xref: /linux/fs/btrfs/extent_io.c (revision f3827213abae9291b7525b05e6fd29b1f0536ce6)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "extent_io.h"
18 #include "extent-io-tree.h"
19 #include "extent_map.h"
20 #include "ctree.h"
21 #include "btrfs_inode.h"
22 #include "bio.h"
23 #include "locking.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 #include "subpage.h"
27 #include "zoned.h"
28 #include "block-group.h"
29 #include "compression.h"
30 #include "fs.h"
31 #include "accessors.h"
32 #include "file-item.h"
33 #include "file.h"
34 #include "dev-replace.h"
35 #include "super.h"
36 #include "transaction.h"
37 
38 static struct kmem_cache *extent_buffer_cache;
39 
40 #ifdef CONFIG_BTRFS_DEBUG
btrfs_leak_debug_add_eb(struct extent_buffer * eb)41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42 {
43 	struct btrfs_fs_info *fs_info = eb->fs_info;
44 	unsigned long flags;
45 
46 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47 	list_add(&eb->leak_list, &fs_info->allocated_ebs);
48 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49 }
50 
btrfs_leak_debug_del_eb(struct extent_buffer * eb)51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52 {
53 	struct btrfs_fs_info *fs_info = eb->fs_info;
54 	unsigned long flags;
55 
56 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57 	list_del(&eb->leak_list);
58 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
59 }
60 
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
62 {
63 	struct extent_buffer *eb;
64 	unsigned long flags;
65 
66 	/*
67 	 * If we didn't get into open_ctree our allocated_ebs will not be
68 	 * initialized, so just skip this.
69 	 */
70 	if (!fs_info->allocated_ebs.next)
71 		return;
72 
73 	WARN_ON(!list_empty(&fs_info->allocated_ebs));
74 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 	while (!list_empty(&fs_info->allocated_ebs)) {
76 		eb = list_first_entry(&fs_info->allocated_ebs,
77 				      struct extent_buffer, leak_list);
78 		btrfs_err(fs_info,
79 		       "buffer leak start %llu len %u refs %d bflags %lu owner %llu",
80 		       eb->start, eb->len, refcount_read(&eb->refs), eb->bflags,
81 		       btrfs_header_owner(eb));
82 		list_del(&eb->leak_list);
83 		WARN_ON_ONCE(1);
84 		kmem_cache_free(extent_buffer_cache, eb);
85 	}
86 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87 }
88 #else
89 #define btrfs_leak_debug_add_eb(eb)			do {} while (0)
90 #define btrfs_leak_debug_del_eb(eb)			do {} while (0)
91 #endif
92 
93 /*
94  * Structure to record info about the bio being assembled, and other info like
95  * how many bytes are there before stripe/ordered extent boundary.
96  */
97 struct btrfs_bio_ctrl {
98 	struct btrfs_bio *bbio;
99 	/* Last byte contained in bbio + 1 . */
100 	loff_t next_file_offset;
101 	enum btrfs_compression_type compress_type;
102 	u32 len_to_oe_boundary;
103 	blk_opf_t opf;
104 	/*
105 	 * For data read bios, we attempt to optimize csum lookups if the extent
106 	 * generation is older than the current one. To make this possible, we
107 	 * need to track the maximum generation of an extent in a bio_ctrl to
108 	 * make the decision when submitting the bio.
109 	 *
110 	 * The pattern between do_readpage(), submit_one_bio() and
111 	 * submit_extent_folio() is quite subtle, so tracking this is tricky.
112 	 *
113 	 * As we process extent E, we might submit a bio with existing built up
114 	 * extents before adding E to a new bio, or we might just add E to the
115 	 * bio. As a result, E's generation could apply to the current bio or
116 	 * to the next one, so we need to be careful to update the bio_ctrl's
117 	 * generation with E's only when we are sure E is added to bio_ctrl->bbio
118 	 * in submit_extent_folio().
119 	 *
120 	 * See the comment in btrfs_lookup_bio_sums() for more detail on the
121 	 * need for this optimization.
122 	 */
123 	u64 generation;
124 	btrfs_bio_end_io_t end_io_func;
125 	struct writeback_control *wbc;
126 
127 	/*
128 	 * The sectors of the page which are going to be submitted by
129 	 * extent_writepage_io().
130 	 * This is to avoid touching ranges covered by compression/inline.
131 	 */
132 	unsigned long submit_bitmap;
133 	struct readahead_control *ractl;
134 
135 	/*
136 	 * The start offset of the last used extent map by a read operation.
137 	 *
138 	 * This is for proper compressed read merge.
139 	 * U64_MAX means we are starting the read and have made no progress yet.
140 	 *
141 	 * The current btrfs_bio_is_contig() only uses disk_bytenr as
142 	 * the condition to check if the read can be merged with previous
143 	 * bio, which is not correct. E.g. two file extents pointing to the
144 	 * same extent but with different offset.
145 	 *
146 	 * So here we need to do extra checks to only merge reads that are
147 	 * covered by the same extent map.
148 	 * Just extent_map::start will be enough, as they are unique
149 	 * inside the same inode.
150 	 */
151 	u64 last_em_start;
152 };
153 
154 /*
155  * Helper to set the csum search commit root option for a bio_ctrl's bbio
156  * before submitting the bio.
157  *
158  * Only for use by submit_one_bio().
159  */
bio_set_csum_search_commit_root(struct btrfs_bio_ctrl * bio_ctrl)160 static void bio_set_csum_search_commit_root(struct btrfs_bio_ctrl *bio_ctrl)
161 {
162 	struct btrfs_bio *bbio = bio_ctrl->bbio;
163 
164 	ASSERT(bbio);
165 
166 	if (!(btrfs_op(&bbio->bio) == BTRFS_MAP_READ && is_data_inode(bbio->inode)))
167 		return;
168 
169 	bio_ctrl->bbio->csum_search_commit_root =
170 		(bio_ctrl->generation &&
171 		 bio_ctrl->generation < btrfs_get_fs_generation(bbio->inode->root->fs_info));
172 }
173 
submit_one_bio(struct btrfs_bio_ctrl * bio_ctrl)174 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
175 {
176 	struct btrfs_bio *bbio = bio_ctrl->bbio;
177 
178 	if (!bbio)
179 		return;
180 
181 	/* Caller should ensure the bio has at least some range added */
182 	ASSERT(bbio->bio.bi_iter.bi_size);
183 
184 	bio_set_csum_search_commit_root(bio_ctrl);
185 
186 	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
187 	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
188 		btrfs_submit_compressed_read(bbio);
189 	else
190 		btrfs_submit_bbio(bbio, 0);
191 
192 	/* The bbio is owned by the end_io handler now */
193 	bio_ctrl->bbio = NULL;
194 	/*
195 	 * We used the generation to decide whether to lookup csums in the
196 	 * commit_root or not when we called bio_set_csum_search_commit_root()
197 	 * above. Now, reset the generation for the next bio.
198 	 */
199 	bio_ctrl->generation = 0;
200 }
201 
202 /*
203  * Submit or fail the current bio in the bio_ctrl structure.
204  */
submit_write_bio(struct btrfs_bio_ctrl * bio_ctrl,int ret)205 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
206 {
207 	struct btrfs_bio *bbio = bio_ctrl->bbio;
208 
209 	if (!bbio)
210 		return;
211 
212 	if (ret) {
213 		ASSERT(ret < 0);
214 		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
215 		/* The bio is owned by the end_io handler now */
216 		bio_ctrl->bbio = NULL;
217 	} else {
218 		submit_one_bio(bio_ctrl);
219 	}
220 }
221 
extent_buffer_init_cachep(void)222 int __init extent_buffer_init_cachep(void)
223 {
224 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
225 						sizeof(struct extent_buffer), 0, 0,
226 						NULL);
227 	if (!extent_buffer_cache)
228 		return -ENOMEM;
229 
230 	return 0;
231 }
232 
extent_buffer_free_cachep(void)233 void __cold extent_buffer_free_cachep(void)
234 {
235 	/*
236 	 * Make sure all delayed rcu free are flushed before we
237 	 * destroy caches.
238 	 */
239 	rcu_barrier();
240 	kmem_cache_destroy(extent_buffer_cache);
241 }
242 
process_one_folio(struct btrfs_fs_info * fs_info,struct folio * folio,const struct folio * locked_folio,unsigned long page_ops,u64 start,u64 end)243 static void process_one_folio(struct btrfs_fs_info *fs_info,
244 			      struct folio *folio, const struct folio *locked_folio,
245 			      unsigned long page_ops, u64 start, u64 end)
246 {
247 	u32 len;
248 
249 	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
250 	len = end + 1 - start;
251 
252 	if (page_ops & PAGE_SET_ORDERED)
253 		btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
254 	if (page_ops & PAGE_START_WRITEBACK) {
255 		btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
256 		btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
257 	}
258 	if (page_ops & PAGE_END_WRITEBACK)
259 		btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
260 
261 	if (folio != locked_folio && (page_ops & PAGE_UNLOCK))
262 		btrfs_folio_end_lock(fs_info, folio, start, len);
263 }
264 
__process_folios_contig(struct address_space * mapping,const struct folio * locked_folio,u64 start,u64 end,unsigned long page_ops)265 static void __process_folios_contig(struct address_space *mapping,
266 				    const struct folio *locked_folio, u64 start,
267 				    u64 end, unsigned long page_ops)
268 {
269 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
270 	pgoff_t index = start >> PAGE_SHIFT;
271 	pgoff_t end_index = end >> PAGE_SHIFT;
272 	struct folio_batch fbatch;
273 	int i;
274 
275 	folio_batch_init(&fbatch);
276 	while (index <= end_index) {
277 		int found_folios;
278 
279 		found_folios = filemap_get_folios_contig(mapping, &index,
280 				end_index, &fbatch);
281 		for (i = 0; i < found_folios; i++) {
282 			struct folio *folio = fbatch.folios[i];
283 
284 			process_one_folio(fs_info, folio, locked_folio,
285 					  page_ops, start, end);
286 		}
287 		folio_batch_release(&fbatch);
288 		cond_resched();
289 	}
290 }
291 
unlock_delalloc_folio(const struct inode * inode,struct folio * locked_folio,u64 start,u64 end)292 static noinline void unlock_delalloc_folio(const struct inode *inode,
293 					   struct folio *locked_folio,
294 					   u64 start, u64 end)
295 {
296 	ASSERT(locked_folio);
297 
298 	__process_folios_contig(inode->i_mapping, locked_folio, start, end,
299 				PAGE_UNLOCK);
300 }
301 
lock_delalloc_folios(struct inode * inode,struct folio * locked_folio,u64 start,u64 end)302 static noinline int lock_delalloc_folios(struct inode *inode,
303 					 struct folio *locked_folio,
304 					 u64 start, u64 end)
305 {
306 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
307 	struct address_space *mapping = inode->i_mapping;
308 	pgoff_t index = start >> PAGE_SHIFT;
309 	pgoff_t end_index = end >> PAGE_SHIFT;
310 	u64 processed_end = start;
311 	struct folio_batch fbatch;
312 
313 	folio_batch_init(&fbatch);
314 	while (index <= end_index) {
315 		unsigned int found_folios, i;
316 
317 		found_folios = filemap_get_folios_contig(mapping, &index,
318 				end_index, &fbatch);
319 		if (found_folios == 0)
320 			goto out;
321 
322 		for (i = 0; i < found_folios; i++) {
323 			struct folio *folio = fbatch.folios[i];
324 			u64 range_start;
325 			u32 range_len;
326 
327 			if (folio == locked_folio)
328 				continue;
329 
330 			folio_lock(folio);
331 			if (!folio_test_dirty(folio) || folio->mapping != mapping) {
332 				folio_unlock(folio);
333 				goto out;
334 			}
335 			range_start = max_t(u64, folio_pos(folio), start);
336 			range_len = min_t(u64, folio_end(folio), end + 1) - range_start;
337 			btrfs_folio_set_lock(fs_info, folio, range_start, range_len);
338 
339 			processed_end = range_start + range_len - 1;
340 		}
341 		folio_batch_release(&fbatch);
342 		cond_resched();
343 	}
344 
345 	return 0;
346 out:
347 	folio_batch_release(&fbatch);
348 	if (processed_end > start)
349 		unlock_delalloc_folio(inode, locked_folio, start, processed_end);
350 	return -EAGAIN;
351 }
352 
353 /*
354  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
355  * more than @max_bytes.
356  *
357  * @start:	The original start bytenr to search.
358  *		Will store the extent range start bytenr.
359  * @end:	The original end bytenr of the search range
360  *		Will store the extent range end bytenr.
361  *
362  * Return true if we find a delalloc range which starts inside the original
363  * range, and @start/@end will store the delalloc range start/end.
364  *
365  * Return false if we can't find any delalloc range which starts inside the
366  * original range, and @start/@end will be the non-delalloc range start/end.
367  */
368 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct folio * locked_folio,u64 * start,u64 * end)369 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
370 						 struct folio *locked_folio,
371 						 u64 *start, u64 *end)
372 {
373 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
374 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
375 	const u64 orig_start = *start;
376 	const u64 orig_end = *end;
377 	/* The sanity tests may not set a valid fs_info. */
378 	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
379 	u64 delalloc_start;
380 	u64 delalloc_end;
381 	bool found;
382 	struct extent_state *cached_state = NULL;
383 	int ret;
384 	int loops = 0;
385 
386 	/* Caller should pass a valid @end to indicate the search range end */
387 	ASSERT(orig_end > orig_start);
388 
389 	/* The range should at least cover part of the folio */
390 	ASSERT(!(orig_start >= folio_end(locked_folio) ||
391 		 orig_end <= folio_pos(locked_folio)));
392 again:
393 	/* step one, find a bunch of delalloc bytes starting at start */
394 	delalloc_start = *start;
395 	delalloc_end = 0;
396 
397 	/*
398 	 * If @max_bytes is smaller than a block, btrfs_find_delalloc_range() can
399 	 * return early without handling any dirty ranges.
400 	 */
401 	ASSERT(max_bytes >= fs_info->sectorsize);
402 
403 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
404 					  max_bytes, &cached_state);
405 	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
406 		*start = delalloc_start;
407 
408 		/* @delalloc_end can be -1, never go beyond @orig_end */
409 		*end = min(delalloc_end, orig_end);
410 		btrfs_free_extent_state(cached_state);
411 		return false;
412 	}
413 
414 	/*
415 	 * start comes from the offset of locked_folio.  We have to lock
416 	 * folios in order, so we can't process delalloc bytes before
417 	 * locked_folio
418 	 */
419 	if (delalloc_start < *start)
420 		delalloc_start = *start;
421 
422 	/*
423 	 * make sure to limit the number of folios we try to lock down
424 	 */
425 	if (delalloc_end + 1 - delalloc_start > max_bytes)
426 		delalloc_end = delalloc_start + max_bytes - 1;
427 
428 	/* step two, lock all the folios after the folios that has start */
429 	ret = lock_delalloc_folios(inode, locked_folio, delalloc_start,
430 				   delalloc_end);
431 	ASSERT(!ret || ret == -EAGAIN);
432 	if (ret == -EAGAIN) {
433 		/*
434 		 * Some of the folios are gone, lets avoid looping by
435 		 * shortening the size of the delalloc range we're searching.
436 		 */
437 		btrfs_free_extent_state(cached_state);
438 		cached_state = NULL;
439 		if (!loops) {
440 			max_bytes = fs_info->sectorsize;
441 			loops = 1;
442 			goto again;
443 		} else {
444 			found = false;
445 			goto out_failed;
446 		}
447 	}
448 
449 	/* step three, lock the state bits for the whole range */
450 	btrfs_lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
451 
452 	/* then test to make sure it is all still delalloc */
453 	ret = btrfs_test_range_bit(tree, delalloc_start, delalloc_end,
454 				   EXTENT_DELALLOC, cached_state);
455 
456 	btrfs_unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
457 	if (!ret) {
458 		unlock_delalloc_folio(inode, locked_folio, delalloc_start,
459 				      delalloc_end);
460 		cond_resched();
461 		goto again;
462 	}
463 	*start = delalloc_start;
464 	*end = delalloc_end;
465 out_failed:
466 	return found;
467 }
468 
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,const struct folio * locked_folio,struct extent_state ** cached,u32 clear_bits,unsigned long page_ops)469 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
470 				  const struct folio *locked_folio,
471 				  struct extent_state **cached,
472 				  u32 clear_bits, unsigned long page_ops)
473 {
474 	btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
475 
476 	__process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start,
477 				end, page_ops);
478 }
479 
btrfs_verify_folio(struct folio * folio,u64 start,u32 len)480 static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len)
481 {
482 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
483 
484 	if (!fsverity_active(folio->mapping->host) ||
485 	    btrfs_folio_test_uptodate(fs_info, folio, start, len) ||
486 	    start >= i_size_read(folio->mapping->host))
487 		return true;
488 	return fsverity_verify_folio(folio);
489 }
490 
end_folio_read(struct folio * folio,bool uptodate,u64 start,u32 len)491 static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len)
492 {
493 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
494 
495 	ASSERT(folio_pos(folio) <= start &&
496 	       start + len <= folio_end(folio));
497 
498 	if (uptodate && btrfs_verify_folio(folio, start, len))
499 		btrfs_folio_set_uptodate(fs_info, folio, start, len);
500 	else
501 		btrfs_folio_clear_uptodate(fs_info, folio, start, len);
502 
503 	if (!btrfs_is_subpage(fs_info, folio))
504 		folio_unlock(folio);
505 	else
506 		btrfs_folio_end_lock(fs_info, folio, start, len);
507 }
508 
509 /*
510  * After a write IO is done, we need to:
511  *
512  * - clear the uptodate bits on error
513  * - clear the writeback bits in the extent tree for the range
514  * - filio_end_writeback()  if there is no more pending io for the folio
515  *
516  * Scheduling is not allowed, so the extent state tree is expected
517  * to have one and only one object corresponding to this IO.
518  */
end_bbio_data_write(struct btrfs_bio * bbio)519 static void end_bbio_data_write(struct btrfs_bio *bbio)
520 {
521 	struct btrfs_fs_info *fs_info = bbio->fs_info;
522 	struct bio *bio = &bbio->bio;
523 	int error = blk_status_to_errno(bio->bi_status);
524 	struct folio_iter fi;
525 	const u32 sectorsize = fs_info->sectorsize;
526 
527 	ASSERT(!bio_flagged(bio, BIO_CLONED));
528 	bio_for_each_folio_all(fi, bio) {
529 		struct folio *folio = fi.folio;
530 		u64 start = folio_pos(folio) + fi.offset;
531 		u32 len = fi.length;
532 
533 		/* Our read/write should always be sector aligned. */
534 		if (!IS_ALIGNED(fi.offset, sectorsize))
535 			btrfs_err(fs_info,
536 		"partial page write in btrfs with offset %zu and length %zu",
537 				  fi.offset, fi.length);
538 		else if (!IS_ALIGNED(fi.length, sectorsize))
539 			btrfs_info(fs_info,
540 		"incomplete page write with offset %zu and length %zu",
541 				   fi.offset, fi.length);
542 
543 		btrfs_finish_ordered_extent(bbio->ordered, folio, start, len,
544 					    !error);
545 		if (error)
546 			mapping_set_error(folio->mapping, error);
547 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
548 	}
549 
550 	bio_put(bio);
551 }
552 
begin_folio_read(struct btrfs_fs_info * fs_info,struct folio * folio)553 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio)
554 {
555 	ASSERT(folio_test_locked(folio));
556 	if (!btrfs_is_subpage(fs_info, folio))
557 		return;
558 
559 	ASSERT(folio_test_private(folio));
560 	btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), folio_size(folio));
561 }
562 
563 /*
564  * After a data read IO is done, we need to:
565  *
566  * - clear the uptodate bits on error
567  * - set the uptodate bits if things worked
568  * - set the folio up to date if all extents in the tree are uptodate
569  * - clear the lock bit in the extent tree
570  * - unlock the folio if there are no other extents locked for it
571  *
572  * Scheduling is not allowed, so the extent state tree is expected
573  * to have one and only one object corresponding to this IO.
574  */
end_bbio_data_read(struct btrfs_bio * bbio)575 static void end_bbio_data_read(struct btrfs_bio *bbio)
576 {
577 	struct btrfs_fs_info *fs_info = bbio->fs_info;
578 	struct bio *bio = &bbio->bio;
579 	struct folio_iter fi;
580 
581 	ASSERT(!bio_flagged(bio, BIO_CLONED));
582 	bio_for_each_folio_all(fi, &bbio->bio) {
583 		bool uptodate = !bio->bi_status;
584 		struct folio *folio = fi.folio;
585 		struct inode *inode = folio->mapping->host;
586 		u64 start = folio_pos(folio) + fi.offset;
587 
588 		btrfs_debug(fs_info,
589 			"%s: bi_sector=%llu, err=%d, mirror=%u",
590 			__func__, bio->bi_iter.bi_sector, bio->bi_status,
591 			bbio->mirror_num);
592 
593 
594 		if (likely(uptodate)) {
595 			u64 end = start + fi.length - 1;
596 			loff_t i_size = i_size_read(inode);
597 
598 			/*
599 			 * Zero out the remaining part if this range straddles
600 			 * i_size.
