1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Randomized tests for eBPF longest-prefix-match maps
4 *
5 * This program runs randomized tests against the lpm-bpf-map. It implements a
6 * "Trivial Longest Prefix Match" (tlpm) based on simple, linear, singly linked
7 * lists. The implementation should be pretty straightforward.
8 *
9 * Based on tlpm, this inserts randomized data into bpf-lpm-maps and verifies
10 * the trie-based bpf-map implementation behaves the same way as tlpm.
11 */
12
13 #include <assert.h>
14 #include <errno.h>
15 #include <inttypes.h>
16 #include <linux/bpf.h>
17 #include <pthread.h>
18 #include <stdio.h>
19 #include <stdlib.h>
20 #include <string.h>
21 #include <time.h>
22 #include <unistd.h>
23 #include <arpa/inet.h>
24 #include <sys/time.h>
25
26 #include <bpf/bpf.h>
27
28 #include "bpf_util.h"
29
30 struct tlpm_node {
31 struct tlpm_node *next;
32 size_t n_bits;
33 uint8_t key[];
34 };
35
36 static struct tlpm_node *tlpm_match(struct tlpm_node *list,
37 const uint8_t *key,
38 size_t n_bits);
39
tlpm_add(struct tlpm_node * list,const uint8_t * key,size_t n_bits)40 static struct tlpm_node *tlpm_add(struct tlpm_node *list,
41 const uint8_t *key,
42 size_t n_bits)
43 {
44 struct tlpm_node *node;
45 size_t n;
46
47 n = (n_bits + 7) / 8;
48
49 /* 'overwrite' an equivalent entry if one already exists */
50 node = tlpm_match(list, key, n_bits);
51 if (node && node->n_bits == n_bits) {
52 memcpy(node->key, key, n);
53 return list;
54 }
55
56 /* add new entry with @key/@n_bits to @list and return new head */
57
58 node = malloc(sizeof(*node) + n);
59 assert(node);
60
61 node->next = list;
62 node->n_bits = n_bits;
63 memcpy(node->key, key, n);
64
65 return node;
66 }
67
tlpm_clear(struct tlpm_node * list)68 static void tlpm_clear(struct tlpm_node *list)
69 {
70 struct tlpm_node *node;
71
72 /* free all entries in @list */
73
74 while ((node = list)) {
75 list = list->next;
76 free(node);
77 }
78 }
79
tlpm_match(struct tlpm_node * list,const uint8_t * key,size_t n_bits)80 static struct tlpm_node *tlpm_match(struct tlpm_node *list,
81 const uint8_t *key,
82 size_t n_bits)
83 {
84 struct tlpm_node *best = NULL;
85 size_t i;
86
87 /* Perform longest prefix-match on @key/@n_bits. That is, iterate all
88 * entries and match each prefix against @key. Remember the "best"
89 * entry we find (i.e., the longest prefix that matches) and return it
90 * to the caller when done.
