xref: /linux/arch/arm64/mm/mmu.c (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/mmu.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/cache.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/kexec.h>
16 #include <linux/libfdt.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/memblock.h>
20 #include <linux/memremap.h>
21 #include <linux/memory.h>
22 #include <linux/fs.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/vmalloc.h>
26 #include <linux/set_memory.h>
27 #include <linux/kfence.h>
28 #include <linux/pkeys.h>
29 #include <linux/mm_inline.h>
30 #include <linux/pagewalk.h>
31 #include <linux/stop_machine.h>
32 
33 #include <asm/barrier.h>
34 #include <asm/cputype.h>
35 #include <asm/fixmap.h>
36 #include <asm/kasan.h>
37 #include <asm/kernel-pgtable.h>
38 #include <asm/sections.h>
39 #include <asm/setup.h>
40 #include <linux/sizes.h>
41 #include <asm/tlb.h>
42 #include <asm/mmu_context.h>
43 #include <asm/ptdump.h>
44 #include <asm/tlbflush.h>
45 #include <asm/pgalloc.h>
46 #include <asm/kfence.h>
47 
48 #define NO_BLOCK_MAPPINGS	BIT(0)
49 #define NO_CONT_MAPPINGS	BIT(1)
50 #define NO_EXEC_MAPPINGS	BIT(2)	/* assumes FEAT_HPDS is not used */
51 
52 DEFINE_STATIC_KEY_FALSE(arm64_ptdump_lock_key);
53 
54 u64 kimage_voffset __ro_after_init;
55 EXPORT_SYMBOL(kimage_voffset);
56 
57 u32 __boot_cpu_mode[] = { BOOT_CPU_MODE_EL2, BOOT_CPU_MODE_EL1 };
58 
59 static bool rodata_is_rw __ro_after_init = true;
60 
61 /*
62  * The booting CPU updates the failed status @__early_cpu_boot_status,
63  * with MMU turned off.
64  */
65 long __section(".mmuoff.data.write") __early_cpu_boot_status;
66 
67 /*
68  * Empty_zero_page is a special page that is used for zero-initialized data
69  * and COW.
70  */
71 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
72 EXPORT_SYMBOL(empty_zero_page);
73 
74 static DEFINE_SPINLOCK(swapper_pgdir_lock);
75 static DEFINE_MUTEX(fixmap_lock);
76 
set_swapper_pgd(pgd_t * pgdp,pgd_t pgd)77 void noinstr set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
78 {
79 	pgd_t *fixmap_pgdp;
80 
81 	/*
82 	 * Don't bother with the fixmap if swapper_pg_dir is still mapped
83 	 * writable in the kernel mapping.
84 	 */
85 	if (rodata_is_rw) {
86 		WRITE_ONCE(*pgdp, pgd);
87 		dsb(ishst);
88 		isb();
89 		return;
90 	}
91 
92 	spin_lock(&swapper_pgdir_lock);
93 	fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
94 	WRITE_ONCE(*fixmap_pgdp, pgd);
95 	/*
96 	 * We need dsb(ishst) here to ensure the page-table-walker sees
97 	 * our new entry before set_p?d() returns. The fixmap's
98 	 * flush_tlb_kernel_range() via clear_fixmap() does this for us.
99 	 */
100 	pgd_clear_fixmap();
101 	spin_unlock(&swapper_pgdir_lock);
102 }
103 
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)104 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
105 			      unsigned long size, pgprot_t vma_prot)
106 {
107 	if (!pfn_is_map_memory(pfn))
108 		return pgprot_noncached(vma_prot);
109 	else if (file->f_flags & O_SYNC)
110 		return pgprot_writecombine(vma_prot);
111 	return vma_prot;
112 }
113 EXPORT_SYMBOL(phys_mem_access_prot);
114 
early_pgtable_alloc(enum pgtable_type pgtable_type)115 static phys_addr_t __init early_pgtable_alloc(enum pgtable_type pgtable_type)
116 {
117 	phys_addr_t phys;
118 
119 	phys = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0,
120 					 MEMBLOCK_ALLOC_NOLEAKTRACE);
121 	if (!phys)
122 		panic("Failed to allocate page table page\n");
123 
124 	return phys;
125 }
126 
pgattr_change_is_safe(pteval_t old,pteval_t new)127 bool pgattr_change_is_safe(pteval_t old, pteval_t new)
128 {
129 	/*
130 	 * The following mapping attributes may be updated in live
131 	 * kernel mappings without the need for break-before-make.
132 	 */
133 	pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG |
134 			PTE_SWBITS_MASK;
135 
136 	/* creating or taking down mappings is always safe */
137 	if (!pte_valid(__pte(old)) || !pte_valid(__pte(new)))
138 		return true;
139 
140 	/* A live entry's pfn should not change */
141 	if (pte_pfn(__pte(old)) != pte_pfn(__pte(new)))
142 		return false;
143 
144 	/* live contiguous mappings may not be manipulated at all */
145 	if ((old | new) & PTE_CONT)
146 		return false;
147 
148 	/* Transitioning from Non-Global to Global is unsafe */
149 	if (old & ~new & PTE_NG)
150 		return false;
151 
152 	/*
153 	 * Changing the memory type between Normal and Normal-Tagged is safe
154 	 * since Tagged is considered a permission attribute from the
155 	 * mismatched attribute aliases perspective.
156 	 */
157 	if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
158 	     (old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
159 	    ((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
160 	     (new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
161 		mask |= PTE_ATTRINDX_MASK;
162 
163 	return ((old ^ new) & ~mask) == 0;
164 }
165 
init_clear_pgtable(void * table)166 static void init_clear_pgtable(void *table)
167 {
168 	clear_page(table);
169 
170 	/* Ensure the zeroing is observed by page table walks. */
171 	dsb(ishst);
172 }
173 
init_pte(pte_t * ptep,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot)174 static void init_pte(pte_t *ptep, unsigned long addr, unsigned long end,
175 		     phys_addr_t phys, pgprot_t prot)
176 {
177 	do {
178 		pte_t old_pte = __ptep_get(ptep);
179 
180 		/*
181 		 * Required barriers to make this visible to the table walker
182 		 * are deferred to the end of alloc_init_cont_pte().
183 		 */
184 		__set_pte_nosync(ptep, pfn_pte(__phys_to_pfn(phys), prot));
185 
186 		/*
187 		 * After the PTE entry has been populated once, we
188 		 * only allow updates to the permission attributes.
189 		 */
190 		BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
191 					      pte_val(__ptep_get(ptep))));
192 
193 		phys += PAGE_SIZE;
194 	} while (ptep++, addr += PAGE_SIZE, addr != end);
195 }
196 
alloc_init_cont_pte(pmd_t * pmdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)197 static void alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
198 				unsigned long end, phys_addr_t phys,
199 				pgprot_t prot,
200 				phys_addr_t (*pgtable_alloc)(enum pgtable_type),
201 				int flags)
202 {
203 	unsigned long next;
204 	pmd_t pmd = READ_ONCE(*pmdp);
205 	pte_t *ptep;
206 
207 	BUG_ON(pmd_sect(pmd));
208 	if (pmd_none(pmd)) {
209 		pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN | PMD_TABLE_AF;
210 		phys_addr_t pte_phys;
211 
212 		if (flags & NO_EXEC_MAPPINGS)
213 			pmdval |= PMD_TABLE_PXN;
214 		BUG_ON(!pgtable_alloc);
215 		pte_phys = pgtable_alloc(TABLE_PTE);
216 		ptep = pte_set_fixmap(pte_phys);
217 		init_clear_pgtable(ptep);
218 		ptep += pte_index(addr);
219 		__pmd_populate(pmdp, pte_phys, pmdval);
220 	} else {
221 		BUG_ON(pmd_bad(pmd));
222 		ptep = pte_set_fixmap_offset(pmdp, addr);
223 	}
224 
225 	do {
226 		pgprot_t __prot = prot;
227 
228 		next = pte_cont_addr_end(addr, end);
229 
230 		/* use a contiguous mapping if the range is suitably aligned */
231 		if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
232 		    (flags & NO_CONT_MAPPINGS) == 0)
233 			__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
234 
235 		init_pte(ptep, addr, next, phys, __prot);
236 
237 		ptep += pte_index(next) - pte_index(addr);
238 		phys += next - addr;
239 	} while (addr = next, addr != end);
240 
241 	/*
242 	 * Note: barriers and maintenance necessary to clear the fixmap slot
243 	 * ensure that all previous pgtable writes are visible to the table
244 	 * walker.
245 	 */
246 	pte_clear_fixmap();
247 }
248 
init_pmd(pmd_t * pmdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)249 static void init_pmd(pmd_t *pmdp, unsigned long addr, unsigned long end,
250 		     phys_addr_t phys, pgprot_t prot,
251 		     phys_addr_t (*pgtable_alloc)(enum pgtable_type), int flags)
252 {
253 	unsigned long next;
254 
255 	do {
256 		pmd_t old_pmd = READ_ONCE(*pmdp);
257 
258 		next = pmd_addr_end(addr, end);
259 
260 		/* try section mapping first */
261 		if (((addr | next | phys) & ~PMD_MASK) == 0 &&
262 		    (flags & NO_BLOCK_MAPPINGS) == 0) {
263 			pmd_set_huge(pmdp, phys, prot);
264 
265 			/*
266 			 * After the PMD entry has been populated once, we
267 			 * only allow updates to the permission attributes.
268 			 */
269 			BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
270 						      READ_ONCE(pmd_val(*pmdp))));
271 		} else {
272 			alloc_init_cont_pte(pmdp, addr, next, phys, prot,
273 					    pgtable_alloc, flags);
274 
275 			BUG_ON(pmd_val(old_pmd) != 0 &&
276 			       pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
277 		}
278 		phys += next - addr;
279 	} while (pmdp++, addr = next, addr != end);
280 }
281 
alloc_init_cont_pmd(pud_t * pudp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)282 static void alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
283 				unsigned long end, phys_addr_t phys,
284 				pgprot_t prot,
285 				phys_addr_t (*pgtable_alloc)(enum pgtable_type),
286 				int flags)
287 {
288 	unsigned long next;
289 	pud_t pud = READ_ONCE(*pudp);
290 	pmd_t *pmdp;
291 
292 	/*
293 	 * Check for initial section mappings in the pgd/pud.