601 			 *
602 			 * Here we should only zero the range inside the folio,
603 			 * not touch anything else.
604 			 *
605 			 * NOTE: i_size is exclusive while end is inclusive and
606 			 * folio_contains() takes PAGE_SIZE units.
607 			 */
608 			if (folio_contains(folio, i_size >> PAGE_SHIFT) &&
609 			    i_size <= end) {
610 				u32 zero_start = max(offset_in_folio(folio, i_size),
611 						     offset_in_folio(folio, start));
612 				u32 zero_len = offset_in_folio(folio, end) + 1 -
613 					       zero_start;
614 
615 				folio_zero_range(folio, zero_start, zero_len);
616 			}
617 		}
618 
619 		/* Update page status and unlock. */
620 		end_folio_read(folio, uptodate, start, fi.length);
621 	}
622 	bio_put(bio);
623 }
624 
625 /*
626  * Populate every free slot in a provided array with folios using GFP_NOFS.
627  *
628  * @nr_folios:   number of folios to allocate
629  * @order:	 the order of the folios to be allocated
630  * @folio_array: the array to fill with folios; any existing non-NULL entries in
631  *		 the array will be skipped
632  *
633  * Return: 0        if all folios were able to be allocated;
634  *         -ENOMEM  otherwise, the partially allocated folios would be freed and
635  *                  the array slots zeroed
636  */
btrfs_alloc_folio_array(unsigned int nr_folios,unsigned int order,struct folio ** folio_array)637 int btrfs_alloc_folio_array(unsigned int nr_folios, unsigned int order,
638 			    struct folio **folio_array)
639 {
640 	for (int i = 0; i < nr_folios; i++) {
641 		if (folio_array[i])
642 			continue;
643 		folio_array[i] = folio_alloc(GFP_NOFS, order);
644 		if (!folio_array[i])
645 			goto error;
646 	}
647 	return 0;
648 error:
649 	for (int i = 0; i < nr_folios; i++) {
650 		if (folio_array[i])
651 			folio_put(folio_array[i]);
652 		folio_array[i] = NULL;
653 	}
654 	return -ENOMEM;
655 }
656 
657 /*
658  * Populate every free slot in a provided array with pages, using GFP_NOFS.
659  *
660  * @nr_pages:   number of pages to allocate
661  * @page_array: the array to fill with pages; any existing non-null entries in
662  *		the array will be skipped
663  * @nofail:	whether using __GFP_NOFAIL flag
664  *
665  * Return: 0        if all pages were able to be allocated;
666  *         -ENOMEM  otherwise, the partially allocated pages would be freed and
667  *                  the array slots zeroed
668  */
btrfs_alloc_page_array(unsigned int nr_pages,struct page ** page_array,bool nofail)669 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
670 			   bool nofail)
671 {
672 	const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS;
673 	unsigned int allocated;
674 
675 	for (allocated = 0; allocated < nr_pages;) {
676 		unsigned int last = allocated;
677 
678 		allocated = alloc_pages_bulk(gfp, nr_pages, page_array);
679 		if (unlikely(allocated == last)) {
680 			/* No progress, fail and do cleanup. */
681 			for (int i = 0; i < allocated; i++) {
682 				__free_page(page_array[i]);
683 				page_array[i] = NULL;
684 			}
685 			return -ENOMEM;
686 		}
687 	}
688 	return 0;
689 }
690 
691 /*
692  * Populate needed folios for the extent buffer.
693  *
694  * For now, the folios populated are always in order 0 (aka, single page).
695  */
alloc_eb_folio_array(struct extent_buffer * eb,bool nofail)696 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail)
697 {
698 	struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
699 	int num_pages = num_extent_pages(eb);
700 	int ret;
701 
702 	ret = btrfs_alloc_page_array(num_pages, page_array, nofail);
703 	if (ret < 0)
704 		return ret;
705 
706 	for (int i = 0; i < num_pages; i++)
707 		eb->folios[i] = page_folio(page_array[i]);
708 	eb->folio_size = PAGE_SIZE;
709 	eb->folio_shift = PAGE_SHIFT;
710 	return 0;
711 }
712 
btrfs_bio_is_contig(struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,loff_t file_offset)713 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
714 				u64 disk_bytenr, loff_t file_offset)
715 {
716 	struct bio *bio = &bio_ctrl->bbio->bio;
717 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
718 
719 	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
720 		/*
721 		 * For compression, all IO should have its logical bytenr set
722 		 * to the starting bytenr of the compressed extent.
723 		 */
724 		return bio->bi_iter.bi_sector == sector;
725 	}
726 
727 	/*
728 	 * To merge into a bio both the disk sector and the logical offset in
729 	 * the file need to be contiguous.
730 	 */
731 	return bio_ctrl->next_file_offset == file_offset &&
732 		bio_end_sector(bio) == sector;
733 }
734 
alloc_new_bio(struct btrfs_inode * inode,struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,u64 file_offset)735 static void alloc_new_bio(struct btrfs_inode *inode,
736 			  struct btrfs_bio_ctrl *bio_ctrl,
737 			  u64 disk_bytenr, u64 file_offset)
738 {
739 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
740 	struct btrfs_bio *bbio;
741 
742 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
743 			       bio_ctrl->end_io_func, NULL);
744 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
745 	bbio->bio.bi_write_hint = inode->vfs_inode.i_write_hint;
746 	bbio->inode = inode;
747 	bbio->file_offset = file_offset;
748 	bio_ctrl->bbio = bbio;
749 	bio_ctrl->len_to_oe_boundary = U32_MAX;
750 	bio_ctrl->next_file_offset = file_offset;
751 
752 	/* Limit data write bios to the ordered boundary. */
753 	if (bio_ctrl->wbc) {
754 		struct btrfs_ordered_extent *ordered;
755 
756 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
757 		if (ordered) {
758 			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
759 					ordered->file_offset +
760 					ordered->disk_num_bytes - file_offset);
761 			bbio->ordered = ordered;
762 		}
763 
764 		/*
765 		 * Pick the last added device to support cgroup writeback.  For
766 		 * multi-device file systems this means blk-cgroup policies have
767 		 * to always be set on the last added/replaced device.
768 		 * This is a bit odd but has been like that for a long time.
769 		 */
770 		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
771 		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
772 	}
773 }
774 
775 /*
776  * @disk_bytenr: logical bytenr where the write will be
777  * @page:	page to add to the bio
778  * @size:	portion of page that we want to write to
779  * @pg_offset:	offset of the new bio or to check whether we are adding
780  *              a contiguous page to the previous one
781  * @read_em_generation: generation of the extent_map we are submitting
782  *			(only used for read)
783  *
784  * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
785  * new one in @bio_ctrl->bbio.
786  * The mirror number for this IO should already be initialized in
787  * @bio_ctrl->mirror_num.
788  */
submit_extent_folio(struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,struct folio * folio,size_t size,unsigned long pg_offset,u64 read_em_generation)789 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl,
790 			       u64 disk_bytenr, struct folio *folio,
791 			       size_t size, unsigned long pg_offset,
792 			       u64 read_em_generation)
793 {
794 	struct btrfs_inode *inode = folio_to_inode(folio);
795 	loff_t file_offset = folio_pos(folio) + pg_offset;
796 
797 	ASSERT(pg_offset + size <= folio_size(folio));
798 	ASSERT(bio_ctrl->end_io_func);
799 
800 	if (bio_ctrl->bbio &&
801 	    !btrfs_bio_is_contig(bio_ctrl, disk_bytenr, file_offset))
802 		submit_one_bio(bio_ctrl);
803 
804 	do {
805 		u32 len = size;
806 
807 		/* Allocate new bio if needed */
808 		if (!bio_ctrl->bbio)
809 			alloc_new_bio(inode, bio_ctrl, disk_bytenr, file_offset);
810 
811 		/* Cap to the current ordered extent boundary if there is one. */
812 		if (len > bio_ctrl->len_to_oe_boundary) {
813 			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
814 			ASSERT(is_data_inode(inode));
815 			len = bio_ctrl->len_to_oe_boundary;
816 		}
817 
818 		if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) {
819 			/* bio full: move on to a new one */
820 			submit_one_bio(bio_ctrl);
821 			continue;
822 		}
823 		/*
824 		 * Now that the folio is definitely added to the bio, include its
825 		 * generation in the max generation calculation.
826 		 */
827 		bio_ctrl->generation = max(bio_ctrl->generation, read_em_generation);
828 		bio_ctrl->next_file_offset += len;
829 
830 		if (bio_ctrl->wbc)
831 			wbc_account_cgroup_owner(bio_ctrl->wbc, folio, len);
832 
833 		size -= len;
834 		pg_offset += len;
835 		disk_bytenr += len;
836 		file_offset += len;
837 
838 		/*
839 		 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or
840 		 * sector aligned.  alloc_new_bio() then sets it to the end of
841 		 * our ordered extent for writes into zoned devices.
842 		 *
843 		 * When len_to_oe_boundary is tracking an ordered extent, we
844 		 * trust the ordered extent code to align things properly, and
845 		 * the check above to cap our write to the ordered extent
846 		 * boundary is correct.
847 		 *
848 		 * When len_to_oe_boundary is U32_MAX, the cap above would
849 		 * result in a 4095 byte IO for the last folio right before
850 		 * we hit the bio limit of UINT_MAX.  bio_add_folio() has all
851 		 * the checks required to make sure we don't overflow the bio,
852 		 * and we should just ignore len_to_oe_boundary completely
853 		 * unless we're using it to track an ordered extent.
854 		 *
855 		 * It's pretty hard to make a bio sized U32_MAX, but it can
856 		 * happen when the page cache is able to feed us contiguous
857 		 * folios for large extents.
858 		 */
859 		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
860 			bio_ctrl->len_to_oe_boundary -= len;
861 
862 		/* Ordered extent boundary: move on to a new bio. */
863 		if (bio_ctrl->len_to_oe_boundary == 0)
864 			submit_one_bio(bio_ctrl);
865 	} while (size);
866 }
867 
attach_extent_buffer_folio(struct extent_buffer * eb,struct folio * folio,struct btrfs_folio_state * prealloc)868 static int attach_extent_buffer_folio(struct extent_buffer *eb,
869 				      struct folio *folio,
870 				      struct btrfs_folio_state *prealloc)
871 {
872 	struct btrfs_fs_info *fs_info = eb->fs_info;
873 	int ret = 0;
874 
875 	/*
876 	 * If the page is mapped to btree inode, we should hold the private
877 	 * lock to prevent race.
878 	 * For cloned or dummy extent buffers, their pages are not mapped and
879 	 * will not race with any other ebs.
880 	 */
881 	if (folio->mapping)
882 		lockdep_assert_held(&folio->mapping->i_private_lock);
883 
884 	if (!btrfs_meta_is_subpage(fs_info)) {
885 		if (!folio_test_private(folio))
886 			folio_attach_private(folio, eb);
887 		else
888 			WARN_ON(folio_get_private(folio) != eb);
889 		return 0;
890 	}
891 
892 	/* Already mapped, just free prealloc */
893 	if (folio_test_private(folio)) {
894 		btrfs_free_folio_state(prealloc);
895 		return 0;
896 	}
897 
898 	if (prealloc)
899 		/* Has preallocated memory for subpage */
900 		folio_attach_private(folio, prealloc);
901 	else
902 		/* Do new allocation to attach subpage */
903 		ret = btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
904 	return ret;
905 }
906 
set_folio_extent_mapped(struct folio * folio)907 int set_folio_extent_mapped(struct folio *folio)
908 {
909 	struct btrfs_fs_info *fs_info;
910 
911 	ASSERT(folio->mapping);
912 
913 	if (folio_test_private(folio))
914 		return 0;
915 
916 	fs_info = folio_to_fs_info(folio);
917 
918 	if (btrfs_is_subpage(fs_info, folio))
919 		return btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA);
920 
921 	folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
922 	return 0;
923 }
924 
clear_folio_extent_mapped(struct folio * folio)925 void clear_folio_extent_mapped(struct folio *folio)
926 {
927 	struct btrfs_fs_info *fs_info;
928 
929 	ASSERT(folio->mapping);
930 
931 	if (!folio_test_private(folio))
932 		return;
933 
934 	fs_info = folio_to_fs_info(folio);
935 	if (btrfs_is_subpage(fs_info, folio))
936 		return btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA);
937 
938 	folio_detach_private(folio);
939 }
940 
get_extent_map(struct btrfs_inode * inode,struct folio * folio,u64 start,u64 len,struct extent_map ** em_cached)941 static struct extent_map *get_extent_map(struct btrfs_inode *inode,
942 					 struct folio *folio, u64 start,
943 					 u64 len, struct extent_map **em_cached)
944 {
945 	struct extent_map *em;
946 
947 	ASSERT(em_cached);
948 
949 	if (*em_cached) {
950 		em = *em_cached;
951 		if (btrfs_extent_map_in_tree(em) && start >= em->start &&
952 		    start < btrfs_extent_map_end(em)) {
953 			refcount_inc(&em->refs);
954 			return em;
955 		}
956 
957 		btrfs_free_extent_map(em);
958 		*em_cached = NULL;
959 	}
960 
961 	em = btrfs_get_extent(inode, folio, start, len);
962 	if (!IS_ERR(em)) {
963 		BUG_ON(*em_cached);
964 		refcount_inc(&em->refs);
965 		*em_cached = em;
966 	}
967 
968 	return em;
969 }
970 
btrfs_readahead_expand(struct readahead_control * ractl,const struct extent_map * em)971 static void btrfs_readahead_expand(struct readahead_control *ractl,
972 				   const struct extent_map *em)
973 {
974 	const u64 ra_pos = readahead_pos(ractl);
975 	const u64 ra_end = ra_pos + readahead_length(ractl);
976 	const u64 em_end = em->start + em->ram_bytes;
977 
978 	/* No expansion for holes and inline extents. */
979 	if (em->disk_bytenr > EXTENT_MAP_LAST_BYTE)
980 		return;
981 
982 	ASSERT(em_end >= ra_pos,
983 	       "extent_map %llu %llu ends before current readahead position %llu",
984 	       em->start, em->len, ra_pos);
985 	if (em_end > ra_end)
986 		readahead_expand(ractl, ra_pos, em_end - ra_pos);
987 }
988 
989 /*
990  * basic readpage implementation.  Locked extent state structs are inserted
991  * into the tree that are removed when the IO is done (by the end_io
992  * handlers)
993  * XXX JDM: This needs looking at to ensure proper page locking
994  * return 0 on success, otherwise return error
995  */
btrfs_do_readpage(struct folio * folio,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl)996 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached,
997 			     struct btrfs_bio_ctrl *bio_ctrl)
998 {
999 	struct inode *inode = folio->mapping->host;
1000 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1001 	u64 start = folio_pos(folio);
1002 	const u64 end = start + folio_size(folio) - 1;
1003 	u64 extent_offset;
1004 	u64 last_byte = i_size_read(inode);
1005 	struct extent_map *em;
1006 	int ret = 0;
1007 	const size_t blocksize = fs_info->sectorsize;
1008 
1009 	ret = set_folio_extent_mapped(folio);
1010 	if (ret < 0) {
1011 		folio_unlock(folio);
1012 		return ret;
1013 	}
1014 
1015 	if (folio_contains(folio, last_byte >> PAGE_SHIFT)) {
1016 		size_t zero_offset = offset_in_folio(folio, last_byte);
1017 
1018 		if (zero_offset)
1019 			folio_zero_range(folio, zero_offset,
1020 					 folio_size(folio) - zero_offset);
1021 	}
1022 	bio_ctrl->end_io_func = end_bbio_data_read;
1023 	begin_folio_read(fs_info, folio);
1024 	for (u64 cur = start; cur <= end; cur += blocksize) {
1025 		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1026 		unsigned long pg_offset = offset_in_folio(folio, cur);
1027 		bool force_bio_submit = false;
1028 		u64 disk_bytenr;
1029 		u64 block_start;
1030 		u64 em_gen;
1031 
1032 		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1033 		if (cur >= last_byte) {
1034 			folio_zero_range(folio, pg_offset, end - cur + 1);
1035 			end_folio_read(folio, true, cur, end - cur + 1);
1036 			break;
1037 		}
1038 		if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) {
1039 			end_folio_read(folio, true, cur, blocksize);
1040 			continue;
1041 		}
1042 		em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached);
1043 		if (IS_ERR(em)) {
1044 			end_folio_read(folio, false, cur, end + 1 - cur);
1045 			return PTR_ERR(em);
1046 		}
1047 		extent_offset = cur - em->start;
1048 		BUG_ON(btrfs_extent_map_end(em) <= cur);
1049 		BUG_ON(end < cur);
1050 
1051 		compress_type = btrfs_extent_map_compression(em);
1052 
1053 		/*
1054 		 * Only expand readahead for extents which are already creating
1055 		 * the pages anyway in add_ra_bio_pages, which is compressed
1056 		 * extents in the non subpage case.
1057 		 */
1058 		if (bio_ctrl->ractl &&
1059 		    !btrfs_is_subpage(fs_info, folio) &&
1060 		    compress_type != BTRFS_COMPRESS_NONE)
1061 			btrfs_readahead_expand(bio_ctrl->ractl, em);
1062 
1063 		if (compress_type != BTRFS_COMPRESS_NONE)
1064 			disk_bytenr = em->disk_bytenr;
1065 		else
1066 			disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset;
1067 
1068 		if (em->flags & EXTENT_FLAG_PREALLOC)
1069 			block_start = EXTENT_MAP_HOLE;
1070 		else
1071 			block_start = btrfs_extent_map_block_start(em);
1072 
1073 		/*
1074 		 * If we have a file range that points to a compressed extent
1075 		 * and it's followed by a consecutive file range that points
1076 		 * to the same compressed extent (possibly with a different
1077 		 * offset and/or length, so it either points to the whole extent
1078 		 * or only part of it), we must make sure we do not submit a
1079 		 * single bio to populate the folios for the 2 ranges because
1080 		 * this makes the compressed extent read zero out the folios
1081 		 * belonging to the 2nd range. Imagine the following scenario:
1082 		 *
1083 		 *  File layout
1084 		 *  [0 - 8K]                     [8K - 24K]
1085 		 *    |                               |
1086 		 *    |                               |
1087 		 * points to extent X,         points to extent X,
1088 		 * offset 4K, length of 8K     offset 0, length 16K
1089 		 *
1090 		 * [extent X, compressed length = 4K uncompressed length = 16K]
1091 		 *
1092 		 * If the bio to read the compressed extent covers both ranges,
1093 		 * it will decompress extent X into the folios belonging to the
1094 		 * first range and then it will stop, zeroing out the remaining
1095 		 * folios that belong to the other range that points to extent X.
1096 		 * So here we make sure we submit 2 bios, one for the first
1097 		 * range and another one for the third range. Both will target
1098 		 * the same physical extent from disk, but we can't currently
1099 		 * make the compressed bio endio callback populate the folios
1100 		 * for both ranges because each compressed bio is tightly
1101 		 * coupled with a single extent map, and each range can have
1102 		 * an extent map with a different offset value relative to the
1103 		 * uncompressed data of our extent and different lengths. This
1104 		 * is a corner case so we prioritize correctness over
1105 		 * non-optimal behavior (submitting 2 bios for the same extent).
1106 		 */
1107 		if (compress_type != BTRFS_COMPRESS_NONE &&
1108 		    bio_ctrl->last_em_start != U64_MAX &&
1109 		    bio_ctrl->last_em_start != em->start)
1110 			force_bio_submit = true;
1111 
1112 		bio_ctrl->last_em_start = em->start;
1113 
1114 		em_gen = em->generation;
1115 		btrfs_free_extent_map(em);
1116 		em = NULL;
1117 
1118 		/* we've found a hole, just zero and go on */
1119 		if (block_start == EXTENT_MAP_HOLE) {
1120 			folio_zero_range(folio, pg_offset, blocksize);
1121 			end_folio_read(folio, true, cur, blocksize);
1122 			continue;
1123 		}
1124 		/* the get_extent function already copied into the folio */
1125 		if (block_start == EXTENT_MAP_INLINE) {
1126 			end_folio_read(folio, true, cur, blocksize);
1127 			continue;
1128 		}
1129 
1130 		if (bio_ctrl->compress_type != compress_type) {
1131 			submit_one_bio(bio_ctrl);
1132 			bio_ctrl->compress_type = compress_type;
1133 		}
1134 
1135 		if (force_bio_submit)
1136 			submit_one_bio(bio_ctrl);
1137 		submit_extent_folio(bio_ctrl, disk_bytenr, folio, blocksize,
1138 				    pg_offset, em_gen);
1139 	}
1140 	return 0;
1141 }
1142 
1143 /*
1144  * Check if we can skip waiting the @ordered extent covering the block at @fileoff.
1145  *
1146  * @fileoff:	Both input and output.
1147  *		Input as the file offset where the check should start at.
1148  *		Output as where the next check should start at,
1149  *		if the function returns true.
1150  *
1151  * Return true if we can skip to @fileoff. The caller needs to check the new
1152  * @fileoff value to make sure it covers the full range, before skipping the
1153  * full OE.