91 */
92
93 for ( ; list; list = list->next) {
94 for (i = 0; i < n_bits && i < list->n_bits; ++i) {
95 if ((key[i / 8] & (1 << (7 - i % 8))) !=
96 (list->key[i / 8] & (1 << (7 - i % 8))))
97 break;
98 }
99
100 if (i >= list->n_bits) {
101 if (!best || i > best->n_bits)
102 best = list;
103 }
104 }
105
106 return best;
107 }
108
tlpm_delete(struct tlpm_node * list,const uint8_t * key,size_t n_bits)109 static struct tlpm_node *tlpm_delete(struct tlpm_node *list,
110 const uint8_t *key,
111 size_t n_bits)
112 {
113 struct tlpm_node *best = tlpm_match(list, key, n_bits);
114 struct tlpm_node *node;
115
116 if (!best || best->n_bits != n_bits)
117 return list;
118
119 if (best == list) {
120 node = best->next;
121 free(best);
122 return node;
123 }
124
125 for (node = list; node; node = node->next) {
126 if (node->next == best) {
127 node->next = best->next;
128 free(best);
129 return list;
130 }
131 }
132 /* should never get here */
133 assert(0);
134 return list;
135 }
136
test_lpm_basic(void)137 static void test_lpm_basic(void)
138 {
139 struct tlpm_node *list = NULL, *t1, *t2;
140
141 /* very basic, static tests to verify tlpm works as expected */
142
143 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8));
144
145 t1 = list = tlpm_add(list, (uint8_t[]){ 0xff }, 8);
146 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
147 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
148 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0x00 }, 16));
149 assert(!tlpm_match(list, (uint8_t[]){ 0x7f }, 8));
150 assert(!tlpm_match(list, (uint8_t[]){ 0xfe }, 8));
151 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 7));
152
153 t2 = list = tlpm_add(list, (uint8_t[]){ 0xff, 0xff }, 16);
154 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
155 assert(t2 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
156 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 15));
157 assert(!tlpm_match(list, (uint8_t[]){ 0x7f, 0xff }, 16));
158
159 list = tlpm_delete(list, (uint8_t[]){ 0xff, 0xff }, 16);
160 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
161 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
162
163 list = tlpm_delete(list, (uint8_t[]){ 0xff }, 8);
164 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8));
165
166 tlpm_clear(list);
167 }
168
test_lpm_order(void)169 static void test_lpm_order(void)
170 {
171 struct tlpm_node *t1, *t2, *l1 = NULL, *l2 = NULL;
172 size_t i, j;
173
174 /* Verify the tlpm implementation works correctly regardless of the
175 * order of entries. Insert a random set of entries into @l1, and copy
176 * the same data in reverse order into @l2. Then verify a lookup of
177 * random keys will yield the same result in both sets.
178 */
179
180 for (i = 0; i < (1 << 12); ++i)
181 l1 = tlpm_add(l1, (uint8_t[]){
182 rand() % 0xff,
183 rand() % 0xff,
184 }, rand() % 16 + 1);
185
186 for (t1 = l1; t1; t1 = t1->next)
187 l2 = tlpm_add(l2, t1->key, t1->n_bits);
188
189 for (i = 0; i < (1 << 8); ++i) {
190 uint8_t key[] = { rand() % 0xff, rand() % 0xff };
191
192 t1 = tlpm_match(l1, key, 16);
193 t2 = tlpm_match(l2, key, 16);
194
195 assert(!t1 == !t2);
196 if (t1) {
197 assert(t1->n_bits == t2->n_bits);
198 for (j = 0; j < t1->n_bits; ++j)
199 assert((t1->key[j / 8] & (1 << (7 - j % 8))) ==
200 (t2->key[j / 8] & (1 << (7 - j % 8))));
201 }
202 }
203
204 tlpm_clear(l1);
205 tlpm_clear(l2);
206 }
207
test_lpm_map(int keysize)208 static void test_lpm_map(int keysize)
209 {
210 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC);
211 volatile size_t n_matches, n_matches_after_delete;
212 size_t i, j, n_nodes, n_lookups;
213 struct tlpm_node *t, *list = NULL;
214 struct bpf_lpm_trie_key_u8 *key;
215 uint8_t *data, *value;
216 int r, map;
217
218 /* Compare behavior of tlpm vs. bpf-lpm. Create a randomized set of
219 * prefixes and insert it into both tlpm and bpf-lpm. Then run some
220 * randomized lookups and verify both maps return the same result.
