1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8 /*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/blk-crypto.h>
33 #include <linux/file.h>
34 #include <linux/quotaops.h>
35 #include <linux/highmem.h>
36 #include <linux/export.h>
37 #include <linux/backing-dev.h>
38 #include <linux/writeback.h>
39 #include <linux/hash.h>
40 #include <linux/suspend.h>
41 #include <linux/buffer_head.h>
42 #include <linux/task_io_accounting_ops.h>
43 #include <linux/bio.h>
44 #include <linux/cpu.h>
45 #include <linux/bitops.h>
46 #include <linux/mpage.h>
47 #include <linux/bit_spinlock.h>
48 #include <linux/pagevec.h>
49 #include <linux/sched/mm.h>
50 #include <trace/events/block.h>
51 #include <linux/fscrypt.h>
52 #include <linux/fsverity.h>
53 #include <linux/sched/isolation.h>
54
55 #include "internal.h"
56
57 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
58 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
59 enum rw_hint hint, struct writeback_control *wbc);
60
61 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
62
touch_buffer(struct buffer_head * bh)63 inline void touch_buffer(struct buffer_head *bh)
64 {
65 trace_block_touch_buffer(bh);
66 folio_mark_accessed(bh->b_folio);
67 }
68 EXPORT_SYMBOL(touch_buffer);
69
__lock_buffer(struct buffer_head * bh)70 void __lock_buffer(struct buffer_head *bh)
71 {
72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
73 }
74 EXPORT_SYMBOL(__lock_buffer);
75
unlock_buffer(struct buffer_head * bh)76 void unlock_buffer(struct buffer_head *bh)
77 {
78 clear_bit_unlock(BH_Lock, &bh->b_state);
79 smp_mb__after_atomic();
80 wake_up_bit(&bh->b_state, BH_Lock);
81 }
82 EXPORT_SYMBOL(unlock_buffer);
83
84 /*
85 * Returns if the folio has dirty or writeback buffers. If all the buffers
86 * are unlocked and clean then the folio_test_dirty information is stale. If
87 * any of the buffers are locked, it is assumed they are locked for IO.
88 */
buffer_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)89 void buffer_check_dirty_writeback(struct folio *folio,
90 bool *dirty, bool *writeback)
91 {
92 struct buffer_head *head, *bh;
93 *dirty = false;
94 *writeback = false;
95
96 BUG_ON(!folio_test_locked(folio));
97
98 head = folio_buffers(folio);
99 if (!head)
100 return;
101
102 if (folio_test_writeback(folio))
103 *writeback = true;
104
105 bh = head;
106 do {
107 if (buffer_locked(bh))
108 *writeback = true;
109
110 if (buffer_dirty(bh))
111 *dirty = true;
112
113 bh = bh->b_this_page;
114 } while (bh != head);
115 }
116
117 /*
118 * Block until a buffer comes unlocked. This doesn't stop it
119 * from becoming locked again - you have to lock it yourself
120 * if you want to preserve its state.
121 */
__wait_on_buffer(struct buffer_head * bh)122 void __wait_on_buffer(struct buffer_head * bh)
123 {
124 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
125 }
126 EXPORT_SYMBOL(__wait_on_buffer);
127
buffer_io_error(struct buffer_head * bh,char * msg)128 static void buffer_io_error(struct buffer_head *bh, char *msg)
129 {
130 if (!test_bit(BH_Quiet, &bh->b_state))
131 printk_ratelimited(KERN_ERR
132 "Buffer I/O error on dev %pg, logical block %llu%s\n",
133 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
134 }
135
136 /*
137 * End-of-IO handler helper function which does not touch the bh after
138 * unlocking it.
139 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
140 * a race there is benign: unlock_buffer() only use the bh's address for
141 * hashing after unlocking the buffer, so it doesn't actually touch the bh
142 * itself.
143 */
__end_buffer_read_notouch(struct buffer_head * bh,int uptodate)144 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
145 {
146 if (uptodate) {
147 set_buffer_uptodate(bh);
148 } else {
149 /* This happens, due to failed read-ahead attempts. */
150 clear_buffer_uptodate(bh);
151 }
152 unlock_buffer(bh);
153 }
154
155 /*
156 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
157 * unlock the buffer.
158 */
end_buffer_read_sync(struct buffer_head * bh,int uptodate)159 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
160 {
161 put_bh(bh);
162 __end_buffer_read_notouch(bh, uptodate);
163 }
164 EXPORT_SYMBOL(end_buffer_read_sync);
165
end_buffer_write_sync(struct buffer_head * bh,int uptodate)166 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
167 {
168 if (uptodate) {
169 set_buffer_uptodate(bh);
170 } else {
171 buffer_io_error(bh, ", lost sync page write");
172 mark_buffer_write_io_error(bh);
173 clear_buffer_uptodate(bh);
174 }
175 unlock_buffer(bh);
176 put_bh(bh);
177 }
178 EXPORT_SYMBOL(end_buffer_write_sync);
179
180 static struct buffer_head *
__find_get_block_slow(struct block_device * bdev,sector_t block,bool atomic)181 __find_get_block_slow(struct block_device *bdev, sector_t block, bool atomic)
182 {
183 struct address_space *bd_mapping = bdev->bd_mapping;
184 const int blkbits = bd_mapping->host->i_blkbits;
185 struct buffer_head *ret = NULL;
186 pgoff_t index;
187 struct buffer_head *bh;
188 struct buffer_head *head;
189 struct folio *folio;
190 int all_mapped = 1;
191 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
192
193 index = ((loff_t)block << blkbits) / PAGE_SIZE;
194 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
195 if (IS_ERR(folio))
196 goto out;
197
198 /*
199 * Folio lock protects the buffers. Callers that cannot block
200 * will fallback to serializing vs try_to_free_buffers() via
201 * the i_private_lock.
202 */
203 if (atomic)
204 spin_lock(&bd_mapping->i_private_lock);
205 else
206 folio_lock(folio);
207
208 head = folio_buffers(folio);
209 if (!head)
210 goto out_unlock;
211 /*
212 * Upon a noref migration, the folio lock serializes here;
213 * otherwise bail.
214 */
215 if (test_bit_acquire(BH_Migrate, &head->b_state)) {
216 WARN_ON(!atomic);
217 goto out_unlock;
218 }
219
220 bh = head;
221 do {
222 if (!buffer_mapped(bh))
223 all_mapped = 0;
224 else if (bh->b_blocknr == block) {
225 ret = bh;
226 get_bh(bh);
227 goto out_unlock;
228 }
229 bh = bh->b_this_page;
230 } while (bh != head);
231
232 /* we might be here because some of the buffers on this page are
233 * not mapped. This is due to various races between
234 * file io on the block device and getblk. It gets dealt with
235 * elsewhere, don't buffer_error if we had some unmapped buffers
236 */
237 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
238 if (all_mapped && __ratelimit(&last_warned)) {
239 printk("__find_get_block_slow() failed. block=%llu, "
240 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
241 "device %pg blocksize: %d\n",
242 (unsigned long long)block,
243 (unsigned long long)bh->b_blocknr,
244 bh->b_state, bh->b_size, bdev,
245 1 << blkbits);
246 }
247 out_unlock:
248 if (atomic)
249 spin_unlock(&bd_mapping->i_private_lock);
250 else
251 folio_unlock(folio);
252 folio_put(folio);
253 out:
254 return ret;
255 }
256
end_buffer_async_read(struct buffer_head * bh,int uptodate)257 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
258 {
259 unsigned long flags;
260 struct buffer_head *first;
261 struct buffer_head *tmp;
262 struct folio *folio;
263 int folio_uptodate = 1;
264
265 BUG_ON(!buffer_async_read(bh));
266
267 folio = bh->b_folio;
268 if (uptodate) {
269 set_buffer_uptodate(bh);
270 } else {
271 clear_buffer_uptodate(bh);
272 buffer_io_error(bh, ", async page read");
273 }
274
275 /*
276 * Be _very_ careful from here on. Bad things can happen if
277 * two buffer heads end IO at almost the same time and both
278 * decide that the page is now completely done.
279 */
280 first = folio_buffers(folio);
281 spin_lock_irqsave(&first->b_uptodate_lock, flags);
282 clear_buffer_async_read(bh);
283 unlock_buffer(bh);
284 tmp = bh;
285 do {
286 if (!buffer_uptodate(tmp))
287 folio_uptodate = 0;
288 if (buffer_async_read(tmp)) {
289 BUG_ON(!buffer_locked(tmp));
290 goto still_busy;
291 }
292 tmp = tmp->b_this_page;
293 } while (tmp != bh);
294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295
296 folio_end_read(folio, folio_uptodate);
297 return;
298
299 still_busy:
300 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
301 }
302
303 struct postprocess_bh_ctx {
304 struct work_struct work;
305 struct buffer_head *bh;
306 struct fsverity_info *vi;
307 };
308
verify_bh(struct work_struct * work)309 static void verify_bh(struct work_struct *work)
310 {
311 struct postprocess_bh_ctx *ctx =
312 container_of(work, struct postprocess_bh_ctx, work);
313 struct buffer_head *bh = ctx->bh;
314 bool valid;
315
316 valid = fsverity_verify_blocks(ctx->vi, bh->b_folio, bh->b_size,
317 bh_offset(bh));
318 end_buffer_async_read(bh, valid);
319 kfree(ctx);
320 }
321
decrypt_bh(struct work_struct * work)322 static void decrypt_bh(struct work_struct *work)
323 {
324 struct postprocess_bh_ctx *ctx =
325 container_of(work, struct postprocess_bh_ctx, work);
326 struct buffer_head *bh = ctx->bh;
327 int err;
328
329 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
330 bh_offset(bh));
331 if (err == 0 && ctx->vi) {
332 /*
333 * We use different work queues for decryption and for verity
334 * because verity may require reading metadata pages that need
335 * decryption, and we shouldn't recurse to the same workqueue.
336 */
337 INIT_WORK(&ctx->work, verify_bh);
338 fsverity_enqueue_verify_work(&ctx->work);
339 return;
340 }
341 end_buffer_async_read(bh, err == 0);
342 kfree(ctx);
343 }
344
345 /*
346 * I/O completion handler for block_read_full_folio() - pages
347 * which come unlocked at the end of I/O.
348 */
end_buffer_async_read_io(struct buffer_head * bh,int uptodate)349 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
350 {
351 struct inode *inode = bh->b_folio->mapping->host;
352 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
353 struct fsverity_info *vi = NULL;
354
355 /* needed by ext4 */
356 if (bh->b_folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE))
357 vi = fsverity_get_info(inode);
358
359 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
360 if (uptodate && (decrypt || vi)) {
361 struct postprocess_bh_ctx *ctx = kmalloc_obj(*ctx, GFP_ATOMIC);
362
363 if (ctx) {
364 ctx->bh = bh;
365 ctx->vi = vi;
366 if (decrypt) {
367 INIT_WORK(&ctx->work, decrypt_bh);
368 fscrypt_enqueue_decrypt_work(&ctx->work);
369 } else {
370 INIT_WORK(&ctx->work, verify_bh);
371 fsverity_enqueue_verify_work(&ctx->work);
372 }
373 return;
374 }
375 uptodate = 0;
376 }
377 end_buffer_async_read(bh, uptodate);
378 }
379
380 /*
381 * Completion handler for block_write_full_folio() - folios which are unlocked
382 * during I/O, and which have the writeback flag cleared upon I/O completion.
383 */
end_buffer_async_write(struct buffer_head * bh,int uptodate)384 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
385 {
386 unsigned long flags;
387 struct buffer_head *first;
388 struct buffer_head *tmp;
389 struct folio *folio;
390
391 BUG_ON(!buffer_async_write(bh));
392
393 folio = bh->b_folio;
394 if (uptodate) {
395 set_buffer_uptodate(bh);
396 } else {
397 buffer_io_error(bh, ", lost async page write");
398 mark_buffer_write_io_error(bh);
399 clear_buffer_uptodate(bh);
400 }
401
402 first = folio_buffers(folio);
403 spin_lock_irqsave(&first->b_uptodate_lock, flags);
404
405 clear_buffer_async_write(bh);
406 unlock_buffer(bh);
407 tmp = bh->b_this_page;
408 while (tmp != bh) {
409 if (buffer_async_write(tmp)) {
410 BUG_ON(!buffer_locked(tmp));
411 goto still_busy;
412 }
413 tmp = tmp->b_this_page;
414 }
415 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
416 folio_end_writeback(folio);
417 return;
418
419 still_busy:
420 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
421 }
422
423 /*
424 * If a page's buffers are under async readin (end_buffer_async_read
425 * completion) then there is a possibility that another thread of
426 * control could lock one of the buffers after it has completed
427 * but while some of the other buffers have not completed. This
428 * locked buffer would confuse end_buffer_async_read() into not unlocking
429 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
430 * that this buffer is not under async I/O.
431 *
432 * The page comes unlocked when it has no locked buffer_async buffers
433 * left.
434 *
435 * PageLocked prevents anyone starting new async I/O reads any of
436 * the buffers.
437 *
438 * PageWriteback is used to prevent simultaneous writeout of the same
439 * page.
440 *
441 * PageLocked prevents anyone from starting writeback of a page which is
442 * under read I/O (PageWriteback is only ever set against a locked page).