1154  *
1155  * Return false if we must wait for the ordered extent.
1156  */
can_skip_one_ordered_range(struct btrfs_inode * inode,struct btrfs_ordered_extent * ordered,u64 * fileoff)1157 static bool can_skip_one_ordered_range(struct btrfs_inode *inode,
1158 				       struct btrfs_ordered_extent *ordered,
1159 				       u64 *fileoff)
1160 {
1161 	const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1162 	struct folio *folio;
1163 	const u32 blocksize = fs_info->sectorsize;
1164 	u64 cur = *fileoff;
1165 	bool ret;
1166 
1167 	folio = filemap_get_folio(inode->vfs_inode.i_mapping, cur >> PAGE_SHIFT);
1168 
1169 	/*
1170 	 * We should have locked the folio(s) for range [start, end], thus
1171 	 * there must be a folio and it must be locked.
1172 	 */
1173 	ASSERT(!IS_ERR(folio));
1174 	ASSERT(folio_test_locked(folio));
1175 
1176 	/*
1177 	 * There are several cases for the folio and OE combination:
1178 	 *
1179 	 * 1) Folio has no private flag
1180 	 *    The OE has all its IO done but not yet finished, and folio got
1181 	 *    invalidated.
1182 	 *
1183 	 * Have we have to wait for the OE to finish, as it may contain the
1184 	 * to-be-inserted data checksum.
1185 	 * Without the data checksum inserted into the csum tree, read will
1186 	 * just fail with missing csum.
1187 	 */
1188 	if (!folio_test_private(folio)) {
1189 		ret = false;
1190 		goto out;
1191 	}
1192 
1193 	/*
1194 	 * 2) The first block is DIRTY.
1195 	 *
1196 	 * This means the OE is created by some other folios whose file pos is
1197 	 * before this one. And since we are holding the folio lock, the writeback
1198 	 * of this folio cannot start.
1199 	 *
1200 	 * We must skip the whole OE, because it will never start until we
1201 	 * finished our folio read and unlocked the folio.
1202 	 */
1203 	if (btrfs_folio_test_dirty(fs_info, folio, cur, blocksize)) {
1204 		u64 range_len = min(folio_end(folio),
1205 				    ordered->file_offset + ordered->num_bytes) - cur;
1206 
1207 		ret = true;
1208 		/*
1209 		 * At least inside the folio, all the remaining blocks should
1210 		 * also be dirty.
1211 		 */
1212 		ASSERT(btrfs_folio_test_dirty(fs_info, folio, cur, range_len));
1213 		*fileoff = ordered->file_offset + ordered->num_bytes;
1214 		goto out;
1215 	}
1216 
1217 	/*
1218 	 * 3) The first block is uptodate.
1219 	 *
1220 	 * At least the first block can be skipped, but we are still not fully
1221 	 * sure. E.g. if the OE has some other folios in the range that cannot
1222 	 * be skipped.
1223 	 * So we return true and update @next_ret to the OE/folio boundary.
1224 	 */
1225 	if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) {
1226 		u64 range_len = min(folio_end(folio),
1227 				    ordered->file_offset + ordered->num_bytes) - cur;
1228 
1229 		/*
1230 		 * The whole range to the OE end or folio boundary should also
1231 		 * be uptodate.
1232 		 */
1233 		ASSERT(btrfs_folio_test_uptodate(fs_info, folio, cur, range_len));
1234 		ret = true;
1235 		*fileoff = cur + range_len;
1236 		goto out;
1237 	}
1238 
1239 	/*
1240 	 * 4) The first block is not uptodate.
1241 	 *
1242 	 * This means the folio is invalidated after the writeback was finished,
1243 	 * but by some other operations (e.g. block aligned buffered write) the
1244 	 * folio is inserted into filemap.
1245 	 * Very much the same as case 1).
1246 	 */
1247 	ret = false;
1248 out:
1249 	folio_put(folio);
1250 	return ret;
1251 }
1252 
can_skip_ordered_extent(struct btrfs_inode * inode,struct btrfs_ordered_extent * ordered,u64 start,u64 end)1253 static bool can_skip_ordered_extent(struct btrfs_inode *inode,
1254 				    struct btrfs_ordered_extent *ordered,
1255 				    u64 start, u64 end)
1256 {
1257 	const u64 range_end = min(end, ordered->file_offset + ordered->num_bytes - 1);
1258 	u64 cur = max(start, ordered->file_offset);
1259 
1260 	while (cur < range_end) {
1261 		bool can_skip;
1262 
1263 		can_skip = can_skip_one_ordered_range(inode, ordered, &cur);
1264 		if (!can_skip)
1265 			return false;
1266 	}
1267 	return true;
1268 }
1269 
1270 /*
1271  * Locking helper to make sure we get a stable view of extent maps for the
1272  * involved range.
1273  *
1274  * This is for folio read paths (read and readahead), thus the involved range
1275  * should have all the folios locked.
1276  */
lock_extents_for_read(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1277 static void lock_extents_for_read(struct btrfs_inode *inode, u64 start, u64 end,
1278 				  struct extent_state **cached_state)
1279 {
1280 	u64 cur_pos;
1281 
1282 	/* Caller must provide a valid @cached_state. */
1283 	ASSERT(cached_state);
1284 
1285 	/* The range must at least be page aligned, as all read paths are folio based. */
1286 	ASSERT(IS_ALIGNED(start, PAGE_SIZE));
1287 	ASSERT(IS_ALIGNED(end + 1, PAGE_SIZE));
1288 
1289 again:
1290 	btrfs_lock_extent(&inode->io_tree, start, end, cached_state);
1291 	cur_pos = start;
1292 	while (cur_pos < end) {
1293 		struct btrfs_ordered_extent *ordered;
1294 
1295 		ordered = btrfs_lookup_ordered_range(inode, cur_pos,
1296 						     end - cur_pos + 1);
1297 		/*
1298 		 * No ordered extents in the range, and we hold the extent lock,
1299 		 * no one can modify the extent maps in the range, we're safe to return.
1300 		 */
1301 		if (!ordered)
1302 			break;
1303 
1304 		/* Check if we can skip waiting for the whole OE. */
1305 		if (can_skip_ordered_extent(inode, ordered, start, end)) {
1306 			cur_pos = min(ordered->file_offset + ordered->num_bytes,
1307 				      end + 1);
1308 			btrfs_put_ordered_extent(ordered);
1309 			continue;
1310 		}
1311 
1312 		/* Now wait for the OE to finish. */
1313 		btrfs_unlock_extent(&inode->io_tree, start, end, cached_state);
1314 		btrfs_start_ordered_extent_nowriteback(ordered, start, end + 1 - start);
1315 		btrfs_put_ordered_extent(ordered);
1316 		/* We have unlocked the whole range, restart from the beginning. */
1317 		goto again;
1318 	}
1319 }
1320 
btrfs_read_folio(struct file * file,struct folio * folio)1321 int btrfs_read_folio(struct file *file, struct folio *folio)
1322 {
1323 	struct btrfs_inode *inode = folio_to_inode(folio);
1324 	const u64 start = folio_pos(folio);
1325 	const u64 end = start + folio_size(folio) - 1;
1326 	struct extent_state *cached_state = NULL;
1327 	struct btrfs_bio_ctrl bio_ctrl = {
1328 		.opf = REQ_OP_READ,
1329 		.last_em_start = U64_MAX,
1330 	};
1331 	struct extent_map *em_cached = NULL;
1332 	int ret;
1333 
1334 	lock_extents_for_read(inode, start, end, &cached_state);
1335 	ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl);
1336 	btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
1337 
1338 	btrfs_free_extent_map(em_cached);
1339 
1340 	/*
1341 	 * If btrfs_do_readpage() failed we will want to submit the assembled
1342 	 * bio to do the cleanup.
1343 	 */
1344 	submit_one_bio(&bio_ctrl);
1345 	return ret;
1346 }
1347 
set_delalloc_bitmap(struct folio * folio,unsigned long * delalloc_bitmap,u64 start,u32 len)1348 static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap,
1349 				u64 start, u32 len)
1350 {
1351 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1352 	const u64 folio_start = folio_pos(folio);
1353 	unsigned int start_bit;
1354 	unsigned int nbits;
1355 
1356 	ASSERT(start >= folio_start && start + len <= folio_start + folio_size(folio));
1357 	start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1358 	nbits = len >> fs_info->sectorsize_bits;
1359 	ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits));
1360 	bitmap_set(delalloc_bitmap, start_bit, nbits);
1361 }
1362 
find_next_delalloc_bitmap(struct folio * folio,unsigned long * delalloc_bitmap,u64 start,u64 * found_start,u32 * found_len)1363 static bool find_next_delalloc_bitmap(struct folio *folio,
1364 				      unsigned long *delalloc_bitmap, u64 start,
1365 				      u64 *found_start, u32 *found_len)
1366 {
1367 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1368 	const u64 folio_start = folio_pos(folio);
1369 	const unsigned int bitmap_size = btrfs_blocks_per_folio(fs_info, folio);
1370 	unsigned int start_bit;
1371 	unsigned int first_zero;
1372 	unsigned int first_set;
1373 
1374 	ASSERT(start >= folio_start && start < folio_start + folio_size(folio));
1375 
1376 	start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1377 	first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit);
1378 	if (first_set >= bitmap_size)
1379 		return false;
1380 
1381 	*found_start = folio_start + (first_set << fs_info->sectorsize_bits);
1382 	first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set);
1383 	*found_len = (first_zero - first_set) << fs_info->sectorsize_bits;
1384 	return true;
1385 }
1386 
1387 /*
1388  * Do all of the delayed allocation setup.
1389  *
1390  * Return >0 if all the dirty blocks are submitted async (compression) or inlined.
1391  * The @folio should no longer be touched (treat it as already unlocked).
1392  *
1393  * Return 0 if there is still dirty block that needs to be submitted through
1394  * extent_writepage_io().
1395  * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be
1396  * submitted, and @folio is still kept locked.
1397  *
1398  * Return <0 if there is any error hit.
1399  * Any allocated ordered extent range covering this folio will be marked
1400  * finished (IOERR), and @folio is still kept locked.
1401  */
writepage_delalloc(struct btrfs_inode * inode,struct folio * folio,struct btrfs_bio_ctrl * bio_ctrl)1402 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1403 						 struct folio *folio,
1404 						 struct btrfs_bio_ctrl *bio_ctrl)
1405 {
1406 	struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode);
1407 	struct writeback_control *wbc = bio_ctrl->wbc;
1408 	const bool is_subpage = btrfs_is_subpage(fs_info, folio);
1409 	const u64 page_start = folio_pos(folio);
1410 	const u64 page_end = page_start + folio_size(folio) - 1;
1411 	const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1412 	unsigned long delalloc_bitmap = 0;
1413 	/*
1414 	 * Save the last found delalloc end. As the delalloc end can go beyond
1415 	 * page boundary, thus we cannot rely on subpage bitmap to locate the
1416 	 * last delalloc end.
1417 	 */
1418 	u64 last_delalloc_end = 0;
1419 	/*
1420 	 * The range end (exclusive) of the last successfully finished delalloc
1421 	 * range.
1422 	 * Any range covered by ordered extent must either be manually marked
1423 	 * finished (error handling), or has IO submitted (and finish the
1424 	 * ordered extent normally).
1425 	 *
1426 	 * This records the end of ordered extent cleanup if we hit an error.
1427 	 */
1428 	u64 last_finished_delalloc_end = page_start;
1429 	u64 delalloc_start = page_start;
1430 	u64 delalloc_end = page_end;
1431 	u64 delalloc_to_write = 0;
1432 	int ret = 0;
1433 	int bit;
1434 
1435 	/* Save the dirty bitmap as our submission bitmap will be a subset of it. */
1436 	if (btrfs_is_subpage(fs_info, folio)) {
1437 		ASSERT(blocks_per_folio > 1);
1438 		btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap);
1439 	} else {
1440 		bio_ctrl->submit_bitmap = 1;
1441 	}
1442 
1443 	for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) {
1444 		u64 start = page_start + (bit << fs_info->sectorsize_bits);
1445 
1446 		btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize);
1447 	}
1448 
1449 	/* Lock all (subpage) delalloc ranges inside the folio first. */
1450 	while (delalloc_start < page_end) {
1451 		delalloc_end = page_end;
1452 		if (!find_lock_delalloc_range(&inode->vfs_inode, folio,
1453 					      &delalloc_start, &delalloc_end)) {
1454 			delalloc_start = delalloc_end + 1;
1455 			continue;
1456 		}
1457 		set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start,
1458 				    min(delalloc_end, page_end) + 1 - delalloc_start);
1459 		last_delalloc_end = delalloc_end;
1460 		delalloc_start = delalloc_end + 1;
1461 	}
1462 	delalloc_start = page_start;
1463 
1464 	if (!last_delalloc_end)
1465 		goto out;
1466 
1467 	/* Run the delalloc ranges for the above locked ranges. */
1468 	while (delalloc_start < page_end) {
1469 		u64 found_start;
1470 		u32 found_len;
1471 		bool found;
1472 
1473 		if (!is_subpage) {
1474 			/*
1475 			 * For non-subpage case, the found delalloc range must
1476 			 * cover this folio and there must be only one locked
1477 			 * delalloc range.
1478 			 */
1479 			found_start = page_start;
1480 			found_len = last_delalloc_end + 1 - found_start;
1481 			found = true;
1482 		} else {
1483 			found = find_next_delalloc_bitmap(folio, &delalloc_bitmap,
1484 					delalloc_start, &found_start, &found_len);
1485 		}
1486 		if (!found)
1487 			break;
1488 		/*
1489 		 * The subpage range covers the last sector, the delalloc range may
1490 		 * end beyond the folio boundary, use the saved delalloc_end
1491 		 * instead.
1492 		 */
1493 		if (found_start + found_len >= page_end)
1494 			found_len = last_delalloc_end + 1 - found_start;
1495 
1496 		if (ret >= 0) {
1497 			/*
1498 			 * Some delalloc range may be created by previous folios.
1499 			 * Thus we still need to clean up this range during error
1500 			 * handling.
1501 			 */
1502 			last_finished_delalloc_end = found_start;
1503 			/* No errors hit so far, run the current delalloc range. */
1504 			ret = btrfs_run_delalloc_range(inode, folio,
1505 						       found_start,
1506 						       found_start + found_len - 1,
1507 						       wbc);
1508 			if (ret >= 0)
1509 				last_finished_delalloc_end = found_start + found_len;
1510 			if (unlikely(ret < 0))
1511 				btrfs_err_rl(fs_info,
1512 "failed to run delalloc range, root=%lld ino=%llu folio=%llu submit_bitmap=%*pbl start=%llu len=%u: %d",
1513 					     btrfs_root_id(inode->root),
1514 					     btrfs_ino(inode),
1515 					     folio_pos(folio),
1516 					     blocks_per_folio,
1517 					     &bio_ctrl->submit_bitmap,
1518 					     found_start, found_len, ret);
1519 		} else {
1520 			/*
1521 			 * We've hit an error during previous delalloc range,
1522 			 * have to cleanup the remaining locked ranges.
1523 			 */
1524 			btrfs_unlock_extent(&inode->io_tree, found_start,
1525 					    found_start + found_len - 1, NULL);
1526 			unlock_delalloc_folio(&inode->vfs_inode, folio,
1527 					      found_start,
1528 					      found_start + found_len - 1);
1529 		}
1530 
1531 		/*
1532 		 * We have some ranges that's going to be submitted asynchronously
1533 		 * (compression or inline).  These range have their own control
1534 		 * on when to unlock the pages.  We should not touch them
1535 		 * anymore, so clear the range from the submission bitmap.
1536 		 */
1537 		if (ret > 0) {
1538 			unsigned int start_bit = (found_start - page_start) >>
1539 						 fs_info->sectorsize_bits;
1540 			unsigned int end_bit = (min(page_end + 1, found_start + found_len) -
1541 						page_start) >> fs_info->sectorsize_bits;
1542 			bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit);
1543 		}
1544 		/*
1545 		 * Above btrfs_run_delalloc_range() may have unlocked the folio,
1546 		 * thus for the last range, we cannot touch the folio anymore.
1547 		 */
1548 		if (found_start + found_len >= last_delalloc_end + 1)
1549 			break;
1550 
1551 		delalloc_start = found_start + found_len;
1552 	}
1553 	/*
1554 	 * It's possible we had some ordered extents created before we hit
1555 	 * an error, cleanup non-async successfully created delalloc ranges.
1556 	 */
1557 	if (unlikely(ret < 0)) {
1558 		unsigned int bitmap_size = min(
1559 				(last_finished_delalloc_end - page_start) >>
1560 				fs_info->sectorsize_bits,
1561 				blocks_per_folio);
1562 
1563 		for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size)
1564 			btrfs_mark_ordered_io_finished(inode, folio,
1565 				page_start + (bit << fs_info->sectorsize_bits),
1566 				fs_info->sectorsize, false);
1567 		return ret;
1568 	}
1569 out:
1570 	if (last_delalloc_end)
1571 		delalloc_end = last_delalloc_end;
1572 	else
1573 		delalloc_end = page_end;
1574 	/*
1575 	 * delalloc_end is already one less than the total length, so
1576 	 * we don't subtract one from PAGE_SIZE.
1577 	 */
1578 	delalloc_to_write +=
1579 		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1580 
1581 	/*
1582 	 * If all ranges are submitted asynchronously, we just need to account
1583 	 * for them here.
1584 	 */
1585 	if (bitmap_empty(&bio_ctrl->submit_bitmap, blocks_per_folio)) {
1586 		wbc->nr_to_write -= delalloc_to_write;
1587 		return 1;
1588 	}
1589 
1590 	if (wbc->nr_to_write < delalloc_to_write) {
1591 		int thresh = 8192;
1592 
1593 		if (delalloc_to_write < thresh * 2)
1594 			thresh = delalloc_to_write;
1595 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1596 					 thresh);
1597 	}
1598 
1599 	return 0;
1600 }
1601 
1602 /*
1603  * Return 0 if we have submitted or queued the sector for submission.
1604  * Return <0 for critical errors, and the sector will have its dirty flag cleared.
1605  *
1606  * Caller should make sure filepos < i_size and handle filepos >= i_size case.
1607  */
submit_one_sector(struct btrfs_inode * inode,struct folio * folio,u64 filepos,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size)1608 static int submit_one_sector(struct btrfs_inode *inode,
1609 			     struct folio *folio,
1610 			     u64 filepos, struct btrfs_bio_ctrl *bio_ctrl,
1611 			     loff_t i_size)
1612 {
1613 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1614 	struct extent_map *em;
1615 	u64 block_start;
1616 	u64 disk_bytenr;
1617 	u64 extent_offset;
1618 	u64 em_end;
1619 	const u32 sectorsize = fs_info->sectorsize;
1620 
1621 	ASSERT(IS_ALIGNED(filepos, sectorsize));
1622 
1623 	/* @filepos >= i_size case should be handled by the caller. */
1624 	ASSERT(filepos < i_size);
1625 
1626 	em = btrfs_get_extent(inode, NULL, filepos, sectorsize);
1627 	if (IS_ERR(em)) {
1628 		/*
1629 		 * When submission failed, we should still clear the folio dirty.
1630 		 * Or the folio will be written back again but without any
1631 		 * ordered extent.
1632 		 */
1633 		btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1634 		btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1635 		btrfs_folio_clear_writeback(fs_info, folio, filepos, sectorsize);
1636 		return PTR_ERR(em);
1637 	}
1638 
1639 	extent_offset = filepos - em->start;
1640 	em_end = btrfs_extent_map_end(em);
1641 	ASSERT(filepos <= em_end);
1642 	ASSERT(IS_ALIGNED(em->start, sectorsize));
1643 	ASSERT(IS_ALIGNED(em->len, sectorsize));
1644 
1645 	block_start = btrfs_extent_map_block_start(em);
1646 	disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset;
1647 
1648 	ASSERT(!btrfs_extent_map_is_compressed(em));
1649 	ASSERT(block_start != EXTENT_MAP_HOLE);
1650 	ASSERT(block_start != EXTENT_MAP_INLINE);
1651 
1652 	btrfs_free_extent_map(em);
1653 	em = NULL;
1654 
1655 	/*
1656 	 * Although the PageDirty bit is cleared before entering this
1657 	 * function, subpage dirty bit is not cleared.
1658 	 * So clear subpage dirty bit here so next time we won't submit
1659 	 * a folio for a range already written to disk.
1660 	 */
1661 	btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1662 	btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1663 	/*
1664 	 * Above call should set the whole folio with writeback flag, even
1665 	 * just for a single subpage sector.
1666 	 * As long as the folio is properly locked and the range is correct,
1667 	 * we should always get the folio with writeback flag.
1668 	 */
1669 	ASSERT(folio_test_writeback(folio));
1670 
1671 	submit_extent_folio(bio_ctrl, disk_bytenr, folio,
1672 			    sectorsize, filepos - folio_pos(folio), 0);
1673 	return 0;
1674 }
1675 
1676 /*
1677  * Helper for extent_writepage().  This calls the writepage start hooks,
1678  * and does the loop to map the page into extents and bios.
