node = mte_to_node(next);
2774 		type = mte_node_type(next);
2775 		pivots = ma_pivots(node, type);
2776 		end = ma_data_end(node, type, pivots, max);
2777 		prev_min = min;
2778 		prev_max = max;
2779 		if (pivots[0] >= mas->index) {
2780 			offset = 0;
2781 			max = pivots[0];
2782 			goto next;
2783 		}
2784 
2785 		offset = 1;
2786 		while (offset < end) {
2787 			if (pivots[offset] >= mas->index) {
2788 				max = pivots[offset];
2789 				break;
2790 			}
2791 			offset++;
2792 		}
2793 
2794 		min = pivots[offset - 1] + 1;
2795 next:
2796 		slots = ma_slots(node, type);
2797 		next = mt_slot(mas->tree, slots, offset);
2798 		if (unlikely(ma_dead_node(node)))
2799 			goto dead_node;
2800 	} while (!ma_is_leaf(type));
2801 
2802 	mas->end = end;
2803 	mas->offset = offset;
2804 	mas->index = min;
2805 	mas->last = max;
2806 	mas->min = prev_min;
2807 	mas->max = prev_max;
2808 	mas->node = last;
2809 	return (void *)next;
2810 
2811 dead_node:
2812 	mas_reset(mas);
2813 	return NULL;
2814 }
2815 
2816 /*
2817  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2818  * @mas: The starting maple state
2819  * @mast: The maple_subtree_state, keeps track of 4 maple states.
2820  * @count: The estimated count of iterations needed.
2821  *
2822  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2823  * is hit.  First @b_node is split into two entries which are inserted into the
2824  * next iteration of the loop.  @b_node is returned populated with the final
2825  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
2826  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2827  * to account of what has been copied into the new sub-tree.  The update of
2828  * orig_l_mas->last is used in mas_consume to find the slots that will need to
2829  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
2830  * the new sub-tree in case the sub-tree becomes the full tree.
2831  */
mas_spanning_rebalance(struct ma_state * mas,struct maple_subtree_state * mast,unsigned char count)2832 static void mas_spanning_rebalance(struct ma_state *mas,
2833 		struct maple_subtree_state *mast, unsigned char count)
2834 {
2835 	unsigned char split, mid_split;
2836 	unsigned char slot = 0;
2837 	unsigned char new_height = 0; /* used if node is a new root */
2838 	struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2839 	struct maple_enode *old_enode;
2840 
2841 	MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2842 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2843 	MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2844 
2845 	/*
2846 	 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2847 	 * Rebalancing is done by use of the ``struct maple_topiary``.
2848 	 */
2849 	mast->l = &l_mas;
2850 	mast->m = &m_mas;
2851 	mast->r = &r_mas;
2852 	l_mas.status = r_mas.status = m_mas.status = ma_none;
2853 
2854 	/* Check if this is not root and has sufficient data.  */
2855 	if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2856 	    unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2857 		mast_spanning_rebalance(mast);
2858 
2859 	/*
2860 	 * Each level of the tree is examined and balanced, pushing data to the left or
2861 	 * right, or rebalancing against left or right nodes is employed to avoid
2862 	 * rippling up the tree to limit the amount of churn.  Once a new sub-section of
2863 	 * the tree is created, there may be a mix of new and old nodes.  The old nodes
2864 	 * will have the incorrect parent pointers and currently be in two trees: the
2865 	 * original tree and the partially new tree.  To remedy the parent pointers in
2866 	 * the old tree, the new data is swapped into the active tree and a walk down
2867 	 * the tree is performed and the parent pointers are updated.
2868 	 * See mas_topiary_replace() for more information.
2869 	 */
2870 	while (count--) {
2871 		mast->bn->b_end--;
2872 		mast->bn->type = mte_node_type(mast->orig_l->node);
2873 		split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2874 					&mid_split);
2875 		mast_set_split_parents(mast, left, middle, right, split,
2876 				       mid_split);
2877 		mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2878 		new_height++;
2879 
2880 		/*
2881 		 * Copy data from next level in the tree to mast->bn from next
2882 		 * iteration
2883 		 */
2884 		memset(mast->bn, 0, sizeof(struct maple_big_node));
2885 		mast->bn->type = mte_node_type(left);
2886 
2887 		/* Root already stored in l->node. */
2888 		if (mas_is_root_limits(mast->l))
2889 			goto new_root;
2890 
2891 		mast_ascend(mast);
2892 		mast_combine_cp_left(mast);
2893 		l_mas.offset = mast->bn->b_end;
2894 		mab_set_b_end(mast->bn, &l_mas, left);
2895 		mab_set_b_end(mast->bn, &m_mas, middle);
2896 		mab_set_b_end(mast->bn, &r_mas, right);
2897 
2898 		/* Copy anything necessary out of the right node. */
2899 		mast_combine_cp_right(mast);
2900 		mast->orig_l->last = mast->orig_l->max;
2901 
2902 		if (mast_sufficient(mast)) {
2903 			if (mast_overflow(mast))
2904 				continue;
2905 
2906 			if (mast->orig_l->node == mast->orig_r->node) {
2907 			       /*
2908 				* The data in b_node should be stored in one
2909 				* node and in the tree
2910 				*/
2911 				slot = mast->l->offset;
2912 				break;
2913 			}
2914 
2915 			continue;
2916 		}
2917 
2918 		/* May be a new root stored in mast->bn */
2919 		if (mas_is_root_limits(mast->orig_l))
2920 			break;
2921 
2922 		mast_spanning_rebalance(mast);
2923 
2924 		/* rebalancing from other nodes may require another loop. */
2925 		if (!count)
2926 			count++;
2927 	}
2928 
2929 	l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2930 				mte_node_type(mast->orig_l->node));
2931 
2932 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
2933 	new_height++;
2934 	mas_set_parent(mas, left, l_mas.node, slot);
2935 	if (middle)
2936 		mas_set_parent(mas, middle, l_mas.node, ++slot);
2937 
2938 	if (right)
2939 		mas_set_parent(mas, right, l_mas.node, ++slot);
2940 
2941 	if (mas_is_root_limits(mast->l)) {
2942 new_root:
2943 		mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2944 		while (!mte_is_root(mast->orig_l->node))
2945 			mast_ascend(mast);
2946 	} else {
2947 		mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2948 	}
2949 
2950 	old_enode = mast->orig_l->node;
2951 	mas->depth = l_mas.depth;
2952 	mas->node = l_mas.node;
2953 	mas->min = l_mas.min;
2954 	mas->max = l_mas.max;
2955 	mas->offset = l_mas.offset;
2956 	mas_wmb_replace(mas, old_enode, new_height);
2957 	mtree_range_walk(mas);
2958 	return;
2959 }
2960 
2961 /*
2962  * mas_rebalance() - Rebalance a given node.
2963  * @mas: The maple state
2964  * @b_node: The big maple node.
2965  *
2966  * Rebalance two nodes into a single node or two new nodes that are sufficient.
2967  * Continue upwards until tree is sufficient.
2968  */
mas_rebalance(struct ma_state * mas,struct maple_big_node * b_node)2969 static inline void mas_rebalance(struct ma_state *mas,
2970 				struct maple_big_node *b_node)
2971 {
2972 	char empty_count = mas_mt_height(mas);
2973 	struct maple_subtree_state mast;
2974 	unsigned char shift, b_end = ++b_node->b_end;
2975 
2976 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2977 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2978 
2979 	trace_ma_op(__func__, mas);
2980 
2981 	/*
2982 	 * Rebalancing occurs if a node is insufficient.  Data is rebalanced
2983 	 * against the node to the right if it exists, otherwise the node to the
2984 	 * left of this node is rebalanced against this node.  If rebalancing
2985 	 * causes just one node to be produced instead of two, then the parent
2986 	 * is also examined and rebalanced if it is insufficient.  Every level
2987 	 * tries to combine the data in the same way.  If one node contains the
2988 	 * entire range of the tree, then that node is used as a new root node.
2989 	 */
2990 
2991 	mast.orig_l = &l_mas;
2992 	mast.orig_r = &r_mas;
2993 	mast.bn = b_node;
2994 	mast.bn->type = mte_node_type(mas->node);
2995 
2996 	l_mas = r_mas = *mas;
2997 
2998 	if (mas_next_sibling(&r_mas)) {
2999 		mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3000 		r_mas.last = r_mas.index = r_mas.max;
3001 	} else {
3002 		mas_prev_sibling(&l_mas);
3003 		shift = mas_data_end(&l_mas) + 1;
3004 		mab_shift_right(b_node, shift);
3005 		mas->offset += shift;
3006 		mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3007 		b_node->b_end = shift + b_end;
3008 		l_mas.index = l_mas.last = l_mas.min;
3009 	}
3010 
3011 	return mas_spanning_rebalance(mas, &mast, empty_count);
3012 }
3013 
3014 /*
3015  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3016  * state.
3017  * @mas: The maple state
3018  * @end: The end of the left-most node.
3019  *
3020  * During a mass-insert event (such as forking), it may be necessary to
3021  * rebalance the left-most node when it is not sufficient.
3022  */
mas_destroy_rebalance(struct ma_state * mas,unsigned char end)3023 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3024 {
3025 	enum maple_type mt = mte_node_type(mas->node);
3026 	struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3027 	struct maple_enode *eparent, *old_eparent;
3028 	unsigned char offset, tmp, split = mt_slots[mt] / 2;
3029 	void __rcu **l_slots, **slots;
3030 	unsigned long *l_pivs, *pivs, gap;
3031 	bool in_rcu = mt_in_rcu(mas->tree);
3032 	unsigned char new_height = mas_mt_height(mas);
3033 
3034 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3035 
3036 	l_mas = *mas;
3037 	mas_prev_sibling(&l_mas);
3038 
3039 	/* set up node. */
3040 	if (in_rcu) {
3041 		newnode = mas_pop_node(mas);
3042 	} else {
3043 		newnode = &reuse;
3044 	}
3045 
3046 	node = mas_mn(mas);
3047 	newnode->parent = node->parent;
3048 	slots = ma_slots(newnode, mt);
3049 	pivs = ma_pivots(newnode, mt);
3050 	left = mas_mn(&l_mas);
3051 	l_slots = ma_slots(left, mt);
3052 	l_pivs = ma_pivots(left, mt);
3053 	if (!l_slots[split])
3054 		split++;
3055 	tmp = mas_data_end(&l_mas) - split;
3056 
3057 	memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3058 	memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3059 	pivs[tmp] = l_mas.max;
3060 	memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3061 	memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3062 
3063 	l_mas.max = l_pivs[split];
3064 	mas->min = l_mas.max + 1;
3065 	old_eparent = mt_mk_node(mte_parent(l_mas.node),
3066 			     mas_parent_type(&l_mas, l_mas.node));
3067 	tmp += end;
3068 	if (!in_rcu) {
3069 		unsigned char max_p = mt_pivots[mt];
3070 		unsigned char max_s = mt_slots[mt];
3071 
3072 		if (tmp < max_p)
3073 			memset(pivs + tmp, 0,
3074 			       sizeof(unsigned long) * (max_p - tmp));
3075 
3076 		if (tmp < mt_slots[mt])
3077 			memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3078 
3079 		memcpy(node, newnode, sizeof(struct maple_node));
3080 		ma_set_meta(node, mt, 0, tmp - 1);
3081 		mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
3082 			      l_pivs[split]);
3083 
3084 		/* Remove data from l_pivs. */
3085 		tmp = split + 1;
3086 		memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3087 		memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3088 		ma_set_meta(left, mt, 0, split);
3089 		eparent = old_eparent;
3090 
3091 		goto done;
3092 	}
3093 
3094 	/* RCU requires replacing both l_mas, mas, and parent. */
3095 	mas->node = mt_mk_node(newnode, mt);
3096 	ma_set_meta(newnode, mt, 0, tmp);
3097 
3098 	new_left = mas_pop_node(mas);
3099 	new_left->parent = left->parent;
3100 	mt = mte_node_type(l_mas.node);
3101 	slots = ma_slots(new_left, mt);
3102 	pivs = ma_pivots(new_left, mt);
3103 	memcpy(slots, l_slots, sizeof(void *) * split);
3104 	memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3105 	ma_set_meta(new_left, mt, 0, split);
3106 	l_mas.node = mt_mk_node(new_left, mt);
3107 
3108 	/* replace parent. */
3109 	offset = mte_parent_slot(mas->node);
3110 	mt = mas_parent_type(&l_mas, l_mas.node);
3111 	parent = mas_pop_node(mas);
3112 	slots = ma_slots(parent, mt);
3113 	pivs = ma_pivots(parent, mt);
3114 	memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
3115 	rcu_assign_pointer(slots[offset], mas->node);
3116 	rcu_assign_pointer(slots[offset - 1], l_mas.node);
3117 	pivs[offset - 1] = l_mas.max;
3118 	eparent = mt_mk_node(parent, mt);
3119 done:
3120 	gap = mas_leaf_max_gap(mas);
3121 	mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3122 	gap = mas_leaf_max_gap(&l_mas);
3123 	mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3124 	mas_ascend(mas);
3125 
3126 	if (in_rcu) {
3127 		mas_replace_node(mas, old_eparent, new_height);
3128 		mas_adopt_children(mas, mas->node);
3129 	}
3130 
3131 	mas_update_gap(mas);
3132 }
3133 
3134 /*
3135  * mas_split_final_node() - Split the final node in a subtree operation.
3136  * @mast: the maple subtree state
3137  * @mas: The maple state
3138  */
mas_split_final_node(struct maple_subtree_state * mast,struct ma_state * mas)3139 static inline void mas_split_final_node(struct maple_subtree_state *mast,
3140 					struct ma_state *mas)
3141 {
3142 	struct maple_enode *ancestor;
3143 
3144 	if (mte_is_root(mas->node)) {
3145 		if (mt_is_alloc(mas->tree))
3146 			mast->bn->type = maple_arange_64;
3147 		else
3148 			mast->bn->type = maple_range_64;
3149 	}
3150 	/*
3151 	 * Only a single node is used here, could be root.
3152 	 * The Big_node data should just fit in a single node.
3153 	 */
3154 	ancestor = mas_new_ma_node(mas, mast->bn);
3155 	mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3156 	mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
3157 	mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3158 
3159 	mast->l->node = ancestor;
3160 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3161 	mas->offset = mast->bn->b_end - 1;
3162 }
3163 
3164 /*
3165  * mast_fill_bnode() - Copy data into the big node in the subtree state
3166  * @mast: The maple subtree state
3167  * @mas: the maple state
3168  * @skip: The number of entries to skip for new nodes insertion.
3169  */
mast_fill_bnode(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char skip)3170 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3171 					 struct ma_state *mas,
3172 					 unsigned char skip)
3173 {
3174 	bool cp = true;
3175 	unsigned char split;
3176 
3177 	memset(mast->bn, 0, sizeof(struct maple_big_node));
3178 
3179 	if (mte_is_root(mas->node)) {
3180 		cp = false;
3181 	} else {
3182 		mas_ascend(mas);
3183 		mas->offset = mte_parent_slot(mas->node);
3184 	}
3185 
3186 	if (cp && mast->l->offset)
3187 		mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3188 
3189 	split = mast->bn->b_end;
3190 	mab_set_b_end(mast->bn, mast->l, mast->l->node);
3191 	mast->r->offset = mast->bn->b_end;
3192 	mab_set_b_end(mast->bn, mast->r, mast->r->node);
3193 	if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3194 		cp = false;
3195 
3196 	if (cp)
3197 		mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3198 			   mast->bn, mast->bn->b_end);
3199 
3200 	mast->bn->b_end--;
3201 	mast->bn->type = mte_node_type(mas->node);
3202 }
3203 
3204 /*
3205  * mast_split_data() - Split the data in the subtree state big node into regular
3206  * nodes.
3207  * @mast: The maple subtree state
3208  * @mas: The maple state
3209  * @split: The location to split the big node
3210  */
mast_split_data(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char split)3211 static inline void mast_split_data(struct maple_subtree_state *mast,
3212 	   struct ma_state *mas, unsigned char split)
3213 {
3214 	unsigned char p_slot;
3215 
3216 	mab_mas_cp(mast->bn, 0, split, mast->l, true);
3217 	mte_set_pivot(mast->r->node, 0, mast->r->max);
3218 	mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3219 	mast->l->offset = mte_parent_slot(mas->node);
3220 	mast->l->max = mast->bn->pivot[split];
3221 	mast->r->min = mast->l->max + 1;
3222 	if (mte_is_leaf(mas->node))
3223 		return;
3224 
3225 	p_slot = mast->orig_l->offset;
3226 	mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3227 			     &p_slot, split);
3228 	mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3229 			     &p_slot, split);
3230 }
3231 
3232 /*
3233  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3234  * data to the right or left node if there is room.
3235  * @mas: The maple state
3236  * @mast: The maple subtree state
3237  * @left: Push left or not.
3238  *
3239  * Keeping the height of the tree low means faster lookups.
3240  *
3241  * Return: True if pushed, false otherwise.
3242  */
mas_push_data(struct ma_state * mas,struct maple_subtree_state * mast,bool left)3243 static inline bool mas_push_data(struct ma_state *mas,
3244 				struct maple_subtree_state *mast, bool left)
3245 {
3246 	unsigned char slot_total = mast->bn->b_end;
3247 	unsigned char end, space, split;
3248 
3249 	MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3250 	tmp_mas = *mas;
3251 	tmp_mas.depth = mast->l->depth;
3252 
3253 	if (left && !mas_prev_sibling(&tmp_mas))
3254 		return false;
3255 	else if (!left && !mas_next_sibling(&tmp_mas))
3256 		return false;
3257 
3258 	end = mas_data_end(&tmp_mas);
3259 	slot_total += end;
3260 	space = 2 * mt_slot_count(mas->node) - 2;
3261 	/* -2 instead of -1 to ensure there isn't a triple split */
3262 	if (ma_is_leaf(mast->bn->type))
3263 		space--;
3264 
3265 	if (mas->max == ULONG_MAX)
3266 		space--;
3267 
3268 	if (slot_total >= space)
3269 		return false;
3270 
3271 	/* Get the data; Fill mast->bn */
3272 	mast->bn->b_end++;
3273 	if (left) {
3274 		mab_shift_right(mast->bn, end + 1);
3275 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3276 		mast->bn->b_end = slot_total + 1;
3277 	} else {
3278 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3279 	}
3280 
3281 	/* Configure mast for splitting of mast->bn */
3282 	split = mt_slots[mast->bn->type] - 2;
3283 	if (left) {
3284 		/*  Switch mas to prev node  */
3285 		*mas = tmp_mas;
3286 		/* Start using mast->l for the left side. */
3287 		tmp_mas.node = mast->l->node;
3288 		*mast->l = tmp_mas;
3289 	} else {
3290 		tmp_mas.node = mast->r->node;
3291 		*mast->r = tmp_mas;
3292 		split = slot_total - split;
3293 	}
3294 	split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3295 	/* Update parent slot for split calculation. */
3296 	if (left)
3297 		mast->orig_l->offset += end + 1;
3298 
3299 	mast_split_data(mast, mas, split);
3300 	mast_fill_bnode(mast, mas, 2);
3301 	mas_split_final_node(mast, mas);
3302 	return true;
3303 }
3304 
3305 /*
3306  * mas_split() - Split data that is too big for one node into two.
3307  * @mas: The maple state
3308  * @b_node: The maple big node
3309  */
mas_split(struct ma_state * mas,struct maple_big_node * b_node)3310 static void mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3311 {
3312 	struct maple_subtree_state mast;
3313 	int height = 0;
3314 	unsigned int orig_height = mas_mt_height(mas);
3315 	unsigned char mid_split, split = 0;
3316 	struct maple_enode *old;
3317 
3318 	/*
3319 	 * Splitting is handled differently from any other B-tree; the Maple
3320 	 * Tree splits upwards.  Splitting up means that the split operation
3321 	 * occurs when the walk of the tree hits the leaves and not on the way
3322 	 * down.  The reason for splitting up is that it is impossible to know
3323 	 * how much space will be needed until the leaf is (or leaves are)
3324 	 * reached.  Since overwriting data is allowed and a range could
3325 	 * overwrite more than one range or result in changing one entry into 3
3326 	 * entries, it is impossible to know if a split is required until the
3327 	 * data is examined.
3328 	 *
3329 	 * Splitting is a balancing act between keeping allocations to a minimum
3330 	 * and avoiding a 'jitter' event where a tree is expanded to make room
3331 	 * for an entry followed by a contraction when the entry is removed.  To
3332 	 * accomplish the balance, there are empty slots remaining in both left
3333 	 * and right nodes after a split.
3334 	 */
3335 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3336 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3337 	MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3338 	MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3339 
3340 	trace_ma_op(__func__, mas);
3341 
3342 	mast.l = &l_mas;
3343 	mast.r = &r_mas;
3344 	mast.orig_l = &prev_l_mas;
3345 	mast.orig_r = &prev_r_mas;
3346 	mast.bn = b_node;
3347 
3348 	while (height++ <= orig_height) {
3349 		if (mt_slots[b_node->type] > b_node->b_end) {
3350 			mas_split_final_node(&mast, mas);
3351 			break;
3352 		}
3353 
3354 		l_mas = r_mas = *mas;
3355 		l_mas.node = mas_new_ma_node(mas, b_node);
3356 		r_mas.node = mas_new_ma_node(mas, b_node);
3357 		/*
3358 		 * Another way that 'jitter' is avoided is to terminate a split up early if the
3359 		 * left or right node has space to spare.  This is referred to as "pushing left"
3360 		 * or "pushing right" and is similar to the B* tree, except the nodes left or
3361 		 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3362 		 * is a significant savings.