443 */
mark_buffer_async_read(struct buffer_head * bh)444 static void mark_buffer_async_read(struct buffer_head *bh)
445 {
446 bh->b_end_io = end_buffer_async_read_io;
447 set_buffer_async_read(bh);
448 }
449
mark_buffer_async_write_endio(struct buffer_head * bh,bh_end_io_t * handler)450 static void mark_buffer_async_write_endio(struct buffer_head *bh,
451 bh_end_io_t *handler)
452 {
453 bh->b_end_io = handler;
454 set_buffer_async_write(bh);
455 }
456
mark_buffer_async_write(struct buffer_head * bh)457 void mark_buffer_async_write(struct buffer_head *bh)
458 {
459 mark_buffer_async_write_endio(bh, end_buffer_async_write);
460 }
461 EXPORT_SYMBOL(mark_buffer_async_write);
462
463
464 /*
465 * fs/buffer.c contains helper functions for buffer-backed address space's
466 * fsync functions. A common requirement for buffer-based filesystems is
467 * that certain data from the backing blockdev needs to be written out for
468 * a successful fsync(). For example, ext2 indirect blocks need to be
469 * written back and waited upon before fsync() returns.
470 *
471 * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
472 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
473 * management of a list of dependent buffers at ->i_mapping->i_private_list.
474 *
475 * Locking is a little subtle: try_to_free_buffers() will remove buffers
476 * from their controlling inode's queue when they are being freed. But
477 * try_to_free_buffers() will be operating against the *blockdev* mapping
478 * at the time, not against the S_ISREG file which depends on those buffers.
479 * So the locking for i_private_list is via the i_private_lock in the address_space
480 * which backs the buffers. Which is different from the address_space
481 * against which the buffers are listed. So for a particular address_space,
482 * mapping->i_private_lock does *not* protect mapping->i_private_list! In fact,
483 * mapping->i_private_list will always be protected by the backing blockdev's
484 * ->i_private_lock.
485 *
486 * Which introduces a requirement: all buffers on an address_space's
487 * ->i_private_list must be from the same address_space: the blockdev's.
488 *
489 * address_spaces which do not place buffers at ->i_private_list via these
490 * utility functions are free to use i_private_lock and i_private_list for
491 * whatever they want. The only requirement is that list_empty(i_private_list)
492 * be true at clear_inode() time.
493 *
494 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
495 * filesystems should do that. invalidate_inode_buffers() should just go
496 * BUG_ON(!list_empty).
497 *
498 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
499 * take an address_space, not an inode. And it should be called
500 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
501 * queued up.
502 *
503 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
504 * list if it is already on a list. Because if the buffer is on a list,
505 * it *must* already be on the right one. If not, the filesystem is being
506 * silly. This will save a ton of locking. But first we have to ensure
507 * that buffers are taken *off* the old inode's list when they are freed
508 * (presumably in truncate). That requires careful auditing of all
509 * filesystems (do it inside bforget()). It could also be done by bringing
510 * b_inode back.
511 */
512
513 /*
514 * The buffer's backing address_space's i_private_lock must be held
515 */
__remove_assoc_queue(struct buffer_head * bh)516 static void __remove_assoc_queue(struct buffer_head *bh)
517 {
518 list_del_init(&bh->b_assoc_buffers);
519 WARN_ON(!bh->b_assoc_map);
520 bh->b_assoc_map = NULL;
521 }
522
inode_has_buffers(struct inode * inode)523 int inode_has_buffers(struct inode *inode)
524 {
525 return !list_empty(&inode->i_data.i_private_list);
526 }
527
528 /*
529 * osync is designed to support O_SYNC io. It waits synchronously for
530 * all already-submitted IO to complete, but does not queue any new
531 * writes to the disk.
532 *
533 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
534 * as you dirty the buffers, and then use osync_inode_buffers to wait for
535 * completion. Any other dirty buffers which are not yet queued for
536 * write will not be flushed to disk by the osync.
537 */
osync_buffers_list(spinlock_t * lock,struct list_head * list)538 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
539 {
540 struct buffer_head *bh;
541 struct list_head *p;
542 int err = 0;
543
544 spin_lock(lock);
545 repeat:
546 list_for_each_prev(p, list) {
547 bh = BH_ENTRY(p);
548 if (buffer_locked(bh)) {
549 get_bh(bh);
550 spin_unlock(lock);
551 wait_on_buffer(bh);
552 if (!buffer_uptodate(bh))
553 err = -EIO;
554 brelse(bh);
555 spin_lock(lock);
556 goto repeat;
557 }
558 }
559 spin_unlock(lock);
560 return err;
561 }
562
563 /**
564 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
565 * @mapping: the mapping which wants those buffers written
566 *
567 * Starts I/O against the buffers at mapping->i_private_list, and waits upon
568 * that I/O.
569 *
570 * Basically, this is a convenience function for fsync().
571 * @mapping is a file or directory which needs those buffers to be written for
572 * a successful fsync().
573 */
sync_mapping_buffers(struct address_space * mapping)574 int sync_mapping_buffers(struct address_space *mapping)
575 {
576 struct address_space *buffer_mapping = mapping->i_private_data;
577
578 if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
579 return 0;
580
581 return fsync_buffers_list(&buffer_mapping->i_private_lock,
582 &mapping->i_private_list);
583 }
584 EXPORT_SYMBOL(sync_mapping_buffers);
585
586 /**
587 * generic_buffers_fsync_noflush - generic buffer fsync implementation
588 * for simple filesystems with no inode lock
589 *
590 * @file: file to synchronize
591 * @start: start offset in bytes
592 * @end: end offset in bytes (inclusive)
593 * @datasync: only synchronize essential metadata if true
594 *
595 * This is a generic implementation of the fsync method for simple
596 * filesystems which track all non-inode metadata in the buffers list
597 * hanging off the address_space structure.
598 */
generic_buffers_fsync_noflush(struct file * file,loff_t start,loff_t end,bool datasync)599 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
600 bool datasync)
601 {
602 struct inode *inode = file->f_mapping->host;
603 int err;
604 int ret;
605
606 err = file_write_and_wait_range(file, start, end);
607 if (err)
608 return err;
609
610 ret = sync_mapping_buffers(inode->i_mapping);
611 if (!(inode_state_read_once(inode) & I_DIRTY_ALL))
612 goto out;
613 if (datasync && !(inode_state_read_once(inode) & I_DIRTY_DATASYNC))
614 goto out;
615
616 err = sync_inode_metadata(inode, 1);
617 if (ret == 0)
618 ret = err;
619
620 out:
621 /* check and advance again to catch errors after syncing out buffers */
622 err = file_check_and_advance_wb_err(file);
623 if (ret == 0)
624 ret = err;
625 return ret;
626 }
627 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
628
629 /**
630 * generic_buffers_fsync - generic buffer fsync implementation
631 * for simple filesystems with no inode lock
632 *
633 * @file: file to synchronize
634 * @start: start offset in bytes
635 * @end: end offset in bytes (inclusive)
636 * @datasync: only synchronize essential metadata if true
637 *
638 * This is a generic implementation of the fsync method for simple
639 * filesystems which track all non-inode metadata in the buffers list
640 * hanging off the address_space structure. This also makes sure that
641 * a device cache flush operation is called at the end.
642 */
generic_buffers_fsync(struct file * file,loff_t start,loff_t end,bool datasync)643 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
644 bool datasync)
645 {
646 struct inode *inode = file->f_mapping->host;
647 int ret;
648
649 ret = generic_buffers_fsync_noflush(file, start, end, datasync);
650 if (!ret)
651 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
652 return ret;
653 }
654 EXPORT_SYMBOL(generic_buffers_fsync);
655
656 /*
657 * Called when we've recently written block `bblock', and it is known that
658 * `bblock' was for a buffer_boundary() buffer. This means that the block at
659 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
660 * dirty, schedule it for IO. So that indirects merge nicely with their data.
661 */
write_boundary_block(struct block_device * bdev,sector_t bblock,unsigned blocksize)662 void write_boundary_block(struct block_device *bdev,
663 sector_t bblock, unsigned blocksize)
664 {
665 struct buffer_head *bh;
666
667 bh = __find_get_block_nonatomic(bdev, bblock + 1, blocksize);
668 if (bh) {
669 if (buffer_dirty(bh))
670 write_dirty_buffer(bh, 0);
671 put_bh(bh);
672 }
673 }
674
mark_buffer_dirty_inode(struct buffer_head * bh,struct inode * inode)675 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
676 {
677 struct address_space *mapping = inode->i_mapping;
678 struct address_space *buffer_mapping = bh->b_folio->mapping;
679
680 mark_buffer_dirty(bh);
681 if (!mapping->i_private_data) {
682 mapping->i_private_data = buffer_mapping;
683 } else {
684 BUG_ON(mapping->i_private_data != buffer_mapping);
685 }
686 if (!bh->b_assoc_map) {
687 spin_lock(&buffer_mapping->i_private_lock);
688 list_move_tail(&bh->b_assoc_buffers,
689 &mapping->i_private_list);
690 bh->b_assoc_map = mapping;
691 spin_unlock(&buffer_mapping->i_private_lock);
692 }
693 }
694 EXPORT_SYMBOL(mark_buffer_dirty_inode);
695
696 /**
697 * block_dirty_folio - Mark a folio as dirty.
698 * @mapping: The address space containing this folio.
699 * @folio: The folio to mark dirty.
700 *
701 * Filesystems which use buffer_heads can use this function as their
702 * ->dirty_folio implementation. Some filesystems need to do a little
703 * work before calling this function. Filesystems which do not use
704 * buffer_heads should call filemap_dirty_folio() instead.
705 *
706 * If the folio has buffers, the uptodate buffers are set dirty, to
707 * preserve dirty-state coherency between the folio and the buffers.
708 * Buffers added to a dirty folio are created dirty.
709 *
710 * The buffers are dirtied before the folio is dirtied. There's a small
711 * race window in which writeback may see the folio cleanness but not the
712 * buffer dirtiness. That's fine. If this code were to set the folio
713 * dirty before the buffers, writeback could clear the folio dirty flag,
714 * see a bunch of clean buffers and we'd end up with dirty buffers/clean
715 * folio on the dirty folio list.
716 *
717 * We use i_private_lock to lock against try_to_free_buffers() while
718 * using the folio's buffer list. This also prevents clean buffers
719 * being added to the folio after it was set dirty.
720 *
721 * Context: May only be called from process context. Does not sleep.
722 * Caller must ensure that @folio cannot be truncated during this call,
723 * typically by holding the folio lock or having a page in the folio
724 * mapped and holding the page table lock.
725 *
726 * Return: True if the folio was dirtied; false if it was already dirtied.
727 */
block_dirty_folio(struct address_space * mapping,struct folio * folio)728 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
729 {
730 struct buffer_head *head;
731 bool newly_dirty;
732
733 spin_lock(&mapping->i_private_lock);
734 head = folio_buffers(folio);
735 if (head) {
736 struct buffer_head *bh = head;
737
738 do {
739 set_buffer_dirty(bh);
740 bh = bh->b_this_page;
741 } while (bh != head);
742 }
743 /*
744 * Lock out page's memcg migration to keep PageDirty
745 * synchronized with per-memcg dirty page counters.
746 */
747 newly_dirty = !folio_test_set_dirty(folio);
748 spin_unlock(&mapping->i_private_lock);
749
750 if (newly_dirty)
751 __folio_mark_dirty(folio, mapping, 1);
752
753 if (newly_dirty)
754 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
755
756 return newly_dirty;
757 }
758 EXPORT_SYMBOL(block_dirty_folio);
759
760 /*
761 * Write out and wait upon a list of buffers.
762 *
763 * We have conflicting pressures: we want to make sure that all
764 * initially dirty buffers get waited on, but that any subsequently
765 * dirtied buffers don't. After all, we don't want fsync to last
766 * forever if somebody is actively writing to the file.
767 *
768 * Do this in two main stages: first we copy dirty buffers to a
769 * temporary inode list, queueing the writes as we go. Then we clean
770 * up, waiting for those writes to complete.
771 *
772 * During this second stage, any subsequent updates to the file may end
773 * up refiling the buffer on the original inode's dirty list again, so
774 * there is a chance we will end up with a buffer queued for write but
775 * not yet completed on that list. So, as a final cleanup we go through
776 * the osync code to catch these locked, dirty buffers without requeuing
777 * any newly dirty buffers for write.
778 */
fsync_buffers_list(spinlock_t * lock,struct list_head * list)779 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
780 {
781 struct buffer_head *bh;
782 struct address_space *mapping;
783 int err = 0, err2;
784 struct blk_plug plug;
785 LIST_HEAD(tmp);
786
787 blk_start_plug(&plug);
788
789 spin_lock(lock);
790 while (!list_empty(list)) {
791 bh = BH_ENTRY(list->next);
792 mapping = bh->b_assoc_map;
793 __remove_assoc_queue(bh);
794 /* Avoid race with mark_buffer_dirty_inode() which does
795 * a lockless check and we rely on seeing the dirty bit */
796 smp_mb();
797 if (buffer_dirty(bh) || buffer_locked(bh)) {
798 list_add(&bh->b_assoc_buffers, &tmp);
799 bh->b_assoc_map = mapping;
800 if (buffer_dirty(bh)) {
801 get_bh(bh);
802 spin_unlock(lock);
803 /*
804 * Ensure any pending I/O completes so that
805 * write_dirty_buffer() actually writes the
806 * current contents - it is a noop if I/O is
807 * still in flight on potentially older
808 * contents.