1679  *
1680  * We return 1 if the IO is started and the page is unlocked,
1681  * 0 if all went well (page still locked)
1682  * < 0 if there were errors (page still locked)
1683  */
extent_writepage_io(struct btrfs_inode * inode,struct folio * folio,u64 start,u32 len,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size)1684 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode,
1685 						  struct folio *folio,
1686 						  u64 start, u32 len,
1687 						  struct btrfs_bio_ctrl *bio_ctrl,
1688 						  loff_t i_size)
1689 {
1690 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1691 	unsigned long range_bitmap = 0;
1692 	bool submitted_io = false;
1693 	int found_error = 0;
1694 	const u64 folio_start = folio_pos(folio);
1695 	const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1696 	u64 cur;
1697 	int bit;
1698 	int ret = 0;
1699 
1700 	ASSERT(start >= folio_start &&
1701 	       start + len <= folio_start + folio_size(folio));
1702 
1703 	ret = btrfs_writepage_cow_fixup(folio);
1704 	if (ret == -EAGAIN) {
1705 		/* Fixup worker will requeue */
1706 		folio_redirty_for_writepage(bio_ctrl->wbc, folio);
1707 		folio_unlock(folio);
1708 		return 1;
1709 	}
1710 	if (ret < 0) {
1711 		btrfs_folio_clear_dirty(fs_info, folio, start, len);
1712 		btrfs_folio_set_writeback(fs_info, folio, start, len);
1713 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1714 		return ret;
1715 	}
1716 
1717 	for (cur = start; cur < start + len; cur += fs_info->sectorsize)
1718 		set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap);
1719 	bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap,
1720 		   blocks_per_folio);
1721 
1722 	bio_ctrl->end_io_func = end_bbio_data_write;
1723 
1724 	for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) {
1725 		cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits);
1726 
1727 		if (cur >= i_size) {
1728 			btrfs_mark_ordered_io_finished(inode, folio, cur,
1729 						       start + len - cur, true);
1730 			/*
1731 			 * This range is beyond i_size, thus we don't need to
1732 			 * bother writing back.
1733 			 * But we still need to clear the dirty subpage bit, or
1734 			 * the next time the folio gets dirtied, we will try to
1735 			 * writeback the sectors with subpage dirty bits,
1736 			 * causing writeback without ordered extent.
1737 			 */
1738 			btrfs_folio_clear_dirty(fs_info, folio, cur,
1739 						start + len - cur);
1740 			break;
1741 		}
1742 		ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size);
1743 		if (unlikely(ret < 0)) {
1744 			/*
1745 			 * bio_ctrl may contain a bio crossing several folios.
1746 			 * Submit it immediately so that the bio has a chance
1747 			 * to finish normally, other than marked as error.
1748 			 */
1749 			submit_one_bio(bio_ctrl);
1750 			/*
1751 			 * Failed to grab the extent map which should be very rare.
1752 			 * Since there is no bio submitted to finish the ordered
1753 			 * extent, we have to manually finish this sector.
1754 			 */
1755 			btrfs_mark_ordered_io_finished(inode, folio, cur,
1756 						       fs_info->sectorsize, false);
1757 			if (!found_error)
1758 				found_error = ret;
1759 			continue;
1760 		}
1761 		submitted_io = true;
1762 	}
1763 
1764 	/*
1765 	 * If we didn't submitted any sector (>= i_size), folio dirty get
1766 	 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared
1767 	 * by folio_start_writeback() if the folio is not dirty).
1768 	 *
1769 	 * Here we set writeback and clear for the range. If the full folio
1770 	 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag.
1771 	 *
1772 	 * If we hit any error, the corresponding sector will have its dirty
1773 	 * flag cleared and writeback finished, thus no need to handle the error case.
1774 	 */
1775 	if (!submitted_io && !found_error) {
1776 		btrfs_folio_set_writeback(fs_info, folio, start, len);
1777 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1778 	}
1779 	return found_error;
1780 }
1781 
1782 /*
1783  * the writepage semantics are similar to regular writepage.  extent
1784  * records are inserted to lock ranges in the tree, and as dirty areas
1785  * are found, they are marked writeback.  Then the lock bits are removed
1786  * and the end_io handler clears the writeback ranges
1787  *
1788  * Return 0 if everything goes well.
1789  * Return <0 for error.
1790  */
extent_writepage(struct folio * folio,struct btrfs_bio_ctrl * bio_ctrl)1791 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl)
1792 {
1793 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
1794 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1795 	int ret;
1796 	size_t pg_offset;
1797 	loff_t i_size = i_size_read(&inode->vfs_inode);
1798 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
1799 	const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1800 
1801 	trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc);
1802 
1803 	WARN_ON(!folio_test_locked(folio));
1804 
1805 	pg_offset = offset_in_folio(folio, i_size);
1806 	if (folio->index > end_index ||
1807 	   (folio->index == end_index && !pg_offset)) {
1808 		folio_invalidate(folio, 0, folio_size(folio));
1809 		folio_unlock(folio);
1810 		return 0;
1811 	}
1812 
1813 	if (folio_contains(folio, end_index))
1814 		folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset);
1815 
1816 	/*
1817 	 * Default to unlock the whole folio.
1818 	 * The proper bitmap can only be initialized until writepage_delalloc().
1819 	 */
1820 	bio_ctrl->submit_bitmap = (unsigned long)-1;
1821 
1822 	/*
1823 	 * If the page is dirty but without private set, it's marked dirty
1824 	 * without informing the fs.
1825 	 * Nowadays that is a bug, since the introduction of
1826 	 * pin_user_pages*().
1827 	 *
1828 	 * So here we check if the page has private set to rule out such
1829 	 * case.
1830 	 * But we also have a long history of relying on the COW fixup,
1831 	 * so here we only enable this check for experimental builds until
1832 	 * we're sure it's safe.
1833 	 */
1834 	if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) &&
1835 	    unlikely(!folio_test_private(folio))) {
1836 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
1837 		btrfs_err_rl(fs_info,
1838 	"root %lld ino %llu folio %llu is marked dirty without notifying the fs",
1839 			     btrfs_root_id(inode->root),
1840 			     btrfs_ino(inode), folio_pos(folio));
1841 		ret = -EUCLEAN;
1842 		goto done;
1843 	}
1844 
1845 	ret = set_folio_extent_mapped(folio);
1846 	if (ret < 0)
1847 		goto done;
1848 
1849 	ret = writepage_delalloc(inode, folio, bio_ctrl);
1850 	if (ret == 1)
1851 		return 0;
1852 	if (ret)
1853 		goto done;
1854 
1855 	ret = extent_writepage_io(inode, folio, folio_pos(folio),
1856 				  folio_size(folio), bio_ctrl, i_size);
1857 	if (ret == 1)
1858 		return 0;
1859 	if (ret < 0)
1860 		btrfs_err_rl(fs_info,
1861 "failed to submit blocks, root=%lld inode=%llu folio=%llu submit_bitmap=%*pbl: %d",
1862 			     btrfs_root_id(inode->root), btrfs_ino(inode),
1863 			     folio_pos(folio), blocks_per_folio,
1864 			     &bio_ctrl->submit_bitmap, ret);
1865 
1866 	bio_ctrl->wbc->nr_to_write--;
1867 
1868 done:
1869 	if (ret < 0)
1870 		mapping_set_error(folio->mapping, ret);
1871 	/*
1872 	 * Only unlock ranges that are submitted. As there can be some async
1873 	 * submitted ranges inside the folio.
1874 	 */
1875 	btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap);
1876 	ASSERT(ret <= 0);
1877 	return ret;
1878 }
1879 
1880 /*
1881  * Lock extent buffer status and pages for writeback.
1882  *
1883  * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1884  * extent buffer is not dirty)
1885  * Return %true is the extent buffer is submitted to bio.
1886  */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct writeback_control * wbc)1887 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1888 			  struct writeback_control *wbc)
1889 {
1890 	struct btrfs_fs_info *fs_info = eb->fs_info;
1891 	bool ret = false;
1892 
1893 	btrfs_tree_lock(eb);
1894 	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1895 		btrfs_tree_unlock(eb);
1896 		if (wbc->sync_mode != WB_SYNC_ALL)
1897 			return false;
1898 		wait_on_extent_buffer_writeback(eb);
1899 		btrfs_tree_lock(eb);
1900 	}
1901 
1902 	/*
1903 	 * We need to do this to prevent races in people who check if the eb is
1904 	 * under IO since we can end up having no IO bits set for a short period
1905 	 * of time.
1906 	 */
1907 	spin_lock(&eb->refs_lock);
1908 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1909 		XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
1910 		unsigned long flags;
1911 
1912 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1913 		spin_unlock(&eb->refs_lock);
1914 
1915 		xas_lock_irqsave(&xas, flags);
1916 		xas_load(&xas);
1917 		xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
1918 		xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
1919 		xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
1920 		xas_unlock_irqrestore(&xas, flags);
1921 
1922 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1923 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1924 					 -eb->len,
1925 					 fs_info->dirty_metadata_batch);
1926 		ret = true;
1927 	} else {
1928 		spin_unlock(&eb->refs_lock);
1929 	}
1930 	btrfs_tree_unlock(eb);
1931 	return ret;
1932 }
1933 
set_btree_ioerr(struct extent_buffer * eb)1934 static void set_btree_ioerr(struct extent_buffer *eb)
1935 {
1936 	struct btrfs_fs_info *fs_info = eb->fs_info;
1937 
1938 	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1939 
1940 	/*
1941 	 * A read may stumble upon this buffer later, make sure that it gets an
1942 	 * error and knows there was an error.
1943 	 */
1944 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1945 
1946 	/*
1947 	 * We need to set the mapping with the io error as well because a write
1948 	 * error will flip the file system readonly, and then syncfs() will
1949 	 * return a 0 because we are readonly if we don't modify the err seq for
1950 	 * the superblock.
1951 	 */
1952 	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1953 
1954 	/*
1955 	 * If writeback for a btree extent that doesn't belong to a log tree
1956 	 * failed, increment the counter transaction->eb_write_errors.
1957 	 * We do this because while the transaction is running and before it's
1958 	 * committing (when we call filemap_fdata[write|wait]_range against
1959 	 * the btree inode), we might have
1960 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1961 	 * returns an error or an error happens during writeback, when we're
1962 	 * committing the transaction we wouldn't know about it, since the pages
1963 	 * can be no longer dirty nor marked anymore for writeback (if a
1964 	 * subsequent modification to the extent buffer didn't happen before the
1965 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1966 	 * able to find the pages which contain errors at transaction
1967 	 * commit time. So if this happens we must abort the transaction,
1968 	 * otherwise we commit a super block with btree roots that point to
1969 	 * btree nodes/leafs whose content on disk is invalid - either garbage
1970 	 * or the content of some node/leaf from a past generation that got
1971 	 * cowed or deleted and is no longer valid.
1972 	 *
1973 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1974 	 * not be enough - we need to distinguish between log tree extents vs
1975 	 * non-log tree extents, and the next filemap_fdatawait_range() call
1976 	 * will catch and clear such errors in the mapping - and that call might
1977 	 * be from a log sync and not from a transaction commit. Also, checking
1978 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1979 	 * not done and would not be reliable - the eb might have been released
1980 	 * from memory and reading it back again means that flag would not be
1981 	 * set (since it's a runtime flag, not persisted on disk).
1982 	 *
1983 	 * Using the flags below in the btree inode also makes us achieve the
1984 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1985 	 * writeback for all dirty pages and before filemap_fdatawait_range()
1986 	 * is called, the writeback for all dirty pages had already finished
1987 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1988 	 * filemap_fdatawait_range() would return success, as it could not know
1989 	 * that writeback errors happened (the pages were no longer tagged for
1990 	 * writeback).
1991 	 */
1992 	switch (eb->log_index) {
1993 	case -1:
1994 		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1995 		break;
1996 	case 0:
1997 		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1998 		break;
1999 	case 1:
2000 		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2001 		break;
2002 	default:
2003 		BUG(); /* unexpected, logic error */
2004 	}
2005 }
2006 
buffer_tree_set_mark(const struct extent_buffer * eb,xa_mark_t mark)2007 static void buffer_tree_set_mark(const struct extent_buffer *eb, xa_mark_t mark)
2008 {
2009 	struct btrfs_fs_info *fs_info = eb->fs_info;
2010 	XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
2011 	unsigned long flags;
2012 
2013 	xas_lock_irqsave(&xas, flags);
2014 	xas_load(&xas);
2015 	xas_set_mark(&xas, mark);
2016 	xas_unlock_irqrestore(&xas, flags);
2017 }
2018 
buffer_tree_clear_mark(const struct extent_buffer * eb,xa_mark_t mark)2019 static void buffer_tree_clear_mark(const struct extent_buffer *eb, xa_mark_t mark)
2020 {
2021 	struct btrfs_fs_info *fs_info = eb->fs_info;
2022 	XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
2023 	unsigned long flags;
2024 
2025 	xas_lock_irqsave(&xas, flags);
2026 	xas_load(&xas);
2027 	xas_clear_mark(&xas, mark);
2028 	xas_unlock_irqrestore(&xas, flags);
2029 }
2030 
buffer_tree_tag_for_writeback(struct btrfs_fs_info * fs_info,unsigned long start,unsigned long end)2031 static void buffer_tree_tag_for_writeback(struct btrfs_fs_info *fs_info,
2032 					  unsigned long start, unsigned long end)
2033 {
2034 	XA_STATE(xas, &fs_info->buffer_tree, start);
2035 	unsigned int tagged = 0;
2036 	void *eb;
2037 
2038 	xas_lock_irq(&xas);
2039 	xas_for_each_marked(&xas, eb, end, PAGECACHE_TAG_DIRTY) {
2040 		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2041 		if (++tagged % XA_CHECK_SCHED)
2042 			continue;
2043 		xas_pause(&xas);
2044 		xas_unlock_irq(&xas);
2045 		cond_resched();
2046 		xas_lock_irq(&xas);
2047 	}
2048 	xas_unlock_irq(&xas);
2049 }
2050 
2051 struct eb_batch {
2052 	unsigned int nr;
2053 	unsigned int cur;
2054 	struct extent_buffer *ebs[PAGEVEC_SIZE];
2055 };
2056 
eb_batch_add(struct eb_batch * batch,struct extent_buffer * eb)2057 static inline bool eb_batch_add(struct eb_batch *batch, struct extent_buffer *eb)
2058 {
2059 	batch->ebs[batch->nr++] = eb;
2060 	return (batch->nr < PAGEVEC_SIZE);
2061 }
2062 
eb_batch_init(struct eb_batch * batch)2063 static inline void eb_batch_init(struct eb_batch *batch)
2064 {
2065 	batch->nr = 0;
2066 	batch->cur = 0;
2067 }
2068 
eb_batch_next(struct eb_batch * batch)2069 static inline struct extent_buffer *eb_batch_next(struct eb_batch *batch)
2070 {
2071 	if (batch->cur >= batch->nr)
2072 		return NULL;
2073 	return batch->ebs[batch->cur++];
2074 }
2075 
eb_batch_release(struct eb_batch * batch)2076 static inline void eb_batch_release(struct eb_batch *batch)
2077 {
2078 	for (unsigned int i = 0; i < batch->nr; i++)
2079 		free_extent_buffer(batch->ebs[i]);
2080 	eb_batch_init(batch);
2081 }
2082 
find_get_eb(struct xa_state * xas,unsigned long max,xa_mark_t mark)2083 static inline struct extent_buffer *find_get_eb(struct xa_state *xas, unsigned long max,
2084 						xa_mark_t mark)
2085 {
2086 	struct extent_buffer *eb;
2087 
2088 retry:
2089 	eb = xas_find_marked(xas, max, mark);
2090 
2091 	if (xas_retry(xas, eb))
2092 		goto retry;
2093 
2094 	if (!eb)
2095 		return NULL;
2096 
2097 	if (!refcount_inc_not_zero(&eb->refs)) {
2098 		xas_reset(xas);
2099 		goto retry;
2100 	}
2101 
2102 	if (unlikely(eb != xas_reload(xas))) {
2103 		free_extent_buffer(eb);
2104 		xas_reset(xas);
2105 		goto retry;
2106 	}
2107 
2108 	return eb;
2109 }
2110 
buffer_tree_get_ebs_tag(struct btrfs_fs_info * fs_info,unsigned long * start,unsigned long end,xa_mark_t tag,struct eb_batch * batch)2111 static unsigned int buffer_tree_get_ebs_tag(struct btrfs_fs_info *fs_info,
2112 					    unsigned long *start,
2113 					    unsigned long end, xa_mark_t tag,
2114 					    struct eb_batch *batch)
2115 {
2116 	XA_STATE(xas, &fs_info->buffer_tree, *start);
2117 	struct extent_buffer *eb;
2118 
2119 	rcu_read_lock();
2120 	while ((eb = find_get_eb(&xas, end, tag)) != NULL) {
2121 		if (!eb_batch_add(batch, eb)) {
2122 			*start = ((eb->start + eb->len) >> fs_info->nodesize_bits);
2123 			goto out;
2124 		}
2125 	}
2126 	if (end == ULONG_MAX)
2127 		*start = ULONG_MAX;
2128 	else
2129 		*start = end + 1;
2130 out:
2131 	rcu_read_unlock();
2132 
2133 	return batch->nr;
2134 }
2135 
2136 /*
2137  * The endio specific version which won't touch any unsafe spinlock in endio
2138  * context.
2139  */
find_extent_buffer_nolock(struct btrfs_fs_info * fs_info,u64 start)2140 static struct extent_buffer *find_extent_buffer_nolock(
2141 		struct btrfs_fs_info *fs_info, u64 start)
2142 {
2143 	struct extent_buffer *eb;
2144 	unsigned long index = (start >> fs_info->nodesize_bits);
2145 
2146 	rcu_read_lock();
2147 	eb = xa_load(&fs_info->buffer_tree, index);
2148 	if (eb && !refcount_inc_not_zero(&eb->refs))
2149 		eb = NULL;
2150 	rcu_read_unlock();
2151 	return eb;
2152 }
2153 
end_bbio_meta_write(struct btrfs_bio * bbio)2154 static void end_bbio_meta_write(struct btrfs_bio *bbio)
2155 {
2156 	struct extent_buffer *eb = bbio->private;
2157 	struct folio_iter fi;
2158 
2159 	if (bbio->bio.bi_status != BLK_STS_OK)
2160 		set_btree_ioerr(eb);
2161 
2162 	bio_for_each_folio_all(fi, &bbio->bio) {
2163 		btrfs_meta_folio_clear_writeback(fi.folio, eb);
2164 	}
2165 
2166 	buffer_tree_clear_mark(eb, PAGECACHE_TAG_WRITEBACK);
2167 	clear_and_wake_up_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2168 	bio_put(&bbio->bio);
2169 }
2170 
prepare_eb_write(struct extent_buffer * eb)2171 static void prepare_eb_write(struct extent_buffer *eb)
2172 {
2173 	u32 nritems;
2174 	unsigned long start;
2175 	unsigned long end;
2176 
2177 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
2178 
2179 	/* Set btree blocks beyond nritems with 0 to avoid stale content */
2180 	nritems = btrfs_header_nritems(eb);
2181 	if (btrfs_header_level(eb) > 0) {
2182 		end = btrfs_node_key_ptr_offset(eb, nritems);
2183 		memzero_extent_buffer(eb, end, eb->len - end);
2184 	} else {
2185 		/*
2186 		 * Leaf:
2187 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
2188 		 */
2189 		start = btrfs_item_nr_offset(eb, nritems);
2190 		end = btrfs_item_nr_offset(eb, 0);
2191 		if (nritems == 0)
2192 			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
2193 		else
2194 			end += btrfs_item_offset(eb, nritems - 1);
2195 		memzero_extent_buffer(eb, start, end - start);
2196 	}
2197 }
2198 
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc)2199 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
2200 					    struct writeback_control *wbc)
2201 {
2202 	struct btrfs_fs_info *fs_info = eb->fs_info;
2203 	struct btrfs_bio *bbio;
2204 
2205 	prepare_eb_write(eb);
2206 
2207 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
2208 			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
2209 			       eb->fs_info, end_bbio_meta_write, eb);
2210 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
2211 	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
2212 	wbc_init_bio(wbc, &bbio->bio);
2213 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
2214 	bbio->file_offset = eb->start;
2215 	for (int i = 0; i < num_extent_folios(eb); i++) {
2216 		struct folio *folio = eb->folios[i];
2217 		u64 range_start = max_t(u64, eb->start, folio_pos(folio));
2218 		u32 range_len = min_t(u64, folio_end(folio),
2219 				      eb->start + eb->len) - range_start;
2220 
2221 		folio_lock(folio);
2222 		btrfs_meta_folio_clear_dirty(folio, eb);
2223 		btrfs_meta_folio_set_writeback(folio, eb);
2224 		if (!folio_test_dirty(folio))
2225 			wbc->nr_to_write -= folio_nr_pages(folio);
2226 		bio_add_folio_nofail(&bbio->bio, folio, range_len,
2227 				     offset_in_folio(folio, range_start));
2228 		wbc_account_cgroup_owner(wbc, folio, range_len);
2229 		folio_unlock(folio);
2230 	}
2231 	btrfs_submit_bbio(bbio, 0);
2232 }
2233 
2234 /*
2235  * Wait for all eb writeback in the given range to finish.