3363 		 */
3364 		/* Try to push left. */
3365 		if (mas_push_data(mas, &mast, true)) {
3366 			height++;
3367 			break;
3368 		}
3369 		/* Try to push right. */
3370 		if (mas_push_data(mas, &mast, false)) {
3371 			height++;
3372 			break;
3373 		}
3374 
3375 		split = mab_calc_split(mas, b_node, &mid_split);
3376 		mast_split_data(&mast, mas, split);
3377 		/*
3378 		 * Usually correct, mab_mas_cp in the above call overwrites
3379 		 * r->max.
3380 		 */
3381 		mast.r->max = mas->max;
3382 		mast_fill_bnode(&mast, mas, 1);
3383 		prev_l_mas = *mast.l;
3384 		prev_r_mas = *mast.r;
3385 	}
3386 
3387 	/* Set the original node as dead */
3388 	old = mas->node;
3389 	mas->node = l_mas.node;
3390 	mas_wmb_replace(mas, old, height);
3391 	mtree_range_walk(mas);
3392 	return;
3393 }
3394 
3395 /*
3396  * mas_commit_b_node() - Commit the big node into the tree.
3397  * @wr_mas: The maple write state
3398  * @b_node: The maple big node
3399  */
mas_commit_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node)3400 static noinline_for_kasan void mas_commit_b_node(struct ma_wr_state *wr_mas,
3401 			    struct maple_big_node *b_node)
3402 {
3403 	enum store_type type = wr_mas->mas->store_type;
3404 
3405 	WARN_ON_ONCE(type != wr_rebalance && type != wr_split_store);
3406 
3407 	if (type == wr_rebalance)
3408 		return mas_rebalance(wr_mas->mas, b_node);
3409 
3410 	return mas_split(wr_mas->mas, b_node);
3411 }
3412 
3413 /*
3414  * mas_root_expand() - Expand a root to a node
3415  * @mas: The maple state
3416  * @entry: The entry to store into the tree
3417  */
mas_root_expand(struct ma_state * mas,void * entry)3418 static inline void mas_root_expand(struct ma_state *mas, void *entry)
3419 {
3420 	void *contents = mas_root_locked(mas);
3421 	enum maple_type type = maple_leaf_64;
3422 	struct maple_node *node;
3423 	void __rcu **slots;
3424 	unsigned long *pivots;
3425 	int slot = 0;
3426 
3427 	node = mas_pop_node(mas);
3428 	pivots = ma_pivots(node, type);
3429 	slots = ma_slots(node, type);
3430 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3431 	mas->node = mt_mk_node(node, type);
3432 	mas->status = ma_active;
3433 
3434 	if (mas->index) {
3435 		if (contents) {
3436 			rcu_assign_pointer(slots[slot], contents);
3437 			if (likely(mas->index > 1))
3438 				slot++;
3439 		}
3440 		pivots[slot++] = mas->index - 1;
3441 	}
3442 
3443 	rcu_assign_pointer(slots[slot], entry);
3444 	mas->offset = slot;
3445 	pivots[slot] = mas->last;
3446 	if (mas->last != ULONG_MAX)
3447 		pivots[++slot] = ULONG_MAX;
3448 
3449 	mt_set_height(mas->tree, 1);
3450 	ma_set_meta(node, maple_leaf_64, 0, slot);
3451 	/* swap the new root into the tree */
3452 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3453 	return;
3454 }
3455 
3456 /*
3457  * mas_store_root() - Storing value into root.
3458  * @mas: The maple state
3459  * @entry: The entry to store.
3460  *
3461  * There is no root node now and we are storing a value into the root - this
3462  * function either assigns the pointer or expands into a node.
3463  */
mas_store_root(struct ma_state * mas,void * entry)3464 static inline void mas_store_root(struct ma_state *mas, void *entry)
3465 {
3466 	if (!entry) {
3467 		if (!mas->index)
3468 			rcu_assign_pointer(mas->tree->ma_root, NULL);
3469 	} else if (likely((mas->last != 0) || (mas->index != 0)))
3470 		mas_root_expand(mas, entry);
3471 	else if (((unsigned long) (entry) & 3) == 2)
3472 		mas_root_expand(mas, entry);
3473 	else {
3474 		rcu_assign_pointer(mas->tree->ma_root, entry);
3475 		mas->status = ma_start;
3476 	}
3477 }
3478 
3479 /*
3480  * mas_is_span_wr() - Check if the write needs to be treated as a write that
3481  * spans the node.
3482  * @wr_mas: The maple write state
3483  *
3484  * Spanning writes are writes that start in one node and end in another OR if
3485  * the write of a %NULL will cause the node to end with a %NULL.
3486  *
3487  * Return: True if this is a spanning write, false otherwise.
3488  */
mas_is_span_wr(struct ma_wr_state * wr_mas)3489 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3490 {
3491 	unsigned long max = wr_mas->r_max;
3492 	unsigned long last = wr_mas->mas->last;
3493 	enum maple_type type = wr_mas->type;
3494 	void *entry = wr_mas->entry;
3495 
3496 	/* Contained in this pivot, fast path */
3497 	if (last < max)
3498 		return false;
3499 
3500 	if (ma_is_leaf(type)) {
3501 		max = wr_mas->mas->max;
3502 		if (last < max)
3503 			return false;
3504 	}
3505 
3506 	if (last == max) {
3507 		/*
3508 		 * The last entry of leaf node cannot be NULL unless it is the
3509 		 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3510 		 */
3511 		if (entry || last == ULONG_MAX)
3512 			return false;
3513 	}
3514 
3515 	trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
3516 	return true;
3517 }
3518 
mas_wr_walk_descend(struct ma_wr_state * wr_mas)3519 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3520 {
3521 	wr_mas->type = mte_node_type(wr_mas->mas->node);
3522 	mas_wr_node_walk(wr_mas);
3523 	wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3524 }
3525 
mas_wr_walk_traverse(struct ma_wr_state * wr_mas)3526 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3527 {
3528 	wr_mas->mas->max = wr_mas->r_max;
3529 	wr_mas->mas->min = wr_mas->r_min;
3530 	wr_mas->mas->node = wr_mas->content;
3531 	wr_mas->mas->offset = 0;
3532 	wr_mas->mas->depth++;
3533 }
3534 /*
3535  * mas_wr_walk() - Walk the tree for a write.
3536  * @wr_mas: The maple write state
3537  *
3538  * Uses mas_slot_locked() and does not need to worry about dead nodes.
3539  *
3540  * Return: True if it's contained in a node, false on spanning write.
3541  */
mas_wr_walk(struct ma_wr_state * wr_mas)3542 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3543 {
3544 	struct ma_state *mas = wr_mas->mas;
3545 
3546 	while (true) {
3547 		mas_wr_walk_descend(wr_mas);
3548 		if (unlikely(mas_is_span_wr(wr_mas)))
3549 			return false;
3550 
3551 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3552 						  mas->offset);
3553 		if (ma_is_leaf(wr_mas->type))
3554 			return true;
3555 
3556 		if (mas->end < mt_slots[wr_mas->type] - 1)
3557 			wr_mas->vacant_height = mas->depth + 1;
3558 
3559 		if (ma_is_root(mas_mn(mas))) {
3560 			/* root needs more than 2 entries to be sufficient + 1 */
3561 			if (mas->end > 2)
3562 				wr_mas->sufficient_height = 1;
3563 		} else if (mas->end > mt_min_slots[wr_mas->type] + 1)
3564 			wr_mas->sufficient_height = mas->depth + 1;
3565 
3566 		mas_wr_walk_traverse(wr_mas);
3567 	}
3568 
3569 	return true;
3570 }
3571 
mas_wr_walk_index(struct ma_wr_state * wr_mas)3572 static void mas_wr_walk_index(struct ma_wr_state *wr_mas)
3573 {
3574 	struct ma_state *mas = wr_mas->mas;
3575 
3576 	while (true) {
3577 		mas_wr_walk_descend(wr_mas);
3578 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3579 						  mas->offset);
3580 		if (ma_is_leaf(wr_mas->type))
3581 			return;
3582 		mas_wr_walk_traverse(wr_mas);
3583 	}
3584 }
3585 /*
3586  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3587  * @l_wr_mas: The left maple write state
3588  * @r_wr_mas: The right maple write state
3589  */
mas_extend_spanning_null(struct ma_wr_state * l_wr_mas,struct ma_wr_state * r_wr_mas)3590 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3591 					    struct ma_wr_state *r_wr_mas)
3592 {
3593 	struct ma_state *r_mas = r_wr_mas->mas;
3594 	struct ma_state *l_mas = l_wr_mas->mas;
3595 	unsigned char l_slot;
3596 
3597 	l_slot = l_mas->offset;
3598 	if (!l_wr_mas->content)
3599 		l_mas->index = l_wr_mas->r_min;
3600 
3601 	if ((l_mas->index == l_wr_mas->r_min) &&
3602 		 (l_slot &&
3603 		  !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3604 		if (l_slot > 1)
3605 			l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3606 		else
3607 			l_mas->index = l_mas->min;
3608 
3609 		l_mas->offset = l_slot - 1;
3610 	}
3611 
3612 	if (!r_wr_mas->content) {
3613 		if (r_mas->last < r_wr_mas->r_max)
3614 			r_mas->last = r_wr_mas->r_max;
3615 		r_mas->offset++;
3616 	} else if ((r_mas->last == r_wr_mas->r_max) &&
3617 	    (r_mas->last < r_mas->max) &&
3618 	    !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3619 		r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3620 					     r_wr_mas->type, r_mas->offset + 1);
3621 		r_mas->offset++;
3622 	}
3623 }
3624 
mas_state_walk(struct ma_state * mas)3625 static inline void *mas_state_walk(struct ma_state *mas)
3626 {
3627 	void *entry;
3628 
3629 	entry = mas_start(mas);
3630 	if (mas_is_none(mas))
3631 		return NULL;
3632 
3633 	if (mas_is_ptr(mas))
3634 		return entry;
3635 
3636 	return mtree_range_walk(mas);
3637 }
3638 
3639 /*
3640  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3641  * to date.
3642  *
3643  * @mas: The maple state.
3644  *
3645  * Note: Leaves mas in undesirable state.
3646  * Return: The entry for @mas->index or %NULL on dead node.
3647  */
mtree_lookup_walk(struct ma_state * mas)3648 static inline void *mtree_lookup_walk(struct ma_state *mas)
3649 {
3650 	unsigned long *pivots;
3651 	unsigned char offset;
3652 	struct maple_node *node;
3653 	struct maple_enode *next;
3654 	enum maple_type type;
3655 	void __rcu **slots;
3656 	unsigned char end;
3657 
3658 	next = mas->node;
3659 	do {
3660 		node = mte_to_node(next);
3661 		type = mte_node_type(next);
3662 		pivots = ma_pivots(node, type);
3663 		end = mt_pivots[type];
3664 		offset = 0;
3665 		do {
3666 			if (pivots[offset] >= mas->index)
3667 				break;
3668 		} while (++offset < end);
3669 
3670 		slots = ma_slots(node, type);
3671 		next = mt_slot(mas->tree, slots, offset);
3672 		if (unlikely(ma_dead_node(node)))
3673 			goto dead_node;
3674 	} while (!ma_is_leaf(type));
3675 
3676 	return (void *)next;
3677 
3678 dead_node:
3679 	mas_reset(mas);
3680 	return NULL;
3681 }
3682 
3683 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3684 /*
3685  * mas_new_root() - Create a new root node that only contains the entry passed
3686  * in.
3687  * @mas: The maple state
3688  * @entry: The entry to store.
3689  *
3690  * Only valid when the index == 0 and the last == ULONG_MAX
3691  */
mas_new_root(struct ma_state * mas,void * entry)3692 static inline void mas_new_root(struct ma_state *mas, void *entry)
3693 {
3694 	struct maple_enode *root = mas_root_locked(mas);
3695 	enum maple_type type = maple_leaf_64;
3696 	struct maple_node *node;
3697 	void __rcu **slots;
3698 	unsigned long *pivots;
3699 
3700 	WARN_ON_ONCE(mas->index || mas->last != ULONG_MAX);
3701 
3702 	if (!entry) {
3703 		mt_set_height(mas->tree, 0);
3704 		rcu_assign_pointer(mas->tree->ma_root, entry);
3705 		mas->status = ma_start;
3706 		goto done;
3707 	}
3708 
3709 	node = mas_pop_node(mas);
3710 	pivots = ma_pivots(node, type);
3711 	slots = ma_slots(node, type);
3712 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3713 	mas->node = mt_mk_node(node, type);
3714 	mas->status = ma_active;
3715 	rcu_assign_pointer(slots[0], entry);
3716 	pivots[0] = mas->last;
3717 	mt_set_height(mas->tree, 1);
3718 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3719 
3720 done:
3721 	if (xa_is_node(root))
3722 		mte_destroy_walk(root, mas->tree);
3723 
3724 	return;
3725 }
3726 /*
3727  * mas_wr_spanning_store() - Create a subtree with the store operation completed
3728  * and new nodes where necessary, then place the sub-tree in the actual tree.
3729  * Note that mas is expected to point to the node which caused the store to
3730  * span.
3731  * @wr_mas: The maple write state
3732  */
mas_wr_spanning_store(struct ma_wr_state * wr_mas)3733 static noinline void mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3734 {
3735 	struct maple_subtree_state mast;
3736 	struct maple_big_node b_node;
3737 	struct ma_state *mas;
3738 	unsigned char height;
3739 
3740 	/* Left and Right side of spanning store */
3741 	MA_STATE(l_mas, NULL, 0, 0);
3742 	MA_STATE(r_mas, NULL, 0, 0);
3743 	MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3744 	MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3745 
3746 	/*
3747 	 * A store operation that spans multiple nodes is called a spanning
3748 	 * store and is handled early in the store call stack by the function
3749 	 * mas_is_span_wr().  When a spanning store is identified, the maple
3750 	 * state is duplicated.  The first maple state walks the left tree path
3751 	 * to ``index``, the duplicate walks the right tree path to ``last``.
3752 	 * The data in the two nodes are combined into a single node, two nodes,
3753 	 * or possibly three nodes (see the 3-way split above).  A ``NULL``
3754 	 * written to the last entry of a node is considered a spanning store as
3755 	 * a rebalance is required for the operation to complete and an overflow
3756 	 * of data may happen.
3757 	 */
3758 	mas = wr_mas->mas;
3759 	trace_ma_op(__func__, mas);
3760 
3761 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
3762 		return mas_new_root(mas, wr_mas->entry);
3763 	/*
3764 	 * Node rebalancing may occur due to this store, so there may be three new
3765 	 * entries per level plus a new root.
3766 	 */
3767 	height = mas_mt_height(mas);
3768 
3769 	/*
3770 	 * Set up right side.  Need to get to the next offset after the spanning
3771 	 * store to ensure it's not NULL and to combine both the next node and
3772 	 * the node with the start together.
3773 	 */
3774 	r_mas = *mas;
3775 	/* Avoid overflow, walk to next slot in the tree. */
3776 	if (r_mas.last + 1)
3777 		r_mas.last++;
3778 
3779 	r_mas.index = r_mas.last;
3780 	mas_wr_walk_index(&r_wr_mas);
3781 	r_mas.last = r_mas.index = mas->last;
3782 
3783 	/* Set up left side. */
3784 	l_mas = *mas;
3785 	mas_wr_walk_index(&l_wr_mas);
3786 
3787 	if (!wr_mas->entry) {
3788 		mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3789 		mas->offset = l_mas.offset;
3790 		mas->index = l_mas.index;
3791 		mas->last = l_mas.last = r_mas.last;
3792 	}
3793 
3794 	/* expanding NULLs may make this cover the entire range */
3795 	if (!l_mas.index && r_mas.last == ULONG_MAX) {
3796 		mas_set_range(mas, 0, ULONG_MAX);
3797 		return mas_new_root(mas, wr_mas->entry);
3798 	}
3799 
3800 	memset(&b_node, 0, sizeof(struct maple_big_node));
3801 	/* Copy l_mas and store the value in b_node. */
3802 	mas_store_b_node(&l_wr_mas, &b_node, l_mas.end);
3803 	/* Copy r_mas into b_node if there is anything to copy. */
3804 	if (r_mas.max > r_mas.last)
3805 		mas_mab_cp(&r_mas, r_mas.offset, r_mas.end,
3806 			   &b_node, b_node.b_end + 1);
3807 	else
3808 		b_node.b_end++;
3809 
3810 	/* Stop spanning searches by searching for just index. */
3811 	l_mas.index = l_mas.last = mas->index;
3812 
3813 	mast.bn = &b_node;
3814 	mast.orig_l = &l_mas;
3815 	mast.orig_r = &r_mas;
3816 	/* Combine l_mas and r_mas and split them up evenly again. */
3817 	return mas_spanning_rebalance(mas, &mast, height + 1);
3818 }
3819 
3820 /*
3821  * mas_wr_node_store() - Attempt to store the value in a node
3822  * @wr_mas: The maple write state
3823  *
3824  * Attempts to reuse the node, but may allocate.
3825  */
mas_wr_node_store(struct ma_wr_state * wr_mas,unsigned char new_end)3826 static inline void mas_wr_node_store(struct ma_wr_state *wr_mas,
3827 				     unsigned char new_end)
3828 {
3829 	struct ma_state *mas = wr_mas->mas;
3830 	void __rcu **dst_slots;
3831 	unsigned long *dst_pivots;
3832 	unsigned char dst_offset, offset_end = wr_mas->offset_end;
3833 	struct maple_node reuse, *newnode;
3834 	unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3835 	bool in_rcu = mt_in_rcu(mas->tree);
3836 	unsigned char height = mas_mt_height(mas);
3837 
3838 	if (mas->last == wr_mas->end_piv)
3839 		offset_end++; /* don't copy this offset */
3840 	else if (unlikely(wr_mas->r_max == ULONG_MAX))
3841 		mas_bulk_rebalance(mas, mas->end, wr_mas->type);
3842 
3843 	/* set up node. */
3844 	if (in_rcu) {
3845 		newnode = mas_pop_node(mas);
3846 	} else {
3847 		memset(&reuse, 0, sizeof(struct maple_node));
3848 		newnode = &reuse;
3849 	}
3850 
3851 	newnode->parent = mas_mn(mas)->parent;
3852 	dst_pivots = ma_pivots(newnode, wr_mas->type);
3853 	dst_slots = ma_slots(newnode, wr_mas->type);
3854 	/* Copy from start to insert point */
3855 	memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3856 	memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3857 
3858 	/* Handle insert of new range starting after old range */
3859 	if (wr_mas->r_min < mas->index) {
3860 		rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3861 		dst_pivots[mas->offset++] = mas->index - 1;
3862 	}
3863 
3864 	/* Store the new entry and range end. */
3865 	if (mas->offset < node_pivots)
3866 		dst_pivots[mas->offset] = mas->last;
3867 	rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3868 
3869 	/*
3870 	 * this range wrote to the end of the node or it overwrote the rest of
3871 	 * the data
3872 	 */
3873 	if (offset_end > mas->end)
3874 		goto done;
3875 
3876 	dst_offset = mas->offset + 1;
3877 	/* Copy to the end of node if necessary. */
3878 	copy_size = mas->end - offset_end + 1;
3879 	memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3880 	       sizeof(void *) * copy_size);
3881 	memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3882 	       sizeof(unsigned long) * (copy_size - 1));
3883 
3884 	if (new_end < node_pivots)
3885 		dst_pivots[new_end] = mas->max;
3886 
3887 done:
3888 	mas_leaf_set_meta(newnode, maple_leaf_64, new_end);
3889 	if (in_rcu) {
3890 		struct maple_enode *old_enode = mas->node;
3891 
3892 		mas->node = mt_mk_node(newnode, wr_mas->type);
3893 		mas_replace_node(mas, old_enode, height);
3894 	} else {
3895 		memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3896 	}
3897 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
3898 	mas_update_gap(mas);
3899 	mas->end = new_end;
3900 	return;
3901 }
3902 
3903 /*
3904  * mas_wr_slot_store: Attempt to store a value in a slot.
3905  * @wr_mas: the maple write state
3906  */
mas_wr_slot_store(struct ma_wr_state * wr_mas)3907 static inline void mas_wr_slot_store(struct ma_wr_state *wr_mas)
3908 {
3909 	struct ma_state *mas = wr_mas->mas;
3910 	unsigned char offset = mas->offset;
3911 	void __rcu **slots = wr_mas->slots;
3912 	bool gap = false;
3913 
3914 	gap |= !mt_slot_locked(mas->tree, slots, offset);
3915 	gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
3916 
3917 	if (wr_mas->offset_end - offset == 1) {
3918 		if (mas->index == wr_mas->r_min) {
3919 			/* Overwriting the range and a part of the next one */
3920 			rcu_assign_pointer(slots[offset], wr_mas->entry);
3921 			wr_mas->pivots[offset] = mas->last;
3922 		} else {
3923 			/* Overwriting a part of the range and the next one */
3924 			rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3925 			wr_mas->pivots[offset] = mas->index - 1;
3926 			mas->offset++; /* Keep mas accurate. */
3927 		}
3928 	} else {
3929 		WARN_ON_ONCE(mt_in_rcu(mas->tree));
3930 		/*
3931 		 * Expand the range, only partially overwriting the previous and
3932 		 * next ranges
3933 		 */
3934 		gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
3935 		rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3936 		wr_mas->pivots[offset] = mas->index - 1;
3937 		wr_mas->pivots[offset + 1] = mas->last;
3938 		mas->offset++; /* Keep mas accurate. */
3939 	}
3940 
3941 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
3942 	/*
3943 	 * Only update gap when the new entry is empty or there is an empty
3944 	 * entry in the original two ranges.