809 */
810 write_dirty_buffer(bh, REQ_SYNC);
811
812 /*
813 * Kick off IO for the previous mapping. Note
814 * that we will not run the very last mapping,
815 * wait_on_buffer() will do that for us
816 * through sync_buffer().
817 */
818 brelse(bh);
819 spin_lock(lock);
820 }
821 }
822 }
823
824 spin_unlock(lock);
825 blk_finish_plug(&plug);
826 spin_lock(lock);
827
828 while (!list_empty(&tmp)) {
829 bh = BH_ENTRY(tmp.prev);
830 get_bh(bh);
831 mapping = bh->b_assoc_map;
832 __remove_assoc_queue(bh);
833 /* Avoid race with mark_buffer_dirty_inode() which does
834 * a lockless check and we rely on seeing the dirty bit */
835 smp_mb();
836 if (buffer_dirty(bh)) {
837 list_add(&bh->b_assoc_buffers,
838 &mapping->i_private_list);
839 bh->b_assoc_map = mapping;
840 }
841 spin_unlock(lock);
842 wait_on_buffer(bh);
843 if (!buffer_uptodate(bh))
844 err = -EIO;
845 brelse(bh);
846 spin_lock(lock);
847 }
848
849 spin_unlock(lock);
850 err2 = osync_buffers_list(lock, list);
851 if (err)
852 return err;
853 else
854 return err2;
855 }
856
857 /*
858 * Invalidate any and all dirty buffers on a given inode. We are
859 * probably unmounting the fs, but that doesn't mean we have already
860 * done a sync(). Just drop the buffers from the inode list.
861 *
862 * NOTE: we take the inode's blockdev's mapping's i_private_lock. Which
863 * assumes that all the buffers are against the blockdev.
864 */
invalidate_inode_buffers(struct inode * inode)865 void invalidate_inode_buffers(struct inode *inode)
866 {
867 if (inode_has_buffers(inode)) {
868 struct address_space *mapping = &inode->i_data;
869 struct list_head *list = &mapping->i_private_list;
870 struct address_space *buffer_mapping = mapping->i_private_data;
871
872 spin_lock(&buffer_mapping->i_private_lock);
873 while (!list_empty(list))
874 __remove_assoc_queue(BH_ENTRY(list->next));
875 spin_unlock(&buffer_mapping->i_private_lock);
876 }
877 }
878 EXPORT_SYMBOL(invalidate_inode_buffers);
879
880 /*
881 * Remove any clean buffers from the inode's buffer list. This is called
882 * when we're trying to free the inode itself. Those buffers can pin it.
883 *
884 * Returns true if all buffers were removed.
885 */
remove_inode_buffers(struct inode * inode)886 int remove_inode_buffers(struct inode *inode)
887 {
888 int ret = 1;
889
890 if (inode_has_buffers(inode)) {
891 struct address_space *mapping = &inode->i_data;
892 struct list_head *list = &mapping->i_private_list;
893 struct address_space *buffer_mapping = mapping->i_private_data;
894
895 spin_lock(&buffer_mapping->i_private_lock);
896 while (!list_empty(list)) {
897 struct buffer_head *bh = BH_ENTRY(list->next);
898 if (buffer_dirty(bh)) {
899 ret = 0;
900 break;
901 }
902 __remove_assoc_queue(bh);
903 }
904 spin_unlock(&buffer_mapping->i_private_lock);
905 }
906 return ret;
907 }
908
909 /*
910 * Create the appropriate buffers when given a folio for data area and
911 * the size of each buffer.. Use the bh->b_this_page linked list to
912 * follow the buffers created. Return NULL if unable to create more
913 * buffers.
914 *
915 * The retry flag is used to differentiate async IO (paging, swapping)
916 * which may not fail from ordinary buffer allocations.
917 */
folio_alloc_buffers(struct folio * folio,unsigned long size,gfp_t gfp)918 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
919 gfp_t gfp)
920 {
921 struct buffer_head *bh, *head;
922 long offset;
923 struct mem_cgroup *memcg, *old_memcg;
924
925 /* The folio lock pins the memcg */
926 memcg = folio_memcg(folio);
927 old_memcg = set_active_memcg(memcg);
928
929 head = NULL;
930 offset = folio_size(folio);
931 while ((offset -= size) >= 0) {
932 bh = alloc_buffer_head(gfp);
933 if (!bh)
934 goto no_grow;
935
936 bh->b_this_page = head;
937 bh->b_blocknr = -1;
938 head = bh;
939
940 bh->b_size = size;
941
942 /* Link the buffer to its folio */
943 folio_set_bh(bh, folio, offset);
944 }
945 out:
946 set_active_memcg(old_memcg);
947 return head;
948 /*
949 * In case anything failed, we just free everything we got.
950 */
951 no_grow:
952 if (head) {
953 do {
954 bh = head;
955 head = head->b_this_page;
956 free_buffer_head(bh);
957 } while (head);
958 }
959
960 goto out;
961 }
962 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
963
alloc_page_buffers(struct page * page,unsigned long size)964 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size)
965 {
966 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
967
968 return folio_alloc_buffers(page_folio(page), size, gfp);
969 }
970 EXPORT_SYMBOL_GPL(alloc_page_buffers);
971
link_dev_buffers(struct folio * folio,struct buffer_head * head)972 static inline void link_dev_buffers(struct folio *folio,
973 struct buffer_head *head)
974 {
975 struct buffer_head *bh, *tail;
976
977 bh = head;
978 do {
979 tail = bh;
980 bh = bh->b_this_page;
981 } while (bh);
982 tail->b_this_page = head;
983 folio_attach_private(folio, head);
984 }
985
blkdev_max_block(struct block_device * bdev,unsigned int size)986 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
987 {
988 sector_t retval = ~((sector_t)0);
989 loff_t sz = bdev_nr_bytes(bdev);
990
991 if (sz) {
992 unsigned int sizebits = blksize_bits(size);
993 retval = (sz >> sizebits);
994 }
995 return retval;
996 }
997
998 /*
999 * Initialise the state of a blockdev folio's buffers.
1000 */
folio_init_buffers(struct folio * folio,struct block_device * bdev,unsigned size)1001 static sector_t folio_init_buffers(struct folio *folio,
1002 struct block_device *bdev, unsigned size)
1003 {
1004 struct buffer_head *head = folio_buffers(folio);
1005 struct buffer_head *bh = head;
1006 bool uptodate = folio_test_uptodate(folio);
1007 sector_t block = div_u64(folio_pos(folio), size);
1008 sector_t end_block = blkdev_max_block(bdev, size);
1009
1010 do {
1011 if (!buffer_mapped(bh)) {
1012 bh->b_end_io = NULL;
1013 bh->b_private = NULL;
1014 bh->b_bdev = bdev;
1015 bh->b_blocknr = block;
1016 if (uptodate)
1017 set_buffer_uptodate(bh);
1018 if (block < end_block)
1019 set_buffer_mapped(bh);
1020 }
1021 block++;
1022 bh = bh->b_this_page;
1023 } while (bh != head);
1024
1025 /*
1026 * Caller needs to validate requested block against end of device.
1027 */
1028 return end_block;
1029 }
1030
1031 /*
1032 * Create the page-cache folio that contains the requested block.
1033 *
1034 * This is used purely for blockdev mappings.
1035 *
1036 * Returns false if we have a failure which cannot be cured by retrying
1037 * without sleeping. Returns true if we succeeded, or the caller should retry.
1038 */
grow_dev_folio(struct block_device * bdev,sector_t block,pgoff_t index,unsigned size,gfp_t gfp)1039 static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1040 pgoff_t index, unsigned size, gfp_t gfp)
1041 {
1042 struct address_space *mapping = bdev->bd_mapping;
1043 struct folio *folio;
1044 struct buffer_head *bh;
1045 sector_t end_block = 0;
1046
1047 folio = __filemap_get_folio(mapping, index,
1048 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1049 if (IS_ERR(folio))
1050 return false;
1051
1052 bh = folio_buffers(folio);
1053 if (bh) {
1054 if (bh->b_size == size) {
1055 end_block = folio_init_buffers(folio, bdev, size);
1056 goto unlock;
1057 }
1058
1059 /*
1060 * Retrying may succeed; for example the folio may finish
1061 * writeback, or buffers may be cleaned. This should not
1062 * happen very often; maybe we have old buffers attached to
1063 * this blockdev's page cache and we're trying to change
1064 * the block size?
1065 */
1066 if (!try_to_free_buffers(folio)) {
1067 end_block = ~0ULL;
1068 goto unlock;
1069 }
1070 }
1071
1072 bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1073 if (!bh)
1074 goto unlock;
1075
1076 /*
1077 * Link the folio to the buffers and initialise them. Take the
1078 * lock to be atomic wrt __find_get_block(), which does not
1079 * run under the folio lock.
1080 */
1081 spin_lock(&mapping->i_private_lock);
1082 link_dev_buffers(folio, bh);
1083 end_block = folio_init_buffers(folio, bdev, size);
1084 spin_unlock(&mapping->i_private_lock);
1085 unlock:
1086 folio_unlock(folio);
1087 folio_put(folio);
1088 return block < end_block;
1089 }
1090
1091 /*
1092 * Create buffers for the specified block device block's folio. If
1093 * that folio was dirty, the buffers are set dirty also. Returns false
1094 * if we've hit a permanent error.
1095 */
grow_buffers(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1096 static bool grow_buffers(struct block_device *bdev, sector_t block,
1097 unsigned size, gfp_t gfp)
1098 {
1099 loff_t pos;
1100
1101 /*
1102 * Check for a block which lies outside our maximum possible
1103 * pagecache index.
1104 */
1105 if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1106 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
1107 __func__, (unsigned long long)block,
1108 bdev);
1109 return false;
1110 }
1111
1112 /* Create a folio with the proper size buffers */
1113 return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1114 }
1115
1116 static struct buffer_head *
__getblk_slow(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1117 __getblk_slow(struct block_device *bdev, sector_t block,
1118 unsigned size, gfp_t gfp)
1119 {
1120 bool blocking = gfpflags_allow_blocking(gfp);
1121
1122 if (WARN_ON_ONCE(!IS_ALIGNED(size, bdev_logical_block_size(bdev)))) {
1123 printk(KERN_ERR "getblk(): block size %d not aligned to logical block size %d\n",
1124 size, bdev_logical_block_size(bdev));
1125 return NULL;
1126 }
1127
1128 for (;;) {
1129 struct buffer_head *bh;
1130
1131 if (!grow_buffers(bdev, block, size, gfp))
1132 return NULL;
1133
1134 if (blocking)
1135 bh = __find_get_block_nonatomic(bdev, block, size);
1136 else
1137 bh = __find_get_block(bdev, block, size);
1138 if (bh)
1139 return bh;
1140 }
1141 }
1142
1143 /*
1144 * The relationship between dirty buffers and dirty pages:
1145 *
1146 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1147 * the page is tagged dirty in the page cache.
1148 *
1149 * At all times, the dirtiness of the buffers represents the dirtiness of
1150 * subsections of the page. If the page has buffers, the page dirty bit is
1151 * merely a hint about the true dirty state.
1152 *
1153 * When a page is set dirty in its entirety, all its buffers are marked dirty
1154 * (if the page has buffers).
1155 *
1156 * When a buffer is marked dirty, its page is dirtied, but the page's other
1157 * buffers are not.
1158 *
1159 * Also. When blockdev buffers are explicitly read with bread(), they
1160 * individually become uptodate. But their backing page remains not
1161 * uptodate - even if all of its buffers are uptodate. A subsequent
1162 * block_read_full_folio() against that folio will discover all the uptodate
1163 * buffers, will set the folio uptodate and will perform no I/O.
1164 */
1165
1166 /**
1167 * mark_buffer_dirty - mark a buffer_head as needing writeout
1168 * @bh: the buffer_head to mark dirty
1169 *
1170 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1171 * its backing page dirty, then tag the page as dirty in the page cache
1172 * and then attach the address_space's inode to its superblock's dirty
1173 * inode list.
1174 *
1175 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock,
1176 * i_pages lock and mapping->host->i_lock.
1177 */
mark_buffer_dirty(struct buffer_head * bh)1178 void mark_buffer_dirty(struct buffer_head *bh)
1179 {
1180 WARN_ON_ONCE(!buffer_uptodate(bh));
1181
1182 trace_block_dirty_buffer(bh);
1183
1184 /*
1185 * Very *carefully* optimize the it-is-already-dirty case.
1186 *
1187 * Don't let the final "is it dirty" escape to before we
1188 * perhaps modified the buffer.
