1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/pidfs.h>
36 #include <linux/nstree.h>
37
38 #include "pnode.h"
39 #include "internal.h"
40
41 /* Maximum number of mounts in a mount namespace */
42 static unsigned int sysctl_mount_max __read_mostly = 100000;
43
44 static unsigned int m_hash_mask __ro_after_init;
45 static unsigned int m_hash_shift __ro_after_init;
46 static unsigned int mp_hash_mask __ro_after_init;
47 static unsigned int mp_hash_shift __ro_after_init;
48
49 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)50 static int __init set_mhash_entries(char *str)
51 {
52 if (!str)
53 return 0;
54 mhash_entries = simple_strtoul(str, &str, 0);
55 return 1;
56 }
57 __setup("mhash_entries=", set_mhash_entries);
58
59 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)60 static int __init set_mphash_entries(char *str)
61 {
62 if (!str)
63 return 0;
64 mphash_entries = simple_strtoul(str, &str, 0);
65 return 1;
66 }
67 __setup("mphash_entries=", set_mphash_entries);
68
69 static char * __initdata initramfs_options;
initramfs_options_setup(char * str)70 static int __init initramfs_options_setup(char *str)
71 {
72 initramfs_options = str;
73 return 1;
74 }
75
76 __setup("initramfs_options=", initramfs_options_setup);
77
78 static u64 event;
79 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC);
80 static DEFINE_IDA(mnt_group_ida);
81
82 /* Don't allow confusion with old 32bit mount ID */
83 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
84 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET;
85
86 static struct hlist_head *mount_hashtable __ro_after_init;
87 static struct hlist_head *mountpoint_hashtable __ro_after_init;
88 static struct kmem_cache *mnt_cache __ro_after_init;
89 static DECLARE_RWSEM(namespace_sem);
90 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
91 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
92 static struct mnt_namespace *emptied_ns; /* protected by namespace_sem */
93
94 static inline void namespace_lock(void);
95 static void namespace_unlock(void);
96 DEFINE_LOCK_GUARD_0(namespace_excl, namespace_lock(), namespace_unlock())
97 DEFINE_LOCK_GUARD_0(namespace_shared, down_read(&namespace_sem),
98 up_read(&namespace_sem))
99
100 DEFINE_FREE(mntput, struct vfsmount *, if (!IS_ERR(_T)) mntput(_T))
101
102 #ifdef CONFIG_FSNOTIFY
103 LIST_HEAD(notify_list); /* protected by namespace_sem */
104 #endif
105
106 enum mount_kattr_flags_t {
107 MOUNT_KATTR_RECURSE = (1 << 0),
108 MOUNT_KATTR_IDMAP_REPLACE = (1 << 1),
109 };
110
111 struct mount_kattr {
112 unsigned int attr_set;
113 unsigned int attr_clr;
114 unsigned int propagation;
115 unsigned int lookup_flags;
116 enum mount_kattr_flags_t kflags;
117 struct user_namespace *mnt_userns;
118 struct mnt_idmap *mnt_idmap;
119 };
120
121 /* /sys/fs */
122 struct kobject *fs_kobj __ro_after_init;
123 EXPORT_SYMBOL_GPL(fs_kobj);
124
125 /*
126 * vfsmount lock may be taken for read to prevent changes to the
127 * vfsmount hash, ie. during mountpoint lookups or walking back
128 * up the tree.
129 *
130 * It should be taken for write in all cases where the vfsmount
131 * tree or hash is modified or when a vfsmount structure is modified.
132 */
133 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
134
node_to_mnt_ns(const struct rb_node * node)135 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
136 {
137 struct ns_common *ns;
138
139 if (!node)
140 return NULL;
141 ns = rb_entry(node, struct ns_common, ns_tree_node);
142 return container_of(ns, struct mnt_namespace, ns);
143 }
144
mnt_ns_release(struct mnt_namespace * ns)145 static void mnt_ns_release(struct mnt_namespace *ns)
146 {
147 /* keep alive for {list,stat}mount() */
148 if (ns && refcount_dec_and_test(&ns->passive)) {
149 fsnotify_mntns_delete(ns);
150 put_user_ns(ns->user_ns);
151 kfree(ns);
152 }
153 }
DEFINE_FREE(mnt_ns_release,struct mnt_namespace *,if (_T)mnt_ns_release (_T))154 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
155
156 static void mnt_ns_release_rcu(struct rcu_head *rcu)
157 {
158 mnt_ns_release(container_of(rcu, struct mnt_namespace, ns.ns_rcu));
159 }
160
mnt_ns_tree_remove(struct mnt_namespace * ns)161 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
162 {
163 /* remove from global mount namespace list */
164 if (ns_tree_active(ns))
165 ns_tree_remove(ns);
166
167 call_rcu(&ns->ns.ns_rcu, mnt_ns_release_rcu);
168 }
169
170 /*
171 * Lookup a mount namespace by id and take a passive reference count. Taking a
172 * passive reference means the mount namespace can be emptied if e.g., the last
173 * task holding an active reference exits. To access the mounts of the
174 * namespace the @namespace_sem must first be acquired. If the namespace has
175 * already shut down before acquiring @namespace_sem, {list,stat}mount() will
176 * see that the mount rbtree of the namespace is empty.
177 *
178 * Note the lookup is lockless protected by a sequence counter. We only
179 * need to guard against false negatives as false positives aren't
180 * possible. So if we didn't find a mount namespace and the sequence
181 * counter has changed we need to retry. If the sequence counter is
182 * still the same we know the search actually failed.
183 */
lookup_mnt_ns(u64 mnt_ns_id)184 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
185 {
186 struct mnt_namespace *mnt_ns;
187 struct ns_common *ns;
188
189 guard(rcu)();
190 ns = ns_tree_lookup_rcu(mnt_ns_id, CLONE_NEWNS);
191 if (!ns)
192 return NULL;
193
194 /*
195 * The last reference count is put with RCU delay so we can
196 * unconditonally acquire a reference here.
197 */
198 mnt_ns = container_of(ns, struct mnt_namespace, ns);
199 refcount_inc(&mnt_ns->passive);
200 return mnt_ns;
201 }
202
lock_mount_hash(void)203 static inline void lock_mount_hash(void)
204 {
205 write_seqlock(&mount_lock);
206 }
207
unlock_mount_hash(void)208 static inline void unlock_mount_hash(void)
209 {
210 write_sequnlock(&mount_lock);
211 }
212
m_hash(struct vfsmount * mnt,struct dentry * dentry)213 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
214 {
215 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
216 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
217 tmp = tmp + (tmp >> m_hash_shift);
218 return &mount_hashtable[tmp & m_hash_mask];
219 }
220
mp_hash(struct dentry * dentry)221 static inline struct hlist_head *mp_hash(struct dentry *dentry)
222 {
223 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
224 tmp = tmp + (tmp >> mp_hash_shift);
225 return &mountpoint_hashtable[tmp & mp_hash_mask];
226 }
227
mnt_alloc_id(struct mount * mnt)228 static int mnt_alloc_id(struct mount *mnt)
229 {
230 int res;
231
232 xa_lock(&mnt_id_xa);
233 res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL);
234 if (!res)
235 mnt->mnt_id_unique = ++mnt_id_ctr;
236 xa_unlock(&mnt_id_xa);
237 return res;
238 }
239
mnt_free_id(struct mount * mnt)240 static void mnt_free_id(struct mount *mnt)
241 {
242 xa_erase(&mnt_id_xa, mnt->mnt_id);
243 }
244
245 /*
246 * Allocate a new peer group ID
247 */
mnt_alloc_group_id(struct mount * mnt)248 static int mnt_alloc_group_id(struct mount *mnt)
249 {
250 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
251
252 if (res < 0)
253 return res;
254 mnt->mnt_group_id = res;
255 return 0;
256 }
257
258 /*
259 * Release a peer group ID
260 */
mnt_release_group_id(struct mount * mnt)261 void mnt_release_group_id(struct mount *mnt)
262 {
263 ida_free(&mnt_group_ida, mnt->mnt_group_id);
264 mnt->mnt_group_id = 0;
265 }
266
267 /*
268 * vfsmount lock must be held for read
269 */
mnt_add_count(struct mount * mnt,int n)270 static inline void mnt_add_count(struct mount *mnt, int n)
271 {
272 #ifdef CONFIG_SMP
273 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
274 #else
275 preempt_disable();
276 mnt->mnt_count += n;
277 preempt_enable();
278 #endif
279 }
280
281 /*
282 * vfsmount lock must be held for write
283 */
mnt_get_count(struct mount * mnt)284 int mnt_get_count(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 int count = 0;
288 int cpu;
289
290 for_each_possible_cpu(cpu) {
291 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
292 }
293
294 return count;
295 #else
296 return mnt->mnt_count;
297 #endif
298 }
299
alloc_vfsmnt(const char * name)300 static struct mount *alloc_vfsmnt(const char *name)
301 {
302 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
303 if (mnt) {
304 int err;
305
306 err = mnt_alloc_id(mnt);
307 if (err)
308 goto out_free_cache;
309
310 if (name)
311 mnt->mnt_devname = kstrdup_const(name,
312 GFP_KERNEL_ACCOUNT);
313 else
314 mnt->mnt_devname = "none";
315 if (!mnt->mnt_devname)
316 goto out_free_id;
317
318 #ifdef CONFIG_SMP
319 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
320 if (!mnt->mnt_pcp)
321 goto out_free_devname;
322
323 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
324 #else
325 mnt->mnt_count = 1;
326 mnt->mnt_writers = 0;
327 #endif
328
329 INIT_HLIST_NODE(&mnt->mnt_hash);
330 INIT_LIST_HEAD(&mnt->mnt_child);
331 INIT_LIST_HEAD(&mnt->mnt_mounts);
332 INIT_LIST_HEAD(&mnt->mnt_list);
333 INIT_LIST_HEAD(&mnt->mnt_expire);
334 INIT_LIST_HEAD(&mnt->mnt_share);
335 INIT_HLIST_HEAD(&mnt->mnt_slave_list);
336 INIT_HLIST_NODE(&mnt->mnt_slave);
337 INIT_HLIST_NODE(&mnt->mnt_mp_list);
338 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
339 RB_CLEAR_NODE(&mnt->mnt_node);
340 mnt->mnt.mnt_idmap = &nop_mnt_idmap;
341 }
342 return mnt;
343
344 #ifdef CONFIG_SMP
345 out_free_devname:
346 kfree_const(mnt->mnt_devname);
347 #endif
348 out_free_id:
349 mnt_free_id(mnt);
350 out_free_cache:
351 kmem_cache_free(mnt_cache, mnt);
352 return NULL;
353 }
354
355 /*
356 * Most r/o checks on a fs are for operations that take
357 * discrete amounts of time, like a write() or unlink().
358 * We must keep track of when those operations start
359 * (for permission checks) and when they end, so that
360 * we can determine when writes are able to occur to
361 * a filesystem.
362 */
363 /*
364 * __mnt_is_readonly: check whether a mount is read-only
365 * @mnt: the mount to check for its write status
366 *
367 * This shouldn't be used directly ouside of the VFS.
368 * It does not guarantee that the filesystem will stay
369 * r/w, just that it is right *now*. This can not and
370 * should not be used in place of IS_RDONLY(inode).
371 * mnt_want/drop_write() will _keep_ the filesystem
372 * r/w.
373 */
__mnt_is_readonly(const struct vfsmount * mnt)374 bool __mnt_is_readonly(const struct vfsmount *mnt)
375 {
376 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
377 }
378 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
379
mnt_inc_writers(struct mount * mnt)380 static inline void mnt_inc_writers(struct mount *mnt)
381 {
382 #ifdef CONFIG_SMP
383 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
384 #else
385 mnt->mnt_writers++;
386 #endif
387 }
388
mnt_dec_writers(struct mount * mnt)389 static inline void mnt_dec_writers(struct mount *mnt)
390 {
391 #ifdef CONFIG_SMP
392 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
393 #else
394 mnt->mnt_writers--;
395 #endif
396 }
397
mnt_get_writers(struct mount * mnt)398 static unsigned int mnt_get_writers(struct mount *mnt)
399 {
400 #ifdef CONFIG_SMP
401 unsigned int count = 0;
402 int cpu;
403
404 for_each_possible_cpu(cpu) {
405 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
406 }
407
408 return count;
409 #else
410 return mnt->mnt_writers;
411 #endif
412 }
413
mnt_is_readonly(const struct vfsmount * mnt)414 static int mnt_is_readonly(const struct vfsmount *mnt)
415 {
416 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
417 return 1;
418 /*
419 * The barrier pairs with the barrier in sb_start_ro_state_change()
420 * making sure if we don't see s_readonly_remount set yet, we also will
421 * not see any superblock / mount flag changes done by remount.
422 * It also pairs with the barrier in sb_end_ro_state_change()
423 * assuring that if we see s_readonly_remount already cleared, we will
424 * see the values of superblock / mount flags updated by remount.
425 */
426 smp_rmb();
427 return __mnt_is_readonly(mnt);
428 }
429
430 /*
431 * Most r/o & frozen checks on a fs are for operations that take discrete
432 * amounts of time, like a write() or unlink(). We must keep track of when
433 * those operations start (for permission checks) and when they end, so that we
434 * can determine when writes are able to occur to a filesystem.
435 */
436 /**
437 * mnt_get_write_access - get write access to a mount without freeze protection
438 * @m: the mount on which to take a write
439 *
440 * This tells the low-level filesystem that a write is about to be performed to
441 * it, and makes sure that writes are allowed (mnt it read-write) before
442 * returning success. This operation does not protect against filesystem being
443 * frozen. When the write operation is finished, mnt_put_write_access() must be
444 * called. This is effectively a refcount.
445 */
mnt_get_write_access(struct vfsmount * m)446 int mnt_get_write_access(struct vfsmount *m)
447 {
448 struct mount *mnt = real_mount(m);
449 int ret = 0;
450
451 preempt_disable();
452 mnt_inc_writers(mnt);
453 /*
454 * The store to mnt_inc_writers must be visible before we pass
455 * WRITE_HOLD loop below, so that the slowpath can see our
456 * incremented count after it has set WRITE_HOLD.
457 */
458 smp_mb();
459 might_lock(&mount_lock.lock);
460 while (__test_write_hold(READ_ONCE(mnt->mnt_pprev_for_sb))) {
461 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
462 cpu_relax();
463 } else {
464 /*
465 * This prevents priority inversion, if the task
466 * setting WRITE_HOLD got preempted on a remote
467 * CPU, and it prevents life lock if the task setting
468 * WRITE_HOLD has a lower priority and is bound to
469 * the same CPU as the task that is spinning here.
470 */
471 preempt_enable();
472 read_seqlock_excl(&mount_lock);
473 read_sequnlock_excl(&mount_lock);
474 preempt_disable();
475 }
476 }
477 /*
478 * The barrier pairs with the barrier sb_start_ro_state_change() making
479 * sure that if we see WRITE_HOLD cleared, we will also see
480 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
481 * mnt_is_readonly() and bail in case we are racing with remount
482 * read-only.
483 */
484 smp_rmb();
485 if (mnt_is_readonly(m)) {
486 mnt_dec_writers(mnt);
487 ret = -EROFS;
488 }
489 preempt_enable();
490
491 return ret;
492 }
493 EXPORT_SYMBOL_GPL(mnt_get_write_access);
494
495 /**
496 * mnt_want_write - get write access to a mount
497 * @m: the mount on which to take a write
498 *
499 * This tells the low-level filesystem that a write is about to be performed to
500 * it, and makes sure that writes are allowed (mount is read-write, filesystem
501 * is not frozen) before returning success. When the write operation is
502 * finished, mnt_drop_write() must be called. This is effectively a refcount.
503 */
mnt_want_write(struct vfsmount * m)504 int mnt_want_write(struct vfsmount *m)
505 {
506 int ret;
507
508 sb_start_write(m->mnt_sb);
509 ret = mnt_get_write_access(m);
510 if (ret)
511 sb_end_write(m->mnt_sb);
512 return ret;
513 }
514 EXPORT_SYMBOL_GPL(mnt_want_write);
515
516 /**
517 * mnt_get_write_access_file - get write access to a file's mount
518 * @file: the file who's mount on which to take a write
519 *
520 * This is like mnt_get_write_access, but if @file is already open for write it
521 * skips incrementing mnt_writers (since the open file already has a reference)
522 * and instead only does the check for emergency r/o remounts. This must be
523 * paired with mnt_put_write_access_file.
524 */
mnt_get_write_access_file(struct file * file)525 int mnt_get_write_access_file(struct file *file)
526 {
527 if (file->f_mode & FMODE_WRITER) {
528 /*
529 * Superblock may have become readonly while there are still
530 * writable fd's, e.g. due to a fs error with errors=remount-ro
531 */
532 if (__mnt_is_readonly(file->f_path.mnt))
533 return -EROFS;
534 return 0;
535 }
536 return mnt_get_write_access(file->f_path.mnt);
537 }
538
539 /**
540 * mnt_want_write_file - get write access to a file's mount
541 * @file: the file who's mount on which to take a write
542 *
543 * This is like mnt_want_write, but if the file is already open for writing it
544 * skips incrementing mnt_writers (since the open file already has a reference)
545 * and instead only does the freeze protection and the check for emergency r/o
546 * remounts. This must be paired with mnt_drop_write_file.
547 */
mnt_want_write_file(struct file * file)548 int mnt_want_write_file(struct file *file)
549 {
550 int ret;
551
552 sb_start_write(file_inode(file)->i_sb);
553 ret = mnt_get_write_access_file(file);
554 if (ret)
555 sb_end_write(file_inode(file)->i_sb);
556 return ret;
557 }
558 EXPORT_SYMBOL_GPL(mnt_want_write_file);
559
560 /**
561 * mnt_put_write_access - give up write access to a mount
562 * @mnt: the mount on which to give up write access
563 *
564 * Tells the low-level filesystem that we are done
565 * performing writes to it. Must be matched with
566 * mnt_get_write_access() call above.
567 */
mnt_put_write_access(struct vfsmount * mnt)568 void mnt_put_write_access(struct vfsmount *mnt)
569 {
570 preempt_disable();
571 mnt_dec_writers(real_mount(mnt));
572 preempt_enable();
573 }
574 EXPORT_SYMBOL_GPL(mnt_put_write_access);
575
576 /**
577 * mnt_drop_write - give up write access to a mount
578 * @mnt: the mount on which to give up write access
579 *
580 * Tells the low-level filesystem that we are done performing writes to it and
581 * also allows filesystem to be frozen again. Must be matched with
582 * mnt_want_write() call above.
583 */
mnt_drop_write(struct vfsmount * mnt)584 void mnt_drop_write(struct vfsmount *mnt)
585 {
586 mnt_put_write_access(mnt);
587 sb_end_write(mnt->mnt_sb);
588 }
589 EXPORT_SYMBOL_GPL(mnt_drop_write);
590
mnt_put_write_access_file(struct file * file)591 void mnt_put_write_access_file(struct file *file)
592 {
593 if (!(file->f_mode & FMODE_WRITER))
594 mnt_put_write_access(file->f_path.mnt);
595 }
596
mnt_drop_write_file(struct file * file)597 void mnt_drop_write_file(struct file *file)
598 {
599 mnt_put_write_access_file(file);
600 sb_end_write(file_inode(file)->i_sb);
601 }
602 EXPORT_SYMBOL(mnt_drop_write_file);
603
604 /**
605 * mnt_hold_writers - prevent write access to the given mount
606 * @mnt: mnt to prevent write access to
607 *
608 * Prevents write access to @mnt if there are no active writers for @mnt.
609 * This function needs to be called and return successfully before changing
610 * properties of @mnt that need to remain stable for callers with write access
611 * to @mnt.
612 *
613 * After this functions has been called successfully callers must pair it with
614 * a call to mnt_unhold_writers() in order to stop preventing write access to
615 * @mnt.
616 *
617 * Context: This function expects to be in mount_locked_reader scope serializing
618 * setting WRITE_HOLD.
619 * Return: On success 0 is returned.
620 * On error, -EBUSY is returned.
621 */
mnt_hold_writers(struct mount * mnt)622 static inline int mnt_hold_writers(struct mount *mnt)
623 {
624 set_write_hold(mnt);
625 /*
626 * After storing WRITE_HOLD, we'll read the counters. This store
627 * should be visible before we do.
628 */
629 smp_mb();
630
631 /*
632 * With writers on hold, if this value is zero, then there are
633 * definitely no active writers (although held writers may subsequently
634 * increment the count, they'll have to wait, and decrement it after
635 * seeing MNT_READONLY).
636 *
637 * It is OK to have counter incremented on one CPU and decremented on
638 * another: the sum will add up correctly. The danger would be when we
639 * sum up each counter, if we read a counter before it is incremented,
640 * but then read another CPU's count which it has been subsequently
641 * decremented from -- we would see more decrements than we should.
642 * WRITE_HOLD protects against this scenario, because
643 * mnt_want_write first increments count, then smp_mb, then spins on
644 * WRITE_HOLD, so it can't be decremented by another CPU while
645 * we're counting up here.
646 */
647 if (mnt_get_writers(mnt) > 0)
648 return -EBUSY;
649
650 return 0;
651 }
652
653 /**
654 * mnt_unhold_writers - stop preventing write access to the given mount
655 * @mnt: mnt to stop preventing write access to
656 *
657 * Stop preventing write access to @mnt allowing callers to gain write access
658 * to @mnt again.
659 *
660 * This function can only be called after a call to mnt_hold_writers().
661 *
662 * Context: This function expects to be in the same mount_locked_reader scope
663 * as the matching mnt_hold_writers().
664 */
mnt_unhold_writers(struct mount * mnt)665 static inline void mnt_unhold_writers(struct mount *mnt)
666 {
667 if (!test_write_hold(mnt))
668 return;
669 /*
670 * MNT_READONLY must become visible before ~WRITE_HOLD, so writers
671 * that become unheld will see MNT_READONLY.
672 */
673 smp_wmb();
674 clear_write_hold(mnt);
675 }
676
mnt_del_instance(struct mount * m)677 static inline void mnt_del_instance(struct mount *m)
678 {
679 struct mount **p = m->mnt_pprev_for_sb;
680 struct mount *next = m->mnt_next_for_sb;
681
682 if (next)
683 next->mnt_pprev_for_sb = p;
684 *p = next;
685 }
686
mnt_add_instance(struct mount * m,struct super_block * s)687 static inline void mnt_add_instance(struct mount *m, struct super_block *s)
688 {
689 struct mount *first = s->s_mounts;
690
691 if (first)
692 first->mnt_pprev_for_sb = &m->mnt_next_for_sb;
693 m->mnt_next_for_sb = first;
694 m->mnt_pprev_for_sb = &s->s_mounts;
695 s->s_mounts = m;
696 }
697
mnt_make_readonly(struct mount * mnt)698 static int mnt_make_readonly(struct mount *mnt)
699 {
700 int ret;
701
702 ret = mnt_hold_writers(mnt);
703 if (!ret)
704 mnt->mnt.mnt_flags |= MNT_READONLY;
705 mnt_unhold_writers(mnt);
706 return ret;
707 }
708
sb_prepare_remount_readonly(struct super_block * sb)709 int sb_prepare_remount_readonly(struct super_block *sb)
710 {
711 int err = 0;
712
713 /* Racy optimization. Recheck the counter under WRITE_HOLD */
714 if (atomic_long_read(&sb->s_remove_count))
715 return -EBUSY;
716
717 guard(mount_locked_reader)();
718
719 for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) {
720 if (!(m->mnt.mnt_flags & MNT_READONLY)) {
721 err = mnt_hold_writers(m);
722 if (err)
723 break;
724 }
725 }
726 if (!err && atomic_long_read(&sb->s_remove_count))
727 err = -EBUSY;
728
729 if (!err)
730 sb_start_ro_state_change(sb);
731 for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) {
732 if (test_write_hold(m))
733 clear_write_hold(m);
734 }
735
736 return err;
737 }
738
free_vfsmnt(struct mount * mnt)739 static void free_vfsmnt(struct mount *mnt)
740 {
741 mnt_idmap_put(mnt_idmap(&mnt->mnt));
742 kfree_const(mnt->mnt_devname);
743 #ifdef CONFIG_SMP
744 free_percpu(mnt->mnt_pcp);
745 #endif
746 kmem_cache_free(mnt_cache, mnt);
747 }
748
delayed_free_vfsmnt(struct rcu_head * head)749 static void delayed_free_vfsmnt(struct rcu_head *head)
750 {
751 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
752 }
753
754 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)755 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
756 {
757 struct mount *mnt;
758 if (read_seqretry(&mount_lock, seq))
759 return 1;
760 if (bastard == NULL)
761 return 0;
762 mnt = real_mount(bastard);
763 mnt_add_count(mnt, 1);
764 smp_mb(); // see mntput_no_expire() and do_umount()
765 if (likely(!read_seqretry(&mount_lock, seq)))
766 return 0;
767 lock_mount_hash();
768 if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) {
769 mnt_add_count(mnt, -1);
770 unlock_mount_hash();
771 return 1;
772 }
773 unlock_mount_hash();
774 /* caller will mntput() */
775 return -1;
776 }
777
778 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)779 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
780 {
781 int res = __legitimize_mnt(bastard, seq);
782 if (likely(!res))
783 return true;
784 if (unlikely(res < 0)) {
785 rcu_read_unlock();
786 mntput(bastard);
787 rcu_read_lock();
788 }
789 return false;
790 }
791
792 /**
793 * __lookup_mnt - mount hash lookup
794 * @mnt: parent mount
795 * @dentry: dentry of mountpoint
796 *
797 * If @mnt has a child mount @c mounted on @dentry find and return it.
798 * Caller must either hold the spinlock component of @mount_lock or
799 * hold rcu_read_lock(), sample the seqcount component before the call
800 * and recheck it afterwards.
801 *
802 * Return: The child of @mnt mounted on @dentry or %NULL.
803 */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)804 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
805 {
806 struct hlist_head *head = m_hash(mnt, dentry);
807 struct mount *p;
808
809 hlist_for_each_entry_rcu(p, head, mnt_hash)
810 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
811 return p;
812 return NULL;
813 }
814
815 /**
816 * lookup_mnt - Return the child mount mounted at given location
817 * @path: location in the namespace
818 *
819 * Acquires and returns a new reference to mount at given location
820 * or %NULL if nothing is mounted there.
