xref: /linux/net/wireless/util.c (revision 0a80e38d0fe1fe7b59c1e93ad908c4148a15926a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017	Intel Deutschland GmbH
8  * Copyright (C) 2018-2023, 2025 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25 
26 
27 const struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 			    u32 basic_rates, int bitrate)
30 {
31 	struct ieee80211_rate *result = &sband->bitrates[0];
32 	int i;
33 
34 	for (i = 0; i < sband->n_bitrates; i++) {
35 		if (!(basic_rates & BIT(i)))
36 			continue;
37 		if (sband->bitrates[i].bitrate > bitrate)
38 			continue;
39 		result = &sband->bitrates[i];
40 	}
41 
42 	return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45 
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband)
47 {
48 	struct ieee80211_rate *bitrates;
49 	u32 mandatory_rates = 0;
50 	enum ieee80211_rate_flags mandatory_flag;
51 	int i;
52 
53 	if (WARN_ON(!sband))
54 		return 1;
55 
56 	if (sband->band == NL80211_BAND_2GHZ)
57 		mandatory_flag = IEEE80211_RATE_MANDATORY_B;
58 	else
59 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
60 
61 	bitrates = sband->bitrates;
62 	for (i = 0; i < sband->n_bitrates; i++)
63 		if (bitrates[i].flags & mandatory_flag)
64 			mandatory_rates |= BIT(i);
65 	return mandatory_rates;
66 }
67 EXPORT_SYMBOL(ieee80211_mandatory_rates);
68 
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)69 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
70 {
71 	/* see 802.11 17.3.8.3.2 and Annex J
72 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73 	if (chan <= 0)
74 		return 0; /* not supported */
75 	switch (band) {
76 	case NL80211_BAND_2GHZ:
77 	case NL80211_BAND_LC:
78 		if (chan == 14)
79 			return MHZ_TO_KHZ(2484);
80 		else if (chan < 14)
81 			return MHZ_TO_KHZ(2407 + chan * 5);
82 		break;
83 	case NL80211_BAND_5GHZ:
84 		if (chan >= 182 && chan <= 196)
85 			return MHZ_TO_KHZ(4000 + chan * 5);
86 		else
87 			return MHZ_TO_KHZ(5000 + chan * 5);
88 		break;
89 	case NL80211_BAND_6GHZ:
90 		/* see 802.11ax D6.1 27.3.23.2 */
91 		if (chan == 2)
92 			return MHZ_TO_KHZ(5935);
93 		if (chan <= 233)
94 			return MHZ_TO_KHZ(5950 + chan * 5);
95 		break;
96 	case NL80211_BAND_60GHZ:
97 		if (chan < 7)
98 			return MHZ_TO_KHZ(56160 + chan * 2160);
99 		break;
100 	case NL80211_BAND_S1GHZ:
101 		return 902000 + chan * 500;
102 	default:
103 		;
104 	}
105 	return 0; /* not supported */
106 }
107 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
108 
ieee80211_freq_khz_to_channel(u32 freq)109 int ieee80211_freq_khz_to_channel(u32 freq)
110 {
111 	/* TODO: just handle MHz for now */
112 	freq = KHZ_TO_MHZ(freq);
113 
114 	/* see 802.11 17.3.8.3.2 and Annex J */
115 	if (freq == 2484)
116 		return 14;
117 	else if (freq < 2484)
118 		return (freq - 2407) / 5;
119 	else if (freq >= 4910 && freq <= 4980)
120 		return (freq - 4000) / 5;
121 	else if (freq < 5925)
122 		return (freq - 5000) / 5;
123 	else if (freq == 5935)
124 		return 2;
125 	else if (freq <= 45000) /* DMG band lower limit */
126 		/* see 802.11ax D6.1 27.3.22.2 */
127 		return (freq - 5950) / 5;
128 	else if (freq >= 58320 && freq <= 70200)
129 		return (freq - 56160) / 2160;
130 	else
131 		return 0;
132 }
133 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
134 
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)135 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
136 						    u32 freq)
137 {
138 	enum nl80211_band band;
139 	struct ieee80211_supported_band *sband;
140 	int i;
141 
142 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
143 		sband = wiphy->bands[band];
144 
145 		if (!sband)
146 			continue;
147 
148 		for (i = 0; i < sband->n_channels; i++) {
149 			struct ieee80211_channel *chan = &sband->channels[i];
150 
151 			if (ieee80211_channel_to_khz(chan) == freq)
152 				return chan;
153 		}
154 	}
155 
156 	return NULL;
157 }
158 EXPORT_SYMBOL(ieee80211_get_channel_khz);
159 
set_mandatory_flags_band(struct ieee80211_supported_band * sband)160 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
161 {
162 	int i, want;
163 
164 	switch (sband->band) {
165 	case NL80211_BAND_5GHZ:
166 	case NL80211_BAND_6GHZ:
167 		want = 3;
168 		for (i = 0; i < sband->n_bitrates; i++) {
169 			if (sband->bitrates[i].bitrate == 60 ||
170 			    sband->bitrates[i].bitrate == 120 ||
171 			    sband->bitrates[i].bitrate == 240) {
172 				sband->bitrates[i].flags |=
173 					IEEE80211_RATE_MANDATORY_A;
174 				want--;
175 			}
176 		}
177 		WARN_ON(want);
178 		break;
179 	case NL80211_BAND_2GHZ:
180 	case NL80211_BAND_LC:
181 		want = 7;
182 		for (i = 0; i < sband->n_bitrates; i++) {
183 			switch (sband->bitrates[i].bitrate) {
184 			case 10:
185 			case 20:
186 			case 55:
187 			case 110:
188 				sband->bitrates[i].flags |=
189 					IEEE80211_RATE_MANDATORY_B |
190 					IEEE80211_RATE_MANDATORY_G;
191 				want--;
192 				break;
193 			case 60:
194 			case 120:
195 			case 240:
196 				sband->bitrates[i].flags |=
197 					IEEE80211_RATE_MANDATORY_G;
198 				want--;
199 				fallthrough;
200 			default:
201 				sband->bitrates[i].flags |=
202 					IEEE80211_RATE_ERP_G;
203 				break;
204 			}
205 		}
206 		WARN_ON(want != 0 && want != 3);
207 		break;
208 	case NL80211_BAND_60GHZ:
209 		/* check for mandatory HT MCS 1..4 */
210 		WARN_ON(!sband->ht_cap.ht_supported);
211 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
212 		break;
213 	case NL80211_BAND_S1GHZ:
214 		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
215 		 * mandatory is ok.
216 		 */
217 		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
218 		break;
219 	case NUM_NL80211_BANDS:
220 	default:
221 		WARN_ON(1);
222 		break;
223 	}
224 }
225 
ieee80211_set_bitrate_flags(struct wiphy * wiphy)226 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
227 {
228 	enum nl80211_band band;
229 
230 	for (band = 0; band < NUM_NL80211_BANDS; band++)
231 		if (wiphy->bands[band])
232 			set_mandatory_flags_band(wiphy->bands[band]);
233 }
234 
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)235 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
236 {
237 	int i;
238 	for (i = 0; i < wiphy->n_cipher_suites; i++)
239 		if (cipher == wiphy->cipher_suites[i])
240 			return true;
241 	return false;
242 }
243 
244 static bool
cfg80211_igtk_cipher_supported(struct cfg80211_registered_device * rdev)245 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
246 {
247 	struct wiphy *wiphy = &rdev->wiphy;
248 	int i;
249 
250 	for (i = 0; i < wiphy->n_cipher_suites; i++) {
251 		switch (wiphy->cipher_suites[i]) {
252 		case WLAN_CIPHER_SUITE_AES_CMAC:
253 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
254 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
255 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
256 			return true;
257 		}
258 	}
259 
260 	return false;
261 }
262 
cfg80211_valid_key_idx(struct cfg80211_registered_device * rdev,int key_idx,bool pairwise)263 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
264 			    int key_idx, bool pairwise)
265 {
266 	int max_key_idx;
267 
268 	if (pairwise)
269 		max_key_idx = 3;
270 	else if (wiphy_ext_feature_isset(&rdev->wiphy,
271 					 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
272 		 wiphy_ext_feature_isset(&rdev->wiphy,
273 					 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
274 		max_key_idx = 7;
275 	else if (cfg80211_igtk_cipher_supported(rdev))
276 		max_key_idx = 5;
277 	else
278 		max_key_idx = 3;
279 
280 	if (key_idx < 0 || key_idx > max_key_idx)
281 		return false;
282 
283 	return true;
284 }
285 
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)286 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
287 				   struct key_params *params, int key_idx,
288 				   bool pairwise, const u8 *mac_addr)
289 {
290 	if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
291 		return -EINVAL;
292 
293 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
294 		return -EINVAL;
295 
296 	if (pairwise && !mac_addr)
297 		return -EINVAL;
298 
299 	switch (params->cipher) {
300 	case WLAN_CIPHER_SUITE_TKIP:
301 		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
302 		if ((pairwise && key_idx) ||
303 		    params->mode != NL80211_KEY_RX_TX)
304 			return -EINVAL;
305 		break;
306 	case WLAN_CIPHER_SUITE_CCMP:
307 	case WLAN_CIPHER_SUITE_CCMP_256:
308 	case WLAN_CIPHER_SUITE_GCMP:
309 	case WLAN_CIPHER_SUITE_GCMP_256:
310 		/* IEEE802.11-2016 allows only 0 and - when supporting
311 		 * Extended Key ID - 1 as index for pairwise keys.
312 		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
313 		 * the driver supports Extended Key ID.
314 		 * @NL80211_KEY_SET_TX can't be set when installing and
315 		 * validating a key.
316 		 */
317 		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
318 		    params->mode == NL80211_KEY_SET_TX)
319 			return -EINVAL;
320 		if (wiphy_ext_feature_isset(&rdev->wiphy,
321 					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
322 			if (pairwise && (key_idx < 0 || key_idx > 1))
323 				return -EINVAL;
324 		} else if (pairwise && key_idx) {
325 			return -EINVAL;
326 		}
327 		break;
328 	case WLAN_CIPHER_SUITE_AES_CMAC:
329 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
330 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
331 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
332 		/* Disallow BIP (group-only) cipher as pairwise cipher */
333 		if (pairwise)
334 			return -EINVAL;
335 		if (key_idx < 4)
336 			return -EINVAL;
337 		break;
338 	case WLAN_CIPHER_SUITE_WEP40:
339 	case WLAN_CIPHER_SUITE_WEP104:
340 		if (key_idx > 3)
341 			return -EINVAL;
342 		break;
343 	default:
344 		break;
345 	}
346 
347 	switch (params->cipher) {
348 	case WLAN_CIPHER_SUITE_WEP40:
349 		if (params->key_len != WLAN_KEY_LEN_WEP40)
350 			return -EINVAL;
351 		break;
352 	case WLAN_CIPHER_SUITE_TKIP:
353 		if (params->key_len != WLAN_KEY_LEN_TKIP)
354 			return -EINVAL;
355 		break;
356 	case WLAN_CIPHER_SUITE_CCMP:
357 		if (params->key_len != WLAN_KEY_LEN_CCMP)
358 			return -EINVAL;
359 		break;
360 	case WLAN_CIPHER_SUITE_CCMP_256:
361 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
362 			return -EINVAL;
363 		break;
364 	case WLAN_CIPHER_SUITE_GCMP:
365 		if (params->key_len != WLAN_KEY_LEN_GCMP)
366 			return -EINVAL;
367 		break;
368 	case WLAN_CIPHER_SUITE_GCMP_256:
369 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
370 			return -EINVAL;
371 		break;
372 	case WLAN_CIPHER_SUITE_WEP104:
373 		if (params->key_len != WLAN_KEY_LEN_WEP104)
374 			return -EINVAL;
375 		break;
376 	case WLAN_CIPHER_SUITE_AES_CMAC:
377 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
378 			return -EINVAL;
379 		break;
380 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
381 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
382 			return -EINVAL;
383 		break;
384 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
385 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
386 			return -EINVAL;
387 		break;
388 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
389 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
390 			return -EINVAL;
391 		break;
392 	default:
393 		/*
394 		 * We don't know anything about this algorithm,
395 		 * allow using it -- but the driver must check
396 		 * all parameters! We still check below whether
397 		 * or not the driver supports this algorithm,
398 		 * of course.