221 */
222
223 n_matches = 0;
224 n_matches_after_delete = 0;
225 n_nodes = 1 << 8;
226 n_lookups = 1 << 16;
227
228 data = alloca(keysize);
229 memset(data, 0, keysize);
230
231 value = alloca(keysize + 1);
232 memset(value, 0, keysize + 1);
233
234 key = alloca(sizeof(*key) + keysize);
235 memset(key, 0, sizeof(*key) + keysize);
236
237 map = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL,
238 sizeof(*key) + keysize,
239 keysize + 1,
240 4096,
241 &opts);
242 assert(map >= 0);
243
244 for (i = 0; i < n_nodes; ++i) {
245 for (j = 0; j < keysize; ++j)
246 value[j] = rand() & 0xff;
247 value[keysize] = rand() % (8 * keysize + 1);
248
249 list = tlpm_add(list, value, value[keysize]);
250
251 key->prefixlen = value[keysize];
252 memcpy(key->data, value, keysize);
253 r = bpf_map_update_elem(map, key, value, 0);
254 assert(!r);
255 }
256
257 for (i = 0; i < n_lookups; ++i) {
258 for (j = 0; j < keysize; ++j)
259 data[j] = rand() & 0xff;
260
261 t = tlpm_match(list, data, 8 * keysize);
262
263 key->prefixlen = 8 * keysize;
264 memcpy(key->data, data, keysize);
265 r = bpf_map_lookup_elem(map, key, value);
266 assert(!r || errno == ENOENT);
267 assert(!t == !!r);
268
269 if (t) {
270 ++n_matches;
271 assert(t->n_bits == value[keysize]);
272 for (j = 0; j < t->n_bits; ++j)
273 assert((t->key[j / 8] & (1 << (7 - j % 8))) ==
274 (value[j / 8] & (1 << (7 - j % 8))));
275 }
276 }
277
278 /* Remove the first half of the elements in the tlpm and the
279 * corresponding nodes from the bpf-lpm. Then run the same
280 * large number of random lookups in both and make sure they match.
281 * Note: we need to count the number of nodes actually inserted
282 * since there may have been duplicates.
283 */
284 for (i = 0, t = list; t; i++, t = t->next)
285 ;
286 for (j = 0; j < i / 2; ++j) {
287 key->prefixlen = list->n_bits;
288 memcpy(key->data, list->key, keysize);
289 r = bpf_map_delete_elem(map, key);
290 assert(!r);
291 list = tlpm_delete(list, list->key, list->n_bits);
292 assert(list);
293 }
294 for (i = 0; i < n_lookups; ++i) {
295 for (j = 0; j < keysize; ++j)
296 data[j] = rand() & 0xff;
297
298 t = tlpm_match(list, data, 8 * keysize);
299
300 key->prefixlen = 8 * keysize;
301 memcpy(key->data, data, keysize);
302 r = bpf_map_lookup_elem(map, key, value);
303 assert(!r || errno == ENOENT);
304 assert(!t == !!r);
305
306 if (t) {
307 ++n_matches_after_delete;
308 assert(t->n_bits == value[keysize]);
309 for (j = 0; j < t->n_bits; ++j)
310 assert((t->key[j / 8] & (1 << (7 - j % 8))) ==
311 (value[j / 8] & (1 << (7 - j % 8))));
312 }
313 }
314
315 close(map);
316 tlpm_clear(list);
317
318 /* With 255 random nodes in the map, we are pretty likely to match
319 * something on every lookup. For statistics, use this:
320 *
321 * printf(" nodes: %zu\n"
322 * " lookups: %zu\n"
323 * " matches: %zu\n"
324 * "matches(delete): %zu\n",
325 * n_nodes, n_lookups, n_matches, n_matches_after_delete);
326 */
327 }
328
329 /* Test the implementation with some 'real world' examples */
330
test_lpm_ipaddr(void)331 static void test_lpm_ipaddr(void)
332 {
333 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC);
334 struct bpf_lpm_trie_key_u8 *key_ipv4;
335 struct bpf_lpm_trie_key_u8 *key_ipv6;
336 size_t key_size_ipv4;
337 size_t key_size_ipv6;
338 int map_fd_ipv4;
339 int map_fd_ipv6;
340 __u64 value;
341
342 key_size_ipv4 = sizeof(*key_ipv4) + sizeof(__u32);
343 key_size_ipv6 = sizeof(*key_ipv6) + sizeof(__u32) * 4;
344 key_ipv4 = alloca(key_size_ipv4);
345 key_ipv6 = alloca(key_size_ipv6);
346
347 map_fd_ipv4 = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL,
348 key_size_ipv4, sizeof(value),
349 100, &opts);
350 assert(map_fd_ipv4 >= 0);
351
352 map_fd_ipv6 = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL,
353 key_size_ipv6, sizeof(value),
354 100, &opts);
355 assert(map_fd_ipv6 >= 0);
356
357 /* Fill data some IPv4 and IPv6 address ranges */
358 value = 1;
359 key_ipv4->prefixlen = 16;
360 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