2236  *
2237  * @fs_info:	The fs_info for this file system.
2238  * @start:	The offset of the range to start waiting on writeback.
2239  * @end:	The end of the range, inclusive. This is meant to be used in
2240  *		conjunction with wait_marked_extents, so this will usually be
2241  *		the_next_eb->start - 1.
2242  */
btrfs_btree_wait_writeback_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)2243 void btrfs_btree_wait_writeback_range(struct btrfs_fs_info *fs_info, u64 start,
2244 				      u64 end)
2245 {
2246 	struct eb_batch batch;
2247 	unsigned long start_index = (start >> fs_info->nodesize_bits);
2248 	unsigned long end_index = (end >> fs_info->nodesize_bits);
2249 
2250 	eb_batch_init(&batch);
2251 	while (start_index <= end_index) {
2252 		struct extent_buffer *eb;
2253 		unsigned int nr_ebs;
2254 
2255 		nr_ebs = buffer_tree_get_ebs_tag(fs_info, &start_index, end_index,
2256 						 PAGECACHE_TAG_WRITEBACK, &batch);
2257 		if (!nr_ebs)
2258 			break;
2259 
2260 		while ((eb = eb_batch_next(&batch)) != NULL)
2261 			wait_on_extent_buffer_writeback(eb);
2262 		eb_batch_release(&batch);
2263 		cond_resched();
2264 	}
2265 }
2266 
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)2267 int btree_write_cache_pages(struct address_space *mapping,
2268 				   struct writeback_control *wbc)
2269 {
2270 	struct btrfs_eb_write_context ctx = { .wbc = wbc };
2271 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
2272 	int ret = 0;
2273 	int done = 0;
2274 	int nr_to_write_done = 0;
2275 	struct eb_batch batch;
2276 	unsigned int nr_ebs;
2277 	unsigned long index;
2278 	unsigned long end;
2279 	int scanned = 0;
2280 	xa_mark_t tag;
2281 
2282 	eb_batch_init(&batch);
2283 	if (wbc->range_cyclic) {
2284 		index = ((mapping->writeback_index << PAGE_SHIFT) >> fs_info->nodesize_bits);
2285 		end = -1;
2286 
2287 		/*
2288 		 * Start from the beginning does not need to cycle over the
2289 		 * range, mark it as scanned.
2290 		 */
2291 		scanned = (index == 0);
2292 	} else {
2293 		index = (wbc->range_start >> fs_info->nodesize_bits);
2294 		end = (wbc->range_end >> fs_info->nodesize_bits);
2295 
2296 		scanned = 1;
2297 	}
2298 	if (wbc->sync_mode == WB_SYNC_ALL)
2299 		tag = PAGECACHE_TAG_TOWRITE;
2300 	else
2301 		tag = PAGECACHE_TAG_DIRTY;
2302 	btrfs_zoned_meta_io_lock(fs_info);
2303 retry:
2304 	if (wbc->sync_mode == WB_SYNC_ALL)
2305 		buffer_tree_tag_for_writeback(fs_info, index, end);
2306 	while (!done && !nr_to_write_done && (index <= end) &&
2307 	       (nr_ebs = buffer_tree_get_ebs_tag(fs_info, &index, end, tag, &batch))) {
2308 		struct extent_buffer *eb;
2309 
2310 		while ((eb = eb_batch_next(&batch)) != NULL) {
2311 			ctx.eb = eb;
2312 
2313 			ret = btrfs_check_meta_write_pointer(eb->fs_info, &ctx);
2314 			if (ret) {
2315 				if (ret == -EBUSY)
2316 					ret = 0;
2317 
2318 				if (ret) {
2319 					done = 1;
2320 					break;
2321 				}
2322 				continue;
2323 			}
2324 
2325 			if (!lock_extent_buffer_for_io(eb, wbc))
2326 				continue;
2327 
2328 			/* Implies write in zoned mode. */
2329 			if (ctx.zoned_bg) {
2330 				/* Mark the last eb in the block group. */
2331 				btrfs_schedule_zone_finish_bg(ctx.zoned_bg, eb);
2332 				ctx.zoned_bg->meta_write_pointer += eb->len;
2333 			}
2334 			write_one_eb(eb, wbc);
2335 		}
2336 		nr_to_write_done = (wbc->nr_to_write <= 0);
2337 		eb_batch_release(&batch);
2338 		cond_resched();
2339 	}
2340 	if (!scanned && !done) {
2341 		/*
2342 		 * We hit the last page and there is more work to be done: wrap
2343 		 * back to the start of the file
2344 		 */
2345 		scanned = 1;
2346 		index = 0;
2347 		goto retry;
2348 	}
2349 	/*
2350 	 * If something went wrong, don't allow any metadata write bio to be
2351 	 * submitted.
2352 	 *
2353 	 * This would prevent use-after-free if we had dirty pages not
2354 	 * cleaned up, which can still happen by fuzzed images.
2355 	 *
2356 	 * - Bad extent tree
2357 	 *   Allowing existing tree block to be allocated for other trees.
2358 	 *
2359 	 * - Log tree operations
2360 	 *   Exiting tree blocks get allocated to log tree, bumps its
2361 	 *   generation, then get cleaned in tree re-balance.
2362 	 *   Such tree block will not be written back, since it's clean,
2363 	 *   thus no WRITTEN flag set.
2364 	 *   And after log writes back, this tree block is not traced by
2365 	 *   any dirty extent_io_tree.
2366 	 *
2367 	 * - Offending tree block gets re-dirtied from its original owner
2368 	 *   Since it has bumped generation, no WRITTEN flag, it can be
2369 	 *   reused without COWing. This tree block will not be traced
2370 	 *   by btrfs_transaction::dirty_pages.
2371 	 *
2372 	 *   Now such dirty tree block will not be cleaned by any dirty
2373 	 *   extent io tree. Thus we don't want to submit such wild eb
2374 	 *   if the fs already has error.
2375 	 *
2376 	 * We can get ret > 0 from submit_extent_folio() indicating how many ebs
2377 	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2378 	 */
2379 	if (ret > 0)
2380 		ret = 0;
2381 	if (!ret && BTRFS_FS_ERROR(fs_info))
2382 		ret = -EROFS;
2383 
2384 	if (ctx.zoned_bg)
2385 		btrfs_put_block_group(ctx.zoned_bg);
2386 	btrfs_zoned_meta_io_unlock(fs_info);
2387 	return ret;
2388 }
2389 
2390 /*
2391  * Walk the list of dirty pages of the given address space and write all of them.
2392  *
2393  * @mapping:   address space structure to write
2394  * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
2395  * @bio_ctrl:  holds context for the write, namely the bio
2396  *
2397  * If a page is already under I/O, write_cache_pages() skips it, even
2398  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2399  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2400  * and msync() need to guarantee that all the data which was dirty at the time
2401  * the call was made get new I/O started against them.  If wbc->sync_mode is
2402  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2403  * existing IO to complete.
2404  */
extent_write_cache_pages(struct address_space * mapping,struct btrfs_bio_ctrl * bio_ctrl)2405 static int extent_write_cache_pages(struct address_space *mapping,
2406 			     struct btrfs_bio_ctrl *bio_ctrl)
2407 {
2408 	struct writeback_control *wbc = bio_ctrl->wbc;
2409 	struct inode *inode = mapping->host;
2410 	int ret = 0;
2411 	int done = 0;
2412 	int nr_to_write_done = 0;
2413 	struct folio_batch fbatch;
2414 	unsigned int nr_folios;
2415 	pgoff_t index;
2416 	pgoff_t end;		/* Inclusive */
2417 	pgoff_t done_index;
2418 	int range_whole = 0;
2419 	int scanned = 0;
2420 	xa_mark_t tag;
2421 
2422 	/*
2423 	 * We have to hold onto the inode so that ordered extents can do their
2424 	 * work when the IO finishes.  The alternative to this is failing to add
2425 	 * an ordered extent if the igrab() fails there and that is a huge pain
2426 	 * to deal with, so instead just hold onto the inode throughout the
2427 	 * writepages operation.  If it fails here we are freeing up the inode
2428 	 * anyway and we'd rather not waste our time writing out stuff that is
2429 	 * going to be truncated anyway.
2430 	 */
2431 	if (!igrab(inode))
2432 		return 0;
2433 
2434 	folio_batch_init(&fbatch);
2435 	if (wbc->range_cyclic) {
2436 		index = mapping->writeback_index; /* Start from prev offset */
2437 		end = -1;
2438 		/*
2439 		 * Start from the beginning does not need to cycle over the
2440 		 * range, mark it as scanned.
2441 		 */
2442 		scanned = (index == 0);
2443 	} else {
2444 		index = wbc->range_start >> PAGE_SHIFT;
2445 		end = wbc->range_end >> PAGE_SHIFT;
2446 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2447 			range_whole = 1;
2448 		scanned = 1;
2449 	}
2450 
2451 	/*
2452 	 * We do the tagged writepage as long as the snapshot flush bit is set
2453 	 * and we are the first one who do the filemap_flush() on this inode.
2454 	 *
2455 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2456 	 * not race in and drop the bit.
2457 	 */
2458 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2459 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2460 			       &BTRFS_I(inode)->runtime_flags))
2461 		wbc->tagged_writepages = 1;
2462 
2463 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2464 		tag = PAGECACHE_TAG_TOWRITE;
2465 	else
2466 		tag = PAGECACHE_TAG_DIRTY;
2467 retry:
2468 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2469 		tag_pages_for_writeback(mapping, index, end);
2470 	done_index = index;
2471 	while (!done && !nr_to_write_done && (index <= end) &&
2472 			(nr_folios = filemap_get_folios_tag(mapping, &index,
2473 							end, tag, &fbatch))) {
2474 		unsigned i;
2475 
2476 		for (i = 0; i < nr_folios; i++) {
2477 			struct folio *folio = fbatch.folios[i];
2478 
2479 			done_index = folio_next_index(folio);
2480 			/*
2481 			 * At this point we hold neither the i_pages lock nor
2482 			 * the folio lock: the folio may be truncated or
2483 			 * invalidated (changing folio->mapping to NULL).
2484 			 */
2485 			if (!folio_trylock(folio)) {
2486 				submit_write_bio(bio_ctrl, 0);
2487 				folio_lock(folio);
2488 			}
2489 
2490 			if (unlikely(folio->mapping != mapping)) {
2491 				folio_unlock(folio);
2492 				continue;
2493 			}
2494 
2495 			if (!folio_test_dirty(folio)) {
2496 				/* Someone wrote it for us. */
2497 				folio_unlock(folio);
2498 				continue;
2499 			}
2500 
2501 			/*
2502 			 * For subpage case, compression can lead to mixed
2503 			 * writeback and dirty flags, e.g:
2504 			 * 0     32K    64K    96K    128K
2505 			 * |     |//////||/////|   |//|
2506 			 *
2507 			 * In above case, [32K, 96K) is asynchronously submitted
2508 			 * for compression, and [124K, 128K) needs to be written back.
2509 			 *
2510 			 * If we didn't wait writeback for page 64K, [128K, 128K)
2511 			 * won't be submitted as the page still has writeback flag
2512 			 * and will be skipped in the next check.
2513 			 *
2514 			 * This mixed writeback and dirty case is only possible for
2515 			 * subpage case.
2516 			 *
2517 			 * TODO: Remove this check after migrating compression to
2518 			 * regular submission.
2519 			 */
2520 			if (wbc->sync_mode != WB_SYNC_NONE ||
2521 			    btrfs_is_subpage(inode_to_fs_info(inode), folio)) {
2522 				if (folio_test_writeback(folio))
2523 					submit_write_bio(bio_ctrl, 0);
2524 				folio_wait_writeback(folio);
2525 			}
2526 
2527 			if (folio_test_writeback(folio) ||
2528 			    !folio_clear_dirty_for_io(folio)) {
2529 				folio_unlock(folio);
2530 				continue;
2531 			}
2532 
2533 			ret = extent_writepage(folio, bio_ctrl);
2534 			if (ret < 0) {
2535 				done = 1;
2536 				break;
2537 			}
2538 
2539 			/*
2540 			 * The filesystem may choose to bump up nr_to_write.
2541 			 * We have to make sure to honor the new nr_to_write
2542 			 * at any time.
2543 			 */
2544 			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2545 					    wbc->nr_to_write <= 0);
2546 		}
2547 		folio_batch_release(&fbatch);
2548 		cond_resched();
2549 	}
2550 	if (!scanned && !done) {
2551 		/*
2552 		 * We hit the last page and there is more work to be done: wrap
2553 		 * back to the start of the file
2554 		 */
2555 		scanned = 1;
2556 		index = 0;
2557 
2558 		/*
2559 		 * If we're looping we could run into a page that is locked by a
2560 		 * writer and that writer could be waiting on writeback for a
2561 		 * page in our current bio, and thus deadlock, so flush the
2562 		 * write bio here.
2563 		 */
2564 		submit_write_bio(bio_ctrl, 0);
2565 		goto retry;
2566 	}
2567 
2568 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2569 		mapping->writeback_index = done_index;
2570 
2571 	btrfs_add_delayed_iput(BTRFS_I(inode));
2572 	return ret;
2573 }
2574 
2575 /*
2576  * Submit the pages in the range to bio for call sites which delalloc range has
2577  * already been ran (aka, ordered extent inserted) and all pages are still
2578  * locked.
2579  */
extent_write_locked_range(struct inode * inode,const struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)2580 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio,
2581 			       u64 start, u64 end, struct writeback_control *wbc,
2582 			       bool pages_dirty)
2583 {
2584 	bool found_error = false;
2585 	int ret = 0;
2586 	struct address_space *mapping = inode->i_mapping;
2587 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2588 	const u32 sectorsize = fs_info->sectorsize;
2589 	loff_t i_size = i_size_read(inode);
2590 	u64 cur = start;
2591 	struct btrfs_bio_ctrl bio_ctrl = {
2592 		.wbc = wbc,
2593 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2594 	};
2595 
2596 	if (wbc->no_cgroup_owner)
2597 		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2598 
2599 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2600 
2601 	while (cur <= end) {
2602 		u64 cur_end;
2603 		u32 cur_len;
2604 		struct folio *folio;
2605 
2606 		folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT);
2607 
2608 		/*
2609 		 * This shouldn't happen, the pages are pinned and locked, this
2610 		 * code is just in case, but shouldn't actually be run.
2611 		 */
2612 		if (IS_ERR(folio)) {
2613 			cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2614 			cur_len = cur_end + 1 - cur;
2615 			btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
2616 						       cur, cur_len, false);
2617 			mapping_set_error(mapping, PTR_ERR(folio));
2618 			cur = cur_end;
2619 			continue;
2620 		}
2621 
2622 		cur_end = min_t(u64, folio_end(folio) - 1, end);
2623 		cur_len = cur_end + 1 - cur;
2624 
2625 		ASSERT(folio_test_locked(folio));
2626 		if (pages_dirty && folio != locked_folio)
2627 			ASSERT(folio_test_dirty(folio));
2628 
2629 		/*
2630 		 * Set the submission bitmap to submit all sectors.
2631 		 * extent_writepage_io() will do the truncation correctly.
2632 		 */
2633 		bio_ctrl.submit_bitmap = (unsigned long)-1;
2634 		ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len,
2635 					  &bio_ctrl, i_size);
2636 		if (ret == 1)
2637 			goto next_page;
2638 
2639 		if (ret)
2640 			mapping_set_error(mapping, ret);
2641 		btrfs_folio_end_lock(fs_info, folio, cur, cur_len);
2642 		if (ret < 0)
2643 			found_error = true;
2644 next_page:
2645 		folio_put(folio);
2646 		cur = cur_end + 1;
2647 	}
2648 
2649 	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2650 }
2651 
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)2652 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
2653 {
2654 	struct inode *inode = mapping->host;
2655 	int ret = 0;
2656 	struct btrfs_bio_ctrl bio_ctrl = {
2657 		.wbc = wbc,
2658 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2659 	};
2660 
2661 	/*
2662 	 * Allow only a single thread to do the reloc work in zoned mode to
2663 	 * protect the write pointer updates.
2664 	 */
2665 	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2666 	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2667 	submit_write_bio(&bio_ctrl, ret);
2668 	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2669 	return ret;
2670 }
2671 
btrfs_readahead(struct readahead_control * rac)2672 void btrfs_readahead(struct readahead_control *rac)
2673 {
2674 	struct btrfs_bio_ctrl bio_ctrl = {
2675 		.opf = REQ_OP_READ | REQ_RAHEAD,
2676 		.ractl = rac,
2677 		.last_em_start = U64_MAX,
2678 	};
2679 	struct folio *folio;
2680 	struct btrfs_inode *inode = BTRFS_I(rac->mapping->host);
2681 	const u64 start = readahead_pos(rac);
2682 	const u64 end = start + readahead_length(rac) - 1;
2683 	struct extent_state *cached_state = NULL;
2684 	struct extent_map *em_cached = NULL;
2685 
2686 	lock_extents_for_read(inode, start, end, &cached_state);
2687 
2688 	while ((folio = readahead_folio(rac)) != NULL)
2689 		btrfs_do_readpage(folio, &em_cached, &bio_ctrl);
2690 
2691 	btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2692 
2693 	if (em_cached)
2694 		btrfs_free_extent_map(em_cached);
2695 	submit_one_bio(&bio_ctrl);
2696 }
2697 
2698 /*
2699  * basic invalidate_folio code, this waits on any locked or writeback
2700  * ranges corresponding to the folio, and then deletes any extent state
2701  * records from the tree
2702  */
extent_invalidate_folio(struct extent_io_tree * tree,struct folio * folio,size_t offset)2703 int extent_invalidate_folio(struct extent_io_tree *tree,
2704 			  struct folio *folio, size_t offset)
2705 {
2706 	struct extent_state *cached_state = NULL;
2707 	u64 start = folio_pos(folio);
2708 	u64 end = start + folio_size(folio) - 1;
2709 	size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2710 
2711 	/* This function is only called for the btree inode */
2712 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2713 
2714 	start += ALIGN(offset, blocksize);
2715 	if (start > end)
2716 		return 0;
2717 
2718 	btrfs_lock_extent(tree, start, end, &cached_state);
2719 	folio_wait_writeback(folio);
2720 
2721 	/*
2722 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2723 	 * so here we only need to unlock the extent range to free any
2724 	 * existing extent state.
2725 	 */
2726 	btrfs_unlock_extent(tree, start, end, &cached_state);
2727 	return 0;
2728 }
2729 
2730 /*
2731  * A helper for struct address_space_operations::release_folio, this tests for
2732  * areas of the folio that are locked or under IO and drops the related state
2733  * bits if it is safe to drop the folio.
2734  */
try_release_extent_state(struct extent_io_tree * tree,struct folio * folio)2735 static bool try_release_extent_state(struct extent_io_tree *tree,
2736 				     struct folio *folio)
2737 {
2738 	struct extent_state *cached_state = NULL;
2739 	u64 start = folio_pos(folio);
2740 	u64 end = start + folio_size(folio) - 1;
2741 	u32 range_bits;
2742 	u32 clear_bits;
2743 	bool ret = false;
2744 	int ret2;
2745 
2746 	btrfs_get_range_bits(tree, start, end, &range_bits, &cached_state);
2747 
2748 	/*
2749 	 * We can release the folio if it's locked only for ordered extent
2750 	 * completion, since that doesn't require using the folio.
2751 	 */
2752 	if ((range_bits & EXTENT_LOCKED) &&
2753 	    !(range_bits & EXTENT_FINISHING_ORDERED))
2754 		goto out;
2755 
2756 	clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW |
2757 		       EXTENT_CTLBITS | EXTENT_QGROUP_RESERVED |
2758 		       EXTENT_FINISHING_ORDERED);
2759 	/*
2760 	 * At this point we can safely clear everything except the locked,
2761 	 * nodatasum, delalloc new and finishing ordered bits. The delalloc new
2762 	 * bit will be cleared by ordered extent completion.
2763 	 */
2764 	ret2 = btrfs_clear_extent_bit(tree, start, end, clear_bits, &cached_state);
2765 	/*
2766 	 * If clear_extent_bit failed for enomem reasons, we can't allow the
2767 	 * release to continue.
2768 	 */
2769 	if (ret2 == 0)
2770 		ret = true;
2771 out:
2772 	btrfs_free_extent_state(cached_state);
2773 
2774 	return ret;
2775 }
2776 
2777 /*
2778  * a helper for release_folio.  As long as there are no locked extents
2779  * in the range corresponding to the page, both state records and extent
2780  * map records are removed
2781  */
try_release_extent_mapping(struct folio * folio,gfp_t mask)2782 bool try_release_extent_mapping(struct folio *folio, gfp_t mask)
2783 {
2784 	u64 start = folio_pos(folio);
2785 	u64 end = start + folio_size(folio) - 1;
2786 	struct btrfs_inode *inode = folio_to_inode(folio);
2787 	struct extent_io_tree *io_tree = &inode->io_tree;
2788 
2789 	while (start <= end) {
2790 		const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
2791 		const u64 len = end - start + 1;
2792 		struct extent_map_tree *extent_tree = &inode->extent_tree;
2793 		struct extent_map *em;
2794 
2795 		write_lock(&extent_tree->lock);
2796 		em = btrfs_lookup_extent_mapping(extent_tree, start, len);
2797 		if (!em) {
2798 			write_unlock(&extent_tree->lock);
2799 			break;
2800 		}
2801 		if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
2802 			write_unlock(&extent_tree->lock);
2803 			btrfs_free_extent_map(em);
2804 			break;
2805 		}
2806 		if (btrfs_test_range_bit_exists(io_tree, em->start,
2807 						btrfs_extent_map_end(em) - 1,
2808 						EXTENT_LOCKED))
2809 			goto next;
2810 		/*
2811 		 * If it's not in the list of modified extents, used by a fast
2812 		 * fsync, we can remove it. If it's being logged we can safely
2813 		 * remove it since fsync took an extra reference on the em.