399 		 */
400 		break;
401 	}
402 
403 	if (params->seq) {
404 		switch (params->cipher) {
405 		case WLAN_CIPHER_SUITE_WEP40:
406 		case WLAN_CIPHER_SUITE_WEP104:
407 			/* These ciphers do not use key sequence */
408 			return -EINVAL;
409 		case WLAN_CIPHER_SUITE_TKIP:
410 		case WLAN_CIPHER_SUITE_CCMP:
411 		case WLAN_CIPHER_SUITE_CCMP_256:
412 		case WLAN_CIPHER_SUITE_GCMP:
413 		case WLAN_CIPHER_SUITE_GCMP_256:
414 		case WLAN_CIPHER_SUITE_AES_CMAC:
415 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
416 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
417 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
418 			if (params->seq_len != 6)
419 				return -EINVAL;
420 			break;
421 		}
422 	}
423 
424 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
425 		return -EINVAL;
426 
427 	return 0;
428 }
429 
ieee80211_hdrlen(__le16 fc)430 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
431 {
432 	unsigned int hdrlen = 24;
433 
434 	if (ieee80211_is_ext(fc)) {
435 		hdrlen = 4;
436 		goto out;
437 	}
438 
439 	if (ieee80211_is_data(fc)) {
440 		if (ieee80211_has_a4(fc))
441 			hdrlen = 30;
442 		if (ieee80211_is_data_qos(fc)) {
443 			hdrlen += IEEE80211_QOS_CTL_LEN;
444 			if (ieee80211_has_order(fc))
445 				hdrlen += IEEE80211_HT_CTL_LEN;
446 		}
447 		goto out;
448 	}
449 
450 	if (ieee80211_is_mgmt(fc)) {
451 		if (ieee80211_has_order(fc))
452 			hdrlen += IEEE80211_HT_CTL_LEN;
453 		goto out;
454 	}
455 
456 	if (ieee80211_is_ctl(fc)) {
457 		/*
458 		 * ACK and CTS are 10 bytes, all others 16. To see how
459 		 * to get this condition consider
460 		 *   subtype mask:   0b0000000011110000 (0x00F0)
461 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
462 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
463 		 *   bits that matter:         ^^^      (0x00E0)
464 		 *   value of those: 0b0000000011000000 (0x00C0)
465 		 */
466 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
467 			hdrlen = 10;
468 		else
469 			hdrlen = 16;
470 	}
471 out:
472 	return hdrlen;
473 }
474 EXPORT_SYMBOL(ieee80211_hdrlen);
475 
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)476 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
477 {
478 	const struct ieee80211_hdr *hdr =
479 			(const struct ieee80211_hdr *)skb->data;
480 	unsigned int hdrlen;
481 
482 	if (unlikely(skb->len < 10))
483 		return 0;
484 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
485 	if (unlikely(hdrlen > skb->len))
486 		return 0;
487 	return hdrlen;
488 }
489 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
490 
__ieee80211_get_mesh_hdrlen(u8 flags)491 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
492 {
493 	int ae = flags & MESH_FLAGS_AE;
494 	/* 802.11-2012, 8.2.4.7.3 */
495 	switch (ae) {
496 	default:
497 	case 0:
498 		return 6;
499 	case MESH_FLAGS_AE_A4:
500 		return 12;
501 	case MESH_FLAGS_AE_A5_A6:
502 		return 18;
503 	}
504 }
505 
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)506 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
507 {
508 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
509 }
510 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
511 
ieee80211_get_8023_tunnel_proto(const void * hdr,__be16 * proto)512 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
513 {
514 	const __be16 *hdr_proto = hdr + ETH_ALEN;
515 
516 	if (!(ether_addr_equal(hdr, rfc1042_header) &&
517 	      *hdr_proto != htons(ETH_P_AARP) &&
518 	      *hdr_proto != htons(ETH_P_IPX)) &&
519 	    !ether_addr_equal(hdr, bridge_tunnel_header))
520 		return false;
521 
522 	*proto = *hdr_proto;
523 
524 	return true;
525 }
526 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
527 
ieee80211_strip_8023_mesh_hdr(struct sk_buff * skb)528 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
529 {
530 	const void *mesh_addr;
531 	struct {
532 		struct ethhdr eth;
533 		u8 flags;
534 	} payload;
535 	int hdrlen;
536 	int ret;
537 
538 	ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
539 	if (ret)
540 		return ret;
541 
542 	hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
543 
544 	if (likely(pskb_may_pull(skb, hdrlen + 8) &&
545 		   ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
546 						   &payload.eth.h_proto)))
547 		hdrlen += ETH_ALEN + 2;
548 	else if (!pskb_may_pull(skb, hdrlen))
549 		return -EINVAL;
550 	else
551 		payload.eth.h_proto = htons(skb->len - hdrlen);
552 
553 	mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
554 	switch (payload.flags & MESH_FLAGS_AE) {
555 	case MESH_FLAGS_AE_A4:
556 		memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
557 		break;
558 	case MESH_FLAGS_AE_A5_A6:
559 		memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
560 		break;
561 	default:
562 		break;
563 	}
564 
565 	pskb_pull(skb, hdrlen - sizeof(payload.eth));
566 	memcpy(skb->data, &payload.eth, sizeof(payload.eth));
567 
568 	return 0;
569 }
570 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
571 
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset,bool is_amsdu)572 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
573 				  const u8 *addr, enum nl80211_iftype iftype,
574 				  u8 data_offset, bool is_amsdu)
575 {
576 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
577 	struct {
578 		u8 hdr[ETH_ALEN] __aligned(2);
579 		__be16 proto;
580 	} payload;
581 	struct ethhdr tmp;
582 	u16 hdrlen;
583 
584 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
585 		return -1;
586 
587 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
588 	if (skb->len < hdrlen)
589 		return -1;
590 
591 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
592 	 * header
593 	 * IEEE 802.11 address fields:
594 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
595 	 *   0     0   DA    SA    BSSID n/a
596 	 *   0     1   DA    BSSID SA    n/a
597 	 *   1     0   BSSID SA    DA    n/a
598 	 *   1     1   RA    TA    DA    SA
599 	 */
600 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
601 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
602 
603 	switch (hdr->frame_control &
604 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
605 	case cpu_to_le16(IEEE80211_FCTL_TODS):
606 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
607 			     iftype != NL80211_IFTYPE_AP_VLAN &&
608 			     iftype != NL80211_IFTYPE_P2P_GO))
609 			return -1;
610 		break;
611 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
612 		if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
613 			     iftype != NL80211_IFTYPE_AP_VLAN &&
614 			     iftype != NL80211_IFTYPE_STATION))
615 			return -1;
616 		break;
617 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
618 		if ((iftype != NL80211_IFTYPE_STATION &&
619 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
620 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
621 		    (is_multicast_ether_addr(tmp.h_dest) &&
622 		     ether_addr_equal(tmp.h_source, addr)))
623 			return -1;
624 		break;
625 	case cpu_to_le16(0):
626 		if (iftype != NL80211_IFTYPE_ADHOC &&
627 		    iftype != NL80211_IFTYPE_STATION &&
628 		    iftype != NL80211_IFTYPE_OCB)
629 				return -1;
630 		break;
631 	}
632 
633 	if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
634 		   skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
635 		   ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
636 		/* remove RFC1042 or Bridge-Tunnel encapsulation */
637 		hdrlen += ETH_ALEN + 2;
638 		skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
639 	} else {
640 		tmp.h_proto = htons(skb->len - hdrlen);
641 	}
642 
643 	pskb_pull(skb, hdrlen);
644 
645 	if (!ehdr)
646 		ehdr = skb_push(skb, sizeof(struct ethhdr));
647 	memcpy(ehdr, &tmp, sizeof(tmp));
648 
649 	return 0;
650 }
651 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
652 
653 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)654 __frame_add_frag(struct sk_buff *skb, struct page *page,
655 		 void *ptr, int len, int size)
656 {
657 	struct skb_shared_info *sh = skb_shinfo(skb);
658 	int page_offset;
659 
660 	get_page(page);
661 	page_offset = ptr - page_address(page);
662 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
663 }
664 
665 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)666 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
667 			    int offset, int len)
668 {
669 	struct skb_shared_info *sh = skb_shinfo(skb);
670 	const skb_frag_t *frag = &sh->frags[0];
671 	struct page *frag_page;
672 	void *frag_ptr;
673 	int frag_len, frag_size;
674 	int head_size = skb->len - skb->data_len;
675 	int cur_len;
676 
677 	frag_page = virt_to_head_page(skb->head);
678 	frag_ptr = skb->data;
679 	frag_size = head_size;
680 
681 	while (offset >= frag_size) {
682 		offset -= frag_size;
683 		frag_page = skb_frag_page(frag);
684 		frag_ptr = skb_frag_address(frag);
685 		frag_size = skb_frag_size(frag);
686 		frag++;
687 	}
688 
689 	frag_ptr += offset;
690 	frag_len = frag_size - offset;
691 
692 	cur_len = min(len, frag_len);
693 
694 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
695 	len -= cur_len;
696 
697 	while (len > 0) {
698 		frag_len = skb_frag_size(frag);
699 		cur_len = min(len, frag_len);
700 		__frame_add_frag(frame, skb_frag_page(frag),
701 				 skb_frag_address(frag), cur_len, frag_len);
702 		len -= cur_len;
703 		frag++;
704 	}
705 }
706 
707 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag,int min_len)708 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
709 		       int offset, int len, bool reuse_frag,
710 		       int min_len)
711 {
712 	struct sk_buff *frame;
713 	int cur_len = len;
714 
715 	if (skb->len - offset < len)
716 		return NULL;
717 
718 	/*
719 	 * When reusing fragments, copy some data to the head to simplify
720 	 * ethernet header handling and speed up protocol header processing
721 	 * in the stack later.