1189 */
1190 if (buffer_dirty(bh)) {
1191 smp_mb();
1192 if (buffer_dirty(bh))
1193 return;
1194 }
1195
1196 if (!test_set_buffer_dirty(bh)) {
1197 struct folio *folio = bh->b_folio;
1198 struct address_space *mapping = NULL;
1199
1200 if (!folio_test_set_dirty(folio)) {
1201 mapping = folio->mapping;
1202 if (mapping)
1203 __folio_mark_dirty(folio, mapping, 0);
1204 }
1205 if (mapping)
1206 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1207 }
1208 }
1209 EXPORT_SYMBOL(mark_buffer_dirty);
1210
mark_buffer_write_io_error(struct buffer_head * bh)1211 void mark_buffer_write_io_error(struct buffer_head *bh)
1212 {
1213 set_buffer_write_io_error(bh);
1214 /* FIXME: do we need to set this in both places? */
1215 if (bh->b_folio && bh->b_folio->mapping)
1216 mapping_set_error(bh->b_folio->mapping, -EIO);
1217 if (bh->b_assoc_map)
1218 mapping_set_error(bh->b_assoc_map, -EIO);
1219 }
1220 EXPORT_SYMBOL(mark_buffer_write_io_error);
1221
1222 /**
1223 * __brelse - Release a buffer.
1224 * @bh: The buffer to release.
1225 *
1226 * This variant of brelse() can be called if @bh is guaranteed to not be NULL.
1227 */
__brelse(struct buffer_head * bh)1228 void __brelse(struct buffer_head *bh)
1229 {
1230 if (atomic_read(&bh->b_count)) {
1231 put_bh(bh);
1232 return;
1233 }
1234 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1235 }
1236 EXPORT_SYMBOL(__brelse);
1237
1238 /**
1239 * __bforget - Discard any dirty data in a buffer.
1240 * @bh: The buffer to forget.
1241 *
1242 * This variant of bforget() can be called if @bh is guaranteed to not
1243 * be NULL.
1244 */
__bforget(struct buffer_head * bh)1245 void __bforget(struct buffer_head *bh)
1246 {
1247 clear_buffer_dirty(bh);
1248 if (bh->b_assoc_map) {
1249 struct address_space *buffer_mapping = bh->b_folio->mapping;
1250
1251 spin_lock(&buffer_mapping->i_private_lock);
1252 list_del_init(&bh->b_assoc_buffers);
1253 bh->b_assoc_map = NULL;
1254 spin_unlock(&buffer_mapping->i_private_lock);
1255 }
1256 __brelse(bh);
1257 }
1258 EXPORT_SYMBOL(__bforget);
1259
__bread_slow(struct buffer_head * bh)1260 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1261 {
1262 lock_buffer(bh);
1263 if (buffer_uptodate(bh)) {
1264 unlock_buffer(bh);
1265 return bh;
1266 } else {
1267 get_bh(bh);
1268 bh->b_end_io = end_buffer_read_sync;
1269 submit_bh(REQ_OP_READ, bh);
1270 wait_on_buffer(bh);
1271 if (buffer_uptodate(bh))
1272 return bh;
1273 }
1274 brelse(bh);
1275 return NULL;
1276 }
1277
1278 /*
1279 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1280 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1281 * refcount elevated by one when they're in an LRU. A buffer can only appear
1282 * once in a particular CPU's LRU. A single buffer can be present in multiple
1283 * CPU's LRUs at the same time.
1284 *
1285 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1286 * sb_find_get_block().
1287 *
1288 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1289 * a local interrupt disable for that.
1290 */
1291
1292 #define BH_LRU_SIZE 16
1293
1294 struct bh_lru {
1295 struct buffer_head *bhs[BH_LRU_SIZE];
1296 };
1297
1298 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1299
1300 #ifdef CONFIG_SMP
1301 #define bh_lru_lock() local_irq_disable()
1302 #define bh_lru_unlock() local_irq_enable()
1303 #else
1304 #define bh_lru_lock() preempt_disable()
1305 #define bh_lru_unlock() preempt_enable()
1306 #endif
1307
check_irqs_on(void)1308 static inline void check_irqs_on(void)
1309 {
1310 #ifdef irqs_disabled
1311 BUG_ON(irqs_disabled());
1312 #endif
1313 }
1314
1315 /*
1316 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1317 * inserted at the front, and the buffer_head at the back if any is evicted.
1318 * Or, if already in the LRU it is moved to the front.
1319 */
bh_lru_install(struct buffer_head * bh)1320 static void bh_lru_install(struct buffer_head *bh)
1321 {
1322 struct buffer_head *evictee = bh;
1323 struct bh_lru *b;
1324 int i;
1325
1326 check_irqs_on();
1327 bh_lru_lock();
1328
1329 /*
1330 * the refcount of buffer_head in bh_lru prevents dropping the
1331 * attached page(i.e., try_to_free_buffers) so it could cause
1332 * failing page migration.
1333 * Skip putting upcoming bh into bh_lru until migration is done.
1334 */
1335 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1336 bh_lru_unlock();
1337 return;
1338 }
1339
1340 b = this_cpu_ptr(&bh_lrus);
1341 for (i = 0; i < BH_LRU_SIZE; i++) {
1342 swap(evictee, b->bhs[i]);
1343 if (evictee == bh) {
1344 bh_lru_unlock();
1345 return;
1346 }
1347 }
1348
1349 get_bh(bh);
1350 bh_lru_unlock();
1351 brelse(evictee);
1352 }
1353
1354 /*
1355 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1356 */
1357 static struct buffer_head *
lookup_bh_lru(struct block_device * bdev,sector_t block,unsigned size)1358 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1359 {
1360 struct buffer_head *ret = NULL;
1361 unsigned int i;
1362
1363 check_irqs_on();
1364 bh_lru_lock();
1365 if (cpu_is_isolated(smp_processor_id())) {
1366 bh_lru_unlock();
1367 return NULL;
1368 }
1369 for (i = 0; i < BH_LRU_SIZE; i++) {
1370 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1371
1372 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1373 bh->b_size == size) {
1374 if (i) {
1375 while (i) {
1376 __this_cpu_write(bh_lrus.bhs[i],
1377 __this_cpu_read(bh_lrus.bhs[i - 1]));
1378 i--;
1379 }
1380 __this_cpu_write(bh_lrus.bhs[0], bh);
1381 }
1382 get_bh(bh);
1383 ret = bh;
1384 break;
1385 }
1386 }
1387 bh_lru_unlock();
1388 return ret;
1389 }
1390
1391 /*
1392 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1393 * it in the LRU and mark it as accessed. If it is not present then return
1394 * NULL. Atomic context callers may also return NULL if the buffer is being
1395 * migrated; similarly the page is not marked accessed either.
1396 */
1397 static struct buffer_head *
find_get_block_common(struct block_device * bdev,sector_t block,unsigned size,bool atomic)1398 find_get_block_common(struct block_device *bdev, sector_t block,
1399 unsigned size, bool atomic)
1400 {
1401 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1402
1403 if (bh == NULL) {
1404 /* __find_get_block_slow will mark the page accessed */
1405 bh = __find_get_block_slow(bdev, block, atomic);
1406 if (bh)
1407 bh_lru_install(bh);
1408 } else
1409 touch_buffer(bh);
1410
1411 return bh;
1412 }
1413
1414 struct buffer_head *
__find_get_block(struct block_device * bdev,sector_t block,unsigned size)1415 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1416 {
1417 return find_get_block_common(bdev, block, size, true);
1418 }
1419 EXPORT_SYMBOL(__find_get_block);
1420
1421 /* same as __find_get_block() but allows sleeping contexts */
1422 struct buffer_head *
__find_get_block_nonatomic(struct block_device * bdev,sector_t block,unsigned size)1423 __find_get_block_nonatomic(struct block_device *bdev, sector_t block,
1424 unsigned size)
1425 {
1426 return find_get_block_common(bdev, block, size, false);
1427 }
1428 EXPORT_SYMBOL(__find_get_block_nonatomic);
1429
1430 /**
1431 * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1432 * @bdev: The block device.
1433 * @block: The block number.
1434 * @size: The size of buffer_heads for this @bdev.
1435 * @gfp: The memory allocation flags to use.
1436 *
1437 * The returned buffer head has its reference count incremented, but is
1438 * not locked. The caller should call brelse() when it has finished
1439 * with the buffer. The buffer may not be uptodate. If needed, the
1440 * caller can bring it uptodate either by reading it or overwriting it.
1441 *
1442 * Return: The buffer head, or NULL if memory could not be allocated.
1443 */
bdev_getblk(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1444 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1445 unsigned size, gfp_t gfp)
1446 {
1447 struct buffer_head *bh;
1448
1449 if (gfpflags_allow_blocking(gfp))
1450 bh = __find_get_block_nonatomic(bdev, block, size);
1451 else
1452 bh = __find_get_block(bdev, block, size);
1453
1454 might_alloc(gfp);
1455 if (bh)
1456 return bh;
1457
1458 return __getblk_slow(bdev, block, size, gfp);
1459 }
1460 EXPORT_SYMBOL(bdev_getblk);
1461
1462 /*
1463 * Do async read-ahead on a buffer..
1464 */
__breadahead(struct block_device * bdev,sector_t block,unsigned size)1465 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1466 {
1467 struct buffer_head *bh = bdev_getblk(bdev, block, size,
1468 GFP_NOWAIT | __GFP_MOVABLE);
1469
1470 if (likely(bh)) {
1471 bh_readahead(bh, REQ_RAHEAD);
1472 brelse(bh);
1473 }
1474 }
1475 EXPORT_SYMBOL(__breadahead);
1476
1477 /**
1478 * __bread_gfp() - Read a block.
1479 * @bdev: The block device to read from.
1480 * @block: Block number in units of block size.
1481 * @size: The block size of this device in bytes.
1482 * @gfp: Not page allocation flags; see below.
1483 *
1484 * You are not expected to call this function. You should use one of
1485 * sb_bread(), sb_bread_unmovable() or __bread().
1486 *
1487 * Read a specified block, and return the buffer head that refers to it.
1488 * If @gfp is 0, the memory will be allocated using the block device's
1489 * default GFP flags. If @gfp is __GFP_MOVABLE, the memory may be
1490 * allocated from a movable area. Do not pass in a complete set of
1491 * GFP flags.
1492 *
1493 * The returned buffer head has its refcount increased. The caller should
1494 * call brelse() when it has finished with the buffer.
1495 *
1496 * Context: May sleep waiting for I/O.
1497 * Return: NULL if the block was unreadable.
1498 */
__bread_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1499 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block,
1500 unsigned size, gfp_t gfp)
1501 {
1502 struct buffer_head *bh;
1503
1504 gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS);
1505
1506 /*
1507 * Prefer looping in the allocator rather than here, at least that
1508 * code knows what it's doing.
1509 */
1510 gfp |= __GFP_NOFAIL;
1511
1512 bh = bdev_getblk(bdev, block, size, gfp);
1513
1514 if (likely(bh) && !buffer_uptodate(bh))
1515 bh = __bread_slow(bh);
1516 return bh;
1517 }
1518 EXPORT_SYMBOL(__bread_gfp);
1519
__invalidate_bh_lrus(struct bh_lru * b)1520 static void __invalidate_bh_lrus(struct bh_lru *b)
1521 {
1522 int i;
1523
1524 for (i = 0; i < BH_LRU_SIZE; i++) {
1525 brelse(b->bhs[i]);
1526 b->bhs[i] = NULL;
1527 }
1528 }
1529 /*
1530 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1531 * This doesn't race because it runs in each cpu either in irq
1532 * or with preempt disabled.
1533 */
invalidate_bh_lru(void * arg)1534 static void invalidate_bh_lru(void *arg)
1535 {
1536 struct bh_lru *b = &get_cpu_var(bh_lrus);
1537
1538 __invalidate_bh_lrus(b);
1539 put_cpu_var(bh_lrus);
1540 }
1541
has_bh_in_lru(int cpu,void * dummy)1542 bool has_bh_in_lru(int cpu, void *dummy)
1543 {
1544 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1545 int i;
1546
1547 for (i = 0; i < BH_LRU_SIZE; i++) {
1548 if (b->bhs[i])
1549 return true;
1550 }
1551
1552 return false;
1553 }
1554
invalidate_bh_lrus(void)1555 void invalidate_bh_lrus(void)
1556 {
1557 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1558 }
1559 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1560
1561 /*
1562 * It's called from workqueue context so we need a bh_lru_lock to close
1563 * the race with preemption/irq.
1564 */
invalidate_bh_lrus_cpu(void)1565 void invalidate_bh_lrus_cpu(void)
1566 {
1567 struct bh_lru *b;
1568
1569 bh_lru_lock();
1570 b = this_cpu_ptr(&bh_lrus);
1571 __invalidate_bh_lrus(b);
1572 bh_lru_unlock();
1573 }
1574
folio_set_bh(struct buffer_head * bh,struct folio * folio,unsigned long offset)1575 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1576 unsigned long offset)
1577 {
1578 bh->b_folio = folio;
1579 BUG_ON(offset >= folio_size(folio));
1580 if (folio_test_highmem(folio))
1581 /*
1582 * This catches illegal uses and preserves the offset:
1583 */
1584 bh->b_data = (char *)(0 + offset);
1585 else
1586 bh->b_data = folio_address(folio) + offset;
1587 }
1588 EXPORT_SYMBOL(folio_set_bh);
1589
1590 /*
1591 * Called when truncating a buffer on a page completely.