821 */
lookup_mnt(const struct path * path)822 struct vfsmount *lookup_mnt(const struct path *path)
823 {
824 struct mount *child_mnt;
825 struct vfsmount *m;
826 unsigned seq;
827
828 rcu_read_lock();
829 do {
830 seq = read_seqbegin(&mount_lock);
831 child_mnt = __lookup_mnt(path->mnt, path->dentry);
832 m = child_mnt ? &child_mnt->mnt : NULL;
833 } while (!legitimize_mnt(m, seq));
834 rcu_read_unlock();
835 return m;
836 }
837
838 /*
839 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
840 * current mount namespace.
841 *
842 * The common case is dentries are not mountpoints at all and that
843 * test is handled inline. For the slow case when we are actually
844 * dealing with a mountpoint of some kind, walk through all of the
845 * mounts in the current mount namespace and test to see if the dentry
846 * is a mountpoint.
847 *
848 * The mount_hashtable is not usable in the context because we
849 * need to identify all mounts that may be in the current mount
850 * namespace not just a mount that happens to have some specified
851 * parent mount.
852 */
__is_local_mountpoint(const struct dentry * dentry)853 bool __is_local_mountpoint(const struct dentry *dentry)
854 {
855 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
856 struct mount *mnt, *n;
857
858 guard(namespace_shared)();
859
860 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node)
861 if (mnt->mnt_mountpoint == dentry)
862 return true;
863
864 return false;
865 }
866
867 struct pinned_mountpoint {
868 struct hlist_node node;
869 struct mountpoint *mp;
870 struct mount *parent;
871 };
872
lookup_mountpoint(struct dentry * dentry,struct pinned_mountpoint * m)873 static bool lookup_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
874 {
875 struct hlist_head *chain = mp_hash(dentry);
876 struct mountpoint *mp;
877
878 hlist_for_each_entry(mp, chain, m_hash) {
879 if (mp->m_dentry == dentry) {
880 hlist_add_head(&m->node, &mp->m_list);
881 m->mp = mp;
882 return true;
883 }
884 }
885 return false;
886 }
887
get_mountpoint(struct dentry * dentry,struct pinned_mountpoint * m)888 static int get_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
889 {
890 struct mountpoint *mp __free(kfree) = NULL;
891 bool found;
892 int ret;
893
894 if (d_mountpoint(dentry)) {
895 /* might be worth a WARN_ON() */
896 if (d_unlinked(dentry))
897 return -ENOENT;
898 mountpoint:
899 read_seqlock_excl(&mount_lock);
900 found = lookup_mountpoint(dentry, m);
901 read_sequnlock_excl(&mount_lock);
902 if (found)
903 return 0;
904 }
905
906 if (!mp)
907 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
908 if (!mp)
909 return -ENOMEM;
910
911 /* Exactly one processes may set d_mounted */
912 ret = d_set_mounted(dentry);
913
914 /* Someone else set d_mounted? */
915 if (ret == -EBUSY)
916 goto mountpoint;
917
918 /* The dentry is not available as a mountpoint? */
919 if (ret)
920 return ret;
921
922 /* Add the new mountpoint to the hash table */
923 read_seqlock_excl(&mount_lock);
924 mp->m_dentry = dget(dentry);
925 hlist_add_head(&mp->m_hash, mp_hash(dentry));
926 INIT_HLIST_HEAD(&mp->m_list);
927 hlist_add_head(&m->node, &mp->m_list);
928 m->mp = no_free_ptr(mp);
929 read_sequnlock_excl(&mount_lock);
930 return 0;
931 }
932
933 /*
934 * vfsmount lock must be held. Additionally, the caller is responsible
935 * for serializing calls for given disposal list.
936 */
maybe_free_mountpoint(struct mountpoint * mp,struct list_head * list)937 static void maybe_free_mountpoint(struct mountpoint *mp, struct list_head *list)
938 {
939 if (hlist_empty(&mp->m_list)) {
940 struct dentry *dentry = mp->m_dentry;
941 spin_lock(&dentry->d_lock);
942 dentry->d_flags &= ~DCACHE_MOUNTED;
943 spin_unlock(&dentry->d_lock);
944 dput_to_list(dentry, list);
945 hlist_del(&mp->m_hash);
946 kfree(mp);
947 }
948 }
949
950 /*
951 * locks: mount_lock [read_seqlock_excl], namespace_sem [excl]
952 */
unpin_mountpoint(struct pinned_mountpoint * m)953 static void unpin_mountpoint(struct pinned_mountpoint *m)
954 {
955 if (m->mp) {
956 hlist_del(&m->node);
957 maybe_free_mountpoint(m->mp, &ex_mountpoints);
958 }
959 }
960
check_mnt(const struct mount * mnt)961 static inline int check_mnt(const struct mount *mnt)
962 {
963 return mnt->mnt_ns == current->nsproxy->mnt_ns;
964 }
965
check_anonymous_mnt(struct mount * mnt)966 static inline bool check_anonymous_mnt(struct mount *mnt)
967 {
968 u64 seq;
969
970 if (!is_anon_ns(mnt->mnt_ns))
971 return false;
972
973 seq = mnt->mnt_ns->seq_origin;
974 return !seq || (seq == current->nsproxy->mnt_ns->ns.ns_id);
975 }
976
977 /*
978 * vfsmount lock must be held for write
979 */
touch_mnt_namespace(struct mnt_namespace * ns)980 static void touch_mnt_namespace(struct mnt_namespace *ns)
981 {
982 if (ns) {
983 ns->event = ++event;
984 wake_up_interruptible(&ns->poll);
985 }
986 }
987
988 /*
989 * vfsmount lock must be held for write
990 */
__touch_mnt_namespace(struct mnt_namespace * ns)991 static void __touch_mnt_namespace(struct mnt_namespace *ns)
992 {
993 if (ns && ns->event != event) {
994 ns->event = event;
995 wake_up_interruptible(&ns->poll);
996 }
997 }
998
999 /*
1000 * locks: mount_lock[write_seqlock]
1001 */
__umount_mnt(struct mount * mnt,struct list_head * shrink_list)1002 static void __umount_mnt(struct mount *mnt, struct list_head *shrink_list)
1003 {
1004 struct mountpoint *mp;
1005 struct mount *parent = mnt->mnt_parent;
1006 if (unlikely(parent->overmount == mnt))
1007 parent->overmount = NULL;
1008 mnt->mnt_parent = mnt;
1009 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1010 list_del_init(&mnt->mnt_child);
1011 hlist_del_init_rcu(&mnt->mnt_hash);
1012 hlist_del_init(&mnt->mnt_mp_list);
1013 mp = mnt->mnt_mp;
1014 mnt->mnt_mp = NULL;
1015 maybe_free_mountpoint(mp, shrink_list);
1016 }
1017
1018 /*
1019 * locks: mount_lock[write_seqlock], namespace_sem[excl] (for ex_mountpoints)
1020 */
umount_mnt(struct mount * mnt)1021 static void umount_mnt(struct mount *mnt)
1022 {
1023 __umount_mnt(mnt, &ex_mountpoints);
1024 }
1025
1026 /*
1027 * vfsmount lock must be held for write
1028 */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)1029 void mnt_set_mountpoint(struct mount *mnt,
1030 struct mountpoint *mp,
1031 struct mount *child_mnt)
1032 {
1033 child_mnt->mnt_mountpoint = mp->m_dentry;
1034 child_mnt->mnt_parent = mnt;
1035 child_mnt->mnt_mp = mp;
1036 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1037 }
1038
make_visible(struct mount * mnt)1039 static void make_visible(struct mount *mnt)
1040 {
1041 struct mount *parent = mnt->mnt_parent;
1042 if (unlikely(mnt->mnt_mountpoint == parent->mnt.mnt_root))
1043 parent->overmount = mnt;
1044 hlist_add_head_rcu(&mnt->mnt_hash,
1045 m_hash(&parent->mnt, mnt->mnt_mountpoint));
1046 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1047 }
1048
1049 /**
1050 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1051 * list of child mounts
1052 * @parent: the parent
1053 * @mnt: the new mount
1054 * @mp: the new mountpoint
1055 *
1056 * Mount @mnt at @mp on @parent. Then attach @mnt
1057 * to @parent's child mount list and to @mount_hashtable.
1058 *
1059 * Note, when make_visible() is called @mnt->mnt_parent already points
1060 * to the correct parent.
1061 *
1062 * Context: This function expects namespace_lock() and lock_mount_hash()
1063 * to have been acquired in that order.
1064 */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)1065 static void attach_mnt(struct mount *mnt, struct mount *parent,
1066 struct mountpoint *mp)
1067 {
1068 mnt_set_mountpoint(parent, mp, mnt);
1069 make_visible(mnt);
1070 }
1071
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)1072 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1073 {
1074 struct mountpoint *old_mp = mnt->mnt_mp;
1075
1076 list_del_init(&mnt->mnt_child);
1077 hlist_del_init(&mnt->mnt_mp_list);
1078 hlist_del_init_rcu(&mnt->mnt_hash);
1079
1080 attach_mnt(mnt, parent, mp);
1081
1082 maybe_free_mountpoint(old_mp, &ex_mountpoints);
1083 }
1084
node_to_mount(struct rb_node * node)1085 static inline struct mount *node_to_mount(struct rb_node *node)
1086 {
1087 return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1088 }
1089
mnt_add_to_ns(struct mnt_namespace * ns,struct mount * mnt)1090 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1091 {
1092 struct rb_node **link = &ns->mounts.rb_node;
1093 struct rb_node *parent = NULL;
1094 bool mnt_first_node = true, mnt_last_node = true;
1095
1096 WARN_ON(mnt_ns_attached(mnt));
1097 mnt->mnt_ns = ns;
1098 while (*link) {
1099 parent = *link;
1100 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) {
1101 link = &parent->rb_left;
1102 mnt_last_node = false;
1103 } else {
1104 link = &parent->rb_right;
1105 mnt_first_node = false;
1106 }
1107 }
1108
1109 if (mnt_last_node)
1110 ns->mnt_last_node = &mnt->mnt_node;
1111 if (mnt_first_node)
1112 ns->mnt_first_node = &mnt->mnt_node;
1113 rb_link_node(&mnt->mnt_node, parent, link);
1114 rb_insert_color(&mnt->mnt_node, &ns->mounts);
1115
1116 mnt_notify_add(mnt);
1117 }
1118
next_mnt(struct mount * p,struct mount * root)1119 static struct mount *next_mnt(struct mount *p, struct mount *root)
1120 {
1121 struct list_head *next = p->mnt_mounts.next;
1122 if (next == &p->mnt_mounts) {
1123 while (1) {
1124 if (p == root)
1125 return NULL;
1126 next = p->mnt_child.next;
1127 if (next != &p->mnt_parent->mnt_mounts)
1128 break;
1129 p = p->mnt_parent;
1130 }
1131 }
1132 return list_entry(next, struct mount, mnt_child);
1133 }
1134
skip_mnt_tree(struct mount * p)1135 static struct mount *skip_mnt_tree(struct mount *p)
1136 {
1137 struct list_head *prev = p->mnt_mounts.prev;
1138 while (prev != &p->mnt_mounts) {
1139 p = list_entry(prev, struct mount, mnt_child);
1140 prev = p->mnt_mounts.prev;
1141 }
1142 return p;
1143 }
1144
1145 /*
1146 * vfsmount lock must be held for write
1147 */
commit_tree(struct mount * mnt)1148 static void commit_tree(struct mount *mnt)
1149 {
1150 struct mnt_namespace *n = mnt->mnt_parent->mnt_ns;
1151
1152 if (!mnt_ns_attached(mnt)) {
1153 for (struct mount *m = mnt; m; m = next_mnt(m, mnt))
1154 mnt_add_to_ns(n, m);
1155 n->nr_mounts += n->pending_mounts;
1156 n->pending_mounts = 0;
1157 }
1158
1159 make_visible(mnt);
1160 touch_mnt_namespace(n);
1161 }
1162
setup_mnt(struct mount * m,struct dentry * root)1163 static void setup_mnt(struct mount *m, struct dentry *root)
1164 {
1165 struct super_block *s = root->d_sb;
1166
1167 atomic_inc(&s->s_active);
1168 m->mnt.mnt_sb = s;
1169 m->mnt.mnt_root = dget(root);
1170 m->mnt_mountpoint = m->mnt.mnt_root;
1171 m->mnt_parent = m;
1172
1173 guard(mount_locked_reader)();
1174 mnt_add_instance(m, s);
1175 }
1176
1177 /**
1178 * vfs_create_mount - Create a mount for a configured superblock
1179 * @fc: The configuration context with the superblock attached
1180 *
1181 * Create a mount to an already configured superblock. If necessary, the
1182 * caller should invoke vfs_get_tree() before calling this.
1183 *
1184 * Note that this does not attach the mount to anything.
1185 */
vfs_create_mount(struct fs_context * fc)1186 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1187 {
1188 struct mount *mnt;
1189
1190 if (!fc->root)
1191 return ERR_PTR(-EINVAL);
1192
1193 mnt = alloc_vfsmnt(fc->source);
1194 if (!mnt)
1195 return ERR_PTR(-ENOMEM);
1196
1197 if (fc->sb_flags & SB_KERNMOUNT)
1198 mnt->mnt.mnt_flags = MNT_INTERNAL;
1199
1200 setup_mnt(mnt, fc->root);
1201
1202 return &mnt->mnt;
1203 }
1204 EXPORT_SYMBOL(vfs_create_mount);
1205
fc_mount(struct fs_context * fc)1206 struct vfsmount *fc_mount(struct fs_context *fc)
1207 {
1208 int err = vfs_get_tree(fc);
1209 if (!err) {
1210 up_write(&fc->root->d_sb->s_umount);
1211 return vfs_create_mount(fc);
1212 }
1213 return ERR_PTR(err);
1214 }
1215 EXPORT_SYMBOL(fc_mount);
1216
fc_mount_longterm(struct fs_context * fc)1217 struct vfsmount *fc_mount_longterm(struct fs_context *fc)
1218 {
1219 struct vfsmount *mnt = fc_mount(fc);
1220 if (!IS_ERR(mnt))
1221 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
1222 return mnt;
1223 }
1224 EXPORT_SYMBOL(fc_mount_longterm);
1225
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1226 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1227 int flags, const char *name,
1228 void *data)
1229 {
1230 struct fs_context *fc;
1231 struct vfsmount *mnt;
1232 int ret = 0;
1233
1234 if (!type)
1235 return ERR_PTR(-EINVAL);
1236
1237 fc = fs_context_for_mount(type, flags);
1238 if (IS_ERR(fc))
1239 return ERR_CAST(fc);
1240
1241 if (name)
1242 ret = vfs_parse_fs_string(fc, "source", name);
1243 if (!ret)
1244 ret = parse_monolithic_mount_data(fc, data);
1245 if (!ret)
1246 mnt = fc_mount(fc);
1247 else
1248 mnt = ERR_PTR(ret);
1249
1250 put_fs_context(fc);
1251 return mnt;
1252 }
1253 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1254
clone_mnt(struct mount * old,struct dentry * root,int flag)1255 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1256 int flag)
1257 {
1258 struct mount *mnt;
1259 int err;
1260
1261 mnt = alloc_vfsmnt(old->mnt_devname);
1262 if (!mnt)
1263 return ERR_PTR(-ENOMEM);
1264
1265 mnt->mnt.mnt_flags = READ_ONCE(old->mnt.mnt_flags) &
1266 ~MNT_INTERNAL_FLAGS;
1267
1268 if (flag & (CL_SLAVE | CL_PRIVATE))
1269 mnt->mnt_group_id = 0; /* not a peer of original */
1270 else
1271 mnt->mnt_group_id = old->mnt_group_id;
1272
1273 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1274 err = mnt_alloc_group_id(mnt);
1275 if (err)
1276 goto out_free;
1277 }
1278
1279 if (mnt->mnt_group_id)
1280 set_mnt_shared(mnt);
1281
1282 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1283
1284 setup_mnt(mnt, root);
1285
1286 if (flag & CL_PRIVATE) // we are done with it
1287 return mnt;
1288
1289 if (peers(mnt, old))
1290 list_add(&mnt->mnt_share, &old->mnt_share);
1291
1292 if ((flag & CL_SLAVE) && old->mnt_group_id) {
1293 hlist_add_head(&mnt->mnt_slave, &old->mnt_slave_list);
1294 mnt->mnt_master = old;
1295 } else if (IS_MNT_SLAVE(old)) {
1296 hlist_add_behind(&mnt->mnt_slave, &old->mnt_slave);
1297 mnt->mnt_master = old->mnt_master;
1298 }
1299 return mnt;
1300
1301 out_free:
1302 mnt_free_id(mnt);
1303 free_vfsmnt(mnt);
1304 return ERR_PTR(err);
1305 }
1306
cleanup_mnt(struct mount * mnt)1307 static void cleanup_mnt(struct mount *mnt)
1308 {
1309 struct hlist_node *p;
1310 struct mount *m;
1311 /*
1312 * The warning here probably indicates that somebody messed
1313 * up a mnt_want/drop_write() pair. If this happens, the
1314 * filesystem was probably unable to make r/w->r/o transitions.
1315 * The locking used to deal with mnt_count decrement provides barriers,
1316 * so mnt_get_writers() below is safe.
1317 */
1318 WARN_ON(mnt_get_writers(mnt));
1319 if (unlikely(mnt->mnt_pins.first))
1320 mnt_pin_kill(mnt);
1321 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1322 hlist_del(&m->mnt_umount);
1323 mntput(&m->mnt);
1324 }
1325 fsnotify_vfsmount_delete(&mnt->mnt);
1326 dput(mnt->mnt.mnt_root);
1327 deactivate_super(mnt->mnt.mnt_sb);
1328 mnt_free_id(mnt);
1329 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1330 }
1331
__cleanup_mnt(struct rcu_head * head)1332 static void __cleanup_mnt(struct rcu_head *head)
1333 {
1334 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1335 }
1336
1337 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1338 static void delayed_mntput(struct work_struct *unused)
1339 {
1340 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1341 struct mount *m, *t;
1342
1343 llist_for_each_entry_safe(m, t, node, mnt_llist)
1344 cleanup_mnt(m);
1345 }
1346 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1347
mntput_no_expire(struct mount * mnt)1348 static void mntput_no_expire(struct mount *mnt)
1349 {
1350 LIST_HEAD(list);
1351 int count;
1352
1353 rcu_read_lock();
1354 if (likely(READ_ONCE(mnt->mnt_ns))) {
1355 /*
1356 * Since we don't do lock_mount_hash() here,
1357 * ->mnt_ns can change under us. However, if it's
1358 * non-NULL, then there's a reference that won't
1359 * be dropped until after an RCU delay done after
1360 * turning ->mnt_ns NULL. So if we observe it
1361 * non-NULL under rcu_read_lock(), the reference
1362 * we are dropping is not the final one.
1363 */
1364 mnt_add_count(mnt, -1);
1365 rcu_read_unlock();
1366 return;
1367 }
1368 lock_mount_hash();
1369 /*
1370 * make sure that if __legitimize_mnt() has not seen us grab
1371 * mount_lock, we'll see their refcount increment here.
1372 */
1373 smp_mb();
1374 mnt_add_count(mnt, -1);
1375 count = mnt_get_count(mnt);
1376 if (count != 0) {
1377 WARN_ON(count < 0);
1378 rcu_read_unlock();
1379 unlock_mount_hash();
1380 return;
1381 }
1382 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1383 rcu_read_unlock();
1384 unlock_mount_hash();
1385 return;
1386 }
1387 mnt->mnt.mnt_flags |= MNT_DOOMED;
1388 rcu_read_unlock();
1389
1390 mnt_del_instance(mnt);
1391 if (unlikely(!list_empty(&mnt->mnt_expire)))
1392 list_del(&mnt->mnt_expire);
1393
1394 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1395 struct mount *p, *tmp;
1396 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1397 __umount_mnt(p, &list);
1398 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1399 }
1400 }
1401 unlock_mount_hash();
1402 shrink_dentry_list(&list);
1403
1404 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1405 struct task_struct *task = current;
1406 if (likely(!(task->flags & PF_KTHREAD))) {
1407 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1408 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1409 return;
1410 }
1411 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1412 schedule_delayed_work(&delayed_mntput_work, 1);
1413 return;
1414 }
1415 cleanup_mnt(mnt);
1416 }
1417
mntput(struct vfsmount * mnt)1418 void mntput(struct vfsmount *mnt)
1419 {
1420 if (mnt) {
1421 struct mount *m = real_mount(mnt);
1422 /* avoid cacheline pingpong */
1423 if (unlikely(m->mnt_expiry_mark))
1424 WRITE_ONCE(m->mnt_expiry_mark, 0);
1425 mntput_no_expire(m);
1426 }
1427 }
1428 EXPORT_SYMBOL(mntput);
1429
mntget(struct vfsmount * mnt)1430 struct vfsmount *mntget(struct vfsmount *mnt)
1431 {
1432 if (mnt)
1433 mnt_add_count(real_mount(mnt), 1);
1434 return mnt;
1435 }
1436 EXPORT_SYMBOL(mntget);
1437
1438 /*
1439 * Make a mount point inaccessible to new lookups.
1440 * Because there may still be current users, the caller MUST WAIT
1441 * for an RCU grace period before destroying the mount point.
1442 */
mnt_make_shortterm(struct vfsmount * mnt)1443 void mnt_make_shortterm(struct vfsmount *mnt)
1444 {
1445 if (mnt)
1446 real_mount(mnt)->mnt_ns = NULL;
1447 }
1448
1449 /**
1450 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1451 * @path: path to check
1452 *
1453 * d_mountpoint() can only be used reliably to establish if a dentry is
1454 * not mounted in any namespace and that common case is handled inline.
1455 * d_mountpoint() isn't aware of the possibility there may be multiple
1456 * mounts using a given dentry in a different namespace. This function
1457 * checks if the passed in path is a mountpoint rather than the dentry
1458 * alone.
1459 */
path_is_mountpoint(const struct path * path)1460 bool path_is_mountpoint(const struct path *path)
1461 {
1462 unsigned seq;
1463 bool res;
1464
1465 if (!d_mountpoint(path->dentry))
1466 return false;
1467
1468 rcu_read_lock();
1469 do {
1470 seq = read_seqbegin(&mount_lock);
1471 res = __path_is_mountpoint(path);
1472 } while (read_seqretry(&mount_lock, seq));
1473 rcu_read_unlock();
1474
1475 return res;
1476 }
1477 EXPORT_SYMBOL(path_is_mountpoint);
1478
mnt_clone_internal(const struct path * path)1479 struct vfsmount *mnt_clone_internal(const struct path *path)
1480 {
1481 struct mount *p;
1482 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1483 if (IS_ERR(p))
1484 return ERR_CAST(p);
1485 p->mnt.mnt_flags |= MNT_INTERNAL;
1486 return &p->mnt;
1487 }
1488
1489 /*
1490 * Returns the mount which either has the specified mnt_id, or has the next
1491 * smallest id afer the specified one.
1492 */
mnt_find_id_at(struct mnt_namespace * ns,u64 mnt_id)1493 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1494 {
1495 struct rb_node *node = ns->mounts.rb_node;
1496 struct mount *ret = NULL;
1497
1498 while (node) {
1499 struct mount *m = node_to_mount(node);
1500
1501 if (mnt_id <= m->mnt_id_unique) {
1502 ret = node_to_mount(node);
1503 if (mnt_id == m->mnt_id_unique)
1504 break;
1505 node = node->rb_left;
1506 } else {
1507 node = node->rb_right;
1508 }
1509 }
1510 return ret;
1511 }
1512
1513 /*
1514 * Returns the mount which either has the specified mnt_id, or has the next
1515 * greater id before the specified one.
1516 */
mnt_find_id_at_reverse(struct mnt_namespace * ns,u64 mnt_id)1517 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1518 {
1519 struct rb_node *node = ns->mounts.rb_node;
1520 struct mount *ret = NULL;
1521
1522 while (node) {
1523 struct mount *m = node_to_mount(node);
1524
1525 if (mnt_id >= m->mnt_id_unique) {
1526 ret = node_to_mount(node);
1527 if (mnt_id == m->mnt_id_unique)
1528 break;
1529 node = node->rb_right;
1530 } else {
1531 node = node->rb_left;
1532 }
1533 }
1534 return ret;
1535 }
1536
1537 #ifdef CONFIG_PROC_FS
1538
1539 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1540 static void *m_start(struct seq_file *m, loff_t *pos)
1541 {
1542 struct proc_mounts *p = m->private;
1543
1544 down_read(&namespace_sem);
1545
1546 return mnt_find_id_at(p->ns, *pos);
1547 }
1548
m_next(struct seq_file * m,void * v,loff_t * pos)1549 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1550 {
1551 struct mount *next = NULL, *mnt = v;
1552 struct rb_node *node = rb_next(&mnt->mnt_node);
1553
1554 ++*pos;
1555 if (node) {
1556 next = node_to_mount(node);
1557 *pos = next->mnt_id_unique;
1558 }
1559 return next;
1560 }
1561
m_stop(struct seq_file * m,void * v)1562 static void m_stop(struct seq_file *m, void *v)
1563 {
1564 up_read(&namespace_sem);
1565 }
1566
m_show(struct seq_file * m,void * v)1567 static int m_show(struct seq_file *m, void *v)
1568 {
1569 struct proc_mounts *p = m->private;
1570 struct mount *r = v;
1571 return p->show(m, &r->mnt);
1572 }
1573
1574 const struct seq_operations mounts_op = {
1575 .start = m_start,
1576 .next = m_next,
1577 .stop = m_stop,
1578 .show = m_show,
1579 };
1580
1581 #endif /* CONFIG_PROC_FS */
1582
1583 /**
1584 * may_umount_tree - check if a mount tree is busy
1585 * @m: root of mount tree
1586 *
1587 * This is called to check if a tree of mounts has any
1588 * open files, pwds, chroots or sub mounts that are
1589 * busy.