294 	 */
295 	BUG_ON(pud_sect(pud));
296 	if (pud_none(pud)) {
297 		pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN | PUD_TABLE_AF;
298 		phys_addr_t pmd_phys;
299 
300 		if (flags & NO_EXEC_MAPPINGS)
301 			pudval |= PUD_TABLE_PXN;
302 		BUG_ON(!pgtable_alloc);
303 		pmd_phys = pgtable_alloc(TABLE_PMD);
304 		pmdp = pmd_set_fixmap(pmd_phys);
305 		init_clear_pgtable(pmdp);
306 		pmdp += pmd_index(addr);
307 		__pud_populate(pudp, pmd_phys, pudval);
308 	} else {
309 		BUG_ON(pud_bad(pud));
310 		pmdp = pmd_set_fixmap_offset(pudp, addr);
311 	}
312 
313 	do {
314 		pgprot_t __prot = prot;
315 
316 		next = pmd_cont_addr_end(addr, end);
317 
318 		/* use a contiguous mapping if the range is suitably aligned */
319 		if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
320 		    (flags & NO_CONT_MAPPINGS) == 0)
321 			__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
322 
323 		init_pmd(pmdp, addr, next, phys, __prot, pgtable_alloc, flags);
324 
325 		pmdp += pmd_index(next) - pmd_index(addr);
326 		phys += next - addr;
327 	} while (addr = next, addr != end);
328 
329 	pmd_clear_fixmap();
330 }
331 
alloc_init_pud(p4d_t * p4dp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)332 static void alloc_init_pud(p4d_t *p4dp, unsigned long addr, unsigned long end,
333 			   phys_addr_t phys, pgprot_t prot,
334 			   phys_addr_t (*pgtable_alloc)(enum pgtable_type),
335 			   int flags)
336 {
337 	unsigned long next;
338 	p4d_t p4d = READ_ONCE(*p4dp);
339 	pud_t *pudp;
340 
341 	if (p4d_none(p4d)) {
342 		p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN | P4D_TABLE_AF;
343 		phys_addr_t pud_phys;
344 
345 		if (flags & NO_EXEC_MAPPINGS)
346 			p4dval |= P4D_TABLE_PXN;
347 		BUG_ON(!pgtable_alloc);
348 		pud_phys = pgtable_alloc(TABLE_PUD);
349 		pudp = pud_set_fixmap(pud_phys);
350 		init_clear_pgtable(pudp);
351 		pudp += pud_index(addr);
352 		__p4d_populate(p4dp, pud_phys, p4dval);
353 	} else {
354 		BUG_ON(p4d_bad(p4d));
355 		pudp = pud_set_fixmap_offset(p4dp, addr);
356 	}
357 
358 	do {
359 		pud_t old_pud = READ_ONCE(*pudp);
360 
361 		next = pud_addr_end(addr, end);
362 
363 		/*
364 		 * For 4K granule only, attempt to put down a 1GB block
365 		 */
366 		if (pud_sect_supported() &&
367 		   ((addr | next | phys) & ~PUD_MASK) == 0 &&
368 		    (flags & NO_BLOCK_MAPPINGS) == 0) {
369 			pud_set_huge(pudp, phys, prot);
370 
371 			/*
372 			 * After the PUD entry has been populated once, we
373 			 * only allow updates to the permission attributes.
374 			 */
375 			BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
376 						      READ_ONCE(pud_val(*pudp))));
377 		} else {
378 			alloc_init_cont_pmd(pudp, addr, next, phys, prot,
379 					    pgtable_alloc, flags);
380 
381 			BUG_ON(pud_val(old_pud) != 0 &&
382 			       pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
383 		}
384 		phys += next - addr;
385 	} while (pudp++, addr = next, addr != end);
386 
387 	pud_clear_fixmap();
388 }
389 
alloc_init_p4d(pgd_t * pgdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)390 static void alloc_init_p4d(pgd_t *pgdp, unsigned long addr, unsigned long end,
391 			   phys_addr_t phys, pgprot_t prot,
392 			   phys_addr_t (*pgtable_alloc)(enum pgtable_type),
393 			   int flags)
394 {
395 	unsigned long next;
396 	pgd_t pgd = READ_ONCE(*pgdp);
397 	p4d_t *p4dp;
398 
399 	if (pgd_none(pgd)) {
400 		pgdval_t pgdval = PGD_TYPE_TABLE | PGD_TABLE_UXN | PGD_TABLE_AF;
401 		phys_addr_t p4d_phys;
402 
403 		if (flags & NO_EXEC_MAPPINGS)
404 			pgdval |= PGD_TABLE_PXN;
405 		BUG_ON(!pgtable_alloc);
406 		p4d_phys = pgtable_alloc(TABLE_P4D);
407 		p4dp = p4d_set_fixmap(p4d_phys);
408 		init_clear_pgtable(p4dp);
409 		p4dp += p4d_index(addr);
410 		__pgd_populate(pgdp, p4d_phys, pgdval);
411 	} else {
412 		BUG_ON(pgd_bad(pgd));
413 		p4dp = p4d_set_fixmap_offset(pgdp, addr);
414 	}
415 
416 	do {
417 		p4d_t old_p4d = READ_ONCE(*p4dp);
418 
419 		next = p4d_addr_end(addr, end);
420 
421 		alloc_init_pud(p4dp, addr, next, phys, prot,
422 			       pgtable_alloc, flags);
423 
424 		BUG_ON(p4d_val(old_p4d) != 0 &&
425 		       p4d_val(old_p4d) != READ_ONCE(p4d_val(*p4dp)));
426 
427 		phys += next - addr;
428 	} while (p4dp++, addr = next, addr != end);
429 
430 	p4d_clear_fixmap();
431 }
432 
__create_pgd_mapping_locked(pgd_t * pgdir,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)433 static void __create_pgd_mapping_locked(pgd_t *pgdir, phys_addr_t phys,
434 					unsigned long virt, phys_addr_t size,
435 					pgprot_t prot,
436 					phys_addr_t (*pgtable_alloc)(enum pgtable_type),
437 					int flags)
438 {
439 	unsigned long addr, end, next;
440 	pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
441 
442 	/*
443 	 * If the virtual and physical address don't have the same offset
444 	 * within a page, we cannot map the region as the caller expects.
445 	 */
446 	if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
447 		return;
448 
449 	phys &= PAGE_MASK;
450 	addr = virt & PAGE_MASK;
451 	end = PAGE_ALIGN(virt + size);
452 
453 	do {
454 		next = pgd_addr_end(addr, end);
455 		alloc_init_p4d(pgdp, addr, next, phys, prot, pgtable_alloc,
456 			       flags);
457 		phys += next - addr;
458 	} while (pgdp++, addr = next, addr != end);
459 }
460 
__create_pgd_mapping(pgd_t * pgdir,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)461 static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
462 				 unsigned long virt, phys_addr_t size,
463 				 pgprot_t prot,
464 				 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
465 				 int flags)
466 {
467 	mutex_lock(&fixmap_lock);
468 	__create_pgd_mapping_locked(pgdir, phys, virt, size, prot,
469 				    pgtable_alloc, flags);
470 	mutex_unlock(&fixmap_lock);
471 }
472 
473 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
474 extern __alias(__create_pgd_mapping_locked)
475 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
476 			     phys_addr_t size, pgprot_t prot,
477 			     phys_addr_t (*pgtable_alloc)(enum pgtable_type),
478 			     int flags);
479 #endif
480 
481 #define INVALID_PHYS_ADDR	(-1ULL)
482 
__pgd_pgtable_alloc(struct mm_struct * mm,gfp_t gfp,enum pgtable_type pgtable_type)483 static phys_addr_t __pgd_pgtable_alloc(struct mm_struct *mm, gfp_t gfp,
484 				       enum pgtable_type pgtable_type)
485 {
486 	/* Page is zeroed by init_clear_pgtable() so don't duplicate effort. */
487 	struct ptdesc *ptdesc = pagetable_alloc(gfp & ~__GFP_ZERO, 0);
488 	phys_addr_t pa;
489 
490 	if (!ptdesc)
491 		return INVALID_PHYS_ADDR;
492 
493 	pa = page_to_phys(ptdesc_page(ptdesc));
494 
495 	switch (pgtable_type) {
496 	case TABLE_PTE:
497 		BUG_ON(!pagetable_pte_ctor(mm, ptdesc));
498 		break;
499 	case TABLE_PMD:
500 		BUG_ON(!pagetable_pmd_ctor(mm, ptdesc));
501 		break;
502 	case TABLE_PUD:
503 		pagetable_pud_ctor(ptdesc);
504 		break;
505 	case TABLE_P4D:
506 		pagetable_p4d_ctor(ptdesc);
507 		break;
508 	}
509 
510 	return pa;
511 }
512 
513 static phys_addr_t
try_pgd_pgtable_alloc_init_mm(enum pgtable_type pgtable_type,gfp_t gfp)514 try_pgd_pgtable_alloc_init_mm(enum pgtable_type pgtable_type, gfp_t gfp)
515 {
516 	return __pgd_pgtable_alloc(&init_mm, gfp, pgtable_type);
517 }
518 
519 static phys_addr_t __maybe_unused
pgd_pgtable_alloc_init_mm(enum pgtable_type pgtable_type)520 pgd_pgtable_alloc_init_mm(enum pgtable_type pgtable_type)
521 {
522 	phys_addr_t pa;
523 
524 	pa = __pgd_pgtable_alloc(&init_mm, GFP_PGTABLE_KERNEL, pgtable_type);
525 	BUG_ON(pa == INVALID_PHYS_ADDR);
526 	return pa;
527 }
528 
529 static phys_addr_t
pgd_pgtable_alloc_special_mm(enum pgtable_type pgtable_type)530 pgd_pgtable_alloc_special_mm(enum pgtable_type pgtable_type)
531 {
532 	phys_addr_t pa;
533 
534 	pa = __pgd_pgtable_alloc(NULL, GFP_PGTABLE_KERNEL, pgtable_type);
535 	BUG_ON(pa == INVALID_PHYS_ADDR);
536 	return pa;
537 }
538 
split_contpte(pte_t * ptep)539 static void split_contpte(pte_t *ptep)
540 {
541 	int i;
542 
543 	ptep = PTR_ALIGN_DOWN(ptep, sizeof(*ptep) * CONT_PTES);
544 	for (i = 0; i < CONT_PTES; i++, ptep++)
545 		__set_pte(ptep, pte_mknoncont(__ptep_get(ptep)));
546 }
547 
split_pmd(pmd_t * pmdp,pmd_t pmd,gfp_t gfp,bool to_cont)548 static int split_pmd(pmd_t *pmdp, pmd_t pmd, gfp_t gfp, bool to_cont)
549 {
550 	pmdval_t tableprot = PMD_TYPE_TABLE | PMD_TABLE_UXN | PMD_TABLE_AF;
551 	unsigned long pfn = pmd_pfn(pmd);
552 	pgprot_t prot = pmd_pgprot(pmd);
553 	phys_addr_t pte_phys;
554 	pte_t *ptep;
555 	int i;
556 
557 	pte_phys = try_pgd_pgtable_alloc_init_mm(TABLE_PTE, gfp);
558 	if (pte_phys == INVALID_PHYS_ADDR)
559 		return -ENOMEM;
560 	ptep = (pte_t *)phys_to_virt(pte_phys);
561 
562 	if (pgprot_val(prot) & PMD_SECT_PXN)
563 		tableprot |= PMD_TABLE_PXN;
564 
565 	prot = __pgprot((pgprot_val(prot) & ~PTE_TYPE_MASK) | PTE_TYPE_PAGE);
566 	prot = __pgprot(pgprot_val(prot) & ~PTE_CONT);
567 	if (to_cont)
568 		prot = __pgprot(pgprot_val(prot) | PTE_CONT);
569 
570 	for (i = 0; i < PTRS_PER_PTE; i++, ptep++, pfn++)
571 		__set_pte(ptep, pfn_pte(pfn, prot));
572 
573 	/*
574 	 * Ensure the pte entries are visible to the table walker by the time
575 	 * the pmd entry that points to the ptes is visible.