3945 	 */
3946 	if (!wr_mas->entry || gap)
3947 		mas_update_gap(mas);
3948 
3949 	return;
3950 }
3951 
mas_wr_extend_null(struct ma_wr_state * wr_mas)3952 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
3953 {
3954 	struct ma_state *mas = wr_mas->mas;
3955 
3956 	if (!wr_mas->slots[wr_mas->offset_end]) {
3957 		/* If this one is null, the next and prev are not */
3958 		mas->last = wr_mas->end_piv;
3959 	} else {
3960 		/* Check next slot(s) if we are overwriting the end */
3961 		if ((mas->last == wr_mas->end_piv) &&
3962 		    (mas->end != wr_mas->offset_end) &&
3963 		    !wr_mas->slots[wr_mas->offset_end + 1]) {
3964 			wr_mas->offset_end++;
3965 			if (wr_mas->offset_end == mas->end)
3966 				mas->last = mas->max;
3967 			else
3968 				mas->last = wr_mas->pivots[wr_mas->offset_end];
3969 			wr_mas->end_piv = mas->last;
3970 		}
3971 	}
3972 
3973 	if (!wr_mas->content) {
3974 		/* If this one is null, the next and prev are not */
3975 		mas->index = wr_mas->r_min;
3976 	} else {
3977 		/* Check prev slot if we are overwriting the start */
3978 		if (mas->index == wr_mas->r_min && mas->offset &&
3979 		    !wr_mas->slots[mas->offset - 1]) {
3980 			mas->offset--;
3981 			wr_mas->r_min = mas->index =
3982 				mas_safe_min(mas, wr_mas->pivots, mas->offset);
3983 			wr_mas->r_max = wr_mas->pivots[mas->offset];
3984 		}
3985 	}
3986 }
3987 
mas_wr_end_piv(struct ma_wr_state * wr_mas)3988 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
3989 {
3990 	while ((wr_mas->offset_end < wr_mas->mas->end) &&
3991 	       (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
3992 		wr_mas->offset_end++;
3993 
3994 	if (wr_mas->offset_end < wr_mas->mas->end)
3995 		wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
3996 	else
3997 		wr_mas->end_piv = wr_mas->mas->max;
3998 }
3999 
mas_wr_new_end(struct ma_wr_state * wr_mas)4000 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
4001 {
4002 	struct ma_state *mas = wr_mas->mas;
4003 	unsigned char new_end = mas->end + 2;
4004 
4005 	new_end -= wr_mas->offset_end - mas->offset;
4006 	if (wr_mas->r_min == mas->index)
4007 		new_end--;
4008 
4009 	if (wr_mas->end_piv == mas->last)
4010 		new_end--;
4011 
4012 	return new_end;
4013 }
4014 
4015 /*
4016  * mas_wr_append: Attempt to append
4017  * @wr_mas: the maple write state
4018  * @new_end: The end of the node after the modification
4019  *
4020  * This is currently unsafe in rcu mode since the end of the node may be cached
4021  * by readers while the node contents may be updated which could result in
4022  * inaccurate information.
4023  */
mas_wr_append(struct ma_wr_state * wr_mas,unsigned char new_end)4024 static inline void mas_wr_append(struct ma_wr_state *wr_mas,
4025 		unsigned char new_end)
4026 {
4027 	struct ma_state *mas = wr_mas->mas;
4028 	void __rcu **slots;
4029 	unsigned char end = mas->end;
4030 
4031 	if (new_end < mt_pivots[wr_mas->type]) {
4032 		wr_mas->pivots[new_end] = wr_mas->pivots[end];
4033 		ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
4034 	}
4035 
4036 	slots = wr_mas->slots;
4037 	if (new_end == end + 1) {
4038 		if (mas->last == wr_mas->r_max) {
4039 			/* Append to end of range */
4040 			rcu_assign_pointer(slots[new_end], wr_mas->entry);
4041 			wr_mas->pivots[end] = mas->index - 1;
4042 			mas->offset = new_end;
4043 		} else {
4044 			/* Append to start of range */
4045 			rcu_assign_pointer(slots[new_end], wr_mas->content);
4046 			wr_mas->pivots[end] = mas->last;
4047 			rcu_assign_pointer(slots[end], wr_mas->entry);
4048 		}
4049 	} else {
4050 		/* Append to the range without touching any boundaries. */
4051 		rcu_assign_pointer(slots[new_end], wr_mas->content);
4052 		wr_mas->pivots[end + 1] = mas->last;
4053 		rcu_assign_pointer(slots[end + 1], wr_mas->entry);
4054 		wr_mas->pivots[end] = mas->index - 1;
4055 		mas->offset = end + 1;
4056 	}
4057 
4058 	if (!wr_mas->content || !wr_mas->entry)
4059 		mas_update_gap(mas);
4060 
4061 	mas->end = new_end;
4062 	trace_ma_write(__func__, mas, new_end, wr_mas->entry);
4063 	return;
4064 }
4065 
4066 /*
4067  * mas_wr_bnode() - Slow path for a modification.
4068  * @wr_mas: The write maple state
4069  *
4070  * This is where split, rebalance end up.
4071  */
mas_wr_bnode(struct ma_wr_state * wr_mas)4072 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4073 {
4074 	struct maple_big_node b_node;
4075 
4076 	trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4077 	memset(&b_node, 0, sizeof(struct maple_big_node));
4078 	mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4079 	mas_commit_b_node(wr_mas, &b_node);
4080 }
4081 
4082 /*
4083  * mas_wr_store_entry() - Internal call to store a value
4084  * @wr_mas: The maple write state
4085  */
mas_wr_store_entry(struct ma_wr_state * wr_mas)4086 static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas)
4087 {
4088 	struct ma_state *mas = wr_mas->mas;
4089 	unsigned char new_end = mas_wr_new_end(wr_mas);
4090 
4091 	switch (mas->store_type) {
4092 	case wr_exact_fit:
4093 		rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4094 		if (!!wr_mas->entry ^ !!wr_mas->content)
4095 			mas_update_gap(mas);
4096 		break;
4097 	case wr_append:
4098 		mas_wr_append(wr_mas, new_end);
4099 		break;
4100 	case wr_slot_store:
4101 		mas_wr_slot_store(wr_mas);
4102 		break;
4103 	case wr_node_store:
4104 		mas_wr_node_store(wr_mas, new_end);
4105 		break;
4106 	case wr_spanning_store:
4107 		mas_wr_spanning_store(wr_mas);
4108 		break;
4109 	case wr_split_store:
4110 	case wr_rebalance:
4111 		mas_wr_bnode(wr_mas);
4112 		break;
4113 	case wr_new_root:
4114 		mas_new_root(mas, wr_mas->entry);
4115 		break;
4116 	case wr_store_root:
4117 		mas_store_root(mas, wr_mas->entry);
4118 		break;
4119 	case wr_invalid:
4120 		MT_BUG_ON(mas->tree, 1);
4121 	}
4122 
4123 	return;
4124 }
4125 
mas_wr_prealloc_setup(struct ma_wr_state * wr_mas)4126 static inline void mas_wr_prealloc_setup(struct ma_wr_state *wr_mas)
4127 {
4128 	struct ma_state *mas = wr_mas->mas;
4129 
4130 	if (!mas_is_active(mas)) {
4131 		if (mas_is_start(mas))
4132 			goto set_content;
4133 
4134 		if (unlikely(mas_is_paused(mas)))
4135 			goto reset;
4136 
4137 		if (unlikely(mas_is_none(mas)))
4138 			goto reset;
4139 
4140 		if (unlikely(mas_is_overflow(mas)))
4141 			goto reset;
4142 
4143 		if (unlikely(mas_is_underflow(mas)))
4144 			goto reset;
4145 	}
4146 
4147 	/*
4148 	 * A less strict version of mas_is_span_wr() where we allow spanning
4149 	 * writes within this node.  This is to stop partial walks in
4150 	 * mas_prealloc() from being reset.
4151 	 */
4152 	if (mas->last > mas->max)
4153 		goto reset;
4154 
4155 	if (wr_mas->entry)
4156 		goto set_content;
4157 
4158 	if (mte_is_leaf(mas->node) && mas->last == mas->max)
4159 		goto reset;
4160 
4161 	goto set_content;
4162 
4163 reset:
4164 	mas_reset(mas);
4165 set_content:
4166 	wr_mas->content = mas_start(mas);
4167 }
4168 
4169 /**
4170  * mas_prealloc_calc() - Calculate number of nodes needed for a
4171  * given store oepration
4172  * @wr_mas: The maple write state
4173  * @entry: The entry to store into the tree
4174  *
4175  * Return: Number of nodes required for preallocation.
4176  */
mas_prealloc_calc(struct ma_wr_state * wr_mas,void * entry)4177 static inline int mas_prealloc_calc(struct ma_wr_state *wr_mas, void *entry)
4178 {
4179 	struct ma_state *mas = wr_mas->mas;
4180 	unsigned char height = mas_mt_height(mas);
4181 	int ret = height * 3 + 1;
4182 	unsigned char delta = height - wr_mas->vacant_height;
4183 
4184 	switch (mas->store_type) {
4185 	case wr_exact_fit:
4186 	case wr_append:
4187 	case wr_slot_store:
4188 		ret = 0;
4189 		break;
4190 	case wr_spanning_store:
4191 		if (wr_mas->sufficient_height < wr_mas->vacant_height)
4192 			ret = (height - wr_mas->sufficient_height) * 3 + 1;
4193 		else
4194 			ret = delta * 3 + 1;
4195 		break;
4196 	case wr_split_store:
4197 		ret = delta * 2 + 1;
4198 		break;
4199 	case wr_rebalance:
4200 		if (wr_mas->sufficient_height < wr_mas->vacant_height)
4201 			ret = (height - wr_mas->sufficient_height) * 2 + 1;
4202 		else
4203 			ret = delta * 2 + 1;
4204 		break;
4205 	case wr_node_store:
4206 		ret = mt_in_rcu(mas->tree) ? 1 : 0;
4207 		break;
4208 	case wr_new_root:
4209 		ret = 1;
4210 		break;
4211 	case wr_store_root:
4212 		if (likely((mas->last != 0) || (mas->index != 0)))
4213 			ret = 1;
4214 		else if (((unsigned long) (entry) & 3) == 2)
4215 			ret = 1;
4216 		else
4217 			ret = 0;
4218 		break;
4219 	case wr_invalid:
4220 		WARN_ON_ONCE(1);
4221 	}
4222 
4223 	return ret;
4224 }
4225 
4226 /*
4227  * mas_wr_store_type() - Determine the store type for a given
4228  * store operation.
4229  * @wr_mas: The maple write state
4230  *
4231  * Return: the type of store needed for the operation
4232  */
mas_wr_store_type(struct ma_wr_state * wr_mas)4233 static inline enum store_type mas_wr_store_type(struct ma_wr_state *wr_mas)
4234 {
4235 	struct ma_state *mas = wr_mas->mas;
4236 	unsigned char new_end;
4237 
4238 	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
4239 		return wr_store_root;
4240 
4241 	if (unlikely(!mas_wr_walk(wr_mas)))
4242 		return wr_spanning_store;
4243 
4244 	/* At this point, we are at the leaf node that needs to be altered. */
4245 	mas_wr_end_piv(wr_mas);
4246 	if (!wr_mas->entry)
4247 		mas_wr_extend_null(wr_mas);
4248 
4249 	if ((wr_mas->r_min == mas->index) && (wr_mas->r_max == mas->last))
4250 		return wr_exact_fit;
4251 
4252 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
4253 		return wr_new_root;
4254 
4255 	new_end = mas_wr_new_end(wr_mas);
4256 	/* Potential spanning rebalance collapsing a node */
4257 	if (new_end < mt_min_slots[wr_mas->type]) {
4258 		if (!mte_is_root(mas->node) && !(mas->mas_flags & MA_STATE_BULK))
4259 			return  wr_rebalance;
4260 		return wr_node_store;
4261 	}
4262 
4263 	if (new_end >= mt_slots[wr_mas->type])
4264 		return wr_split_store;
4265 
4266 	if (!mt_in_rcu(mas->tree) && (mas->offset == mas->end))
4267 		return wr_append;
4268 
4269 	if ((new_end == mas->end) && (!mt_in_rcu(mas->tree) ||
4270 		(wr_mas->offset_end - mas->offset == 1)))
4271 		return wr_slot_store;
4272 
4273 	return wr_node_store;
4274 }
4275 
4276 /**
4277  * mas_wr_preallocate() - Preallocate enough nodes for a store operation
4278  * @wr_mas: The maple write state
4279  * @entry: The entry that will be stored
4280  *
4281  */
mas_wr_preallocate(struct ma_wr_state * wr_mas,void * entry)4282 static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry)
4283 {
4284 	int request;
4285 
4286 	mas_wr_prealloc_setup(wr_mas);
4287 	wr_mas->mas->store_type = mas_wr_store_type(wr_mas);
4288 	request = mas_prealloc_calc(wr_mas, entry);
4289 	if (!request)
4290 		return;
4291 
4292 	mas_node_count(wr_mas->mas, request);
4293 }
4294 
4295 /**
4296  * mas_insert() - Internal call to insert a value
4297  * @mas: The maple state
4298  * @entry: The entry to store
4299  *
4300  * Return: %NULL or the contents that already exists at the requested index
4301  * otherwise.  The maple state needs to be checked for error conditions.
4302  */
mas_insert(struct ma_state * mas,void * entry)4303 static inline void *mas_insert(struct ma_state *mas, void *entry)
4304 {
4305 	MA_WR_STATE(wr_mas, mas, entry);
4306 
4307 	/*
4308 	 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4309 	 * tree.  If the insert fits exactly into an existing gap with a value
4310 	 * of NULL, then the slot only needs to be written with the new value.
4311 	 * If the range being inserted is adjacent to another range, then only a
4312 	 * single pivot needs to be inserted (as well as writing the entry).  If
4313 	 * the new range is within a gap but does not touch any other ranges,
4314 	 * then two pivots need to be inserted: the start - 1, and the end.  As
4315 	 * usual, the entry must be written.  Most operations require a new node
4316 	 * to be allocated and replace an existing node to ensure RCU safety,
4317 	 * when in RCU mode.  The exception to requiring a newly allocated node
4318 	 * is when inserting at the end of a node (appending).  When done
4319 	 * carefully, appending can reuse the node in place.
4320 	 */
4321 	wr_mas.content = mas_start(mas);
4322 	if (wr_mas.content)
4323 		goto exists;
4324 
4325 	mas_wr_preallocate(&wr_mas, entry);
4326 	if (mas_is_err(mas))
4327 		return NULL;
4328 
4329 	/* spanning writes always overwrite something */
4330 	if (mas->store_type == wr_spanning_store)
4331 		goto exists;
4332 
4333 	/* At this point, we are at the leaf node that needs to be altered. */
4334 	if (mas->store_type != wr_new_root && mas->store_type != wr_store_root) {
4335 		wr_mas.offset_end = mas->offset;
4336 		wr_mas.end_piv = wr_mas.r_max;
4337 
4338 		if (wr_mas.content || (mas->last > wr_mas.r_max))
4339 			goto exists;
4340 	}
4341 
4342 	mas_wr_store_entry(&wr_mas);
4343 	return wr_mas.content;
4344 
4345 exists:
4346 	mas_set_err(mas, -EEXIST);
4347 	return wr_mas.content;
4348 
4349 }
4350 
4351 /**
4352  * mas_alloc_cyclic() - Internal call to find somewhere to store an entry
4353  * @mas: The maple state.
4354  * @startp: Pointer to ID.
4355  * @range_lo: Lower bound of range to search.
4356  * @range_hi: Upper bound of range to search.
4357  * @entry: The entry to store.
4358  * @next: Pointer to next ID to allocate.
4359  * @gfp: The GFP_FLAGS to use for allocations.
4360  *
4361  * Return: 0 if the allocation succeeded without wrapping, 1 if the
4362  * allocation succeeded after wrapping, or -EBUSY if there are no
4363  * free entries.
4364  */
mas_alloc_cyclic(struct ma_state * mas,unsigned long * startp,void * entry,unsigned long range_lo,unsigned long range_hi,unsigned long * next,gfp_t gfp)4365 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
4366 		void *entry, unsigned long range_lo, unsigned long range_hi,
4367 		unsigned long *next, gfp_t gfp)
4368 {
4369 	unsigned long min = range_lo;
4370 	int ret = 0;
4371 
4372 	range_lo = max(min, *next);
4373 	ret = mas_empty_area(mas, range_lo, range_hi, 1);
4374 	if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) {
4375 		mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED;
4376 		ret = 1;
4377 	}
4378 	if (ret < 0 && range_lo > min) {
4379 		mas_reset(mas);
4380 		ret = mas_empty_area(mas, min, range_hi, 1);
4381 		if (ret == 0)
4382 			ret = 1;
4383 	}
4384 	if (ret < 0)
4385 		return ret;
4386 
4387 	do {
4388 		mas_insert(mas, entry);
4389 	} while (mas_nomem(mas, gfp));
4390 	if (mas_is_err(mas))
4391 		return xa_err(mas->node);
4392 
4393 	*startp = mas->index;
4394 	*next = *startp + 1;
4395 	if (*next == 0)
4396 		mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED;
4397 
4398 	mas_destroy(mas);
4399 	return ret;
4400 }
4401 EXPORT_SYMBOL(mas_alloc_cyclic);
4402 
mas_rewalk(struct ma_state * mas,unsigned long index)4403 static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4404 {
4405 retry:
4406 	mas_set(mas, index);
4407 	mas_state_walk(mas);
4408 	if (mas_is_start(mas))
4409 		goto retry;
4410 }
4411 
mas_rewalk_if_dead(struct ma_state * mas,struct maple_node * node,const unsigned long index)4412 static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
4413 		struct maple_node *node, const unsigned long index)
4414 {
4415 	if (unlikely(ma_dead_node(node))) {
4416 		mas_rewalk(mas, index);
4417 		return true;
4418 	}
4419 	return false;
4420 }
4421 
4422 /*
4423  * mas_prev_node() - Find the prev non-null entry at the same level in the
4424  * tree.  The prev value will be mas->node[mas->offset] or the status will be
4425  * ma_none.
4426  * @mas: The maple state
4427  * @min: The lower limit to search
4428  *
4429  * The prev node value will be mas->node[mas->offset] or the status will be
4430  * ma_none.
4431  * Return: 1 if the node is dead, 0 otherwise.
4432  */
mas_prev_node(struct ma_state * mas,unsigned long min)4433 static int mas_prev_node(struct ma_state *mas, unsigned long min)
4434 {
4435 	enum maple_type mt;
4436 	int offset, level;
4437 	void __rcu **slots;
4438 	struct maple_node *node;
4439 	unsigned long *pivots;
4440 	unsigned long max;
4441 
4442 	node = mas_mn(mas);
4443 	if (!mas->min)
4444 		goto no_entry;
4445 
4446 	max = mas->min - 1;
4447 	if (max < min)
4448 		goto no_entry;
4449 
4450 	level = 0;
4451 	do {
4452 		if (ma_is_root(node))
4453 			goto no_entry;
4454 
4455 		/* Walk up. */
4456 		if (unlikely(mas_ascend(mas)))
4457 			return 1;
4458 		offset = mas->offset;
4459 		level++;
4460 		node = mas_mn(mas);
4461 	} while (!offset);
4462 
4463 	offset--;
4464 	mt = mte_node_type(mas->node);
4465 	while (level > 1) {
4466 		level--;
4467 		slots = ma_slots(node, mt);
4468 		mas->node = mas_slot(mas, slots, offset);
4469 		if (unlikely(ma_dead_node(node)))
4470 			return 1;
4471 
4472 		mt = mte_node_type(mas->node);
4473 		node = mas_mn(mas);
4474 		pivots = ma_pivots(node, mt);
4475 		offset = ma_data_end(node, mt, pivots, max);
4476 		if (unlikely(ma_dead_node(node)))
4477 			return 1;
4478 	}
4479 
4480 	slots = ma_slots(node, mt);
4481 	mas->node = mas_slot(mas, slots, offset);
4482 	pivots = ma_pivots(node, mt);
4483 	if (unlikely(ma_dead_node(node)))
4484 		return 1;
4485 
4486 	if (likely(offset))
4487 		mas->min = pivots[offset - 1] + 1;
4488 	mas->max = max;
4489 	mas->offset = mas_data_end(mas);
4490 	if (unlikely(mte_dead_node(mas->node)))
4491 		return 1;
4492 
4493 	mas->end = mas->offset;
4494 	return 0;
4495 
4496 no_entry:
4497 	if (unlikely(ma_dead_node(node)))
4498 		return 1;
4499 
4500 	mas->status = ma_underflow;
4501 	return 0;
4502 }
4503 
4504 /*
4505  * mas_prev_slot() - Get the entry in the previous slot
4506  *
4507  * @mas: The maple state
4508  * @min: The minimum starting range
4509  * @empty: Can be empty
4510  *
4511  * Return: The entry in the previous slot which is possibly NULL
4512  */
mas_prev_slot(struct ma_state * mas,unsigned long min,bool empty)4513 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4514 {
4515 	void *entry;
4516 	void __rcu **slots;
4517 	unsigned long pivot;
4518 	enum maple_type type;
4519 	unsigned long *pivots;
4520 	struct maple_node *node;
4521 	unsigned long save_point = mas->index;
4522 
4523 retry:
4524 	node = mas_mn(mas);
4525 	type = mte_node_type(mas->node);
4526 	pivots = ma_pivots(node, type);
4527 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4528 		goto retry;
4529 
4530 	if (mas->min <= min) {
4531 		pivot = mas_safe_min(mas, pivots, mas->offset);
4532 
4533 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4534 			goto retry;
4535 
4536 		if (pivot <= min)
4537 			goto underflow;
4538 	}
4539 
4540 again:
4541 	if (likely(mas->offset)) {
4542 		mas->offset--;
4543 		mas->last = mas->index - 1;
4544 		mas->index = mas_safe_min(mas, pivots, mas->offset);
4545 	} else  {
4546 		if (mas->index <= min)
4547 			goto underflow;
4548 
4549 		if (mas_prev_node(mas, min)) {
4550 			mas_rewalk(mas, save_point);
4551 			goto retry;
4552 		}
4553 
4554 		if (WARN_ON_ONCE(mas_is_underflow(mas)))
4555 			return NULL;
4556 
4557 		mas->last = mas->max;
4558 		node = mas_mn(mas);
4559 		type = mte_node_type(mas->node);
4560 		pivots = ma_pivots(node, type);
4561 		mas->index = pivots[mas->offset - 1] + 1;
4562 	}
4563 
4564 	slots = ma_slots(node, type);
4565 	entry = mas_slot(mas, slots, mas->offset);
4566 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4567 		goto retry;
4568 
4569 	if (likely(entry))
4570 		return entry;
4571 
4572 	if (!empty) {
4573 		if (mas->index <= min)
4574 			goto underflow;
4575 
4576 		goto again;
4577 	}
4578 
4579 	return entry;
4580 
4581 underflow:
4582 	mas->status = ma_underflow;
4583 	return NULL;
4584 }
4585 
4586 /*
4587  * mas_next_node() - Get the next node at the same level in the tree.