1590 */
may_umount_tree(struct vfsmount * m)1591 int may_umount_tree(struct vfsmount *m)
1592 {
1593 struct mount *mnt = real_mount(m);
1594 bool busy = false;
1595
1596 /* write lock needed for mnt_get_count */
1597 lock_mount_hash();
1598 for (struct mount *p = mnt; p; p = next_mnt(p, mnt)) {
1599 if (mnt_get_count(p) > (p == mnt ? 2 : 1)) {
1600 busy = true;
1601 break;
1602 }
1603 }
1604 unlock_mount_hash();
1605
1606 return !busy;
1607 }
1608
1609 EXPORT_SYMBOL(may_umount_tree);
1610
1611 /**
1612 * may_umount - check if a mount point is busy
1613 * @mnt: root of mount
1614 *
1615 * This is called to check if a mount point has any
1616 * open files, pwds, chroots or sub mounts. If the
1617 * mount has sub mounts this will return busy
1618 * regardless of whether the sub mounts are busy.
1619 *
1620 * Doesn't take quota and stuff into account. IOW, in some cases it will
1621 * give false negatives. The main reason why it's here is that we need
1622 * a non-destructive way to look for easily umountable filesystems.
1623 */
may_umount(struct vfsmount * mnt)1624 int may_umount(struct vfsmount *mnt)
1625 {
1626 int ret = 1;
1627 down_read(&namespace_sem);
1628 lock_mount_hash();
1629 if (propagate_mount_busy(real_mount(mnt), 2))
1630 ret = 0;
1631 unlock_mount_hash();
1632 up_read(&namespace_sem);
1633 return ret;
1634 }
1635
1636 EXPORT_SYMBOL(may_umount);
1637
1638 #ifdef CONFIG_FSNOTIFY
mnt_notify(struct mount * p)1639 static void mnt_notify(struct mount *p)
1640 {
1641 if (!p->prev_ns && p->mnt_ns) {
1642 fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1643 } else if (p->prev_ns && !p->mnt_ns) {
1644 fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1645 } else if (p->prev_ns == p->mnt_ns) {
1646 fsnotify_mnt_move(p->mnt_ns, &p->mnt);
1647 } else {
1648 fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1649 fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1650 }
1651 p->prev_ns = p->mnt_ns;
1652 }
1653
notify_mnt_list(void)1654 static void notify_mnt_list(void)
1655 {
1656 struct mount *m, *tmp;
1657 /*
1658 * Notify about mounts that were added/reparented/detached/remain
1659 * connected after unmount.
1660 */
1661 list_for_each_entry_safe(m, tmp, ¬ify_list, to_notify) {
1662 mnt_notify(m);
1663 list_del_init(&m->to_notify);
1664 }
1665 }
1666
need_notify_mnt_list(void)1667 static bool need_notify_mnt_list(void)
1668 {
1669 return !list_empty(¬ify_list);
1670 }
1671 #else
notify_mnt_list(void)1672 static void notify_mnt_list(void)
1673 {
1674 }
1675
need_notify_mnt_list(void)1676 static bool need_notify_mnt_list(void)
1677 {
1678 return false;
1679 }
1680 #endif
1681
1682 static void free_mnt_ns(struct mnt_namespace *);
namespace_unlock(void)1683 static void namespace_unlock(void)
1684 {
1685 struct hlist_head head;
1686 struct hlist_node *p;
1687 struct mount *m;
1688 struct mnt_namespace *ns = emptied_ns;
1689 LIST_HEAD(list);
1690
1691 hlist_move_list(&unmounted, &head);
1692 list_splice_init(&ex_mountpoints, &list);
1693 emptied_ns = NULL;
1694
1695 if (need_notify_mnt_list()) {
1696 /*
1697 * No point blocking out concurrent readers while notifications
1698 * are sent. This will also allow statmount()/listmount() to run
1699 * concurrently.
1700 */
1701 downgrade_write(&namespace_sem);
1702 notify_mnt_list();
1703 up_read(&namespace_sem);
1704 } else {
1705 up_write(&namespace_sem);
1706 }
1707 if (unlikely(ns)) {
1708 /* Make sure we notice when we leak mounts. */
1709 VFS_WARN_ON_ONCE(!mnt_ns_empty(ns));
1710 free_mnt_ns(ns);
1711 }
1712
1713 shrink_dentry_list(&list);
1714
1715 if (likely(hlist_empty(&head)))
1716 return;
1717
1718 synchronize_rcu_expedited();
1719
1720 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1721 hlist_del(&m->mnt_umount);
1722 mntput(&m->mnt);
1723 }
1724 }
1725
namespace_lock(void)1726 static inline void namespace_lock(void)
1727 {
1728 down_write(&namespace_sem);
1729 }
1730
1731 enum umount_tree_flags {
1732 UMOUNT_SYNC = 1,
1733 UMOUNT_PROPAGATE = 2,
1734 UMOUNT_CONNECTED = 4,
1735 };
1736
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1737 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1738 {
1739 /* Leaving mounts connected is only valid for lazy umounts */
1740 if (how & UMOUNT_SYNC)
1741 return true;
1742
1743 /* A mount without a parent has nothing to be connected to */
1744 if (!mnt_has_parent(mnt))
1745 return true;
1746
1747 /* Because the reference counting rules change when mounts are
1748 * unmounted and connected, umounted mounts may not be
1749 * connected to mounted mounts.
1750 */
1751 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1752 return true;
1753
1754 /* Has it been requested that the mount remain connected? */
1755 if (how & UMOUNT_CONNECTED)
1756 return false;
1757
1758 /* Is the mount locked such that it needs to remain connected? */
1759 if (IS_MNT_LOCKED(mnt))
1760 return false;
1761
1762 /* By default disconnect the mount */
1763 return true;
1764 }
1765
1766 /*
1767 * mount_lock must be held
1768 * namespace_sem must be held for write
1769 */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1770 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1771 {
1772 LIST_HEAD(tmp_list);
1773 struct mount *p;
1774
1775 if (how & UMOUNT_PROPAGATE)
1776 propagate_mount_unlock(mnt);
1777
1778 /* Gather the mounts to umount */
1779 for (p = mnt; p; p = next_mnt(p, mnt)) {
1780 p->mnt.mnt_flags |= MNT_UMOUNT;
1781 if (mnt_ns_attached(p))
1782 move_from_ns(p);
1783 list_add_tail(&p->mnt_list, &tmp_list);
1784 }
1785
1786 /* Hide the mounts from mnt_mounts */
1787 list_for_each_entry(p, &tmp_list, mnt_list) {
1788 list_del_init(&p->mnt_child);
1789 }
1790
1791 /* Add propagated mounts to the tmp_list */
1792 if (how & UMOUNT_PROPAGATE)
1793 propagate_umount(&tmp_list);
1794
1795 bulk_make_private(&tmp_list);
1796
1797 while (!list_empty(&tmp_list)) {
1798 struct mnt_namespace *ns;
1799 bool disconnect;
1800 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1801 list_del_init(&p->mnt_expire);
1802 list_del_init(&p->mnt_list);
1803 ns = p->mnt_ns;
1804 if (ns) {
1805 ns->nr_mounts--;
1806 __touch_mnt_namespace(ns);
1807 }
1808 p->mnt_ns = NULL;
1809 if (how & UMOUNT_SYNC)
1810 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1811
1812 disconnect = disconnect_mount(p, how);
1813 if (mnt_has_parent(p)) {
1814 if (!disconnect) {
1815 /* Don't forget about p */
1816 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1817 } else {
1818 umount_mnt(p);
1819 }
1820 }
1821 if (disconnect)
1822 hlist_add_head(&p->mnt_umount, &unmounted);
1823
1824 /*
1825 * At this point p->mnt_ns is NULL, notification will be queued
1826 * only if
1827 *
1828 * - p->prev_ns is non-NULL *and*
1829 * - p->prev_ns->n_fsnotify_marks is non-NULL
1830 *
1831 * This will preclude queuing the mount if this is a cleanup
1832 * after a failed copy_tree() or destruction of an anonymous
1833 * namespace, etc.
1834 */
1835 mnt_notify_add(p);
1836 }
1837 }
1838
1839 static void shrink_submounts(struct mount *mnt);
1840
do_umount_root(struct super_block * sb)1841 static int do_umount_root(struct super_block *sb)
1842 {
1843 int ret = 0;
1844
1845 down_write(&sb->s_umount);
1846 if (!sb_rdonly(sb)) {
1847 struct fs_context *fc;
1848
1849 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1850 SB_RDONLY);
1851 if (IS_ERR(fc)) {
1852 ret = PTR_ERR(fc);
1853 } else {
1854 ret = parse_monolithic_mount_data(fc, NULL);
1855 if (!ret)
1856 ret = reconfigure_super(fc);
1857 put_fs_context(fc);
1858 }
1859 }
1860 up_write(&sb->s_umount);
1861 return ret;
1862 }
1863
do_umount(struct mount * mnt,int flags)1864 static int do_umount(struct mount *mnt, int flags)
1865 {
1866 struct super_block *sb = mnt->mnt.mnt_sb;
1867 int retval;
1868
1869 retval = security_sb_umount(&mnt->mnt, flags);
1870 if (retval)
1871 return retval;
1872
1873 /*
1874 * Allow userspace to request a mountpoint be expired rather than
1875 * unmounting unconditionally. Unmount only happens if:
1876 * (1) the mark is already set (the mark is cleared by mntput())
1877 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1878 */
1879 if (flags & MNT_EXPIRE) {
1880 if (&mnt->mnt == current->fs->root.mnt ||
1881 flags & (MNT_FORCE | MNT_DETACH))
1882 return -EINVAL;
1883
1884 /*
1885 * probably don't strictly need the lock here if we examined
1886 * all race cases, but it's a slowpath.
1887 */
1888 lock_mount_hash();
1889 if (!list_empty(&mnt->mnt_mounts) || mnt_get_count(mnt) != 2) {
1890 unlock_mount_hash();
1891 return -EBUSY;
1892 }
1893 unlock_mount_hash();
1894
1895 if (!xchg(&mnt->mnt_expiry_mark, 1))
1896 return -EAGAIN;
1897 }
1898
1899 /*
1900 * If we may have to abort operations to get out of this
1901 * mount, and they will themselves hold resources we must
1902 * allow the fs to do things. In the Unix tradition of
1903 * 'Gee thats tricky lets do it in userspace' the umount_begin
1904 * might fail to complete on the first run through as other tasks
1905 * must return, and the like. Thats for the mount program to worry
1906 * about for the moment.
1907 */
1908
1909 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1910 sb->s_op->umount_begin(sb);
1911 }
1912
1913 /*
1914 * No sense to grab the lock for this test, but test itself looks
1915 * somewhat bogus. Suggestions for better replacement?
1916 * Ho-hum... In principle, we might treat that as umount + switch
1917 * to rootfs. GC would eventually take care of the old vfsmount.
1918 * Actually it makes sense, especially if rootfs would contain a
1919 * /reboot - static binary that would close all descriptors and
1920 * call reboot(9). Then init(8) could umount root and exec /reboot.
1921 */
1922 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1923 /*
1924 * Special case for "unmounting" root ...
1925 * we just try to remount it readonly.
1926 */
1927 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1928 return -EPERM;
1929 return do_umount_root(sb);
1930 }
1931
1932 namespace_lock();
1933 lock_mount_hash();
1934
1935 /* Repeat the earlier racy checks, now that we are holding the locks */
1936 retval = -EINVAL;
1937 if (!check_mnt(mnt))
1938 goto out;
1939
1940 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1941 goto out;
1942
1943 if (!mnt_has_parent(mnt)) /* not the absolute root */
1944 goto out;
1945
1946 event++;
1947 if (flags & MNT_DETACH) {
1948 umount_tree(mnt, UMOUNT_PROPAGATE);
1949 retval = 0;
1950 } else {
1951 smp_mb(); // paired with __legitimize_mnt()
1952 shrink_submounts(mnt);
1953 retval = -EBUSY;
1954 if (!propagate_mount_busy(mnt, 2)) {
1955 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1956 retval = 0;
1957 }
1958 }
1959 out:
1960 unlock_mount_hash();
1961 namespace_unlock();
1962 return retval;
1963 }
1964
1965 /*
1966 * __detach_mounts - lazily unmount all mounts on the specified dentry
1967 *
1968 * During unlink, rmdir, and d_drop it is possible to loose the path
1969 * to an existing mountpoint, and wind up leaking the mount.
1970 * detach_mounts allows lazily unmounting those mounts instead of
1971 * leaking them.
1972 *
1973 * The caller may hold dentry->d_inode->i_rwsem.
1974 */
__detach_mounts(struct dentry * dentry)1975 void __detach_mounts(struct dentry *dentry)
1976 {
1977 struct pinned_mountpoint mp = {};
1978 struct mount *mnt;
1979
1980 guard(namespace_excl)();
1981 guard(mount_writer)();
1982
1983 if (!lookup_mountpoint(dentry, &mp))
1984 return;
1985
1986 event++;
1987 while (mp.node.next) {
1988 mnt = hlist_entry(mp.node.next, struct mount, mnt_mp_list);
1989 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1990 umount_mnt(mnt);
1991 hlist_add_head(&mnt->mnt_umount, &unmounted);
1992 }
1993 else umount_tree(mnt, UMOUNT_CONNECTED);
1994 }
1995 unpin_mountpoint(&mp);
1996 }
1997
1998 /*
1999 * Is the caller allowed to modify his namespace?
2000 */
may_mount(void)2001 bool may_mount(void)
2002 {
2003 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
2004 }
2005
warn_mandlock(void)2006 static void warn_mandlock(void)
2007 {
2008 pr_warn_once("=======================================================\n"
2009 "WARNING: The mand mount option has been deprecated and\n"
2010 " and is ignored by this kernel. Remove the mand\n"
2011 " option from the mount to silence this warning.\n"
2012 "=======================================================\n");
2013 }
2014
can_umount(const struct path * path,int flags)2015 static int can_umount(const struct path *path, int flags)
2016 {
2017 struct mount *mnt = real_mount(path->mnt);
2018 struct super_block *sb = path->dentry->d_sb;
2019
2020 if (!may_mount())
2021 return -EPERM;
2022 if (!path_mounted(path))
2023 return -EINVAL;
2024 if (!check_mnt(mnt))
2025 return -EINVAL;
2026 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2027 return -EINVAL;
2028 if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2029 return -EPERM;
2030 return 0;
2031 }
2032
2033 // caller is responsible for flags being sane
path_umount(const struct path * path,int flags)2034 int path_umount(const struct path *path, int flags)
2035 {
2036 struct mount *mnt = real_mount(path->mnt);
2037 int ret;
2038
2039 ret = can_umount(path, flags);
2040 if (!ret)
2041 ret = do_umount(mnt, flags);
2042
2043 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2044 dput(path->dentry);
2045 mntput_no_expire(mnt);
2046 return ret;
2047 }
2048
ksys_umount(char __user * name,int flags)2049 static int ksys_umount(char __user *name, int flags)
2050 {
2051 int lookup_flags = LOOKUP_MOUNTPOINT;
2052 struct path path;
2053 int ret;
2054
2055 // basic validity checks done first
2056 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2057 return -EINVAL;
2058
2059 if (!(flags & UMOUNT_NOFOLLOW))
2060 lookup_flags |= LOOKUP_FOLLOW;
2061 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2062 if (ret)
2063 return ret;
2064 return path_umount(&path, flags);
2065 }
2066
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)2067 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2068 {
2069 return ksys_umount(name, flags);
2070 }
2071
2072 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2073
2074 /*
2075 * The 2.0 compatible umount. No flags.
2076 */
SYSCALL_DEFINE1(oldumount,char __user *,name)2077 SYSCALL_DEFINE1(oldumount, char __user *, name)
2078 {
2079 return ksys_umount(name, 0);
2080 }
2081
2082 #endif
2083
is_mnt_ns_file(struct dentry * dentry)2084 static bool is_mnt_ns_file(struct dentry *dentry)
2085 {
2086 struct ns_common *ns;
2087
2088 /* Is this a proxy for a mount namespace? */
2089 if (dentry->d_op != &ns_dentry_operations)
2090 return false;
2091
2092 ns = d_inode(dentry)->i_private;
2093
2094 return ns->ops == &mntns_operations;
2095 }
2096
from_mnt_ns(struct mnt_namespace * mnt)2097 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2098 {
2099 return &mnt->ns;
2100 }
2101
get_sequential_mnt_ns(struct mnt_namespace * mntns,bool previous)2102 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2103 {
2104 struct ns_common *ns;
2105
2106 guard(rcu)();
2107
2108 for (;;) {
2109 ns = ns_tree_adjoined_rcu(mntns, previous);
2110 if (IS_ERR(ns))
2111 return ERR_CAST(ns);
2112
2113 mntns = to_mnt_ns(ns);
2114
2115 /*
2116 * The last passive reference count is put with RCU
2117 * delay so accessing the mount namespace is not just
2118 * safe but all relevant members are still valid.
2119 */
2120 if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2121 continue;
2122
2123 /*
2124 * We need an active reference count as we're persisting
2125 * the mount namespace and it might already be on its
2126 * deathbed.
2127 */
2128 if (!ns_ref_get(mntns))
2129 continue;
2130
2131 return mntns;
2132 }
2133 }
2134
mnt_ns_from_dentry(struct dentry * dentry)2135 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry)
2136 {
2137 if (!is_mnt_ns_file(dentry))
2138 return NULL;
2139
2140 return to_mnt_ns(get_proc_ns(dentry->d_inode));
2141 }
2142
mnt_ns_loop(struct dentry * dentry)2143 static bool mnt_ns_loop(struct dentry *dentry)
2144 {
2145 /* Could bind mounting the mount namespace inode cause a
2146 * mount namespace loop?
2147 */
2148 struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry);
2149
2150 if (!mnt_ns)
2151 return false;
2152
2153 return current->nsproxy->mnt_ns->ns.ns_id >= mnt_ns->ns.ns_id;
2154 }
2155
copy_tree(struct mount * src_root,struct dentry * dentry,int flag)2156 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2157 int flag)
2158 {
2159 struct mount *res, *src_parent, *src_root_child, *src_mnt,
2160 *dst_parent, *dst_mnt;
2161
2162 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2163 return ERR_PTR(-EINVAL);
2164
2165 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2166 return ERR_PTR(-EINVAL);
2167
2168 res = dst_mnt = clone_mnt(src_root, dentry, flag);
2169 if (IS_ERR(dst_mnt))
2170 return dst_mnt;
2171
2172 src_parent = src_root;
2173
2174 list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2175 if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2176 continue;
2177
2178 for (src_mnt = src_root_child; src_mnt;
2179 src_mnt = next_mnt(src_mnt, src_root_child)) {
2180 if (!(flag & CL_COPY_UNBINDABLE) &&
2181 IS_MNT_UNBINDABLE(src_mnt)) {
2182 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2183 /* Both unbindable and locked. */
2184 dst_mnt = ERR_PTR(-EPERM);
2185 goto out;
2186 } else {
2187 src_mnt = skip_mnt_tree(src_mnt);
2188 continue;
2189 }
2190 }
2191 if (!(flag & CL_COPY_MNT_NS_FILE) &&
2192 is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2193 src_mnt = skip_mnt_tree(src_mnt);
2194 continue;
2195 }
2196 while (src_parent != src_mnt->mnt_parent) {
2197 src_parent = src_parent->mnt_parent;
2198 dst_mnt = dst_mnt->mnt_parent;
2199 }
2200
2201 src_parent = src_mnt;
2202 dst_parent = dst_mnt;
2203 dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2204 if (IS_ERR(dst_mnt))
2205 goto out;
2206 lock_mount_hash();
2207 if (src_mnt->mnt.mnt_flags & MNT_LOCKED)
2208 dst_mnt->mnt.mnt_flags |= MNT_LOCKED;
2209 if (unlikely(flag & CL_EXPIRE)) {
2210 /* stick the duplicate mount on the same expiry
2211 * list as the original if that was on one */
2212 if (!list_empty(&src_mnt->mnt_expire))
2213 list_add(&dst_mnt->mnt_expire,
2214 &src_mnt->mnt_expire);
2215 }
2216 attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp);
2217 unlock_mount_hash();
2218 }
2219 }
2220 return res;
2221
2222 out:
2223 if (res) {
2224 lock_mount_hash();
2225 umount_tree(res, UMOUNT_SYNC);
2226 unlock_mount_hash();
2227 }
2228 return dst_mnt;
2229 }
2230
extend_array(struct path ** res,struct path ** to_free,unsigned n,unsigned * count,unsigned new_count)2231 static inline bool extend_array(struct path **res, struct path **to_free,
2232 unsigned n, unsigned *count, unsigned new_count)
2233 {
2234 struct path *p;
2235
2236 if (likely(n < *count))
2237 return true;
2238 p = kmalloc_array(new_count, sizeof(struct path), GFP_KERNEL);
2239 if (p && *count)
2240 memcpy(p, *res, *count * sizeof(struct path));
2241 *count = new_count;
2242 kfree(*to_free);
2243 *to_free = *res = p;
2244 return p;
2245 }
2246
collect_paths(const struct path * path,struct path * prealloc,unsigned count)2247 const struct path *collect_paths(const struct path *path,
2248 struct path *prealloc, unsigned count)
2249 {
2250 struct mount *root = real_mount(path->mnt);
2251 struct mount *child;
2252 struct path *res = prealloc, *to_free = NULL;
2253 unsigned n = 0;
2254
2255 guard(namespace_shared)();
2256
2257 if (!check_mnt(root))
2258 return ERR_PTR(-EINVAL);
2259 if (!extend_array(&res, &to_free, 0, &count, 32))
2260 return ERR_PTR(-ENOMEM);
2261 res[n++] = *path;
2262 list_for_each_entry(child, &root->mnt_mounts, mnt_child) {
2263 if (!is_subdir(child->mnt_mountpoint, path->dentry))
2264 continue;
2265 for (struct mount *m = child; m; m = next_mnt(m, child)) {
2266 if (!extend_array(&res, &to_free, n, &count, 2 * count))
2267 return ERR_PTR(-ENOMEM);
2268 res[n].mnt = &m->mnt;
2269 res[n].dentry = m->mnt.mnt_root;
2270 n++;
2271 }
2272 }
2273 if (!extend_array(&res, &to_free, n, &count, count + 1))
2274 return ERR_PTR(-ENOMEM);
2275 memset(res + n, 0, (count - n) * sizeof(struct path));
2276 for (struct path *p = res; p->mnt; p++)
2277 path_get(p);
2278 return res;
2279 }
2280
drop_collected_paths(const struct path * paths,const struct path * prealloc)2281 void drop_collected_paths(const struct path *paths, const struct path *prealloc)
2282 {
2283 for (const struct path *p = paths; p->mnt; p++)
2284 path_put(p);
2285 if (paths != prealloc)
2286 kfree(paths);
2287 }
2288
2289 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2290
dissolve_on_fput(struct vfsmount * mnt)2291 void dissolve_on_fput(struct vfsmount *mnt)
2292 {
2293 struct mount *m = real_mount(mnt);
2294
2295 /*
2296 * m used to be the root of anon namespace; if it still is one,
2297 * we need to dissolve the mount tree and free that namespace.
2298 * Let's try to avoid taking namespace_sem if we can determine
2299 * that there's nothing to do without it - rcu_read_lock() is
2300 * enough to make anon_ns_root() memory-safe and once m has
2301 * left its namespace, it's no longer our concern, since it will
2302 * never become a root of anon ns again.
2303 */
2304
2305 scoped_guard(rcu) {
2306 if (!anon_ns_root(m))
2307 return;
2308 }
2309
2310 scoped_guard(namespace_excl) {
2311 if (!anon_ns_root(m))
2312 return;
2313
2314 emptied_ns = m->mnt_ns;
2315 lock_mount_hash();
2316 umount_tree(m, UMOUNT_CONNECTED);
2317 unlock_mount_hash();
2318 }
2319 }
2320
2321 /* locks: namespace_shared && pinned(mnt) || mount_locked_reader */
__has_locked_children(struct mount * mnt,struct dentry * dentry)2322 static bool __has_locked_children(struct mount *mnt, struct dentry *dentry)
2323 {
2324 struct mount *child;
2325
2326 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2327 if (!is_subdir(child->mnt_mountpoint, dentry))
2328 continue;
2329
2330 if (child->mnt.mnt_flags & MNT_LOCKED)
2331 return true;
2332 }
2333 return false;
2334 }
2335
has_locked_children(struct mount * mnt,struct dentry * dentry)2336 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2337 {
2338 guard(mount_locked_reader)();
2339 return __has_locked_children(mnt, dentry);
2340 }
2341
2342 /*
2343 * Check that there aren't references to earlier/same mount namespaces in the
2344 * specified subtree. Such references can act as pins for mount namespaces
2345 * that aren't checked by the mount-cycle checking code, thereby allowing
2346 * cycles to be made.
2347 *
2348 * locks: mount_locked_reader || namespace_shared && pinned(subtree)
2349 */
check_for_nsfs_mounts(struct mount * subtree)2350 static bool check_for_nsfs_mounts(struct mount *subtree)
2351 {
2352 for (struct mount *p = subtree; p; p = next_mnt(p, subtree))
2353 if (mnt_ns_loop(p->mnt.mnt_root))
2354 return false;
2355 return true;
2356 }
2357
2358 /**
2359 * clone_private_mount - create a private clone of a path
2360 * @path: path to clone
2361 *
2362 * This creates a new vfsmount, which will be the clone of @path. The new mount
2363 * will not be attached anywhere in the namespace and will be private (i.e.
2364 * changes to the originating mount won't be propagated into this).
2365 *
2366 * This assumes caller has called or done the equivalent of may_mount().
2367 *
2368 * Release with mntput().
2369 */
clone_private_mount(const struct path * path)2370 struct vfsmount *clone_private_mount(const struct path *path)
2371 {
2372 struct mount *old_mnt = real_mount(path->mnt);
2373 struct mount *new_mnt;
2374
2375 guard(namespace_shared)();
2376
2377 if (IS_MNT_UNBINDABLE(old_mnt))
2378 return ERR_PTR(-EINVAL);
2379
2380 /*
2381 * Make sure the source mount is acceptable.
2382 * Anything mounted in our mount namespace is allowed.
2383 * Otherwise, it must be the root of an anonymous mount
2384 * namespace, and we need to make sure no namespace
2385 * loops get created.