1592 */
1593
1594 /* Bits that are cleared during an invalidate */
1595 #define BUFFER_FLAGS_DISCARD \
1596 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1597 1 << BH_Delay | 1 << BH_Unwritten)
1598
discard_buffer(struct buffer_head * bh)1599 static void discard_buffer(struct buffer_head * bh)
1600 {
1601 unsigned long b_state;
1602
1603 lock_buffer(bh);
1604 clear_buffer_dirty(bh);
1605 bh->b_bdev = NULL;
1606 b_state = READ_ONCE(bh->b_state);
1607 do {
1608 } while (!try_cmpxchg_relaxed(&bh->b_state, &b_state,
1609 b_state & ~BUFFER_FLAGS_DISCARD));
1610 unlock_buffer(bh);
1611 }
1612
1613 /**
1614 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1615 * @folio: The folio which is affected.
1616 * @offset: start of the range to invalidate
1617 * @length: length of the range to invalidate
1618 *
1619 * block_invalidate_folio() is called when all or part of the folio has been
1620 * invalidated by a truncate operation.
1621 *
1622 * block_invalidate_folio() does not have to release all buffers, but it must
1623 * ensure that no dirty buffer is left outside @offset and that no I/O
1624 * is underway against any of the blocks which are outside the truncation
1625 * point. Because the caller is about to free (and possibly reuse) those
1626 * blocks on-disk.
1627 */
block_invalidate_folio(struct folio * folio,size_t offset,size_t length)1628 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1629 {
1630 struct buffer_head *head, *bh, *next;
1631 size_t curr_off = 0;
1632 size_t stop = length + offset;
1633
1634 BUG_ON(!folio_test_locked(folio));
1635
1636 /*
1637 * Check for overflow
1638 */
1639 BUG_ON(stop > folio_size(folio) || stop < length);
1640
1641 head = folio_buffers(folio);
1642 if (!head)
1643 return;
1644
1645 bh = head;
1646 do {
1647 size_t next_off = curr_off + bh->b_size;
1648 next = bh->b_this_page;
1649
1650 /*
1651 * Are we still fully in range ?
1652 */
1653 if (next_off > stop)
1654 goto out;
1655
1656 /*
1657 * is this block fully invalidated?
1658 */
1659 if (offset <= curr_off)
1660 discard_buffer(bh);
1661 curr_off = next_off;
1662 bh = next;
1663 } while (bh != head);
1664
1665 /*
1666 * We release buffers only if the entire folio is being invalidated.
1667 * The get_block cached value has been unconditionally invalidated,
1668 * so real IO is not possible anymore.
1669 */
1670 if (length == folio_size(folio))
1671 filemap_release_folio(folio, 0);
1672 out:
1673 folio_clear_mappedtodisk(folio);
1674 }
1675 EXPORT_SYMBOL(block_invalidate_folio);
1676
1677 /*
1678 * We attach and possibly dirty the buffers atomically wrt
1679 * block_dirty_folio() via i_private_lock. try_to_free_buffers
1680 * is already excluded via the folio lock.
1681 */
create_empty_buffers(struct folio * folio,unsigned long blocksize,unsigned long b_state)1682 struct buffer_head *create_empty_buffers(struct folio *folio,
1683 unsigned long blocksize, unsigned long b_state)
1684 {
1685 struct buffer_head *bh, *head, *tail;
1686 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1687
1688 head = folio_alloc_buffers(folio, blocksize, gfp);
1689 bh = head;
1690 do {
1691 bh->b_state |= b_state;
1692 tail = bh;
1693 bh = bh->b_this_page;
1694 } while (bh);
1695 tail->b_this_page = head;
1696
1697 spin_lock(&folio->mapping->i_private_lock);
1698 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1699 bh = head;
1700 do {
1701 if (folio_test_dirty(folio))
1702 set_buffer_dirty(bh);
1703 if (folio_test_uptodate(folio))
1704 set_buffer_uptodate(bh);
1705 bh = bh->b_this_page;
1706 } while (bh != head);
1707 }
1708 folio_attach_private(folio, head);
1709 spin_unlock(&folio->mapping->i_private_lock);
1710
1711 return head;
1712 }
1713 EXPORT_SYMBOL(create_empty_buffers);
1714
1715 /**
1716 * clean_bdev_aliases: clean a range of buffers in block device
1717 * @bdev: Block device to clean buffers in
1718 * @block: Start of a range of blocks to clean
1719 * @len: Number of blocks to clean
1720 *
1721 * We are taking a range of blocks for data and we don't want writeback of any
1722 * buffer-cache aliases starting from return from this function and until the
1723 * moment when something will explicitly mark the buffer dirty (hopefully that
1724 * will not happen until we will free that block ;-) We don't even need to mark
1725 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1726 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1727 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1728 * would confuse anyone who might pick it with bread() afterwards...
1729 *
1730 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1731 * writeout I/O going on against recently-freed buffers. We don't wait on that
1732 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1733 * need to. That happens here.
1734 */
clean_bdev_aliases(struct block_device * bdev,sector_t block,sector_t len)1735 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1736 {
1737 struct address_space *bd_mapping = bdev->bd_mapping;
1738 const int blkbits = bd_mapping->host->i_blkbits;
1739 struct folio_batch fbatch;
1740 pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE;
1741 pgoff_t end;
1742 int i, count;
1743 struct buffer_head *bh;
1744 struct buffer_head *head;
1745
1746 end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE;
1747 folio_batch_init(&fbatch);
1748 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1749 count = folio_batch_count(&fbatch);
1750 for (i = 0; i < count; i++) {
1751 struct folio *folio = fbatch.folios[i];
1752
1753 if (!folio_buffers(folio))
1754 continue;
1755 /*
1756 * We use folio lock instead of bd_mapping->i_private_lock
1757 * to pin buffers here since we can afford to sleep and
1758 * it scales better than a global spinlock lock.
1759 */
1760 folio_lock(folio);
1761 /* Recheck when the folio is locked which pins bhs */
1762 head = folio_buffers(folio);
1763 if (!head)
1764 goto unlock_page;
1765 bh = head;
1766 do {
1767 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1768 goto next;
1769 if (bh->b_blocknr >= block + len)
1770 break;
1771 clear_buffer_dirty(bh);
1772 wait_on_buffer(bh);
1773 clear_buffer_req(bh);
1774 next:
1775 bh = bh->b_this_page;
1776 } while (bh != head);
1777 unlock_page:
1778 folio_unlock(folio);
1779 }
1780 folio_batch_release(&fbatch);
1781 cond_resched();
1782 /* End of range already reached? */
1783 if (index > end || !index)
1784 break;
1785 }
1786 }
1787 EXPORT_SYMBOL(clean_bdev_aliases);
1788
folio_create_buffers(struct folio * folio,struct inode * inode,unsigned int b_state)1789 static struct buffer_head *folio_create_buffers(struct folio *folio,
1790 struct inode *inode,
1791 unsigned int b_state)
1792 {
1793 struct buffer_head *bh;
1794
1795 BUG_ON(!folio_test_locked(folio));
1796
1797 bh = folio_buffers(folio);
1798 if (!bh)
1799 bh = create_empty_buffers(folio,
1800 1 << READ_ONCE(inode->i_blkbits), b_state);
1801 return bh;
1802 }
1803
1804 /*
1805 * NOTE! All mapped/uptodate combinations are valid:
1806 *
1807 * Mapped Uptodate Meaning
1808 *
1809 * No No "unknown" - must do get_block()
1810 * No Yes "hole" - zero-filled
1811 * Yes No "allocated" - allocated on disk, not read in
1812 * Yes Yes "valid" - allocated and up-to-date in memory.
1813 *
1814 * "Dirty" is valid only with the last case (mapped+uptodate).
1815 */
1816
1817 /*
1818 * While block_write_full_folio is writing back the dirty buffers under
1819 * the page lock, whoever dirtied the buffers may decide to clean them
1820 * again at any time. We handle that by only looking at the buffer
1821 * state inside lock_buffer().
1822 *
1823 * If block_write_full_folio() is called for regular writeback
1824 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1825 * locked buffer. This only can happen if someone has written the buffer
1826 * directly, with submit_bh(). At the address_space level PageWriteback
1827 * prevents this contention from occurring.
1828 *
1829 * If block_write_full_folio() is called with wbc->sync_mode ==
1830 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1831 * causes the writes to be flagged as synchronous writes.
1832 */
__block_write_full_folio(struct inode * inode,struct folio * folio,get_block_t * get_block,struct writeback_control * wbc)1833 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1834 get_block_t *get_block, struct writeback_control *wbc)
1835 {
1836 int err;
1837 sector_t block;
1838 sector_t last_block;
1839 struct buffer_head *bh, *head;
1840 size_t blocksize;
1841 int nr_underway = 0;
1842 blk_opf_t write_flags = wbc_to_write_flags(wbc);
1843
1844 head = folio_create_buffers(folio, inode,
1845 (1 << BH_Dirty) | (1 << BH_Uptodate));
1846
1847 /*
1848 * Be very careful. We have no exclusion from block_dirty_folio
1849 * here, and the (potentially unmapped) buffers may become dirty at
1850 * any time. If a buffer becomes dirty here after we've inspected it
1851 * then we just miss that fact, and the folio stays dirty.
1852 *
1853 * Buffers outside i_size may be dirtied by block_dirty_folio;
1854 * handle that here by just cleaning them.
1855 */
1856
1857 bh = head;
1858 blocksize = bh->b_size;
1859
1860 block = div_u64(folio_pos(folio), blocksize);
1861 last_block = div_u64(i_size_read(inode) - 1, blocksize);
1862
1863 /*
1864 * Get all the dirty buffers mapped to disk addresses and
1865 * handle any aliases from the underlying blockdev's mapping.
1866 */
1867 do {
1868 if (block > last_block) {
1869 /*
1870 * mapped buffers outside i_size will occur, because
1871 * this folio can be outside i_size when there is a
1872 * truncate in progress.
1873 */
1874 /*
1875 * The buffer was zeroed by block_write_full_folio()
1876 */
1877 clear_buffer_dirty(bh);
1878 set_buffer_uptodate(bh);
1879 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1880 buffer_dirty(bh)) {
1881 WARN_ON(bh->b_size != blocksize);
1882 err = get_block(inode, block, bh, 1);
1883 if (err)
1884 goto recover;
1885 clear_buffer_delay(bh);
1886 if (buffer_new(bh)) {
1887 /* blockdev mappings never come here */
1888 clear_buffer_new(bh);
1889 clean_bdev_bh_alias(bh);
1890 }
1891 }
1892 bh = bh->b_this_page;
1893 block++;
1894 } while (bh != head);
1895
1896 do {
1897 if (!buffer_mapped(bh))
1898 continue;
1899 /*
1900 * If it's a fully non-blocking write attempt and we cannot
1901 * lock the buffer then redirty the folio. Note that this can
1902 * potentially cause a busy-wait loop from writeback threads
1903 * and kswapd activity, but those code paths have their own
1904 * higher-level throttling.
1905 */
1906 if (wbc->sync_mode != WB_SYNC_NONE) {
1907 lock_buffer(bh);
1908 } else if (!trylock_buffer(bh)) {
1909 folio_redirty_for_writepage(wbc, folio);
1910 continue;
1911 }
1912 if (test_clear_buffer_dirty(bh)) {
1913 mark_buffer_async_write_endio(bh,
1914 end_buffer_async_write);
1915 } else {
1916 unlock_buffer(bh);
1917 }
1918 } while ((bh = bh->b_this_page) != head);
1919
1920 /*
1921 * The folio and its buffers are protected by the writeback flag,
1922 * so we can drop the bh refcounts early.
1923 */
1924 BUG_ON(folio_test_writeback(folio));
1925 folio_start_writeback(folio);
1926
1927 do {
1928 struct buffer_head *next = bh->b_this_page;
1929 if (buffer_async_write(bh)) {
1930 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1931 inode->i_write_hint, wbc);
1932 nr_underway++;
1933 }
1934 bh = next;
1935 } while (bh != head);
1936 folio_unlock(folio);
1937
1938 err = 0;
1939 done:
1940 if (nr_underway == 0) {
1941 /*
1942 * The folio was marked dirty, but the buffers were
1943 * clean. Someone wrote them back by hand with
1944 * write_dirty_buffer/submit_bh. A rare case.
1945 */
1946 folio_end_writeback(folio);
1947
1948 /*
1949 * The folio and buffer_heads can be released at any time from
1950 * here on.
1951 */
1952 }
1953 return err;
1954
1955 recover:
1956 /*
1957 * ENOSPC, or some other error. We may already have added some
1958 * blocks to the file, so we need to write these out to avoid
1959 * exposing stale data.
1960 * The folio is currently locked and not marked for writeback
1961 */
1962 bh = head;
1963 /* Recovery: lock and submit the mapped buffers */
1964 do {
1965 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1966 !buffer_delay(bh)) {
1967 lock_buffer(bh);
1968 mark_buffer_async_write_endio(bh,
1969 end_buffer_async_write);
1970 } else {
1971 /*
1972 * The buffer may have been set dirty during
1973 * attachment to a dirty folio.
1974 */
1975 clear_buffer_dirty(bh);
1976 }
1977 } while ((bh = bh->b_this_page) != head);
1978 BUG_ON(folio_test_writeback(folio));
1979 mapping_set_error(folio->mapping, err);
1980 folio_start_writeback(folio);
1981 do {
1982 struct buffer_head *next = bh->b_this_page;
1983 if (buffer_async_write(bh)) {
1984 clear_buffer_dirty(bh);
1985 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1986 inode->i_write_hint, wbc);
1987 nr_underway++;
1988 }
1989 bh = next;
1990 } while (bh != head);
1991 folio_unlock(folio);
1992 goto done;
1993 }
1994 EXPORT_SYMBOL(__block_write_full_folio);
1995
1996 /*
1997 * If a folio has any new buffers, zero them out here, and mark them uptodate
1998 * and dirty so they'll be written out (in order to prevent uninitialised
1999 * block data from leaking). And clear the new bit.