4588  * @mas: The maple state
4589  * @node: The maple node
4590  * @max: The maximum pivot value to check.
4591  *
4592  * The next value will be mas->node[mas->offset] or the status will have
4593  * overflowed.
4594  * Return: 1 on dead node, 0 otherwise.
4595  */
mas_next_node(struct ma_state * mas,struct maple_node * node,unsigned long max)4596 static int mas_next_node(struct ma_state *mas, struct maple_node *node,
4597 		unsigned long max)
4598 {
4599 	unsigned long min;
4600 	unsigned long *pivots;
4601 	struct maple_enode *enode;
4602 	struct maple_node *tmp;
4603 	int level = 0;
4604 	unsigned char node_end;
4605 	enum maple_type mt;
4606 	void __rcu **slots;
4607 
4608 	if (mas->max >= max)
4609 		goto overflow;
4610 
4611 	min = mas->max + 1;
4612 	level = 0;
4613 	do {
4614 		if (ma_is_root(node))
4615 			goto overflow;
4616 
4617 		/* Walk up. */
4618 		if (unlikely(mas_ascend(mas)))
4619 			return 1;
4620 
4621 		level++;
4622 		node = mas_mn(mas);
4623 		mt = mte_node_type(mas->node);
4624 		pivots = ma_pivots(node, mt);
4625 		node_end = ma_data_end(node, mt, pivots, mas->max);
4626 		if (unlikely(ma_dead_node(node)))
4627 			return 1;
4628 
4629 	} while (unlikely(mas->offset == node_end));
4630 
4631 	slots = ma_slots(node, mt);
4632 	mas->offset++;
4633 	enode = mas_slot(mas, slots, mas->offset);
4634 	if (unlikely(ma_dead_node(node)))
4635 		return 1;
4636 
4637 	if (level > 1)
4638 		mas->offset = 0;
4639 
4640 	while (unlikely(level > 1)) {
4641 		level--;
4642 		mas->node = enode;
4643 		node = mas_mn(mas);
4644 		mt = mte_node_type(mas->node);
4645 		slots = ma_slots(node, mt);
4646 		enode = mas_slot(mas, slots, 0);
4647 		if (unlikely(ma_dead_node(node)))
4648 			return 1;
4649 	}
4650 
4651 	if (!mas->offset)
4652 		pivots = ma_pivots(node, mt);
4653 
4654 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4655 	tmp = mte_to_node(enode);
4656 	mt = mte_node_type(enode);
4657 	pivots = ma_pivots(tmp, mt);
4658 	mas->end = ma_data_end(tmp, mt, pivots, mas->max);
4659 	if (unlikely(ma_dead_node(node)))
4660 		return 1;
4661 
4662 	mas->node = enode;
4663 	mas->min = min;
4664 	return 0;
4665 
4666 overflow:
4667 	if (unlikely(ma_dead_node(node)))
4668 		return 1;
4669 
4670 	mas->status = ma_overflow;
4671 	return 0;
4672 }
4673 
4674 /*
4675  * mas_next_slot() - Get the entry in the next slot
4676  *
4677  * @mas: The maple state
4678  * @max: The maximum starting range
4679  * @empty: Can be empty
4680  *
4681  * Return: The entry in the next slot which is possibly NULL
4682  */
mas_next_slot(struct ma_state * mas,unsigned long max,bool empty)4683 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
4684 {
4685 	void __rcu **slots;
4686 	unsigned long *pivots;
4687 	unsigned long pivot;
4688 	enum maple_type type;
4689 	struct maple_node *node;
4690 	unsigned long save_point = mas->last;
4691 	void *entry;
4692 
4693 retry:
4694 	node = mas_mn(mas);
4695 	type = mte_node_type(mas->node);
4696 	pivots = ma_pivots(node, type);
4697 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4698 		goto retry;
4699 
4700 	if (mas->max >= max) {
4701 		if (likely(mas->offset < mas->end))
4702 			pivot = pivots[mas->offset];
4703 		else
4704 			pivot = mas->max;
4705 
4706 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4707 			goto retry;
4708 
4709 		if (pivot >= max) { /* Was at the limit, next will extend beyond */
4710 			mas->status = ma_overflow;
4711 			return NULL;
4712 		}
4713 	}
4714 
4715 	if (likely(mas->offset < mas->end)) {
4716 		mas->index = pivots[mas->offset] + 1;
4717 again:
4718 		mas->offset++;
4719 		if (likely(mas->offset < mas->end))
4720 			mas->last = pivots[mas->offset];
4721 		else
4722 			mas->last = mas->max;
4723 	} else  {
4724 		if (mas->last >= max) {
4725 			mas->status = ma_overflow;
4726 			return NULL;
4727 		}
4728 
4729 		if (mas_next_node(mas, node, max)) {
4730 			mas_rewalk(mas, save_point);
4731 			goto retry;
4732 		}
4733 
4734 		if (WARN_ON_ONCE(mas_is_overflow(mas)))
4735 			return NULL;
4736 
4737 		mas->offset = 0;
4738 		mas->index = mas->min;
4739 		node = mas_mn(mas);
4740 		type = mte_node_type(mas->node);
4741 		pivots = ma_pivots(node, type);
4742 		mas->last = pivots[0];
4743 	}
4744 
4745 	slots = ma_slots(node, type);
4746 	entry = mt_slot(mas->tree, slots, mas->offset);
4747 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4748 		goto retry;
4749 
4750 	if (entry)
4751 		return entry;
4752 
4753 
4754 	if (!empty) {
4755 		if (mas->last >= max) {
4756 			mas->status = ma_overflow;
4757 			return NULL;
4758 		}
4759 
4760 		mas->index = mas->last + 1;
4761 		goto again;
4762 	}
4763 
4764 	return entry;
4765 }
4766 
4767 /*
4768  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
4769  * highest gap address of a given size in a given node and descend.
4770  * @mas: The maple state
4771  * @size: The needed size.
4772  *
4773  * Return: True if found in a leaf, false otherwise.
4774  *
4775  */
mas_rev_awalk(struct ma_state * mas,unsigned long size,unsigned long * gap_min,unsigned long * gap_max)4776 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4777 		unsigned long *gap_min, unsigned long *gap_max)
4778 {
4779 	enum maple_type type = mte_node_type(mas->node);
4780 	struct maple_node *node = mas_mn(mas);
4781 	unsigned long *pivots, *gaps;
4782 	void __rcu **slots;
4783 	unsigned long gap = 0;
4784 	unsigned long max, min;
4785 	unsigned char offset;
4786 
4787 	if (unlikely(mas_is_err(mas)))
4788 		return true;
4789 
4790 	if (ma_is_dense(type)) {
4791 		/* dense nodes. */
4792 		mas->offset = (unsigned char)(mas->index - mas->min);
4793 		return true;
4794 	}
4795 
4796 	pivots = ma_pivots(node, type);
4797 	slots = ma_slots(node, type);
4798 	gaps = ma_gaps(node, type);
4799 	offset = mas->offset;
4800 	min = mas_safe_min(mas, pivots, offset);
4801 	/* Skip out of bounds. */
4802 	while (mas->last < min)
4803 		min = mas_safe_min(mas, pivots, --offset);
4804 
4805 	max = mas_safe_pivot(mas, pivots, offset, type);
4806 	while (mas->index <= max) {
4807 		gap = 0;
4808 		if (gaps)
4809 			gap = gaps[offset];
4810 		else if (!mas_slot(mas, slots, offset))
4811 			gap = max - min + 1;
4812 
4813 		if (gap) {
4814 			if ((size <= gap) && (size <= mas->last - min + 1))
4815 				break;
4816 
4817 			if (!gaps) {
4818 				/* Skip the next slot, it cannot be a gap. */
4819 				if (offset < 2)
4820 					goto ascend;
4821 
4822 				offset -= 2;
4823 				max = pivots[offset];
4824 				min = mas_safe_min(mas, pivots, offset);
4825 				continue;
4826 			}
4827 		}
4828 
4829 		if (!offset)
4830 			goto ascend;
4831 
4832 		offset--;
4833 		max = min - 1;
4834 		min = mas_safe_min(mas, pivots, offset);
4835 	}
4836 
4837 	if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4838 		goto no_space;
4839 
4840 	if (unlikely(ma_is_leaf(type))) {
4841 		mas->offset = offset;
4842 		*gap_min = min;
4843 		*gap_max = min + gap - 1;
4844 		return true;
4845 	}
4846 
4847 	/* descend, only happens under lock. */
4848 	mas->node = mas_slot(mas, slots, offset);
4849 	mas->min = min;
4850 	mas->max = max;
4851 	mas->offset = mas_data_end(mas);
4852 	return false;
4853 
4854 ascend:
4855 	if (!mte_is_root(mas->node))
4856 		return false;
4857 
4858 no_space:
4859 	mas_set_err(mas, -EBUSY);
4860 	return false;
4861 }
4862 
mas_anode_descend(struct ma_state * mas,unsigned long size)4863 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4864 {
4865 	enum maple_type type = mte_node_type(mas->node);
4866 	unsigned long pivot, min, gap = 0;
4867 	unsigned char offset, data_end;
4868 	unsigned long *gaps, *pivots;
4869 	void __rcu **slots;
4870 	struct maple_node *node;
4871 	bool found = false;
4872 
4873 	if (ma_is_dense(type)) {
4874 		mas->offset = (unsigned char)(mas->index - mas->min);
4875 		return true;
4876 	}
4877 
4878 	node = mas_mn(mas);
4879 	pivots = ma_pivots(node, type);
4880 	slots = ma_slots(node, type);
4881 	gaps = ma_gaps(node, type);
4882 	offset = mas->offset;
4883 	min = mas_safe_min(mas, pivots, offset);
4884 	data_end = ma_data_end(node, type, pivots, mas->max);
4885 	for (; offset <= data_end; offset++) {
4886 		pivot = mas_safe_pivot(mas, pivots, offset, type);
4887 
4888 		/* Not within lower bounds */
4889 		if (mas->index > pivot)
4890 			goto next_slot;
4891 
4892 		if (gaps)
4893 			gap = gaps[offset];
4894 		else if (!mas_slot(mas, slots, offset))
4895 			gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4896 		else
4897 			goto next_slot;
4898 
4899 		if (gap >= size) {
4900 			if (ma_is_leaf(type)) {
4901 				found = true;
4902 				break;
4903 			}
4904 
4905 			mas->node = mas_slot(mas, slots, offset);
4906 			mas->min = min;
4907 			mas->max = pivot;
4908 			offset = 0;
4909 			break;
4910 		}
4911 next_slot:
4912 		min = pivot + 1;
4913 		if (mas->last <= pivot) {
4914 			mas_set_err(mas, -EBUSY);
4915 			return true;
4916 		}
4917 	}
4918 
4919 	mas->offset = offset;
4920 	return found;
4921 }
4922 
4923 /**
4924  * mas_walk() - Search for @mas->index in the tree.
4925  * @mas: The maple state.
4926  *
4927  * mas->index and mas->last will be set to the range if there is a value.  If
4928  * mas->status is ma_none, reset to ma_start
4929  *
4930  * Return: the entry at the location or %NULL.
4931  */
mas_walk(struct ma_state * mas)4932 void *mas_walk(struct ma_state *mas)
4933 {
4934 	void *entry;
4935 
4936 	if (!mas_is_active(mas) && !mas_is_start(mas))
4937 		mas->status = ma_start;
4938 retry:
4939 	entry = mas_state_walk(mas);
4940 	if (mas_is_start(mas)) {
4941 		goto retry;
4942 	} else if (mas_is_none(mas)) {
4943 		mas->index = 0;
4944 		mas->last = ULONG_MAX;
4945 	} else if (mas_is_ptr(mas)) {
4946 		if (!mas->index) {
4947 			mas->last = 0;
4948 			return entry;
4949 		}
4950 
4951 		mas->index = 1;
4952 		mas->last = ULONG_MAX;
4953 		mas->status = ma_none;
4954 		return NULL;
4955 	}
4956 
4957 	return entry;
4958 }
4959 EXPORT_SYMBOL_GPL(mas_walk);
4960 
mas_rewind_node(struct ma_state * mas)4961 static inline bool mas_rewind_node(struct ma_state *mas)
4962 {
4963 	unsigned char slot;
4964 
4965 	do {
4966 		if (mte_is_root(mas->node)) {
4967 			slot = mas->offset;
4968 			if (!slot)
4969 				return false;
4970 		} else {
4971 			mas_ascend(mas);
4972 			slot = mas->offset;
4973 		}
4974 	} while (!slot);
4975 
4976 	mas->offset = --slot;
4977 	return true;
4978 }
4979 
4980 /*
4981  * mas_skip_node() - Internal function.  Skip over a node.
4982  * @mas: The maple state.
4983  *
4984  * Return: true if there is another node, false otherwise.
4985  */
mas_skip_node(struct ma_state * mas)4986 static inline bool mas_skip_node(struct ma_state *mas)
4987 {
4988 	if (mas_is_err(mas))
4989 		return false;
4990 
4991 	do {
4992 		if (mte_is_root(mas->node)) {
4993 			if (mas->offset >= mas_data_end(mas)) {
4994 				mas_set_err(mas, -EBUSY);
4995 				return false;
4996 			}
4997 		} else {
4998 			mas_ascend(mas);
4999 		}
5000 	} while (mas->offset >= mas_data_end(mas));
5001 
5002 	mas->offset++;
5003 	return true;
5004 }
5005 
5006 /*
5007  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
5008  * @size
5009  * @mas: The maple state
5010  * @size: The size of the gap required
5011  *
5012  * Search between @mas->index and @mas->last for a gap of @size.
5013  */
mas_awalk(struct ma_state * mas,unsigned long size)5014 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5015 {
5016 	struct maple_enode *last = NULL;
5017 
5018 	/*
5019 	 * There are 4 options:
5020 	 * go to child (descend)
5021 	 * go back to parent (ascend)
5022 	 * no gap found. (return, error == -EBUSY)
5023 	 * found the gap. (return)
5024 	 */
5025 	while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5026 		if (last == mas->node)
5027 			mas_skip_node(mas);
5028 		else
5029 			last = mas->node;
5030 	}
5031 }
5032 
5033 /*
5034  * mas_sparse_area() - Internal function.  Return upper or lower limit when
5035  * searching for a gap in an empty tree.
5036  * @mas: The maple state
5037  * @min: the minimum range
5038  * @max: The maximum range
5039  * @size: The size of the gap
5040  * @fwd: Searching forward or back
5041  */
mas_sparse_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size,bool fwd)5042 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5043 				unsigned long max, unsigned long size, bool fwd)
5044 {
5045 	if (!unlikely(mas_is_none(mas)) && min == 0) {
5046 		min++;
5047 		/*
5048 		 * At this time, min is increased, we need to recheck whether
5049 		 * the size is satisfied.
5050 		 */
5051 		if (min > max || max - min + 1 < size)
5052 			return -EBUSY;
5053 	}
5054 	/* mas_is_ptr */
5055 
5056 	if (fwd) {
5057 		mas->index = min;
5058 		mas->last = min + size - 1;
5059 	} else {
5060 		mas->last = max;
5061 		mas->index = max - size + 1;
5062 	}
5063 	return 0;
5064 }
5065 
5066 /*
5067  * mas_empty_area() - Get the lowest address within the range that is
5068  * sufficient for the size requested.
5069  * @mas: The maple state
5070  * @min: The lowest value of the range
5071  * @max: The highest value of the range
5072  * @size: The size needed
5073  */
mas_empty_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)5074 int mas_empty_area(struct ma_state *mas, unsigned long min,
5075 		unsigned long max, unsigned long size)
5076 {
5077 	unsigned char offset;
5078 	unsigned long *pivots;
5079 	enum maple_type mt;
5080 	struct maple_node *node;
5081 
5082 	if (min > max)
5083 		return -EINVAL;
5084 
5085 	if (size == 0 || max - min < size - 1)
5086 		return -EINVAL;
5087 
5088 	if (mas_is_start(mas))
5089 		mas_start(mas);
5090 	else if (mas->offset >= 2)
5091 		mas->offset -= 2;
5092 	else if (!mas_skip_node(mas))
5093 		return -EBUSY;
5094 
5095 	/* Empty set */
5096 	if (mas_is_none(mas) || mas_is_ptr(mas))
5097 		return mas_sparse_area(mas, min, max, size, true);
5098 
5099 	/* The start of the window can only be within these values */
5100 	mas->index = min;
5101 	mas->last = max;
5102 	mas_awalk(mas, size);
5103 
5104 	if (unlikely(mas_is_err(mas)))
5105 		return xa_err(mas->node);
5106 
5107 	offset = mas->offset;
5108 	node = mas_mn(mas);
5109 	mt = mte_node_type(mas->node);
5110 	pivots = ma_pivots(node, mt);
5111 	min = mas_safe_min(mas, pivots, offset);
5112 	if (mas->index < min)
5113 		mas->index = min;
5114 	mas->last = mas->index + size - 1;
5115 	mas->end = ma_data_end(node, mt, pivots, mas->max);
5116 	return 0;
5117 }
5118 EXPORT_SYMBOL_GPL(mas_empty_area);
5119 
5120 /*
5121  * mas_empty_area_rev() - Get the highest address within the range that is
5122  * sufficient for the size requested.
5123  * @mas: The maple state
5124  * @min: The lowest value of the range
5125  * @max: The highest value of the range
5126  * @size: The size needed
5127  */
mas_empty_area_rev(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)5128 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5129 		unsigned long max, unsigned long size)
5130 {
5131 	struct maple_enode *last = mas->node;
5132 
5133 	if (min > max)
5134 		return -EINVAL;
5135 
5136 	if (size == 0 || max - min < size - 1)
5137 		return -EINVAL;
5138 
5139 	if (mas_is_start(mas))
5140 		mas_start(mas);
5141 	else if ((mas->offset < 2) && (!mas_rewind_node(mas)))
5142 		return -EBUSY;
5143 
5144 	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5145 		return mas_sparse_area(mas, min, max, size, false);
5146 	else if (mas->offset >= 2)
5147 		mas->offset -= 2;
5148 	else
5149 		mas->offset = mas_data_end(mas);
5150 
5151 
5152 	/* The start of the window can only be within these values. */
5153 	mas->index = min;
5154 	mas->last = max;
5155 
5156 	while (!mas_rev_awalk(mas, size, &min, &max)) {
5157 		if (last == mas->node) {
5158 			if (!mas_rewind_node(mas))
5159 				return -EBUSY;
5160 		} else {
5161 			last = mas->node;
5162 		}
5163 	}
5164 
5165 	if (mas_is_err(mas))
5166 		return xa_err(mas->node);
5167 
5168 	if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5169 		return -EBUSY;
5170 
5171 	/* Trim the upper limit to the max. */
5172 	if (max < mas->last)
5173 		mas->last = max;
5174 
5175 	mas->index = mas->last - size + 1;
5176 	mas->end = mas_data_end(mas);
5177 	return 0;
5178 }
5179 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5180 
5181 /*
5182  * mte_dead_leaves() - Mark all leaves of a node as dead.
5183  * @enode: the encoded node
5184  * @mt: the maple tree
5185  * @slots: Pointer to the slot array
5186  *
5187  * Must hold the write lock.
5188  *
5189  * Return: The number of leaves marked as dead.
5190  */
5191 static inline
mte_dead_leaves(struct maple_enode * enode,struct maple_tree * mt,void __rcu ** slots)5192 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5193 			      void __rcu **slots)
5194 {
5195 	struct maple_node *node;
5196 	enum maple_type type;
5197 	void *entry;
5198 	int offset;
5199 
5200 	for (offset = 0; offset < mt_slot_count(enode); offset++) {
5201 		entry = mt_slot(mt, slots, offset);
5202 		type = mte_node_type(entry);
5203 		node = mte_to_node(entry);
5204 		/* Use both node and type to catch LE & BE metadata */
5205 		if (!node || !type)
5206 			break;
5207 
5208 		mte_set_node_dead(entry);
5209 		node->type = type;
5210 		rcu_assign_pointer(slots[offset], node);
5211 	}
5212 
5213 	return offset;
5214 }
5215 
5216 /**
5217  * mte_dead_walk() - Walk down a dead tree to just before the leaves
5218  * @enode: The maple encoded node
5219  * @offset: The starting offset
5220  *
5221  * Note: This can only be used from the RCU callback context.