722 	 */
723 	if (reuse_frag)
724 		cur_len = min_t(int, len, min_len);
725 
726 	/*
727 	 * Allocate and reserve two bytes more for payload
728 	 * alignment since sizeof(struct ethhdr) is 14.
729 	 */
730 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
731 	if (!frame)
732 		return NULL;
733 
734 	frame->priority = skb->priority;
735 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
736 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
737 
738 	len -= cur_len;
739 	if (!len)
740 		return frame;
741 
742 	offset += cur_len;
743 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
744 
745 	return frame;
746 }
747 
748 static u16
ieee80211_amsdu_subframe_length(void * field,u8 mesh_flags,u8 hdr_type)749 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
750 {
751 	__le16 *field_le = field;
752 	__be16 *field_be = field;
753 	u16 len;
754 
755 	if (hdr_type >= 2)
756 		len = le16_to_cpu(*field_le);
757 	else
758 		len = be16_to_cpu(*field_be);
759 	if (hdr_type)
760 		len += __ieee80211_get_mesh_hdrlen(mesh_flags);
761 
762 	return len;
763 }
764 
ieee80211_is_valid_amsdu(struct sk_buff * skb,u8 mesh_hdr)765 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
766 {
767 	int offset = 0, subframe_len, padding;
768 
769 	for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
770 		int remaining = skb->len - offset;
771 		struct {
772 		    __be16 len;
773 		    u8 mesh_flags;
774 		} hdr;
775 		u16 len;
776 
777 		if (sizeof(hdr) > remaining)
778 			return false;
779 
780 		if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
781 			return false;
782 
783 		len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
784 						      mesh_hdr);
785 		subframe_len = sizeof(struct ethhdr) + len;
786 		padding = (4 - subframe_len) & 0x3;
787 
788 		if (subframe_len > remaining)
789 			return false;
790 	}
791 
792 	return true;
793 }
794 EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
795 
796 
797 /*
798  * Detects if an MSDU frame was maliciously converted into an A-MSDU
799  * frame by an adversary. This is done by parsing the received frame
800  * as if it were a regular MSDU, even though the A-MSDU flag is set.
801  *
802  * For non-mesh interfaces, detection involves checking whether the
803  * payload, when interpreted as an MSDU, begins with a valid RFC1042
804  * header. This is done by comparing the A-MSDU subheader's destination
805  * address to the start of the RFC1042 header.
806  *
807  * For mesh interfaces, the MSDU includes a 6-byte Mesh Control field
808  * and an optional variable-length Mesh Address Extension field before
809  * the RFC1042 header. The position of the RFC1042 header must therefore
810  * be calculated based on the mesh header length.
811  *
812  * Since this function intentionally parses an A-MSDU frame as an MSDU,
813  * it only assumes that the A-MSDU subframe header is present, and
814  * beyond this it performs its own bounds checks under the assumption
815  * that the frame is instead parsed as a non-aggregated MSDU.
816  */
817 static bool
is_amsdu_aggregation_attack(struct ethhdr * eth,struct sk_buff * skb,enum nl80211_iftype iftype)818 is_amsdu_aggregation_attack(struct ethhdr *eth, struct sk_buff *skb,
819 			    enum nl80211_iftype iftype)
820 {
821 	int offset;
822 
823 	/* Non-mesh case can be directly compared */
824 	if (iftype != NL80211_IFTYPE_MESH_POINT)
825 		return ether_addr_equal(eth->h_dest, rfc1042_header);
826 
827 	offset = __ieee80211_get_mesh_hdrlen(eth->h_dest[0]);
828 	if (offset == 6) {
829 		/* Mesh case with empty address extension field */
830 		return ether_addr_equal(eth->h_source, rfc1042_header);
831 	} else if (offset + ETH_ALEN <= skb->len) {
832 		/* Mesh case with non-empty address extension field */
833 		u8 temp[ETH_ALEN];
834 
835 		skb_copy_bits(skb, offset, temp, ETH_ALEN);
836 		return ether_addr_equal(temp, rfc1042_header);
837 	}
838 
839 	return false;
840 }
841 
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa,u8 mesh_control)842 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
843 			      const u8 *addr, enum nl80211_iftype iftype,
844 			      const unsigned int extra_headroom,
845 			      const u8 *check_da, const u8 *check_sa,
846 			      u8 mesh_control)
847 {
848 	unsigned int hlen = ALIGN(extra_headroom, 4);
849 	struct sk_buff *frame = NULL;
850 	int offset = 0;
851 	struct {
852 		struct ethhdr eth;
853 		uint8_t flags;
854 	} hdr;
855 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
856 	bool reuse_skb = false;
857 	bool last = false;
858 	int copy_len = sizeof(hdr.eth);
859 
860 	if (iftype == NL80211_IFTYPE_MESH_POINT)
861 		copy_len = sizeof(hdr);
862 
863 	while (!last) {
864 		int remaining = skb->len - offset;
865 		unsigned int subframe_len;
866 		int len, mesh_len = 0;
867 		u8 padding;
868 
869 		if (copy_len > remaining)
870 			goto purge;
871 
872 		skb_copy_bits(skb, offset, &hdr, copy_len);
873 		if (iftype == NL80211_IFTYPE_MESH_POINT)
874 			mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
875 		len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
876 						      mesh_control);
877 		subframe_len = sizeof(struct ethhdr) + len;
878 		padding = (4 - subframe_len) & 0x3;
879 
880 		/* the last MSDU has no padding */
881 		if (subframe_len > remaining)
882 			goto purge;
883 		/* mitigate A-MSDU aggregation injection attacks, to be
884 		 * checked when processing first subframe (offset == 0).
885 		 */
886 		if (offset == 0 && is_amsdu_aggregation_attack(&hdr.eth, skb, iftype))
887 			goto purge;
888 
889 		offset += sizeof(struct ethhdr);
890 		last = remaining <= subframe_len + padding;
891 
892 		/* FIXME: should we really accept multicast DA? */
893 		if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
894 		     !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
895 		    (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
896 			offset += len + padding;
897 			continue;
898 		}
899 
900 		/* reuse skb for the last subframe */
901 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
902 			skb_pull(skb, offset);
903 			frame = skb;
904 			reuse_skb = true;
905 		} else {
906 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
907 						       reuse_frag, 32 + mesh_len);
908 			if (!frame)
909 				goto purge;
910 
911 			offset += len + padding;
912 		}
913 
914 		skb_reset_network_header(frame);
915 		frame->dev = skb->dev;
916 		frame->priority = skb->priority;
917 
918 		if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
919 			   ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
920 			skb_pull(frame, ETH_ALEN + 2);
921 
922 		memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
923 		__skb_queue_tail(list, frame);
924 	}
925 
926 	if (!reuse_skb)
927 		dev_kfree_skb(skb);
928 
929 	return;
930 
931  purge:
932 	__skb_queue_purge(list);
933 	dev_kfree_skb(skb);
934 }
935 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
936 
937 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)938 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
939 				    struct cfg80211_qos_map *qos_map)
940 {
941 	unsigned int dscp;
942 	unsigned char vlan_priority;
943 	unsigned int ret;
944 
945 	/* skb->priority values from 256->263 are magic values to
946 	 * directly indicate a specific 802.1d priority.  This is used
947 	 * to allow 802.1d priority to be passed directly in from VLAN
948 	 * tags, etc.
949 	 */
950 	if (skb->priority >= 256 && skb->priority <= 263) {
951 		ret = skb->priority - 256;
952 		goto out;
953 	}
954 
955 	if (skb_vlan_tag_present(skb)) {
956 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
957 			>> VLAN_PRIO_SHIFT;
958 		if (vlan_priority > 0) {
959 			ret = vlan_priority;
960 			goto out;
961 		}
962 	}
963 
964 	switch (skb->protocol) {
965 	case htons(ETH_P_IP):
966 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
967 		break;
968 	case htons(ETH_P_IPV6):
969 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
970 		break;
971 	case htons(ETH_P_MPLS_UC):
972 	case htons(ETH_P_MPLS_MC): {
973 		struct mpls_label mpls_tmp, *mpls;
974 
975 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
976 					  sizeof(*mpls), &mpls_tmp);
977 		if (!mpls)
978 			return 0;
979 
980 		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
981 			>> MPLS_LS_TC_SHIFT;
982 		goto out;
983 	}
984 	case htons(ETH_P_80221):
985 		/* 802.21 is always network control traffic */
986 		return 7;
987 	default:
988 		return 0;
989 	}
990 
991 	if (qos_map) {
992 		unsigned int i, tmp_dscp = dscp >> 2;
993 
994 		for (i = 0; i < qos_map->num_des; i++) {
995 			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
996 				ret = qos_map->dscp_exception[i].up;
997 				goto out;
998 			}
999 		}
1000 
1001 		for (i = 0; i < 8; i++) {
1002 			if (tmp_dscp >= qos_map->up[i].low &&
1003 			    tmp_dscp <= qos_map->up[i].high) {
1004 				ret = i;
1005 				goto out;
1006 			}
1007 		}
1008 	}
1009 
1010 	/* The default mapping as defined Section 2.3 in RFC8325: The three
1011 	 * Most Significant Bits (MSBs) of the DSCP are used as the
1012 	 * corresponding L2 markings.