2000 */
folio_zero_new_buffers(struct folio * folio,size_t from,size_t to)2001 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
2002 {
2003 size_t block_start, block_end;
2004 struct buffer_head *head, *bh;
2005
2006 BUG_ON(!folio_test_locked(folio));
2007 head = folio_buffers(folio);
2008 if (!head)
2009 return;
2010
2011 bh = head;
2012 block_start = 0;
2013 do {
2014 block_end = block_start + bh->b_size;
2015
2016 if (buffer_new(bh)) {
2017 if (block_end > from && block_start < to) {
2018 if (!folio_test_uptodate(folio)) {
2019 size_t start, xend;
2020
2021 start = max(from, block_start);
2022 xend = min(to, block_end);
2023
2024 folio_zero_segment(folio, start, xend);
2025 set_buffer_uptodate(bh);
2026 }
2027
2028 clear_buffer_new(bh);
2029 mark_buffer_dirty(bh);
2030 }
2031 }
2032
2033 block_start = block_end;
2034 bh = bh->b_this_page;
2035 } while (bh != head);
2036 }
2037 EXPORT_SYMBOL(folio_zero_new_buffers);
2038
2039 static int
iomap_to_bh(struct inode * inode,sector_t block,struct buffer_head * bh,const struct iomap * iomap)2040 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2041 const struct iomap *iomap)
2042 {
2043 loff_t offset = (loff_t)block << inode->i_blkbits;
2044
2045 bh->b_bdev = iomap->bdev;
2046
2047 /*
2048 * Block points to offset in file we need to map, iomap contains
2049 * the offset at which the map starts. If the map ends before the
2050 * current block, then do not map the buffer and let the caller
2051 * handle it.
2052 */
2053 if (offset >= iomap->offset + iomap->length)
2054 return -EIO;
2055
2056 switch (iomap->type) {
2057 case IOMAP_HOLE:
2058 /*
2059 * If the buffer is not up to date or beyond the current EOF,
2060 * we need to mark it as new to ensure sub-block zeroing is
2061 * executed if necessary.
2062 */
2063 if (!buffer_uptodate(bh) ||
2064 (offset >= i_size_read(inode)))
2065 set_buffer_new(bh);
2066 return 0;
2067 case IOMAP_DELALLOC:
2068 if (!buffer_uptodate(bh) ||
2069 (offset >= i_size_read(inode)))
2070 set_buffer_new(bh);
2071 set_buffer_uptodate(bh);
2072 set_buffer_mapped(bh);
2073 set_buffer_delay(bh);
2074 return 0;
2075 case IOMAP_UNWRITTEN:
2076 /*
2077 * For unwritten regions, we always need to ensure that regions
2078 * in the block we are not writing to are zeroed. Mark the
2079 * buffer as new to ensure this.
2080 */
2081 set_buffer_new(bh);
2082 set_buffer_unwritten(bh);
2083 fallthrough;
2084 case IOMAP_MAPPED:
2085 if ((iomap->flags & IOMAP_F_NEW) ||
2086 offset >= i_size_read(inode)) {
2087 /*
2088 * This can happen if truncating the block device races
2089 * with the check in the caller as i_size updates on
2090 * block devices aren't synchronized by i_rwsem for
2091 * block devices.
2092 */
2093 if (S_ISBLK(inode->i_mode))
2094 return -EIO;
2095 set_buffer_new(bh);
2096 }
2097 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2098 inode->i_blkbits;
2099 set_buffer_mapped(bh);
2100 return 0;
2101 default:
2102 WARN_ON_ONCE(1);
2103 return -EIO;
2104 }
2105 }
2106
__block_write_begin_int(struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block,const struct iomap * iomap)2107 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2108 get_block_t *get_block, const struct iomap *iomap)
2109 {
2110 size_t from = offset_in_folio(folio, pos);
2111 size_t to = from + len;
2112 struct inode *inode = folio->mapping->host;
2113 size_t block_start, block_end;
2114 sector_t block;
2115 int err = 0;
2116 size_t blocksize;
2117 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2118
2119 BUG_ON(!folio_test_locked(folio));
2120 BUG_ON(to > folio_size(folio));
2121 BUG_ON(from > to);
2122
2123 head = folio_create_buffers(folio, inode, 0);
2124 blocksize = head->b_size;
2125 block = div_u64(folio_pos(folio), blocksize);
2126
2127 for (bh = head, block_start = 0; bh != head || !block_start;
2128 block++, block_start=block_end, bh = bh->b_this_page) {
2129 block_end = block_start + blocksize;
2130 if (block_end <= from || block_start >= to) {
2131 if (folio_test_uptodate(folio)) {
2132 if (!buffer_uptodate(bh))
2133 set_buffer_uptodate(bh);
2134 }
2135 continue;
2136 }
2137 if (buffer_new(bh))
2138 clear_buffer_new(bh);
2139 if (!buffer_mapped(bh)) {
2140 WARN_ON(bh->b_size != blocksize);
2141 if (get_block)
2142 err = get_block(inode, block, bh, 1);
2143 else
2144 err = iomap_to_bh(inode, block, bh, iomap);
2145 if (err)
2146 break;
2147
2148 if (buffer_new(bh)) {
2149 clean_bdev_bh_alias(bh);
2150 if (folio_test_uptodate(folio)) {
2151 clear_buffer_new(bh);
2152 set_buffer_uptodate(bh);
2153 mark_buffer_dirty(bh);
2154 continue;
2155 }
2156 if (block_end > to || block_start < from)
2157 folio_zero_segments(folio,
2158 to, block_end,
2159 block_start, from);
2160 continue;
2161 }
2162 }
2163 if (folio_test_uptodate(folio)) {
2164 if (!buffer_uptodate(bh))
2165 set_buffer_uptodate(bh);
2166 continue;
2167 }
2168 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2169 !buffer_unwritten(bh) &&
2170 (block_start < from || block_end > to)) {
2171 bh_read_nowait(bh, 0);
2172 *wait_bh++=bh;
2173 }
2174 }
2175 /*
2176 * If we issued read requests - let them complete.
2177 */
2178 while(wait_bh > wait) {
2179 wait_on_buffer(*--wait_bh);
2180 if (!buffer_uptodate(*wait_bh))
2181 err = -EIO;
2182 }
2183 if (unlikely(err))
2184 folio_zero_new_buffers(folio, from, to);
2185 return err;
2186 }
2187
__block_write_begin(struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block)2188 int __block_write_begin(struct folio *folio, loff_t pos, unsigned len,
2189 get_block_t *get_block)
2190 {
2191 return __block_write_begin_int(folio, pos, len, get_block, NULL);
2192 }
2193 EXPORT_SYMBOL(__block_write_begin);
2194
block_commit_write(struct folio * folio,size_t from,size_t to)2195 void block_commit_write(struct folio *folio, size_t from, size_t to)
2196 {
2197 size_t block_start, block_end;
2198 bool partial = false;
2199 unsigned blocksize;
2200 struct buffer_head *bh, *head;
2201
2202 bh = head = folio_buffers(folio);
2203 if (!bh)
2204 return;
2205 blocksize = bh->b_size;
2206
2207 block_start = 0;
2208 do {
2209 block_end = block_start + blocksize;
2210 if (block_end <= from || block_start >= to) {
2211 if (!buffer_uptodate(bh))
2212 partial = true;
2213 } else {
2214 set_buffer_uptodate(bh);
2215 mark_buffer_dirty(bh);
2216 }
2217 if (buffer_new(bh))
2218 clear_buffer_new(bh);
2219
2220 block_start = block_end;
2221 bh = bh->b_this_page;
2222 } while (bh != head);
2223
2224 /*
2225 * If this is a partial write which happened to make all buffers
2226 * uptodate then we can optimize away a bogus read_folio() for
2227 * the next read(). Here we 'discover' whether the folio went
2228 * uptodate as a result of this (potentially partial) write.
2229 */
2230 if (!partial)
2231 folio_mark_uptodate(folio);
2232 }
2233 EXPORT_SYMBOL(block_commit_write);
2234
2235 /*
2236 * block_write_begin takes care of the basic task of block allocation and
2237 * bringing partial write blocks uptodate first.
2238 *
2239 * The filesystem needs to handle block truncation upon failure.
2240 */
block_write_begin(struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,get_block_t * get_block)2241 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2242 struct folio **foliop, get_block_t *get_block)
2243 {
2244 pgoff_t index = pos >> PAGE_SHIFT;
2245 struct folio *folio;
2246 int status;
2247
2248 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2249 mapping_gfp_mask(mapping));
2250 if (IS_ERR(folio))
2251 return PTR_ERR(folio);
2252
2253 status = __block_write_begin_int(folio, pos, len, get_block, NULL);
2254 if (unlikely(status)) {
2255 folio_unlock(folio);
2256 folio_put(folio);
2257 folio = NULL;
2258 }
2259
2260 *foliop = folio;
2261 return status;
2262 }
2263 EXPORT_SYMBOL(block_write_begin);
2264
block_write_end(loff_t pos,unsigned len,unsigned copied,struct folio * folio)2265 int block_write_end(loff_t pos, unsigned len, unsigned copied,
2266 struct folio *folio)
2267 {
2268 size_t start = pos - folio_pos(folio);
2269
2270 if (unlikely(copied < len)) {
2271 /*
2272 * The buffers that were written will now be uptodate, so
2273 * we don't have to worry about a read_folio reading them
2274 * and overwriting a partial write. However if we have
2275 * encountered a short write and only partially written
2276 * into a buffer, it will not be marked uptodate, so a
2277 * read_folio might come in and destroy our partial write.
2278 *
2279 * Do the simplest thing, and just treat any short write to a
2280 * non uptodate folio as a zero-length write, and force the
2281 * caller to redo the whole thing.
2282 */
2283 if (!folio_test_uptodate(folio))
2284 copied = 0;
2285
2286 folio_zero_new_buffers(folio, start+copied, start+len);
2287 }
2288 flush_dcache_folio(folio);
2289
2290 /* This could be a short (even 0-length) commit */
2291 block_commit_write(folio, start, start + copied);
2292
2293 return copied;
2294 }
2295 EXPORT_SYMBOL(block_write_end);
2296
generic_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)2297 int generic_write_end(const struct kiocb *iocb, struct address_space *mapping,
2298 loff_t pos, unsigned len, unsigned copied,
2299 struct folio *folio, void *fsdata)
2300 {
2301 struct inode *inode = mapping->host;
2302 loff_t old_size = inode->i_size;
2303 bool i_size_changed = false;
2304
2305 copied = block_write_end(pos, len, copied, folio);
2306
2307 /*
2308 * No need to use i_size_read() here, the i_size cannot change under us
2309 * because we hold i_rwsem.
2310 *
2311 * But it's important to update i_size while still holding folio lock:
2312 * page writeout could otherwise come in and zero beyond i_size.
2313 */
2314 if (pos + copied > inode->i_size) {
2315 i_size_write(inode, pos + copied);
2316 i_size_changed = true;
2317 }
2318
2319 folio_unlock(folio);
2320 folio_put(folio);
2321
2322 if (old_size < pos)
2323 pagecache_isize_extended(inode, old_size, pos);
2324 /*
2325 * Don't mark the inode dirty under page lock. First, it unnecessarily
2326 * makes the holding time of page lock longer. Second, it forces lock
2327 * ordering of page lock and transaction start for journaling
2328 * filesystems.
2329 */
2330 if (i_size_changed)
2331 mark_inode_dirty(inode);
2332 return copied;
2333 }
2334 EXPORT_SYMBOL(generic_write_end);
2335
2336 /*
2337 * block_is_partially_uptodate checks whether buffers within a folio are
2338 * uptodate or not.
2339 *
2340 * Returns true if all buffers which correspond to the specified part
2341 * of the folio are uptodate.
2342 */
block_is_partially_uptodate(struct folio * folio,size_t from,size_t count)2343 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2344 {
2345 unsigned block_start, block_end, blocksize;
2346 unsigned to;
2347 struct buffer_head *bh, *head;
2348 bool ret = true;
2349
2350 head = folio_buffers(folio);
2351 if (!head)
2352 return false;
2353 blocksize = head->b_size;
2354 to = min(folio_size(folio) - from, count);
2355 to = from + to;
2356 if (from < blocksize && to > folio_size(folio) - blocksize)
2357 return false;
2358
2359 bh = head;
2360 block_start = 0;
2361 do {
2362 block_end = block_start + blocksize;
2363 if (block_end > from && block_start < to) {
2364 if (!buffer_uptodate(bh)) {
2365 ret = false;
2366 break;
2367 }
2368 if (block_end >= to)
2369 break;
2370 }
2371 block_start = block_end;
2372 bh = bh->b_this_page;
2373 } while (bh != head);
2374
2375 return ret;
2376 }
2377 EXPORT_SYMBOL(block_is_partially_uptodate);
2378
2379 /*
2380 * Generic "read_folio" function for block devices that have the normal
2381 * get_block functionality. This is most of the block device filesystems.