361 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
362
363 value = 2;
364 key_ipv4->prefixlen = 24;
365 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
366 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
367
368 value = 3;
369 key_ipv4->prefixlen = 24;
370 inet_pton(AF_INET, "192.168.128.0", key_ipv4->data);
371 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
372
373 value = 5;
374 key_ipv4->prefixlen = 24;
375 inet_pton(AF_INET, "192.168.1.0", key_ipv4->data);
376 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
377
378 value = 4;
379 key_ipv4->prefixlen = 23;
380 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
381 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
382
383 value = 0xdeadbeef;
384 key_ipv6->prefixlen = 64;
385 inet_pton(AF_INET6, "2a00:1450:4001:814::200e", key_ipv6->data);
386 assert(bpf_map_update_elem(map_fd_ipv6, key_ipv6, &value, 0) == 0);
387
388 /* Set tprefixlen to maximum for lookups */
389 key_ipv4->prefixlen = 32;
390 key_ipv6->prefixlen = 128;
391
392 /* Test some lookups that should come back with a value */
393 inet_pton(AF_INET, "192.168.128.23", key_ipv4->data);
394 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0);
395 assert(value == 3);
396
397 inet_pton(AF_INET, "192.168.0.1", key_ipv4->data);
398 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0);
399 assert(value == 2);
400
401 inet_pton(AF_INET6, "2a00:1450:4001:814::", key_ipv6->data);
402 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0);
403 assert(value == 0xdeadbeef);
404
405 inet_pton(AF_INET6, "2a00:1450:4001:814::1", key_ipv6->data);
406 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0);
407 assert(value == 0xdeadbeef);
408
409 /* Test some lookups that should not match any entry */
410 inet_pton(AF_INET, "10.0.0.1", key_ipv4->data);
411 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -ENOENT);
412
413 inet_pton(AF_INET, "11.11.11.11", key_ipv4->data);
414 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -ENOENT);
415
416 inet_pton(AF_INET6, "2a00:ffff::", key_ipv6->data);
417 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == -ENOENT);
418
419 close(map_fd_ipv4);
420 close(map_fd_ipv6);
421 }
422
test_lpm_delete(void)423 static void test_lpm_delete(void)
424 {
425 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC);
426 struct bpf_lpm_trie_key_u8 *key;
427 size_t key_size;
428 int map_fd;
429 __u64 value;
430
431 key_size = sizeof(*key) + sizeof(__u32);
432 key = alloca(key_size);
433
434 map_fd = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL,
435 key_size, sizeof(value),
436 100, &opts);
437 assert(map_fd >= 0);
438
439 /* Add nodes:
440 * 192.168.0.0/16 (1)
441 * 192.168.0.0/24 (2)
442 * 192.168.128.0/24 (3)
443 * 192.168.1.0/24 (4)
444 *
445 * (1)
446 * / \
447 * (IM) (3)
448 * / \
449 * (2) (4)
450 */
451 value = 1;
452 key->prefixlen = 16;
453 inet_pton(AF_INET, "192.168.0.0", key->data);
454 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
455
456 value = 2;
457 key->prefixlen = 24;
458 inet_pton(AF_INET, "192.168.0.0", key->data);
459 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
460
461 value = 3;
462 key->prefixlen = 24;
463 inet_pton(AF_INET, "192.168.128.0", key->data);
464 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
465
466 value = 4;
467 key->prefixlen = 24;
468 inet_pton(AF_INET, "192.168.1.0", key->data);
469 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
470
471 /* remove non-existent node */
472 key->prefixlen = 32;
473 inet_pton(AF_INET, "10.0.0.1", key->data);
474 assert(bpf_map_lookup_elem(map_fd, key, &value) == -ENOENT);
475
476 key->prefixlen = 30; // unused prefix so far
477 inet_pton(AF_INET, "192.255.0.0", key->data);
478 assert(bpf_map_delete_elem(map_fd, key) == -ENOENT);
479
480 key->prefixlen = 16; // same prefix as the root node
481 inet_pton(AF_INET, "192.255.0.0", key->data);
482 assert(bpf_map_delete_elem(map_fd, key) == -ENOENT);
483
484 /* assert initial lookup */