2386 */
2387 if (!check_mnt(old_mnt)) {
2388 if (!anon_ns_root(old_mnt))
2389 return ERR_PTR(-EINVAL);
2390
2391 if (!check_for_nsfs_mounts(old_mnt))
2392 return ERR_PTR(-EINVAL);
2393 }
2394
2395 if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
2396 return ERR_PTR(-EPERM);
2397
2398 if (__has_locked_children(old_mnt, path->dentry))
2399 return ERR_PTR(-EINVAL);
2400
2401 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2402 if (IS_ERR(new_mnt))
2403 return ERR_PTR(-EINVAL);
2404
2405 /* Longterm mount to be removed by kern_unmount*() */
2406 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2407 return &new_mnt->mnt;
2408 }
2409 EXPORT_SYMBOL_GPL(clone_private_mount);
2410
lock_mnt_tree(struct mount * mnt)2411 static void lock_mnt_tree(struct mount *mnt)
2412 {
2413 struct mount *p;
2414
2415 for (p = mnt; p; p = next_mnt(p, mnt)) {
2416 int flags = p->mnt.mnt_flags;
2417 /* Don't allow unprivileged users to change mount flags */
2418 flags |= MNT_LOCK_ATIME;
2419
2420 if (flags & MNT_READONLY)
2421 flags |= MNT_LOCK_READONLY;
2422
2423 if (flags & MNT_NODEV)
2424 flags |= MNT_LOCK_NODEV;
2425
2426 if (flags & MNT_NOSUID)
2427 flags |= MNT_LOCK_NOSUID;
2428
2429 if (flags & MNT_NOEXEC)
2430 flags |= MNT_LOCK_NOEXEC;
2431 /* Don't allow unprivileged users to reveal what is under a mount */
2432 if (list_empty(&p->mnt_expire) && p != mnt)
2433 flags |= MNT_LOCKED;
2434 p->mnt.mnt_flags = flags;
2435 }
2436 }
2437
cleanup_group_ids(struct mount * mnt,struct mount * end)2438 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2439 {
2440 struct mount *p;
2441
2442 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2443 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2444 mnt_release_group_id(p);
2445 }
2446 }
2447
invent_group_ids(struct mount * mnt,bool recurse)2448 static int invent_group_ids(struct mount *mnt, bool recurse)
2449 {
2450 struct mount *p;
2451
2452 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2453 if (!p->mnt_group_id) {
2454 int err = mnt_alloc_group_id(p);
2455 if (err) {
2456 cleanup_group_ids(mnt, p);
2457 return err;
2458 }
2459 }
2460 }
2461
2462 return 0;
2463 }
2464
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2465 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2466 {
2467 unsigned int max = READ_ONCE(sysctl_mount_max);
2468 unsigned int mounts = 0;
2469 struct mount *p;
2470
2471 if (ns->nr_mounts >= max)
2472 return -ENOSPC;
2473 max -= ns->nr_mounts;
2474 if (ns->pending_mounts >= max)
2475 return -ENOSPC;
2476 max -= ns->pending_mounts;
2477
2478 for (p = mnt; p; p = next_mnt(p, mnt))
2479 mounts++;
2480
2481 if (mounts > max)
2482 return -ENOSPC;
2483
2484 ns->pending_mounts += mounts;
2485 return 0;
2486 }
2487
2488 enum mnt_tree_flags_t {
2489 MNT_TREE_BENEATH = BIT(0),
2490 MNT_TREE_PROPAGATION = BIT(1),
2491 };
2492
2493 /**
2494 * attach_recursive_mnt - attach a source mount tree
2495 * @source_mnt: mount tree to be attached
2496 * @dest: the context for mounting at the place where the tree should go
2497 *
2498 * NOTE: in the table below explains the semantics when a source mount
2499 * of a given type is attached to a destination mount of a given type.
2500 * ---------------------------------------------------------------------------
2501 * | BIND MOUNT OPERATION |
2502 * |**************************************************************************
2503 * | source-->| shared | private | slave | unbindable |
2504 * | dest | | | | |
2505 * | | | | | | |
2506 * | v | | | | |
2507 * |**************************************************************************
2508 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2509 * | | | | | |
2510 * |non-shared| shared (+) | private | slave (*) | invalid |
2511 * ***************************************************************************
2512 * A bind operation clones the source mount and mounts the clone on the
2513 * destination mount.
2514 *
2515 * (++) the cloned mount is propagated to all the mounts in the propagation
2516 * tree of the destination mount and the cloned mount is added to
2517 * the peer group of the source mount.
2518 * (+) the cloned mount is created under the destination mount and is marked
2519 * as shared. The cloned mount is added to the peer group of the source
2520 * mount.
2521 * (+++) the mount is propagated to all the mounts in the propagation tree
2522 * of the destination mount and the cloned mount is made slave
2523 * of the same master as that of the source mount. The cloned mount
2524 * is marked as 'shared and slave'.
2525 * (*) the cloned mount is made a slave of the same master as that of the
2526 * source mount.
2527 *
2528 * ---------------------------------------------------------------------------
2529 * | MOVE MOUNT OPERATION |
2530 * |**************************************************************************
2531 * | source-->| shared | private | slave | unbindable |
2532 * | dest | | | | |
2533 * | | | | | | |
2534 * | v | | | | |
2535 * |**************************************************************************
2536 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2537 * | | | | | |
2538 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2539 * ***************************************************************************
2540 *
2541 * (+) the mount is moved to the destination. And is then propagated to
2542 * all the mounts in the propagation tree of the destination mount.
2543 * (+*) the mount is moved to the destination.
2544 * (+++) the mount is moved to the destination and is then propagated to
2545 * all the mounts belonging to the destination mount's propagation tree.
2546 * the mount is marked as 'shared and slave'.
2547 * (*) the mount continues to be a slave at the new location.
2548 *
2549 * if the source mount is a tree, the operations explained above is
2550 * applied to each mount in the tree.
2551 * Must be called without spinlocks held, since this function can sleep
2552 * in allocations.
2553 *
2554 * Context: The function expects namespace_lock() to be held.
2555 * Return: If @source_mnt was successfully attached 0 is returned.
2556 * Otherwise a negative error code is returned.
2557 */
attach_recursive_mnt(struct mount * source_mnt,const struct pinned_mountpoint * dest)2558 static int attach_recursive_mnt(struct mount *source_mnt,
2559 const struct pinned_mountpoint *dest)
2560 {
2561 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2562 struct mount *dest_mnt = dest->parent;
2563 struct mountpoint *dest_mp = dest->mp;
2564 HLIST_HEAD(tree_list);
2565 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2566 struct pinned_mountpoint root = {};
2567 struct mountpoint *shorter = NULL;
2568 struct mount *child, *p;
2569 struct mount *top;
2570 struct hlist_node *n;
2571 int err = 0;
2572 bool moving = mnt_has_parent(source_mnt);
2573
2574 /*
2575 * Preallocate a mountpoint in case the new mounts need to be
2576 * mounted beneath mounts on the same mountpoint.
2577 */
2578 for (top = source_mnt; unlikely(top->overmount); top = top->overmount) {
2579 if (!shorter && is_mnt_ns_file(top->mnt.mnt_root))
2580 shorter = top->mnt_mp;
2581 }
2582 err = get_mountpoint(top->mnt.mnt_root, &root);
2583 if (err)
2584 return err;
2585
2586 /* Is there space to add these mounts to the mount namespace? */
2587 if (!moving) {
2588 err = count_mounts(ns, source_mnt);
2589 if (err)
2590 goto out;
2591 }
2592
2593 if (IS_MNT_SHARED(dest_mnt)) {
2594 err = invent_group_ids(source_mnt, true);
2595 if (err)
2596 goto out;
2597 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2598 }
2599 lock_mount_hash();
2600 if (err)
2601 goto out_cleanup_ids;
2602
2603 if (IS_MNT_SHARED(dest_mnt)) {
2604 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2605 set_mnt_shared(p);
2606 }
2607
2608 if (moving) {
2609 umount_mnt(source_mnt);
2610 mnt_notify_add(source_mnt);
2611 /* if the mount is moved, it should no longer be expired
2612 * automatically */
2613 list_del_init(&source_mnt->mnt_expire);
2614 } else {
2615 if (source_mnt->mnt_ns) {
2616 /* move from anon - the caller will destroy */
2617 emptied_ns = source_mnt->mnt_ns;
2618 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2619 move_from_ns(p);
2620 }
2621 }
2622
2623 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2624 /*
2625 * Now the original copy is in the same state as the secondaries -
2626 * its root attached to mountpoint, but not hashed and all mounts
2627 * in it are either in our namespace or in no namespace at all.
2628 * Add the original to the list of copies and deal with the
2629 * rest of work for all of them uniformly.
2630 */
2631 hlist_add_head(&source_mnt->mnt_hash, &tree_list);
2632
2633 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2634 struct mount *q;
2635 hlist_del_init(&child->mnt_hash);
2636 /* Notice when we are propagating across user namespaces */
2637 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2638 lock_mnt_tree(child);
2639 q = __lookup_mnt(&child->mnt_parent->mnt,
2640 child->mnt_mountpoint);
2641 commit_tree(child);
2642 if (q) {
2643 struct mount *r = topmost_overmount(child);
2644 struct mountpoint *mp = root.mp;
2645
2646 if (unlikely(shorter) && child != source_mnt)
2647 mp = shorter;
2648 mnt_change_mountpoint(r, mp, q);
2649 }
2650 }
2651 unpin_mountpoint(&root);
2652 unlock_mount_hash();
2653
2654 return 0;
2655
2656 out_cleanup_ids:
2657 while (!hlist_empty(&tree_list)) {
2658 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2659 child->mnt_parent->mnt_ns->pending_mounts = 0;
2660 umount_tree(child, UMOUNT_SYNC);
2661 }
2662 unlock_mount_hash();
2663 cleanup_group_ids(source_mnt, NULL);
2664 out:
2665 ns->pending_mounts = 0;
2666
2667 read_seqlock_excl(&mount_lock);
2668 unpin_mountpoint(&root);
2669 read_sequnlock_excl(&mount_lock);
2670
2671 return err;
2672 }
2673
where_to_mount(const struct path * path,struct dentry ** dentry,bool beneath)2674 static inline struct mount *where_to_mount(const struct path *path,
2675 struct dentry **dentry,
2676 bool beneath)
2677 {
2678 struct mount *m;
2679
2680 if (unlikely(beneath)) {
2681 m = topmost_overmount(real_mount(path->mnt));
2682 *dentry = m->mnt_mountpoint;
2683 return m->mnt_parent;
2684 }
2685 m = __lookup_mnt(path->mnt, path->dentry);
2686 if (unlikely(m)) {
2687 m = topmost_overmount(m);
2688 *dentry = m->mnt.mnt_root;
2689 return m;
2690 }
2691 *dentry = path->dentry;
2692 return real_mount(path->mnt);
2693 }
2694
2695 /**
2696 * do_lock_mount - acquire environment for mounting
2697 * @path: target path
2698 * @res: context to set up
2699 * @beneath: whether the intention is to mount beneath @path
2700 *
2701 * To mount something at given location, we need
2702 * namespace_sem locked exclusive
2703 * inode of dentry we are mounting on locked exclusive
2704 * struct mountpoint for that dentry
2705 * struct mount we are mounting on
2706 *
2707 * Results are stored in caller-supplied context (pinned_mountpoint);
2708 * on success we have res->parent and res->mp pointing to parent and
2709 * mountpoint respectively and res->node inserted into the ->m_list
2710 * of the mountpoint, making sure the mountpoint won't disappear.
2711 * On failure we have res->parent set to ERR_PTR(-E...), res->mp
2712 * left NULL, res->node - empty.
2713 * In case of success do_lock_mount returns with locks acquired (in
2714 * proper order - inode lock nests outside of namespace_sem).
2715 *
2716 * Request to mount on overmounted location is treated as "mount on
2717 * top of whatever's overmounting it"; request to mount beneath
2718 * a location - "mount immediately beneath the topmost mount at that
2719 * place".
2720 *
2721 * In all cases the location must not have been unmounted and the
2722 * chosen mountpoint must be allowed to be mounted on. For "beneath"
2723 * case we also require the location to be at the root of a mount
2724 * that has a parent (i.e. is not a root of some namespace).
2725 */
do_lock_mount(const struct path * path,struct pinned_mountpoint * res,bool beneath)2726 static void do_lock_mount(const struct path *path,
2727 struct pinned_mountpoint *res,
2728 bool beneath)
2729 {
2730 int err;
2731
2732 if (unlikely(beneath) && !path_mounted(path)) {
2733 res->parent = ERR_PTR(-EINVAL);
2734 return;
2735 }
2736
2737 do {
2738 struct dentry *dentry, *d;
2739 struct mount *m, *n;
2740
2741 scoped_guard(mount_locked_reader) {
2742 m = where_to_mount(path, &dentry, beneath);
2743 if (&m->mnt != path->mnt) {
2744 mntget(&m->mnt);
2745 dget(dentry);
2746 }
2747 }
2748
2749 inode_lock(dentry->d_inode);
2750 namespace_lock();
2751
2752 // check if the chain of mounts (if any) has changed.
2753 scoped_guard(mount_locked_reader)
2754 n = where_to_mount(path, &d, beneath);
2755
2756 if (unlikely(n != m || dentry != d))
2757 err = -EAGAIN; // something moved, retry
2758 else if (unlikely(cant_mount(dentry) || !is_mounted(path->mnt)))
2759 err = -ENOENT; // not to be mounted on
2760 else if (beneath && &m->mnt == path->mnt && !m->overmount)
2761 err = -EINVAL;
2762 else
2763 err = get_mountpoint(dentry, res);
2764
2765 if (unlikely(err)) {
2766 res->parent = ERR_PTR(err);
2767 namespace_unlock();
2768 inode_unlock(dentry->d_inode);
2769 } else {
2770 res->parent = m;
2771 }
2772 /*
2773 * Drop the temporary references. This is subtle - on success
2774 * we are doing that under namespace_sem, which would normally
2775 * be forbidden. However, in that case we are guaranteed that
2776 * refcounts won't reach zero, since we know that path->mnt
2777 * is mounted and thus all mounts reachable from it are pinned
2778 * and stable, along with their mountpoints and roots.
2779 */
2780 if (&m->mnt != path->mnt) {
2781 dput(dentry);
2782 mntput(&m->mnt);
2783 }
2784 } while (err == -EAGAIN);
2785 }
2786
__unlock_mount(struct pinned_mountpoint * m)2787 static void __unlock_mount(struct pinned_mountpoint *m)
2788 {
2789 inode_unlock(m->mp->m_dentry->d_inode);
2790 read_seqlock_excl(&mount_lock);
2791 unpin_mountpoint(m);
2792 read_sequnlock_excl(&mount_lock);
2793 namespace_unlock();
2794 }
2795
unlock_mount(struct pinned_mountpoint * m)2796 static inline void unlock_mount(struct pinned_mountpoint *m)
2797 {
2798 if (!IS_ERR(m->parent))
2799 __unlock_mount(m);
2800 }
2801
2802 #define LOCK_MOUNT_MAYBE_BENEATH(mp, path, beneath) \
2803 struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \
2804 do_lock_mount((path), &mp, (beneath))
2805 #define LOCK_MOUNT(mp, path) LOCK_MOUNT_MAYBE_BENEATH(mp, (path), false)
2806 #define LOCK_MOUNT_EXACT(mp, path) \
2807 struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \
2808 lock_mount_exact((path), &mp)
2809
graft_tree(struct mount * mnt,const struct pinned_mountpoint * mp)2810 static int graft_tree(struct mount *mnt, const struct pinned_mountpoint *mp)
2811 {
2812 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2813 return -EINVAL;
2814
2815 if (d_is_dir(mp->mp->m_dentry) !=
2816 d_is_dir(mnt->mnt.mnt_root))
2817 return -ENOTDIR;
2818
2819 return attach_recursive_mnt(mnt, mp);
2820 }
2821
may_change_propagation(const struct mount * m)2822 static int may_change_propagation(const struct mount *m)
2823 {
2824 struct mnt_namespace *ns = m->mnt_ns;
2825
2826 // it must be mounted in some namespace
2827 if (IS_ERR_OR_NULL(ns)) // is_mounted()
2828 return -EINVAL;
2829 // and the caller must be admin in userns of that namespace
2830 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
2831 return -EPERM;
2832 return 0;
2833 }
2834
2835 /*
2836 * Sanity check the flags to change_mnt_propagation.
2837 */
2838
flags_to_propagation_type(int ms_flags)2839 static int flags_to_propagation_type(int ms_flags)
2840 {
2841 int type = ms_flags & ~(MS_REC | MS_SILENT);
2842
2843 /* Fail if any non-propagation flags are set */
2844 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2845 return 0;
2846 /* Only one propagation flag should be set */
2847 if (!is_power_of_2(type))
2848 return 0;
2849 return type;
2850 }
2851
2852 /*
2853 * recursively change the type of the mountpoint.
2854 */
do_change_type(const struct path * path,int ms_flags)2855 static int do_change_type(const struct path *path, int ms_flags)
2856 {
2857 struct mount *m;
2858 struct mount *mnt = real_mount(path->mnt);
2859 int recurse = ms_flags & MS_REC;
2860 int type;
2861 int err;
2862
2863 if (!path_mounted(path))
2864 return -EINVAL;
2865
2866 type = flags_to_propagation_type(ms_flags);
2867 if (!type)
2868 return -EINVAL;
2869
2870 guard(namespace_excl)();
2871
2872 err = may_change_propagation(mnt);
2873 if (err)
2874 return err;
2875
2876 if (type == MS_SHARED) {
2877 err = invent_group_ids(mnt, recurse);
2878 if (err)
2879 return err;
2880 }
2881
2882 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2883 change_mnt_propagation(m, type);
2884
2885 return 0;
2886 }
2887
2888 /* may_copy_tree() - check if a mount tree can be copied
2889 * @path: path to the mount tree to be copied
2890 *
2891 * This helper checks if the caller may copy the mount tree starting
2892 * from @path->mnt. The caller may copy the mount tree under the
2893 * following circumstances:
2894 *
2895 * (1) The caller is located in the mount namespace of the mount tree.
2896 * This also implies that the mount does not belong to an anonymous
2897 * mount namespace.
2898 * (2) The caller tries to copy an nfs mount referring to a mount
2899 * namespace, i.e., the caller is trying to copy a mount namespace
2900 * entry from nsfs.
2901 * (3) The caller tries to copy a pidfs mount referring to a pidfd.
2902 * (4) The caller is trying to copy a mount tree that belongs to an
2903 * anonymous mount namespace.
2904 *
2905 * For that to be safe, this helper enforces that the origin mount
2906 * namespace the anonymous mount namespace was created from is the
2907 * same as the caller's mount namespace by comparing the sequence
2908 * numbers.
2909 *
2910 * This is not strictly necessary. The current semantics of the new
2911 * mount api enforce that the caller must be located in the same
2912 * mount namespace as the mount tree it interacts with. Using the
2913 * origin sequence number preserves these semantics even for
2914 * anonymous mount namespaces. However, one could envision extending
2915 * the api to directly operate across mount namespace if needed.
2916 *
2917 * The ownership of a non-anonymous mount namespace such as the
2918 * caller's cannot change.
2919 * => We know that the caller's mount namespace is stable.
2920 *
2921 * If the origin sequence number of the anonymous mount namespace is
2922 * the same as the sequence number of the caller's mount namespace.
2923 * => The owning namespaces are the same.
2924 *
2925 * ==> The earlier capability check on the owning namespace of the
2926 * caller's mount namespace ensures that the caller has the
2927 * ability to copy the mount tree.
2928 *
2929 * Returns true if the mount tree can be copied, false otherwise.
2930 */
may_copy_tree(const struct path * path)2931 static inline bool may_copy_tree(const struct path *path)
2932 {
2933 struct mount *mnt = real_mount(path->mnt);
2934 const struct dentry_operations *d_op;
2935
2936 if (check_mnt(mnt))
2937 return true;
2938
2939 d_op = path->dentry->d_op;
2940 if (d_op == &ns_dentry_operations)
2941 return true;
2942
2943 if (d_op == &pidfs_dentry_operations)
2944 return true;
2945
2946 if (!is_mounted(path->mnt))
2947 return false;
2948
2949 return check_anonymous_mnt(mnt);
2950 }
2951
2952
__do_loopback(const struct path * old_path,int recurse)2953 static struct mount *__do_loopback(const struct path *old_path, int recurse)
2954 {
2955 struct mount *old = real_mount(old_path->mnt);
2956
2957 if (IS_MNT_UNBINDABLE(old))
2958 return ERR_PTR(-EINVAL);
2959
2960 if (!may_copy_tree(old_path))
2961 return ERR_PTR(-EINVAL);
2962
2963 if (!recurse && __has_locked_children(old, old_path->dentry))
2964 return ERR_PTR(-EINVAL);
2965
2966 if (recurse)
2967 return copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2968 else
2969 return clone_mnt(old, old_path->dentry, 0);
2970 }
2971
2972 /*
2973 * do loopback mount.
2974 */
do_loopback(const struct path * path,const char * old_name,int recurse)2975 static int do_loopback(const struct path *path, const char *old_name,
2976 int recurse)
2977 {
2978 struct path old_path __free(path_put) = {};
2979 struct mount *mnt = NULL;
2980 int err;
2981 if (!old_name || !*old_name)
2982 return -EINVAL;
2983 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2984 if (err)
2985 return err;
2986
2987 if (mnt_ns_loop(old_path.dentry))
2988 return -EINVAL;
2989
2990 LOCK_MOUNT(mp, path);
2991 if (IS_ERR(mp.parent))
2992 return PTR_ERR(mp.parent);
2993
2994 if (!check_mnt(mp.parent))
2995 return -EINVAL;
2996
2997 mnt = __do_loopback(&old_path, recurse);
2998 if (IS_ERR(mnt))
2999 return PTR_ERR(mnt);
3000
3001 err = graft_tree(mnt, &mp);
3002 if (err) {
3003 lock_mount_hash();
3004 umount_tree(mnt, UMOUNT_SYNC);
3005 unlock_mount_hash();
3006 }
3007 return err;
3008 }
3009
get_detached_copy(const struct path * path,bool recursive)3010 static struct mnt_namespace *get_detached_copy(const struct path *path, bool recursive)
3011 {
3012 struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns;
3013 struct user_namespace *user_ns = mnt_ns->user_ns;
3014 struct mount *mnt, *p;
3015
3016 ns = alloc_mnt_ns(user_ns, true);
3017 if (IS_ERR(ns))
3018 return ns;
3019
3020 guard(namespace_excl)();
3021
3022 /*
3023 * Record the sequence number of the source mount namespace.
3024 * This needs to hold namespace_sem to ensure that the mount
3025 * doesn't get attached.
3026 */
3027 if (is_mounted(path->mnt)) {
3028 src_mnt_ns = real_mount(path->mnt)->mnt_ns;
3029 if (is_anon_ns(src_mnt_ns))
3030 ns->seq_origin = src_mnt_ns->seq_origin;
3031 else
3032 ns->seq_origin = src_mnt_ns->ns.ns_id;
3033 }
3034
3035 mnt = __do_loopback(path, recursive);
3036 if (IS_ERR(mnt)) {
3037 emptied_ns = ns;
3038 return ERR_CAST(mnt);
3039 }
3040
3041 for (p = mnt; p; p = next_mnt(p, mnt)) {
3042 mnt_add_to_ns(ns, p);
3043 ns->nr_mounts++;
3044 }
3045 ns->root = mnt;
3046 return ns;
3047 }
3048
open_detached_copy(struct path * path,bool recursive)3049 static struct file *open_detached_copy(struct path *path, bool recursive)
3050 {
3051 struct mnt_namespace *ns = get_detached_copy(path, recursive);
3052 struct file *file;
3053
3054 if (IS_ERR(ns))
3055 return ERR_CAST(ns);
3056
3057 mntput(path->mnt);
3058 path->mnt = mntget(&ns->root->mnt);
3059 file = dentry_open(path, O_PATH, current_cred());
3060 if (IS_ERR(file))
3061 dissolve_on_fput(path->mnt);
3062 else
3063 file->f_mode |= FMODE_NEED_UNMOUNT;
3064 return file;
3065 }
3066
vfs_open_tree(int dfd,const char __user * filename,unsigned int flags)3067 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags)
3068 {
3069 int ret;
3070 struct path path __free(path_put) = {};
3071 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
3072 bool detached = flags & OPEN_TREE_CLONE;
3073
3074 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
3075
3076 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
3077 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
3078 OPEN_TREE_CLOEXEC))
3079 return ERR_PTR(-EINVAL);
3080
3081 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
3082 return ERR_PTR(-EINVAL);
3083
3084 if (flags & AT_NO_AUTOMOUNT)
3085 lookup_flags &= ~LOOKUP_AUTOMOUNT;
3086 if (flags & AT_SYMLINK_NOFOLLOW)
3087 lookup_flags &= ~LOOKUP_FOLLOW;
3088 if (flags & AT_EMPTY_PATH)
3089 lookup_flags |= LOOKUP_EMPTY;
3090
3091 if (detached && !may_mount())
3092 return ERR_PTR(-EPERM);
3093
3094 ret = user_path_at(dfd, filename, lookup_flags, &path);
3095 if (unlikely(ret))
3096 return ERR_PTR(ret);
3097
3098 if (detached)
3099 return open_detached_copy(&path, flags & AT_RECURSIVE);
3100
3101 return dentry_open(&path, O_PATH, current_cred());
3102 }
3103
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)3104 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
3105 {
3106 int fd;
3107 struct file *file __free(fput) = NULL;
3108
3109 file = vfs_open_tree(dfd, filename, flags);
3110 if (IS_ERR(file))
3111 return PTR_ERR(file);
3112
3113 fd = get_unused_fd_flags(flags & O_CLOEXEC);
3114 if (fd < 0)
3115 return fd;
3116
3117 fd_install(fd, no_free_ptr(file));
3118 return fd;
3119 }
3120
3121 /*
3122 * Don't allow locked mount flags to be cleared.
3123 *
3124 * No locks need to be held here while testing the various MNT_LOCK
3125 * flags because those flags can never be cleared once they are set.