2382 * Reads the folio asynchronously --- the unlock_buffer() and
2383 * set/clear_buffer_uptodate() functions propagate buffer state into the
2384 * folio once IO has completed.
2385 */
block_read_full_folio(struct folio * folio,get_block_t * get_block)2386 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2387 {
2388 struct inode *inode = folio->mapping->host;
2389 sector_t iblock, lblock;
2390 struct buffer_head *bh, *head, *prev = NULL;
2391 size_t blocksize;
2392 int fully_mapped = 1;
2393 bool page_error = false;
2394 loff_t limit = i_size_read(inode);
2395
2396 /* This is needed for ext4. */
2397 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2398 limit = inode->i_sb->s_maxbytes;
2399
2400 head = folio_create_buffers(folio, inode, 0);
2401 blocksize = head->b_size;
2402
2403 iblock = div_u64(folio_pos(folio), blocksize);
2404 lblock = div_u64(limit + blocksize - 1, blocksize);
2405 bh = head;
2406
2407 do {
2408 if (buffer_uptodate(bh))
2409 continue;
2410
2411 if (!buffer_mapped(bh)) {
2412 int err = 0;
2413
2414 fully_mapped = 0;
2415 if (iblock < lblock) {
2416 WARN_ON(bh->b_size != blocksize);
2417 err = get_block(inode, iblock, bh, 0);
2418 if (err)
2419 page_error = true;
2420 }
2421 if (!buffer_mapped(bh)) {
2422 folio_zero_range(folio, bh_offset(bh),
2423 blocksize);
2424 if (!err)
2425 set_buffer_uptodate(bh);
2426 continue;
2427 }
2428 /*
2429 * get_block() might have updated the buffer
2430 * synchronously
2431 */
2432 if (buffer_uptodate(bh))
2433 continue;
2434 }
2435
2436 lock_buffer(bh);
2437 if (buffer_uptodate(bh)) {
2438 unlock_buffer(bh);
2439 continue;
2440 }
2441
2442 mark_buffer_async_read(bh);
2443 if (prev)
2444 submit_bh(REQ_OP_READ, prev);
2445 prev = bh;
2446 } while (iblock++, (bh = bh->b_this_page) != head);
2447
2448 if (fully_mapped)
2449 folio_set_mappedtodisk(folio);
2450
2451 /*
2452 * All buffers are uptodate or get_block() returned an error
2453 * when trying to map them - we must finish the read because
2454 * end_buffer_async_read() will never be called on any buffer
2455 * in this folio.
2456 */
2457 if (prev)
2458 submit_bh(REQ_OP_READ, prev);
2459 else
2460 folio_end_read(folio, !page_error);
2461
2462 return 0;
2463 }
2464 EXPORT_SYMBOL(block_read_full_folio);
2465
2466 /* utility function for filesystems that need to do work on expanding
2467 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2468 * deal with the hole.
2469 */
generic_cont_expand_simple(struct inode * inode,loff_t size)2470 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2471 {
2472 struct address_space *mapping = inode->i_mapping;
2473 const struct address_space_operations *aops = mapping->a_ops;
2474 struct folio *folio;
2475 void *fsdata = NULL;
2476 int err;
2477
2478 err = inode_newsize_ok(inode, size);
2479 if (err)
2480 goto out;
2481
2482 err = aops->write_begin(NULL, mapping, size, 0, &folio, &fsdata);
2483 if (err)
2484 goto out;
2485
2486 err = aops->write_end(NULL, mapping, size, 0, 0, folio, fsdata);
2487 BUG_ON(err > 0);
2488
2489 out:
2490 return err;
2491 }
2492 EXPORT_SYMBOL(generic_cont_expand_simple);
2493
cont_expand_zero(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,loff_t * bytes)2494 static int cont_expand_zero(const struct kiocb *iocb,
2495 struct address_space *mapping,
2496 loff_t pos, loff_t *bytes)
2497 {
2498 struct inode *inode = mapping->host;
2499 const struct address_space_operations *aops = mapping->a_ops;
2500 unsigned int blocksize = i_blocksize(inode);
2501 struct folio *folio;
2502 void *fsdata = NULL;
2503 pgoff_t index, curidx;
2504 loff_t curpos;
2505 unsigned zerofrom, offset, len;
2506 int err = 0;
2507
2508 index = pos >> PAGE_SHIFT;
2509 offset = pos & ~PAGE_MASK;
2510
2511 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2512 zerofrom = curpos & ~PAGE_MASK;
2513 if (zerofrom & (blocksize-1)) {
2514 *bytes |= (blocksize-1);
2515 (*bytes)++;
2516 }
2517 len = PAGE_SIZE - zerofrom;
2518
2519 err = aops->write_begin(iocb, mapping, curpos, len,
2520 &folio, &fsdata);
2521 if (err)
2522 goto out;
2523 folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2524 err = aops->write_end(iocb, mapping, curpos, len, len,
2525 folio, fsdata);
2526 if (err < 0)
2527 goto out;
2528 BUG_ON(err != len);
2529 err = 0;
2530
2531 balance_dirty_pages_ratelimited(mapping);
2532
2533 if (fatal_signal_pending(current)) {
2534 err = -EINTR;
2535 goto out;
2536 }
2537 }
2538
2539 /* page covers the boundary, find the boundary offset */
2540 if (index == curidx) {
2541 zerofrom = curpos & ~PAGE_MASK;
2542 /* if we will expand the thing last block will be filled */
2543 if (offset <= zerofrom) {
2544 goto out;
2545 }
2546 if (zerofrom & (blocksize-1)) {
2547 *bytes |= (blocksize-1);
2548 (*bytes)++;
2549 }
2550 len = offset - zerofrom;
2551
2552 err = aops->write_begin(iocb, mapping, curpos, len,
2553 &folio, &fsdata);
2554 if (err)
2555 goto out;
2556 folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2557 err = aops->write_end(iocb, mapping, curpos, len, len,
2558 folio, fsdata);
2559 if (err < 0)
2560 goto out;
2561 BUG_ON(err != len);
2562 err = 0;
2563 }
2564 out:
2565 return err;
2566 }
2567
2568 /*
2569 * For moronic filesystems that do not allow holes in file.
2570 * We may have to extend the file.
2571 */
cont_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata,get_block_t * get_block,loff_t * bytes)2572 int cont_write_begin(const struct kiocb *iocb, struct address_space *mapping,
2573 loff_t pos, unsigned len, struct folio **foliop,
2574 void **fsdata, get_block_t *get_block, loff_t *bytes)
2575 {
2576 struct inode *inode = mapping->host;
2577 unsigned int blocksize = i_blocksize(inode);
2578 unsigned int zerofrom;
2579 int err;
2580
2581 err = cont_expand_zero(iocb, mapping, pos, bytes);
2582 if (err)
2583 return err;
2584
2585 zerofrom = *bytes & ~PAGE_MASK;
2586 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2587 *bytes |= (blocksize-1);
2588 (*bytes)++;
2589 }
2590
2591 return block_write_begin(mapping, pos, len, foliop, get_block);
2592 }
2593 EXPORT_SYMBOL(cont_write_begin);
2594
2595 /*
2596 * block_page_mkwrite() is not allowed to change the file size as it gets
2597 * called from a page fault handler when a page is first dirtied. Hence we must
2598 * be careful to check for EOF conditions here. We set the page up correctly
2599 * for a written page which means we get ENOSPC checking when writing into
2600 * holes and correct delalloc and unwritten extent mapping on filesystems that
2601 * support these features.
2602 *
2603 * We are not allowed to take the i_rwsem here so we have to play games to
2604 * protect against truncate races as the page could now be beyond EOF. Because
2605 * truncate writes the inode size before removing pages, once we have the
2606 * page lock we can determine safely if the page is beyond EOF. If it is not
2607 * beyond EOF, then the page is guaranteed safe against truncation until we
2608 * unlock the page.
2609 *
2610 * Direct callers of this function should protect against filesystem freezing
2611 * using sb_start_pagefault() - sb_end_pagefault() functions.
2612 */
block_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf,get_block_t get_block)2613 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2614 get_block_t get_block)
2615 {
2616 struct folio *folio = page_folio(vmf->page);
2617 struct inode *inode = file_inode(vma->vm_file);
2618 unsigned long end;
2619 loff_t size;
2620 int ret;
2621
2622 folio_lock(folio);
2623 size = i_size_read(inode);
2624 if ((folio->mapping != inode->i_mapping) ||
2625 (folio_pos(folio) >= size)) {
2626 /* We overload EFAULT to mean page got truncated */
2627 ret = -EFAULT;
2628 goto out_unlock;
2629 }
2630
2631 end = folio_size(folio);
2632 /* folio is wholly or partially inside EOF */
2633 if (folio_pos(folio) + end > size)
2634 end = size - folio_pos(folio);
2635
2636 ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2637 if (unlikely(ret))
2638 goto out_unlock;
2639
2640 block_commit_write(folio, 0, end);
2641
2642 folio_mark_dirty(folio);
2643 folio_wait_stable(folio);
2644 return 0;
2645 out_unlock:
2646 folio_unlock(folio);
2647 return ret;
2648 }
2649 EXPORT_SYMBOL(block_page_mkwrite);
2650
block_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2651 int block_truncate_page(struct address_space *mapping,
2652 loff_t from, get_block_t *get_block)
2653 {
2654 pgoff_t index = from >> PAGE_SHIFT;
2655 unsigned blocksize;
2656 sector_t iblock;
2657 size_t offset, length, pos;
2658 struct inode *inode = mapping->host;
2659 struct folio *folio;
2660 struct buffer_head *bh;
2661 int err = 0;
2662
2663 blocksize = i_blocksize(inode);
2664 length = from & (blocksize - 1);
2665
2666 /* Block boundary? Nothing to do */
2667 if (!length)
2668 return 0;
2669
2670 length = blocksize - length;
2671 iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2672
2673 folio = filemap_grab_folio(mapping, index);
2674 if (IS_ERR(folio))
2675 return PTR_ERR(folio);
2676
2677 bh = folio_buffers(folio);
2678 if (!bh)
2679 bh = create_empty_buffers(folio, blocksize, 0);
2680
2681 /* Find the buffer that contains "offset" */
2682 offset = offset_in_folio(folio, from);
2683 pos = blocksize;
2684 while (offset >= pos) {
2685 bh = bh->b_this_page;
2686 iblock++;
2687 pos += blocksize;
2688 }
2689
2690 if (!buffer_mapped(bh)) {
2691 WARN_ON(bh->b_size != blocksize);
2692 err = get_block(inode, iblock, bh, 0);
2693 if (err)
2694 goto unlock;
2695 /* unmapped? It's a hole - nothing to do */
2696 if (!buffer_mapped(bh))
2697 goto unlock;
2698 }
2699
2700 /* Ok, it's mapped. Make sure it's up-to-date */
2701 if (folio_test_uptodate(folio))
2702 set_buffer_uptodate(bh);
2703
2704 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2705 err = bh_read(bh, 0);
2706 /* Uhhuh. Read error. Complain and punt. */
2707 if (err < 0)
2708 goto unlock;
2709 }
2710
2711 folio_zero_range(folio, offset, length);
2712 mark_buffer_dirty(bh);
2713
2714 unlock:
2715 folio_unlock(folio);
2716 folio_put(folio);
2717
2718 return err;
2719 }
2720 EXPORT_SYMBOL(block_truncate_page);
2721
2722 /*
2723 * The generic write folio function for buffer-backed address_spaces
2724 */
block_write_full_folio(struct folio * folio,struct writeback_control * wbc,void * get_block)2725 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2726 void *get_block)
2727 {
2728 struct inode * const inode = folio->mapping->host;
2729 loff_t i_size = i_size_read(inode);
2730
2731 /* Is the folio fully inside i_size? */
2732 if (folio_next_pos(folio) <= i_size)
2733 return __block_write_full_folio(inode, folio, get_block, wbc);
2734
2735 /* Is the folio fully outside i_size? (truncate in progress) */
2736 if (folio_pos(folio) >= i_size) {
2737 folio_unlock(folio);
2738 return 0; /* don't care */
2739 }
2740
2741 /*
2742 * The folio straddles i_size. It must be zeroed out on each and every
2743 * writeback invocation because it may be mmapped. "A file is mapped
2744 * in multiples of the page size. For a file that is not a multiple of
2745 * the page size, the remaining memory is zeroed when mapped, and
2746 * writes to that region are not written out to the file."