5222  */
mte_dead_walk(struct maple_enode ** enode,unsigned char offset)5223 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5224 {
5225 	struct maple_node *node, *next;
5226 	void __rcu **slots = NULL;
5227 
5228 	next = mte_to_node(*enode);
5229 	do {
5230 		*enode = ma_enode_ptr(next);
5231 		node = mte_to_node(*enode);
5232 		slots = ma_slots(node, node->type);
5233 		next = rcu_dereference_protected(slots[offset],
5234 					lock_is_held(&rcu_callback_map));
5235 		offset = 0;
5236 	} while (!ma_is_leaf(next->type));
5237 
5238 	return slots;
5239 }
5240 
5241 /**
5242  * mt_free_walk() - Walk & free a tree in the RCU callback context
5243  * @head: The RCU head that's within the node.
5244  *
5245  * Note: This can only be used from the RCU callback context.
5246  */
mt_free_walk(struct rcu_head * head)5247 static void mt_free_walk(struct rcu_head *head)
5248 {
5249 	void __rcu **slots;
5250 	struct maple_node *node, *start;
5251 	struct maple_enode *enode;
5252 	unsigned char offset;
5253 	enum maple_type type;
5254 
5255 	node = container_of(head, struct maple_node, rcu);
5256 
5257 	if (ma_is_leaf(node->type))
5258 		goto free_leaf;
5259 
5260 	start = node;
5261 	enode = mt_mk_node(node, node->type);
5262 	slots = mte_dead_walk(&enode, 0);
5263 	node = mte_to_node(enode);
5264 	do {
5265 		mt_free_bulk(node->slot_len, slots);
5266 		offset = node->parent_slot + 1;
5267 		enode = node->piv_parent;
5268 		if (mte_to_node(enode) == node)
5269 			goto free_leaf;
5270 
5271 		type = mte_node_type(enode);
5272 		slots = ma_slots(mte_to_node(enode), type);
5273 		if ((offset < mt_slots[type]) &&
5274 		    rcu_dereference_protected(slots[offset],
5275 					      lock_is_held(&rcu_callback_map)))
5276 			slots = mte_dead_walk(&enode, offset);
5277 		node = mte_to_node(enode);
5278 	} while ((node != start) || (node->slot_len < offset));
5279 
5280 	slots = ma_slots(node, node->type);
5281 	mt_free_bulk(node->slot_len, slots);
5282 
5283 free_leaf:
5284 	mt_free_rcu(&node->rcu);
5285 }
5286 
mte_destroy_descend(struct maple_enode ** enode,struct maple_tree * mt,struct maple_enode * prev,unsigned char offset)5287 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5288 	struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5289 {
5290 	struct maple_node *node;
5291 	struct maple_enode *next = *enode;
5292 	void __rcu **slots = NULL;
5293 	enum maple_type type;
5294 	unsigned char next_offset = 0;
5295 
5296 	do {
5297 		*enode = next;
5298 		node = mte_to_node(*enode);
5299 		type = mte_node_type(*enode);
5300 		slots = ma_slots(node, type);
5301 		next = mt_slot_locked(mt, slots, next_offset);
5302 		if ((mte_dead_node(next)))
5303 			next = mt_slot_locked(mt, slots, ++next_offset);
5304 
5305 		mte_set_node_dead(*enode);
5306 		node->type = type;
5307 		node->piv_parent = prev;
5308 		node->parent_slot = offset;
5309 		offset = next_offset;
5310 		next_offset = 0;
5311 		prev = *enode;
5312 	} while (!mte_is_leaf(next));
5313 
5314 	return slots;
5315 }
5316 
mt_destroy_walk(struct maple_enode * enode,struct maple_tree * mt,bool free)5317 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5318 			    bool free)
5319 {
5320 	void __rcu **slots;
5321 	struct maple_node *node = mte_to_node(enode);
5322 	struct maple_enode *start;
5323 
5324 	if (mte_is_leaf(enode)) {
5325 		mte_set_node_dead(enode);
5326 		node->type = mte_node_type(enode);
5327 		goto free_leaf;
5328 	}
5329 
5330 	start = enode;
5331 	slots = mte_destroy_descend(&enode, mt, start, 0);
5332 	node = mte_to_node(enode); // Updated in the above call.
5333 	do {
5334 		enum maple_type type;
5335 		unsigned char offset;
5336 		struct maple_enode *parent, *tmp;
5337 
5338 		node->slot_len = mte_dead_leaves(enode, mt, slots);
5339 		if (free)
5340 			mt_free_bulk(node->slot_len, slots);
5341 		offset = node->parent_slot + 1;
5342 		enode = node->piv_parent;
5343 		if (mte_to_node(enode) == node)
5344 			goto free_leaf;
5345 
5346 		type = mte_node_type(enode);
5347 		slots = ma_slots(mte_to_node(enode), type);
5348 		if (offset >= mt_slots[type])
5349 			goto next;
5350 
5351 		tmp = mt_slot_locked(mt, slots, offset);
5352 		if (mte_node_type(tmp) && mte_to_node(tmp)) {
5353 			parent = enode;
5354 			enode = tmp;
5355 			slots = mte_destroy_descend(&enode, mt, parent, offset);
5356 		}
5357 next:
5358 		node = mte_to_node(enode);
5359 	} while (start != enode);
5360 
5361 	node = mte_to_node(enode);
5362 	node->slot_len = mte_dead_leaves(enode, mt, slots);
5363 	if (free)
5364 		mt_free_bulk(node->slot_len, slots);
5365 
5366 free_leaf:
5367 	if (free)
5368 		mt_free_rcu(&node->rcu);
5369 	else
5370 		mt_clear_meta(mt, node, node->type);
5371 }
5372 
5373 /*
5374  * mte_destroy_walk() - Free a tree or sub-tree.
5375  * @enode: the encoded maple node (maple_enode) to start
5376  * @mt: the tree to free - needed for node types.
5377  *
5378  * Must hold the write lock.
5379  */
mte_destroy_walk(struct maple_enode * enode,struct maple_tree * mt)5380 static inline void mte_destroy_walk(struct maple_enode *enode,
5381 				    struct maple_tree *mt)
5382 {
5383 	struct maple_node *node = mte_to_node(enode);
5384 
5385 	if (mt_in_rcu(mt)) {
5386 		mt_destroy_walk(enode, mt, false);
5387 		call_rcu(&node->rcu, mt_free_walk);
5388 	} else {
5389 		mt_destroy_walk(enode, mt, true);
5390 	}
5391 }
5392 /* Interface */
5393 
5394 /**
5395  * mas_store() - Store an @entry.
5396  * @mas: The maple state.
5397  * @entry: The entry to store.
5398  *
5399  * The @mas->index and @mas->last is used to set the range for the @entry.
5400  *
5401  * Return: the first entry between mas->index and mas->last or %NULL.
5402  */
mas_store(struct ma_state * mas,void * entry)5403 void *mas_store(struct ma_state *mas, void *entry)
5404 {
5405 	int request;
5406 	MA_WR_STATE(wr_mas, mas, entry);
5407 
5408 	trace_ma_write(__func__, mas, 0, entry);
5409 #ifdef CONFIG_DEBUG_MAPLE_TREE
5410 	if (MAS_WARN_ON(mas, mas->index > mas->last))
5411 		pr_err("Error %lX > %lX " PTR_FMT "\n", mas->index, mas->last,
5412 		       entry);
5413 
5414 	if (mas->index > mas->last) {
5415 		mas_set_err(mas, -EINVAL);
5416 		return NULL;
5417 	}
5418 
5419 #endif
5420 
5421 	/*
5422 	 * Storing is the same operation as insert with the added caveat that it
5423 	 * can overwrite entries.  Although this seems simple enough, one may
5424 	 * want to examine what happens if a single store operation was to
5425 	 * overwrite multiple entries within a self-balancing B-Tree.
5426 	 */
5427 	mas_wr_prealloc_setup(&wr_mas);
5428 	mas->store_type = mas_wr_store_type(&wr_mas);
5429 	if (mas->mas_flags & MA_STATE_PREALLOC) {
5430 		mas_wr_store_entry(&wr_mas);
5431 		MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5432 		return wr_mas.content;
5433 	}
5434 
5435 	request = mas_prealloc_calc(&wr_mas, entry);
5436 	if (!request)
5437 		goto store;
5438 
5439 	mas_node_count(mas, request);
5440 	if (mas_is_err(mas))
5441 		return NULL;
5442 
5443 store:
5444 	mas_wr_store_entry(&wr_mas);
5445 	mas_destroy(mas);
5446 	return wr_mas.content;
5447 }
5448 EXPORT_SYMBOL_GPL(mas_store);
5449 
5450 /**
5451  * mas_store_gfp() - Store a value into the tree.
5452  * @mas: The maple state
5453  * @entry: The entry to store
5454  * @gfp: The GFP_FLAGS to use for allocations if necessary.
5455  *
5456  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5457  * be allocated.
5458  */
mas_store_gfp(struct ma_state * mas,void * entry,gfp_t gfp)5459 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5460 {
5461 	unsigned long index = mas->index;
5462 	unsigned long last = mas->last;
5463 	MA_WR_STATE(wr_mas, mas, entry);
5464 	int ret = 0;
5465 
5466 retry:
5467 	mas_wr_preallocate(&wr_mas, entry);
5468 	if (unlikely(mas_nomem(mas, gfp))) {
5469 		if (!entry)
5470 			__mas_set_range(mas, index, last);
5471 		goto retry;
5472 	}
5473 
5474 	if (mas_is_err(mas)) {
5475 		ret = xa_err(mas->node);
5476 		goto out;
5477 	}
5478 
5479 	mas_wr_store_entry(&wr_mas);
5480 out:
5481 	mas_destroy(mas);
5482 	return ret;
5483 }
5484 EXPORT_SYMBOL_GPL(mas_store_gfp);
5485 
5486 /**
5487  * mas_store_prealloc() - Store a value into the tree using memory
5488  * preallocated in the maple state.
5489  * @mas: The maple state
5490  * @entry: The entry to store.
5491  */
mas_store_prealloc(struct ma_state * mas,void * entry)5492 void mas_store_prealloc(struct ma_state *mas, void *entry)
5493 {
5494 	MA_WR_STATE(wr_mas, mas, entry);
5495 
5496 	if (mas->store_type == wr_store_root) {
5497 		mas_wr_prealloc_setup(&wr_mas);
5498 		goto store;
5499 	}
5500 
5501 	mas_wr_walk_descend(&wr_mas);
5502 	if (mas->store_type != wr_spanning_store) {
5503 		/* set wr_mas->content to current slot */
5504 		wr_mas.content = mas_slot_locked(mas, wr_mas.slots, mas->offset);
5505 		mas_wr_end_piv(&wr_mas);
5506 	}
5507 
5508 store:
5509 	trace_ma_write(__func__, mas, 0, entry);
5510 	mas_wr_store_entry(&wr_mas);
5511 	MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5512 	mas_destroy(mas);
5513 }
5514 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5515 
5516 /**
5517  * mas_preallocate() - Preallocate enough nodes for a store operation
5518  * @mas: The maple state
5519  * @entry: The entry that will be stored
5520  * @gfp: The GFP_FLAGS to use for allocations.
5521  *
5522  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5523  */
mas_preallocate(struct ma_state * mas,void * entry,gfp_t gfp)5524 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5525 {
5526 	MA_WR_STATE(wr_mas, mas, entry);
5527 	int ret = 0;
5528 	int request;
5529 
5530 	mas_wr_prealloc_setup(&wr_mas);
5531 	mas->store_type = mas_wr_store_type(&wr_mas);
5532 	request = mas_prealloc_calc(&wr_mas, entry);
5533 	if (!request)
5534 		goto set_flag;
5535 
5536 	mas->mas_flags &= ~MA_STATE_PREALLOC;
5537 	mas_node_count_gfp(mas, request, gfp);
5538 	if (mas_is_err(mas)) {
5539 		mas_set_alloc_req(mas, 0);
5540 		ret = xa_err(mas->node);
5541 		mas_destroy(mas);
5542 		mas_reset(mas);
5543 		return ret;
5544 	}
5545 
5546 set_flag:
5547 	mas->mas_flags |= MA_STATE_PREALLOC;
5548 	return ret;
5549 }
5550 EXPORT_SYMBOL_GPL(mas_preallocate);
5551 
5552 /*
5553  * mas_destroy() - destroy a maple state.
5554  * @mas: The maple state
5555  *
5556  * Upon completion, check the left-most node and rebalance against the node to
5557  * the right if necessary.  Frees any allocated nodes associated with this maple
5558  * state.
5559  */
mas_destroy(struct ma_state * mas)5560 void mas_destroy(struct ma_state *mas)
5561 {
5562 	struct maple_alloc *node;
5563 	unsigned long total;
5564 
5565 	/*
5566 	 * When using mas_for_each() to insert an expected number of elements,
5567 	 * it is possible that the number inserted is less than the expected
5568 	 * number.  To fix an invalid final node, a check is performed here to
5569 	 * rebalance the previous node with the final node.
5570 	 */
5571 	if (mas->mas_flags & MA_STATE_REBALANCE) {
5572 		unsigned char end;
5573 		if (mas_is_err(mas))
5574 			mas_reset(mas);
5575 		mas_start(mas);
5576 		mtree_range_walk(mas);
5577 		end = mas->end + 1;
5578 		if (end < mt_min_slot_count(mas->node) - 1)
5579 			mas_destroy_rebalance(mas, end);
5580 
5581 		mas->mas_flags &= ~MA_STATE_REBALANCE;
5582 	}
5583 	mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5584 
5585 	total = mas_allocated(mas);
5586 	while (total) {
5587 		node = mas->alloc;
5588 		mas->alloc = node->slot[0];
5589 		if (node->node_count > 1) {
5590 			size_t count = node->node_count - 1;
5591 
5592 			mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5593 			total -= count;
5594 		}
5595 		mt_free_one(ma_mnode_ptr(node));
5596 		total--;
5597 	}
5598 
5599 	mas->alloc = NULL;
5600 }
5601 EXPORT_SYMBOL_GPL(mas_destroy);
5602 
5603 /*
5604  * mas_expected_entries() - Set the expected number of entries that will be inserted.
5605  * @mas: The maple state
5606  * @nr_entries: The number of expected entries.
5607  *
5608  * This will attempt to pre-allocate enough nodes to store the expected number
5609  * of entries.  The allocations will occur using the bulk allocator interface
5610  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
5611  * to ensure any unused nodes are freed.
5612  *
5613  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5614  */
mas_expected_entries(struct ma_state * mas,unsigned long nr_entries)5615 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5616 {
5617 	int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5618 	struct maple_enode *enode = mas->node;
5619 	int nr_nodes;
5620 	int ret;
5621 
5622 	/*
5623 	 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5624 	 * forking a process and duplicating the VMAs from one tree to a new
5625 	 * tree.  When such a situation arises, it is known that the new tree is
5626 	 * not going to be used until the entire tree is populated.  For
5627 	 * performance reasons, it is best to use a bulk load with RCU disabled.
5628 	 * This allows for optimistic splitting that favours the left and reuse
5629 	 * of nodes during the operation.
5630 	 */
5631 
5632 	/* Optimize splitting for bulk insert in-order */
5633 	mas->mas_flags |= MA_STATE_BULK;
5634 
5635 	/*
5636 	 * Avoid overflow, assume a gap between each entry and a trailing null.
5637 	 * If this is wrong, it just means allocation can happen during
5638 	 * insertion of entries.
5639 	 */
5640 	nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5641 	if (!mt_is_alloc(mas->tree))
5642 		nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5643 
5644 	/* Leaves; reduce slots to keep space for expansion */
5645 	nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5646 	/* Internal nodes */
5647 	nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5648 	/* Add working room for split (2 nodes) + new parents */
5649 	mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
5650 
5651 	/* Detect if allocations run out */
5652 	mas->mas_flags |= MA_STATE_PREALLOC;
5653 
5654 	if (!mas_is_err(mas))
5655 		return 0;
5656 
5657 	ret = xa_err(mas->node);
5658 	mas->node = enode;
5659 	mas_destroy(mas);
5660 	return ret;
5661 
5662 }
5663 EXPORT_SYMBOL_GPL(mas_expected_entries);
5664 
mas_may_activate(struct ma_state * mas)5665 static void mas_may_activate(struct ma_state *mas)
5666 {
5667 	if (!mas->node) {
5668 		mas->status = ma_start;
5669 	} else if (mas->index > mas->max || mas->index < mas->min) {
5670 		mas->status = ma_start;
5671 	} else {
5672 		mas->status = ma_active;
5673 	}
5674 }
5675 
mas_next_setup(struct ma_state * mas,unsigned long max,void ** entry)5676 static bool mas_next_setup(struct ma_state *mas, unsigned long max,
5677 		void **entry)
5678 {
5679 	bool was_none = mas_is_none(mas);
5680 
5681 	if (unlikely(mas->last >= max)) {
5682 		mas->status = ma_overflow;
5683 		return true;
5684 	}
5685 
5686 	switch (mas->status) {
5687 	case ma_active:
5688 		return false;
5689 	case ma_none:
5690 		fallthrough;
5691 	case ma_pause:
5692 		mas->status = ma_start;
5693 		fallthrough;
5694 	case ma_start:
5695 		mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5696 		break;
5697 	case ma_overflow:
5698 		/* Overflowed before, but the max changed */
5699 		mas_may_activate(mas);
5700 		break;
5701 	case ma_underflow:
5702 		/* The user expects the mas to be one before where it is */
5703 		mas_may_activate(mas);
5704 		*entry = mas_walk(mas);
5705 		if (*entry)
5706 			return true;
5707 		break;
5708 	case ma_root:
5709 		break;
5710 	case ma_error:
5711 		return true;
5712 	}
5713 
5714 	if (likely(mas_is_active(mas))) /* Fast path */
5715 		return false;
5716 
5717 	if (mas_is_ptr(mas)) {
5718 		*entry = NULL;
5719 		if (was_none && mas->index == 0) {
5720 			mas->index = mas->last = 0;
5721 			return true;
5722 		}
5723 		mas->index = 1;
5724 		mas->last = ULONG_MAX;
5725 		mas->status = ma_none;
5726 		return true;
5727 	}
5728 
5729 	if (mas_is_none(mas))
5730 		return true;
5731 
5732 	return false;
5733 }
5734 
5735 /**
5736  * mas_next() - Get the next entry.
5737  * @mas: The maple state
5738  * @max: The maximum index to check.
5739  *
5740  * Returns the next entry after @mas->index.
5741  * Must hold rcu_read_lock or the write lock.
5742  * Can return the zero entry.
5743  *
5744  * Return: The next entry or %NULL
5745  */
mas_next(struct ma_state * mas,unsigned long max)5746 void *mas_next(struct ma_state *mas, unsigned long max)
5747 {
5748 	void *entry = NULL;
5749 
5750 	if (mas_next_setup(mas, max, &entry))
5751 		return entry;
5752 
5753 	/* Retries on dead nodes handled by mas_next_slot */
5754 	return mas_next_slot(mas, max, false);
5755 }
5756 EXPORT_SYMBOL_GPL(mas_next);
5757 
5758 /**
5759  * mas_next_range() - Advance the maple state to the next range
5760  * @mas: The maple state
5761  * @max: The maximum index to check.
5762  *
5763  * Sets @mas->index and @mas->last to the range.
5764  * Must hold rcu_read_lock or the write lock.
5765  * Can return the zero entry.
5766  *
5767  * Return: The next entry or %NULL
5768  */
mas_next_range(struct ma_state * mas,unsigned long max)5769 void *mas_next_range(struct ma_state *mas, unsigned long max)
5770 {
5771 	void *entry = NULL;
5772 
5773 	if (mas_next_setup(mas, max, &entry))
5774 		return entry;
5775 
5776 	/* Retries on dead nodes handled by mas_next_slot */
5777 	return mas_next_slot(mas, max, true);
5778 }
5779 EXPORT_SYMBOL_GPL(mas_next_range);
5780 
5781 /**
5782  * mt_next() - get the next value in the maple tree
5783  * @mt: The maple tree
5784  * @index: The start index
5785  * @max: The maximum index to check
5786  *
5787  * Takes RCU read lock internally to protect the search, which does not
5788  * protect the returned pointer after dropping RCU read lock.
5789  * See also: Documentation/core-api/maple_tree.rst
5790  *
5791  * Return: The entry higher than @index or %NULL if nothing is found.
5792  */
mt_next(struct maple_tree * mt,unsigned long index,unsigned long max)5793 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5794 {
5795 	void *entry = NULL;
5796 	MA_STATE(mas, mt, index, index);
5797 
5798 	rcu_read_lock();
5799 	entry = mas_next(&mas, max);
5800 	rcu_read_unlock();
5801 	return entry;
5802 }
5803 EXPORT_SYMBOL_GPL(mt_next);
5804 
mas_prev_setup(struct ma_state * mas,unsigned long min,void ** entry)5805 static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
5806 {
5807 	if (unlikely(mas->index <= min)) {
5808 		mas->status = ma_underflow;
5809 		return true;
5810 	}
5811 
5812 	switch (mas->status) {
5813 	case ma_active:
5814 		return false;
5815 	case ma_start:
5816 		break;
5817 	case ma_none:
5818 		fallthrough;
5819 	case ma_pause:
5820 		mas->status = ma_start;
5821 		break;
5822 	case ma_underflow:
5823 		/* underflowed before but the min changed */
5824 		mas_may_activate(mas);
5825 		break;
5826 	case ma_overflow:
5827 		/* User expects mas to be one after where it is */
5828 		mas_may_activate(mas);
5829 		*entry = mas_walk(mas);
5830 		if (*entry)
5831 			return true;
5832 		break;
5833 	case ma_root:
5834 		break;
5835 	case ma_error:
5836 		return true;
5837 	}
5838 
5839 	if (mas_is_start(mas))
5840 		mas_walk(mas);
5841 
5842 	if (unlikely(mas_is_ptr(mas))) {
5843 		if (!mas->index) {
5844 			mas->status = ma_none;
5845 			return true;
5846 		}
5847 		mas->index = mas->last = 0;
5848 		*entry = mas_root(mas);
5849 		return true;
5850 	}
5851 
5852 	if (mas_is_none(mas)) {
5853 		if (mas->index) {
5854 			/* Walked to out-of-range pointer? */
5855 			mas->index = mas->last = 0;
5856 			mas->status = ma_root;
5857 			*entry = mas_root(mas);
5858 			return true;
5859 		}
5860 		return true;
5861 	}
5862 
5863 	return false;
5864 }
5865 
5866 /**
5867  * mas_prev() - Get the previous entry
5868  * @mas: The maple state
5869  * @min: The minimum value to check.