576 	 */
577 	dsb(ishst);
578 	__pmd_populate(pmdp, pte_phys, tableprot);
579 
580 	return 0;
581 }
582 
split_contpmd(pmd_t * pmdp)583 static void split_contpmd(pmd_t *pmdp)
584 {
585 	int i;
586 
587 	pmdp = PTR_ALIGN_DOWN(pmdp, sizeof(*pmdp) * CONT_PMDS);
588 	for (i = 0; i < CONT_PMDS; i++, pmdp++)
589 		set_pmd(pmdp, pmd_mknoncont(pmdp_get(pmdp)));
590 }
591 
split_pud(pud_t * pudp,pud_t pud,gfp_t gfp,bool to_cont)592 static int split_pud(pud_t *pudp, pud_t pud, gfp_t gfp, bool to_cont)
593 {
594 	pudval_t tableprot = PUD_TYPE_TABLE | PUD_TABLE_UXN | PUD_TABLE_AF;
595 	unsigned int step = PMD_SIZE >> PAGE_SHIFT;
596 	unsigned long pfn = pud_pfn(pud);
597 	pgprot_t prot = pud_pgprot(pud);
598 	phys_addr_t pmd_phys;
599 	pmd_t *pmdp;
600 	int i;
601 
602 	pmd_phys = try_pgd_pgtable_alloc_init_mm(TABLE_PMD, gfp);
603 	if (pmd_phys == INVALID_PHYS_ADDR)
604 		return -ENOMEM;
605 	pmdp = (pmd_t *)phys_to_virt(pmd_phys);
606 
607 	if (pgprot_val(prot) & PMD_SECT_PXN)
608 		tableprot |= PUD_TABLE_PXN;
609 
610 	prot = __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT);
611 	prot = __pgprot(pgprot_val(prot) & ~PTE_CONT);
612 	if (to_cont)
613 		prot = __pgprot(pgprot_val(prot) | PTE_CONT);
614 
615 	for (i = 0; i < PTRS_PER_PMD; i++, pmdp++, pfn += step)
616 		set_pmd(pmdp, pfn_pmd(pfn, prot));
617 
618 	/*
619 	 * Ensure the pmd entries are visible to the table walker by the time
620 	 * the pud entry that points to the pmds is visible.
621 	 */
622 	dsb(ishst);
623 	__pud_populate(pudp, pmd_phys, tableprot);
624 
625 	return 0;
626 }
627 
split_kernel_leaf_mapping_locked(unsigned long addr)628 static int split_kernel_leaf_mapping_locked(unsigned long addr)
629 {
630 	pgd_t *pgdp, pgd;
631 	p4d_t *p4dp, p4d;
632 	pud_t *pudp, pud;
633 	pmd_t *pmdp, pmd;
634 	pte_t *ptep, pte;
635 	int ret = 0;
636 
637 	/*
638 	 * PGD: If addr is PGD aligned then addr already describes a leaf
639 	 * boundary. If not present then there is nothing to split.
640 	 */
641 	if (ALIGN_DOWN(addr, PGDIR_SIZE) == addr)
642 		goto out;
643 	pgdp = pgd_offset_k(addr);
644 	pgd = pgdp_get(pgdp);
645 	if (!pgd_present(pgd))
646 		goto out;
647 
648 	/*
649 	 * P4D: If addr is P4D aligned then addr already describes a leaf
650 	 * boundary. If not present then there is nothing to split.
651 	 */
652 	if (ALIGN_DOWN(addr, P4D_SIZE) == addr)
653 		goto out;
654 	p4dp = p4d_offset(pgdp, addr);
655 	p4d = p4dp_get(p4dp);
656 	if (!p4d_present(p4d))
657 		goto out;
658 
659 	/*
660 	 * PUD: If addr is PUD aligned then addr already describes a leaf
661 	 * boundary. If not present then there is nothing to split. Otherwise,
662 	 * if we have a pud leaf, split to contpmd.
663 	 */
664 	if (ALIGN_DOWN(addr, PUD_SIZE) == addr)
665 		goto out;
666 	pudp = pud_offset(p4dp, addr);
667 	pud = pudp_get(pudp);
668 	if (!pud_present(pud))
669 		goto out;
670 	if (pud_leaf(pud)) {
671 		ret = split_pud(pudp, pud, GFP_PGTABLE_KERNEL, true);
672 		if (ret)
673 			goto out;
674 	}
675 
676 	/*
677 	 * CONTPMD: If addr is CONTPMD aligned then addr already describes a
678 	 * leaf boundary. If not present then there is nothing to split.
679 	 * Otherwise, if we have a contpmd leaf, split to pmd.
680 	 */
681 	if (ALIGN_DOWN(addr, CONT_PMD_SIZE) == addr)
682 		goto out;
683 	pmdp = pmd_offset(pudp, addr);
684 	pmd = pmdp_get(pmdp);
685 	if (!pmd_present(pmd))
686 		goto out;
687 	if (pmd_leaf(pmd)) {
688 		if (pmd_cont(pmd))
689 			split_contpmd(pmdp);
690 		/*
691 		 * PMD: If addr is PMD aligned then addr already describes a
692 		 * leaf boundary. Otherwise, split to contpte.
693 		 */
694 		if (ALIGN_DOWN(addr, PMD_SIZE) == addr)
695 			goto out;
696 		ret = split_pmd(pmdp, pmd, GFP_PGTABLE_KERNEL, true);
697 		if (ret)
698 			goto out;
699 	}
700 
701 	/*
702 	 * CONTPTE: If addr is CONTPTE aligned then addr already describes a
703 	 * leaf boundary. If not present then there is nothing to split.
704 	 * Otherwise, if we have a contpte leaf, split to pte.
705 	 */
706 	if (ALIGN_DOWN(addr, CONT_PTE_SIZE) == addr)
707 		goto out;
708 	ptep = pte_offset_kernel(pmdp, addr);
709 	pte = __ptep_get(ptep);
710 	if (!pte_present(pte))
711 		goto out;
712 	if (pte_cont(pte))
713 		split_contpte(ptep);
714 
715 out:
716 	return ret;
717 }
718 
719 static DEFINE_MUTEX(pgtable_split_lock);
720 
split_kernel_leaf_mapping(unsigned long start,unsigned long end)721 int split_kernel_leaf_mapping(unsigned long start, unsigned long end)
722 {
723 	int ret;
724 
725 	/*
726 	 * !BBML2_NOABORT systems should not be trying to change permissions on
727 	 * anything that is not pte-mapped in the first place. Just return early
728 	 * and let the permission change code raise a warning if not already
729 	 * pte-mapped.
730 	 */
731 	if (!system_supports_bbml2_noabort())
732 		return 0;
733 
734 	/*
735 	 * Ensure start and end are at least page-aligned since this is the
736 	 * finest granularity we can split to.
737 	 */
738 	if (start != PAGE_ALIGN(start) || end != PAGE_ALIGN(end))
739 		return -EINVAL;
740 
741 	mutex_lock(&pgtable_split_lock);
742 	arch_enter_lazy_mmu_mode();
743 
744 	/*
745 	 * The split_kernel_leaf_mapping_locked() may sleep, it is not a
746 	 * problem for ARM64 since ARM64's lazy MMU implementation allows
747 	 * sleeping.
748 	 *
749 	 * Optimize for the common case of splitting out a single page from a
750 	 * larger mapping. Here we can just split on the "least aligned" of
751 	 * start and end and this will guarantee that there must also be a split
752 	 * on the more aligned address since the both addresses must be in the
753 	 * same contpte block and it must have been split to ptes.