3126 */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)3127 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
3128 {
3129 unsigned int fl = mnt->mnt.mnt_flags;
3130
3131 if ((fl & MNT_LOCK_READONLY) &&
3132 !(mnt_flags & MNT_READONLY))
3133 return false;
3134
3135 if ((fl & MNT_LOCK_NODEV) &&
3136 !(mnt_flags & MNT_NODEV))
3137 return false;
3138
3139 if ((fl & MNT_LOCK_NOSUID) &&
3140 !(mnt_flags & MNT_NOSUID))
3141 return false;
3142
3143 if ((fl & MNT_LOCK_NOEXEC) &&
3144 !(mnt_flags & MNT_NOEXEC))
3145 return false;
3146
3147 if ((fl & MNT_LOCK_ATIME) &&
3148 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
3149 return false;
3150
3151 return true;
3152 }
3153
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)3154 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
3155 {
3156 bool readonly_request = (mnt_flags & MNT_READONLY);
3157
3158 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
3159 return 0;
3160
3161 if (readonly_request)
3162 return mnt_make_readonly(mnt);
3163
3164 mnt->mnt.mnt_flags &= ~MNT_READONLY;
3165 return 0;
3166 }
3167
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)3168 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
3169 {
3170 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
3171 mnt->mnt.mnt_flags = mnt_flags;
3172 touch_mnt_namespace(mnt->mnt_ns);
3173 }
3174
mnt_warn_timestamp_expiry(const struct path * mountpoint,struct vfsmount * mnt)3175 static void mnt_warn_timestamp_expiry(const struct path *mountpoint,
3176 struct vfsmount *mnt)
3177 {
3178 struct super_block *sb = mnt->mnt_sb;
3179
3180 if (!__mnt_is_readonly(mnt) &&
3181 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
3182 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
3183 char *buf, *mntpath;
3184
3185 buf = (char *)__get_free_page(GFP_KERNEL);
3186 if (buf)
3187 mntpath = d_path(mountpoint, buf, PAGE_SIZE);
3188 else
3189 mntpath = ERR_PTR(-ENOMEM);
3190 if (IS_ERR(mntpath))
3191 mntpath = "(unknown)";
3192
3193 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3194 sb->s_type->name,
3195 is_mounted(mnt) ? "remounted" : "mounted",
3196 mntpath, &sb->s_time_max,
3197 (unsigned long long)sb->s_time_max);
3198
3199 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3200 if (buf)
3201 free_page((unsigned long)buf);
3202 }
3203 }
3204
3205 /*
3206 * Handle reconfiguration of the mountpoint only without alteration of the
3207 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
3208 * to mount(2).
3209 */
do_reconfigure_mnt(const struct path * path,unsigned int mnt_flags)3210 static int do_reconfigure_mnt(const struct path *path, unsigned int mnt_flags)
3211 {
3212 struct super_block *sb = path->mnt->mnt_sb;
3213 struct mount *mnt = real_mount(path->mnt);
3214 int ret;
3215
3216 if (!check_mnt(mnt))
3217 return -EINVAL;
3218
3219 if (!path_mounted(path))
3220 return -EINVAL;
3221
3222 if (!can_change_locked_flags(mnt, mnt_flags))
3223 return -EPERM;
3224
3225 /*
3226 * We're only checking whether the superblock is read-only not
3227 * changing it, so only take down_read(&sb->s_umount).
3228 */
3229 down_read(&sb->s_umount);
3230 lock_mount_hash();
3231 ret = change_mount_ro_state(mnt, mnt_flags);
3232 if (ret == 0)
3233 set_mount_attributes(mnt, mnt_flags);
3234 unlock_mount_hash();
3235 up_read(&sb->s_umount);
3236
3237 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3238
3239 return ret;
3240 }
3241
3242 /*
3243 * change filesystem flags. dir should be a physical root of filesystem.
3244 * If you've mounted a non-root directory somewhere and want to do remount
3245 * on it - tough luck.
3246 */
do_remount(const struct path * path,int sb_flags,int mnt_flags,void * data)3247 static int do_remount(const struct path *path, int sb_flags,
3248 int mnt_flags, void *data)
3249 {
3250 int err;
3251 struct super_block *sb = path->mnt->mnt_sb;
3252 struct mount *mnt = real_mount(path->mnt);
3253 struct fs_context *fc;
3254
3255 if (!check_mnt(mnt))
3256 return -EINVAL;
3257
3258 if (!path_mounted(path))
3259 return -EINVAL;
3260
3261 if (!can_change_locked_flags(mnt, mnt_flags))
3262 return -EPERM;
3263
3264 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3265 if (IS_ERR(fc))
3266 return PTR_ERR(fc);
3267
3268 /*
3269 * Indicate to the filesystem that the remount request is coming
3270 * from the legacy mount system call.
3271 */
3272 fc->oldapi = true;
3273
3274 err = parse_monolithic_mount_data(fc, data);
3275 if (!err) {
3276 down_write(&sb->s_umount);
3277 err = -EPERM;
3278 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3279 err = reconfigure_super(fc);
3280 if (!err) {
3281 lock_mount_hash();
3282 set_mount_attributes(mnt, mnt_flags);
3283 unlock_mount_hash();
3284 }
3285 }
3286 up_write(&sb->s_umount);
3287 }
3288
3289 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3290
3291 put_fs_context(fc);
3292 return err;
3293 }
3294
tree_contains_unbindable(struct mount * mnt)3295 static inline int tree_contains_unbindable(struct mount *mnt)
3296 {
3297 struct mount *p;
3298 for (p = mnt; p; p = next_mnt(p, mnt)) {
3299 if (IS_MNT_UNBINDABLE(p))
3300 return 1;
3301 }
3302 return 0;
3303 }
3304
do_set_group(const struct path * from_path,const struct path * to_path)3305 static int do_set_group(const struct path *from_path, const struct path *to_path)
3306 {
3307 struct mount *from = real_mount(from_path->mnt);
3308 struct mount *to = real_mount(to_path->mnt);
3309 int err;
3310
3311 guard(namespace_excl)();
3312
3313 err = may_change_propagation(from);
3314 if (err)
3315 return err;
3316 err = may_change_propagation(to);
3317 if (err)
3318 return err;
3319
3320 /* To and From paths should be mount roots */
3321 if (!path_mounted(from_path))
3322 return -EINVAL;
3323 if (!path_mounted(to_path))
3324 return -EINVAL;
3325
3326 /* Setting sharing groups is only allowed across same superblock */
3327 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3328 return -EINVAL;
3329
3330 /* From mount root should be wider than To mount root */
3331 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3332 return -EINVAL;
3333
3334 /* From mount should not have locked children in place of To's root */
3335 if (__has_locked_children(from, to->mnt.mnt_root))
3336 return -EINVAL;
3337
3338 /* Setting sharing groups is only allowed on private mounts */
3339 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3340 return -EINVAL;
3341
3342 /* From should not be private */
3343 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3344 return -EINVAL;
3345
3346 if (IS_MNT_SLAVE(from)) {
3347 hlist_add_behind(&to->mnt_slave, &from->mnt_slave);
3348 to->mnt_master = from->mnt_master;
3349 }
3350
3351 if (IS_MNT_SHARED(from)) {
3352 to->mnt_group_id = from->mnt_group_id;
3353 list_add(&to->mnt_share, &from->mnt_share);
3354 set_mnt_shared(to);
3355 }
3356 return 0;
3357 }
3358
3359 /**
3360 * path_overmounted - check if path is overmounted
3361 * @path: path to check
3362 *
3363 * Check if path is overmounted, i.e., if there's a mount on top of
3364 * @path->mnt with @path->dentry as mountpoint.
3365 *
3366 * Context: namespace_sem must be held at least shared.
3367 * MUST NOT be called under lock_mount_hash() (there one should just
3368 * call __lookup_mnt() and check if it returns NULL).
3369 * Return: If path is overmounted true is returned, false if not.
3370 */
path_overmounted(const struct path * path)3371 static inline bool path_overmounted(const struct path *path)
3372 {
3373 unsigned seq = read_seqbegin(&mount_lock);
3374 bool no_child;
3375
3376 rcu_read_lock();
3377 no_child = !__lookup_mnt(path->mnt, path->dentry);
3378 rcu_read_unlock();
3379 if (need_seqretry(&mount_lock, seq)) {
3380 read_seqlock_excl(&mount_lock);
3381 no_child = !__lookup_mnt(path->mnt, path->dentry);
3382 read_sequnlock_excl(&mount_lock);
3383 }
3384 return unlikely(!no_child);
3385 }
3386
3387 /*
3388 * Check if there is a possibly empty chain of descent from p1 to p2.
3389 * Locks: namespace_sem (shared) or mount_lock (read_seqlock_excl).
3390 */
mount_is_ancestor(const struct mount * p1,const struct mount * p2)3391 static bool mount_is_ancestor(const struct mount *p1, const struct mount *p2)
3392 {
3393 while (p2 != p1 && mnt_has_parent(p2))
3394 p2 = p2->mnt_parent;
3395 return p2 == p1;
3396 }
3397
3398 /**
3399 * can_move_mount_beneath - check that we can mount beneath the top mount
3400 * @mnt_from: mount we are trying to move
3401 * @mnt_to: mount under which to mount
3402 * @mp: mountpoint of @mnt_to
3403 *
3404 * - Make sure that nothing can be mounted beneath the caller's current
3405 * root or the rootfs of the namespace.
3406 * - Make sure that the caller can unmount the topmost mount ensuring
3407 * that the caller could reveal the underlying mountpoint.
3408 * - Ensure that nothing has been mounted on top of @mnt_from before we
3409 * grabbed @namespace_sem to avoid creating pointless shadow mounts.
3410 * - Prevent mounting beneath a mount if the propagation relationship
3411 * between the source mount, parent mount, and top mount would lead to
3412 * nonsensical mount trees.
3413 *
3414 * Context: This function expects namespace_lock() to be held.
3415 * Return: On success 0, and on error a negative error code is returned.
3416 */
can_move_mount_beneath(const struct mount * mnt_from,const struct mount * mnt_to,const struct mountpoint * mp)3417 static int can_move_mount_beneath(const struct mount *mnt_from,
3418 const struct mount *mnt_to,
3419 const struct mountpoint *mp)
3420 {
3421 struct mount *parent_mnt_to = mnt_to->mnt_parent;
3422
3423 if (IS_MNT_LOCKED(mnt_to))
3424 return -EINVAL;
3425
3426 /* Avoid creating shadow mounts during mount propagation. */
3427 if (mnt_from->overmount)
3428 return -EINVAL;
3429
3430 /*
3431 * Mounting beneath the rootfs only makes sense when the
3432 * semantics of pivot_root(".", ".") are used.
3433 */
3434 if (&mnt_to->mnt == current->fs->root.mnt)
3435 return -EINVAL;
3436 if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3437 return -EINVAL;
3438
3439 if (mount_is_ancestor(mnt_to, mnt_from))
3440 return -EINVAL;
3441
3442 /*
3443 * If the parent mount propagates to the child mount this would
3444 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3445 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3446 * defeats the whole purpose of mounting beneath another mount.
3447 */
3448 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3449 return -EINVAL;
3450
3451 /*
3452 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3453 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3454 * Afterwards @mnt_from would be mounted on top of
3455 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3456 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3457 * already mounted on @mnt_from, @mnt_to would ultimately be
3458 * remounted on top of @c. Afterwards, @mnt_from would be
3459 * covered by a copy @c of @mnt_from and @c would be covered by
3460 * @mnt_from itself. This defeats the whole purpose of mounting
3461 * @mnt_from beneath @mnt_to.
3462 */
3463 if (check_mnt(mnt_from) &&
3464 propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3465 return -EINVAL;
3466
3467 return 0;
3468 }
3469
3470 /* may_use_mount() - check if a mount tree can be used
3471 * @mnt: vfsmount to be used
3472 *
3473 * This helper checks if the caller may use the mount tree starting
3474 * from @path->mnt. The caller may use the mount tree under the
3475 * following circumstances:
3476 *
3477 * (1) The caller is located in the mount namespace of the mount tree.
3478 * This also implies that the mount does not belong to an anonymous
3479 * mount namespace.
3480 * (2) The caller is trying to use a mount tree that belongs to an
3481 * anonymous mount namespace.
3482 *
3483 * For that to be safe, this helper enforces that the origin mount
3484 * namespace the anonymous mount namespace was created from is the
3485 * same as the caller's mount namespace by comparing the sequence
3486 * numbers.
3487 *
3488 * The ownership of a non-anonymous mount namespace such as the
3489 * caller's cannot change.
3490 * => We know that the caller's mount namespace is stable.
3491 *
3492 * If the origin sequence number of the anonymous mount namespace is
3493 * the same as the sequence number of the caller's mount namespace.
3494 * => The owning namespaces are the same.
3495 *
3496 * ==> The earlier capability check on the owning namespace of the
3497 * caller's mount namespace ensures that the caller has the
3498 * ability to use the mount tree.
3499 *
3500 * Returns true if the mount tree can be used, false otherwise.
3501 */
may_use_mount(struct mount * mnt)3502 static inline bool may_use_mount(struct mount *mnt)
3503 {
3504 if (check_mnt(mnt))
3505 return true;
3506
3507 /*
3508 * Make sure that noone unmounted the target path or somehow
3509 * managed to get their hands on something purely kernel
3510 * internal.
3511 */
3512 if (!is_mounted(&mnt->mnt))
3513 return false;
3514
3515 return check_anonymous_mnt(mnt);
3516 }
3517
do_move_mount(const struct path * old_path,const struct path * new_path,enum mnt_tree_flags_t flags)3518 static int do_move_mount(const struct path *old_path,
3519 const struct path *new_path,
3520 enum mnt_tree_flags_t flags)
3521 {
3522 struct mount *old = real_mount(old_path->mnt);
3523 int err;
3524 bool beneath = flags & MNT_TREE_BENEATH;
3525
3526 if (!path_mounted(old_path))
3527 return -EINVAL;
3528
3529 if (d_is_dir(new_path->dentry) != d_is_dir(old_path->dentry))
3530 return -EINVAL;
3531
3532 LOCK_MOUNT_MAYBE_BENEATH(mp, new_path, beneath);
3533 if (IS_ERR(mp.parent))
3534 return PTR_ERR(mp.parent);
3535
3536 if (check_mnt(old)) {
3537 /* if the source is in our namespace... */
3538 /* ... it should be detachable from parent */
3539 if (!mnt_has_parent(old) || IS_MNT_LOCKED(old))
3540 return -EINVAL;
3541 /* ... which should not be shared */
3542 if (IS_MNT_SHARED(old->mnt_parent))
3543 return -EINVAL;
3544 /* ... and the target should be in our namespace */
3545 if (!check_mnt(mp.parent))
3546 return -EINVAL;
3547 } else {
3548 /*
3549 * otherwise the source must be the root of some anon namespace.
3550 */
3551 if (!anon_ns_root(old))
3552 return -EINVAL;
3553 /*
3554 * Bail out early if the target is within the same namespace -
3555 * subsequent checks would've rejected that, but they lose
3556 * some corner cases if we check it early.
3557 */
3558 if (old->mnt_ns == mp.parent->mnt_ns)
3559 return -EINVAL;
3560 /*
3561 * Target should be either in our namespace or in an acceptable
3562 * anon namespace, sensu check_anonymous_mnt().
3563 */
3564 if (!may_use_mount(mp.parent))
3565 return -EINVAL;
3566 }
3567
3568 if (beneath) {
3569 struct mount *over = real_mount(new_path->mnt);
3570
3571 if (mp.parent != over->mnt_parent)
3572 over = mp.parent->overmount;
3573 err = can_move_mount_beneath(old, over, mp.mp);
3574 if (err)
3575 return err;
3576 }
3577
3578 /*
3579 * Don't move a mount tree containing unbindable mounts to a destination
3580 * mount which is shared.
3581 */
3582 if (IS_MNT_SHARED(mp.parent) && tree_contains_unbindable(old))
3583 return -EINVAL;
3584 if (!check_for_nsfs_mounts(old))
3585 return -ELOOP;
3586 if (mount_is_ancestor(old, mp.parent))
3587 return -ELOOP;
3588
3589 return attach_recursive_mnt(old, &mp);
3590 }
3591
do_move_mount_old(const struct path * path,const char * old_name)3592 static int do_move_mount_old(const struct path *path, const char *old_name)
3593 {
3594 struct path old_path __free(path_put) = {};
3595 int err;
3596
3597 if (!old_name || !*old_name)
3598 return -EINVAL;
3599
3600 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3601 if (err)
3602 return err;
3603
3604 return do_move_mount(&old_path, path, 0);
3605 }
3606
3607 /*
3608 * add a mount into a namespace's mount tree
3609 */
do_add_mount(struct mount * newmnt,const struct pinned_mountpoint * mp,int mnt_flags)3610 static int do_add_mount(struct mount *newmnt, const struct pinned_mountpoint *mp,
3611 int mnt_flags)
3612 {
3613 struct mount *parent = mp->parent;
3614
3615 if (IS_ERR(parent))
3616 return PTR_ERR(parent);
3617
3618 mnt_flags &= ~MNT_INTERNAL_FLAGS;
3619
3620 if (unlikely(!check_mnt(parent))) {
3621 /* that's acceptable only for automounts done in private ns */
3622 if (!(mnt_flags & MNT_SHRINKABLE))
3623 return -EINVAL;
3624 /* ... and for those we'd better have mountpoint still alive */
3625 if (!parent->mnt_ns)
3626 return -EINVAL;
3627 }
3628
3629 /* Refuse the same filesystem on the same mount point */
3630 if (parent->mnt.mnt_sb == newmnt->mnt.mnt_sb &&
3631 parent->mnt.mnt_root == mp->mp->m_dentry)
3632 return -EBUSY;
3633
3634 if (d_is_symlink(newmnt->mnt.mnt_root))
3635 return -EINVAL;
3636
3637 newmnt->mnt.mnt_flags = mnt_flags;
3638 return graft_tree(newmnt, mp);
3639 }
3640
3641 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3642
3643 /*
3644 * Create a new mount using a superblock configuration and request it
3645 * be added to the namespace tree.
3646 */
do_new_mount_fc(struct fs_context * fc,const struct path * mountpoint,unsigned int mnt_flags)3647 static int do_new_mount_fc(struct fs_context *fc, const struct path *mountpoint,
3648 unsigned int mnt_flags)
3649 {
3650 struct super_block *sb;
3651 struct vfsmount *mnt __free(mntput) = fc_mount(fc);
3652 int error;
3653
3654 if (IS_ERR(mnt))
3655 return PTR_ERR(mnt);
3656
3657 sb = fc->root->d_sb;
3658 error = security_sb_kern_mount(sb);
3659 if (unlikely(error))
3660 return error;
3661
3662 if (unlikely(mount_too_revealing(sb, &mnt_flags))) {
3663 errorfcp(fc, "VFS", "Mount too revealing");
3664 return -EPERM;
3665 }
3666
3667 mnt_warn_timestamp_expiry(mountpoint, mnt);
3668
3669 LOCK_MOUNT(mp, mountpoint);
3670 error = do_add_mount(real_mount(mnt), &mp, mnt_flags);
3671 if (!error)
3672 retain_and_null_ptr(mnt); // consumed on success
3673 return error;
3674 }
3675
3676 /*
3677 * create a new mount for userspace and request it to be added into the
3678 * namespace's tree
3679 */
do_new_mount(const struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)3680 static int do_new_mount(const struct path *path, const char *fstype,
3681 int sb_flags, int mnt_flags,
3682 const char *name, void *data)
3683 {
3684 struct file_system_type *type;
3685 struct fs_context *fc;
3686 const char *subtype = NULL;
3687 int err = 0;
3688
3689 if (!fstype)
3690 return -EINVAL;
3691
3692 type = get_fs_type(fstype);
3693 if (!type)
3694 return -ENODEV;
3695
3696 if (type->fs_flags & FS_HAS_SUBTYPE) {
3697 subtype = strchr(fstype, '.');
3698 if (subtype) {
3699 subtype++;
3700 if (!*subtype) {
3701 put_filesystem(type);
3702 return -EINVAL;
3703 }
3704 }
3705 }
3706
3707 fc = fs_context_for_mount(type, sb_flags);
3708 put_filesystem(type);
3709 if (IS_ERR(fc))
3710 return PTR_ERR(fc);
3711
3712 /*
3713 * Indicate to the filesystem that the mount request is coming
3714 * from the legacy mount system call.
3715 */
3716 fc->oldapi = true;
3717
3718 if (subtype)
3719 err = vfs_parse_fs_string(fc, "subtype", subtype);
3720 if (!err && name)
3721 err = vfs_parse_fs_string(fc, "source", name);
3722 if (!err)
3723 err = parse_monolithic_mount_data(fc, data);
3724 if (!err && !mount_capable(fc))
3725 err = -EPERM;
3726 if (!err)
3727 err = do_new_mount_fc(fc, path, mnt_flags);
3728
3729 put_fs_context(fc);
3730 return err;
3731 }
3732
lock_mount_exact(const struct path * path,struct pinned_mountpoint * mp)3733 static void lock_mount_exact(const struct path *path,
3734 struct pinned_mountpoint *mp)
3735 {
3736 struct dentry *dentry = path->dentry;
3737 int err;
3738
3739 inode_lock(dentry->d_inode);
3740 namespace_lock();
3741 if (unlikely(cant_mount(dentry)))
3742 err = -ENOENT;
3743 else if (path_overmounted(path))
3744 err = -EBUSY;
3745 else
3746 err = get_mountpoint(dentry, mp);
3747 if (unlikely(err)) {
3748 namespace_unlock();
3749 inode_unlock(dentry->d_inode);
3750 mp->parent = ERR_PTR(err);
3751 } else {
3752 mp->parent = real_mount(path->mnt);
3753 }
3754 }
3755
finish_automount(struct vfsmount * __m,const struct path * path)3756 int finish_automount(struct vfsmount *__m, const struct path *path)
3757 {
3758 struct vfsmount *m __free(mntput) = __m;
3759 struct mount *mnt;
3760 int err;
3761
3762 if (!m)
3763 return 0;
3764 if (IS_ERR(m))
3765 return PTR_ERR(m);
3766
3767 mnt = real_mount(m);
3768
3769 if (m->mnt_root == path->dentry)
3770 return -ELOOP;
3771
3772 /*
3773 * we don't want to use LOCK_MOUNT() - in this case finding something
3774 * that overmounts our mountpoint to be means "quitely drop what we've
3775 * got", not "try to mount it on top".
3776 */
3777 LOCK_MOUNT_EXACT(mp, path);
3778 if (mp.parent == ERR_PTR(-EBUSY))
3779 return 0;
3780
3781 err = do_add_mount(mnt, &mp, path->mnt->mnt_flags | MNT_SHRINKABLE);
3782 if (likely(!err))
3783 retain_and_null_ptr(m);
3784 return err;
3785 }
3786
3787 /**
3788 * mnt_set_expiry - Put a mount on an expiration list
3789 * @mnt: The mount to list.
3790 * @expiry_list: The list to add the mount to.
3791 */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)3792 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3793 {
3794 guard(mount_locked_reader)();
3795 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3796 }
3797 EXPORT_SYMBOL(mnt_set_expiry);
3798
3799 /*
3800 * process a list of expirable mountpoints with the intent of discarding any
3801 * mountpoints that aren't in use and haven't been touched since last we came
3802 * here
3803 */
mark_mounts_for_expiry(struct list_head * mounts)3804 void mark_mounts_for_expiry(struct list_head *mounts)
3805 {
3806 struct mount *mnt, *next;
3807 LIST_HEAD(graveyard);
3808
3809 if (list_empty(mounts))
3810 return;
3811
3812 guard(namespace_excl)();
3813 guard(mount_writer)();
3814
3815 /* extract from the expiration list every vfsmount that matches the
3816 * following criteria:
3817 * - already mounted
3818 * - only referenced by its parent vfsmount
3819 * - still marked for expiry (marked on the last call here; marks are
3820 * cleared by mntput())
3821 */
3822 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3823 if (!is_mounted(&mnt->mnt))
3824 continue;
3825 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3826 propagate_mount_busy(mnt, 1))
3827 continue;
3828 list_move(&mnt->mnt_expire, &graveyard);
3829 }
3830 while (!list_empty(&graveyard)) {
3831 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3832 touch_mnt_namespace(mnt->mnt_ns);
3833 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3834 }
3835 }
3836
3837 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3838
3839 /*
3840 * Ripoff of 'select_parent()'
3841 *
3842 * search the list of submounts for a given mountpoint, and move any
3843 * shrinkable submounts to the 'graveyard' list.
3844 */
select_submounts(struct mount * parent,struct list_head * graveyard)3845 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3846 {
3847 struct mount *this_parent = parent;
3848 struct list_head *next;
3849 int found = 0;
3850
3851 repeat:
3852 next = this_parent->mnt_mounts.next;
3853 resume:
3854 while (next != &this_parent->mnt_mounts) {
3855 struct list_head *tmp = next;
3856 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3857
3858 next = tmp->next;
3859 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3860 continue;
3861 /*
3862 * Descend a level if the d_mounts list is non-empty.
3863 */
3864 if (!list_empty(&mnt->mnt_mounts)) {
3865 this_parent = mnt;
3866 goto repeat;
3867 }
3868
3869 if (!propagate_mount_busy(mnt, 1)) {
3870 list_move_tail(&mnt->mnt_expire, graveyard);
3871 found++;
3872 }
3873 }
3874 /*
3875 * All done at this level ... ascend and resume the search
3876 */
3877 if (this_parent != parent) {
3878 next = this_parent->mnt_child.next;
3879 this_parent = this_parent->mnt_parent;
3880 goto resume;
3881 }
3882 return found;
3883 }
3884
3885 /*
3886 * process a list of expirable mountpoints with the intent of discarding any
3887 * submounts of a specific parent mountpoint
3888 *
3889 * mount_lock must be held for write
3890 */
shrink_submounts(struct mount * mnt)3891 static void shrink_submounts(struct mount *mnt)
3892 {
3893 LIST_HEAD(graveyard);
3894 struct mount *m;
3895
3896 /* extract submounts of 'mountpoint' from the expiration list */
3897 while (select_submounts(mnt, &graveyard)) {
3898 while (!list_empty(&graveyard)) {
3899 m = list_first_entry(&graveyard, struct mount,
3900 mnt_expire);
3901 touch_mnt_namespace(m->mnt_ns);
3902 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3903 }
3904 }
3905 }
3906
copy_mount_options(const void __user * data)3907 static void *copy_mount_options(const void __user * data)
3908 {
3909 char *copy;
3910 unsigned left, offset;
3911
3912 if (!data)
3913 return NULL;
3914
3915 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3916 if (!copy)
3917 return ERR_PTR(-ENOMEM);
3918
3919 left = copy_from_user(copy, data, PAGE_SIZE);
3920
3921 /*
3922 * Not all architectures have an exact copy_from_user(). Resort to
3923 * byte at a time.