5870  *
5871  * Must hold rcu_read_lock or the write lock.
5872  * Will reset mas to ma_start if the status is ma_none.  Will stop on not
5873  * searchable nodes.
5874  *
5875  * Return: the previous value or %NULL.
5876  */
mas_prev(struct ma_state * mas,unsigned long min)5877 void *mas_prev(struct ma_state *mas, unsigned long min)
5878 {
5879 	void *entry = NULL;
5880 
5881 	if (mas_prev_setup(mas, min, &entry))
5882 		return entry;
5883 
5884 	return mas_prev_slot(mas, min, false);
5885 }
5886 EXPORT_SYMBOL_GPL(mas_prev);
5887 
5888 /**
5889  * mas_prev_range() - Advance to the previous range
5890  * @mas: The maple state
5891  * @min: The minimum value to check.
5892  *
5893  * Sets @mas->index and @mas->last to the range.
5894  * Must hold rcu_read_lock or the write lock.
5895  * Will reset mas to ma_start if the node is ma_none.  Will stop on not
5896  * searchable nodes.
5897  *
5898  * Return: the previous value or %NULL.
5899  */
mas_prev_range(struct ma_state * mas,unsigned long min)5900 void *mas_prev_range(struct ma_state *mas, unsigned long min)
5901 {
5902 	void *entry = NULL;
5903 
5904 	if (mas_prev_setup(mas, min, &entry))
5905 		return entry;
5906 
5907 	return mas_prev_slot(mas, min, true);
5908 }
5909 EXPORT_SYMBOL_GPL(mas_prev_range);
5910 
5911 /**
5912  * mt_prev() - get the previous value in the maple tree
5913  * @mt: The maple tree
5914  * @index: The start index
5915  * @min: The minimum index to check
5916  *
5917  * Takes RCU read lock internally to protect the search, which does not
5918  * protect the returned pointer after dropping RCU read lock.
5919  * See also: Documentation/core-api/maple_tree.rst
5920  *
5921  * Return: The entry before @index or %NULL if nothing is found.
5922  */
mt_prev(struct maple_tree * mt,unsigned long index,unsigned long min)5923 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5924 {
5925 	void *entry = NULL;
5926 	MA_STATE(mas, mt, index, index);
5927 
5928 	rcu_read_lock();
5929 	entry = mas_prev(&mas, min);
5930 	rcu_read_unlock();
5931 	return entry;
5932 }
5933 EXPORT_SYMBOL_GPL(mt_prev);
5934 
5935 /**
5936  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5937  * @mas: The maple state to pause
5938  *
5939  * Some users need to pause a walk and drop the lock they're holding in
5940  * order to yield to a higher priority thread or carry out an operation
5941  * on an entry.  Those users should call this function before they drop
5942  * the lock.  It resets the @mas to be suitable for the next iteration
5943  * of the loop after the user has reacquired the lock.  If most entries
5944  * found during a walk require you to call mas_pause(), the mt_for_each()
5945  * iterator may be more appropriate.
5946  *
5947  */
mas_pause(struct ma_state * mas)5948 void mas_pause(struct ma_state *mas)
5949 {
5950 	mas->status = ma_pause;
5951 	mas->node = NULL;
5952 }
5953 EXPORT_SYMBOL_GPL(mas_pause);
5954 
5955 /**
5956  * mas_find_setup() - Internal function to set up mas_find*().
5957  * @mas: The maple state
5958  * @max: The maximum index
5959  * @entry: Pointer to the entry
5960  *
5961  * Returns: True if entry is the answer, false otherwise.
5962  */
mas_find_setup(struct ma_state * mas,unsigned long max,void ** entry)5963 static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
5964 {
5965 	switch (mas->status) {
5966 	case ma_active:
5967 		if (mas->last < max)
5968 			return false;
5969 		return true;
5970 	case ma_start:
5971 		break;
5972 	case ma_pause:
5973 		if (unlikely(mas->last >= max))
5974 			return true;
5975 
5976 		mas->index = ++mas->last;
5977 		mas->status = ma_start;
5978 		break;
5979 	case ma_none:
5980 		if (unlikely(mas->last >= max))
5981 			return true;
5982 
5983 		mas->index = mas->last;
5984 		mas->status = ma_start;
5985 		break;
5986 	case ma_underflow:
5987 		/* mas is pointing at entry before unable to go lower */
5988 		if (unlikely(mas->index >= max)) {
5989 			mas->status = ma_overflow;
5990 			return true;
5991 		}
5992 
5993 		mas_may_activate(mas);
5994 		*entry = mas_walk(mas);
5995 		if (*entry)
5996 			return true;
5997 		break;
5998 	case ma_overflow:
5999 		if (unlikely(mas->last >= max))
6000 			return true;
6001 
6002 		mas_may_activate(mas);
6003 		*entry = mas_walk(mas);
6004 		if (*entry)
6005 			return true;
6006 		break;
6007 	case ma_root:
6008 		break;
6009 	case ma_error:
6010 		return true;
6011 	}
6012 
6013 	if (mas_is_start(mas)) {
6014 		/* First run or continue */
6015 		if (mas->index > max)
6016 			return true;
6017 
6018 		*entry = mas_walk(mas);
6019 		if (*entry)
6020 			return true;
6021 
6022 	}
6023 
6024 	if (unlikely(mas_is_ptr(mas)))
6025 		goto ptr_out_of_range;
6026 
6027 	if (unlikely(mas_is_none(mas)))
6028 		return true;
6029 
6030 	if (mas->index == max)
6031 		return true;
6032 
6033 	return false;
6034 
6035 ptr_out_of_range:
6036 	mas->status = ma_none;
6037 	mas->index = 1;
6038 	mas->last = ULONG_MAX;
6039 	return true;
6040 }
6041 
6042 /**
6043  * mas_find() - On the first call, find the entry at or after mas->index up to
6044  * %max.  Otherwise, find the entry after mas->index.
6045  * @mas: The maple state
6046  * @max: The maximum value to check.
6047  *
6048  * Must hold rcu_read_lock or the write lock.
6049  * If an entry exists, last and index are updated accordingly.
6050  * May set @mas->status to ma_overflow.
6051  *
6052  * Return: The entry or %NULL.
6053  */
mas_find(struct ma_state * mas,unsigned long max)6054 void *mas_find(struct ma_state *mas, unsigned long max)
6055 {
6056 	void *entry = NULL;
6057 
6058 	if (mas_find_setup(mas, max, &entry))
6059 		return entry;
6060 
6061 	/* Retries on dead nodes handled by mas_next_slot */
6062 	entry = mas_next_slot(mas, max, false);
6063 	/* Ignore overflow */
6064 	mas->status = ma_active;
6065 	return entry;
6066 }
6067 EXPORT_SYMBOL_GPL(mas_find);
6068 
6069 /**
6070  * mas_find_range() - On the first call, find the entry at or after
6071  * mas->index up to %max.  Otherwise, advance to the next slot mas->index.
6072  * @mas: The maple state
6073  * @max: The maximum value to check.
6074  *
6075  * Must hold rcu_read_lock or the write lock.
6076  * If an entry exists, last and index are updated accordingly.
6077  * May set @mas->status to ma_overflow.
6078  *
6079  * Return: The entry or %NULL.
6080  */
mas_find_range(struct ma_state * mas,unsigned long max)6081 void *mas_find_range(struct ma_state *mas, unsigned long max)
6082 {
6083 	void *entry = NULL;
6084 
6085 	if (mas_find_setup(mas, max, &entry))
6086 		return entry;
6087 
6088 	/* Retries on dead nodes handled by mas_next_slot */
6089 	return mas_next_slot(mas, max, true);
6090 }
6091 EXPORT_SYMBOL_GPL(mas_find_range);
6092 
6093 /**
6094  * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6095  * @mas: The maple state
6096  * @min: The minimum index
6097  * @entry: Pointer to the entry
6098  *
6099  * Returns: True if entry is the answer, false otherwise.
6100  */
mas_find_rev_setup(struct ma_state * mas,unsigned long min,void ** entry)6101 static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6102 		void **entry)
6103 {
6104 
6105 	switch (mas->status) {
6106 	case ma_active:
6107 		goto active;
6108 	case ma_start:
6109 		break;
6110 	case ma_pause:
6111 		if (unlikely(mas->index <= min)) {
6112 			mas->status = ma_underflow;
6113 			return true;
6114 		}
6115 		mas->last = --mas->index;
6116 		mas->status = ma_start;
6117 		break;
6118 	case ma_none:
6119 		if (mas->index <= min)
6120 			goto none;
6121 
6122 		mas->last = mas->index;
6123 		mas->status = ma_start;
6124 		break;
6125 	case ma_overflow: /* user expects the mas to be one after where it is */
6126 		if (unlikely(mas->index <= min)) {
6127 			mas->status = ma_underflow;
6128 			return true;
6129 		}
6130 
6131 		mas->status = ma_active;
6132 		break;
6133 	case ma_underflow: /* user expects the mas to be one before where it is */
6134 		if (unlikely(mas->index <= min))
6135 			return true;
6136 
6137 		mas->status = ma_active;
6138 		break;
6139 	case ma_root:
6140 		break;
6141 	case ma_error:
6142 		return true;
6143 	}
6144 
6145 	if (mas_is_start(mas)) {
6146 		/* First run or continue */
6147 		if (mas->index < min)
6148 			return true;
6149 
6150 		*entry = mas_walk(mas);
6151 		if (*entry)
6152 			return true;
6153 	}
6154 
6155 	if (unlikely(mas_is_ptr(mas)))
6156 		goto none;
6157 
6158 	if (unlikely(mas_is_none(mas))) {
6159 		/*
6160 		 * Walked to the location, and there was nothing so the previous
6161 		 * location is 0.
6162 		 */
6163 		mas->last = mas->index = 0;
6164 		mas->status = ma_root;
6165 		*entry = mas_root(mas);
6166 		return true;
6167 	}
6168 
6169 active:
6170 	if (mas->index < min)
6171 		return true;
6172 
6173 	return false;
6174 
6175 none:
6176 	mas->status = ma_none;
6177 	return true;
6178 }
6179 
6180 /**
6181  * mas_find_rev: On the first call, find the first non-null entry at or below
6182  * mas->index down to %min.  Otherwise find the first non-null entry below
6183  * mas->index down to %min.
6184  * @mas: The maple state
6185  * @min: The minimum value to check.
6186  *
6187  * Must hold rcu_read_lock or the write lock.
6188  * If an entry exists, last and index are updated accordingly.
6189  * May set @mas->status to ma_underflow.
6190  *
6191  * Return: The entry or %NULL.
6192  */
mas_find_rev(struct ma_state * mas,unsigned long min)6193 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6194 {
6195 	void *entry = NULL;
6196 
6197 	if (mas_find_rev_setup(mas, min, &entry))
6198 		return entry;
6199 
6200 	/* Retries on dead nodes handled by mas_prev_slot */
6201 	return mas_prev_slot(mas, min, false);
6202 
6203 }
6204 EXPORT_SYMBOL_GPL(mas_find_rev);
6205 
6206 /**
6207  * mas_find_range_rev: On the first call, find the first non-null entry at or
6208  * below mas->index down to %min.  Otherwise advance to the previous slot after
6209  * mas->index down to %min.
6210  * @mas: The maple state
6211  * @min: The minimum value to check.
6212  *
6213  * Must hold rcu_read_lock or the write lock.
6214  * If an entry exists, last and index are updated accordingly.
6215  * May set @mas->status to ma_underflow.
6216  *
6217  * Return: The entry or %NULL.
6218  */
mas_find_range_rev(struct ma_state * mas,unsigned long min)6219 void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6220 {
6221 	void *entry = NULL;
6222 
6223 	if (mas_find_rev_setup(mas, min, &entry))
6224 		return entry;
6225 
6226 	/* Retries on dead nodes handled by mas_prev_slot */
6227 	return mas_prev_slot(mas, min, true);
6228 }
6229 EXPORT_SYMBOL_GPL(mas_find_range_rev);
6230 
6231 /**
6232  * mas_erase() - Find the range in which index resides and erase the entire
6233  * range.
6234  * @mas: The maple state
6235  *
6236  * Must hold the write lock.
6237  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6238  * erases that range.
6239  *
6240  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6241  */
mas_erase(struct ma_state * mas)6242 void *mas_erase(struct ma_state *mas)
6243 {
6244 	void *entry;
6245 	unsigned long index = mas->index;
6246 	MA_WR_STATE(wr_mas, mas, NULL);
6247 
6248 	if (!mas_is_active(mas) || !mas_is_start(mas))
6249 		mas->status = ma_start;
6250 
6251 write_retry:
6252 	entry = mas_state_walk(mas);
6253 	if (!entry)
6254 		return NULL;
6255 
6256 	/* Must reset to ensure spanning writes of last slot are detected */
6257 	mas_reset(mas);
6258 	mas_wr_preallocate(&wr_mas, NULL);
6259 	if (mas_nomem(mas, GFP_KERNEL)) {
6260 		/* in case the range of entry changed when unlocked */
6261 		mas->index = mas->last = index;
6262 		goto write_retry;
6263 	}
6264 
6265 	if (mas_is_err(mas))
6266 		goto out;
6267 
6268 	mas_wr_store_entry(&wr_mas);
6269 out:
6270 	mas_destroy(mas);
6271 	return entry;
6272 }
6273 EXPORT_SYMBOL_GPL(mas_erase);
6274 
6275 /**
6276  * mas_nomem() - Check if there was an error allocating and do the allocation
6277  * if necessary If there are allocations, then free them.
6278  * @mas: The maple state
6279  * @gfp: The GFP_FLAGS to use for allocations
6280  * Return: true on allocation, false otherwise.
6281  */
mas_nomem(struct ma_state * mas,gfp_t gfp)6282 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6283 	__must_hold(mas->tree->ma_lock)
6284 {
6285 	if (likely(mas->node != MA_ERROR(-ENOMEM)))
6286 		return false;
6287 
6288 	if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6289 		mtree_unlock(mas->tree);
6290 		mas_alloc_nodes(mas, gfp);
6291 		mtree_lock(mas->tree);
6292 	} else {
6293 		mas_alloc_nodes(mas, gfp);
6294 	}
6295 
6296 	if (!mas_allocated(mas))
6297 		return false;
6298 
6299 	mas->status = ma_start;
6300 	return true;
6301 }
6302 
maple_tree_init(void)6303 void __init maple_tree_init(void)
6304 {
6305 	maple_node_cache = kmem_cache_create("maple_node",
6306 			sizeof(struct maple_node), sizeof(struct maple_node),
6307 			SLAB_PANIC, NULL);
6308 }
6309 
6310 /**
6311  * mtree_load() - Load a value stored in a maple tree
6312  * @mt: The maple tree
6313  * @index: The index to load
6314  *
6315  * Return: the entry or %NULL
6316  */
mtree_load(struct maple_tree * mt,unsigned long index)6317 void *mtree_load(struct maple_tree *mt, unsigned long index)
6318 {
6319 	MA_STATE(mas, mt, index, index);
6320 	void *entry;
6321 
6322 	trace_ma_read(__func__, &mas);
6323 	rcu_read_lock();
6324 retry:
6325 	entry = mas_start(&mas);
6326 	if (unlikely(mas_is_none(&mas)))
6327 		goto unlock;
6328 
6329 	if (unlikely(mas_is_ptr(&mas))) {
6330 		if (index)
6331 			entry = NULL;
6332 
6333 		goto unlock;
6334 	}
6335 
6336 	entry = mtree_lookup_walk(&mas);
6337 	if (!entry && unlikely(mas_is_start(&mas)))
6338 		goto retry;
6339 unlock:
6340 	rcu_read_unlock();
6341 	if (xa_is_zero(entry))
6342 		return NULL;
6343 
6344 	return entry;
6345 }
6346 EXPORT_SYMBOL(mtree_load);
6347 
6348 /**
6349  * mtree_store_range() - Store an entry at a given range.
6350  * @mt: The maple tree
6351  * @index: The start of the range
6352  * @last: The end of the range
6353  * @entry: The entry to store
6354  * @gfp: The GFP_FLAGS to use for allocations
6355  *
6356  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6357  * be allocated.
6358  */
mtree_store_range(struct maple_tree * mt,unsigned long index,unsigned long last,void * entry,gfp_t gfp)6359 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6360 		unsigned long last, void *entry, gfp_t gfp)
6361 {
6362 	MA_STATE(mas, mt, index, last);
6363 	int ret = 0;
6364 
6365 	trace_ma_write(__func__, &mas, 0, entry);
6366 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6367 		return -EINVAL;
6368 
6369 	if (index > last)
6370 		return -EINVAL;
6371 
6372 	mtree_lock(mt);
6373 	ret = mas_store_gfp(&mas, entry, gfp);
6374 	mtree_unlock(mt);
6375 
6376 	return ret;
6377 }
6378 EXPORT_SYMBOL(mtree_store_range);
6379 
6380 /**
6381  * mtree_store() - Store an entry at a given index.
6382  * @mt: The maple tree
6383  * @index: The index to store the value
6384  * @entry: The entry to store
6385  * @gfp: The GFP_FLAGS to use for allocations
6386  *
6387  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6388  * be allocated.
6389  */
mtree_store(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)6390 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6391 		 gfp_t gfp)
6392 {
6393 	return mtree_store_range(mt, index, index, entry, gfp);
6394 }
6395 EXPORT_SYMBOL(mtree_store);
6396 
6397 /**
6398  * mtree_insert_range() - Insert an entry at a given range if there is no value.
6399  * @mt: The maple tree
6400  * @first: The start of the range
6401  * @last: The end of the range
6402  * @entry: The entry to store
6403  * @gfp: The GFP_FLAGS to use for allocations.
6404  *
6405  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6406  * request, -ENOMEM if memory could not be allocated.
6407  */
mtree_insert_range(struct maple_tree * mt,unsigned long first,unsigned long last,void * entry,gfp_t gfp)6408 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6409 		unsigned long last, void *entry, gfp_t gfp)
6410 {
6411 	MA_STATE(ms, mt, first, last);
6412 	int ret = 0;
6413 
6414 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6415 		return -EINVAL;
6416 
6417 	if (first > last)
6418 		return -EINVAL;
6419 
6420 	mtree_lock(mt);
6421 retry:
6422 	mas_insert(&ms, entry);
6423 	if (mas_nomem(&ms, gfp))
6424 		goto retry;
6425 
6426 	mtree_unlock(mt);
6427 	if (mas_is_err(&ms))
6428 		ret = xa_err(ms.node);
6429 
6430 	mas_destroy(&ms);
6431 	return ret;
6432 }
6433 EXPORT_SYMBOL(mtree_insert_range);
6434 
6435 /**
6436  * mtree_insert() - Insert an entry at a given index if there is no value.
6437  * @mt: The maple tree
6438  * @index : The index to store the value
6439  * @entry: The entry to store
6440  * @gfp: The GFP_FLAGS to use for allocations.
6441  *
6442  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6443  * request, -ENOMEM if memory could not be allocated.
6444  */
mtree_insert(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)6445 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6446 		 gfp_t gfp)
6447 {
6448 	return mtree_insert_range(mt, index, index, entry, gfp);
6449 }
6450 EXPORT_SYMBOL(mtree_insert);
6451 
mtree_alloc_range(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6452 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6453 		void *entry, unsigned long size, unsigned long min,
6454 		unsigned long max, gfp_t gfp)
6455 {
6456 	int ret = 0;
6457 
6458 	MA_STATE(mas, mt, 0, 0);
6459 	if (!mt_is_alloc(mt))
6460 		return -EINVAL;
6461 
6462 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6463 		return -EINVAL;
6464 
6465 	mtree_lock(mt);
6466 retry:
6467 	ret = mas_empty_area(&mas, min, max, size);
6468 	if (ret)
6469 		goto unlock;
6470 
6471 	mas_insert(&mas, entry);
6472 	/*
6473 	 * mas_nomem() may release the lock, causing the allocated area
6474 	 * to be unavailable, so try to allocate a free area again.
6475 	 */
6476 	if (mas_nomem(&mas, gfp))
6477 		goto retry;
6478 
6479 	if (mas_is_err(&mas))
6480 		ret = xa_err(mas.node);
6481 	else
6482 		*startp = mas.index;
6483 
6484 unlock:
6485 	mtree_unlock(mt);
6486 	mas_destroy(&mas);
6487 	return ret;
6488 }
6489 EXPORT_SYMBOL(mtree_alloc_range);
6490 
6491 /**
6492  * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
6493  * @mt: The maple tree.
6494  * @startp: Pointer to ID.
6495  * @range_lo: Lower bound of range to search.
6496  * @range_hi: Upper bound of range to search.