754 	 */
755 	if (end - start == PAGE_SIZE) {
756 		start = __ffs(start) < __ffs(end) ? start : end;
757 		ret = split_kernel_leaf_mapping_locked(start);
758 	} else {
759 		ret = split_kernel_leaf_mapping_locked(start);
760 		if (!ret)
761 			ret = split_kernel_leaf_mapping_locked(end);
762 	}
763 
764 	arch_leave_lazy_mmu_mode();
765 	mutex_unlock(&pgtable_split_lock);
766 	return ret;
767 }
768 
split_to_ptes_pud_entry(pud_t * pudp,unsigned long addr,unsigned long next,struct mm_walk * walk)769 static int __init split_to_ptes_pud_entry(pud_t *pudp, unsigned long addr,
770 					  unsigned long next,
771 					  struct mm_walk *walk)
772 {
773 	pud_t pud = pudp_get(pudp);
774 	int ret = 0;
775 
776 	if (pud_leaf(pud))
777 		ret = split_pud(pudp, pud, GFP_ATOMIC, false);
778 
779 	return ret;
780 }
781 
split_to_ptes_pmd_entry(pmd_t * pmdp,unsigned long addr,unsigned long next,struct mm_walk * walk)782 static int __init split_to_ptes_pmd_entry(pmd_t *pmdp, unsigned long addr,
783 					  unsigned long next,
784 					  struct mm_walk *walk)
785 {
786 	pmd_t pmd = pmdp_get(pmdp);
787 	int ret = 0;
788 
789 	if (pmd_leaf(pmd)) {
790 		if (pmd_cont(pmd))
791 			split_contpmd(pmdp);
792 		ret = split_pmd(pmdp, pmd, GFP_ATOMIC, false);
793 
794 		/*
795 		 * We have split the pmd directly to ptes so there is no need to
796 		 * visit each pte to check if they are contpte.
797 		 */
798 		walk->action = ACTION_CONTINUE;
799 	}
800 
801 	return ret;
802 }
803 
split_to_ptes_pte_entry(pte_t * ptep,unsigned long addr,unsigned long next,struct mm_walk * walk)804 static int __init split_to_ptes_pte_entry(pte_t *ptep, unsigned long addr,
805 					  unsigned long next,
806 					  struct mm_walk *walk)
807 {
808 	pte_t pte = __ptep_get(ptep);
809 
810 	if (pte_cont(pte))
811 		split_contpte(ptep);
812 
813 	return 0;
814 }
815 
816 static const struct mm_walk_ops split_to_ptes_ops __initconst = {
817 	.pud_entry	= split_to_ptes_pud_entry,
818 	.pmd_entry	= split_to_ptes_pmd_entry,
819 	.pte_entry	= split_to_ptes_pte_entry,
820 };
821 
822 static bool linear_map_requires_bbml2 __initdata;
823 
824 u32 idmap_kpti_bbml2_flag;
825 
init_idmap_kpti_bbml2_flag(void)826 void __init init_idmap_kpti_bbml2_flag(void)
827 {
828 	WRITE_ONCE(idmap_kpti_bbml2_flag, 1);
829 	/* Must be visible to other CPUs before stop_machine() is called. */
830 	smp_mb();
831 }
832 
linear_map_split_to_ptes(void * __unused)833 static int __init linear_map_split_to_ptes(void *__unused)
834 {
835 	/*
836 	 * Repainting the linear map must be done by CPU0 (the boot CPU) because
837 	 * that's the only CPU that we know supports BBML2. The other CPUs will
838 	 * be held in a waiting area with the idmap active.
839 	 */
840 	if (!smp_processor_id()) {
841 		unsigned long lstart = _PAGE_OFFSET(vabits_actual);
842 		unsigned long lend = PAGE_END;
843 		unsigned long kstart = (unsigned long)lm_alias(_stext);
844 		unsigned long kend = (unsigned long)lm_alias(__init_begin);
845 		int ret;
846 
847 		/*
848 		 * Wait for all secondary CPUs to be put into the waiting area.
849 		 */
850 		smp_cond_load_acquire(&idmap_kpti_bbml2_flag, VAL == num_online_cpus());
851 
852 		/*
853 		 * Walk all of the linear map [lstart, lend), except the kernel
854 		 * linear map alias [kstart, kend), and split all mappings to
855 		 * PTE. The kernel alias remains static throughout runtime so
856 		 * can continue to be safely mapped with large mappings.
857 		 */
858 		ret = walk_kernel_page_table_range_lockless(lstart, kstart,
859 						&split_to_ptes_ops, NULL, NULL);
860 		if (!ret)
861 			ret = walk_kernel_page_table_range_lockless(kend, lend,
862 						&split_to_ptes_ops, NULL, NULL);
863 		if (ret)
864 			panic("Failed to split linear map\n");
865 		flush_tlb_kernel_range(lstart, lend);
866 
867 		/*
868 		 * Relies on dsb in flush_tlb_kernel_range() to avoid reordering
869 		 * before any page table split operations.
870 		 */
871 		WRITE_ONCE(idmap_kpti_bbml2_flag, 0);
872 	} else {
873 		typedef void (wait_split_fn)(void);
874 		extern wait_split_fn wait_linear_map_split_to_ptes;
875 		wait_split_fn *wait_fn;
876 
877 		wait_fn = (void *)__pa_symbol(wait_linear_map_split_to_ptes);
878 
879 		/*
880 		 * At least one secondary CPU doesn't support BBML2 so cannot
881 		 * tolerate the size of the live mappings changing. So have the
882 		 * secondary CPUs wait for the boot CPU to make the changes
883 		 * with the idmap active and init_mm inactive.
884 		 */
885 		cpu_install_idmap();
886 		wait_fn();
887 		cpu_uninstall_idmap();
888 	}
889 
890 	return 0;
891 }
892 
linear_map_maybe_split_to_ptes(void)893 void __init linear_map_maybe_split_to_ptes(void)
894 {
895 	if (linear_map_requires_bbml2 && !system_supports_bbml2_noabort()) {
896 		init_idmap_kpti_bbml2_flag();
897 		stop_machine(linear_map_split_to_ptes, NULL, cpu_online_mask);
898 	}
899 }
900 
901 /*
902  * This function can only be used to modify existing table entries,
903  * without allocating new levels of table. Note that this permits the
904  * creation of new section or page entries.
905  */
create_mapping_noalloc(phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot)906 void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
907 				   phys_addr_t size, pgprot_t prot)
908 {
909 	if (virt < PAGE_OFFSET) {
910 		pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
911 			&phys, virt);
912 		return;
913 	}
914 	__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
915 			     NO_CONT_MAPPINGS);
916 }
917 
create_pgd_mapping(struct mm_struct * mm,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,bool page_mappings_only)918 void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
919 			       unsigned long virt, phys_addr_t size,
920 			       pgprot_t prot, bool page_mappings_only)
921 {
922 	int flags = 0;
923 
924 	BUG_ON(mm == &init_mm);
925 
926 	if (page_mappings_only)
927 		flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
928 
929 	__create_pgd_mapping(mm->pgd, phys, virt, size, prot,
930 			     pgd_pgtable_alloc_special_mm, flags);
931 }
932 
update_mapping_prot(phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot)933 static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
934 				phys_addr_t size, pgprot_t prot)
935 {
936 	if (virt < PAGE_OFFSET) {
937 		pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
938 			&phys, virt);
939 		return;
940 	}
941 
942 	__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
943 			     NO_CONT_MAPPINGS);
944 
945 	/* flush the TLBs after updating live kernel mappings */
946 	flush_tlb_kernel_range(virt, virt + size);
947 }
948 
__map_memblock(pgd_t * pgdp,phys_addr_t start,phys_addr_t end,pgprot_t prot,int flags)949 static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
950 				  phys_addr_t end, pgprot_t prot, int flags)
951 {
952 	__create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
953 			     prot, early_pgtable_alloc, flags);
954 }
955 
mark_linear_text_alias_ro(void)956 void __init mark_linear_text_alias_ro(void)
957 {
958 	/*
959 	 * Remove the write permissions from the linear alias of .text/.rodata
960 	 */
961 	update_mapping_prot(__pa_symbol(_text), (unsigned long)lm_alias(_text),
962 			    (unsigned long)__init_begin - (unsigned long)_text,
963 			    PAGE_KERNEL_RO);
964 }
965 
966 #ifdef CONFIG_KFENCE
967 
968 bool __ro_after_init kfence_early_init = !!CONFIG_KFENCE_SAMPLE_INTERVAL;
969 
970 /* early_param() will be parsed before map_mem() below. */
parse_kfence_early_init(char * arg)971 static int __init parse_kfence_early_init(char *arg)
972 {
973 	int val;
974 
975 	if (get_option(&arg, &val))
976 		kfence_early_init = !!val;
977 	return 0;
978 }
979 early_param("kfence.sample_interval", parse_kfence_early_init);
980 
arm64_kfence_alloc_pool(void)981 static phys_addr_t __init arm64_kfence_alloc_pool(void)
982 {
983 	phys_addr_t kfence_pool;
984 
985 	if (!kfence_early_init)
986 		return 0;
987 
988 	kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
989 	if (!kfence_pool) {
990 		pr_err("failed to allocate kfence pool\n");
991 		kfence_early_init = false;
992 		return 0;
993 	}
994 
995 	/* Temporarily mark as NOMAP. */
996 	memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
997 
998 	return kfence_pool;
999 }
1000 
arm64_kfence_map_pool(phys_addr_t kfence_pool,pgd_t * pgdp)1001 static void __init arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp)
1002 {
1003 	if (!kfence_pool)
1004 		return;
1005 
1006 	/* KFENCE pool needs page-level mapping. */
1007 	__map_memblock(pgdp, kfence_pool, kfence_pool + KFENCE_POOL_SIZE,
1008 			pgprot_tagged(PAGE_KERNEL),
1009 			NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS);
1010 	memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
1011 	__kfence_pool = phys_to_virt(kfence_pool);
1012 }
1013 #else /* CONFIG_KFENCE */
1014 
arm64_kfence_alloc_pool(void)1015 static inline phys_addr_t arm64_kfence_alloc_pool(void) { return 0; }
arm64_kfence_map_pool(phys_addr_t kfence_pool,pgd_t * pgdp)1016 static inline void arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp) { }
1017 
1018 #endif /* CONFIG_KFENCE */
1019 
force_pte_mapping(void)1020 static inline bool force_pte_mapping(void)
1021 {
1022 	bool bbml2 = system_capabilities_finalized() ?