3924 */
3925 offset = PAGE_SIZE - left;
3926 while (left) {
3927 char c;
3928 if (get_user(c, (const char __user *)data + offset))
3929 break;
3930 copy[offset] = c;
3931 left--;
3932 offset++;
3933 }
3934
3935 if (left == PAGE_SIZE) {
3936 kfree(copy);
3937 return ERR_PTR(-EFAULT);
3938 }
3939
3940 return copy;
3941 }
3942
copy_mount_string(const void __user * data)3943 static char *copy_mount_string(const void __user *data)
3944 {
3945 return data ? strndup_user(data, PATH_MAX) : NULL;
3946 }
3947
3948 /*
3949 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3950 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3951 *
3952 * data is a (void *) that can point to any structure up to
3953 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3954 * information (or be NULL).
3955 *
3956 * Pre-0.97 versions of mount() didn't have a flags word.
3957 * When the flags word was introduced its top half was required
3958 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3959 * Therefore, if this magic number is present, it carries no information
3960 * and must be discarded.
3961 */
path_mount(const char * dev_name,const struct path * path,const char * type_page,unsigned long flags,void * data_page)3962 int path_mount(const char *dev_name, const struct path *path,
3963 const char *type_page, unsigned long flags, void *data_page)
3964 {
3965 unsigned int mnt_flags = 0, sb_flags;
3966 int ret;
3967
3968 /* Discard magic */
3969 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3970 flags &= ~MS_MGC_MSK;
3971
3972 /* Basic sanity checks */
3973 if (data_page)
3974 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3975
3976 if (flags & MS_NOUSER)
3977 return -EINVAL;
3978
3979 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3980 if (ret)
3981 return ret;
3982 if (!may_mount())
3983 return -EPERM;
3984 if (flags & SB_MANDLOCK)
3985 warn_mandlock();
3986
3987 /* Default to relatime unless overriden */
3988 if (!(flags & MS_NOATIME))
3989 mnt_flags |= MNT_RELATIME;
3990
3991 /* Separate the per-mountpoint flags */
3992 if (flags & MS_NOSUID)
3993 mnt_flags |= MNT_NOSUID;
3994 if (flags & MS_NODEV)
3995 mnt_flags |= MNT_NODEV;
3996 if (flags & MS_NOEXEC)
3997 mnt_flags |= MNT_NOEXEC;
3998 if (flags & MS_NOATIME)
3999 mnt_flags |= MNT_NOATIME;
4000 if (flags & MS_NODIRATIME)
4001 mnt_flags |= MNT_NODIRATIME;
4002 if (flags & MS_STRICTATIME)
4003 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
4004 if (flags & MS_RDONLY)
4005 mnt_flags |= MNT_READONLY;
4006 if (flags & MS_NOSYMFOLLOW)
4007 mnt_flags |= MNT_NOSYMFOLLOW;
4008
4009 /* The default atime for remount is preservation */
4010 if ((flags & MS_REMOUNT) &&
4011 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
4012 MS_STRICTATIME)) == 0)) {
4013 mnt_flags &= ~MNT_ATIME_MASK;
4014 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
4015 }
4016
4017 sb_flags = flags & (SB_RDONLY |
4018 SB_SYNCHRONOUS |
4019 SB_MANDLOCK |
4020 SB_DIRSYNC |
4021 SB_SILENT |
4022 SB_POSIXACL |
4023 SB_LAZYTIME |
4024 SB_I_VERSION);
4025
4026 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
4027 return do_reconfigure_mnt(path, mnt_flags);
4028 if (flags & MS_REMOUNT)
4029 return do_remount(path, sb_flags, mnt_flags, data_page);
4030 if (flags & MS_BIND)
4031 return do_loopback(path, dev_name, flags & MS_REC);
4032 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
4033 return do_change_type(path, flags);
4034 if (flags & MS_MOVE)
4035 return do_move_mount_old(path, dev_name);
4036
4037 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
4038 data_page);
4039 }
4040
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)4041 int do_mount(const char *dev_name, const char __user *dir_name,
4042 const char *type_page, unsigned long flags, void *data_page)
4043 {
4044 struct path path __free(path_put) = {};
4045 int ret;
4046
4047 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
4048 if (ret)
4049 return ret;
4050 return path_mount(dev_name, &path, type_page, flags, data_page);
4051 }
4052
inc_mnt_namespaces(struct user_namespace * ns)4053 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
4054 {
4055 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
4056 }
4057
dec_mnt_namespaces(struct ucounts * ucounts)4058 static void dec_mnt_namespaces(struct ucounts *ucounts)
4059 {
4060 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
4061 }
4062
free_mnt_ns(struct mnt_namespace * ns)4063 static void free_mnt_ns(struct mnt_namespace *ns)
4064 {
4065 if (!is_anon_ns(ns))
4066 ns_common_free(ns);
4067 dec_mnt_namespaces(ns->ucounts);
4068 mnt_ns_tree_remove(ns);
4069 }
4070
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)4071 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
4072 {
4073 struct mnt_namespace *new_ns;
4074 struct ucounts *ucounts;
4075 int ret;
4076
4077 ucounts = inc_mnt_namespaces(user_ns);
4078 if (!ucounts)
4079 return ERR_PTR(-ENOSPC);
4080
4081 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
4082 if (!new_ns) {
4083 dec_mnt_namespaces(ucounts);
4084 return ERR_PTR(-ENOMEM);
4085 }
4086
4087 if (anon)
4088 ret = ns_common_init_inum(new_ns, MNT_NS_ANON_INO);
4089 else
4090 ret = ns_common_init(new_ns);
4091 if (ret) {
4092 kfree(new_ns);
4093 dec_mnt_namespaces(ucounts);
4094 return ERR_PTR(ret);
4095 }
4096 if (!anon)
4097 ns_tree_gen_id(&new_ns->ns);
4098 refcount_set(&new_ns->passive, 1);
4099 new_ns->mounts = RB_ROOT;
4100 init_waitqueue_head(&new_ns->poll);
4101 new_ns->user_ns = get_user_ns(user_ns);
4102 new_ns->ucounts = ucounts;
4103 return new_ns;
4104 }
4105
4106 __latent_entropy
copy_mnt_ns(u64 flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)4107 struct mnt_namespace *copy_mnt_ns(u64 flags, struct mnt_namespace *ns,
4108 struct user_namespace *user_ns, struct fs_struct *new_fs)
4109 {
4110 struct mnt_namespace *new_ns;
4111 struct vfsmount *rootmnt __free(mntput) = NULL;
4112 struct vfsmount *pwdmnt __free(mntput) = NULL;
4113 struct mount *p, *q;
4114 struct mount *old;
4115 struct mount *new;
4116 int copy_flags;
4117
4118 BUG_ON(!ns);
4119
4120 if (likely(!(flags & CLONE_NEWNS))) {
4121 get_mnt_ns(ns);
4122 return ns;
4123 }
4124
4125 old = ns->root;
4126
4127 new_ns = alloc_mnt_ns(user_ns, false);
4128 if (IS_ERR(new_ns))
4129 return new_ns;
4130
4131 guard(namespace_excl)();
4132 /* First pass: copy the tree topology */
4133 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
4134 if (user_ns != ns->user_ns)
4135 copy_flags |= CL_SLAVE;
4136 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
4137 if (IS_ERR(new)) {
4138 emptied_ns = new_ns;
4139 return ERR_CAST(new);
4140 }
4141 if (user_ns != ns->user_ns) {
4142 guard(mount_writer)();
4143 lock_mnt_tree(new);
4144 }
4145 new_ns->root = new;
4146
4147 /*
4148 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4149 * as belonging to new namespace. We have already acquired a private
4150 * fs_struct, so tsk->fs->lock is not needed.
4151 */
4152 p = old;
4153 q = new;
4154 while (p) {
4155 mnt_add_to_ns(new_ns, q);
4156 new_ns->nr_mounts++;
4157 if (new_fs) {
4158 if (&p->mnt == new_fs->root.mnt) {
4159 new_fs->root.mnt = mntget(&q->mnt);
4160 rootmnt = &p->mnt;
4161 }
4162 if (&p->mnt == new_fs->pwd.mnt) {
4163 new_fs->pwd.mnt = mntget(&q->mnt);
4164 pwdmnt = &p->mnt;
4165 }
4166 }
4167 p = next_mnt(p, old);
4168 q = next_mnt(q, new);
4169 if (!q)
4170 break;
4171 // an mntns binding we'd skipped?
4172 while (p->mnt.mnt_root != q->mnt.mnt_root)
4173 p = next_mnt(skip_mnt_tree(p), old);
4174 }
4175 ns_tree_add_raw(new_ns);
4176 return new_ns;
4177 }
4178
mount_subtree(struct vfsmount * m,const char * name)4179 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4180 {
4181 struct mount *mnt = real_mount(m);
4182 struct mnt_namespace *ns;
4183 struct super_block *s;
4184 struct path path;
4185 int err;
4186
4187 ns = alloc_mnt_ns(&init_user_ns, true);
4188 if (IS_ERR(ns)) {
4189 mntput(m);
4190 return ERR_CAST(ns);
4191 }
4192 ns->root = mnt;
4193 ns->nr_mounts++;
4194 mnt_add_to_ns(ns, mnt);
4195
4196 err = vfs_path_lookup(m->mnt_root, m,
4197 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4198
4199 put_mnt_ns(ns);
4200
4201 if (err)
4202 return ERR_PTR(err);
4203
4204 /* trade a vfsmount reference for active sb one */
4205 s = path.mnt->mnt_sb;
4206 atomic_inc(&s->s_active);
4207 mntput(path.mnt);
4208 /* lock the sucker */
4209 down_write(&s->s_umount);
4210 /* ... and return the root of (sub)tree on it */
4211 return path.dentry;
4212 }
4213 EXPORT_SYMBOL(mount_subtree);
4214
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)4215 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4216 char __user *, type, unsigned long, flags, void __user *, data)
4217 {
4218 int ret;
4219 char *kernel_type;
4220 char *kernel_dev;
4221 void *options;
4222
4223 kernel_type = copy_mount_string(type);
4224 ret = PTR_ERR(kernel_type);
4225 if (IS_ERR(kernel_type))
4226 goto out_type;
4227
4228 kernel_dev = copy_mount_string(dev_name);
4229 ret = PTR_ERR(kernel_dev);
4230 if (IS_ERR(kernel_dev))
4231 goto out_dev;
4232
4233 options = copy_mount_options(data);
4234 ret = PTR_ERR(options);
4235 if (IS_ERR(options))
4236 goto out_data;
4237
4238 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4239
4240 kfree(options);
4241 out_data:
4242 kfree(kernel_dev);
4243 out_dev:
4244 kfree(kernel_type);
4245 out_type:
4246 return ret;
4247 }
4248
4249 #define FSMOUNT_VALID_FLAGS \
4250 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
4251 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
4252 MOUNT_ATTR_NOSYMFOLLOW)
4253
4254 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4255
4256 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4257 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4258
attr_flags_to_mnt_flags(u64 attr_flags)4259 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4260 {
4261 unsigned int mnt_flags = 0;
4262
4263 if (attr_flags & MOUNT_ATTR_RDONLY)
4264 mnt_flags |= MNT_READONLY;
4265 if (attr_flags & MOUNT_ATTR_NOSUID)
4266 mnt_flags |= MNT_NOSUID;
4267 if (attr_flags & MOUNT_ATTR_NODEV)
4268 mnt_flags |= MNT_NODEV;
4269 if (attr_flags & MOUNT_ATTR_NOEXEC)
4270 mnt_flags |= MNT_NOEXEC;
4271 if (attr_flags & MOUNT_ATTR_NODIRATIME)
4272 mnt_flags |= MNT_NODIRATIME;
4273 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4274 mnt_flags |= MNT_NOSYMFOLLOW;
4275
4276 return mnt_flags;
4277 }
4278
4279 /*
4280 * Create a kernel mount representation for a new, prepared superblock
4281 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4282 */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)4283 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4284 unsigned int, attr_flags)
4285 {
4286 struct mnt_namespace *ns;
4287 struct fs_context *fc;
4288 struct file *file;
4289 struct path newmount;
4290 struct mount *mnt;
4291 unsigned int mnt_flags = 0;
4292 long ret;
4293
4294 if (!may_mount())
4295 return -EPERM;
4296
4297 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4298 return -EINVAL;
4299
4300 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4301 return -EINVAL;
4302
4303 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4304
4305 switch (attr_flags & MOUNT_ATTR__ATIME) {
4306 case MOUNT_ATTR_STRICTATIME:
4307 break;
4308 case MOUNT_ATTR_NOATIME:
4309 mnt_flags |= MNT_NOATIME;
4310 break;
4311 case MOUNT_ATTR_RELATIME:
4312 mnt_flags |= MNT_RELATIME;
4313 break;
4314 default:
4315 return -EINVAL;
4316 }
4317
4318 CLASS(fd, f)(fs_fd);
4319 if (fd_empty(f))
4320 return -EBADF;
4321
4322 if (fd_file(f)->f_op != &fscontext_fops)
4323 return -EINVAL;
4324
4325 fc = fd_file(f)->private_data;
4326
4327 ret = mutex_lock_interruptible(&fc->uapi_mutex);
4328 if (ret < 0)
4329 return ret;
4330
4331 /* There must be a valid superblock or we can't mount it */
4332 ret = -EINVAL;
4333 if (!fc->root)
4334 goto err_unlock;
4335
4336 ret = -EPERM;
4337 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4338 errorfcp(fc, "VFS", "Mount too revealing");
4339 goto err_unlock;
4340 }
4341
4342 ret = -EBUSY;
4343 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4344 goto err_unlock;
4345
4346 if (fc->sb_flags & SB_MANDLOCK)
4347 warn_mandlock();
4348
4349 newmount.mnt = vfs_create_mount(fc);
4350 if (IS_ERR(newmount.mnt)) {
4351 ret = PTR_ERR(newmount.mnt);
4352 goto err_unlock;
4353 }
4354 newmount.dentry = dget(fc->root);
4355 newmount.mnt->mnt_flags = mnt_flags;
4356
4357 /* We've done the mount bit - now move the file context into more or
4358 * less the same state as if we'd done an fspick(). We don't want to
4359 * do any memory allocation or anything like that at this point as we
4360 * don't want to have to handle any errors incurred.
4361 */
4362 vfs_clean_context(fc);
4363
4364 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4365 if (IS_ERR(ns)) {
4366 ret = PTR_ERR(ns);
4367 goto err_path;
4368 }
4369 mnt = real_mount(newmount.mnt);
4370 ns->root = mnt;
4371 ns->nr_mounts = 1;
4372 mnt_add_to_ns(ns, mnt);
4373 mntget(newmount.mnt);
4374
4375 /* Attach to an apparent O_PATH fd with a note that we need to unmount
4376 * it, not just simply put it.
4377 */
4378 file = dentry_open(&newmount, O_PATH, fc->cred);
4379 if (IS_ERR(file)) {
4380 dissolve_on_fput(newmount.mnt);
4381 ret = PTR_ERR(file);
4382 goto err_path;
4383 }
4384 file->f_mode |= FMODE_NEED_UNMOUNT;
4385
4386 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4387 if (ret >= 0)
4388 fd_install(ret, file);
4389 else
4390 fput(file);
4391
4392 err_path:
4393 path_put(&newmount);
4394 err_unlock:
4395 mutex_unlock(&fc->uapi_mutex);
4396 return ret;
4397 }
4398
vfs_move_mount(const struct path * from_path,const struct path * to_path,enum mnt_tree_flags_t mflags)4399 static inline int vfs_move_mount(const struct path *from_path,
4400 const struct path *to_path,
4401 enum mnt_tree_flags_t mflags)
4402 {
4403 int ret;
4404
4405 ret = security_move_mount(from_path, to_path);
4406 if (ret)
4407 return ret;
4408
4409 if (mflags & MNT_TREE_PROPAGATION)
4410 return do_set_group(from_path, to_path);
4411
4412 return do_move_mount(from_path, to_path, mflags);
4413 }
4414
4415 /*
4416 * Move a mount from one place to another. In combination with
4417 * fsopen()/fsmount() this is used to install a new mount and in combination
4418 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4419 * a mount subtree.
4420 *
4421 * Note the flags value is a combination of MOVE_MOUNT_* flags.
4422 */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)4423 SYSCALL_DEFINE5(move_mount,
4424 int, from_dfd, const char __user *, from_pathname,
4425 int, to_dfd, const char __user *, to_pathname,
4426 unsigned int, flags)
4427 {
4428 struct path to_path __free(path_put) = {};
4429 struct path from_path __free(path_put) = {};
4430 struct filename *to_name __free(putname) = NULL;
4431 struct filename *from_name __free(putname) = NULL;
4432 unsigned int lflags, uflags;
4433 enum mnt_tree_flags_t mflags = 0;
4434 int ret = 0;
4435
4436 if (!may_mount())
4437 return -EPERM;
4438
4439 if (flags & ~MOVE_MOUNT__MASK)
4440 return -EINVAL;
4441
4442 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4443 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4444 return -EINVAL;
4445
4446 if (flags & MOVE_MOUNT_SET_GROUP) mflags |= MNT_TREE_PROPAGATION;
4447 if (flags & MOVE_MOUNT_BENEATH) mflags |= MNT_TREE_BENEATH;
4448
4449 uflags = 0;
4450 if (flags & MOVE_MOUNT_T_EMPTY_PATH)
4451 uflags = AT_EMPTY_PATH;
4452
4453 to_name = getname_maybe_null(to_pathname, uflags);
4454 if (IS_ERR(to_name))
4455 return PTR_ERR(to_name);
4456
4457 if (!to_name && to_dfd >= 0) {
4458 CLASS(fd_raw, f_to)(to_dfd);
4459 if (fd_empty(f_to))
4460 return -EBADF;
4461
4462 to_path = fd_file(f_to)->f_path;
4463 path_get(&to_path);
4464 } else {
4465 lflags = 0;
4466 if (flags & MOVE_MOUNT_T_SYMLINKS)
4467 lflags |= LOOKUP_FOLLOW;
4468 if (flags & MOVE_MOUNT_T_AUTOMOUNTS)
4469 lflags |= LOOKUP_AUTOMOUNT;
4470 ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL);
4471 if (ret)
4472 return ret;
4473 }
4474
4475 uflags = 0;
4476 if (flags & MOVE_MOUNT_F_EMPTY_PATH)
4477 uflags = AT_EMPTY_PATH;
4478
4479 from_name = getname_maybe_null(from_pathname, uflags);
4480 if (IS_ERR(from_name))
4481 return PTR_ERR(from_name);
4482
4483 if (!from_name && from_dfd >= 0) {
4484 CLASS(fd_raw, f_from)(from_dfd);
4485 if (fd_empty(f_from))
4486 return -EBADF;
4487
4488 return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags);
4489 }
4490
4491 lflags = 0;
4492 if (flags & MOVE_MOUNT_F_SYMLINKS)
4493 lflags |= LOOKUP_FOLLOW;
4494 if (flags & MOVE_MOUNT_F_AUTOMOUNTS)
4495 lflags |= LOOKUP_AUTOMOUNT;
4496 ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL);
4497 if (ret)
4498 return ret;
4499
4500 return vfs_move_mount(&from_path, &to_path, mflags);
4501 }
4502
4503 /*
4504 * Return true if path is reachable from root
4505 *
4506 * locks: mount_locked_reader || namespace_shared && is_mounted(mnt)
4507 */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)4508 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4509 const struct path *root)
4510 {
4511 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4512 dentry = mnt->mnt_mountpoint;
4513 mnt = mnt->mnt_parent;
4514 }
4515 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4516 }
4517
path_is_under(const struct path * path1,const struct path * path2)4518 bool path_is_under(const struct path *path1, const struct path *path2)
4519 {
4520 guard(mount_locked_reader)();
4521 return is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4522 }
4523 EXPORT_SYMBOL(path_is_under);
4524
4525 /*
4526 * pivot_root Semantics:
4527 * Moves the root file system of the current process to the directory put_old,
4528 * makes new_root as the new root file system of the current process, and sets
4529 * root/cwd of all processes which had them on the current root to new_root.
4530 *
4531 * Restrictions:
4532 * The new_root and put_old must be directories, and must not be on the
4533 * same file system as the current process root. The put_old must be
4534 * underneath new_root, i.e. adding a non-zero number of /.. to the string
4535 * pointed to by put_old must yield the same directory as new_root. No other
4536 * file system may be mounted on put_old. After all, new_root is a mountpoint.
4537 *
4538 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4539 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4540 * in this situation.
4541 *
4542 * Notes:
4543 * - we don't move root/cwd if they are not at the root (reason: if something
4544 * cared enough to change them, it's probably wrong to force them elsewhere)
4545 * - it's okay to pick a root that isn't the root of a file system, e.g.
4546 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4547 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4548 * first.
4549 */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)4550 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4551 const char __user *, put_old)
4552 {
4553 struct path new __free(path_put) = {};
4554 struct path old __free(path_put) = {};
4555 struct path root __free(path_put) = {};
4556 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4557 int error;
4558
4559 if (!may_mount())
4560 return -EPERM;
4561
4562 error = user_path_at(AT_FDCWD, new_root,
4563 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4564 if (error)
4565 return error;
4566
4567 error = user_path_at(AT_FDCWD, put_old,
4568 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4569 if (error)
4570 return error;
4571
4572 error = security_sb_pivotroot(&old, &new);
4573 if (error)
4574 return error;
4575
4576 get_fs_root(current->fs, &root);
4577
4578 LOCK_MOUNT(old_mp, &old);
4579 old_mnt = old_mp.parent;
4580 if (IS_ERR(old_mnt))
4581 return PTR_ERR(old_mnt);
4582
4583 new_mnt = real_mount(new.mnt);
4584 root_mnt = real_mount(root.mnt);
4585 ex_parent = new_mnt->mnt_parent;
4586 root_parent = root_mnt->mnt_parent;
4587 if (IS_MNT_SHARED(old_mnt) ||
4588 IS_MNT_SHARED(ex_parent) ||
4589 IS_MNT_SHARED(root_parent))
4590 return -EINVAL;
4591 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4592 return -EINVAL;
4593 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4594 return -EINVAL;
4595 if (d_unlinked(new.dentry))
4596 return -ENOENT;
4597 if (new_mnt == root_mnt || old_mnt == root_mnt)
4598 return -EBUSY; /* loop, on the same file system */
4599 if (!path_mounted(&root))
4600 return -EINVAL; /* not a mountpoint */
4601 if (!mnt_has_parent(root_mnt))
4602 return -EINVAL; /* absolute root */
4603 if (!path_mounted(&new))
4604 return -EINVAL; /* not a mountpoint */
4605 if (!mnt_has_parent(new_mnt))
4606 return -EINVAL; /* absolute root */
4607 /* make sure we can reach put_old from new_root */
4608 if (!is_path_reachable(old_mnt, old_mp.mp->m_dentry, &new))
4609 return -EINVAL;
4610 /* make certain new is below the root */
4611 if (!is_path_reachable(new_mnt, new.dentry, &root))
4612 return -EINVAL;
4613 lock_mount_hash();
4614 umount_mnt(new_mnt);
4615 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4616 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4617 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4618 }
4619 /* mount new_root on / */
4620 attach_mnt(new_mnt, root_parent, root_mnt->mnt_mp);
4621 umount_mnt(root_mnt);
4622 /* mount old root on put_old */
4623 attach_mnt(root_mnt, old_mnt, old_mp.mp);
4624 touch_mnt_namespace(current->nsproxy->mnt_ns);
4625 /* A moved mount should not expire automatically */
4626 list_del_init(&new_mnt->mnt_expire);
4627 unlock_mount_hash();
4628 mnt_notify_add(root_mnt);
4629 mnt_notify_add(new_mnt);
4630 chroot_fs_refs(&root, &new);
4631 return 0;
4632 }
4633
recalc_flags(struct mount_kattr * kattr,struct mount * mnt)4634 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4635 {
4636 unsigned int flags = mnt->mnt.mnt_flags;
4637
4638 /* flags to clear */
4639 flags &= ~kattr->attr_clr;
4640 /* flags to raise */
4641 flags |= kattr->attr_set;
4642
4643 return flags;
4644 }
4645
can_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4646 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4647 {
4648 struct vfsmount *m = &mnt->mnt;
4649 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4650
4651 if (!kattr->mnt_idmap)
4652 return 0;
4653
4654 /*
4655 * Creating an idmapped mount with the filesystem wide idmapping
4656 * doesn't make sense so block that. We don't allow mushy semantics.
4657 */
4658 if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4659 return -EINVAL;
4660
4661 /*
4662 * We only allow an mount to change it's idmapping if it has
4663 * never been accessible to userspace.