1013 	 */
1014 	ret = dscp >> 5;
1015 
1016 	/* Handle specific DSCP values for which the default mapping (as
1017 	 * described above) doesn't adhere to the intended usage of the DSCP
1018 	 * value. See section 4 in RFC8325. Specifically, for the following
1019 	 * Diffserv Service Classes no update is needed:
1020 	 * - Standard: DF
1021 	 * - Low Priority Data: CS1
1022 	 * - Multimedia Conferencing: AF41, AF42, AF43
1023 	 * - Network Control Traffic: CS7
1024 	 * - Real-Time Interactive: CS4
1025 	 * - Signaling: CS5
1026 	 */
1027 	switch (dscp >> 2) {
1028 	case 10:
1029 	case 12:
1030 	case 14:
1031 		/* High throughput data: AF11, AF12, AF13 */
1032 		ret = 0;
1033 		break;
1034 	case 16:
1035 		/* Operations, Administration, and Maintenance and Provisioning:
1036 		 * CS2
1037 		 */
1038 		ret = 0;
1039 		break;
1040 	case 18:
1041 	case 20:
1042 	case 22:
1043 		/* Low latency data: AF21, AF22, AF23 */
1044 		ret = 3;
1045 		break;
1046 	case 24:
1047 		/* Broadcasting video: CS3 */
1048 		ret = 4;
1049 		break;
1050 	case 26:
1051 	case 28:
1052 	case 30:
1053 		/* Multimedia Streaming: AF31, AF32, AF33 */
1054 		ret = 4;
1055 		break;
1056 	case 44:
1057 		/* Voice Admit: VA */
1058 		ret = 6;
1059 		break;
1060 	case 46:
1061 		/* Telephony traffic: EF */
1062 		ret = 6;
1063 		break;
1064 	case 48:
1065 		/* Network Control Traffic: CS6 */
1066 		ret = 7;
1067 		break;
1068 	}
1069 out:
1070 	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
1071 }
1072 EXPORT_SYMBOL(cfg80211_classify8021d);
1073 
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)1074 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
1075 {
1076 	const struct cfg80211_bss_ies *ies;
1077 
1078 	ies = rcu_dereference(bss->ies);
1079 	if (!ies)
1080 		return NULL;
1081 
1082 	return cfg80211_find_elem(id, ies->data, ies->len);
1083 }
1084 EXPORT_SYMBOL(ieee80211_bss_get_elem);
1085 
cfg80211_upload_connect_keys(struct wireless_dev * wdev)1086 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1087 {
1088 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1089 	struct net_device *dev = wdev->netdev;
1090 	int i;
1091 
1092 	if (!wdev->connect_keys)
1093 		return;
1094 
1095 	for (i = 0; i < 4; i++) {
1096 		if (!wdev->connect_keys->params[i].cipher)
1097 			continue;
1098 		if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1099 				 &wdev->connect_keys->params[i])) {
1100 			netdev_err(dev, "failed to set key %d\n", i);
1101 			continue;
1102 		}
1103 		if (wdev->connect_keys->def == i &&
1104 		    rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1105 			netdev_err(dev, "failed to set defkey %d\n", i);
1106 			continue;
1107 		}
1108 	}
1109 
1110 	kfree_sensitive(wdev->connect_keys);
1111 	wdev->connect_keys = NULL;
1112 }
1113 
cfg80211_process_wdev_events(struct wireless_dev * wdev)1114 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1115 {
1116 	struct cfg80211_event *ev;
1117 	unsigned long flags;
1118 
1119 	spin_lock_irqsave(&wdev->event_lock, flags);
1120 	while (!list_empty(&wdev->event_list)) {
1121 		ev = list_first_entry(&wdev->event_list,
1122 				      struct cfg80211_event, list);
1123 		list_del(&ev->list);
1124 		spin_unlock_irqrestore(&wdev->event_lock, flags);
1125 
1126 		switch (ev->type) {
1127 		case EVENT_CONNECT_RESULT:
1128 			__cfg80211_connect_result(
1129 				wdev->netdev,
1130 				&ev->cr,
1131 				ev->cr.status == WLAN_STATUS_SUCCESS);
1132 			break;
1133 		case EVENT_ROAMED:
1134 			__cfg80211_roamed(wdev, &ev->rm);
1135 			break;
1136 		case EVENT_DISCONNECTED:
1137 			__cfg80211_disconnected(wdev->netdev,
1138 						ev->dc.ie, ev->dc.ie_len,
1139 						ev->dc.reason,
1140 						!ev->dc.locally_generated);
1141 			break;
1142 		case EVENT_IBSS_JOINED:
1143 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1144 					       ev->ij.channel);
1145 			break;
1146 		case EVENT_STOPPED:
1147 			cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1148 			break;
1149 		case EVENT_PORT_AUTHORIZED:
1150 			__cfg80211_port_authorized(wdev, ev->pa.peer_addr,
1151 						   ev->pa.td_bitmap,
1152 						   ev->pa.td_bitmap_len);
1153 			break;
1154 		}
1155 
1156 		kfree(ev);
1157 
1158 		spin_lock_irqsave(&wdev->event_lock, flags);
1159 	}
1160 	spin_unlock_irqrestore(&wdev->event_lock, flags);
1161 }
1162 
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)1163 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1164 {
1165 	struct wireless_dev *wdev;
1166 
1167 	lockdep_assert_held(&rdev->wiphy.mtx);
1168 
1169 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1170 		cfg80211_process_wdev_events(wdev);
1171 }
1172 
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)1173 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1174 			  struct net_device *dev, enum nl80211_iftype ntype,
1175 			  struct vif_params *params)
1176 {
1177 	int err;
1178 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1179 
1180 	lockdep_assert_held(&rdev->wiphy.mtx);
1181 
1182 	/* don't support changing VLANs, you just re-create them */
1183 	if (otype == NL80211_IFTYPE_AP_VLAN)
1184 		return -EOPNOTSUPP;
1185 
1186 	/* cannot change into P2P device or NAN */
1187 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1188 	    ntype == NL80211_IFTYPE_NAN)
1189 		return -EOPNOTSUPP;
1190 
1191 	if (!rdev->ops->change_virtual_intf ||
1192 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1193 		return -EOPNOTSUPP;
1194 
1195 	if (ntype != otype) {
1196 		/* if it's part of a bridge, reject changing type to station/ibss */
1197 		if (netif_is_bridge_port(dev) &&
1198 		    (ntype == NL80211_IFTYPE_ADHOC ||
1199 		     ntype == NL80211_IFTYPE_STATION ||
1200 		     ntype == NL80211_IFTYPE_P2P_CLIENT))
1201 			return -EBUSY;
1202 
1203 		dev->ieee80211_ptr->use_4addr = false;
1204 		rdev_set_qos_map(rdev, dev, NULL);
1205 
1206 		cfg80211_leave(rdev, dev->ieee80211_ptr);
1207 
1208 		cfg80211_process_rdev_events(rdev);
1209 		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1210 
1211 		memset(&dev->ieee80211_ptr->u, 0,
1212 		       sizeof(dev->ieee80211_ptr->u));
1213 		memset(&dev->ieee80211_ptr->links, 0,
1214 		       sizeof(dev->ieee80211_ptr->links));
1215 	}
1216 
1217 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1218 
1219 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1220 
1221 	if (!err && params && params->use_4addr != -1)
1222 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1223 
1224 	if (!err) {
1225 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1226 		switch (ntype) {
1227 		case NL80211_IFTYPE_STATION:
1228 			if (dev->ieee80211_ptr->use_4addr)
1229 				break;
1230 			fallthrough;
1231 		case NL80211_IFTYPE_OCB:
1232 		case NL80211_IFTYPE_P2P_CLIENT:
1233 		case NL80211_IFTYPE_ADHOC:
1234 			dev->priv_flags |= IFF_DONT_BRIDGE;
1235 			break;
1236 		case NL80211_IFTYPE_P2P_GO:
1237 		case NL80211_IFTYPE_AP:
1238 		case NL80211_IFTYPE_AP_VLAN:
1239 		case NL80211_IFTYPE_MESH_POINT:
1240 			/* bridging OK */
1241 			break;
1242 		case NL80211_IFTYPE_MONITOR:
1243 			/* monitor can't bridge anyway */
1244 			break;
1245 		case NL80211_IFTYPE_UNSPECIFIED:
1246 		case NUM_NL80211_IFTYPES:
1247 			/* not happening */
1248 			break;
1249 		case NL80211_IFTYPE_P2P_DEVICE:
1250 		case NL80211_IFTYPE_WDS:
1251 		case NL80211_IFTYPE_NAN:
1252 			WARN_ON(1);
1253 			break;
1254 		}
1255 	}
1256 
1257 	if (!err && ntype != otype && netif_running(dev)) {
1258 		cfg80211_update_iface_num(rdev, ntype, 1);
1259 		cfg80211_update_iface_num(rdev, otype, -1);
1260 	}
1261 
1262 	return err;
1263 }
1264 
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1265 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1266 {
1267 	int modulation, streams, bitrate;
1268 
1269 	/* the formula below does only work for MCS values smaller than 32 */
1270 	if (WARN_ON_ONCE(rate->mcs >= 32))
1271 		return 0;
1272 
1273 	modulation = rate->mcs & 7;
1274 	streams = (rate->mcs >> 3) + 1;
1275 
1276 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1277 
1278 	if (modulation < 4)
1279 		bitrate *= (modulation + 1);
1280 	else if (modulation == 4)
1281 		bitrate *= (modulation + 2);
1282 	else
1283 		bitrate *= (modulation + 3);
1284 
1285 	bitrate *= streams;
1286 
1287 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1288 		bitrate = (bitrate / 9) * 10;
1289 
1290 	/* do NOT round down here */
1291 	return (bitrate + 50000) / 100000;
1292 }
1293 
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1294 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1295 {
1296 	static const u32 __mcs2bitrate[] = {
1297 		/* control PHY */
1298 		[0] =   275,
1299 		/* SC PHY */
1300 		[1] =  3850,
1301 		[2] =  7700,
1302 		[3] =  9625,
1303 		[4] = 11550,
1304 		[5] = 12512, /* 1251.25 mbps */
1305 		[6] = 15400,
1306 		[7] = 19250,
1307 		[8] = 23100,
1308 		[9] = 25025,
1309 		[10] = 30800,
1310 		[11] = 38500,
1311 		[12] = 46200,
1312 		/* OFDM PHY */
1313 		[13] =  6930,
1314 		[14] =  8662, /* 866.25 mbps */
1315 		[15] = 13860,
1316 		[16] = 17325,
1317 		[17] = 20790,
1318 		[18] = 27720,
1319 		[19] = 34650,
1320 		[20] = 41580,
1321 		[21] = 45045,
1322 		[22] = 51975,
1323 		[23] = 62370,
1324 		[24] = 67568, /* 6756.75 mbps */
1325 		/* LP-SC PHY */
1326 		[25] =  6260,
1327 		[26] =  8340,
1328 		[27] = 11120,
1329 		[28] = 12510,
1330 		[29] = 16680,
1331 		[30] = 22240,
1332 		[31] = 25030,
1333 	};
1334 
1335 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1336 		return 0;
1337 
1338 	return __mcs2bitrate[rate->mcs];
1339 }
1340 
cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info * rate)1341 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1342 {
1343 	static const u32 __mcs2bitrate[] = {
1344 		[6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1345 		[7 - 6] = 50050, /* MCS 12.1 */
1346 		[8 - 6] = 53900,
1347 		[9 - 6] = 57750,
1348 		[10 - 6] = 63900,
1349 		[11 - 6] = 75075,
1350 		[12 - 6] = 80850,
1351 	};
1352 
1353 	/* Extended SC MCS not defined for base MCS below 6 or above 12 */
1354 	if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1355 		return 0;
1356 
1357 	return __mcs2bitrate[rate->mcs - 6];
1358 }
1359 
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1360 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1361 {
1362 	static const u32 __mcs2bitrate[] = {
1363 		/* control PHY */
1364 		[0] =   275,
1365 		/* SC PHY */
1366 		[1] =  3850,
1367 		[2] =  7700,
1368 		[3] =  9625,
1369 		[4] = 11550,
1370 		[5] = 12512, /* 1251.25 mbps */
1371 		[6] = 13475,
1372 		[7] = 15400,
1373 		[8] = 19250,