2814 		 */
2815 		if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
2816 			goto remove_em;
2817 		/*
2818 		 * If it's in the list of modified extents, remove it only if
2819 		 * its generation is older then the current one, in which case
2820 		 * we don't need it for a fast fsync. Otherwise don't remove it,
2821 		 * we could be racing with an ongoing fast fsync that could miss
2822 		 * the new extent.
2823 		 */
2824 		if (em->generation >= cur_gen)
2825 			goto next;
2826 remove_em:
2827 		/*
2828 		 * We only remove extent maps that are not in the list of
2829 		 * modified extents or that are in the list but with a
2830 		 * generation lower then the current generation, so there is no
2831 		 * need to set the full fsync flag on the inode (it hurts the
2832 		 * fsync performance for workloads with a data size that exceeds
2833 		 * or is close to the system's memory).
2834 		 */
2835 		btrfs_remove_extent_mapping(inode, em);
2836 		/* Once for the inode's extent map tree. */
2837 		btrfs_free_extent_map(em);
2838 next:
2839 		start = btrfs_extent_map_end(em);
2840 		write_unlock(&extent_tree->lock);
2841 
2842 		/* Once for us, for the lookup_extent_mapping() reference. */
2843 		btrfs_free_extent_map(em);
2844 
2845 		if (need_resched()) {
2846 			/*
2847 			 * If we need to resched but we can't block just exit
2848 			 * and leave any remaining extent maps.
2849 			 */
2850 			if (!gfpflags_allow_blocking(mask))
2851 				break;
2852 
2853 			cond_resched();
2854 		}
2855 	}
2856 	return try_release_extent_state(io_tree, folio);
2857 }
2858 
extent_buffer_under_io(const struct extent_buffer * eb)2859 static int extent_buffer_under_io(const struct extent_buffer *eb)
2860 {
2861 	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
2862 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2863 }
2864 
folio_range_has_eb(struct folio * folio)2865 static bool folio_range_has_eb(struct folio *folio)
2866 {
2867 	struct btrfs_folio_state *bfs;
2868 
2869 	lockdep_assert_held(&folio->mapping->i_private_lock);
2870 
2871 	if (folio_test_private(folio)) {
2872 		bfs = folio_get_private(folio);
2873 		if (atomic_read(&bfs->eb_refs))
2874 			return true;
2875 	}
2876 	return false;
2877 }
2878 
detach_extent_buffer_folio(const struct extent_buffer * eb,struct folio * folio)2879 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio)
2880 {
2881 	struct btrfs_fs_info *fs_info = eb->fs_info;
2882 	struct address_space *mapping = folio->mapping;
2883 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2884 
2885 	/*
2886 	 * For mapped eb, we're going to change the folio private, which should
2887 	 * be done under the i_private_lock.
2888 	 */
2889 	if (mapped)
2890 		spin_lock(&mapping->i_private_lock);
2891 
2892 	if (!folio_test_private(folio)) {
2893 		if (mapped)
2894 			spin_unlock(&mapping->i_private_lock);
2895 		return;
2896 	}
2897 
2898 	if (!btrfs_meta_is_subpage(fs_info)) {
2899 		/*
2900 		 * We do this since we'll remove the pages after we've removed
2901 		 * the eb from the xarray, so we could race and have this page
2902 		 * now attached to the new eb.  So only clear folio if it's
2903 		 * still connected to this eb.
2904 		 */
2905 		if (folio_test_private(folio) && folio_get_private(folio) == eb) {
2906 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2907 			BUG_ON(folio_test_dirty(folio));
2908 			BUG_ON(folio_test_writeback(folio));
2909 			/* We need to make sure we haven't be attached to a new eb. */
2910 			folio_detach_private(folio);
2911 		}
2912 		if (mapped)
2913 			spin_unlock(&mapping->i_private_lock);
2914 		return;
2915 	}
2916 
2917 	/*
2918 	 * For subpage, we can have dummy eb with folio private attached.  In
2919 	 * this case, we can directly detach the private as such folio is only
2920 	 * attached to one dummy eb, no sharing.
2921 	 */
2922 	if (!mapped) {
2923 		btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
2924 		return;
2925 	}
2926 
2927 	btrfs_folio_dec_eb_refs(fs_info, folio);
2928 
2929 	/*
2930 	 * We can only detach the folio private if there are no other ebs in the
2931 	 * page range and no unfinished IO.
2932 	 */
2933 	if (!folio_range_has_eb(folio))
2934 		btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
2935 
2936 	spin_unlock(&mapping->i_private_lock);
2937 }
2938 
2939 /* Release all folios attached to the extent buffer */
btrfs_release_extent_buffer_folios(const struct extent_buffer * eb)2940 static void btrfs_release_extent_buffer_folios(const struct extent_buffer *eb)
2941 {
2942 	ASSERT(!extent_buffer_under_io(eb));
2943 
2944 	for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
2945 		struct folio *folio = eb->folios[i];
2946 
2947 		if (!folio)
2948 			continue;
2949 
2950 		detach_extent_buffer_folio(eb, folio);
2951 	}
2952 }
2953 
2954 /*
2955  * Helper for releasing the extent buffer.
2956  */
btrfs_release_extent_buffer(struct extent_buffer * eb)2957 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
2958 {
2959 	btrfs_release_extent_buffer_folios(eb);
2960 	btrfs_leak_debug_del_eb(eb);
2961 	kmem_cache_free(extent_buffer_cache, eb);
2962 }
2963 
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)2964 static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *fs_info,
2965 						   u64 start)
2966 {
2967 	struct extent_buffer *eb = NULL;
2968 
2969 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
2970 	eb->start = start;
2971 	eb->len = fs_info->nodesize;
2972 	eb->fs_info = fs_info;
2973 	init_rwsem(&eb->lock);
2974 
2975 	btrfs_leak_debug_add_eb(eb);
2976 
2977 	spin_lock_init(&eb->refs_lock);
2978 	refcount_set(&eb->refs, 1);
2979 
2980 	ASSERT(eb->len <= BTRFS_MAX_METADATA_BLOCKSIZE);
2981 
2982 	return eb;
2983 }
2984 
2985 /*
2986  * For use in eb allocation error cleanup paths, as btrfs_release_extent_buffer()
2987  * does not call folio_put(), and we need to set the folios to NULL so that
2988  * btrfs_release_extent_buffer() will not detach them a second time.
2989  */
cleanup_extent_buffer_folios(struct extent_buffer * eb)2990 static void cleanup_extent_buffer_folios(struct extent_buffer *eb)
2991 {
2992 	const int num_folios = num_extent_folios(eb);
2993 
2994 	/* We cannot use num_extent_folios() as loop bound as eb->folios changes. */
2995 	for (int i = 0; i < num_folios; i++) {
2996 		ASSERT(eb->folios[i]);
2997 		detach_extent_buffer_folio(eb, eb->folios[i]);
2998 		folio_put(eb->folios[i]);
2999 		eb->folios[i] = NULL;
3000 	}
3001 }
3002 
btrfs_clone_extent_buffer(const struct extent_buffer * src)3003 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3004 {
3005 	struct extent_buffer *new;
3006 	int num_folios;
3007 	int ret;
3008 
3009 	new = __alloc_extent_buffer(src->fs_info, src->start);
3010 	if (new == NULL)
3011 		return NULL;
3012 
3013 	/*
3014 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3015 	 * btrfs_release_extent_buffer() have different behavior for
3016 	 * UNMAPPED subpage extent buffer.
3017 	 */
3018 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3019 
3020 	ret = alloc_eb_folio_array(new, false);
3021 	if (ret)
3022 		goto release_eb;
3023 
3024 	ASSERT(num_extent_folios(src) == num_extent_folios(new),
3025 	       "%d != %d", num_extent_folios(src), num_extent_folios(new));
3026 	/* Explicitly use the cached num_extent value from now on. */
3027 	num_folios = num_extent_folios(src);
3028 	for (int i = 0; i < num_folios; i++) {
3029 		struct folio *folio = new->folios[i];
3030 
3031 		ret = attach_extent_buffer_folio(new, folio, NULL);
3032 		if (ret < 0)
3033 			goto cleanup_folios;
3034 		WARN_ON(folio_test_dirty(folio));
3035 	}
3036 	for (int i = 0; i < num_folios; i++)
3037 		folio_put(new->folios[i]);
3038 
3039 	copy_extent_buffer_full(new, src);
3040 	set_extent_buffer_uptodate(new);
3041 
3042 	return new;
3043 
3044 cleanup_folios:
3045 	cleanup_extent_buffer_folios(new);
3046 release_eb:
3047 	btrfs_release_extent_buffer(new);
3048 	return NULL;
3049 }
3050 
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3051 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3052 						u64 start)
3053 {
3054 	struct extent_buffer *eb;
3055 	int ret;
3056 
3057 	eb = __alloc_extent_buffer(fs_info, start);
3058 	if (!eb)
3059 		return NULL;
3060 
3061 	ret = alloc_eb_folio_array(eb, false);
3062 	if (ret)
3063 		goto release_eb;
3064 
3065 	for (int i = 0; i < num_extent_folios(eb); i++) {
3066 		ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
3067 		if (ret < 0)
3068 			goto cleanup_folios;
3069 	}
3070 	for (int i = 0; i < num_extent_folios(eb); i++)
3071 		folio_put(eb->folios[i]);
3072 
3073 	set_extent_buffer_uptodate(eb);
3074 	btrfs_set_header_nritems(eb, 0);
3075 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3076 
3077 	return eb;
3078 
3079 cleanup_folios:
3080 	cleanup_extent_buffer_folios(eb);
3081 release_eb:
3082 	btrfs_release_extent_buffer(eb);
3083 	return NULL;
3084 }
3085 
check_buffer_tree_ref(struct extent_buffer * eb)3086 static void check_buffer_tree_ref(struct extent_buffer *eb)
3087 {
3088 	int refs;
3089 	/*
3090 	 * The TREE_REF bit is first set when the extent_buffer is added to the
3091 	 * xarray. It is also reset, if unset, when a new reference is created
3092 	 * by find_extent_buffer.
3093 	 *
3094 	 * It is only cleared in two cases: freeing the last non-tree
3095 	 * reference to the extent_buffer when its STALE bit is set or
3096 	 * calling release_folio when the tree reference is the only reference.
3097 	 *
3098 	 * In both cases, care is taken to ensure that the extent_buffer's
3099 	 * pages are not under io. However, release_folio can be concurrently
3100 	 * called with creating new references, which is prone to race
3101 	 * conditions between the calls to check_buffer_tree_ref in those
3102 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3103 	 *
3104 	 * The actual lifetime of the extent_buffer in the xarray is adequately
3105 	 * protected by the refcount, but the TREE_REF bit and its corresponding
3106 	 * reference are not. To protect against this class of races, we call
3107 	 * check_buffer_tree_ref() from the code paths which trigger io. Note that
3108 	 * once io is initiated, TREE_REF can no longer be cleared, so that is
3109 	 * the moment at which any such race is best fixed.
3110 	 */
3111 	refs = refcount_read(&eb->refs);
3112 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3113 		return;
3114 
3115 	spin_lock(&eb->refs_lock);
3116 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3117 		refcount_inc(&eb->refs);
3118 	spin_unlock(&eb->refs_lock);
3119 }
3120 
mark_extent_buffer_accessed(struct extent_buffer * eb)3121 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
3122 {
3123 	check_buffer_tree_ref(eb);
3124 
3125 	for (int i = 0; i < num_extent_folios(eb); i++)
3126 		folio_mark_accessed(eb->folios[i]);
3127 }
3128 
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3129 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3130 					 u64 start)
3131 {
3132 	struct extent_buffer *eb;
3133 
3134 	eb = find_extent_buffer_nolock(fs_info, start);
3135 	if (!eb)
3136 		return NULL;
3137 	/*
3138 	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3139 	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3140 	 * another task running free_extent_buffer() might have seen that flag
3141 	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3142 	 * writeback flags not set) and it's still in the tree (flag
3143 	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3144 	 * decrementing the extent buffer's reference count twice.  So here we
3145 	 * could race and increment the eb's reference count, clear its stale
3146 	 * flag, mark it as dirty and drop our reference before the other task
3147 	 * finishes executing free_extent_buffer, which would later result in
3148 	 * an attempt to free an extent buffer that is dirty.
3149 	 */
3150 	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3151 		spin_lock(&eb->refs_lock);
3152 		spin_unlock(&eb->refs_lock);
3153 	}
3154 	mark_extent_buffer_accessed(eb);
3155 	return eb;
3156 }
3157 
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3158 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3159 					u64 start)
3160 {
3161 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3162 	struct extent_buffer *eb, *exists = NULL;
3163 	int ret;
3164 
3165 	eb = find_extent_buffer(fs_info, start);
3166 	if (eb)
3167 		return eb;
3168 	eb = alloc_dummy_extent_buffer(fs_info, start);
3169 	if (!eb)
3170 		return ERR_PTR(-ENOMEM);
3171 	eb->fs_info = fs_info;
3172 again:
3173 	xa_lock_irq(&fs_info->buffer_tree);
3174 	exists = __xa_cmpxchg(&fs_info->buffer_tree, start >> fs_info->nodesize_bits,
3175 			      NULL, eb, GFP_NOFS);
3176 	if (xa_is_err(exists)) {
3177 		ret = xa_err(exists);
3178 		xa_unlock_irq(&fs_info->buffer_tree);
3179 		btrfs_release_extent_buffer(eb);
3180 		return ERR_PTR(ret);
3181 	}
3182 	if (exists) {
3183 		if (!refcount_inc_not_zero(&exists->refs)) {
3184 			/* The extent buffer is being freed, retry. */
3185 			xa_unlock_irq(&fs_info->buffer_tree);
3186 			goto again;
3187 		}
3188 		xa_unlock_irq(&fs_info->buffer_tree);
3189 		btrfs_release_extent_buffer(eb);
3190 		return exists;
3191 	}
3192 	xa_unlock_irq(&fs_info->buffer_tree);
3193 	check_buffer_tree_ref(eb);
3194 
3195 	return eb;
3196 #else
3197 	/* Stub to avoid linker error when compiled with optimizations turned off. */
3198 	return NULL;
3199 #endif
3200 }
3201 
grab_extent_buffer(struct btrfs_fs_info * fs_info,struct folio * folio)3202 static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info,
3203 						struct folio *folio)
3204 {
3205 	struct extent_buffer *exists;
3206 
3207 	lockdep_assert_held(&folio->mapping->i_private_lock);
3208 
3209 	/*
3210 	 * For subpage case, we completely rely on xarray to ensure we don't try
3211 	 * to insert two ebs for the same bytenr.  So here we always return NULL
3212 	 * and just continue.
3213 	 */
3214 	if (btrfs_meta_is_subpage(fs_info))
3215 		return NULL;
3216 
3217 	/* Page not yet attached to an extent buffer */
3218 	if (!folio_test_private(folio))
3219 		return NULL;
3220 
3221 	/*
3222 	 * We could have already allocated an eb for this folio and attached one
3223 	 * so lets see if we can get a ref on the existing eb, and if we can we
3224 	 * know it's good and we can just return that one, else we know we can
3225 	 * just overwrite folio private.
3226 	 */
3227 	exists = folio_get_private(folio);
3228 	if (refcount_inc_not_zero(&exists->refs))
3229 		return exists;
3230 
3231 	WARN_ON(folio_test_dirty(folio));
3232 	folio_detach_private(folio);
3233 	return NULL;
3234 }
3235 
3236 /*
3237  * Validate alignment constraints of eb at logical address @start.
3238  */
check_eb_alignment(struct btrfs_fs_info * fs_info,u64 start)3239 static bool check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3240 {
3241 	const u32 nodesize = fs_info->nodesize;
3242 
3243 	if (unlikely(!IS_ALIGNED(start, fs_info->sectorsize))) {
3244 		btrfs_err(fs_info, "bad tree block start %llu", start);
3245 		return true;
3246 	}
3247 
3248 	if (unlikely(nodesize < PAGE_SIZE && !IS_ALIGNED(start, nodesize))) {
3249 		btrfs_err(fs_info,
3250 		"tree block is not nodesize aligned, start %llu nodesize %u",
3251 			  start, nodesize);
3252 		return true;
3253 	}
3254 	if (unlikely(nodesize >= PAGE_SIZE && !PAGE_ALIGNED(start))) {
3255 		btrfs_err(fs_info,
3256 		"tree block is not page aligned, start %llu nodesize %u",
3257 			  start, nodesize);
3258 		return true;
3259 	}
3260 	if (unlikely(!IS_ALIGNED(start, nodesize) &&
3261 		     !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags))) {
3262 		btrfs_warn(fs_info,
3263 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3264 			      start, nodesize);
3265 	}
3266 	return false;
3267 }
3268 
3269 /*
3270  * Return 0 if eb->folios[i] is attached to btree inode successfully.
3271  * Return >0 if there is already another extent buffer for the range,
3272  * and @found_eb_ret would be updated.
3273  * Return -EAGAIN if the filemap has an existing folio but with different size
3274  * than @eb.
3275  * The caller needs to free the existing folios and retry using the same order.
3276  */
attach_eb_folio_to_filemap(struct extent_buffer * eb,int i,struct btrfs_folio_state * prealloc,struct extent_buffer ** found_eb_ret)3277 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3278 				      struct btrfs_folio_state *prealloc,
3279 				      struct extent_buffer **found_eb_ret)
3280 {
3281 
3282 	struct btrfs_fs_info *fs_info = eb->fs_info;
3283 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3284 	const pgoff_t index = eb->start >> PAGE_SHIFT;
3285 	struct folio *existing_folio;
3286 	int ret;
3287 
3288 	ASSERT(found_eb_ret);
3289 
3290 	/* Caller should ensure the folio exists. */
3291 	ASSERT(eb->folios[i]);
3292 
3293 retry:
3294 	existing_folio = NULL;
3295 	ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3296 				GFP_NOFS | __GFP_NOFAIL);
3297 	if (!ret)
3298 		goto finish;
3299 
3300 	existing_folio = filemap_lock_folio(mapping, index + i);
3301 	/* The page cache only exists for a very short time, just retry. */
3302 	if (IS_ERR(existing_folio))
3303 		goto retry;
3304 
3305 	/* For now, we should only have single-page folios for btree inode. */
3306 	ASSERT(folio_nr_pages(existing_folio) == 1);
3307 
3308 	if (folio_size(existing_folio) != eb->folio_size) {
3309 		folio_unlock(existing_folio);
3310 		folio_put(existing_folio);
3311 		return -EAGAIN;
3312 	}
3313 
3314 finish:
3315 	spin_lock(&mapping->i_private_lock);
3316 	if (existing_folio && btrfs_meta_is_subpage(fs_info)) {
3317 		/* We're going to reuse the existing page, can drop our folio now. */
3318 		__free_page(folio_page(eb->folios[i], 0));
3319 		eb->folios[i] = existing_folio;
3320 	} else if (existing_folio) {
3321 		struct extent_buffer *existing_eb;
3322 
3323 		existing_eb = grab_extent_buffer(fs_info, existing_folio);
3324 		if (existing_eb) {
3325 			/* The extent buffer still exists, we can use it directly. */
3326 			*found_eb_ret = existing_eb;
3327 			spin_unlock(&mapping->i_private_lock);
3328 			folio_unlock(existing_folio);
3329 			folio_put(existing_folio);
3330 			return 1;
3331 		}
3332 		/* The extent buffer no longer exists, we can reuse the folio. */
3333 		__free_page(folio_page(eb->folios[i], 0));
3334 		eb->folios[i] = existing_folio;
3335 	}
3336 	eb->folio_size = folio_size(eb->folios[i]);
3337 	eb->folio_shift = folio_shift(eb->folios[i]);
3338 	/* Should not fail, as we have preallocated the memory. */
3339 	ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
3340 	ASSERT(!ret);
3341 	/*
3342 	 * To inform we have an extra eb under allocation, so that
3343 	 * detach_extent_buffer_page() won't release the folio private when the
3344 	 * eb hasn't been inserted into the xarray yet.
3345 	 *
3346 	 * The ref will be decreased when the eb releases the page, in
3347 	 * detach_extent_buffer_page().  Thus needs no special handling in the
3348 	 * error path.