1023 		system_supports_bbml2_noabort() : cpu_supports_bbml2_noabort();
1024 
1025 	return (!bbml2 && (rodata_full || arm64_kfence_can_set_direct_map() ||
1026 			   is_realm_world())) ||
1027 		debug_pagealloc_enabled();
1028 }
1029 
map_mem(pgd_t * pgdp)1030 static void __init map_mem(pgd_t *pgdp)
1031 {
1032 	static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN);
1033 	phys_addr_t kernel_start = __pa_symbol(_text);
1034 	phys_addr_t kernel_end = __pa_symbol(__init_begin);
1035 	phys_addr_t start, end;
1036 	phys_addr_t early_kfence_pool;
1037 	int flags = NO_EXEC_MAPPINGS;
1038 	u64 i;
1039 
1040 	/*
1041 	 * Setting hierarchical PXNTable attributes on table entries covering
1042 	 * the linear region is only possible if it is guaranteed that no table
1043 	 * entries at any level are being shared between the linear region and
1044 	 * the vmalloc region. Check whether this is true for the PGD level, in
1045 	 * which case it is guaranteed to be true for all other levels as well.
1046 	 * (Unless we are running with support for LPA2, in which case the
1047 	 * entire reduced VA space is covered by a single pgd_t which will have
1048 	 * been populated without the PXNTable attribute by the time we get here.)
1049 	 */
1050 	BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end) &&
1051 		     pgd_index(_PAGE_OFFSET(VA_BITS_MIN)) != PTRS_PER_PGD - 1);
1052 
1053 	early_kfence_pool = arm64_kfence_alloc_pool();
1054 
1055 	linear_map_requires_bbml2 = !force_pte_mapping() && can_set_direct_map();
1056 
1057 	if (force_pte_mapping())
1058 		flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1059 
1060 	/*
1061 	 * Take care not to create a writable alias for the
1062 	 * read-only text and rodata sections of the kernel image.
1063 	 * So temporarily mark them as NOMAP to skip mappings in
1064 	 * the following for-loop
1065 	 */
1066 	memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
1067 
1068 	/* map all the memory banks */
1069 	for_each_mem_range(i, &start, &end) {
1070 		if (start >= end)
1071 			break;
1072 		/*
1073 		 * The linear map must allow allocation tags reading/writing
1074 		 * if MTE is present. Otherwise, it has the same attributes as
1075 		 * PAGE_KERNEL.
1076 		 */
1077 		__map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
1078 			       flags);
1079 	}
1080 
1081 	/*
1082 	 * Map the linear alias of the [_text, __init_begin) interval
1083 	 * as non-executable now, and remove the write permission in
1084 	 * mark_linear_text_alias_ro() below (which will be called after
1085 	 * alternative patching has completed). This makes the contents
1086 	 * of the region accessible to subsystems such as hibernate,
1087 	 * but protects it from inadvertent modification or execution.
1088 	 * Note that contiguous mappings cannot be remapped in this way,
1089 	 * so we should avoid them here.
1090 	 */
1091 	__map_memblock(pgdp, kernel_start, kernel_end,
1092 		       PAGE_KERNEL, NO_CONT_MAPPINGS);
1093 	memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
1094 	arm64_kfence_map_pool(early_kfence_pool, pgdp);
1095 }
1096 
mark_rodata_ro(void)1097 void mark_rodata_ro(void)
1098 {
1099 	unsigned long section_size;
1100 
1101 	/*
1102 	 * mark .rodata as read only. Use __init_begin rather than __end_rodata
1103 	 * to cover NOTES and EXCEPTION_TABLE.
1104 	 */
1105 	section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
1106 	WRITE_ONCE(rodata_is_rw, false);
1107 	update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
1108 			    section_size, PAGE_KERNEL_RO);
1109 	/* mark the range between _text and _stext as read only. */
1110 	update_mapping_prot(__pa_symbol(_text), (unsigned long)_text,
1111 			    (unsigned long)_stext - (unsigned long)_text,
1112 			    PAGE_KERNEL_RO);
1113 }
1114 
declare_vma(struct vm_struct * vma,void * va_start,void * va_end,unsigned long vm_flags)1115 static void __init declare_vma(struct vm_struct *vma,
1116 			       void *va_start, void *va_end,
1117 			       unsigned long vm_flags)
1118 {
1119 	phys_addr_t pa_start = __pa_symbol(va_start);
1120 	unsigned long size = va_end - va_start;
1121 
1122 	BUG_ON(!PAGE_ALIGNED(pa_start));
1123 	BUG_ON(!PAGE_ALIGNED(size));
1124 
1125 	if (!(vm_flags & VM_NO_GUARD))
1126 		size += PAGE_SIZE;
1127 
1128 	vma->addr	= va_start;
1129 	vma->phys_addr	= pa_start;
1130 	vma->size	= size;
1131 	vma->flags	= VM_MAP | vm_flags;
1132 	vma->caller	= __builtin_return_address(0);
1133 
1134 	vm_area_add_early(vma);
1135 }
1136 
1137 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
kernel_exec_prot(void)1138 static pgprot_t kernel_exec_prot(void)
1139 {
1140 	return rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
1141 }
1142 
map_entry_trampoline(void)1143 static int __init map_entry_trampoline(void)
1144 {
1145 	int i;
1146 
1147 	if (!arm64_kernel_unmapped_at_el0())
1148 		return 0;
1149 
1150 	pgprot_t prot = kernel_exec_prot();
1151 	phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
1152 
1153 	/* The trampoline is always mapped and can therefore be global */
1154 	pgprot_val(prot) &= ~PTE_NG;
1155 
1156 	/* Map only the text into the trampoline page table */
1157 	memset(tramp_pg_dir, 0, PGD_SIZE);
1158 	__create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS,
1159 			     entry_tramp_text_size(), prot,
1160 			     pgd_pgtable_alloc_init_mm, NO_BLOCK_MAPPINGS);
1161 
1162 	/* Map both the text and data into the kernel page table */
1163 	for (i = 0; i < DIV_ROUND_UP(entry_tramp_text_size(), PAGE_SIZE); i++)
1164 		__set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
1165 			     pa_start + i * PAGE_SIZE, prot);
1166 
1167 	if (IS_ENABLED(CONFIG_RELOCATABLE))
1168 		__set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
1169 			     pa_start + i * PAGE_SIZE, PAGE_KERNEL_RO);
1170 
1171 	return 0;
1172 }
1173 core_initcall(map_entry_trampoline);
1174 #endif
1175 
1176 /*
1177  * Declare the VMA areas for the kernel
1178  */
declare_kernel_vmas(void)1179 static void __init declare_kernel_vmas(void)
1180 {
1181 	static struct vm_struct vmlinux_seg[KERNEL_SEGMENT_COUNT];
1182 
1183 	declare_vma(&vmlinux_seg[0], _text, _etext, VM_NO_GUARD);
1184 	declare_vma(&vmlinux_seg[1], __start_rodata, __inittext_begin, VM_NO_GUARD);
1185 	declare_vma(&vmlinux_seg[2], __inittext_begin, __inittext_end, VM_NO_GUARD);
1186 	declare_vma(&vmlinux_seg[3], __initdata_begin, __initdata_end, VM_NO_GUARD);
1187 	declare_vma(&vmlinux_seg[4], _data, _end, 0);
1188 }
1189 
1190 void __pi_map_range(phys_addr_t *pte, u64 start, u64 end, phys_addr_t pa,
1191 		    pgprot_t prot, int level, pte_t *tbl, bool may_use_cont,
1192 		    u64 va_offset);
1193 
1194 static u8 idmap_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init,
1195 	  kpti_bbml2_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init;
1196 
create_idmap(void)1197 static void __init create_idmap(void)
1198 {
1199 	phys_addr_t start = __pa_symbol(__idmap_text_start);
1200 	phys_addr_t end   = __pa_symbol(__idmap_text_end);
1201 	phys_addr_t ptep  = __pa_symbol(idmap_ptes);
1202 
1203 	__pi_map_range(&ptep, start, end, start, PAGE_KERNEL_ROX,
1204 		       IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
1205 		       __phys_to_virt(ptep) - ptep);
1206 
1207 	if (linear_map_requires_bbml2 ||
1208 	    (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0) && !arm64_use_ng_mappings)) {
1209 		phys_addr_t pa = __pa_symbol(&idmap_kpti_bbml2_flag);
1210 
1211 		/*
1212 		 * The KPTI G-to-nG conversion code needs a read-write mapping
1213 		 * of its synchronization flag in the ID map. This is also used
1214 		 * when splitting the linear map to ptes if a secondary CPU
1215 		 * doesn't support bbml2.