1374 		[9] = 23100,
1375 		[10] = 25025,
1376 		[11] = 26950,
1377 		[12] = 30800,
1378 		[13] = 38500,
1379 		[14] = 46200,
1380 		[15] = 50050,
1381 		[16] = 53900,
1382 		[17] = 57750,
1383 		[18] = 69300,
1384 		[19] = 75075,
1385 		[20] = 80850,
1386 	};
1387 
1388 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1389 		return 0;
1390 
1391 	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1392 }
1393 
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1394 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1395 {
1396 	static const u32 base[4][12] = {
1397 		{   6500000,
1398 		   13000000,
1399 		   19500000,
1400 		   26000000,
1401 		   39000000,
1402 		   52000000,
1403 		   58500000,
1404 		   65000000,
1405 		   78000000,
1406 		/* not in the spec, but some devices use this: */
1407 		   86700000,
1408 		   97500000,
1409 		  108300000,
1410 		},
1411 		{  13500000,
1412 		   27000000,
1413 		   40500000,
1414 		   54000000,
1415 		   81000000,
1416 		  108000000,
1417 		  121500000,
1418 		  135000000,
1419 		  162000000,
1420 		  180000000,
1421 		  202500000,
1422 		  225000000,
1423 		},
1424 		{  29300000,
1425 		   58500000,
1426 		   87800000,
1427 		  117000000,
1428 		  175500000,
1429 		  234000000,
1430 		  263300000,
1431 		  292500000,
1432 		  351000000,
1433 		  390000000,
1434 		  438800000,
1435 		  487500000,
1436 		},
1437 		{  58500000,
1438 		  117000000,
1439 		  175500000,
1440 		  234000000,
1441 		  351000000,
1442 		  468000000,
1443 		  526500000,
1444 		  585000000,
1445 		  702000000,
1446 		  780000000,
1447 		  877500000,
1448 		  975000000,
1449 		},
1450 	};
1451 	u32 bitrate;
1452 	int idx;
1453 
1454 	if (rate->mcs > 11)
1455 		goto warn;
1456 
1457 	switch (rate->bw) {
1458 	case RATE_INFO_BW_160:
1459 		idx = 3;
1460 		break;
1461 	case RATE_INFO_BW_80:
1462 		idx = 2;
1463 		break;
1464 	case RATE_INFO_BW_40:
1465 		idx = 1;
1466 		break;
1467 	case RATE_INFO_BW_5:
1468 	case RATE_INFO_BW_10:
1469 	default:
1470 		goto warn;
1471 	case RATE_INFO_BW_20:
1472 		idx = 0;
1473 	}
1474 
1475 	bitrate = base[idx][rate->mcs];
1476 	bitrate *= rate->nss;
1477 
1478 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1479 		bitrate = (bitrate / 9) * 10;
1480 
1481 	/* do NOT round down here */
1482 	return (bitrate + 50000) / 100000;
1483  warn:
1484 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1485 		  rate->bw, rate->mcs, rate->nss);
1486 	return 0;
1487 }
1488 
cfg80211_calculate_bitrate_he(struct rate_info * rate)1489 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1490 {
1491 #define SCALE 6144
1492 	u32 mcs_divisors[14] = {
1493 		102399, /* 16.666666... */
1494 		 51201, /*  8.333333... */
1495 		 34134, /*  5.555555... */
1496 		 25599, /*  4.166666... */
1497 		 17067, /*  2.777777... */
1498 		 12801, /*  2.083333... */
1499 		 11377, /*  1.851725... */
1500 		 10239, /*  1.666666... */
1501 		  8532, /*  1.388888... */
1502 		  7680, /*  1.250000... */
1503 		  6828, /*  1.111111... */
1504 		  6144, /*  1.000000... */
1505 		  5690, /*  0.926106... */
1506 		  5120, /*  0.833333... */
1507 	};
1508 	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1509 	u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1510 	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1511 	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1512 	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1513 	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1514 	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1515 	u64 tmp;
1516 	u32 result;
1517 
1518 	if (WARN_ON_ONCE(rate->mcs > 13))
1519 		return 0;
1520 
1521 	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1522 		return 0;
1523 	if (WARN_ON_ONCE(rate->he_ru_alloc >
1524 			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1525 		return 0;
1526 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1527 		return 0;
1528 
1529 	if (rate->bw == RATE_INFO_BW_160 ||
1530 	    (rate->bw == RATE_INFO_BW_HE_RU &&
1531 	     rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1532 		result = rates_160M[rate->he_gi];
1533 	else if (rate->bw == RATE_INFO_BW_80 ||
1534 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1535 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1536 		result = rates_996[rate->he_gi];
1537 	else if (rate->bw == RATE_INFO_BW_40 ||
1538 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1539 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1540 		result = rates_484[rate->he_gi];
1541 	else if (rate->bw == RATE_INFO_BW_20 ||
1542 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1543 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1544 		result = rates_242[rate->he_gi];
1545 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1546 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1547 		result = rates_106[rate->he_gi];
1548 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1549 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1550 		result = rates_52[rate->he_gi];
1551 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1552 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1553 		result = rates_26[rate->he_gi];
1554 	else {
1555 		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1556 		     rate->bw, rate->he_ru_alloc);
1557 		return 0;
1558 	}
1559 
1560 	/* now scale to the appropriate MCS */
1561 	tmp = result;
1562 	tmp *= SCALE;
1563 	do_div(tmp, mcs_divisors[rate->mcs]);
1564 
1565 	/* and take NSS, DCM into account */
1566 	tmp *= rate->nss;
1567 	do_div(tmp, 8);
1568 	if (rate->he_dcm)
1569 		do_div(tmp, 2);
1570 
1571 	result = tmp;
1572 
1573 	return result / 10000;
1574 }
1575 
cfg80211_calculate_bitrate_eht(struct rate_info * rate)1576 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1577 {
1578 #define SCALE 6144
1579 	static const u32 mcs_divisors[16] = {
1580 		102399, /* 16.666666... */
1581 		 51201, /*  8.333333... */
1582 		 34134, /*  5.555555... */
1583 		 25599, /*  4.166666... */
1584 		 17067, /*  2.777777... */
1585 		 12801, /*  2.083333... */
1586 		 11377, /*  1.851725... */
1587 		 10239, /*  1.666666... */
1588 		  8532, /*  1.388888... */
1589 		  7680, /*  1.250000... */
1590 		  6828, /*  1.111111... */
1591 		  6144, /*  1.000000... */
1592 		  5690, /*  0.926106... */
1593 		  5120, /*  0.833333... */
1594 		409600, /* 66.666666... */
1595 		204800, /* 33.333333... */
1596 	};
1597 	static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1598 	static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1599 	static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1600 	static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1601 	static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1602 	static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1603 	u64 tmp;
1604 	u32 result;
1605 
1606 	if (WARN_ON_ONCE(rate->mcs > 15))
1607 		return 0;
1608 	if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1609 		return 0;
1610 	if (WARN_ON_ONCE(rate->eht_ru_alloc >
1611 			 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1612 		return 0;
1613 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1614 		return 0;
1615 
1616 	/* Bandwidth checks for MCS 14 */
1617 	if (rate->mcs == 14) {
1618 		if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1619 		     rate->bw != RATE_INFO_BW_80 &&
1620 		     rate->bw != RATE_INFO_BW_160 &&
1621 		     rate->bw != RATE_INFO_BW_320) ||
1622 		    (rate->bw == RATE_INFO_BW_EHT_RU &&
1623 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1624 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1625 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1626 			WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1627 			     rate->bw, rate->eht_ru_alloc);
1628 			return 0;
1629 		}
1630 	}
1631 
1632 	if (rate->bw == RATE_INFO_BW_320 ||
1633 	    (rate->bw == RATE_INFO_BW_EHT_RU &&
1634 	     rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1635 		result = 4 * rates_996[rate->eht_gi];
1636 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1637 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1638 		result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1639 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1640 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1641 		result = 3 * rates_996[rate->eht_gi];
1642 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1643 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1644 		result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1645 	else if (rate->bw == RATE_INFO_BW_160 ||
1646 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1647 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1648 		result = 2 * rates_996[rate->eht_gi];
1649 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1650 		 rate->eht_ru_alloc ==
1651 		 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1652 		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1653 			 + rates_242[rate->eht_gi];
1654 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1655 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1656 		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1657 	else if (rate->bw == RATE_INFO_BW_80 ||
1658 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1659 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1660 		result = rates_996[rate->eht_gi];
1661 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1662 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1663 		result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1664 	else if (rate->bw == RATE_INFO_BW_40 ||
1665 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1666 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1667 		result = rates_484[rate->eht_gi];
1668 	else if (rate->bw == RATE_INFO_BW_20 ||
1669 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1670 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1671 		result = rates_242[rate->eht_gi];
1672 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1673 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1674 		result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1675 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1676 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1677 		result = rates_106[rate->eht_gi];
1678 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1679 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1680 		result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1681 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1682 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1683 		result = rates_52[rate->eht_gi];