3349 	 */
3350 	btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
3351 	spin_unlock(&mapping->i_private_lock);
3352 	return 0;
3353 }
3354 
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u64 owner_root,int level)3355 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3356 					  u64 start, u64 owner_root, int level)
3357 {
3358 	int attached = 0;
3359 	struct extent_buffer *eb;
3360 	struct extent_buffer *existing_eb = NULL;
3361 	struct btrfs_folio_state *prealloc = NULL;
3362 	u64 lockdep_owner = owner_root;
3363 	bool page_contig = true;
3364 	int uptodate = 1;
3365 	int ret;
3366 
3367 	if (check_eb_alignment(fs_info, start))
3368 		return ERR_PTR(-EINVAL);
3369 
3370 #if BITS_PER_LONG == 32
3371 	if (start >= MAX_LFS_FILESIZE) {
3372 		btrfs_err_rl(fs_info,
3373 		"extent buffer %llu is beyond 32bit page cache limit", start);
3374 		btrfs_err_32bit_limit(fs_info);
3375 		return ERR_PTR(-EOVERFLOW);
3376 	}
3377 	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3378 		btrfs_warn_32bit_limit(fs_info);
3379 #endif
3380 
3381 	eb = find_extent_buffer(fs_info, start);
3382 	if (eb)
3383 		return eb;
3384 
3385 	eb = __alloc_extent_buffer(fs_info, start);
3386 	if (!eb)
3387 		return ERR_PTR(-ENOMEM);
3388 
3389 	/*
3390 	 * The reloc trees are just snapshots, so we need them to appear to be
3391 	 * just like any other fs tree WRT lockdep.
3392 	 */
3393 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3394 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3395 
3396 	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3397 
3398 	/*
3399 	 * Preallocate folio private for subpage case, so that we won't
3400 	 * allocate memory with i_private_lock nor page lock hold.
3401 	 *
3402 	 * The memory will be freed by attach_extent_buffer_page() or freed
3403 	 * manually if we exit earlier.
3404 	 */
3405 	if (btrfs_meta_is_subpage(fs_info)) {
3406 		prealloc = btrfs_alloc_folio_state(fs_info, PAGE_SIZE, BTRFS_SUBPAGE_METADATA);
3407 		if (IS_ERR(prealloc)) {
3408 			ret = PTR_ERR(prealloc);
3409 			goto out;
3410 		}
3411 	}
3412 
3413 reallocate:
3414 	/* Allocate all pages first. */
3415 	ret = alloc_eb_folio_array(eb, true);
3416 	if (ret < 0) {
3417 		btrfs_free_folio_state(prealloc);
3418 		goto out;
3419 	}
3420 
3421 	/* Attach all pages to the filemap. */
3422 	for (int i = 0; i < num_extent_folios(eb); i++) {
3423 		struct folio *folio;
3424 
3425 		ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
3426 		if (ret > 0) {
3427 			ASSERT(existing_eb);
3428 			goto out;
3429 		}
3430 
3431 		/*
3432 		 * TODO: Special handling for a corner case where the order of
3433 		 * folios mismatch between the new eb and filemap.
3434 		 *
3435 		 * This happens when:
3436 		 *
3437 		 * - the new eb is using higher order folio
3438 		 *
3439 		 * - the filemap is still using 0-order folios for the range
3440 		 *   This can happen at the previous eb allocation, and we don't
3441 		 *   have higher order folio for the call.
3442 		 *
3443 		 * - the existing eb has already been freed
3444 		 *
3445 		 * In this case, we have to free the existing folios first, and
3446 		 * re-allocate using the same order.
3447 		 * Thankfully this is not going to happen yet, as we're still
3448 		 * using 0-order folios.
3449 		 */
3450 		if (unlikely(ret == -EAGAIN)) {
3451 			DEBUG_WARN("folio order mismatch between new eb and filemap");
3452 			goto reallocate;
3453 		}
3454 		attached++;
3455 
3456 		/*
3457 		 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3458 		 * reliable, as we may choose to reuse the existing page cache
3459 		 * and free the allocated page.
3460 		 */
3461 		folio = eb->folios[i];
3462 		WARN_ON(btrfs_meta_folio_test_dirty(folio, eb));
3463 
3464 		/*
3465 		 * Check if the current page is physically contiguous with previous eb
3466 		 * page.
3467 		 * At this stage, either we allocated a large folio, thus @i
3468 		 * would only be 0, or we fall back to per-page allocation.
3469 		 */
3470 		if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3471 			page_contig = false;
3472 
3473 		if (!btrfs_meta_folio_test_uptodate(folio, eb))
3474 			uptodate = 0;
3475 
3476 		/*
3477 		 * We can't unlock the pages just yet since the extent buffer
3478 		 * hasn't been properly inserted into the xarray, this opens a
3479 		 * race with btree_release_folio() which can free a page while we
3480 		 * are still filling in all pages for the buffer and we could crash.
3481 		 */
3482 	}
3483 	if (uptodate)
3484 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3485 	/* All pages are physically contiguous, can skip cross page handling. */
3486 	if (page_contig)
3487 		eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3488 again:
3489 	xa_lock_irq(&fs_info->buffer_tree);
3490 	existing_eb = __xa_cmpxchg(&fs_info->buffer_tree,
3491 				   start >> fs_info->nodesize_bits, NULL, eb,
3492 				   GFP_NOFS);
3493 	if (xa_is_err(existing_eb)) {
3494 		ret = xa_err(existing_eb);
3495 		xa_unlock_irq(&fs_info->buffer_tree);
3496 		goto out;
3497 	}
3498 	if (existing_eb) {
3499 		if (!refcount_inc_not_zero(&existing_eb->refs)) {
3500 			xa_unlock_irq(&fs_info->buffer_tree);
3501 			goto again;
3502 		}
3503 		xa_unlock_irq(&fs_info->buffer_tree);
3504 		goto out;
3505 	}
3506 	xa_unlock_irq(&fs_info->buffer_tree);
3507 
3508 	/* add one reference for the tree */
3509 	check_buffer_tree_ref(eb);
3510 
3511 	/*
3512 	 * Now it's safe to unlock the pages because any calls to
3513 	 * btree_release_folio will correctly detect that a page belongs to a
3514 	 * live buffer and won't free them prematurely.
3515 	 */
3516 	for (int i = 0; i < num_extent_folios(eb); i++) {
3517 		folio_unlock(eb->folios[i]);
3518 		/*
3519 		 * A folio that has been added to an address_space mapping
3520 		 * should not continue holding the refcount from its original
3521 		 * allocation indefinitely.
3522 		 */
3523 		folio_put(eb->folios[i]);
3524 	}
3525 	return eb;
3526 
3527 out:
3528 	WARN_ON(!refcount_dec_and_test(&eb->refs));
3529 
3530 	/*
3531 	 * Any attached folios need to be detached before we unlock them.  This
3532 	 * is because when we're inserting our new folios into the mapping, and
3533 	 * then attaching our eb to that folio.  If we fail to insert our folio
3534 	 * we'll lookup the folio for that index, and grab that EB.  We do not
3535 	 * want that to grab this eb, as we're getting ready to free it.  So we
3536 	 * have to detach it first and then unlock it.
3537 	 *
3538 	 * Note: the bounds is num_extent_pages() as we need to go through all slots.
3539 	 */
3540 	for (int i = 0; i < num_extent_pages(eb); i++) {
3541 		struct folio *folio = eb->folios[i];
3542 
3543 		if (i < attached) {
3544 			ASSERT(folio);
3545 			detach_extent_buffer_folio(eb, folio);
3546 			folio_unlock(folio);
3547 		} else if (!folio) {
3548 			continue;
3549 		}
3550 
3551 		folio_put(folio);
3552 		eb->folios[i] = NULL;
3553 	}
3554 	btrfs_release_extent_buffer(eb);
3555 	if (ret < 0)
3556 		return ERR_PTR(ret);
3557 	ASSERT(existing_eb);
3558 	return existing_eb;
3559 }
3560 
btrfs_release_extent_buffer_rcu(struct rcu_head * head)3561 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3562 {
3563 	struct extent_buffer *eb =
3564 			container_of(head, struct extent_buffer, rcu_head);
3565 
3566 	kmem_cache_free(extent_buffer_cache, eb);
3567 }
3568 
release_extent_buffer(struct extent_buffer * eb)3569 static int release_extent_buffer(struct extent_buffer *eb)
3570 	__releases(&eb->refs_lock)
3571 {
3572 	lockdep_assert_held(&eb->refs_lock);
3573 
3574 	if (refcount_dec_and_test(&eb->refs)) {
3575 		struct btrfs_fs_info *fs_info = eb->fs_info;
3576 
3577 		spin_unlock(&eb->refs_lock);
3578 
3579 		/*
3580 		 * We're erasing, theoretically there will be no allocations, so
3581 		 * just use GFP_ATOMIC.
3582 		 *
3583 		 * We use cmpxchg instead of erase because we do not know if
3584 		 * this eb is actually in the tree or not, we could be cleaning
3585 		 * up an eb that we allocated but never inserted into the tree.
3586 		 * Thus use cmpxchg to remove it from the tree if it is there,
3587 		 * or leave the other entry if this isn't in the tree.
3588 		 *
3589 		 * The documentation says that putting a NULL value is the same
3590 		 * as erase as long as XA_FLAGS_ALLOC is not set, which it isn't
3591 		 * in this case.
3592 		 */
3593 		xa_cmpxchg_irq(&fs_info->buffer_tree,
3594 			       eb->start >> fs_info->nodesize_bits, eb, NULL,
3595 			       GFP_ATOMIC);
3596 
3597 		btrfs_leak_debug_del_eb(eb);
3598 		/* Should be safe to release folios at this point. */
3599 		btrfs_release_extent_buffer_folios(eb);
3600 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3601 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3602 			kmem_cache_free(extent_buffer_cache, eb);
3603 			return 1;
3604 		}
3605 #endif
3606 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3607 		return 1;
3608 	}
3609 	spin_unlock(&eb->refs_lock);
3610 
3611 	return 0;
3612 }
3613 
free_extent_buffer(struct extent_buffer * eb)3614 void free_extent_buffer(struct extent_buffer *eb)
3615 {
3616 	int refs;
3617 	if (!eb)
3618 		return;
3619 
3620 	refs = refcount_read(&eb->refs);
3621 	while (1) {
3622 		if (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)) {
3623 			if (refs == 1)
3624 				break;
3625 		} else if (refs <= 3) {
3626 			break;
3627 		}
3628 
3629 		/* Optimization to avoid locking eb->refs_lock. */
3630 		if (atomic_try_cmpxchg(&eb->refs.refs, &refs, refs - 1))
3631 			return;
3632 	}
3633 
3634 	spin_lock(&eb->refs_lock);
3635 	if (refcount_read(&eb->refs) == 2 &&
3636 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3637 	    !extent_buffer_under_io(eb) &&
3638 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3639 		refcount_dec(&eb->refs);
3640 
3641 	/*
3642 	 * I know this is terrible, but it's temporary until we stop tracking
3643 	 * the uptodate bits and such for the extent buffers.
3644 	 */
3645 	release_extent_buffer(eb);
3646 }
3647 
free_extent_buffer_stale(struct extent_buffer * eb)3648 void free_extent_buffer_stale(struct extent_buffer *eb)
3649 {
3650 	if (!eb)
3651 		return;
3652 
3653 	spin_lock(&eb->refs_lock);
3654 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3655 
3656 	if (refcount_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3657 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3658 		refcount_dec(&eb->refs);
3659 	release_extent_buffer(eb);
3660 }
3661 
btree_clear_folio_dirty_tag(struct folio * folio)3662 static void btree_clear_folio_dirty_tag(struct folio *folio)
3663 {
3664 	ASSERT(!folio_test_dirty(folio));
3665 	ASSERT(folio_test_locked(folio));
3666 	xa_lock_irq(&folio->mapping->i_pages);
3667 	if (!folio_test_dirty(folio))
3668 		__xa_clear_mark(&folio->mapping->i_pages, folio->index,
3669 				PAGECACHE_TAG_DIRTY);
3670 	xa_unlock_irq(&folio->mapping->i_pages);
3671 }
3672 
btrfs_clear_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * eb)3673 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3674 			      struct extent_buffer *eb)
3675 {
3676 	struct btrfs_fs_info *fs_info = eb->fs_info;
3677 
3678 	btrfs_assert_tree_write_locked(eb);
3679 
3680 	if (trans && btrfs_header_generation(eb) != trans->transid)
3681 		return;
3682 
3683 	/*
3684 	 * Instead of clearing the dirty flag off of the buffer, mark it as
3685 	 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
3686 	 * write-ordering in zoned mode, without the need to later re-dirty
3687 	 * the extent_buffer.
3688 	 *
3689 	 * The actual zeroout of the buffer will happen later in
3690 	 * btree_csum_one_bio.
3691 	 */
3692 	if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3693 		set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
3694 		return;
3695 	}
3696 
3697 	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3698 		return;
3699 
3700 	buffer_tree_clear_mark(eb, PAGECACHE_TAG_DIRTY);
3701 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3702 				 fs_info->dirty_metadata_batch);
3703 
3704 	for (int i = 0; i < num_extent_folios(eb); i++) {
3705 		struct folio *folio = eb->folios[i];
3706 		bool last;
3707 
3708 		if (!folio_test_dirty(folio))
3709 			continue;
3710 		folio_lock(folio);
3711 		last = btrfs_meta_folio_clear_and_test_dirty(folio, eb);
3712 		if (last)
3713 			btree_clear_folio_dirty_tag(folio);
3714 		folio_unlock(folio);
3715 	}
3716 	WARN_ON(refcount_read(&eb->refs) == 0);
3717 }
3718 
set_extent_buffer_dirty(struct extent_buffer * eb)3719 void set_extent_buffer_dirty(struct extent_buffer *eb)
3720 {
3721 	bool was_dirty;
3722 
3723 	check_buffer_tree_ref(eb);
3724 
3725 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3726 
3727 	WARN_ON(refcount_read(&eb->refs) == 0);
3728 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3729 	WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
3730 
3731 	if (!was_dirty) {
3732 		bool subpage = btrfs_meta_is_subpage(eb->fs_info);
3733 
3734 		/*
3735 		 * For subpage case, we can have other extent buffers in the
3736 		 * same page, and in clear_extent_buffer_dirty() we
3737 		 * have to clear page dirty without subpage lock held.
3738 		 * This can cause race where our page gets dirty cleared after
3739 		 * we just set it.
3740 		 *
3741 		 * Thankfully, clear_extent_buffer_dirty() has locked
3742 		 * its page for other reasons, we can use page lock to prevent
3743 		 * the above race.
3744 		 */
3745 		if (subpage)
3746 			folio_lock(eb->folios[0]);
3747 		for (int i = 0; i < num_extent_folios(eb); i++)
3748 			btrfs_meta_folio_set_dirty(eb->folios[i], eb);
3749 		buffer_tree_set_mark(eb, PAGECACHE_TAG_DIRTY);
3750 		if (subpage)
3751 			folio_unlock(eb->folios[0]);
3752 		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3753 					 eb->len,
3754 					 eb->fs_info->dirty_metadata_batch);
3755 	}
3756 #ifdef CONFIG_BTRFS_DEBUG
3757 	for (int i = 0; i < num_extent_folios(eb); i++)
3758 		ASSERT(folio_test_dirty(eb->folios[i]));
3759 #endif
3760 }
3761 
clear_extent_buffer_uptodate(struct extent_buffer * eb)3762 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3763 {
3764 
3765 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3766 	for (int i = 0; i < num_extent_folios(eb); i++) {
3767 		struct folio *folio = eb->folios[i];
3768 
3769 		if (!folio)
3770 			continue;
3771 
3772 		btrfs_meta_folio_clear_uptodate(folio, eb);
3773 	}
3774 }
3775 
set_extent_buffer_uptodate(struct extent_buffer * eb)3776 void set_extent_buffer_uptodate(struct extent_buffer *eb)
3777 {
3778 
3779 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3780 	for (int i = 0; i < num_extent_folios(eb); i++)
3781 		btrfs_meta_folio_set_uptodate(eb->folios[i], eb);
3782 }
3783 
clear_extent_buffer_reading(struct extent_buffer * eb)3784 static void clear_extent_buffer_reading(struct extent_buffer *eb)
3785 {
3786 	clear_and_wake_up_bit(EXTENT_BUFFER_READING, &eb->bflags);
3787 }
3788 
end_bbio_meta_read(struct btrfs_bio * bbio)3789 static void end_bbio_meta_read(struct btrfs_bio *bbio)
3790 {
3791 	struct extent_buffer *eb = bbio->private;
3792 	bool uptodate = !bbio->bio.bi_status;
3793 
3794 	/*
3795 	 * If the extent buffer is marked UPTODATE before the read operation
3796 	 * completes, other calls to read_extent_buffer_pages() will return
3797 	 * early without waiting for the read to finish, causing data races.
3798 	 */
3799 	WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
3800 
3801 	eb->read_mirror = bbio->mirror_num;
3802 
3803 	if (uptodate &&
3804 	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3805 		uptodate = false;
3806 
3807 	if (uptodate)
3808 		set_extent_buffer_uptodate(eb);
3809 	else
3810 		clear_extent_buffer_uptodate(eb);
3811 
3812 	clear_extent_buffer_reading(eb);
3813 	free_extent_buffer(eb);
3814 
3815 	bio_put(&bbio->bio);
3816 }
3817 
read_extent_buffer_pages_nowait(struct extent_buffer * eb,int mirror_num,const struct btrfs_tree_parent_check * check)3818 int read_extent_buffer_pages_nowait(struct extent_buffer *eb, int mirror_num,
3819 				    const struct btrfs_tree_parent_check *check)
3820 {
3821 	struct btrfs_bio *bbio;
3822 
3823 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3824 		return 0;
3825 
3826 	/*
3827 	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3828 	 * operation, which could potentially still be in flight.  In this case
3829 	 * we simply want to return an error.
3830 	 */
3831 	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3832 		return -EIO;
3833 
3834 	/* Someone else is already reading the buffer, just wait for it. */
3835 	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3836 		return 0;
3837 
3838 	/*
3839 	 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
3840 	 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
3841 	 * started and finished reading the same eb.  In this case, UPTODATE
3842 	 * will now be set, and we shouldn't read it in again.
3843 	 */
3844 	if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
3845 		clear_extent_buffer_reading(eb);
3846 		return 0;
3847 	}
3848 
3849 	eb->read_mirror = 0;
3850 	check_buffer_tree_ref(eb);
3851 	refcount_inc(&eb->refs);
3852 
3853 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3854 			       REQ_OP_READ | REQ_META, eb->fs_info,
3855 			       end_bbio_meta_read, eb);
3856 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3857 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3858 	bbio->file_offset = eb->start;
3859 	memcpy(&bbio->parent_check, check, sizeof(*check));
3860 	for (int i = 0; i < num_extent_folios(eb); i++) {
3861 		struct folio *folio = eb->folios[i];
3862 		u64 range_start = max_t(u64, eb->start, folio_pos(folio));
3863 		u32 range_len = min_t(u64, folio_end(folio),
3864 				      eb->start + eb->len) - range_start;
3865 
3866 		bio_add_folio_nofail(&bbio->bio, folio, range_len,
3867 				     offset_in_folio(folio, range_start));
3868 	}
3869 	btrfs_submit_bbio(bbio, mirror_num);
3870 	return 0;
3871 }
3872 
read_extent_buffer_pages(struct extent_buffer * eb,int mirror_num,const struct btrfs_tree_parent_check * check)3873 int read_extent_buffer_pages(struct extent_buffer *eb, int mirror_num,
3874 			     const struct btrfs_tree_parent_check *check)
3875 {
3876 	int ret;
3877 
3878 	ret = read_extent_buffer_pages_nowait(eb, mirror_num, check);
3879 	if (ret < 0)
3880 		return ret;
3881 
3882 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3883 	if (unlikely(!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)))
3884 		return -EIO;
3885 	return 0;
3886 }
3887 
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3888 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3889 			    unsigned long len)
3890 {
3891 	btrfs_warn(eb->fs_info,
3892 		"access to eb bytenr %llu len %u out of range start %lu len %lu",
3893 		eb->start, eb->len, start, len);
3894 	DEBUG_WARN();
3895 
3896 	return true;
3897 }
3898 
3899 /*
3900  * Check if the [start, start + len) range is valid before reading/writing
3901  * the eb.
3902  * NOTE: @start and @len are offset inside the eb, not logical address.
3903  *
3904  * Caller should not touch the dst/src memory if this function returns error.
3905  */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3906 static inline int check_eb_range(const struct extent_buffer *eb,
3907 				 unsigned long start, unsigned long len)
3908 {
3909 	unsigned long offset;
3910 
3911 	/* start, start + len should not go beyond eb->len nor overflow */
3912 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3913 		return report_eb_range(eb, start, len);
3914 
3915 	return false;
3916 }
3917 
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)3918 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3919 			unsigned long start, unsigned long len)
3920 {
3921 	const int unit_size = eb->folio_size;
3922 	size_t cur;
3923 	size_t offset;
3924 	char *dst = (char *)dstv;
3925 	unsigned long i = get_eb_folio_index(eb, start);
3926 
3927 	if (check_eb_range(eb, start, len)) {
3928 		/*
3929 		 * Invalid range hit, reset the memory, so callers won't get
3930 		 * some random garbage for their uninitialized memory.