4664 */
4665 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m))
4666 return -EPERM;
4667
4668 /* The underlying filesystem doesn't support idmapped mounts yet. */
4669 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4670 return -EINVAL;
4671
4672 /* The filesystem has turned off idmapped mounts. */
4673 if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4674 return -EINVAL;
4675
4676 /* We're not controlling the superblock. */
4677 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4678 return -EPERM;
4679
4680 /* Mount has already been visible in the filesystem hierarchy. */
4681 if (!is_anon_ns(mnt->mnt_ns))
4682 return -EINVAL;
4683
4684 return 0;
4685 }
4686
4687 /**
4688 * mnt_allow_writers() - check whether the attribute change allows writers
4689 * @kattr: the new mount attributes
4690 * @mnt: the mount to which @kattr will be applied
4691 *
4692 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4693 *
4694 * Return: true if writers need to be held, false if not
4695 */
mnt_allow_writers(const struct mount_kattr * kattr,const struct mount * mnt)4696 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4697 const struct mount *mnt)
4698 {
4699 return (!(kattr->attr_set & MNT_READONLY) ||
4700 (mnt->mnt.mnt_flags & MNT_READONLY)) &&
4701 !kattr->mnt_idmap;
4702 }
4703
mount_setattr_prepare(struct mount_kattr * kattr,struct mount * mnt)4704 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4705 {
4706 struct mount *m;
4707 int err;
4708
4709 for (m = mnt; m; m = next_mnt(m, mnt)) {
4710 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4711 err = -EPERM;
4712 break;
4713 }
4714
4715 err = can_idmap_mount(kattr, m);
4716 if (err)
4717 break;
4718
4719 if (!mnt_allow_writers(kattr, m)) {
4720 err = mnt_hold_writers(m);
4721 if (err) {
4722 m = next_mnt(m, mnt);
4723 break;
4724 }
4725 }
4726
4727 if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4728 return 0;
4729 }
4730
4731 if (err) {
4732 /* undo all mnt_hold_writers() we'd done */
4733 for (struct mount *p = mnt; p != m; p = next_mnt(p, mnt))
4734 mnt_unhold_writers(p);
4735 }
4736 return err;
4737 }
4738
do_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4739 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4740 {
4741 struct mnt_idmap *old_idmap;
4742
4743 if (!kattr->mnt_idmap)
4744 return;
4745
4746 old_idmap = mnt_idmap(&mnt->mnt);
4747
4748 /* Pairs with smp_load_acquire() in mnt_idmap(). */
4749 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4750 mnt_idmap_put(old_idmap);
4751 }
4752
mount_setattr_commit(struct mount_kattr * kattr,struct mount * mnt)4753 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4754 {
4755 struct mount *m;
4756
4757 for (m = mnt; m; m = next_mnt(m, mnt)) {
4758 unsigned int flags;
4759
4760 do_idmap_mount(kattr, m);
4761 flags = recalc_flags(kattr, m);
4762 WRITE_ONCE(m->mnt.mnt_flags, flags);
4763
4764 /* If we had to hold writers unblock them. */
4765 mnt_unhold_writers(m);
4766
4767 if (kattr->propagation)
4768 change_mnt_propagation(m, kattr->propagation);
4769 if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4770 break;
4771 }
4772 touch_mnt_namespace(mnt->mnt_ns);
4773 }
4774
do_mount_setattr(const struct path * path,struct mount_kattr * kattr)4775 static int do_mount_setattr(const struct path *path, struct mount_kattr *kattr)
4776 {
4777 struct mount *mnt = real_mount(path->mnt);
4778 int err = 0;
4779
4780 if (!path_mounted(path))
4781 return -EINVAL;
4782
4783 if (kattr->mnt_userns) {
4784 struct mnt_idmap *mnt_idmap;
4785
4786 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4787 if (IS_ERR(mnt_idmap))
4788 return PTR_ERR(mnt_idmap);
4789 kattr->mnt_idmap = mnt_idmap;
4790 }
4791
4792 if (kattr->propagation) {
4793 /*
4794 * Only take namespace_lock() if we're actually changing
4795 * propagation.
4796 */
4797 namespace_lock();
4798 if (kattr->propagation == MS_SHARED) {
4799 err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE);
4800 if (err) {
4801 namespace_unlock();
4802 return err;
4803 }
4804 }
4805 }
4806
4807 err = -EINVAL;
4808 lock_mount_hash();
4809
4810 if (!anon_ns_root(mnt) && !check_mnt(mnt))
4811 goto out;
4812
4813 /*
4814 * First, we get the mount tree in a shape where we can change mount
4815 * properties without failure. If we succeeded to do so we commit all
4816 * changes and if we failed we clean up.
4817 */
4818 err = mount_setattr_prepare(kattr, mnt);
4819 if (!err)
4820 mount_setattr_commit(kattr, mnt);
4821
4822 out:
4823 unlock_mount_hash();
4824
4825 if (kattr->propagation) {
4826 if (err)
4827 cleanup_group_ids(mnt, NULL);
4828 namespace_unlock();
4829 }
4830
4831 return err;
4832 }
4833
build_mount_idmapped(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)4834 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4835 struct mount_kattr *kattr)
4836 {
4837 struct ns_common *ns;
4838 struct user_namespace *mnt_userns;
4839
4840 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4841 return 0;
4842
4843 if (attr->attr_clr & MOUNT_ATTR_IDMAP) {
4844 /*
4845 * We can only remove an idmapping if it's never been
4846 * exposed to userspace.
4847 */
4848 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE))
4849 return -EINVAL;
4850
4851 /*
4852 * Removal of idmappings is equivalent to setting
4853 * nop_mnt_idmap.
4854 */
4855 if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) {
4856 kattr->mnt_idmap = &nop_mnt_idmap;
4857 return 0;
4858 }
4859 }
4860
4861 if (attr->userns_fd > INT_MAX)
4862 return -EINVAL;
4863
4864 CLASS(fd, f)(attr->userns_fd);
4865 if (fd_empty(f))
4866 return -EBADF;
4867
4868 if (!proc_ns_file(fd_file(f)))
4869 return -EINVAL;
4870
4871 ns = get_proc_ns(file_inode(fd_file(f)));
4872 if (ns->ns_type != CLONE_NEWUSER)
4873 return -EINVAL;
4874
4875 /*
4876 * The initial idmapping cannot be used to create an idmapped
4877 * mount. We use the initial idmapping as an indicator of a mount
4878 * that is not idmapped. It can simply be passed into helpers that
4879 * are aware of idmapped mounts as a convenient shortcut. A user
4880 * can just create a dedicated identity mapping to achieve the same
4881 * result.
4882 */
4883 mnt_userns = container_of(ns, struct user_namespace, ns);
4884 if (mnt_userns == &init_user_ns)
4885 return -EPERM;
4886
4887 /* We're not controlling the target namespace. */
4888 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
4889 return -EPERM;
4890
4891 kattr->mnt_userns = get_user_ns(mnt_userns);
4892 return 0;
4893 }
4894
build_mount_kattr(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)4895 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4896 struct mount_kattr *kattr)
4897 {
4898 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4899 return -EINVAL;
4900 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4901 return -EINVAL;
4902 kattr->propagation = attr->propagation;
4903
4904 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4905 return -EINVAL;
4906
4907 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4908 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4909
4910 /*
4911 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4912 * users wanting to transition to a different atime setting cannot
4913 * simply specify the atime setting in @attr_set, but must also
4914 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4915 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4916 * @attr_clr and that @attr_set can't have any atime bits set if
4917 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4918 */
4919 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4920 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4921 return -EINVAL;
4922
4923 /*
4924 * Clear all previous time settings as they are mutually
4925 * exclusive.
4926 */
4927 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4928 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4929 case MOUNT_ATTR_RELATIME:
4930 kattr->attr_set |= MNT_RELATIME;
4931 break;
4932 case MOUNT_ATTR_NOATIME:
4933 kattr->attr_set |= MNT_NOATIME;
4934 break;
4935 case MOUNT_ATTR_STRICTATIME:
4936 break;
4937 default:
4938 return -EINVAL;
4939 }
4940 } else {
4941 if (attr->attr_set & MOUNT_ATTR__ATIME)
4942 return -EINVAL;
4943 }
4944
4945 return build_mount_idmapped(attr, usize, kattr);
4946 }
4947
finish_mount_kattr(struct mount_kattr * kattr)4948 static void finish_mount_kattr(struct mount_kattr *kattr)
4949 {
4950 if (kattr->mnt_userns) {
4951 put_user_ns(kattr->mnt_userns);
4952 kattr->mnt_userns = NULL;
4953 }
4954
4955 if (kattr->mnt_idmap)
4956 mnt_idmap_put(kattr->mnt_idmap);
4957 }
4958
wants_mount_setattr(struct mount_attr __user * uattr,size_t usize,struct mount_kattr * kattr)4959 static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize,
4960 struct mount_kattr *kattr)
4961 {
4962 int ret;
4963 struct mount_attr attr;
4964
4965 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4966
4967 if (unlikely(usize > PAGE_SIZE))
4968 return -E2BIG;
4969 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4970 return -EINVAL;
4971
4972 if (!may_mount())
4973 return -EPERM;
4974
4975 ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4976 if (ret)
4977 return ret;
4978
4979 /* Don't bother walking through the mounts if this is a nop. */
4980 if (attr.attr_set == 0 &&
4981 attr.attr_clr == 0 &&
4982 attr.propagation == 0)
4983 return 0; /* Tell caller to not bother. */
4984
4985 ret = build_mount_kattr(&attr, usize, kattr);
4986 if (ret < 0)
4987 return ret;
4988
4989 return 1;
4990 }
4991
SYSCALL_DEFINE5(mount_setattr,int,dfd,const char __user *,path,unsigned int,flags,struct mount_attr __user *,uattr,size_t,usize)4992 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4993 unsigned int, flags, struct mount_attr __user *, uattr,
4994 size_t, usize)
4995 {
4996 int err;
4997 struct path target;
4998 struct mount_kattr kattr;
4999 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
5000
5001 if (flags & ~(AT_EMPTY_PATH |
5002 AT_RECURSIVE |
5003 AT_SYMLINK_NOFOLLOW |
5004 AT_NO_AUTOMOUNT))
5005 return -EINVAL;
5006
5007 if (flags & AT_NO_AUTOMOUNT)
5008 lookup_flags &= ~LOOKUP_AUTOMOUNT;
5009 if (flags & AT_SYMLINK_NOFOLLOW)
5010 lookup_flags &= ~LOOKUP_FOLLOW;
5011 if (flags & AT_EMPTY_PATH)
5012 lookup_flags |= LOOKUP_EMPTY;
5013
5014 kattr = (struct mount_kattr) {
5015 .lookup_flags = lookup_flags,
5016 };
5017
5018 if (flags & AT_RECURSIVE)
5019 kattr.kflags |= MOUNT_KATTR_RECURSE;
5020
5021 err = wants_mount_setattr(uattr, usize, &kattr);
5022 if (err <= 0)
5023 return err;
5024
5025 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
5026 if (!err) {
5027 err = do_mount_setattr(&target, &kattr);
5028 path_put(&target);
5029 }
5030 finish_mount_kattr(&kattr);
5031 return err;
5032 }
5033
SYSCALL_DEFINE5(open_tree_attr,int,dfd,const char __user *,filename,unsigned,flags,struct mount_attr __user *,uattr,size_t,usize)5034 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename,
5035 unsigned, flags, struct mount_attr __user *, uattr,
5036 size_t, usize)
5037 {
5038 struct file __free(fput) *file = NULL;
5039 int fd;
5040
5041 if (!uattr && usize)
5042 return -EINVAL;
5043
5044 file = vfs_open_tree(dfd, filename, flags);
5045 if (IS_ERR(file))
5046 return PTR_ERR(file);
5047
5048 if (uattr) {
5049 int ret;
5050 struct mount_kattr kattr = {};
5051
5052 if (flags & OPEN_TREE_CLONE)
5053 kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE;
5054 if (flags & AT_RECURSIVE)
5055 kattr.kflags |= MOUNT_KATTR_RECURSE;
5056
5057 ret = wants_mount_setattr(uattr, usize, &kattr);
5058 if (ret > 0) {
5059 ret = do_mount_setattr(&file->f_path, &kattr);
5060 finish_mount_kattr(&kattr);
5061 }
5062 if (ret)
5063 return ret;
5064 }
5065
5066 fd = get_unused_fd_flags(flags & O_CLOEXEC);
5067 if (fd < 0)
5068 return fd;
5069
5070 fd_install(fd, no_free_ptr(file));
5071 return fd;
5072 }
5073
show_path(struct seq_file * m,struct dentry * root)5074 int show_path(struct seq_file *m, struct dentry *root)
5075 {
5076 if (root->d_sb->s_op->show_path)
5077 return root->d_sb->s_op->show_path(m, root);
5078
5079 seq_dentry(m, root, " \t\n\\");
5080 return 0;
5081 }
5082
lookup_mnt_in_ns(u64 id,struct mnt_namespace * ns)5083 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
5084 {
5085 struct mount *mnt = mnt_find_id_at(ns, id);
5086
5087 if (!mnt || mnt->mnt_id_unique != id)
5088 return NULL;
5089
5090 return &mnt->mnt;
5091 }
5092
5093 struct kstatmount {
5094 struct statmount __user *buf;
5095 size_t bufsize;
5096 struct vfsmount *mnt;
5097 struct mnt_idmap *idmap;
5098 u64 mask;
5099 struct path root;
5100 struct seq_file seq;
5101
5102 /* Must be last --ends in a flexible-array member. */
5103 struct statmount sm;
5104 };
5105
mnt_to_attr_flags(struct vfsmount * mnt)5106 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
5107 {
5108 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
5109 u64 attr_flags = 0;
5110
5111 if (mnt_flags & MNT_READONLY)
5112 attr_flags |= MOUNT_ATTR_RDONLY;
5113 if (mnt_flags & MNT_NOSUID)
5114 attr_flags |= MOUNT_ATTR_NOSUID;
5115 if (mnt_flags & MNT_NODEV)
5116 attr_flags |= MOUNT_ATTR_NODEV;
5117 if (mnt_flags & MNT_NOEXEC)
5118 attr_flags |= MOUNT_ATTR_NOEXEC;
5119 if (mnt_flags & MNT_NODIRATIME)
5120 attr_flags |= MOUNT_ATTR_NODIRATIME;
5121 if (mnt_flags & MNT_NOSYMFOLLOW)
5122 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
5123
5124 if (mnt_flags & MNT_NOATIME)
5125 attr_flags |= MOUNT_ATTR_NOATIME;
5126 else if (mnt_flags & MNT_RELATIME)
5127 attr_flags |= MOUNT_ATTR_RELATIME;
5128 else
5129 attr_flags |= MOUNT_ATTR_STRICTATIME;
5130
5131 if (is_idmapped_mnt(mnt))
5132 attr_flags |= MOUNT_ATTR_IDMAP;
5133
5134 return attr_flags;
5135 }
5136
mnt_to_propagation_flags(struct mount * m)5137 static u64 mnt_to_propagation_flags(struct mount *m)
5138 {
5139 u64 propagation = 0;
5140
5141 if (IS_MNT_SHARED(m))
5142 propagation |= MS_SHARED;
5143 if (IS_MNT_SLAVE(m))
5144 propagation |= MS_SLAVE;
5145 if (IS_MNT_UNBINDABLE(m))
5146 propagation |= MS_UNBINDABLE;
5147 if (!propagation)
5148 propagation |= MS_PRIVATE;
5149
5150 return propagation;
5151 }
5152
statmount_sb_basic(struct kstatmount * s)5153 static void statmount_sb_basic(struct kstatmount *s)
5154 {
5155 struct super_block *sb = s->mnt->mnt_sb;
5156
5157 s->sm.mask |= STATMOUNT_SB_BASIC;
5158 s->sm.sb_dev_major = MAJOR(sb->s_dev);
5159 s->sm.sb_dev_minor = MINOR(sb->s_dev);
5160 s->sm.sb_magic = sb->s_magic;
5161 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
5162 }
5163
statmount_mnt_basic(struct kstatmount * s)5164 static void statmount_mnt_basic(struct kstatmount *s)
5165 {
5166 struct mount *m = real_mount(s->mnt);
5167
5168 s->sm.mask |= STATMOUNT_MNT_BASIC;
5169 s->sm.mnt_id = m->mnt_id_unique;
5170 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
5171 s->sm.mnt_id_old = m->mnt_id;
5172 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
5173 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
5174 s->sm.mnt_propagation = mnt_to_propagation_flags(m);
5175 s->sm.mnt_peer_group = m->mnt_group_id;
5176 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
5177 }
5178
statmount_propagate_from(struct kstatmount * s)5179 static void statmount_propagate_from(struct kstatmount *s)
5180 {
5181 struct mount *m = real_mount(s->mnt);
5182
5183 s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5184 if (IS_MNT_SLAVE(m))
5185 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root);
5186 }
5187
statmount_mnt_root(struct kstatmount * s,struct seq_file * seq)5188 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5189 {
5190 int ret;
5191 size_t start = seq->count;
5192
5193 ret = show_path(seq, s->mnt->mnt_root);
5194 if (ret)
5195 return ret;
5196
5197 if (unlikely(seq_has_overflowed(seq)))
5198 return -EAGAIN;
5199
5200 /*
5201 * Unescape the result. It would be better if supplied string was not
5202 * escaped in the first place, but that's a pretty invasive change.
5203 */
5204 seq->buf[seq->count] = '\0';
5205 seq->count = start;
5206 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5207 return 0;
5208 }
5209
statmount_mnt_point(struct kstatmount * s,struct seq_file * seq)5210 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5211 {
5212 struct vfsmount *mnt = s->mnt;
5213 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5214 int err;
5215
5216 err = seq_path_root(seq, &mnt_path, &s->root, "");
5217 return err == SEQ_SKIP ? 0 : err;
5218 }
5219
statmount_fs_type(struct kstatmount * s,struct seq_file * seq)5220 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5221 {
5222 struct super_block *sb = s->mnt->mnt_sb;
5223
5224 seq_puts(seq, sb->s_type->name);
5225 return 0;
5226 }
5227
statmount_fs_subtype(struct kstatmount * s,struct seq_file * seq)5228 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5229 {
5230 struct super_block *sb = s->mnt->mnt_sb;
5231
5232 if (sb->s_subtype)
5233 seq_puts(seq, sb->s_subtype);
5234 }
5235
statmount_sb_source(struct kstatmount * s,struct seq_file * seq)5236 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5237 {
5238 struct super_block *sb = s->mnt->mnt_sb;
5239 struct mount *r = real_mount(s->mnt);
5240
5241 if (sb->s_op->show_devname) {
5242 size_t start = seq->count;
5243 int ret;
5244
5245 ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5246 if (ret)
5247 return ret;
5248
5249 if (unlikely(seq_has_overflowed(seq)))
5250 return -EAGAIN;
5251
5252 /* Unescape the result */
5253 seq->buf[seq->count] = '\0';
5254 seq->count = start;
5255 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5256 } else {
5257 seq_puts(seq, r->mnt_devname);
5258 }
5259 return 0;
5260 }
5261
statmount_mnt_ns_id(struct kstatmount * s,struct mnt_namespace * ns)5262 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5263 {
5264 s->sm.mask |= STATMOUNT_MNT_NS_ID;
5265 s->sm.mnt_ns_id = ns->ns.ns_id;
5266 }
5267
statmount_mnt_opts(struct kstatmount * s,struct seq_file * seq)5268 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5269 {
5270 struct vfsmount *mnt = s->mnt;
5271 struct super_block *sb = mnt->mnt_sb;
5272 size_t start = seq->count;
5273 int err;
5274
5275 err = security_sb_show_options(seq, sb);
5276 if (err)
5277 return err;
5278
5279 if (sb->s_op->show_options) {
5280 err = sb->s_op->show_options(seq, mnt->mnt_root);
5281 if (err)
5282 return err;
5283 }
5284
5285 if (unlikely(seq_has_overflowed(seq)))
5286 return -EAGAIN;
5287
5288 if (seq->count == start)
5289 return 0;
5290
5291 /* skip leading comma */
5292 memmove(seq->buf + start, seq->buf + start + 1,
5293 seq->count - start - 1);
5294 seq->count--;
5295
5296 return 0;
5297 }
5298
statmount_opt_process(struct seq_file * seq,size_t start)5299 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5300 {
5301 char *buf_end, *opt_end, *src, *dst;
5302 int count = 0;
5303
5304 if (unlikely(seq_has_overflowed(seq)))
5305 return -EAGAIN;
5306
5307 buf_end = seq->buf + seq->count;
5308 dst = seq->buf + start;
5309 src = dst + 1; /* skip initial comma */
5310
5311 if (src >= buf_end) {
5312 seq->count = start;
5313 return 0;
5314 }
5315
5316 *buf_end = '\0';
5317 for (; src < buf_end; src = opt_end + 1) {
5318 opt_end = strchrnul(src, ',');
5319 *opt_end = '\0';
5320 dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5321 if (WARN_ON_ONCE(++count == INT_MAX))
5322 return -EOVERFLOW;
5323 }
5324 seq->count = dst - 1 - seq->buf;
5325 return count;
5326 }
5327
statmount_opt_array(struct kstatmount * s,struct seq_file * seq)5328 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5329 {
5330 struct vfsmount *mnt = s->mnt;
5331 struct super_block *sb = mnt->mnt_sb;
5332 size_t start = seq->count;
5333 int err;
5334
5335 if (!sb->s_op->show_options)
5336 return 0;
5337
5338 err = sb->s_op->show_options(seq, mnt->mnt_root);
5339 if (err)
5340 return err;
5341
5342 err = statmount_opt_process(seq, start);
5343 if (err < 0)
5344 return err;
5345
5346 s->sm.opt_num = err;
5347 return 0;
5348 }
5349
statmount_opt_sec_array(struct kstatmount * s,struct seq_file * seq)5350 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5351 {
5352 struct vfsmount *mnt = s->mnt;
5353 struct super_block *sb = mnt->mnt_sb;
5354 size_t start = seq->count;
5355 int err;
5356
5357 err = security_sb_show_options(seq, sb);
5358 if (err)
5359 return err;
5360
5361 err = statmount_opt_process(seq, start);
5362 if (err < 0)
5363 return err;
5364
5365 s->sm.opt_sec_num = err;
5366 return 0;
5367 }
5368
statmount_mnt_uidmap(struct kstatmount * s,struct seq_file * seq)5369 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq)
5370 {
5371 int ret;
5372
5373 ret = statmount_mnt_idmap(s->idmap, seq, true);
5374 if (ret < 0)
5375 return ret;
5376
5377 s->sm.mnt_uidmap_num = ret;
5378 /*
5379 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid
5380 * mappings. This allows userspace to distinguish between a
5381 * non-idmapped mount and an idmapped mount where none of the
5382 * individual mappings are valid in the caller's idmapping.
5383 */
5384 if (is_valid_mnt_idmap(s->idmap))
5385 s->sm.mask |= STATMOUNT_MNT_UIDMAP;
5386 return 0;
5387 }
5388
statmount_mnt_gidmap(struct kstatmount * s,struct seq_file * seq)5389 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq)
5390 {
5391 int ret;
5392
5393 ret = statmount_mnt_idmap(s->idmap, seq, false);
5394 if (ret < 0)
5395 return ret;
5396
5397 s->sm.mnt_gidmap_num = ret;
5398 /*
5399 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid
5400 * mappings. This allows userspace to distinguish between a
5401 * non-idmapped mount and an idmapped mount where none of the
5402 * individual mappings are valid in the caller's idmapping.
5403 */
5404 if (is_valid_mnt_idmap(s->idmap))
5405 s->sm.mask |= STATMOUNT_MNT_GIDMAP;
5406 return 0;
5407 }
5408
statmount_string(struct kstatmount * s,u64 flag)5409 static int statmount_string(struct kstatmount *s, u64 flag)
5410 {
5411 int ret = 0;
5412 size_t kbufsize;
5413 struct seq_file *seq = &s->seq;
5414 struct statmount *sm = &s->sm;
5415 u32 start, *offp;
5416
5417 /* Reserve an empty string at the beginning for any unset offsets */
5418 if (!seq->count)
5419 seq_putc(seq, 0);
5420
5421 start = seq->count;
5422
5423 switch (flag) {
5424 case STATMOUNT_FS_TYPE:
5425 offp = &sm->fs_type;
5426 ret = statmount_fs_type(s, seq);
5427 break;
5428 case STATMOUNT_MNT_ROOT:
5429 offp = &sm->mnt_root;
5430 ret = statmount_mnt_root(s, seq);
5431 break;
5432 case STATMOUNT_MNT_POINT:
5433 offp = &sm->mnt_point;
5434 ret = statmount_mnt_point(s, seq);
5435 break;
5436 case STATMOUNT_MNT_OPTS:
5437 offp = &sm->mnt_opts;
5438 ret = statmount_mnt_opts(s, seq);
5439 break;
5440 case STATMOUNT_OPT_ARRAY:
5441 offp = &sm->opt_array;
5442 ret = statmount_opt_array(s, seq);
5443 break;
5444 case STATMOUNT_OPT_SEC_ARRAY:
5445 offp = &sm->opt_sec_array;
5446 ret = statmount_opt_sec_array(s, seq);
5447 break;
5448 case STATMOUNT_FS_SUBTYPE:
5449 offp = &sm->fs_subtype;
5450 statmount_fs_subtype(s, seq);
5451 break;
5452 case STATMOUNT_SB_SOURCE:
5453 offp = &sm->sb_source;
5454 ret = statmount_sb_source(s, seq);
5455 break;
5456 case STATMOUNT_MNT_UIDMAP:
5457 sm->mnt_uidmap = start;
5458 ret = statmount_mnt_uidmap(s, seq);
5459 break;
5460 case STATMOUNT_MNT_GIDMAP:
5461 sm->mnt_gidmap = start;
5462 ret = statmount_mnt_gidmap(s, seq);
5463 break;
5464 default:
5465 WARN_ON_ONCE(true);
5466 return -EINVAL;
5467 }
5468
5469 /*
5470 * If nothing was emitted, return to avoid setting the flag
5471 * and terminating the buffer.
5472 */
5473 if (seq->count == start)
5474 return ret;
5475 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5476 return -EOVERFLOW;
5477 if (kbufsize >= s->bufsize)
5478 return -EOVERFLOW;
5479
5480 /* signal a retry */
5481 if (unlikely(seq_has_overflowed(seq)))
5482 return -EAGAIN;
5483
5484 if (ret)
5485 return ret;
5486
5487 seq->buf[seq->count++] = '\0';
5488 sm->mask |= flag;
5489 *offp = start;
5490 return 0;
5491 }
5492
copy_statmount_to_user(struct kstatmount * s)5493 static int copy_statmount_to_user(struct kstatmount *s)
5494 {
5495 struct statmount *sm = &s->sm;
5496 struct seq_file *seq = &s->seq;
5497 char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5498 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5499
5500 if (seq->count && copy_to_user(str, seq->buf, seq->count))
5501 return -EFAULT;
5502
5503 /* Return the number of bytes copied to the buffer */
5504 sm->size = copysize + seq->count;
5505 if (copy_to_user(s->buf, sm, copysize))
5506 return -EFAULT;
5507
5508 return 0;
5509 }
5510
listmnt_next(struct mount * curr,bool reverse)5511 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5512 {
5513 struct rb_node *node;
5514
5515 if (reverse)
5516 node = rb_prev(&curr->mnt_node);
5517 else
5518 node = rb_next(&curr->mnt_node);
5519
5520 return node_to_mount(node);
5521 }
5522
grab_requested_root(struct mnt_namespace * ns,struct path * root)5523 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5524 {
5525 struct mount *first, *child;
5526
5527 rwsem_assert_held(&namespace_sem);
5528
5529 /* We're looking at our own ns, just use get_fs_root. */
5530 if (ns == current->nsproxy->mnt_ns) {
5531 get_fs_root(current->fs, root);
5532 return 0;
5533 }
5534
5535 /*
5536 * We have to find the first mount in our ns and use that, however it
5537 * may not exist, so handle that properly.