1684 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1685 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1686 		result = rates_26[rate->eht_gi];
1687 	else {
1688 		WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1689 		     rate->bw, rate->eht_ru_alloc);
1690 		return 0;
1691 	}
1692 
1693 	/* now scale to the appropriate MCS */
1694 	tmp = result;
1695 	tmp *= SCALE;
1696 	do_div(tmp, mcs_divisors[rate->mcs]);
1697 
1698 	/* and take NSS */
1699 	tmp *= rate->nss;
1700 	do_div(tmp, 8);
1701 
1702 	result = tmp;
1703 
1704 	return result / 10000;
1705 }
1706 
cfg80211_calculate_bitrate_s1g(struct rate_info * rate)1707 static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1708 {
1709 	/* For 1, 2, 4, 8 and 16 MHz channels */
1710 	static const u32 base[5][11] = {
1711 		{  300000,
1712 		   600000,
1713 		   900000,
1714 		  1200000,
1715 		  1800000,
1716 		  2400000,
1717 		  2700000,
1718 		  3000000,
1719 		  3600000,
1720 		  4000000,
1721 		  /* MCS 10 supported in 1 MHz only */
1722 		  150000,
1723 		},
1724 		{  650000,
1725 		  1300000,
1726 		  1950000,
1727 		  2600000,
1728 		  3900000,
1729 		  5200000,
1730 		  5850000,
1731 		  6500000,
1732 		  7800000,
1733 		  /* MCS 9 not valid */
1734 		},
1735 		{  1350000,
1736 		   2700000,
1737 		   4050000,
1738 		   5400000,
1739 		   8100000,
1740 		  10800000,
1741 		  12150000,
1742 		  13500000,
1743 		  16200000,
1744 		  18000000,
1745 		},
1746 		{  2925000,
1747 		   5850000,
1748 		   8775000,
1749 		  11700000,
1750 		  17550000,
1751 		  23400000,
1752 		  26325000,
1753 		  29250000,
1754 		  35100000,
1755 		  39000000,
1756 		},
1757 		{  8580000,
1758 		  11700000,
1759 		  17550000,
1760 		  23400000,
1761 		  35100000,
1762 		  46800000,
1763 		  52650000,
1764 		  58500000,
1765 		  70200000,
1766 		  78000000,
1767 		},
1768 	};
1769 	u32 bitrate;
1770 	/* default is 1 MHz index */
1771 	int idx = 0;
1772 
1773 	if (rate->mcs >= 11)
1774 		goto warn;
1775 
1776 	switch (rate->bw) {
1777 	case RATE_INFO_BW_16:
1778 		idx = 4;
1779 		break;
1780 	case RATE_INFO_BW_8:
1781 		idx = 3;
1782 		break;
1783 	case RATE_INFO_BW_4:
1784 		idx = 2;
1785 		break;
1786 	case RATE_INFO_BW_2:
1787 		idx = 1;
1788 		break;
1789 	case RATE_INFO_BW_1:
1790 		idx = 0;
1791 		break;
1792 	case RATE_INFO_BW_5:
1793 	case RATE_INFO_BW_10:
1794 	case RATE_INFO_BW_20:
1795 	case RATE_INFO_BW_40:
1796 	case RATE_INFO_BW_80:
1797 	case RATE_INFO_BW_160:
1798 	default:
1799 		goto warn;
1800 	}
1801 
1802 	bitrate = base[idx][rate->mcs];
1803 	bitrate *= rate->nss;
1804 
1805 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1806 		bitrate = (bitrate / 9) * 10;
1807 	/* do NOT round down here */
1808 	return (bitrate + 50000) / 100000;
1809 warn:
1810 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1811 		  rate->bw, rate->mcs, rate->nss);
1812 	return 0;
1813 }
1814 
cfg80211_calculate_bitrate(struct rate_info * rate)1815 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1816 {
1817 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1818 		return cfg80211_calculate_bitrate_ht(rate);
1819 	if (rate->flags & RATE_INFO_FLAGS_DMG)
1820 		return cfg80211_calculate_bitrate_dmg(rate);
1821 	if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1822 		return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1823 	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1824 		return cfg80211_calculate_bitrate_edmg(rate);
1825 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1826 		return cfg80211_calculate_bitrate_vht(rate);
1827 	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1828 		return cfg80211_calculate_bitrate_he(rate);
1829 	if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1830 		return cfg80211_calculate_bitrate_eht(rate);
1831 	if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1832 		return cfg80211_calculate_bitrate_s1g(rate);
1833 
1834 	return rate->legacy;
1835 }
1836 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1837 
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1838 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1839 			  enum ieee80211_p2p_attr_id attr,
1840 			  u8 *buf, unsigned int bufsize)
1841 {
1842 	u8 *out = buf;
1843 	u16 attr_remaining = 0;
1844 	bool desired_attr = false;
1845 	u16 desired_len = 0;
1846 
1847 	while (len > 0) {
1848 		unsigned int iedatalen;
1849 		unsigned int copy;
1850 		const u8 *iedata;
1851 
1852 		if (len < 2)
1853 			return -EILSEQ;
1854 		iedatalen = ies[1];
1855 		if (iedatalen + 2 > len)
1856 			return -EILSEQ;
1857 
1858 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1859 			goto cont;
1860 
1861 		if (iedatalen < 4)
1862 			goto cont;
1863 
1864 		iedata = ies + 2;
1865 
1866 		/* check WFA OUI, P2P subtype */
1867 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1868 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1869 			goto cont;
1870 
1871 		iedatalen -= 4;
1872 		iedata += 4;
1873 
1874 		/* check attribute continuation into this IE */
1875 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1876 		if (copy && desired_attr) {
1877 			desired_len += copy;
1878 			if (out) {
1879 				memcpy(out, iedata, min(bufsize, copy));
1880 				out += min(bufsize, copy);
1881 				bufsize -= min(bufsize, copy);
1882 			}
1883 
1884 
1885 			if (copy == attr_remaining)
1886 				return desired_len;
1887 		}
1888 
1889 		attr_remaining -= copy;
1890 		if (attr_remaining)
1891 			goto cont;
1892 
1893 		iedatalen -= copy;
1894 		iedata += copy;
1895 
1896 		while (iedatalen > 0) {
1897 			u16 attr_len;
1898 
1899 			/* P2P attribute ID & size must fit */
1900 			if (iedatalen < 3)
1901 				return -EILSEQ;
1902 			desired_attr = iedata[0] == attr;
1903 			attr_len = get_unaligned_le16(iedata + 1);
1904 			iedatalen -= 3;
1905 			iedata += 3;
1906 
1907 			copy = min_t(unsigned int, attr_len, iedatalen);
1908 
1909 			if (desired_attr) {
1910 				desired_len += copy;
1911 				if (out) {
1912 					memcpy(out, iedata, min(bufsize, copy));
1913 					out += min(bufsize, copy);
1914 					bufsize -= min(bufsize, copy);
1915 				}
1916 
1917 				if (copy == attr_len)
1918 					return desired_len;
1919 			}
1920 
1921 			iedata += copy;
1922 			iedatalen -= copy;
1923 			attr_remaining = attr_len - copy;
1924 		}
1925 
1926  cont:
1927 		len -= ies[1] + 2;
1928 		ies += ies[1] + 2;
1929 	}
1930 
1931 	if (attr_remaining && desired_attr)
1932 		return -EILSEQ;
1933 
1934 	return -ENOENT;
1935 }
1936 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1937 
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1938 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1939 {
1940 	int i;
1941 
1942 	/* Make sure array values are legal */
1943 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1944 		return false;
1945 
1946 	i = 0;
1947 	while (i < n_ids) {
1948 		if (ids[i] == WLAN_EID_EXTENSION) {
1949 			if (id_ext && (ids[i + 1] == id))
1950 				return true;
1951 
1952 			i += 2;
1953 			continue;
1954 		}
1955 
1956 		if (ids[i] == id && !id_ext)
1957 			return true;
1958 
1959 		i++;
1960 	}
1961 	return false;
1962 }
1963 
skip_ie(const u8 * ies,size_t ielen,size_t pos)1964 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1965 {
1966 	/* we assume a validly formed IEs buffer */
1967 	u8 len = ies[pos + 1];
1968 
1969 	pos += 2 + len;
1970 
1971 	/* the IE itself must have 255 bytes for fragments to follow */
1972 	if (len < 255)
1973 		return pos;
1974 
1975 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1976 		len = ies[pos + 1];
1977 		pos += 2 + len;
1978 	}
1979 
1980 	return pos;
1981 }
1982 
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1983 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1984 			      const u8 *ids, int n_ids,
1985 			      const u8 *after_ric, int n_after_ric,
1986 			      size_t offset)
1987 {
1988 	size_t pos = offset;
1989 
1990 	while (pos < ielen) {
1991 		u8 ext = 0;
1992 
1993 		if (ies[pos] == WLAN_EID_EXTENSION)
1994 			ext = 2;
1995 		if ((pos + ext) >= ielen)
1996 			break;
1997 
1998 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1999 					  ies[pos] == WLAN_EID_EXTENSION))
2000 			break;
2001 
2002 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
2003 			pos = skip_ie(ies, ielen, pos);
2004 
2005 			while (pos < ielen) {
2006 				if (ies[pos] == WLAN_EID_EXTENSION)
2007 					ext = 2;
2008 				else
2009 					ext = 0;
2010 
2011 				if ((pos + ext) >= ielen)
2012 					break;
2013 
2014 				if (!ieee80211_id_in_list(after_ric,
2015 							  n_after_ric,
2016 							  ies[pos + ext],
2017 							  ext == 2))
2018 					pos = skip_ie(ies, ielen, pos);
2019 				else
2020 					break;
2021 			}
2022 		} else {
2023 			pos = skip_ie(ies, ielen, pos);
2024 		}
2025 	}
2026 
2027 	return pos;
2028 }
2029 EXPORT_SYMBOL(ieee80211_ie_split_ric);
2030 
ieee80211_fragment_element(struct sk_buff * skb,u8 * len_pos,u8 frag_id)2031 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id)
2032 {
2033 	unsigned int elem_len;
2034 
2035 	if (!len_pos)
2036 		return;
2037 
2038 	elem_len = skb->data + skb->len - len_pos - 1;
2039 
2040 	while (elem_len > 255) {
2041 		/* this one is 255 */
2042 		*len_pos = 255;
2043 		/* remaining data gets smaller */
2044 		elem_len -= 255;
2045 		/* make space for the fragment ID/len in SKB */
2046 		skb_put(skb, 2);
2047 		/* shift back the remaining data to place fragment ID/len */
2048 		memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len);
2049 		/* place the fragment ID */
2050 		len_pos += 255 + 1;
2051 		*len_pos = frag_id;
2052 		/* and point to fragment length to update later */
2053 		len_pos++;
2054 	}
2055 
2056 	*len_pos = elem_len;
2057 }
2058 EXPORT_SYMBOL(ieee80211_fragment_element);
2059 
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)2060 bool ieee80211_operating_class_to_band(u8 operating_class,
2061 				       enum nl80211_band *band)
2062 {
2063 	switch (operating_class) {
2064 	case 112:
2065 	case 115 ... 127:
2066 	case 128 ... 130:
2067 		*band = NL80211_BAND_5GHZ;
2068 		return true;
2069 	case 131 ... 135:
2070 	case 137:
2071 		*band = NL80211_BAND_6GHZ;
2072 		return true;
2073 	case 81:
2074 	case 82:
2075 	case 83:
2076 	case 84:
2077 		*band = NL80211_BAND_2GHZ;
2078 		return true;
2079 	case 180:
2080 		*band = NL80211_BAND_60GHZ;
2081 		return true;
2082 	}
2083 
2084 	return false;
2085 }
2086 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2087 
ieee80211_operating_class_to_chandef(u8 operating_class,struct ieee80211_channel * chan,struct cfg80211_chan_def * chandef)2088 bool ieee80211_operating_class_to_chandef(u8 operating_class,