6497  * @entry: The entry to store.
6498  * @next: Pointer to next ID to allocate.
6499  * @gfp: The GFP_FLAGS to use for allocations.
6500  *
6501  * Finds an empty entry in @mt after @next, stores the new index into
6502  * the @id pointer, stores the entry at that index, then updates @next.
6503  *
6504  * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
6505  *
6506  * Context: Any context.  Takes and releases the mt.lock.  May sleep if
6507  * the @gfp flags permit.
6508  *
6509  * Return: 0 if the allocation succeeded without wrapping, 1 if the
6510  * allocation succeeded after wrapping, -ENOMEM if memory could not be
6511  * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
6512  * free entries.
6513  */
mtree_alloc_cyclic(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long range_lo,unsigned long range_hi,unsigned long * next,gfp_t gfp)6514 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
6515 		void *entry, unsigned long range_lo, unsigned long range_hi,
6516 		unsigned long *next, gfp_t gfp)
6517 {
6518 	int ret;
6519 
6520 	MA_STATE(mas, mt, 0, 0);
6521 
6522 	if (!mt_is_alloc(mt))
6523 		return -EINVAL;
6524 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6525 		return -EINVAL;
6526 	mtree_lock(mt);
6527 	ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi,
6528 			       next, gfp);
6529 	mtree_unlock(mt);
6530 	return ret;
6531 }
6532 EXPORT_SYMBOL(mtree_alloc_cyclic);
6533 
mtree_alloc_rrange(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6534 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6535 		void *entry, unsigned long size, unsigned long min,
6536 		unsigned long max, gfp_t gfp)
6537 {
6538 	int ret = 0;
6539 
6540 	MA_STATE(mas, mt, 0, 0);
6541 	if (!mt_is_alloc(mt))
6542 		return -EINVAL;
6543 
6544 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6545 		return -EINVAL;
6546 
6547 	mtree_lock(mt);
6548 retry:
6549 	ret = mas_empty_area_rev(&mas, min, max, size);
6550 	if (ret)
6551 		goto unlock;
6552 
6553 	mas_insert(&mas, entry);
6554 	/*
6555 	 * mas_nomem() may release the lock, causing the allocated area
6556 	 * to be unavailable, so try to allocate a free area again.
6557 	 */
6558 	if (mas_nomem(&mas, gfp))
6559 		goto retry;
6560 
6561 	if (mas_is_err(&mas))
6562 		ret = xa_err(mas.node);
6563 	else
6564 		*startp = mas.index;
6565 
6566 unlock:
6567 	mtree_unlock(mt);
6568 	mas_destroy(&mas);
6569 	return ret;
6570 }
6571 EXPORT_SYMBOL(mtree_alloc_rrange);
6572 
6573 /**
6574  * mtree_erase() - Find an index and erase the entire range.
6575  * @mt: The maple tree
6576  * @index: The index to erase
6577  *
6578  * Erasing is the same as a walk to an entry then a store of a NULL to that
6579  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
6580  *
6581  * Return: The entry stored at the @index or %NULL
6582  */
mtree_erase(struct maple_tree * mt,unsigned long index)6583 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6584 {
6585 	void *entry = NULL;
6586 
6587 	MA_STATE(mas, mt, index, index);
6588 	trace_ma_op(__func__, &mas);
6589 
6590 	mtree_lock(mt);
6591 	entry = mas_erase(&mas);
6592 	mtree_unlock(mt);
6593 
6594 	return entry;
6595 }
6596 EXPORT_SYMBOL(mtree_erase);
6597 
6598 /*
6599  * mas_dup_free() - Free an incomplete duplication of a tree.
6600  * @mas: The maple state of a incomplete tree.
6601  *
6602  * The parameter @mas->node passed in indicates that the allocation failed on
6603  * this node. This function frees all nodes starting from @mas->node in the
6604  * reverse order of mas_dup_build(). There is no need to hold the source tree
6605  * lock at this time.
6606  */
mas_dup_free(struct ma_state * mas)6607 static void mas_dup_free(struct ma_state *mas)
6608 {
6609 	struct maple_node *node;
6610 	enum maple_type type;
6611 	void __rcu **slots;
6612 	unsigned char count, i;
6613 
6614 	/* Maybe the first node allocation failed. */
6615 	if (mas_is_none(mas))
6616 		return;
6617 
6618 	while (!mte_is_root(mas->node)) {
6619 		mas_ascend(mas);
6620 		if (mas->offset) {
6621 			mas->offset--;
6622 			do {
6623 				mas_descend(mas);
6624 				mas->offset = mas_data_end(mas);
6625 			} while (!mte_is_leaf(mas->node));
6626 
6627 			mas_ascend(mas);
6628 		}
6629 
6630 		node = mte_to_node(mas->node);
6631 		type = mte_node_type(mas->node);
6632 		slots = ma_slots(node, type);
6633 		count = mas_data_end(mas) + 1;
6634 		for (i = 0; i < count; i++)
6635 			((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6636 		mt_free_bulk(count, slots);
6637 	}
6638 
6639 	node = mte_to_node(mas->node);
6640 	mt_free_one(node);
6641 }
6642 
6643 /*
6644  * mas_copy_node() - Copy a maple node and replace the parent.
6645  * @mas: The maple state of source tree.
6646  * @new_mas: The maple state of new tree.
6647  * @parent: The parent of the new node.
6648  *
6649  * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6650  * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6651  */
mas_copy_node(struct ma_state * mas,struct ma_state * new_mas,struct maple_pnode * parent)6652 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6653 		struct maple_pnode *parent)
6654 {
6655 	struct maple_node *node = mte_to_node(mas->node);
6656 	struct maple_node *new_node = mte_to_node(new_mas->node);
6657 	unsigned long val;
6658 
6659 	/* Copy the node completely. */
6660 	memcpy(new_node, node, sizeof(struct maple_node));
6661 	/* Update the parent node pointer. */
6662 	val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6663 	new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6664 }
6665 
6666 /*
6667  * mas_dup_alloc() - Allocate child nodes for a maple node.
6668  * @mas: The maple state of source tree.
6669  * @new_mas: The maple state of new tree.
6670  * @gfp: The GFP_FLAGS to use for allocations.
6671  *
6672  * This function allocates child nodes for @new_mas->node during the duplication
6673  * process. If memory allocation fails, @mas is set to -ENOMEM.
6674  */
mas_dup_alloc(struct ma_state * mas,struct ma_state * new_mas,gfp_t gfp)6675 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6676 		gfp_t gfp)
6677 {
6678 	struct maple_node *node = mte_to_node(mas->node);
6679 	struct maple_node *new_node = mte_to_node(new_mas->node);
6680 	enum maple_type type;
6681 	unsigned char request, count, i;
6682 	void __rcu **slots;
6683 	void __rcu **new_slots;
6684 	unsigned long val;
6685 
6686 	/* Allocate memory for child nodes. */
6687 	type = mte_node_type(mas->node);
6688 	new_slots = ma_slots(new_node, type);
6689 	request = mas_data_end(mas) + 1;
6690 	count = mt_alloc_bulk(gfp, request, (void **)new_slots);
6691 	if (unlikely(count < request)) {
6692 		memset(new_slots, 0, request * sizeof(void *));
6693 		mas_set_err(mas, -ENOMEM);
6694 		return;
6695 	}
6696 
6697 	/* Restore node type information in slots. */
6698 	slots = ma_slots(node, type);
6699 	for (i = 0; i < count; i++) {
6700 		val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
6701 		val &= MAPLE_NODE_MASK;
6702 		((unsigned long *)new_slots)[i] |= val;
6703 	}
6704 }
6705 
6706 /*
6707  * mas_dup_build() - Build a new maple tree from a source tree
6708  * @mas: The maple state of source tree, need to be in MAS_START state.
6709  * @new_mas: The maple state of new tree, need to be in MAS_START state.
6710  * @gfp: The GFP_FLAGS to use for allocations.
6711  *
6712  * This function builds a new tree in DFS preorder. If the memory allocation
6713  * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6714  * last node. mas_dup_free() will free the incomplete duplication of a tree.
6715  *
6716  * Note that the attributes of the two trees need to be exactly the same, and the
6717  * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6718  */
mas_dup_build(struct ma_state * mas,struct ma_state * new_mas,gfp_t gfp)6719 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6720 		gfp_t gfp)
6721 {
6722 	struct maple_node *node;
6723 	struct maple_pnode *parent = NULL;
6724 	struct maple_enode *root;
6725 	enum maple_type type;
6726 
6727 	if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6728 	    unlikely(!mtree_empty(new_mas->tree))) {
6729 		mas_set_err(mas, -EINVAL);
6730 		return;
6731 	}
6732 
6733 	root = mas_start(mas);
6734 	if (mas_is_ptr(mas) || mas_is_none(mas))
6735 		goto set_new_tree;
6736 
6737 	node = mt_alloc_one(gfp);
6738 	if (!node) {
6739 		new_mas->status = ma_none;
6740 		mas_set_err(mas, -ENOMEM);
6741 		return;
6742 	}
6743 
6744 	type = mte_node_type(mas->node);
6745 	root = mt_mk_node(node, type);
6746 	new_mas->node = root;
6747 	new_mas->min = 0;
6748 	new_mas->max = ULONG_MAX;
6749 	root = mte_mk_root(root);
6750 	while (1) {
6751 		mas_copy_node(mas, new_mas, parent);
6752 		if (!mte_is_leaf(mas->node)) {
6753 			/* Only allocate child nodes for non-leaf nodes. */
6754 			mas_dup_alloc(mas, new_mas, gfp);
6755 			if (unlikely(mas_is_err(mas)))
6756 				return;
6757 		} else {
6758 			/*
6759 			 * This is the last leaf node and duplication is
6760 			 * completed.
6761 			 */
6762 			if (mas->max == ULONG_MAX)
6763 				goto done;
6764 
6765 			/* This is not the last leaf node and needs to go up. */
6766 			do {
6767 				mas_ascend(mas);
6768 				mas_ascend(new_mas);
6769 			} while (mas->offset == mas_data_end(mas));
6770 
6771 			/* Move to the next subtree. */
6772 			mas->offset++;
6773 			new_mas->offset++;
6774 		}
6775 
6776 		mas_descend(mas);
6777 		parent = ma_parent_ptr(mte_to_node(new_mas->node));
6778 		mas_descend(new_mas);
6779 		mas->offset = 0;
6780 		new_mas->offset = 0;
6781 	}
6782 done:
6783 	/* Specially handle the parent of the root node. */
6784 	mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6785 set_new_tree:
6786 	/* Make them the same height */
6787 	new_mas->tree->ma_flags = mas->tree->ma_flags;
6788 	rcu_assign_pointer(new_mas->tree->ma_root, root);
6789 }
6790 
6791 /**
6792  * __mt_dup(): Duplicate an entire maple tree
6793  * @mt: The source maple tree
6794  * @new: The new maple tree
6795  * @gfp: The GFP_FLAGS to use for allocations
6796  *
6797  * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6798  * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6799  * new child nodes in non-leaf nodes. The new node is exactly the same as the
6800  * source node except for all the addresses stored in it. It will be faster than
6801  * traversing all elements in the source tree and inserting them one by one into
6802  * the new tree.
6803  * The user needs to ensure that the attributes of the source tree and the new
6804  * tree are the same, and the new tree needs to be an empty tree, otherwise
6805  * -EINVAL will be returned.
6806  * Note that the user needs to manually lock the source tree and the new tree.
6807  *
6808  * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6809  * the attributes of the two trees are different or the new tree is not an empty
6810  * tree.
6811  */
__mt_dup(struct maple_tree * mt,struct maple_tree * new,gfp_t gfp)6812 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6813 {
6814 	int ret = 0;
6815 	MA_STATE(mas, mt, 0, 0);
6816 	MA_STATE(new_mas, new, 0, 0);
6817 
6818 	mas_dup_build(&mas, &new_mas, gfp);
6819 	if (unlikely(mas_is_err(&mas))) {
6820 		ret = xa_err(mas.node);
6821 		if (ret == -ENOMEM)
6822 			mas_dup_free(&new_mas);
6823 	}
6824 
6825 	return ret;
6826 }
6827 EXPORT_SYMBOL(__mt_dup);
6828 
6829 /**
6830  * mtree_dup(): Duplicate an entire maple tree
6831  * @mt: The source maple tree
6832  * @new: The new maple tree
6833  * @gfp: The GFP_FLAGS to use for allocations
6834  *
6835  * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6836  * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6837  * new child nodes in non-leaf nodes. The new node is exactly the same as the
6838  * source node except for all the addresses stored in it. It will be faster than
6839  * traversing all elements in the source tree and inserting them one by one into
6840  * the new tree.
6841  * The user needs to ensure that the attributes of the source tree and the new
6842  * tree are the same, and the new tree needs to be an empty tree, otherwise
6843  * -EINVAL will be returned.
6844  *
6845  * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6846  * the attributes of the two trees are different or the new tree is not an empty
6847  * tree.
6848  */
mtree_dup(struct maple_tree * mt,struct maple_tree * new,gfp_t gfp)6849 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6850 {
6851 	int ret = 0;
6852 	MA_STATE(mas, mt, 0, 0);
6853 	MA_STATE(new_mas, new, 0, 0);
6854 
6855 	mas_lock(&new_mas);
6856 	mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6857 	mas_dup_build(&mas, &new_mas, gfp);
6858 	mas_unlock(&mas);
6859 	if (unlikely(mas_is_err(&mas))) {
6860 		ret = xa_err(mas.node);
6861 		if (ret == -ENOMEM)
6862 			mas_dup_free(&new_mas);
6863 	}
6864 
6865 	mas_unlock(&new_mas);
6866 	return ret;
6867 }
6868 EXPORT_SYMBOL(mtree_dup);
6869 
6870 /**
6871  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6872  * @mt: The maple tree
6873  *
6874  * Note: Does not handle locking.
6875  */
__mt_destroy(struct maple_tree * mt)6876 void __mt_destroy(struct maple_tree *mt)
6877 {
6878 	void *root = mt_root_locked(mt);
6879 
6880 	rcu_assign_pointer(mt->ma_root, NULL);
6881 	if (xa_is_node(root))
6882 		mte_destroy_walk(root, mt);
6883 
6884 	mt->ma_flags = mt_attr(mt);
6885 }
6886 EXPORT_SYMBOL_GPL(__mt_destroy);
6887 
6888 /**
6889  * mtree_destroy() - Destroy a maple tree
6890  * @mt: The maple tree
6891  *
6892  * Frees all resources used by the tree.  Handles locking.
6893  */
mtree_destroy(struct maple_tree * mt)6894 void mtree_destroy(struct maple_tree *mt)
6895 {
6896 	mtree_lock(mt);
6897 	__mt_destroy(mt);
6898 	mtree_unlock(mt);
6899 }
6900 EXPORT_SYMBOL(mtree_destroy);
6901 
6902 /**
6903  * mt_find() - Search from the start up until an entry is found.
6904  * @mt: The maple tree
6905  * @index: Pointer which contains the start location of the search
6906  * @max: The maximum value of the search range
6907  *
6908  * Takes RCU read lock internally to protect the search, which does not
6909  * protect the returned pointer after dropping RCU read lock.
6910  * See also: Documentation/core-api/maple_tree.rst
6911  *
6912  * In case that an entry is found @index is updated to point to the next
6913  * possible entry independent whether the found entry is occupying a
6914  * single index or a range if indices.
6915  *
6916  * Return: The entry at or after the @index or %NULL
6917  */
mt_find(struct maple_tree * mt,unsigned long * index,unsigned long max)6918 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6919 {
6920 	MA_STATE(mas, mt, *index, *index);
6921 	void *entry;
6922 #ifdef CONFIG_DEBUG_MAPLE_TREE
6923 	unsigned long copy = *index;
6924 #endif
6925 
6926 	trace_ma_read(__func__, &mas);
6927 
6928 	if ((*index) > max)
6929 		return NULL;
6930 
6931 	rcu_read_lock();
6932 retry:
6933 	entry = mas_state_walk(&mas);
6934 	if (mas_is_start(&mas))
6935 		goto retry;
6936 
6937 	if (unlikely(xa_is_zero(entry)))
6938 		entry = NULL;
6939 
6940 	if (entry)
6941 		goto unlock;
6942 
6943 	while (mas_is_active(&mas) && (mas.last < max)) {
6944 		entry = mas_next_slot(&mas, max, false);
6945 		if (likely(entry && !xa_is_zero(entry)))
6946 			break;
6947 	}
6948 
6949 	if (unlikely(xa_is_zero(entry)))
6950 		entry = NULL;
6951 unlock:
6952 	rcu_read_unlock();
6953 	if (likely(entry)) {
6954 		*index = mas.last + 1;
6955 #ifdef CONFIG_DEBUG_MAPLE_TREE
6956 		if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6957 			pr_err("index not increased! %lx <= %lx\n",
6958 			       *index, copy);
6959 #endif
6960 	}
6961 
6962 	return entry;
6963 }
6964 EXPORT_SYMBOL(mt_find);
6965 
6966 /**
6967  * mt_find_after() - Search from the start up until an entry is found.
6968  * @mt: The maple tree
6969  * @index: Pointer which contains the start location of the search
6970  * @max: The maximum value to check
6971  *
6972  * Same as mt_find() except that it checks @index for 0 before
6973  * searching. If @index == 0, the search is aborted. This covers a wrap
6974  * around of @index to 0 in an iterator loop.
6975  *
6976  * Return: The entry at or after the @index or %NULL
6977  */
mt_find_after(struct maple_tree * mt,unsigned long * index,unsigned long max)6978 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6979 		    unsigned long max)
6980 {
6981 	if (!(*index))
6982 		return NULL;
6983 
6984 	return mt_find(mt, index, max);
6985 }
6986 EXPORT_SYMBOL(mt_find_after);
6987 
6988 #ifdef CONFIG_DEBUG_MAPLE_TREE
6989 atomic_t maple_tree_tests_run;
6990 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6991 atomic_t maple_tree_tests_passed;
6992 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6993 
6994 #ifndef __KERNEL__
6995 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
mt_set_non_kernel(unsigned int val)6996 void mt_set_non_kernel(unsigned int val)
6997 {
6998 	kmem_cache_set_non_kernel(maple_node_cache, val);
6999 }
7000 
7001 extern void kmem_cache_set_callback(struct kmem_cache *cachep,
7002 		void (*callback)(void *));
mt_set_callback(void (* callback)(void *))7003 void mt_set_callback(void (*callback)(void *))
7004 {
7005 	kmem_cache_set_callback(maple_node_cache, callback);
7006 }
7007 
7008 extern void kmem_cache_set_private(struct kmem_cache *cachep, void *private);
mt_set_private(void * private)7009 void mt_set_private(void *private)
7010 {
7011 	kmem_cache_set_private(maple_node_cache, private);
7012 }
7013 
7014 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
mt_get_alloc_size(void)7015 unsigned long mt_get_alloc_size(void)
7016 {
7017 	return kmem_cache_get_alloc(maple_node_cache);
7018 }
7019 
7020 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
mt_zero_nr_tallocated(void)7021 void mt_zero_nr_tallocated(void)
7022 {
7023 	kmem_cache_zero_nr_tallocated(maple_node_cache);
7024 }
7025 
7026 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
mt_nr_tallocated(void)7027 unsigned int mt_nr_tallocated(void)
7028 {
7029 	return kmem_cache_nr_tallocated(maple_node_cache);
7030 }
7031 
7032 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
mt_nr_allocated(void)7033 unsigned int mt_nr_allocated(void)
7034 {
7035 	return kmem_cache_nr_allocated(maple_node_cache);
7036 }
7037 
mt_cache_shrink(void)7038 void mt_cache_shrink(void)
7039 {
7040 }
7041 #else
7042 /*
7043  * mt_cache_shrink() - For testing, don't use this.
7044  *
7045  * Certain testcases can trigger an OOM when combined with other memory
7046  * debugging configuration options.  This function is used to reduce the
7047  * possibility of an out of memory even due to kmem_cache objects remaining
7048  * around for longer than usual.
7049  */
mt_cache_shrink(void)7050 void mt_cache_shrink(void)
7051 {
7052 	kmem_cache_shrink(maple_node_cache);
7053 
7054 }
7055 EXPORT_SYMBOL_GPL(mt_cache_shrink);
7056 
7057 #endif /* not defined __KERNEL__ */
7058 /*
7059  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
7060  * @mas: The maple state
7061  * @offset: The offset into the slot array to fetch.
7062  *
7063  * Return: The entry stored at @offset.