485 key->prefixlen = 32;
486 inet_pton(AF_INET, "192.168.0.1", key->data);
487 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
488 assert(value == 2);
489
490 /* remove leaf node */
491 key->prefixlen = 24;
492 inet_pton(AF_INET, "192.168.0.0", key->data);
493 assert(bpf_map_delete_elem(map_fd, key) == 0);
494
495 key->prefixlen = 32;
496 inet_pton(AF_INET, "192.168.0.1", key->data);
497 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
498 assert(value == 1);
499
500 /* remove leaf (and intermediary) node */
501 key->prefixlen = 24;
502 inet_pton(AF_INET, "192.168.1.0", key->data);
503 assert(bpf_map_delete_elem(map_fd, key) == 0);
504
505 key->prefixlen = 32;
506 inet_pton(AF_INET, "192.168.1.1", key->data);
507 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
508 assert(value == 1);
509
510 /* remove root node */
511 key->prefixlen = 16;
512 inet_pton(AF_INET, "192.168.0.0", key->data);
513 assert(bpf_map_delete_elem(map_fd, key) == 0);
514
515 key->prefixlen = 32;
516 inet_pton(AF_INET, "192.168.128.1", key->data);
517 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
518 assert(value == 3);
519
520 /* remove last node */
521 key->prefixlen = 24;
522 inet_pton(AF_INET, "192.168.128.0", key->data);
523 assert(bpf_map_delete_elem(map_fd, key) == 0);
524
525 key->prefixlen = 32;
526 inet_pton(AF_INET, "192.168.128.1", key->data);
527 assert(bpf_map_lookup_elem(map_fd, key, &value) == -ENOENT);
528
529 close(map_fd);
530 }
531
test_lpm_get_next_key(void)532 static void test_lpm_get_next_key(void)
533 {
534 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC);
535 struct bpf_lpm_trie_key_u8 *key_p, *next_key_p;
536 size_t key_size;
537 __u32 value = 0;
538 int map_fd;
539
540 key_size = sizeof(*key_p) + sizeof(__u32);
541 key_p = alloca(key_size);
542 next_key_p = alloca(key_size);
543
544 map_fd = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, key_size, sizeof(value), 100, &opts);
545 assert(map_fd >= 0);
546
547 /* empty tree. get_next_key should return ENOENT */
548 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == -ENOENT);
549
550 /* get and verify the first key, get the second one should fail. */
551 key_p->prefixlen = 16;
552 inet_pton(AF_INET, "192.168.0.0", key_p->data);
553 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
554
555 memset(key_p, 0, key_size);
556 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
557 assert(key_p->prefixlen == 16 && key_p->data[0] == 192 &&
558 key_p->data[1] == 168);
559
560 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT);
561
562 /* no exact matching key should get the first one in post order. */
563 key_p->prefixlen = 8;
564 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
565 assert(key_p->prefixlen == 16 && key_p->data[0] == 192 &&
566 key_p->data[1] == 168);
567
568 /* add one more element (total two) */
569 key_p->prefixlen = 24;
570 inet_pton(AF_INET, "192.168.128.0", key_p->data);
571 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
572
573 memset(key_p, 0, key_size);
574 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
575 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
576 key_p->data[1] == 168 && key_p->data[2] == 128);
577
578 memset(next_key_p, 0, key_size);
579 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
580 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
581 next_key_p->data[1] == 168);
582
583 memcpy(key_p, next_key_p, key_size);
584 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT);
585
586 /* Add one more element (total three) */
587 key_p->prefixlen = 24;
588 inet_pton(AF_INET, "192.168.0.0", key_p->data);
589 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
590
591 memset(key_p, 0, key_size);
592 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
593 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
594 key_p->data[1] == 168 && key_p->data[2] == 0);
595
596 memset(next_key_p, 0, key_size);
597 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