2089 					  struct ieee80211_channel *chan,
2090 					  struct cfg80211_chan_def *chandef)
2091 {
2092 	u32 control_freq, offset = 0;
2093 	enum nl80211_band band;
2094 
2095 	if (!ieee80211_operating_class_to_band(operating_class, &band) ||
2096 	    !chan || band != chan->band)
2097 		return false;
2098 
2099 	control_freq = chan->center_freq;
2100 	chandef->chan = chan;
2101 
2102 	if (control_freq >= 5955)
2103 		offset = control_freq - 5955;
2104 	else if (control_freq >= 5745)
2105 		offset = control_freq - 5745;
2106 	else if (control_freq >= 5180)
2107 		offset = control_freq - 5180;
2108 	offset /= 20;
2109 
2110 	switch (operating_class) {
2111 	case 81:  /* 2 GHz band; 20 MHz; channels 1..13 */
2112 	case 82:  /* 2 GHz band; 20 MHz; channel 14 */
2113 	case 115: /* 5 GHz band; 20 MHz; channels 36,40,44,48 */
2114 	case 118: /* 5 GHz band; 20 MHz; channels 52,56,60,64 */
2115 	case 121: /* 5 GHz band; 20 MHz; channels 100..144 */
2116 	case 124: /* 5 GHz band; 20 MHz; channels 149,153,157,161 */
2117 	case 125: /* 5 GHz band; 20 MHz; channels 149..177 */
2118 	case 131: /* 6 GHz band; 20 MHz; channels 1..233*/
2119 	case 136: /* 6 GHz band; 20 MHz; channel 2 */
2120 		chandef->center_freq1 = control_freq;
2121 		chandef->width = NL80211_CHAN_WIDTH_20;
2122 		return true;
2123 	case 83:  /* 2 GHz band; 40 MHz; channels 1..9 */
2124 	case 116: /* 5 GHz band; 40 MHz; channels 36,44 */
2125 	case 119: /* 5 GHz band; 40 MHz; channels 52,60 */
2126 	case 122: /* 5 GHz band; 40 MHz; channels 100,108,116,124,132,140 */
2127 	case 126: /* 5 GHz band; 40 MHz; channels 149,157,165,173 */
2128 		chandef->center_freq1 = control_freq + 10;
2129 		chandef->width = NL80211_CHAN_WIDTH_40;
2130 		return true;
2131 	case 84:  /* 2 GHz band; 40 MHz; channels 5..13 */
2132 	case 117: /* 5 GHz band; 40 MHz; channels 40,48 */
2133 	case 120: /* 5 GHz band; 40 MHz; channels 56,64 */
2134 	case 123: /* 5 GHz band; 40 MHz; channels 104,112,120,128,136,144 */
2135 	case 127: /* 5 GHz band; 40 MHz; channels 153,161,169,177 */
2136 		chandef->center_freq1 = control_freq - 10;
2137 		chandef->width = NL80211_CHAN_WIDTH_40;
2138 		return true;
2139 	case 132: /* 6 GHz band; 40 MHz; channels 1,5,..,229*/
2140 		chandef->center_freq1 = control_freq + 10 - (offset & 1) * 20;
2141 		chandef->width = NL80211_CHAN_WIDTH_40;
2142 		return true;
2143 	case 128: /* 5 GHz band; 80 MHz; channels 36..64,100..144,149..177 */
2144 	case 133: /* 6 GHz band; 80 MHz; channels 1,5,..,229 */
2145 		chandef->center_freq1 = control_freq + 30 - (offset & 3) * 20;
2146 		chandef->width = NL80211_CHAN_WIDTH_80;
2147 		return true;
2148 	case 129: /* 5 GHz band; 160 MHz; channels 36..64,100..144,149..177 */
2149 	case 134: /* 6 GHz band; 160 MHz; channels 1,5,..,229 */
2150 		chandef->center_freq1 = control_freq + 70 - (offset & 7) * 20;
2151 		chandef->width = NL80211_CHAN_WIDTH_160;
2152 		return true;
2153 	case 130: /* 5 GHz band; 80+80 MHz; channels 36..64,100..144,149..177 */
2154 	case 135: /* 6 GHz band; 80+80 MHz; channels 1,5,..,229 */
2155 		  /* The center_freq2 of 80+80 MHz is unknown */
2156 	case 137: /* 6 GHz band; 320 MHz; channels 1,5,..,229 */
2157 		  /* 320-1 or 320-2 channelization is unknown */
2158 	default:
2159 		return false;
2160 	}
2161 }
2162 EXPORT_SYMBOL(ieee80211_operating_class_to_chandef);
2163 
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)2164 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2165 					  u8 *op_class)
2166 {
2167 	u8 vht_opclass;
2168 	u32 freq = chandef->center_freq1;
2169 
2170 	if (freq >= 2412 && freq <= 2472) {
2171 		if (chandef->width > NL80211_CHAN_WIDTH_40)
2172 			return false;
2173 
2174 		/* 2.407 GHz, channels 1..13 */
2175 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
2176 			if (freq > chandef->chan->center_freq)
2177 				*op_class = 83; /* HT40+ */
2178 			else
2179 				*op_class = 84; /* HT40- */
2180 		} else {
2181 			*op_class = 81;
2182 		}
2183 
2184 		return true;
2185 	}
2186 
2187 	if (freq == 2484) {
2188 		/* channel 14 is only for IEEE 802.11b */
2189 		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2190 			return false;
2191 
2192 		*op_class = 82; /* channel 14 */
2193 		return true;
2194 	}
2195 
2196 	switch (chandef->width) {
2197 	case NL80211_CHAN_WIDTH_80:
2198 		vht_opclass = 128;
2199 		break;
2200 	case NL80211_CHAN_WIDTH_160:
2201 		vht_opclass = 129;
2202 		break;
2203 	case NL80211_CHAN_WIDTH_80P80:
2204 		vht_opclass = 130;
2205 		break;
2206 	case NL80211_CHAN_WIDTH_10:
2207 	case NL80211_CHAN_WIDTH_5:
2208 		return false; /* unsupported for now */
2209 	default:
2210 		vht_opclass = 0;
2211 		break;
2212 	}
2213 
2214 	/* 5 GHz, channels 36..48 */
2215 	if (freq >= 5180 && freq <= 5240) {
2216 		if (vht_opclass) {
2217 			*op_class = vht_opclass;
2218 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2219 			if (freq > chandef->chan->center_freq)
2220 				*op_class = 116;
2221 			else
2222 				*op_class = 117;
2223 		} else {
2224 			*op_class = 115;
2225 		}
2226 
2227 		return true;
2228 	}
2229 
2230 	/* 5 GHz, channels 52..64 */
2231 	if (freq >= 5260 && freq <= 5320) {
2232 		if (vht_opclass) {
2233 			*op_class = vht_opclass;
2234 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2235 			if (freq > chandef->chan->center_freq)
2236 				*op_class = 119;
2237 			else
2238 				*op_class = 120;
2239 		} else {
2240 			*op_class = 118;
2241 		}
2242 
2243 		return true;
2244 	}
2245 
2246 	/* 5 GHz, channels 100..144 */
2247 	if (freq >= 5500 && freq <= 5720) {
2248 		if (vht_opclass) {
2249 			*op_class = vht_opclass;
2250 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2251 			if (freq > chandef->chan->center_freq)
2252 				*op_class = 122;
2253 			else
2254 				*op_class = 123;
2255 		} else {
2256 			*op_class = 121;
2257 		}
2258 
2259 		return true;
2260 	}
2261 
2262 	/* 5 GHz, channels 149..169 */
2263 	if (freq >= 5745 && freq <= 5845) {
2264 		if (vht_opclass) {
2265 			*op_class = vht_opclass;
2266 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2267 			if (freq > chandef->chan->center_freq)
2268 				*op_class = 126;
2269 			else
2270 				*op_class = 127;
2271 		} else if (freq <= 5805) {
2272 			*op_class = 124;
2273 		} else {
2274 			*op_class = 125;
2275 		}
2276 
2277 		return true;
2278 	}
2279 
2280 	/* 56.16 GHz, channel 1..4 */
2281 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2282 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
2283 			return false;
2284 
2285 		*op_class = 180;
2286 		return true;
2287 	}
2288 
2289 	/* not supported yet */
2290 	return false;
2291 }
2292 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2293 
cfg80211_wdev_bi(struct wireless_dev * wdev)2294 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2295 {
2296 	switch (wdev->iftype) {
2297 	case NL80211_IFTYPE_AP:
2298 	case NL80211_IFTYPE_P2P_GO:
2299 		WARN_ON(wdev->valid_links);
2300 		return wdev->links[0].ap.beacon_interval;
2301 	case NL80211_IFTYPE_MESH_POINT:
2302 		return wdev->u.mesh.beacon_interval;
2303 	case NL80211_IFTYPE_ADHOC:
2304 		return wdev->u.ibss.beacon_interval;
2305 	default:
2306 		break;
2307 	}
2308 
2309 	return 0;
2310 }
2311 
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different,int radio_idx)2312 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2313 				       u32 *beacon_int_gcd,
2314 				       bool *beacon_int_different,
2315 				       int radio_idx)
2316 {
2317 	struct cfg80211_registered_device *rdev;
2318 	struct wireless_dev *wdev;
2319 
2320 	*beacon_int_gcd = 0;
2321 	*beacon_int_different = false;
2322 
2323 	rdev = wiphy_to_rdev(wiphy);
2324 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2325 		int wdev_bi;
2326 
2327 		/* this feature isn't supported with MLO */
2328 		if (wdev->valid_links)
2329 			continue;
2330 
2331 		/* skip wdevs not active on the given wiphy radio */
2332 		if (radio_idx >= 0 &&
2333 		    !(rdev_get_radio_mask(rdev, wdev->netdev) & BIT(radio_idx)))
2334 			continue;
2335 
2336 		wdev_bi = cfg80211_wdev_bi(wdev);
2337 
2338 		if (!wdev_bi)
2339 			continue;
2340 
2341 		if (!*beacon_int_gcd) {
2342 			*beacon_int_gcd = wdev_bi;
2343 			continue;
2344 		}
2345 
2346 		if (wdev_bi == *beacon_int_gcd)
2347 			continue;
2348 
2349 		*beacon_int_different = true;
2350 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2351 	}
2352 
2353 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2354 		if (*beacon_int_gcd)
2355 			*beacon_int_different = true;
2356 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2357 	}
2358 }
2359 
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)2360 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2361 				 enum nl80211_iftype iftype, u32 beacon_int)
2362 {
2363 	/*
2364 	 * This is just a basic pre-condition check; if interface combinations
2365 	 * are possible the driver must already be checking those with a call
2366 	 * to cfg80211_check_combinations(), in which case we'll validate more
2367 	 * through the cfg80211_calculate_bi_data() call and code in
2368 	 * cfg80211_iter_combinations().
2369 	 */
2370 
2371 	if (beacon_int < 10 || beacon_int > 10000)
2372 		return -EINVAL;
2373 
2374 	return 0;
2375 }
2376 
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)2377 int cfg80211_iter_combinations(struct wiphy *wiphy,
2378 			       struct iface_combination_params *params,
2379 			       void (*iter)(const struct ieee80211_iface_combination *c,
2380 					    void *data),
2381 			       void *data)
2382 {
2383 	const struct wiphy_radio *radio = NULL;
2384 	const struct ieee80211_iface_combination *c, *cs;
2385 	const struct ieee80211_regdomain *regdom;
2386 	enum nl80211_dfs_regions region = 0;
2387 	int i, j, n, iftype;
2388 	int num_interfaces = 0;
2389 	u32 used_iftypes = 0;
2390 	u32 beacon_int_gcd;
2391 	bool beacon_int_different;
2392 
2393 	if (params->radio_idx >= 0)
2394 		radio = &wiphy->radio[params->radio_idx];
2395 
2396 	/*
2397 	 * This is a bit strange, since the iteration used to rely only on
2398 	 * the data given by the driver, but here it now relies on context,
2399 	 * in form of the currently operating interfaces.
2400 	 * This is OK for all current users, and saves us from having to
2401 	 * push the GCD calculations into all the drivers.
2402 	 * In the future, this should probably rely more on data that's in
2403 	 * cfg80211 already - the only thing not would appear to be any new
2404 	 * interfaces (while being brought up) and channel/radar data.