2747 */
2748 folio_zero_segment(folio, offset_in_folio(folio, i_size),
2749 folio_size(folio));
2750 return __block_write_full_folio(inode, folio, get_block, wbc);
2751 }
2752
generic_block_bmap(struct address_space * mapping,sector_t block,get_block_t * get_block)2753 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2754 get_block_t *get_block)
2755 {
2756 struct inode *inode = mapping->host;
2757 struct buffer_head tmp = {
2758 .b_size = i_blocksize(inode),
2759 };
2760
2761 get_block(inode, block, &tmp, 0);
2762 return tmp.b_blocknr;
2763 }
2764 EXPORT_SYMBOL(generic_block_bmap);
2765
end_bio_bh_io_sync(struct bio * bio)2766 static void end_bio_bh_io_sync(struct bio *bio)
2767 {
2768 struct buffer_head *bh = bio->bi_private;
2769
2770 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2771 set_bit(BH_Quiet, &bh->b_state);
2772
2773 bh->b_end_io(bh, !bio->bi_status);
2774 bio_put(bio);
2775 }
2776
submit_bh_wbc(blk_opf_t opf,struct buffer_head * bh,enum rw_hint write_hint,struct writeback_control * wbc)2777 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2778 enum rw_hint write_hint,
2779 struct writeback_control *wbc)
2780 {
2781 const enum req_op op = opf & REQ_OP_MASK;
2782 struct bio *bio;
2783
2784 BUG_ON(!buffer_locked(bh));
2785 BUG_ON(!buffer_mapped(bh));
2786 BUG_ON(!bh->b_end_io);
2787 BUG_ON(buffer_delay(bh));
2788 BUG_ON(buffer_unwritten(bh));
2789
2790 /*
2791 * Only clear out a write error when rewriting
2792 */
2793 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2794 clear_buffer_write_io_error(bh);
2795
2796 if (buffer_meta(bh))
2797 opf |= REQ_META;
2798 if (buffer_prio(bh))
2799 opf |= REQ_PRIO;
2800
2801 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2802
2803 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2804
2805 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2806 bio->bi_write_hint = write_hint;
2807
2808 bio_add_folio_nofail(bio, bh->b_folio, bh->b_size, bh_offset(bh));
2809
2810 bio->bi_end_io = end_bio_bh_io_sync;
2811 bio->bi_private = bh;
2812
2813 /* Take care of bh's that straddle the end of the device */
2814 guard_bio_eod(bio);
2815
2816 if (wbc) {
2817 wbc_init_bio(wbc, bio);
2818 wbc_account_cgroup_owner(wbc, bh->b_folio, bh->b_size);
2819 }
2820
2821 blk_crypto_submit_bio(bio);
2822 }
2823
submit_bh(blk_opf_t opf,struct buffer_head * bh)2824 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2825 {
2826 submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
2827 }
2828 EXPORT_SYMBOL(submit_bh);
2829
write_dirty_buffer(struct buffer_head * bh,blk_opf_t op_flags)2830 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2831 {
2832 lock_buffer(bh);
2833 if (!test_clear_buffer_dirty(bh)) {
2834 unlock_buffer(bh);
2835 return;
2836 }
2837 bh->b_end_io = end_buffer_write_sync;
2838 get_bh(bh);
2839 submit_bh(REQ_OP_WRITE | op_flags, bh);
2840 }
2841 EXPORT_SYMBOL(write_dirty_buffer);
2842
2843 /*
2844 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2845 * and then start new I/O and then wait upon it. The caller must have a ref on
2846 * the buffer_head.
2847 */
__sync_dirty_buffer(struct buffer_head * bh,blk_opf_t op_flags)2848 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2849 {
2850 WARN_ON(atomic_read(&bh->b_count) < 1);
2851 lock_buffer(bh);
2852 if (test_clear_buffer_dirty(bh)) {
2853 /*
2854 * The bh should be mapped, but it might not be if the
2855 * device was hot-removed. Not much we can do but fail the I/O.
2856 */
2857 if (!buffer_mapped(bh)) {
2858 unlock_buffer(bh);
2859 return -EIO;
2860 }
2861
2862 get_bh(bh);
2863 bh->b_end_io = end_buffer_write_sync;
2864 submit_bh(REQ_OP_WRITE | op_flags, bh);
2865 wait_on_buffer(bh);
2866 if (!buffer_uptodate(bh))
2867 return -EIO;
2868 } else {
2869 unlock_buffer(bh);
2870 }
2871 return 0;
2872 }
2873 EXPORT_SYMBOL(__sync_dirty_buffer);
2874
sync_dirty_buffer(struct buffer_head * bh)2875 int sync_dirty_buffer(struct buffer_head *bh)
2876 {
2877 return __sync_dirty_buffer(bh, REQ_SYNC);
2878 }
2879 EXPORT_SYMBOL(sync_dirty_buffer);
2880
buffer_busy(struct buffer_head * bh)2881 static inline int buffer_busy(struct buffer_head *bh)
2882 {
2883 return atomic_read(&bh->b_count) |
2884 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2885 }
2886
2887 static bool
drop_buffers(struct folio * folio,struct buffer_head ** buffers_to_free)2888 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2889 {
2890 struct buffer_head *head = folio_buffers(folio);
2891 struct buffer_head *bh;
2892
2893 bh = head;
2894 do {
2895 if (buffer_busy(bh))
2896 goto failed;
2897 bh = bh->b_this_page;
2898 } while (bh != head);
2899
2900 do {
2901 struct buffer_head *next = bh->b_this_page;
2902
2903 if (bh->b_assoc_map)
2904 __remove_assoc_queue(bh);
2905 bh = next;
2906 } while (bh != head);
2907 *buffers_to_free = head;
2908 folio_detach_private(folio);
2909 return true;
2910 failed:
2911 return false;
2912 }
2913
2914 /**
2915 * try_to_free_buffers - Release buffers attached to this folio.
2916 * @folio: The folio.
2917 *
2918 * If any buffers are in use (dirty, under writeback, elevated refcount),
2919 * no buffers will be freed.
2920 *
2921 * If the folio is dirty but all the buffers are clean then we need to
2922 * be sure to mark the folio clean as well. This is because the folio
2923 * may be against a block device, and a later reattachment of buffers
2924 * to a dirty folio will set *all* buffers dirty. Which would corrupt
2925 * filesystem data on the same device.
2926 *
2927 * The same applies to regular filesystem folios: if all the buffers are
2928 * clean then we set the folio clean and proceed. To do that, we require
2929 * total exclusion from block_dirty_folio(). That is obtained with
2930 * i_private_lock.
2931 *
2932 * Exclusion against try_to_free_buffers may be obtained by either
2933 * locking the folio or by holding its mapping's i_private_lock.
2934 *
2935 * Context: Process context. @folio must be locked. Will not sleep.
2936 * Return: true if all buffers attached to this folio were freed.
2937 */
try_to_free_buffers(struct folio * folio)2938 bool try_to_free_buffers(struct folio *folio)
2939 {
2940 struct address_space * const mapping = folio->mapping;
2941 struct buffer_head *buffers_to_free = NULL;
2942 bool ret = 0;
2943
2944 BUG_ON(!folio_test_locked(folio));
2945 if (folio_test_writeback(folio))
2946 return false;
2947
2948 /* Misconfigured folio check */
2949 if (WARN_ON_ONCE(!folio_buffers(folio)))
2950 return true;
2951
2952 if (mapping == NULL) { /* can this still happen? */
2953 ret = drop_buffers(folio, &buffers_to_free);
2954 goto out;
2955 }
2956
2957 spin_lock(&mapping->i_private_lock);
2958 ret = drop_buffers(folio, &buffers_to_free);
2959
2960 /*
2961 * If the filesystem writes its buffers by hand (eg ext3)
2962 * then we can have clean buffers against a dirty folio. We
2963 * clean the folio here; otherwise the VM will never notice
2964 * that the filesystem did any IO at all.
2965 *
2966 * Also, during truncate, discard_buffer will have marked all
2967 * the folio's buffers clean. We discover that here and clean
2968 * the folio also.
2969 *
2970 * i_private_lock must be held over this entire operation in order
2971 * to synchronise against block_dirty_folio and prevent the
2972 * dirty bit from being lost.
2973 */
2974 if (ret)
2975 folio_cancel_dirty(folio);
2976 spin_unlock(&mapping->i_private_lock);
2977 out:
2978 if (buffers_to_free) {
2979 struct buffer_head *bh = buffers_to_free;
2980
2981 do {
2982 struct buffer_head *next = bh->b_this_page;
2983 free_buffer_head(bh);
2984 bh = next;
2985 } while (bh != buffers_to_free);
2986 }
2987 return ret;
2988 }
2989 EXPORT_SYMBOL(try_to_free_buffers);
2990
2991 /*
2992 * Buffer-head allocation
2993 */
2994 static struct kmem_cache *bh_cachep __ro_after_init;
2995
2996 /*
2997 * Once the number of bh's in the machine exceeds this level, we start
2998 * stripping them in writeback.
2999 */
3000 static unsigned long max_buffer_heads __ro_after_init;
3001
3002 int buffer_heads_over_limit;
3003
3004 struct bh_accounting {
3005 int nr; /* Number of live bh's */
3006 int ratelimit; /* Limit cacheline bouncing */
3007 };
3008
3009 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3010
recalc_bh_state(void)3011 static void recalc_bh_state(void)
3012 {
3013 int i;
3014 int tot = 0;
3015
3016 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3017 return;
3018 __this_cpu_write(bh_accounting.ratelimit, 0);
3019 for_each_online_cpu(i)
3020 tot += per_cpu(bh_accounting, i).nr;
3021 buffer_heads_over_limit = (tot > max_buffer_heads);
3022 }
3023
alloc_buffer_head(gfp_t gfp_flags)3024 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3025 {
3026 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3027 if (ret) {
3028 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3029 spin_lock_init(&ret->b_uptodate_lock);
3030 preempt_disable();
3031 __this_cpu_inc(bh_accounting.nr);
3032 recalc_bh_state();
3033 preempt_enable();
3034 }
3035 return ret;
3036 }
3037 EXPORT_SYMBOL(alloc_buffer_head);
3038
free_buffer_head(struct buffer_head * bh)3039 void free_buffer_head(struct buffer_head *bh)
3040 {
3041 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3042 kmem_cache_free(bh_cachep, bh);
3043 preempt_disable();
3044 __this_cpu_dec(bh_accounting.nr);
3045 recalc_bh_state();
3046 preempt_enable();
3047 }
3048 EXPORT_SYMBOL(free_buffer_head);
3049
buffer_exit_cpu_dead(unsigned int cpu)3050 static int buffer_exit_cpu_dead(unsigned int cpu)
3051 {
3052 int i;
3053 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3054
3055 for (i = 0; i < BH_LRU_SIZE; i++) {
3056 brelse(b->bhs[i]);
3057 b->bhs[i] = NULL;
3058 }
3059 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3060 per_cpu(bh_accounting, cpu).nr = 0;
3061 return 0;
3062 }
3063
3064 /**
3065 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3066 * @bh: struct buffer_head
3067 *
3068 * Return true if the buffer is up-to-date and false,
3069 * with the buffer locked, if not.
3070 */
bh_uptodate_or_lock(struct buffer_head * bh)3071 int bh_uptodate_or_lock(struct buffer_head *bh)
3072 {
3073 if (!buffer_uptodate(bh)) {
3074 lock_buffer(bh);
3075 if (!buffer_uptodate(bh))
3076 return 0;
3077 unlock_buffer(bh);
3078 }
3079 return 1;
3080 }
3081 EXPORT_SYMBOL(bh_uptodate_or_lock);
3082
3083 /**
3084 * __bh_read - Submit read for a locked buffer
3085 * @bh: struct buffer_head
3086 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3087 * @wait: wait until reading finish
3088 *
3089 * Returns zero on success or don't wait, and -EIO on error.
3090 */
__bh_read(struct buffer_head * bh,blk_opf_t op_flags,bool wait)3091 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3092 {
3093 int ret = 0;
3094
3095 BUG_ON(!buffer_locked(bh));
3096
3097 get_bh(bh);
3098 bh->b_end_io = end_buffer_read_sync;
3099 submit_bh(REQ_OP_READ | op_flags, bh);
3100 if (wait) {
3101 wait_on_buffer(bh);
3102 if (!buffer_uptodate(bh))
3103 ret = -EIO;
3104 }
3105 return ret;
3106 }
3107 EXPORT_SYMBOL(__bh_read);
3108
3109 /**
3110 * __bh_read_batch - Submit read for a batch of unlocked buffers
3111 * @nr: entry number of the buffer batch
3112 * @bhs: a batch of struct buffer_head
3113 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3114 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3115 * buffer that cannot lock.
3116 *
3117 * Returns zero on success or don't wait, and -EIO on error.
3118 */
__bh_read_batch(int nr,struct buffer_head * bhs[],blk_opf_t op_flags,bool force_lock)3119 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3120 blk_opf_t op_flags, bool force_lock)
3121 {
3122 int i;
3123
3124 for (i = 0; i < nr; i++) {
3125 struct buffer_head *bh = bhs[i];
3126
3127 if (buffer_uptodate(bh))
3128 continue;
3129
3130 if (force_lock)
3131 lock_buffer(bh);
3132 else
3133 if (!trylock_buffer(bh))
3134 continue;
3135
3136 if (buffer_uptodate(bh)) {
3137 unlock_buffer(bh);
3138 continue;
3139 }
3140
3141 bh->b_end_io = end_buffer_read_sync;
3142 get_bh(bh);
3143 submit_bh(REQ_OP_READ | op_flags, bh);
3144 }
3145 }
3146 EXPORT_SYMBOL(__bh_read_batch);
3147
buffer_init(void)3148 void __init buffer_init(void)
3149 {
3150 unsigned long nrpages;
3151 int ret;
3152
3153 bh_cachep = KMEM_CACHE(buffer_head,
3154 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
3155 /*
3156 * Limit the bh occupancy to 10% of ZONE_NORMAL
3157 */
3158 nrpages = (nr_free_buffer_pages() * 10) / 100;
3159 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3160 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3161 NULL, buffer_exit_cpu_dead);
3162 WARN_ON(ret < 0);
3163 }
3164