3931 		 */
3932 		memset(dstv, 0, len);
3933 		return;
3934 	}
3935 
3936 	if (eb->addr) {
3937 		memcpy(dstv, eb->addr + start, len);
3938 		return;
3939 	}
3940 
3941 	offset = get_eb_offset_in_folio(eb, start);
3942 
3943 	while (len > 0) {
3944 		char *kaddr;
3945 
3946 		cur = min(len, unit_size - offset);
3947 		kaddr = folio_address(eb->folios[i]);
3948 		memcpy(dst, kaddr + offset, cur);
3949 
3950 		dst += cur;
3951 		len -= cur;
3952 		offset = 0;
3953 		i++;
3954 	}
3955 }
3956 
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)3957 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
3958 				       void __user *dstv,
3959 				       unsigned long start, unsigned long len)
3960 {
3961 	const int unit_size = eb->folio_size;
3962 	size_t cur;
3963 	size_t offset;
3964 	char __user *dst = (char __user *)dstv;
3965 	unsigned long i = get_eb_folio_index(eb, start);
3966 	int ret = 0;
3967 
3968 	WARN_ON(start > eb->len);
3969 	WARN_ON(start + len > eb->start + eb->len);
3970 
3971 	if (eb->addr) {
3972 		if (copy_to_user_nofault(dstv, eb->addr + start, len))
3973 			ret = -EFAULT;
3974 		return ret;
3975 	}
3976 
3977 	offset = get_eb_offset_in_folio(eb, start);
3978 
3979 	while (len > 0) {
3980 		char *kaddr;
3981 
3982 		cur = min(len, unit_size - offset);
3983 		kaddr = folio_address(eb->folios[i]);
3984 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
3985 			ret = -EFAULT;
3986 			break;
3987 		}
3988 
3989 		dst += cur;
3990 		len -= cur;
3991 		offset = 0;
3992 		i++;
3993 	}
3994 
3995 	return ret;
3996 }
3997 
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)3998 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
3999 			 unsigned long start, unsigned long len)
4000 {
4001 	const int unit_size = eb->folio_size;
4002 	size_t cur;
4003 	size_t offset;
4004 	char *kaddr;
4005 	char *ptr = (char *)ptrv;
4006 	unsigned long i = get_eb_folio_index(eb, start);
4007 	int ret = 0;
4008 
4009 	if (check_eb_range(eb, start, len))
4010 		return -EINVAL;
4011 
4012 	if (eb->addr)
4013 		return memcmp(ptrv, eb->addr + start, len);
4014 
4015 	offset = get_eb_offset_in_folio(eb, start);
4016 
4017 	while (len > 0) {
4018 		cur = min(len, unit_size - offset);
4019 		kaddr = folio_address(eb->folios[i]);
4020 		ret = memcmp(ptr, kaddr + offset, cur);
4021 		if (ret)
4022 			break;
4023 
4024 		ptr += cur;
4025 		len -= cur;
4026 		offset = 0;
4027 		i++;
4028 	}
4029 	return ret;
4030 }
4031 
4032 /*
4033  * Check that the extent buffer is uptodate.
4034  *
4035  * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4036  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4037  */
assert_eb_folio_uptodate(const struct extent_buffer * eb,int i)4038 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
4039 {
4040 	struct btrfs_fs_info *fs_info = eb->fs_info;
4041 	struct folio *folio = eb->folios[i];
4042 
4043 	ASSERT(folio);
4044 
4045 	/*
4046 	 * If we are using the commit root we could potentially clear a page
4047 	 * Uptodate while we're using the extent buffer that we've previously
4048 	 * looked up.  We don't want to complain in this case, as the page was
4049 	 * valid before, we just didn't write it out.  Instead we want to catch
4050 	 * the case where we didn't actually read the block properly, which
4051 	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4052 	 */
4053 	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4054 		return;
4055 
4056 	if (btrfs_meta_is_subpage(fs_info)) {
4057 		folio = eb->folios[0];
4058 		ASSERT(i == 0);
4059 		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
4060 							 eb->start, eb->len)))
4061 			btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
4062 	} else {
4063 		WARN_ON(!folio_test_uptodate(folio));
4064 	}
4065 }
4066 
__write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len,bool use_memmove)4067 static void __write_extent_buffer(const struct extent_buffer *eb,
4068 				  const void *srcv, unsigned long start,
4069 				  unsigned long len, bool use_memmove)
4070 {
4071 	const int unit_size = eb->folio_size;
4072 	size_t cur;
4073 	size_t offset;
4074 	char *kaddr;
4075 	const char *src = (const char *)srcv;
4076 	unsigned long i = get_eb_folio_index(eb, start);
4077 	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
4078 	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4079 
4080 	if (check_eb_range(eb, start, len))
4081 		return;
4082 
4083 	if (eb->addr) {
4084 		if (use_memmove)
4085 			memmove(eb->addr + start, srcv, len);
4086 		else
4087 			memcpy(eb->addr + start, srcv, len);
4088 		return;
4089 	}
4090 
4091 	offset = get_eb_offset_in_folio(eb, start);
4092 
4093 	while (len > 0) {
4094 		if (check_uptodate)
4095 			assert_eb_folio_uptodate(eb, i);
4096 
4097 		cur = min(len, unit_size - offset);
4098 		kaddr = folio_address(eb->folios[i]);
4099 		if (use_memmove)
4100 			memmove(kaddr + offset, src, cur);
4101 		else
4102 			memcpy(kaddr + offset, src, cur);
4103 
4104 		src += cur;
4105 		len -= cur;
4106 		offset = 0;
4107 		i++;
4108 	}
4109 }
4110 
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)4111 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4112 			 unsigned long start, unsigned long len)
4113 {
4114 	return __write_extent_buffer(eb, srcv, start, len, false);
4115 }
4116 
memset_extent_buffer(const struct extent_buffer * eb,int c,unsigned long start,unsigned long len)4117 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4118 				 unsigned long start, unsigned long len)
4119 {
4120 	const int unit_size = eb->folio_size;
4121 	unsigned long cur = start;
4122 
4123 	if (eb->addr) {
4124 		memset(eb->addr + start, c, len);
4125 		return;
4126 	}
4127 
4128 	while (cur < start + len) {
4129 		unsigned long index = get_eb_folio_index(eb, cur);
4130 		unsigned int offset = get_eb_offset_in_folio(eb, cur);
4131 		unsigned int cur_len = min(start + len - cur, unit_size - offset);
4132 
4133 		assert_eb_folio_uptodate(eb, index);
4134 		memset(folio_address(eb->folios[index]) + offset, c, cur_len);
4135 
4136 		cur += cur_len;
4137 	}
4138 }
4139 
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)4140 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4141 			   unsigned long len)
4142 {
4143 	if (check_eb_range(eb, start, len))
4144 		return;
4145 	return memset_extent_buffer(eb, 0, start, len);
4146 }
4147 
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)4148 void copy_extent_buffer_full(const struct extent_buffer *dst,
4149 			     const struct extent_buffer *src)
4150 {
4151 	const int unit_size = src->folio_size;
4152 	unsigned long cur = 0;
4153 
4154 	ASSERT(dst->len == src->len);
4155 
4156 	while (cur < src->len) {
4157 		unsigned long index = get_eb_folio_index(src, cur);
4158 		unsigned long offset = get_eb_offset_in_folio(src, cur);
4159 		unsigned long cur_len = min(src->len, unit_size - offset);
4160 		void *addr = folio_address(src->folios[index]) + offset;
4161 
4162 		write_extent_buffer(dst, addr, cur, cur_len);
4163 
4164 		cur += cur_len;
4165 	}
4166 }
4167 
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4168 void copy_extent_buffer(const struct extent_buffer *dst,
4169 			const struct extent_buffer *src,
4170 			unsigned long dst_offset, unsigned long src_offset,
4171 			unsigned long len)
4172 {
4173 	const int unit_size = dst->folio_size;
4174 	u64 dst_len = dst->len;
4175 	size_t cur;
4176 	size_t offset;
4177 	char *kaddr;
4178 	unsigned long i = get_eb_folio_index(dst, dst_offset);
4179 
4180 	if (check_eb_range(dst, dst_offset, len) ||
4181 	    check_eb_range(src, src_offset, len))
4182 		return;
4183 
4184 	WARN_ON(src->len != dst_len);
4185 
4186 	offset = get_eb_offset_in_folio(dst, dst_offset);
4187 
4188 	while (len > 0) {
4189 		assert_eb_folio_uptodate(dst, i);
4190 
4191 		cur = min(len, (unsigned long)(unit_size - offset));
4192 
4193 		kaddr = folio_address(dst->folios[i]);
4194 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4195 
4196 		src_offset += cur;
4197 		len -= cur;
4198 		offset = 0;
4199 		i++;
4200 	}
4201 }
4202 
4203 /*
4204  * Calculate the folio and offset of the byte containing the given bit number.
4205  *
4206  * @eb:           the extent buffer
4207  * @start:        offset of the bitmap item in the extent buffer
4208  * @nr:           bit number
4209  * @folio_index:  return index of the folio in the extent buffer that contains
4210  *                the given bit number
4211  * @folio_offset: return offset into the folio given by folio_index
4212  *
4213  * This helper hides the ugliness of finding the byte in an extent buffer which
4214  * contains a given bit.
4215  */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * folio_index,size_t * folio_offset)4216 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4217 				    unsigned long start, unsigned long nr,
4218 				    unsigned long *folio_index,
4219 				    size_t *folio_offset)
4220 {
4221 	size_t byte_offset = BIT_BYTE(nr);
4222 	size_t offset;
4223 
4224 	/*
4225 	 * The byte we want is the offset of the extent buffer + the offset of
4226 	 * the bitmap item in the extent buffer + the offset of the byte in the
4227 	 * bitmap item.
4228 	 */
4229 	offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
4230 
4231 	*folio_index = offset >> eb->folio_shift;
4232 	*folio_offset = offset_in_eb_folio(eb, offset);
4233 }
4234 
4235 /*
4236  * Determine whether a bit in a bitmap item is set.
4237  *
4238  * @eb:     the extent buffer
4239  * @start:  offset of the bitmap item in the extent buffer
4240  * @nr:     bit number to test
4241  */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)4242 bool extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4243 			    unsigned long nr)
4244 {
4245 	unsigned long i;
4246 	size_t offset;
4247 	u8 *kaddr;
4248 
4249 	eb_bitmap_offset(eb, start, nr, &i, &offset);
4250 	assert_eb_folio_uptodate(eb, i);
4251 	kaddr = folio_address(eb->folios[i]);
4252 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4253 }
4254 
extent_buffer_get_byte(const struct extent_buffer * eb,unsigned long bytenr)4255 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4256 {
4257 	unsigned long index = get_eb_folio_index(eb, bytenr);
4258 
4259 	if (check_eb_range(eb, bytenr, 1))
4260 		return NULL;
4261 	return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4262 }
4263 
4264 /*
4265  * Set an area of a bitmap to 1.
4266  *
4267  * @eb:     the extent buffer
4268  * @start:  offset of the bitmap item in the extent buffer
4269  * @pos:    bit number of the first bit
4270  * @len:    number of bits to set
4271  */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4272 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4273 			      unsigned long pos, unsigned long len)
4274 {
4275 	unsigned int first_byte = start + BIT_BYTE(pos);
4276 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4277 	const bool same_byte = (first_byte == last_byte);
4278 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4279 	u8 *kaddr;
4280 
4281 	if (same_byte)
4282 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4283 
4284 	/* Handle the first byte. */
4285 	kaddr = extent_buffer_get_byte(eb, first_byte);
4286 	*kaddr |= mask;
4287 	if (same_byte)
4288 		return;
4289 
4290 	/* Handle the byte aligned part. */
4291 	ASSERT(first_byte + 1 <= last_byte);
4292 	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4293 
4294 	/* Handle the last byte. */
4295 	kaddr = extent_buffer_get_byte(eb, last_byte);
4296 	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4297 }
4298 
4299 
4300 /*
4301  * Clear an area of a bitmap.
4302  *
4303  * @eb:     the extent buffer
4304  * @start:  offset of the bitmap item in the extent buffer
4305  * @pos:    bit number of the first bit
4306  * @len:    number of bits to clear
4307  */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4308 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4309 				unsigned long start, unsigned long pos,
4310 				unsigned long len)
4311 {
4312 	unsigned int first_byte = start + BIT_BYTE(pos);
4313 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4314 	const bool same_byte = (first_byte == last_byte);
4315 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4316 	u8 *kaddr;
4317 
4318 	if (same_byte)
4319 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4320 
4321 	/* Handle the first byte. */
4322 	kaddr = extent_buffer_get_byte(eb, first_byte);
4323 	*kaddr &= ~mask;
4324 	if (same_byte)
4325 		return;
4326 
4327 	/* Handle the byte aligned part. */
4328 	ASSERT(first_byte + 1 <= last_byte);
4329 	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4330 
4331 	/* Handle the last byte. */
4332 	kaddr = extent_buffer_get_byte(eb, last_byte);
4333 	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4334 }
4335 
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)4336 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4337 {
4338 	unsigned long distance = (src > dst) ? src - dst : dst - src;
4339 	return distance < len;
4340 }
4341 
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4342 void memcpy_extent_buffer(const struct extent_buffer *dst,
4343 			  unsigned long dst_offset, unsigned long src_offset,
4344 			  unsigned long len)
4345 {
4346 	const int unit_size = dst->folio_size;
4347 	unsigned long cur_off = 0;
4348 
4349 	if (check_eb_range(dst, dst_offset, len) ||
4350 	    check_eb_range(dst, src_offset, len))
4351 		return;
4352 
4353 	if (dst->addr) {
4354 		const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4355 
4356 		if (use_memmove)
4357 			memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4358 		else
4359 			memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4360 		return;
4361 	}
4362 
4363 	while (cur_off < len) {
4364 		unsigned long cur_src = cur_off + src_offset;
4365 		unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4366 		unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4367 		unsigned long cur_len = min(src_offset + len - cur_src,
4368 					    unit_size - folio_off);
4369 		void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4370 		const bool use_memmove = areas_overlap(src_offset + cur_off,
4371 						       dst_offset + cur_off, cur_len);
4372 
4373 		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4374 				      use_memmove);
4375 		cur_off += cur_len;
4376 	}
4377 }
4378 
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4379 void memmove_extent_buffer(const struct extent_buffer *dst,
4380 			   unsigned long dst_offset, unsigned long src_offset,
4381 			   unsigned long len)
4382 {
4383 	unsigned long dst_end = dst_offset + len - 1;
4384 	unsigned long src_end = src_offset + len - 1;
4385 
4386 	if (check_eb_range(dst, dst_offset, len) ||
4387 	    check_eb_range(dst, src_offset, len))
4388 		return;
4389 
4390 	if (dst_offset < src_offset) {
4391 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4392 		return;
4393 	}
4394 
4395 	if (dst->addr) {
4396 		memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4397 		return;
4398 	}
4399 
4400 	while (len > 0) {
4401 		unsigned long src_i;
4402 		size_t cur;
4403 		size_t dst_off_in_folio;
4404 		size_t src_off_in_folio;
4405 		void *src_addr;
4406 		bool use_memmove;
4407 
4408 		src_i = get_eb_folio_index(dst, src_end);
4409 
4410 		dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4411 		src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4412 
4413 		cur = min_t(unsigned long, len, src_off_in_folio + 1);
4414 		cur = min(cur, dst_off_in_folio + 1);
4415 
4416 		src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4417 					 cur + 1;
4418 		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4419 					    cur);
4420 
4421 		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4422 				      use_memmove);
4423 
4424 		dst_end -= cur;
4425 		src_end -= cur;
4426 		len -= cur;
4427 	}
4428 }
4429 
try_release_subpage_extent_buffer(struct folio * folio)4430 static int try_release_subpage_extent_buffer(struct folio *folio)
4431 {
4432 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
4433 	struct extent_buffer *eb;
4434 	unsigned long start = (folio_pos(folio) >> fs_info->nodesize_bits);
4435 	unsigned long index = start;
4436 	unsigned long end = index + (PAGE_SIZE >> fs_info->nodesize_bits) - 1;
4437 	int ret;
4438 
4439 	rcu_read_lock();
4440 	xa_for_each_range(&fs_info->buffer_tree, index, eb, start, end) {
4441 		/*
4442 		 * The same as try_release_extent_buffer(), to ensure the eb
4443 		 * won't disappear out from under us.
4444 		 */
4445 		spin_lock(&eb->refs_lock);
4446 		rcu_read_unlock();
4447 
4448 		if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4449 			spin_unlock(&eb->refs_lock);
4450 			rcu_read_lock();
4451 			continue;
4452 		}
4453 
4454 		/*
4455 		 * If tree ref isn't set then we know the ref on this eb is a
4456 		 * real ref, so just return, this eb will likely be freed soon
4457 		 * anyway.
4458 		 */
4459 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4460 			spin_unlock(&eb->refs_lock);
4461 			break;
4462 		}
4463 
4464 		/*
4465 		 * Here we don't care about the return value, we will always
4466 		 * check the folio private at the end.  And
4467 		 * release_extent_buffer() will release the refs_lock.
4468 		 */
4469 		release_extent_buffer(eb);
4470 		rcu_read_lock();
4471 	}
4472 	rcu_read_unlock();
4473 
4474 	/*
4475 	 * Finally to check if we have cleared folio private, as if we have
4476 	 * released all ebs in the page, the folio private should be cleared now.
4477 	 */
4478 	spin_lock(&folio->mapping->i_private_lock);
4479 	if (!folio_test_private(folio))
4480 		ret = 1;
4481 	else
4482 		ret = 0;
4483 	spin_unlock(&folio->mapping->i_private_lock);
4484 	return ret;
4485 }
4486 
try_release_extent_buffer(struct folio * folio)4487 int try_release_extent_buffer(struct folio *folio)
4488 {
4489 	struct extent_buffer *eb;
4490 
4491 	if (btrfs_meta_is_subpage(folio_to_fs_info(folio)))
4492 		return try_release_subpage_extent_buffer(folio);
4493 
4494 	/*
4495 	 * We need to make sure nobody is changing folio private, as we rely on
4496 	 * folio private as the pointer to extent buffer.
4497 	 */
4498 	spin_lock(&folio->mapping->i_private_lock);
4499 	if (!folio_test_private(folio)) {
4500 		spin_unlock(&folio->mapping->i_private_lock);
4501 		return 1;
4502 	}
4503 
4504 	eb = folio_get_private(folio);
4505 	BUG_ON(!eb);
4506 
4507 	/*
4508 	 * This is a little awful but should be ok, we need to make sure that
4509 	 * the eb doesn't disappear out from under us while we're looking at
4510 	 * this page.
4511 	 */
4512 	spin_lock(&eb->refs_lock);
4513 	if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4514 		spin_unlock(&eb->refs_lock);
4515 		spin_unlock(&folio->mapping->i_private_lock);
4516 		return 0;
4517 	}
4518 	spin_unlock(&folio->mapping->i_private_lock);
4519 
4520 	/*
4521 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4522 	 * so just return, this page will likely be freed soon anyway.
4523 	 */
4524 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4525 		spin_unlock(&eb->refs_lock);
4526 		return 0;
4527 	}
4528 
4529 	return release_extent_buffer(eb);
4530 }
4531 
4532 /*
4533  * Attempt to readahead a child block.
4534  *
4535  * @fs_info:	the fs_info
4536  * @bytenr:	bytenr to read
4537  * @owner_root: objectid of the root that owns this eb
4538  * @gen:	generation for the uptodate check, can be 0
4539  * @level:	level for the eb
4540  *
4541  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
4542  * normal uptodate check of the eb, without checking the generation.  If we have
4543  * to read the block we will not block on anything.
4544  */
btrfs_readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 gen,int level)4545 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4546 				u64 bytenr, u64 owner_root, u64 gen, int level)
4547 {
4548 	struct btrfs_tree_parent_check check = {
4549 		.level = level,
4550 		.transid = gen
4551 	};
4552 	struct extent_buffer *eb;
4553 	int ret;
4554 
4555 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4556 	if (IS_ERR(eb))
4557 		return;
4558 
4559 	if (btrfs_buffer_uptodate(eb, gen, true)) {
4560 		free_extent_buffer(eb);
4561 		return;
4562 	}
4563 
4564 	ret = read_extent_buffer_pages_nowait(eb, 0, &check);
4565 	if (ret < 0)
4566 		free_extent_buffer_stale(eb);
4567 	else
4568 		free_extent_buffer(eb);
4569 }
4570 
4571 /*
4572  * Readahead a node's child block.
4573  *
4574  * @node:	parent node we're reading from
4575  * @slot:	slot in the parent node for the child we want to read
4576  *
4577  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4578  * the slot in the node provided.
4579  */
btrfs_readahead_node_child(struct extent_buffer * node,int slot)4580 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4581 {
4582 	btrfs_readahead_tree_block(node->fs_info,
4583 				   btrfs_node_blockptr(node, slot),
4584 				   btrfs_header_owner(node),
4585 				   btrfs_node_ptr_generation(node, slot),
4586 				   btrfs_header_level(node) - 1);
4587 }
4588