598 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
599 next_key_p->data[1] == 168 && next_key_p->data[2] == 128);
600
601 memcpy(key_p, next_key_p, key_size);
602 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
603 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
604 next_key_p->data[1] == 168);
605
606 memcpy(key_p, next_key_p, key_size);
607 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT);
608
609 /* Add one more element (total four) */
610 key_p->prefixlen = 24;
611 inet_pton(AF_INET, "192.168.1.0", key_p->data);
612 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
613
614 memset(key_p, 0, key_size);
615 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
616 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
617 key_p->data[1] == 168 && key_p->data[2] == 0);
618
619 memset(next_key_p, 0, key_size);
620 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
621 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
622 next_key_p->data[1] == 168 && next_key_p->data[2] == 1);
623
624 memcpy(key_p, next_key_p, key_size);
625 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
626 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
627 next_key_p->data[1] == 168 && next_key_p->data[2] == 128);
628
629 memcpy(key_p, next_key_p, key_size);
630 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
631 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
632 next_key_p->data[1] == 168);
633
634 memcpy(key_p, next_key_p, key_size);
635 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT);
636
637 /* Add one more element (total five) */
638 key_p->prefixlen = 28;
639 inet_pton(AF_INET, "192.168.1.128", key_p->data);
640 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
641
642 memset(key_p, 0, key_size);
643 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
644 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
645 key_p->data[1] == 168 && key_p->data[2] == 0);
646
647 memset(next_key_p, 0, key_size);
648 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
649 assert(next_key_p->prefixlen == 28 && next_key_p->data[0] == 192 &&
650 next_key_p->data[1] == 168 && next_key_p->data[2] == 1 &&
651 next_key_p->data[3] == 128);
652
653 memcpy(key_p, next_key_p, key_size);
654 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
655 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
656 next_key_p->data[1] == 168 && next_key_p->data[2] == 1);
657
658 memcpy(key_p, next_key_p, key_size);
659 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
660 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
661 next_key_p->data[1] == 168 && next_key_p->data[2] == 128);
662
663 memcpy(key_p, next_key_p, key_size);
664 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
665 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
666 next_key_p->data[1] == 168);
667
668 memcpy(key_p, next_key_p, key_size);
669 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT);
670
671 /* no exact matching key should return the first one in post order */
672 key_p->prefixlen = 22;
673 inet_pton(AF_INET, "192.168.1.0", key_p->data);
674 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
675 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
676 next_key_p->data[1] == 168 && next_key_p->data[2] == 0);
677
678 close(map_fd);
679 }
680
681 #define MAX_TEST_KEYS 4
682 struct lpm_mt_test_info {
683 int cmd; /* 0: update, 1: delete, 2: lookup, 3: get_next_key */
684 int iter;
685 int map_fd;
686 struct {
687 __u32 prefixlen;
688 __u32 data;
689 } key[MAX_TEST_KEYS];
690 };
691
lpm_test_command(void * arg)692 static void *lpm_test_command(void *arg)
693 {
694 int i, j, ret, iter, key_size;
695 struct lpm_mt_test_info *info = arg;
696 struct bpf_lpm_trie_key_u8 *key_p;
697
698 key_size = sizeof(*key_p) + sizeof(__u32);
699 key_p = alloca(key_size);
700 for (iter = 0; iter < info->iter; iter++)
701 for (i = 0; i < MAX_TEST_KEYS; i++) {
702 /* first half of iterations in forward order,
703 * and second half in backward order.