1216 		 */
1217 		ptep = __pa_symbol(kpti_bbml2_ptes);
1218 		__pi_map_range(&ptep, pa, pa + sizeof(u32), pa, PAGE_KERNEL,
1219 			       IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
1220 			       __phys_to_virt(ptep) - ptep);
1221 	}
1222 }
1223 
paging_init(void)1224 void __init paging_init(void)
1225 {
1226 	map_mem(swapper_pg_dir);
1227 
1228 	memblock_allow_resize();
1229 
1230 	create_idmap();
1231 	declare_kernel_vmas();
1232 }
1233 
1234 #ifdef CONFIG_MEMORY_HOTPLUG
free_hotplug_page_range(struct page * page,size_t size,struct vmem_altmap * altmap)1235 static void free_hotplug_page_range(struct page *page, size_t size,
1236 				    struct vmem_altmap *altmap)
1237 {
1238 	if (altmap) {
1239 		vmem_altmap_free(altmap, size >> PAGE_SHIFT);
1240 	} else {
1241 		WARN_ON(PageReserved(page));
1242 		__free_pages(page, get_order(size));
1243 	}
1244 }
1245 
free_hotplug_pgtable_page(struct page * page)1246 static void free_hotplug_pgtable_page(struct page *page)
1247 {
1248 	free_hotplug_page_range(page, PAGE_SIZE, NULL);
1249 }
1250 
pgtable_range_aligned(unsigned long start,unsigned long end,unsigned long floor,unsigned long ceiling,unsigned long mask)1251 static bool pgtable_range_aligned(unsigned long start, unsigned long end,
1252 				  unsigned long floor, unsigned long ceiling,
1253 				  unsigned long mask)
1254 {
1255 	start &= mask;
1256 	if (start < floor)
1257 		return false;
1258 
1259 	if (ceiling) {
1260 		ceiling &= mask;
1261 		if (!ceiling)
1262 			return false;
1263 	}
1264 
1265 	if (end - 1 > ceiling - 1)
1266 		return false;
1267 	return true;
1268 }
1269 
unmap_hotplug_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1270 static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
1271 				    unsigned long end, bool free_mapped,
1272 				    struct vmem_altmap *altmap)
1273 {
1274 	pte_t *ptep, pte;
1275 
1276 	do {
1277 		ptep = pte_offset_kernel(pmdp, addr);
1278 		pte = __ptep_get(ptep);
1279 		if (pte_none(pte))
1280 			continue;
1281 
1282 		WARN_ON(!pte_present(pte));
1283 		__pte_clear(&init_mm, addr, ptep);
1284 		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1285 		if (free_mapped)
1286 			free_hotplug_page_range(pte_page(pte),
1287 						PAGE_SIZE, altmap);
1288 	} while (addr += PAGE_SIZE, addr < end);
1289 }
1290 
unmap_hotplug_pmd_range(pud_t * pudp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1291 static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
1292 				    unsigned long end, bool free_mapped,
1293 				    struct vmem_altmap *altmap)
1294 {
1295 	unsigned long next;
1296 	pmd_t *pmdp, pmd;
1297 
1298 	do {
1299 		next = pmd_addr_end(addr, end);
1300 		pmdp = pmd_offset(pudp, addr);
1301 		pmd = READ_ONCE(*pmdp);
1302 		if (pmd_none(pmd))
1303 			continue;
1304 
1305 		WARN_ON(!pmd_present(pmd));
1306 		if (pmd_sect(pmd)) {
1307 			pmd_clear(pmdp);
1308 
1309 			/*
1310 			 * One TLBI should be sufficient here as the PMD_SIZE
1311 			 * range is mapped with a single block entry.
1312 			 */
1313 			flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1314 			if (free_mapped)
1315 				free_hotplug_page_range(pmd_page(pmd),
1316 							PMD_SIZE, altmap);
1317 			continue;
1318 		}
1319 		WARN_ON(!pmd_table(pmd));
1320 		unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
1321 	} while (addr = next, addr < end);
1322 }
1323 
unmap_hotplug_pud_range(p4d_t * p4dp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1324 static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
1325 				    unsigned long end, bool free_mapped,
1326 				    struct vmem_altmap *altmap)
1327 {
1328 	unsigned long next;
1329 	pud_t *pudp, pud;
1330 
1331 	do {
1332 		next = pud_addr_end(addr, end);
1333 		pudp = pud_offset(p4dp, addr);
1334 		pud = READ_ONCE(*pudp);
1335 		if (pud_none(pud))
1336 			continue;
1337 
1338 		WARN_ON(!pud_present(pud));
1339 		if (pud_sect(pud)) {
1340 			pud_clear(pudp);
1341 
1342 			/*
1343 			 * One TLBI should be sufficient here as the PUD_SIZE
1344 			 * range is mapped with a single block entry.
1345 			 */
1346 			flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1347 			if (free_mapped)
1348 				free_hotplug_page_range(pud_page(pud),
1349 							PUD_SIZE, altmap);
1350 			continue;
1351 		}
1352 		WARN_ON(!pud_table(pud));
1353 		unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
1354 	} while (addr = next, addr < end);
1355 }
1356 
unmap_hotplug_p4d_range(pgd_t * pgdp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1357 static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
1358 				    unsigned long end, bool free_mapped,
1359 				    struct vmem_altmap *altmap)
1360 {
1361 	unsigned long next;
1362 	p4d_t *p4dp, p4d;
1363 
1364 	do {
1365 		next = p4d_addr_end(addr, end);
1366 		p4dp = p4d_offset(pgdp, addr);
1367 		p4d = READ_ONCE(*p4dp);
1368 		if (p4d_none(p4d))
1369 			continue;
1370 
1371 		WARN_ON(!p4d_present(p4d));
1372 		unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
1373 	} while (addr = next, addr < end);
1374 }
1375 
unmap_hotplug_range(unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1376 static void unmap_hotplug_range(unsigned long addr, unsigned long end,
1377 				bool free_mapped, struct vmem_altmap *altmap)
1378 {
1379 	unsigned long next;
1380 	pgd_t *pgdp, pgd;
1381 
1382 	/*
1383 	 * altmap can only be used as vmemmap mapping backing memory.
1384 	 * In case the backing memory itself is not being freed, then
1385 	 * altmap is irrelevant. Warn about this inconsistency when
1386 	 * encountered.
1387 	 */
1388 	WARN_ON(!free_mapped && altmap);
1389 
1390 	do {
1391 		next = pgd_addr_end(addr, end);
1392 		pgdp = pgd_offset_k(addr);
1393 		pgd = READ_ONCE(*pgdp);
1394 		if (pgd_none(pgd))
1395 			continue;
1396 
1397 		WARN_ON(!pgd_present(pgd));
1398 		unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
1399 	} while (addr = next, addr < end);
1400 }
1401 
free_empty_pte_table(pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1402 static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
1403 				 unsigned long end, unsigned long floor,
1404 				 unsigned long ceiling)
1405 {
1406 	pte_t *ptep, pte;
1407 	unsigned long i, start = addr;
1408 
1409 	do {
1410 		ptep = pte_offset_kernel(pmdp, addr);
1411 		pte = __ptep_get(ptep);
1412 
1413 		/*
1414 		 * This is just a sanity check here which verifies that
1415 		 * pte clearing has been done by earlier unmap loops.
1416 		 */
1417 		WARN_ON(!pte_none(pte));
1418 	} while (addr += PAGE_SIZE, addr < end);
1419 
1420 	if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
1421 		return;
1422 
1423 	/*
1424 	 * Check whether we can free the pte page if the rest of the
1425 	 * entries are empty. Overlap with other regions have been
1426 	 * handled by the floor/ceiling check.
1427 	 */
1428 	ptep = pte_offset_kernel(pmdp, 0UL);
1429 	for (i = 0; i < PTRS_PER_PTE; i++) {
1430 		if (!pte_none(__ptep_get(&ptep[i])))
1431 			return;
1432 	}
1433 
1434 	pmd_clear(pmdp);
1435 	__flush_tlb_kernel_pgtable(start);
1436 	free_hotplug_pgtable_page(virt_to_page(ptep));
1437 }
1438 
free_empty_pmd_table(pud_t * pudp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1439 static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
1440 				 unsigned long end, unsigned long floor,
1441 				 unsigned long ceiling)
1442 {
1443 	pmd_t *pmdp, pmd;
1444 	unsigned long i, next, start = addr;
1445 
1446 	do {
1447 		next = pmd_addr_end(addr, end);
1448 		pmdp = pmd_offset(pudp, addr);
1449 		pmd = READ_ONCE(*pmdp);
1450 		if (pmd_none(pmd))
1451 			continue;
1452 
1453 		WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
1454 		free_empty_pte_table(pmdp, addr, next, floor, ceiling);
1455 	} while (addr = next, addr < end);
1456 
1457 	if (CONFIG_PGTABLE_LEVELS <= 2)
1458 		return;
1459 
1460 	if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
1461 		return;
1462 
1463 	/*
1464 	 * Check whether we can free the pmd page if the rest of the
1465 	 * entries are empty. Overlap with other regions have been
1466 	 * handled by the floor/ceiling check.
1467 	 */
1468 	pmdp = pmd_offset(pudp, 0UL);
1469 	for (i = 0; i < PTRS_PER_PMD; i++) {
1470 		if (!pmd_none(READ_ONCE(pmdp[i])))
1471 			return;
1472 	}
1473 
1474 	pud_clear(pudp);
1475 	__flush_tlb_kernel_pgtable(start);
1476 	free_hotplug_pgtable_page(virt_to_page(pmdp));
1477 }
1478 
free_empty_pud_table(p4d_t * p4dp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1479 static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1480 				 unsigned long end, unsigned long floor,
1481 				 unsigned long ceiling)
1482 {
1483 	pud_t *pudp, pud;
1484 	unsigned long i, next, start = addr;
1485 
1486 	do {
1487 		next = pud_addr_end(addr, end);
1488 		pudp = pud_offset(p4dp, addr);
1489 		pud = READ_ONCE(*pudp);
1490 		if (pud_none(pud))
1491 			continue;
1492 
1493 		WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1494 		free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1495 	} while (addr = next, addr < end);
1496 
1497 	if (!pgtable_l4_enabled())
1498 		return;
1499 
1500 	if (!pgtable_range_aligned(start, end, floor, ceiling, P4D_MASK))
1501 		return;
1502 
1503 	/*
1504 	 * Check whether we can free the pud page if the rest of the
1505 	 * entries are empty. Overlap with other regions have been
1506 	 * handled by the floor/ceiling check.
1507 	 */
1508 	pudp = pud_offset(p4dp, 0UL);
1509 	for (i = 0; i < PTRS_PER_PUD; i++) {
1510 		if (!pud_none(READ_ONCE(pudp[i])))
1511 			return;
1512 	}
1513 
1514 	p4d_clear(p4dp);
1515 	__flush_tlb_kernel_pgtable(start);
1516 	free_hotplug_pgtable_page(virt_to_page(pudp));
1517 }
1518 
free_empty_p4d_table(pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1519 static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1520 				 unsigned long end, unsigned long floor,
1521 				 unsigned long ceiling)
1522 {
1523 	p4d_t *p4dp, p4d;
1524 	unsigned long i, next, start = addr;
1525 
1526 	do {
1527 		next = p4d_addr_end(addr, end);
1528 		p4dp = p4d_offset(pgdp, addr);
1529 		p4d = READ_ONCE(*p4dp);
1530 		if (p4d_none(p4d))
1531 			continue;
1532 
1533 		WARN_ON(!p4d_present(p4d));
1534 		free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1535 	} while (addr = next, addr < end);
1536 
1537 	if (!pgtable_l5_enabled())
1538 		return;
1539 
1540 	if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1541 		return;
1542 
1543 	/*
1544 	 * Check whether we can free the p4d page if the rest of the
1545 	 * entries are empty. Overlap with other regions have been
1546 	 * handled by the floor/ceiling check.