5538 */
5539 if (mnt_ns_empty(ns))
5540 return -ENOENT;
5541
5542 first = child = ns->root;
5543 for (;;) {
5544 child = listmnt_next(child, false);
5545 if (!child)
5546 return -ENOENT;
5547 if (child->mnt_parent == first)
5548 break;
5549 }
5550
5551 root->mnt = mntget(&child->mnt);
5552 root->dentry = dget(root->mnt->mnt_root);
5553 return 0;
5554 }
5555
5556 /* This must be updated whenever a new flag is added */
5557 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \
5558 STATMOUNT_MNT_BASIC | \
5559 STATMOUNT_PROPAGATE_FROM | \
5560 STATMOUNT_MNT_ROOT | \
5561 STATMOUNT_MNT_POINT | \
5562 STATMOUNT_FS_TYPE | \
5563 STATMOUNT_MNT_NS_ID | \
5564 STATMOUNT_MNT_OPTS | \
5565 STATMOUNT_FS_SUBTYPE | \
5566 STATMOUNT_SB_SOURCE | \
5567 STATMOUNT_OPT_ARRAY | \
5568 STATMOUNT_OPT_SEC_ARRAY | \
5569 STATMOUNT_SUPPORTED_MASK | \
5570 STATMOUNT_MNT_UIDMAP | \
5571 STATMOUNT_MNT_GIDMAP)
5572
5573 /* locks: namespace_shared */
do_statmount(struct kstatmount * s,u64 mnt_id,u64 mnt_ns_id,struct mnt_namespace * ns)5574 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5575 struct mnt_namespace *ns)
5576 {
5577 struct mount *m;
5578 int err;
5579
5580 /* Has the namespace already been emptied? */
5581 if (mnt_ns_id && mnt_ns_empty(ns))
5582 return -ENOENT;
5583
5584 s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5585 if (!s->mnt)
5586 return -ENOENT;
5587
5588 err = grab_requested_root(ns, &s->root);
5589 if (err)
5590 return err;
5591
5592 /*
5593 * Don't trigger audit denials. We just want to determine what
5594 * mounts to show users.
5595 */
5596 m = real_mount(s->mnt);
5597 if (!is_path_reachable(m, m->mnt.mnt_root, &s->root) &&
5598 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5599 return -EPERM;
5600
5601 err = security_sb_statfs(s->mnt->mnt_root);
5602 if (err)
5603 return err;
5604
5605 /*
5606 * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap
5607 * can change concurrently as we only hold the read-side of the
5608 * namespace semaphore and mount properties may change with only
5609 * the mount lock held.
5610 *
5611 * We could sample the mount lock sequence counter to detect
5612 * those changes and retry. But it's not worth it. Worst that
5613 * happens is that the mnt->mnt_idmap pointer is already changed
5614 * while mnt->mnt_flags isn't or vica versa. So what.
5615 *
5616 * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved
5617 * via READ_ONCE()/WRITE_ONCE() and guard against theoretical
5618 * torn read/write. That's all we care about right now.
5619 */
5620 s->idmap = mnt_idmap(s->mnt);
5621 if (s->mask & STATMOUNT_MNT_BASIC)
5622 statmount_mnt_basic(s);
5623
5624 if (s->mask & STATMOUNT_SB_BASIC)
5625 statmount_sb_basic(s);
5626
5627 if (s->mask & STATMOUNT_PROPAGATE_FROM)
5628 statmount_propagate_from(s);
5629
5630 if (s->mask & STATMOUNT_FS_TYPE)
5631 err = statmount_string(s, STATMOUNT_FS_TYPE);
5632
5633 if (!err && s->mask & STATMOUNT_MNT_ROOT)
5634 err = statmount_string(s, STATMOUNT_MNT_ROOT);
5635
5636 if (!err && s->mask & STATMOUNT_MNT_POINT)
5637 err = statmount_string(s, STATMOUNT_MNT_POINT);
5638
5639 if (!err && s->mask & STATMOUNT_MNT_OPTS)
5640 err = statmount_string(s, STATMOUNT_MNT_OPTS);
5641
5642 if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5643 err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5644
5645 if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5646 err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5647
5648 if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5649 err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5650
5651 if (!err && s->mask & STATMOUNT_SB_SOURCE)
5652 err = statmount_string(s, STATMOUNT_SB_SOURCE);
5653
5654 if (!err && s->mask & STATMOUNT_MNT_UIDMAP)
5655 err = statmount_string(s, STATMOUNT_MNT_UIDMAP);
5656
5657 if (!err && s->mask & STATMOUNT_MNT_GIDMAP)
5658 err = statmount_string(s, STATMOUNT_MNT_GIDMAP);
5659
5660 if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5661 statmount_mnt_ns_id(s, ns);
5662
5663 if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) {
5664 s->sm.mask |= STATMOUNT_SUPPORTED_MASK;
5665 s->sm.supported_mask = STATMOUNT_SUPPORTED;
5666 }
5667
5668 if (err)
5669 return err;
5670
5671 /* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */
5672 WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask);
5673
5674 return 0;
5675 }
5676
retry_statmount(const long ret,size_t * seq_size)5677 static inline bool retry_statmount(const long ret, size_t *seq_size)
5678 {
5679 if (likely(ret != -EAGAIN))
5680 return false;
5681 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5682 return false;
5683 if (unlikely(*seq_size > MAX_RW_COUNT))
5684 return false;
5685 return true;
5686 }
5687
5688 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5689 STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5690 STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5691 STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \
5692 STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP)
5693
prepare_kstatmount(struct kstatmount * ks,struct mnt_id_req * kreq,struct statmount __user * buf,size_t bufsize,size_t seq_size)5694 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5695 struct statmount __user *buf, size_t bufsize,
5696 size_t seq_size)
5697 {
5698 if (!access_ok(buf, bufsize))
5699 return -EFAULT;
5700
5701 memset(ks, 0, sizeof(*ks));
5702 ks->mask = kreq->param;
5703 ks->buf = buf;
5704 ks->bufsize = bufsize;
5705
5706 if (ks->mask & STATMOUNT_STRING_REQ) {
5707 if (bufsize == sizeof(ks->sm))
5708 return -EOVERFLOW;
5709
5710 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5711 if (!ks->seq.buf)
5712 return -ENOMEM;
5713
5714 ks->seq.size = seq_size;
5715 }
5716
5717 return 0;
5718 }
5719
copy_mnt_id_req(const struct mnt_id_req __user * req,struct mnt_id_req * kreq)5720 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5721 struct mnt_id_req *kreq)
5722 {
5723 int ret;
5724 size_t usize;
5725
5726 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5727
5728 ret = get_user(usize, &req->size);
5729 if (ret)
5730 return -EFAULT;
5731 if (unlikely(usize > PAGE_SIZE))
5732 return -E2BIG;
5733 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5734 return -EINVAL;
5735 memset(kreq, 0, sizeof(*kreq));
5736 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5737 if (ret)
5738 return ret;
5739 if (kreq->spare != 0)
5740 return -EINVAL;
5741 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5742 if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5743 return -EINVAL;
5744 return 0;
5745 }
5746
5747 /*
5748 * If the user requested a specific mount namespace id, look that up and return
5749 * that, or if not simply grab a passive reference on our mount namespace and
5750 * return that.
5751 */
grab_requested_mnt_ns(const struct mnt_id_req * kreq)5752 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5753 {
5754 struct mnt_namespace *mnt_ns;
5755
5756 if (kreq->mnt_ns_id && kreq->spare)
5757 return ERR_PTR(-EINVAL);
5758
5759 if (kreq->mnt_ns_id)
5760 return lookup_mnt_ns(kreq->mnt_ns_id);
5761
5762 if (kreq->spare) {
5763 struct ns_common *ns;
5764
5765 CLASS(fd, f)(kreq->spare);
5766 if (fd_empty(f))
5767 return ERR_PTR(-EBADF);
5768
5769 if (!proc_ns_file(fd_file(f)))
5770 return ERR_PTR(-EINVAL);
5771
5772 ns = get_proc_ns(file_inode(fd_file(f)));
5773 if (ns->ns_type != CLONE_NEWNS)
5774 return ERR_PTR(-EINVAL);
5775
5776 mnt_ns = to_mnt_ns(ns);
5777 } else {
5778 mnt_ns = current->nsproxy->mnt_ns;
5779 }
5780
5781 refcount_inc(&mnt_ns->passive);
5782 return mnt_ns;
5783 }
5784
SYSCALL_DEFINE4(statmount,const struct mnt_id_req __user *,req,struct statmount __user *,buf,size_t,bufsize,unsigned int,flags)5785 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5786 struct statmount __user *, buf, size_t, bufsize,
5787 unsigned int, flags)
5788 {
5789 struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5790 struct kstatmount *ks __free(kfree) = NULL;
5791 struct mnt_id_req kreq;
5792 /* We currently support retrieval of 3 strings. */
5793 size_t seq_size = 3 * PATH_MAX;
5794 int ret;
5795
5796 if (flags)
5797 return -EINVAL;
5798
5799 ret = copy_mnt_id_req(req, &kreq);
5800 if (ret)
5801 return ret;
5802
5803 ns = grab_requested_mnt_ns(&kreq);
5804 if (!ns)
5805 return -ENOENT;
5806
5807 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5808 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5809 return -ENOENT;
5810
5811 ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5812 if (!ks)
5813 return -ENOMEM;
5814
5815 retry:
5816 ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5817 if (ret)
5818 return ret;
5819
5820 scoped_guard(namespace_shared)
5821 ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5822
5823 if (!ret)
5824 ret = copy_statmount_to_user(ks);
5825 kvfree(ks->seq.buf);
5826 path_put(&ks->root);
5827 if (retry_statmount(ret, &seq_size))
5828 goto retry;
5829 return ret;
5830 }
5831
5832 struct klistmount {
5833 u64 last_mnt_id;
5834 u64 mnt_parent_id;
5835 u64 *kmnt_ids;
5836 u32 nr_mnt_ids;
5837 struct mnt_namespace *ns;
5838 struct path root;
5839 };
5840
5841 /* locks: namespace_shared */
do_listmount(struct klistmount * kls,bool reverse)5842 static ssize_t do_listmount(struct klistmount *kls, bool reverse)
5843 {
5844 struct mnt_namespace *ns = kls->ns;
5845 u64 mnt_parent_id = kls->mnt_parent_id;
5846 u64 last_mnt_id = kls->last_mnt_id;
5847 u64 *mnt_ids = kls->kmnt_ids;
5848 size_t nr_mnt_ids = kls->nr_mnt_ids;
5849 struct path orig;
5850 struct mount *r, *first;
5851 ssize_t ret;
5852
5853 rwsem_assert_held(&namespace_sem);
5854
5855 ret = grab_requested_root(ns, &kls->root);
5856 if (ret)
5857 return ret;
5858
5859 if (mnt_parent_id == LSMT_ROOT) {
5860 orig = kls->root;
5861 } else {
5862 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5863 if (!orig.mnt)
5864 return -ENOENT;
5865 orig.dentry = orig.mnt->mnt_root;
5866 }
5867
5868 /*
5869 * Don't trigger audit denials. We just want to determine what
5870 * mounts to show users.
5871 */
5872 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &kls->root) &&
5873 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5874 return -EPERM;
5875
5876 ret = security_sb_statfs(orig.dentry);
5877 if (ret)
5878 return ret;
5879
5880 if (!last_mnt_id) {
5881 if (reverse)
5882 first = node_to_mount(ns->mnt_last_node);
5883 else
5884 first = node_to_mount(ns->mnt_first_node);
5885 } else {
5886 if (reverse)
5887 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5888 else
5889 first = mnt_find_id_at(ns, last_mnt_id + 1);
5890 }
5891
5892 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5893 if (r->mnt_id_unique == mnt_parent_id)
5894 continue;
5895 if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5896 continue;
5897 *mnt_ids = r->mnt_id_unique;
5898 mnt_ids++;
5899 nr_mnt_ids--;
5900 ret++;
5901 }
5902 return ret;
5903 }
5904
__free_klistmount_free(const struct klistmount * kls)5905 static void __free_klistmount_free(const struct klistmount *kls)
5906 {
5907 path_put(&kls->root);
5908 kvfree(kls->kmnt_ids);
5909 mnt_ns_release(kls->ns);
5910 }
5911
prepare_klistmount(struct klistmount * kls,struct mnt_id_req * kreq,size_t nr_mnt_ids)5912 static inline int prepare_klistmount(struct klistmount *kls, struct mnt_id_req *kreq,
5913 size_t nr_mnt_ids)
5914 {
5915
5916 u64 last_mnt_id = kreq->param;
5917
5918 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5919 if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
5920 return -EINVAL;
5921
5922 kls->last_mnt_id = last_mnt_id;
5923
5924 kls->nr_mnt_ids = nr_mnt_ids;
5925 kls->kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kls->kmnt_ids),
5926 GFP_KERNEL_ACCOUNT);
5927 if (!kls->kmnt_ids)
5928 return -ENOMEM;
5929
5930 kls->ns = grab_requested_mnt_ns(kreq);
5931 if (!kls->ns)
5932 return -ENOENT;
5933
5934 kls->mnt_parent_id = kreq->mnt_id;
5935 return 0;
5936 }
5937
SYSCALL_DEFINE4(listmount,const struct mnt_id_req __user *,req,u64 __user *,mnt_ids,size_t,nr_mnt_ids,unsigned int,flags)5938 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
5939 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5940 {
5941 struct klistmount kls __free(klistmount_free) = {};
5942 const size_t maxcount = 1000000;
5943 struct mnt_id_req kreq;
5944 ssize_t ret;
5945
5946 if (flags & ~LISTMOUNT_REVERSE)
5947 return -EINVAL;
5948
5949 /*
5950 * If the mount namespace really has more than 1 million mounts the
5951 * caller must iterate over the mount namespace (and reconsider their
5952 * system design...).
5953 */
5954 if (unlikely(nr_mnt_ids > maxcount))
5955 return -EOVERFLOW;
5956
5957 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5958 return -EFAULT;
5959
5960 ret = copy_mnt_id_req(req, &kreq);
5961 if (ret)
5962 return ret;
5963
5964 ret = prepare_klistmount(&kls, &kreq, nr_mnt_ids);
5965 if (ret)
5966 return ret;
5967
5968 if (kreq.mnt_ns_id && (kls.ns != current->nsproxy->mnt_ns) &&
5969 !ns_capable_noaudit(kls.ns->user_ns, CAP_SYS_ADMIN))
5970 return -ENOENT;
5971
5972 /*
5973 * We only need to guard against mount topology changes as
5974 * listmount() doesn't care about any mount properties.
5975 */
5976 scoped_guard(namespace_shared)
5977 ret = do_listmount(&kls, (flags & LISTMOUNT_REVERSE));
5978 if (ret <= 0)
5979 return ret;
5980
5981 if (copy_to_user(mnt_ids, kls.kmnt_ids, ret * sizeof(*mnt_ids)))
5982 return -EFAULT;
5983
5984 return ret;
5985 }
5986
5987 struct mnt_namespace init_mnt_ns = {
5988 .ns.inum = ns_init_inum(&init_mnt_ns),
5989 .ns.ops = &mntns_operations,
5990 .user_ns = &init_user_ns,
5991 .ns.__ns_ref = REFCOUNT_INIT(1),
5992 .ns.ns_type = ns_common_type(&init_mnt_ns),
5993 .passive = REFCOUNT_INIT(1),
5994 .mounts = RB_ROOT,
5995 .poll = __WAIT_QUEUE_HEAD_INITIALIZER(init_mnt_ns.poll),
5996 };
5997
init_mount_tree(void)5998 static void __init init_mount_tree(void)
5999 {
6000 struct vfsmount *mnt;
6001 struct mount *m;
6002 struct path root;
6003
6004 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", initramfs_options);
6005 if (IS_ERR(mnt))
6006 panic("Can't create rootfs");
6007
6008 m = real_mount(mnt);
6009 init_mnt_ns.root = m;
6010 init_mnt_ns.nr_mounts = 1;
6011 mnt_add_to_ns(&init_mnt_ns, m);
6012 init_task.nsproxy->mnt_ns = &init_mnt_ns;
6013 get_mnt_ns(&init_mnt_ns);
6014
6015 root.mnt = mnt;
6016 root.dentry = mnt->mnt_root;
6017
6018 set_fs_pwd(current->fs, &root);
6019 set_fs_root(current->fs, &root);
6020
6021 ns_tree_add(&init_mnt_ns);
6022 }
6023
mnt_init(void)6024 void __init mnt_init(void)
6025 {
6026 int err;
6027
6028 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
6029 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
6030
6031 mount_hashtable = alloc_large_system_hash("Mount-cache",
6032 sizeof(struct hlist_head),
6033 mhash_entries, 19,
6034 HASH_ZERO,
6035 &m_hash_shift, &m_hash_mask, 0, 0);
6036 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
6037 sizeof(struct hlist_head),
6038 mphash_entries, 19,
6039 HASH_ZERO,
6040 &mp_hash_shift, &mp_hash_mask, 0, 0);
6041
6042 if (!mount_hashtable || !mountpoint_hashtable)
6043 panic("Failed to allocate mount hash table\n");
6044
6045 kernfs_init();
6046
6047 err = sysfs_init();
6048 if (err)
6049 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
6050 __func__, err);
6051 fs_kobj = kobject_create_and_add("fs", NULL);
6052 if (!fs_kobj)
6053 printk(KERN_WARNING "%s: kobj create error\n", __func__);
6054 shmem_init();
6055 init_rootfs();
6056 init_mount_tree();
6057 }
6058
put_mnt_ns(struct mnt_namespace * ns)6059 void put_mnt_ns(struct mnt_namespace *ns)
6060 {
6061 if (!ns_ref_put(ns))
6062 return;
6063 guard(namespace_excl)();
6064 emptied_ns = ns;
6065 guard(mount_writer)();
6066 umount_tree(ns->root, 0);
6067 }
6068
kern_mount(struct file_system_type * type)6069 struct vfsmount *kern_mount(struct file_system_type *type)
6070 {
6071 struct vfsmount *mnt;
6072 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
6073 if (!IS_ERR(mnt)) {
6074 /*
6075 * it is a longterm mount, don't release mnt until
6076 * we unmount before file sys is unregistered
6077 */
6078 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
6079 }
6080 return mnt;
6081 }
6082 EXPORT_SYMBOL_GPL(kern_mount);
6083
kern_unmount(struct vfsmount * mnt)6084 void kern_unmount(struct vfsmount *mnt)
6085 {
6086 /* release long term mount so mount point can be released */
6087 if (!IS_ERR(mnt)) {
6088 mnt_make_shortterm(mnt);
6089 synchronize_rcu(); /* yecchhh... */
6090 mntput(mnt);
6091 }
6092 }
6093 EXPORT_SYMBOL(kern_unmount);
6094
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)6095 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
6096 {
6097 unsigned int i;
6098
6099 for (i = 0; i < num; i++)
6100 mnt_make_shortterm(mnt[i]);
6101 synchronize_rcu_expedited();
6102 for (i = 0; i < num; i++)
6103 mntput(mnt[i]);
6104 }
6105 EXPORT_SYMBOL(kern_unmount_array);
6106
our_mnt(struct vfsmount * mnt)6107 bool our_mnt(struct vfsmount *mnt)
6108 {
6109 return check_mnt(real_mount(mnt));
6110 }
6111
current_chrooted(void)6112 bool current_chrooted(void)
6113 {
6114 /* Does the current process have a non-standard root */
6115 struct path fs_root __free(path_put) = {};
6116 struct mount *root;
6117
6118 get_fs_root(current->fs, &fs_root);
6119
6120 /* Find the namespace root */
6121
6122 guard(mount_locked_reader)();
6123
6124 root = topmost_overmount(current->nsproxy->mnt_ns->root);
6125
6126 return fs_root.mnt != &root->mnt || !path_mounted(&fs_root);
6127 }
6128
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)6129 static bool mnt_already_visible(struct mnt_namespace *ns,
6130 const struct super_block *sb,
6131 int *new_mnt_flags)
6132 {
6133 int new_flags = *new_mnt_flags;
6134 struct mount *mnt, *n;
6135
6136 guard(namespace_shared)();
6137 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
6138 struct mount *child;
6139 int mnt_flags;
6140
6141 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
6142 continue;
6143
6144 /* This mount is not fully visible if it's root directory
6145 * is not the root directory of the filesystem.
6146 */
6147 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
6148 continue;
6149
6150 /* A local view of the mount flags */
6151 mnt_flags = mnt->mnt.mnt_flags;
6152
6153 /* Don't miss readonly hidden in the superblock flags */
6154 if (sb_rdonly(mnt->mnt.mnt_sb))
6155 mnt_flags |= MNT_LOCK_READONLY;
6156
6157 /* Verify the mount flags are equal to or more permissive
6158 * than the proposed new mount.
6159 */
6160 if ((mnt_flags & MNT_LOCK_READONLY) &&
6161 !(new_flags & MNT_READONLY))
6162 continue;
6163 if ((mnt_flags & MNT_LOCK_ATIME) &&
6164 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
6165 continue;
6166
6167 /* This mount is not fully visible if there are any
6168 * locked child mounts that cover anything except for
6169 * empty directories.
6170 */
6171 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
6172 struct inode *inode = child->mnt_mountpoint->d_inode;
6173 /* Only worry about locked mounts */
6174 if (!(child->mnt.mnt_flags & MNT_LOCKED))
6175 continue;
6176 /* Is the directory permanently empty? */
6177 if (!is_empty_dir_inode(inode))
6178 goto next;
6179 }
6180 /* Preserve the locked attributes */
6181 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
6182 MNT_LOCK_ATIME);
6183 return true;
6184 next: ;
6185 }
6186 return false;
6187 }
6188
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)6189 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
6190 {
6191 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
6192 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
6193 unsigned long s_iflags;
6194
6195 if (ns->user_ns == &init_user_ns)
6196 return false;
6197
6198 /* Can this filesystem be too revealing? */
6199 s_iflags = sb->s_iflags;
6200 if (!(s_iflags & SB_I_USERNS_VISIBLE))
6201 return false;
6202
6203 if ((s_iflags & required_iflags) != required_iflags) {
6204 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
6205 required_iflags);
6206 return true;
6207 }
6208
6209 return !mnt_already_visible(ns, sb, new_mnt_flags);
6210 }
6211
mnt_may_suid(struct vfsmount * mnt)6212 bool mnt_may_suid(struct vfsmount *mnt)
6213 {
6214 /*
6215 * Foreign mounts (accessed via fchdir or through /proc
6216 * symlinks) are always treated as if they are nosuid. This
6217 * prevents namespaces from trusting potentially unsafe
6218 * suid/sgid bits, file caps, or security labels that originate
6219 * in other namespaces.
6220 */
6221 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
6222 current_in_userns(mnt->mnt_sb->s_user_ns);
6223 }
6224
mntns_get(struct task_struct * task)6225 static struct ns_common *mntns_get(struct task_struct *task)
6226 {
6227 struct ns_common *ns = NULL;
6228 struct nsproxy *nsproxy;
6229
6230 task_lock(task);
6231 nsproxy = task->nsproxy;
6232 if (nsproxy) {
6233 ns = &nsproxy->mnt_ns->ns;
6234 get_mnt_ns(to_mnt_ns(ns));
6235 }
6236 task_unlock(task);
6237
6238 return ns;
6239 }
6240
mntns_put(struct ns_common * ns)6241 static void mntns_put(struct ns_common *ns)
6242 {
6243 put_mnt_ns(to_mnt_ns(ns));
6244 }
6245
mntns_install(struct nsset * nsset,struct ns_common * ns)6246 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
6247 {
6248 struct nsproxy *nsproxy = nsset->nsproxy;
6249 struct fs_struct *fs = nsset->fs;
6250 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
6251 struct user_namespace *user_ns = nsset->cred->user_ns;
6252 struct path root;
6253 int err;
6254
6255 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
6256 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
6257 !ns_capable(user_ns, CAP_SYS_ADMIN))
6258 return -EPERM;
6259
6260 if (is_anon_ns(mnt_ns))
6261 return -EINVAL;
6262
6263 if (fs->users != 1)
6264 return -EINVAL;
6265
6266 get_mnt_ns(mnt_ns);
6267 old_mnt_ns = nsproxy->mnt_ns;
6268 nsproxy->mnt_ns = mnt_ns;
6269
6270 /* Find the root */
6271 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
6272 "/", LOOKUP_DOWN, &root);
6273 if (err) {
6274 /* revert to old namespace */
6275 nsproxy->mnt_ns = old_mnt_ns;
6276 put_mnt_ns(mnt_ns);
6277 return err;
6278 }
6279
6280 put_mnt_ns(old_mnt_ns);
6281
6282 /* Update the pwd and root */
6283 set_fs_pwd(fs, &root);
6284 set_fs_root(fs, &root);
6285
6286 path_put(&root);
6287 return 0;
6288 }
6289
mntns_owner(struct ns_common * ns)6290 static struct user_namespace *mntns_owner(struct ns_common *ns)
6291 {
6292 return to_mnt_ns(ns)->user_ns;
6293 }
6294
6295 const struct proc_ns_operations mntns_operations = {
6296 .name = "mnt",
6297 .get = mntns_get,
6298 .put = mntns_put,
6299 .install = mntns_install,
6300 .owner = mntns_owner,
6301 };
6302
6303 #ifdef CONFIG_SYSCTL
6304 static const struct ctl_table fs_namespace_sysctls[] = {
6305 {
6306 .procname = "mount-max",
6307 .data = &sysctl_mount_max,
6308 .maxlen = sizeof(unsigned int),
6309 .mode = 0644,
6310 .proc_handler = proc_dointvec_minmax,
6311 .extra1 = SYSCTL_ONE,
6312 },
6313 };
6314
init_fs_namespace_sysctls(void)6315 static int __init init_fs_namespace_sysctls(void)
6316 {
6317 register_sysctl_init("fs", fs_namespace_sysctls);
6318 return 0;
6319 }
6320 fs_initcall(init_fs_namespace_sysctls);
6321
6322 #endif /* CONFIG_SYSCTL */
6323