704 */
705 j = (iter < (info->iter / 2)) ? i : MAX_TEST_KEYS - i - 1;
706 key_p->prefixlen = info->key[j].prefixlen;
707 memcpy(key_p->data, &info->key[j].data, sizeof(__u32));
708 if (info->cmd == 0) {
709 __u32 value = j;
710 /* update must succeed */
711 assert(bpf_map_update_elem(info->map_fd, key_p, &value, 0) == 0);
712 } else if (info->cmd == 1) {
713 ret = bpf_map_delete_elem(info->map_fd, key_p);
714 assert(ret == 0 || errno == ENOENT);
715 } else if (info->cmd == 2) {
716 __u32 value;
717 ret = bpf_map_lookup_elem(info->map_fd, key_p, &value);
718 assert(ret == 0 || errno == ENOENT);
719 } else {
720 struct bpf_lpm_trie_key_u8 *next_key_p = alloca(key_size);
721 ret = bpf_map_get_next_key(info->map_fd, key_p, next_key_p);
722 assert(ret == 0 || errno == ENOENT || errno == ENOMEM);
723 }
724 }
725
726 // Pass successful exit info back to the main thread
727 pthread_exit((void *)info);
728 }
729
setup_lpm_mt_test_info(struct lpm_mt_test_info * info,int map_fd)730 static void setup_lpm_mt_test_info(struct lpm_mt_test_info *info, int map_fd)
731 {
732 info->iter = 2000;
733 info->map_fd = map_fd;
734 info->key[0].prefixlen = 16;
735 inet_pton(AF_INET, "192.168.0.0", &info->key[0].data);
736 info->key[1].prefixlen = 24;
737 inet_pton(AF_INET, "192.168.0.0", &info->key[1].data);
738 info->key[2].prefixlen = 24;
739 inet_pton(AF_INET, "192.168.128.0", &info->key[2].data);
740 info->key[3].prefixlen = 24;
741 inet_pton(AF_INET, "192.168.1.0", &info->key[3].data);
742 }
743
test_lpm_multi_thread(void)744 static void test_lpm_multi_thread(void)
745 {
746 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC);
747 struct lpm_mt_test_info info[4];
748 size_t key_size, value_size;
749 pthread_t thread_id[4];
750 int i, map_fd;
751 void *ret;
752
753 /* create a trie */
754 value_size = sizeof(__u32);
755 key_size = sizeof(struct bpf_lpm_trie_key_hdr) + value_size;
756 map_fd = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, key_size, value_size, 100, &opts);
757
758 /* create 4 threads to test update, delete, lookup and get_next_key */
759 setup_lpm_mt_test_info(&info[0], map_fd);
760 for (i = 0; i < 4; i++) {
761 if (i != 0)
762 memcpy(&info[i], &info[0], sizeof(info[i]));
763 info[i].cmd = i;
764 assert(pthread_create(&thread_id[i], NULL, &lpm_test_command, &info[i]) == 0);
765 }
766
767 for (i = 0; i < 4; i++)
768 assert(pthread_join(thread_id[i], &ret) == 0 && ret == (void *)&info[i]);
769
770 close(map_fd);
771 }
772
main(void)773 int main(void)
774 {
775 int i;
776
777 /* we want predictable, pseudo random tests */
778 srand(0xf00ba1);
779
780 /* Use libbpf 1.0 API mode */
781 libbpf_set_strict_mode(LIBBPF_STRICT_ALL);
782
783 test_lpm_basic();
784 test_lpm_order();
785
786 /* Test with 8, 16, 24, 32, ... 128 bit prefix length */
787 for (i = 1; i <= 16; ++i)
788 test_lpm_map(i);
789
790 test_lpm_ipaddr();
791 test_lpm_delete();
792 test_lpm_get_next_key();
793 test_lpm_multi_thread();
794
795 printf("test_lpm: OK\n");
796 return 0;
797 }
798