1547 	 */
1548 	p4dp = p4d_offset(pgdp, 0UL);
1549 	for (i = 0; i < PTRS_PER_P4D; i++) {
1550 		if (!p4d_none(READ_ONCE(p4dp[i])))
1551 			return;
1552 	}
1553 
1554 	pgd_clear(pgdp);
1555 	__flush_tlb_kernel_pgtable(start);
1556 	free_hotplug_pgtable_page(virt_to_page(p4dp));
1557 }
1558 
free_empty_tables(unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1559 static void free_empty_tables(unsigned long addr, unsigned long end,
1560 			      unsigned long floor, unsigned long ceiling)
1561 {
1562 	unsigned long next;
1563 	pgd_t *pgdp, pgd;
1564 
1565 	do {
1566 		next = pgd_addr_end(addr, end);
1567 		pgdp = pgd_offset_k(addr);
1568 		pgd = READ_ONCE(*pgdp);
1569 		if (pgd_none(pgd))
1570 			continue;
1571 
1572 		WARN_ON(!pgd_present(pgd));
1573 		free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1574 	} while (addr = next, addr < end);
1575 }
1576 #endif
1577 
vmemmap_set_pmd(pmd_t * pmdp,void * p,int node,unsigned long addr,unsigned long next)1578 void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node,
1579 			       unsigned long addr, unsigned long next)
1580 {
1581 	pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1582 }
1583 
vmemmap_check_pmd(pmd_t * pmdp,int node,unsigned long addr,unsigned long next)1584 int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
1585 				unsigned long addr, unsigned long next)
1586 {
1587 	vmemmap_verify((pte_t *)pmdp, node, addr, next);
1588 
1589 	return pmd_sect(READ_ONCE(*pmdp));
1590 }
1591 
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1592 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1593 		struct vmem_altmap *altmap)
1594 {
1595 	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1596 	/* [start, end] should be within one section */
1597 	WARN_ON_ONCE(end - start > PAGES_PER_SECTION * sizeof(struct page));
1598 
1599 	if (!IS_ENABLED(CONFIG_ARM64_4K_PAGES) ||
1600 	    (end - start < PAGES_PER_SECTION * sizeof(struct page)))
1601 		return vmemmap_populate_basepages(start, end, node, altmap);
1602 	else
1603 		return vmemmap_populate_hugepages(start, end, node, altmap);
1604 }
1605 
1606 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)1607 void vmemmap_free(unsigned long start, unsigned long end,
1608 		struct vmem_altmap *altmap)
1609 {
1610 	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1611 
1612 	unmap_hotplug_range(start, end, true, altmap);
1613 	free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1614 }
1615 #endif /* CONFIG_MEMORY_HOTPLUG */
1616 
pud_set_huge(pud_t * pudp,phys_addr_t phys,pgprot_t prot)1617 int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1618 {
1619 	pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1620 
1621 	/* Only allow permission changes for now */
1622 	if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1623 				   pud_val(new_pud)))
1624 		return 0;
1625 
1626 	VM_BUG_ON(phys & ~PUD_MASK);
1627 	set_pud(pudp, new_pud);
1628 	return 1;
1629 }
1630 
pmd_set_huge(pmd_t * pmdp,phys_addr_t phys,pgprot_t prot)1631 int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1632 {
1633 	pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1634 
1635 	/* Only allow permission changes for now */
1636 	if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1637 				   pmd_val(new_pmd)))
1638 		return 0;
1639 
1640 	VM_BUG_ON(phys & ~PMD_MASK);
1641 	set_pmd(pmdp, new_pmd);
1642 	return 1;
1643 }
1644 
1645 #ifndef __PAGETABLE_P4D_FOLDED
p4d_clear_huge(p4d_t * p4dp)1646 void p4d_clear_huge(p4d_t *p4dp)
1647 {
1648 }
1649 #endif
1650 
pud_clear_huge(pud_t * pudp)1651 int pud_clear_huge(pud_t *pudp)
1652 {
1653 	if (!pud_sect(READ_ONCE(*pudp)))
1654 		return 0;
1655 	pud_clear(pudp);
1656 	return 1;
1657 }
1658 
pmd_clear_huge(pmd_t * pmdp)1659 int pmd_clear_huge(pmd_t *pmdp)
1660 {
1661 	if (!pmd_sect(READ_ONCE(*pmdp)))
1662 		return 0;
1663 	pmd_clear(pmdp);
1664 	return 1;
1665 }
1666 
__pmd_free_pte_page(pmd_t * pmdp,unsigned long addr,bool acquire_mmap_lock)1667 static int __pmd_free_pte_page(pmd_t *pmdp, unsigned long addr,
1668 			       bool acquire_mmap_lock)
1669 {
1670 	pte_t *table;
1671 	pmd_t pmd;
1672 
1673 	pmd = READ_ONCE(*pmdp);
1674 
1675 	if (!pmd_table(pmd)) {
1676 		VM_WARN_ON(1);
1677 		return 1;
1678 	}
1679 
1680 	/* See comment in pud_free_pmd_page for static key logic */
1681 	table = pte_offset_kernel(pmdp, addr);
1682 	pmd_clear(pmdp);
1683 	__flush_tlb_kernel_pgtable(addr);
1684 	if (static_branch_unlikely(&arm64_ptdump_lock_key) && acquire_mmap_lock) {
1685 		mmap_read_lock(&init_mm);
1686 		mmap_read_unlock(&init_mm);
1687 	}
1688 
1689 	pte_free_kernel(NULL, table);
1690 	return 1;
1691 }
1692 
pmd_free_pte_page(pmd_t * pmdp,unsigned long addr)1693 int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1694 {
1695 	/* If ptdump is walking the pagetables, acquire init_mm.mmap_lock */
1696 	return __pmd_free_pte_page(pmdp, addr, /* acquire_mmap_lock = */ true);
1697 }
1698 
pud_free_pmd_page(pud_t * pudp,unsigned long addr)1699 int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1700 {
1701 	pmd_t *table;
1702 	pmd_t *pmdp;
1703 	pud_t pud;
1704 	unsigned long next, end;
1705 
1706 	pud = READ_ONCE(*pudp);
1707 
1708 	if (!pud_table(pud)) {
1709 		VM_WARN_ON(1);
1710 		return 1;
1711 	}
1712 
1713 	table = pmd_offset(pudp, addr);
1714 
1715 	/*
1716 	 * Our objective is to prevent ptdump from reading a PMD table which has
1717 	 * been freed. In this race, if pud_free_pmd_page observes the key on
1718 	 * (which got flipped by ptdump) then the mmap lock sequence here will,
1719 	 * as a result of the mmap write lock/unlock sequence in ptdump, give
1720 	 * us the correct synchronization. If not, this means that ptdump has
1721 	 * yet not started walking the pagetables - the sequence of barriers
1722 	 * issued by __flush_tlb_kernel_pgtable() guarantees that ptdump will
1723 	 * observe an empty PUD.
1724 	 */
1725 	pud_clear(pudp);
1726 	__flush_tlb_kernel_pgtable(addr);
1727 	if (static_branch_unlikely(&arm64_ptdump_lock_key)) {
1728 		mmap_read_lock(&init_mm);
1729 		mmap_read_unlock(&init_mm);
1730 	}
1731 
1732 	pmdp = table;
1733 	next = addr;
1734 	end = addr + PUD_SIZE;
1735 	do {
1736 		if (pmd_present(pmdp_get(pmdp)))
1737 			/*
1738 			 * PMD has been isolated, so ptdump won't see it. No
1739 			 * need to acquire init_mm.mmap_lock.
1740 			 */
1741 			__pmd_free_pte_page(pmdp, next, /* acquire_mmap_lock = */ false);
1742 	} while (pmdp++, next += PMD_SIZE, next != end);
1743 
1744 	pmd_free(NULL, table);
1745 	return 1;
1746 }
1747 
1748 #ifdef CONFIG_MEMORY_HOTPLUG
__remove_pgd_mapping(pgd_t * pgdir,unsigned long start,u64 size)1749 static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1750 {
1751 	unsigned long end = start + size;
1752 
1753 	WARN_ON(pgdir != init_mm.pgd);
1754 	WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1755 
1756 	unmap_hotplug_range(start, end, false, NULL);
1757 	free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1758 }
1759 
arch_get_mappable_range(void)1760 struct range arch_get_mappable_range(void)
1761 {
1762 	struct range mhp_range;
1763 	phys_addr_t start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
1764 	phys_addr_t end_linear_pa = __pa(PAGE_END - 1);
1765 
1766 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
1767 		/*
1768 		 * Check for a wrap, it is possible because of randomized linear
1769 		 * mapping the start physical address is actually bigger than
1770 		 * the end physical address. In this case set start to zero
1771 		 * because [0, end_linear_pa] range must still be able to cover
1772 		 * all addressable physical addresses.
1773 		 */
1774 		if (start_linear_pa > end_linear_pa)
1775 			start_linear_pa = 0;
1776 	}
1777 
1778 	WARN_ON(start_linear_pa > end_linear_pa);
1779 
1780 	/*
1781 	 * Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
1782 	 * accommodating both its ends but excluding PAGE_END. Max physical
1783 	 * range which can be mapped inside this linear mapping range, must
1784 	 * also be derived from its end points.