7064  */
mas_get_slot(struct ma_state * mas,unsigned char offset)7065 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
7066 		unsigned char offset)
7067 {
7068 	return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
7069 			offset);
7070 }
7071 
7072 /* Depth first search, post-order */
mas_dfs_postorder(struct ma_state * mas,unsigned long max)7073 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
7074 {
7075 
7076 	struct maple_enode *p, *mn = mas->node;
7077 	unsigned long p_min, p_max;
7078 
7079 	mas_next_node(mas, mas_mn(mas), max);
7080 	if (!mas_is_overflow(mas))
7081 		return;
7082 
7083 	if (mte_is_root(mn))
7084 		return;
7085 
7086 	mas->node = mn;
7087 	mas_ascend(mas);
7088 	do {
7089 		p = mas->node;
7090 		p_min = mas->min;
7091 		p_max = mas->max;
7092 		mas_prev_node(mas, 0);
7093 	} while (!mas_is_underflow(mas));
7094 
7095 	mas->node = p;
7096 	mas->max = p_max;
7097 	mas->min = p_min;
7098 }
7099 
7100 /* Tree validations */
7101 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7102 		unsigned long min, unsigned long max, unsigned int depth,
7103 		enum mt_dump_format format);
mt_dump_range(unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7104 static void mt_dump_range(unsigned long min, unsigned long max,
7105 			  unsigned int depth, enum mt_dump_format format)
7106 {
7107 	static const char spaces[] = "                                ";
7108 
7109 	switch(format) {
7110 	case mt_dump_hex:
7111 		if (min == max)
7112 			pr_info("%.*s%lx: ", depth * 2, spaces, min);
7113 		else
7114 			pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
7115 		break;
7116 	case mt_dump_dec:
7117 		if (min == max)
7118 			pr_info("%.*s%lu: ", depth * 2, spaces, min);
7119 		else
7120 			pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
7121 	}
7122 }
7123 
mt_dump_entry(void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7124 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
7125 			  unsigned int depth, enum mt_dump_format format)
7126 {
7127 	mt_dump_range(min, max, depth, format);
7128 
7129 	if (xa_is_value(entry))
7130 		pr_cont("value %ld (0x%lx) [" PTR_FMT "]\n", xa_to_value(entry),
7131 			xa_to_value(entry), entry);
7132 	else if (xa_is_zero(entry))
7133 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
7134 	else if (mt_is_reserved(entry))
7135 		pr_cont("UNKNOWN ENTRY (" PTR_FMT ")\n", entry);
7136 	else
7137 		pr_cont(PTR_FMT "\n", entry);
7138 }
7139 
mt_dump_range64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7140 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
7141 		unsigned long min, unsigned long max, unsigned int depth,
7142 		enum mt_dump_format format)
7143 {
7144 	struct maple_range_64 *node = &mte_to_node(entry)->mr64;
7145 	bool leaf = mte_is_leaf(entry);
7146 	unsigned long first = min;
7147 	int i;
7148 
7149 	pr_cont(" contents: ");
7150 	for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
7151 		switch(format) {
7152 		case mt_dump_hex:
7153 			pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
7154 			break;
7155 		case mt_dump_dec:
7156 			pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
7157 		}
7158 	}
7159 	pr_cont(PTR_FMT "\n", node->slot[i]);
7160 	for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
7161 		unsigned long last = max;
7162 
7163 		if (i < (MAPLE_RANGE64_SLOTS - 1))
7164 			last = node->pivot[i];
7165 		else if (!node->slot[i] && max != mt_node_max(entry))
7166 			break;
7167 		if (last == 0 && i > 0)
7168 			break;
7169 		if (leaf)
7170 			mt_dump_entry(mt_slot(mt, node->slot, i),
7171 					first, last, depth + 1, format);
7172 		else if (node->slot[i])
7173 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
7174 					first, last, depth + 1, format);
7175 
7176 		if (last == max)
7177 			break;
7178 		if (last > max) {
7179 			switch(format) {
7180 			case mt_dump_hex:
7181 				pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
7182 					node, last, max, i);
7183 				break;
7184 			case mt_dump_dec:
7185 				pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
7186 					node, last, max, i);
7187 			}
7188 		}
7189 		first = last + 1;
7190 	}
7191 }
7192 
mt_dump_arange64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7193 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
7194 	unsigned long min, unsigned long max, unsigned int depth,
7195 	enum mt_dump_format format)
7196 {
7197 	struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
7198 	unsigned long first = min;
7199 	int i;
7200 
7201 	pr_cont(" contents: ");
7202 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7203 		switch (format) {
7204 		case mt_dump_hex:
7205 			pr_cont("%lx ", node->gap[i]);
7206 			break;
7207 		case mt_dump_dec:
7208 			pr_cont("%lu ", node->gap[i]);
7209 		}
7210 	}
7211 	pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
7212 	for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
7213 		switch (format) {
7214 		case mt_dump_hex:
7215 			pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
7216 			break;
7217 		case mt_dump_dec:
7218 			pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
7219 		}
7220 	}
7221 	pr_cont(PTR_FMT "\n", node->slot[i]);
7222 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7223 		unsigned long last = max;
7224 
7225 		if (i < (MAPLE_ARANGE64_SLOTS - 1))
7226 			last = node->pivot[i];
7227 		else if (!node->slot[i])
7228 			break;
7229 		if (last == 0 && i > 0)
7230 			break;
7231 		if (node->slot[i])
7232 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
7233 					first, last, depth + 1, format);
7234 
7235 		if (last == max)
7236 			break;
7237 		if (last > max) {
7238 			switch(format) {
7239 			case mt_dump_hex:
7240 				pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
7241 					node, last, max, i);
7242 				break;
7243 			case mt_dump_dec:
7244 				pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
7245 					node, last, max, i);
7246 			}
7247 		}
7248 		first = last + 1;
7249 	}
7250 }
7251 
mt_dump_node(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7252 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7253 		unsigned long min, unsigned long max, unsigned int depth,
7254 		enum mt_dump_format format)
7255 {
7256 	struct maple_node *node = mte_to_node(entry);
7257 	unsigned int type = mte_node_type(entry);
7258 	unsigned int i;
7259 
7260 	mt_dump_range(min, max, depth, format);
7261 
7262 	pr_cont("node " PTR_FMT " depth %d type %d parent " PTR_FMT, node,
7263 		depth, type, node ? node->parent : NULL);
7264 	switch (type) {
7265 	case maple_dense:
7266 		pr_cont("\n");
7267 		for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
7268 			if (min + i > max)
7269 				pr_cont("OUT OF RANGE: ");
7270 			mt_dump_entry(mt_slot(mt, node->slot, i),
7271 					min + i, min + i, depth, format);
7272 		}
7273 		break;
7274 	case maple_leaf_64:
7275 	case maple_range_64:
7276 		mt_dump_range64(mt, entry, min, max, depth, format);
7277 		break;
7278 	case maple_arange_64:
7279 		mt_dump_arange64(mt, entry, min, max, depth, format);
7280 		break;
7281 
7282 	default:
7283 		pr_cont(" UNKNOWN TYPE\n");
7284 	}
7285 }
7286 
mt_dump(const struct maple_tree * mt,enum mt_dump_format format)7287 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
7288 {
7289 	void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
7290 
7291 	pr_info("maple_tree(" PTR_FMT ") flags %X, height %u root " PTR_FMT "\n",
7292 		 mt, mt->ma_flags, mt_height(mt), entry);
7293 	if (xa_is_node(entry))
7294 		mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
7295 	else if (entry)
7296 		mt_dump_entry(entry, 0, 0, 0, format);
7297 	else
7298 		pr_info("(empty)\n");
7299 }
7300 EXPORT_SYMBOL_GPL(mt_dump);
7301 
7302 /*
7303  * Calculate the maximum gap in a node and check if that's what is reported in
7304  * the parent (unless root).
7305  */
mas_validate_gaps(struct ma_state * mas)7306 static void mas_validate_gaps(struct ma_state *mas)
7307 {
7308 	struct maple_enode *mte = mas->node;
7309 	struct maple_node *p_mn, *node = mte_to_node(mte);
7310 	enum maple_type mt = mte_node_type(mas->node);
7311 	unsigned long gap = 0, max_gap = 0;
7312 	unsigned long p_end, p_start = mas->min;
7313 	unsigned char p_slot, offset;
7314 	unsigned long *gaps = NULL;
7315 	unsigned long *pivots = ma_pivots(node, mt);
7316 	unsigned int i;
7317 
7318 	if (ma_is_dense(mt)) {
7319 		for (i = 0; i < mt_slot_count(mte); i++) {
7320 			if (mas_get_slot(mas, i)) {
7321 				if (gap > max_gap)
7322 					max_gap = gap;
7323 				gap = 0;
7324 				continue;
7325 			}
7326 			gap++;
7327 		}
7328 		goto counted;
7329 	}
7330 
7331 	gaps = ma_gaps(node, mt);
7332 	for (i = 0; i < mt_slot_count(mte); i++) {
7333 		p_end = mas_safe_pivot(mas, pivots, i, mt);
7334 
7335 		if (!gaps) {
7336 			if (!mas_get_slot(mas, i))
7337 				gap = p_end - p_start + 1;
7338 		} else {
7339 			void *entry = mas_get_slot(mas, i);
7340 
7341 			gap = gaps[i];
7342 			MT_BUG_ON(mas->tree, !entry);
7343 
7344 			if (gap > p_end - p_start + 1) {
7345 				pr_err(PTR_FMT "[%u] %lu >= %lu - %lu + 1 (%lu)\n",
7346 				       mas_mn(mas), i, gap, p_end, p_start,
7347 				       p_end - p_start + 1);
7348 				MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
7349 			}
7350 		}
7351 
7352 		if (gap > max_gap)
7353 			max_gap = gap;
7354 
7355 		p_start = p_end + 1;
7356 		if (p_end >= mas->max)
7357 			break;
7358 	}
7359 
7360 counted:
7361 	if (mt == maple_arange_64) {
7362 		MT_BUG_ON(mas->tree, !gaps);
7363 		offset = ma_meta_gap(node);
7364 		if (offset > i) {
7365 			pr_err("gap offset " PTR_FMT "[%u] is invalid\n", node, offset);
7366 			MT_BUG_ON(mas->tree, 1);
7367 		}
7368 
7369 		if (gaps[offset] != max_gap) {
7370 			pr_err("gap " PTR_FMT "[%u] is not the largest gap %lu\n",
7371 			       node, offset, max_gap);
7372 			MT_BUG_ON(mas->tree, 1);
7373 		}
7374 
7375 		for (i++ ; i < mt_slot_count(mte); i++) {
7376 			if (gaps[i] != 0) {
7377 				pr_err("gap " PTR_FMT "[%u] beyond node limit != 0\n",
7378 				       node, i);
7379 				MT_BUG_ON(mas->tree, 1);
7380 			}
7381 		}
7382 	}
7383 
7384 	if (mte_is_root(mte))
7385 		return;
7386 
7387 	p_slot = mte_parent_slot(mas->node);
7388 	p_mn = mte_parent(mte);
7389 	MT_BUG_ON(mas->tree, max_gap > mas->max);
7390 	if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
7391 		pr_err("gap " PTR_FMT "[%u] != %lu\n", p_mn, p_slot, max_gap);
7392 		mt_dump(mas->tree, mt_dump_hex);
7393 		MT_BUG_ON(mas->tree, 1);
7394 	}
7395 }
7396 
mas_validate_parent_slot(struct ma_state * mas)7397 static void mas_validate_parent_slot(struct ma_state *mas)
7398 {
7399 	struct maple_node *parent;
7400 	struct maple_enode *node;
7401 	enum maple_type p_type;
7402 	unsigned char p_slot;
7403 	void __rcu **slots;
7404 	int i;
7405 
7406 	if (mte_is_root(mas->node))
7407 		return;
7408 
7409 	p_slot = mte_parent_slot(mas->node);
7410 	p_type = mas_parent_type(mas, mas->node);
7411 	parent = mte_parent(mas->node);
7412 	slots = ma_slots(parent, p_type);
7413 	MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7414 
7415 	/* Check prev/next parent slot for duplicate node entry */
7416 
7417 	for (i = 0; i < mt_slots[p_type]; i++) {
7418 		node = mas_slot(mas, slots, i);
7419 		if (i == p_slot) {
7420 			if (node != mas->node)
7421 				pr_err("parent " PTR_FMT "[%u] does not have " PTR_FMT "\n",
7422 					parent, i, mas_mn(mas));
7423 			MT_BUG_ON(mas->tree, node != mas->node);
7424 		} else if (node == mas->node) {
7425 			pr_err("Invalid child " PTR_FMT " at parent " PTR_FMT "[%u] p_slot %u\n",
7426 			       mas_mn(mas), parent, i, p_slot);
7427 			MT_BUG_ON(mas->tree, node == mas->node);
7428 		}
7429 	}
7430 }
7431 
mas_validate_child_slot(struct ma_state * mas)7432 static void mas_validate_child_slot(struct ma_state *mas)
7433 {
7434 	enum maple_type type = mte_node_type(mas->node);
7435 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7436 	unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7437 	struct maple_enode *child;
7438 	unsigned char i;
7439 
7440 	if (mte_is_leaf(mas->node))
7441 		return;
7442 
7443 	for (i = 0; i < mt_slots[type]; i++) {
7444 		child = mas_slot(mas, slots, i);
7445 
7446 		if (!child) {
7447 			pr_err("Non-leaf node lacks child at " PTR_FMT "[%u]\n",
7448 			       mas_mn(mas), i);
7449 			MT_BUG_ON(mas->tree, 1);
7450 		}
7451 
7452 		if (mte_parent_slot(child) != i) {
7453 			pr_err("Slot error at " PTR_FMT "[%u]: child " PTR_FMT " has pslot %u\n",
7454 			       mas_mn(mas), i, mte_to_node(child),
7455 			       mte_parent_slot(child));
7456 			MT_BUG_ON(mas->tree, 1);
7457 		}
7458 
7459 		if (mte_parent(child) != mte_to_node(mas->node)) {
7460 			pr_err("child " PTR_FMT " has parent " PTR_FMT " not " PTR_FMT "\n",
7461 			       mte_to_node(child), mte_parent(child),
7462 			       mte_to_node(mas->node));
7463 			MT_BUG_ON(mas->tree, 1);
7464 		}
7465 
7466 		if (i < mt_pivots[type] && pivots[i] == mas->max)
7467 			break;
7468 	}
7469 }
7470 
7471 /*
7472  * Validate all pivots are within mas->min and mas->max, check metadata ends
7473  * where the maximum ends and ensure there is no slots or pivots set outside of
7474  * the end of the data.
7475  */
mas_validate_limits(struct ma_state * mas)7476 static void mas_validate_limits(struct ma_state *mas)
7477 {
7478 	int i;
7479 	unsigned long prev_piv = 0;
7480 	enum maple_type type = mte_node_type(mas->node);
7481 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7482 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7483 
7484 	for (i = 0; i < mt_slots[type]; i++) {
7485 		unsigned long piv;
7486 
7487 		piv = mas_safe_pivot(mas, pivots, i, type);
7488 
7489 		if (!piv && (i != 0)) {
7490 			pr_err("Missing node limit pivot at " PTR_FMT "[%u]",
7491 			       mas_mn(mas), i);
7492 			MAS_WARN_ON(mas, 1);
7493 		}
7494 
7495 		if (prev_piv > piv) {
7496 			pr_err(PTR_FMT "[%u] piv %lu < prev_piv %lu\n",
7497 				mas_mn(mas), i, piv, prev_piv);
7498 			MAS_WARN_ON(mas, piv < prev_piv);
7499 		}
7500 
7501 		if (piv < mas->min) {
7502 			pr_err(PTR_FMT "[%u] %lu < %lu\n", mas_mn(mas), i,
7503 				piv, mas->min);
7504 			MAS_WARN_ON(mas, piv < mas->min);
7505 		}
7506 		if (piv > mas->max) {
7507 			pr_err(PTR_FMT "[%u] %lu > %lu\n", mas_mn(mas), i,
7508 				piv, mas->max);
7509 			MAS_WARN_ON(mas, piv > mas->max);
7510 		}
7511 		prev_piv = piv;
7512 		if (piv == mas->max)
7513 			break;
7514 	}
7515 
7516 	if (mas_data_end(mas) != i) {
7517 		pr_err("node" PTR_FMT ": data_end %u != the last slot offset %u\n",
7518 		       mas_mn(mas), mas_data_end(mas), i);
7519 		MT_BUG_ON(mas->tree, 1);
7520 	}
7521 
7522 	for (i += 1; i < mt_slots[type]; i++) {
7523 		void *entry = mas_slot(mas, slots, i);
7524 
7525 		if (entry && (i != mt_slots[type] - 1)) {
7526 			pr_err(PTR_FMT "[%u] should not have entry " PTR_FMT "\n",
7527 			       mas_mn(mas), i, entry);
7528 			MT_BUG_ON(mas->tree, entry != NULL);
7529 		}
7530 
7531 		if (i < mt_pivots[type]) {
7532 			unsigned long piv = pivots[i];
7533 
7534 			if (!piv)
7535 				continue;
7536 
7537 			pr_err(PTR_FMT "[%u] should not have piv %lu\n",
7538 			       mas_mn(mas), i, piv);
7539 			MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7540 		}
7541 	}
7542 }
7543 
mt_validate_nulls(struct maple_tree * mt)7544 static void mt_validate_nulls(struct maple_tree *mt)
7545 {
7546 	void *entry, *last = (void *)1;
7547 	unsigned char offset = 0;
7548 	void __rcu **slots;
7549 	MA_STATE(mas, mt, 0, 0);
7550 
7551 	mas_start(&mas);
7552 	if (mas_is_none(&mas) || (mas_is_ptr(&mas)))
7553 		return;
7554 
7555 	while (!mte_is_leaf(mas.node))
7556 		mas_descend(&mas);
7557 
7558 	slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7559 	do {
7560 		entry = mas_slot(&mas, slots, offset);
7561 		if (!last && !entry) {
7562 			pr_err("Sequential nulls end at " PTR_FMT "[%u]\n",
7563 				mas_mn(&mas), offset);
7564 		}
7565 		MT_BUG_ON(mt, !last && !entry);
7566 		last = entry;
7567 		if (offset == mas_data_end(&mas)) {
7568 			mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7569 			if (mas_is_overflow(&mas))
7570 				return;
7571 			offset = 0;
7572 			slots = ma_slots(mte_to_node(mas.node),
7573 					 mte_node_type(mas.node));
7574 		} else {
7575 			offset++;
7576 		}
7577 
7578 	} while (!mas_is_overflow(&mas));
7579 }
7580 
7581 /*
7582  * validate a maple tree by checking:
7583  * 1. The limits (pivots are within mas->min to mas->max)
7584  * 2. The gap is correctly set in the parents
7585  */
mt_validate(struct maple_tree * mt)7586 void mt_validate(struct maple_tree *mt)
7587 	__must_hold(mas->tree->ma_lock)
7588 {
7589 	unsigned char end;
7590 
7591 	MA_STATE(mas, mt, 0, 0);
7592 	mas_start(&mas);
7593 	if (!mas_is_active(&mas))
7594 		return;
7595 
7596 	while (!mte_is_leaf(mas.node))
7597 		mas_descend(&mas);
7598 
7599 	while (!mas_is_overflow(&mas)) {
7600 		MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7601 		end = mas_data_end(&mas);
7602 		if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7603 				(!mte_is_root(mas.node)))) {
7604 			pr_err("Invalid size %u of " PTR_FMT "\n",
7605 			       end, mas_mn(&mas));
7606 		}
7607 
7608 		mas_validate_parent_slot(&mas);
7609 		mas_validate_limits(&mas);
7610 		mas_validate_child_slot(&mas);
7611 		if (mt_is_alloc(mt))
7612 			mas_validate_gaps(&mas);
7613 		mas_dfs_postorder(&mas, ULONG_MAX);
7614 	}
7615 	mt_validate_nulls(mt);
7616 }
7617 EXPORT_SYMBOL_GPL(mt_validate);
7618 
mas_dump(const struct ma_state * mas)7619 void mas_dump(const struct ma_state *mas)
7620 {
7621 	pr_err("MAS: tree=" PTR_FMT " enode=" PTR_FMT " ",
7622 	       mas->tree, mas->node);
7623 	switch (mas->status) {
7624 	case ma_active:
7625 		pr_err("(ma_active)");
7626 		break;
7627 	case ma_none:
7628 		pr_err("(ma_none)");
7629 		break;
7630 	case ma_root:
7631 		pr_err("(ma_root)");
7632 		break;
7633 	case ma_start:
7634 		pr_err("(ma_start) ");
7635 		break;
7636 	case ma_pause:
7637 		pr_err("(ma_pause) ");
7638 		break;
7639 	case ma_overflow:
7640 		pr_err("(ma_overflow) ");
7641 		break;
7642 	case ma_underflow:
7643 		pr_err("(ma_underflow) ");
7644 		break;
7645 	case ma_error:
7646 		pr_err("(ma_error) ");
7647 		break;
7648 	}
7649 
7650 	pr_err("Store Type: ");
7651 	switch (mas->store_type) {
7652 	case wr_invalid:
7653 		pr_err("invalid store type\n");
7654 		break;
7655 	case wr_new_root:
7656 		pr_err("new_root\n");
7657 		break;
7658 	case wr_store_root:
7659 		pr_err("store_root\n");
7660 		break;
7661 	case wr_exact_fit:
7662 		pr_err("exact_fit\n");
7663 		break;
7664 	case wr_split_store:
7665 		pr_err("split_store\n");
7666 		break;
7667 	case wr_slot_store:
7668 		pr_err("slot_store\n");
7669 		break;
7670 	case wr_append:
7671 		pr_err("append\n");
7672 		break;
7673 	case wr_node_store:
7674 		pr_err("node_store\n");
7675 		break;
7676 	case wr_spanning_store:
7677 		pr_err("spanning_store\n");
7678 		break;
7679 	case wr_rebalance:
7680 		pr_err("rebalance\n");
7681 		break;
7682 	}
7683 
7684 	pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
7685 	       mas->index, mas->last);
7686 	pr_err("     min=%lx max=%lx alloc=" PTR_FMT ", depth=%u, flags=%x\n",
7687 	       mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7688 	if (mas->index > mas->last)
7689 		pr_err("Check index & last\n");
7690 }
7691 EXPORT_SYMBOL_GPL(mas_dump);
7692 
mas_wr_dump(const struct ma_wr_state * wr_mas)7693 void mas_wr_dump(const struct ma_wr_state *wr_mas)
7694 {
7695 	pr_err("WR_MAS: node=" PTR_FMT " r_min=%lx r_max=%lx\n",
7696 	       wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7697 	pr_err("        type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7698 	       wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
7699 	       wr_mas->end_piv);
7700 }
7701 EXPORT_SYMBOL_GPL(mas_wr_dump);
7702 
7703 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7704