1785 	 */
1786 	mhp_range.start = start_linear_pa;
1787 	mhp_range.end =  end_linear_pa;
1788 
1789 	return mhp_range;
1790 }
1791 
arch_add_memory(int nid,u64 start,u64 size,struct mhp_params * params)1792 int arch_add_memory(int nid, u64 start, u64 size,
1793 		    struct mhp_params *params)
1794 {
1795 	int ret, flags = NO_EXEC_MAPPINGS;
1796 
1797 	VM_BUG_ON(!mhp_range_allowed(start, size, true));
1798 
1799 	if (force_pte_mapping())
1800 		flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1801 
1802 	__create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1803 			     size, params->pgprot, pgd_pgtable_alloc_init_mm,
1804 			     flags);
1805 
1806 	memblock_clear_nomap(start, size);
1807 
1808 	ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1809 			   params);
1810 	if (ret)
1811 		__remove_pgd_mapping(swapper_pg_dir,
1812 				     __phys_to_virt(start), size);
1813 	else {
1814 		/* Address of hotplugged memory can be smaller */
1815 		max_pfn = max(max_pfn, PFN_UP(start + size));
1816 		max_low_pfn = max_pfn;
1817 	}
1818 
1819 	return ret;
1820 }
1821 
arch_remove_memory(u64 start,u64 size,struct vmem_altmap * altmap)1822 void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1823 {
1824 	unsigned long start_pfn = start >> PAGE_SHIFT;
1825 	unsigned long nr_pages = size >> PAGE_SHIFT;
1826 
1827 	__remove_pages(start_pfn, nr_pages, altmap);
1828 	__remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
1829 }
1830 
1831 /*
1832  * This memory hotplug notifier helps prevent boot memory from being
1833  * inadvertently removed as it blocks pfn range offlining process in
1834  * __offline_pages(). Hence this prevents both offlining as well as
1835  * removal process for boot memory which is initially always online.
1836  * In future if and when boot memory could be removed, this notifier
1837  * should be dropped and free_hotplug_page_range() should handle any
1838  * reserved pages allocated during boot.
1839  */
prevent_bootmem_remove_notifier(struct notifier_block * nb,unsigned long action,void * data)1840 static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
1841 					   unsigned long action, void *data)
1842 {
1843 	struct mem_section *ms;
1844 	struct memory_notify *arg = data;
1845 	unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
1846 	unsigned long pfn = arg->start_pfn;
1847 
1848 	if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
1849 		return NOTIFY_OK;
1850 
1851 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1852 		unsigned long start = PFN_PHYS(pfn);
1853 		unsigned long end = start + (1UL << PA_SECTION_SHIFT);
1854 
1855 		ms = __pfn_to_section(pfn);
1856 		if (!early_section(ms))
1857 			continue;
1858 
1859 		if (action == MEM_GOING_OFFLINE) {
1860 			/*
1861 			 * Boot memory removal is not supported. Prevent
1862 			 * it via blocking any attempted offline request
1863 			 * for the boot memory and just report it.
1864 			 */
1865 			pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
1866 			return NOTIFY_BAD;
1867 		} else if (action == MEM_OFFLINE) {
1868 			/*
1869 			 * This should have never happened. Boot memory
1870 			 * offlining should have been prevented by this
1871 			 * very notifier. Probably some memory removal
1872 			 * procedure might have changed which would then
1873 			 * require further debug.
1874 			 */
1875 			pr_err("Boot memory [%lx %lx] offlined\n", start, end);
1876 
1877 			/*
1878 			 * Core memory hotplug does not process a return
1879 			 * code from the notifier for MEM_OFFLINE events.
1880 			 * The error condition has been reported. Return
1881 			 * from here as if ignored.
1882 			 */
1883 			return NOTIFY_DONE;
1884 		}
1885 	}
1886 	return NOTIFY_OK;
1887 }
1888 
1889 static struct notifier_block prevent_bootmem_remove_nb = {
1890 	.notifier_call = prevent_bootmem_remove_notifier,
1891 };
1892 
1893 /*
1894  * This ensures that boot memory sections on the platform are online
1895  * from early boot. Memory sections could not be prevented from being
1896  * offlined, unless for some reason they are not online to begin with.
1897  * This helps validate the basic assumption on which the above memory
1898  * event notifier works to prevent boot memory section offlining and
1899  * its possible removal.
1900  */
validate_bootmem_online(void)1901 static void validate_bootmem_online(void)
1902 {
1903 	phys_addr_t start, end, addr;
1904 	struct mem_section *ms;
1905 	u64 i;
1906 
1907 	/*
1908 	 * Scanning across all memblock might be expensive
1909 	 * on some big memory systems. Hence enable this
1910 	 * validation only with DEBUG_VM.
1911 	 */
1912 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
1913 		return;
1914 
1915 	for_each_mem_range(i, &start, &end) {
1916 		for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
1917 			ms = __pfn_to_section(PHYS_PFN(addr));
1918 
1919 			/*
1920 			 * All memory ranges in the system at this point
1921 			 * should have been marked as early sections.
1922 			 */
1923 			WARN_ON(!early_section(ms));
1924 
1925 			/*
1926 			 * Memory notifier mechanism here to prevent boot
1927 			 * memory offlining depends on the fact that each
1928 			 * early section memory on the system is initially
1929 			 * online. Otherwise a given memory section which
1930 			 * is already offline will be overlooked and can
1931 			 * be removed completely. Call out such sections.
1932 			 */
1933 			if (!online_section(ms))
1934 				pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
1935 					addr, addr + (1UL << PA_SECTION_SHIFT));
1936 		}
1937 	}
1938 }
1939 
prevent_bootmem_remove_init(void)1940 static int __init prevent_bootmem_remove_init(void)
1941 {
1942 	int ret = 0;
1943 
1944 	if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
1945 		return ret;
1946 
1947 	validate_bootmem_online();
1948 	ret = register_memory_notifier(&prevent_bootmem_remove_nb);
1949 	if (ret)
1950 		pr_err("%s: Notifier registration failed %d\n", __func__, ret);
1951 
1952 	return ret;
1953 }
1954 early_initcall(prevent_bootmem_remove_init);
1955 #endif
1956 
modify_prot_start_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr)1957 pte_t modify_prot_start_ptes(struct vm_area_struct *vma, unsigned long addr,
1958 			     pte_t *ptep, unsigned int nr)
1959 {
1960 	pte_t pte = get_and_clear_ptes(vma->vm_mm, addr, ptep, nr);
1961 
1962 	if (alternative_has_cap_unlikely(ARM64_WORKAROUND_2645198)) {
1963 		/*
1964 		 * Break-before-make (BBM) is required for all user space mappings
1965 		 * when the permission changes from executable to non-executable
1966 		 * in cases where cpu is affected with errata #2645198.
1967 		 */
1968 		if (pte_accessible(vma->vm_mm, pte) && pte_user_exec(pte))
1969 			__flush_tlb_range(vma, addr, nr * PAGE_SIZE,
1970 					  PAGE_SIZE, true, 3);
1971 	}
1972 
1973 	return pte;
1974 }
1975 
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1976 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
1977 {
1978 	return modify_prot_start_ptes(vma, addr, ptep, 1);
1979 }
1980 
modify_prot_commit_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte,unsigned int nr)1981 void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr,
1982 			     pte_t *ptep, pte_t old_pte, pte_t pte,
1983 			     unsigned int nr)
1984 {
1985 	set_ptes(vma->vm_mm, addr, ptep, pte, nr);
1986 }
1987 
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1988 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1989 			     pte_t old_pte, pte_t pte)
1990 {
1991 	modify_prot_commit_ptes(vma, addr, ptep, old_pte, pte, 1);
1992 }
1993 
1994 /*
1995  * Atomically replaces the active TTBR1_EL1 PGD with a new VA-compatible PGD,
1996  * avoiding the possibility of conflicting TLB entries being allocated.
1997  */
__cpu_replace_ttbr1(pgd_t * pgdp,bool cnp)1998 void __cpu_replace_ttbr1(pgd_t *pgdp, bool cnp)
1999 {
2000 	typedef void (ttbr_replace_func)(phys_addr_t);
2001 	extern ttbr_replace_func idmap_cpu_replace_ttbr1;
2002 	ttbr_replace_func *replace_phys;
2003 	unsigned long daif;
2004 
2005 	/* phys_to_ttbr() zeros lower 2 bits of ttbr with 52-bit PA */
2006 	phys_addr_t ttbr1 = phys_to_ttbr(virt_to_phys(pgdp));
2007 
2008 	if (cnp)
2009 		ttbr1 |= TTBR_CNP_BIT;
2010 
2011 	replace_phys = (void *)__pa_symbol(idmap_cpu_replace_ttbr1);
2012 
2013 	cpu_install_idmap();
2014 
2015 	/*
2016 	 * We really don't want to take *any* exceptions while TTBR1 is
2017 	 * in the process of being replaced so mask everything.
2018 	 */
2019 	daif = local_daif_save();
2020 	replace_phys(ttbr1);
2021 	local_daif_restore(daif);
2022 
2023 	cpu_uninstall_idmap();
2024 }
2025 
2026 #ifdef CONFIG_ARCH_HAS_PKEYS
arch_set_user_pkey_access(struct task_struct * tsk,int pkey,unsigned long init_val)2027 int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, unsigned long init_val)
2028 {
2029 	u64 new_por;
2030 	u64 old_por;
2031 
2032 	if (!system_supports_poe())
2033 		return -ENOSPC;
2034 
2035 	/*
2036 	 * This code should only be called with valid 'pkey'
2037 	 * values originating from in-kernel users.  Complain
2038 	 * if a bad value is observed.
2039 	 */
2040 	if (WARN_ON_ONCE(pkey >= arch_max_pkey()))
2041 		return -EINVAL;
2042 
2043 	/* Set the bits we need in POR:  */
2044 	new_por = POE_RWX;
2045 	if (init_val & PKEY_DISABLE_WRITE)
2046 		new_por &= ~POE_W;
2047 	if (init_val & PKEY_DISABLE_ACCESS)
2048 		new_por &= ~POE_RW;
2049 	if (init_val & PKEY_DISABLE_READ)
2050 		new_por &= ~POE_R;
2051 	if (init_val & PKEY_DISABLE_EXECUTE)
2052 		new_por &= ~POE_X;
2053 
2054 	/* Shift the bits in to the correct place in POR for pkey: */
2055 	new_por = POR_ELx_PERM_PREP(pkey, new_por);
2056 
2057 	/* Get old POR and mask off any old bits in place: */
2058 	old_por = read_sysreg_s(SYS_POR_EL0);
2059 	old_por &= ~(POE_MASK << POR_ELx_PERM_SHIFT(pkey));
2060 
2061 	/* Write old part along with new part: */
2062 	write_sysreg_s(old_por | new_por, SYS_POR_EL0);
2063 
2064 	return 0;
2065 }
2066 #endif
2067