2405 	 */
2406 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2407 				   &beacon_int_gcd, &beacon_int_different,
2408 				   params->radio_idx);
2409 
2410 	if (params->radar_detect) {
2411 		rcu_read_lock();
2412 		regdom = rcu_dereference(cfg80211_regdomain);
2413 		if (regdom)
2414 			region = regdom->dfs_region;
2415 		rcu_read_unlock();
2416 	}
2417 
2418 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2419 		num_interfaces += params->iftype_num[iftype];
2420 		if (params->iftype_num[iftype] > 0 &&
2421 		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2422 			used_iftypes |= BIT(iftype);
2423 	}
2424 
2425 	if (radio) {
2426 		cs = radio->iface_combinations;
2427 		n = radio->n_iface_combinations;
2428 	} else {
2429 		cs = wiphy->iface_combinations;
2430 		n = wiphy->n_iface_combinations;
2431 	}
2432 	for (i = 0; i < n; i++) {
2433 		struct ieee80211_iface_limit *limits;
2434 		u32 all_iftypes = 0;
2435 
2436 		c = &cs[i];
2437 		if (num_interfaces > c->max_interfaces)
2438 			continue;
2439 		if (params->num_different_channels > c->num_different_channels)
2440 			continue;
2441 
2442 		limits = kmemdup_array(c->limits, c->n_limits, sizeof(*limits),
2443 				       GFP_KERNEL);
2444 		if (!limits)
2445 			return -ENOMEM;
2446 
2447 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2448 			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2449 				continue;
2450 			for (j = 0; j < c->n_limits; j++) {
2451 				all_iftypes |= limits[j].types;
2452 				if (!(limits[j].types & BIT(iftype)))
2453 					continue;
2454 				if (limits[j].max < params->iftype_num[iftype])
2455 					goto cont;
2456 				limits[j].max -= params->iftype_num[iftype];
2457 			}
2458 		}
2459 
2460 		if (params->radar_detect !=
2461 			(c->radar_detect_widths & params->radar_detect))
2462 			goto cont;
2463 
2464 		if (params->radar_detect && c->radar_detect_regions &&
2465 		    !(c->radar_detect_regions & BIT(region)))
2466 			goto cont;
2467 
2468 		/* Finally check that all iftypes that we're currently
2469 		 * using are actually part of this combination. If they
2470 		 * aren't then we can't use this combination and have
2471 		 * to continue to the next.
2472 		 */
2473 		if ((all_iftypes & used_iftypes) != used_iftypes)
2474 			goto cont;
2475 
2476 		if (beacon_int_gcd) {
2477 			if (c->beacon_int_min_gcd &&
2478 			    beacon_int_gcd < c->beacon_int_min_gcd)
2479 				goto cont;
2480 			if (!c->beacon_int_min_gcd && beacon_int_different)
2481 				goto cont;
2482 		}
2483 
2484 		/* This combination covered all interface types and
2485 		 * supported the requested numbers, so we're good.
2486 		 */
2487 
2488 		(*iter)(c, data);
2489  cont:
2490 		kfree(limits);
2491 	}
2492 
2493 	return 0;
2494 }
2495 EXPORT_SYMBOL(cfg80211_iter_combinations);
2496 
2497 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)2498 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2499 			  void *data)
2500 {
2501 	int *num = data;
2502 	(*num)++;
2503 }
2504 
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)2505 int cfg80211_check_combinations(struct wiphy *wiphy,
2506 				struct iface_combination_params *params)
2507 {
2508 	int err, num = 0;
2509 
2510 	err = cfg80211_iter_combinations(wiphy, params,
2511 					 cfg80211_iter_sum_ifcombs, &num);
2512 	if (err)
2513 		return err;
2514 	if (num == 0)
2515 		return -EBUSY;
2516 
2517 	return 0;
2518 }
2519 EXPORT_SYMBOL(cfg80211_check_combinations);
2520 
cfg80211_get_radio_idx_by_chan(struct wiphy * wiphy,const struct ieee80211_channel * chan)2521 int cfg80211_get_radio_idx_by_chan(struct wiphy *wiphy,
2522 				   const struct ieee80211_channel *chan)
2523 {
2524 	const struct wiphy_radio *radio;
2525 	int i, j;
2526 	u32 freq;
2527 
2528 	if (!chan)
2529 		return -EINVAL;
2530 
2531 	freq = ieee80211_channel_to_khz(chan);
2532 	for (i = 0; i < wiphy->n_radio; i++) {
2533 		radio = &wiphy->radio[i];
2534 		for (j = 0; j < radio->n_freq_range; j++) {
2535 			if (freq >= radio->freq_range[j].start_freq &&
2536 			    freq < radio->freq_range[j].end_freq)
2537 				return i;
2538 		}
2539 	}
2540 
2541 	return -EINVAL;
2542 }
2543 EXPORT_SYMBOL(cfg80211_get_radio_idx_by_chan);
2544 
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)2545 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2546 			   const u8 *rates, unsigned int n_rates,
2547 			   u32 *mask)
2548 {
2549 	int i, j;
2550 
2551 	if (!sband)
2552 		return -EINVAL;
2553 
2554 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2555 		return -EINVAL;
2556 
2557 	*mask = 0;
2558 
2559 	for (i = 0; i < n_rates; i++) {
2560 		int rate = (rates[i] & 0x7f) * 5;
2561 		bool found = false;
2562 
2563 		for (j = 0; j < sband->n_bitrates; j++) {
2564 			if (sband->bitrates[j].bitrate == rate) {
2565 				found = true;
2566 				*mask |= BIT(j);
2567 				break;
2568 			}
2569 		}
2570 		if (!found)
2571 			return -EINVAL;
2572 	}
2573 
2574 	/*
2575 	 * mask must have at least one bit set here since we
2576 	 * didn't accept a 0-length rates array nor allowed
2577 	 * entries in the array that didn't exist
2578 	 */
2579 
2580 	return 0;
2581 }
2582 
ieee80211_get_num_supported_channels(struct wiphy * wiphy)2583 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2584 {
2585 	enum nl80211_band band;
2586 	unsigned int n_channels = 0;
2587 
2588 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2589 		if (wiphy->bands[band])
2590 			n_channels += wiphy->bands[band]->n_channels;
2591 
2592 	return n_channels;
2593 }
2594 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2595 
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2596 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2597 			 struct station_info *sinfo)
2598 {
2599 	struct cfg80211_registered_device *rdev;
2600 	struct wireless_dev *wdev;
2601 
2602 	wdev = dev->ieee80211_ptr;
2603 	if (!wdev)
2604 		return -EOPNOTSUPP;
2605 
2606 	rdev = wiphy_to_rdev(wdev->wiphy);
2607 	if (!rdev->ops->get_station)
2608 		return -EOPNOTSUPP;
2609 
2610 	memset(sinfo, 0, sizeof(*sinfo));
2611 
2612 	guard(wiphy)(&rdev->wiphy);
2613 
2614 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
2615 }
2616 EXPORT_SYMBOL(cfg80211_get_station);
2617 
cfg80211_free_nan_func(struct cfg80211_nan_func * f)2618 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2619 {
2620 	int i;
2621 
2622 	if (!f)
2623 		return;
2624 
2625 	kfree(f->serv_spec_info);
2626 	kfree(f->srf_bf);
2627 	kfree(f->srf_macs);
2628 	for (i = 0; i < f->num_rx_filters; i++)
2629 		kfree(f->rx_filters[i].filter);
2630 
2631 	for (i = 0; i < f->num_tx_filters; i++)
2632 		kfree(f->tx_filters[i].filter);
2633 
2634 	kfree(f->rx_filters);
2635 	kfree(f->tx_filters);
2636 	kfree(f);
2637 }
2638 EXPORT_SYMBOL(cfg80211_free_nan_func);
2639 
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2640 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2641 				u32 center_freq_khz, u32 bw_khz)
2642 {
2643 	u32 start_freq_khz, end_freq_khz;
2644 
2645 	start_freq_khz = center_freq_khz - (bw_khz / 2);
2646 	end_freq_khz = center_freq_khz + (bw_khz / 2);
2647 
2648 	if (start_freq_khz >= freq_range->start_freq_khz &&
2649 	    end_freq_khz <= freq_range->end_freq_khz)
2650 		return true;
2651 
2652 	return false;
2653 }
2654 
cfg80211_link_sinfo_alloc_tid_stats(struct link_station_info * link_sinfo,gfp_t gfp)2655 int cfg80211_link_sinfo_alloc_tid_stats(struct link_station_info *link_sinfo,
2656 					gfp_t gfp)
2657 {
2658 	link_sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2659 				     sizeof(*link_sinfo->pertid), gfp);
2660 	if (!link_sinfo->pertid)
2661 		return -ENOMEM;
2662 
2663 	return 0;
2664 }
2665 EXPORT_SYMBOL(cfg80211_link_sinfo_alloc_tid_stats);
2666 
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2667 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2668 {
2669 	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2670 				sizeof(*(sinfo->pertid)),
2671 				gfp);
2672 	if (!sinfo->pertid)
2673 		return -ENOMEM;
2674 
2675 	return 0;
2676 }
2677 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2678 
2679 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2680 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2681 const unsigned char rfc1042_header[] __aligned(2) =
2682 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2683 EXPORT_SYMBOL(rfc1042_header);
2684 
2685 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2686 const unsigned char bridge_tunnel_header[] __aligned(2) =
2687 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2688 EXPORT_SYMBOL(bridge_tunnel_header);
2689 
2690 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2691 struct iapp_layer2_update {
2692 	u8 da[ETH_ALEN];	/* broadcast */
2693 	u8 sa[ETH_ALEN];	/* STA addr */
2694 	__be16 len;		/* 6 */
2695 	u8 dsap;		/* 0 */
2696 	u8 ssap;		/* 0 */
2697 	u8 control;
2698 	u8 xid_info[3];
2699 } __packed;
2700 
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2701 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2702 {
2703 	struct iapp_layer2_update *msg;
2704 	struct sk_buff *skb;
2705 
2706 	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2707 	 * bridge devices */
2708 
2709 	skb = dev_alloc_skb(sizeof(*msg));
2710 	if (!skb)
2711 		return;
2712 	msg = skb_put(skb, sizeof(*msg));
2713 
2714 	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2715 	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2716 
2717 	eth_broadcast_addr(msg->da);
2718 	ether_addr_copy(msg->sa, addr);
2719 	msg->len = htons(6);
2720 	msg->dsap = 0;
2721 	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2722 	msg->control = 0xaf;	/* XID response lsb.1111F101.
2723 				 * F=0 (no poll command; unsolicited frame) */
2724 	msg->xid_info[0] = 0x81;	/* XID format identifier */
2725 	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2726 	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2727 
2728 	skb->dev = dev;
2729 	skb->protocol = eth_type_trans(skb, dev);
2730 	memset(skb->cb, 0, sizeof(skb->cb));
2731 	netif_rx(skb);
2732 }
2733 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2734 
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2735 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2736 			      enum ieee80211_vht_chanwidth bw,
2737 			      int mcs, bool ext_nss_bw_capable,
2738 			      unsigned int max_vht_nss)
2739 {
2740 	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2741 	int ext_nss_bw;
2742 	int supp_width;
2743 	int i, mcs_encoding;
2744 
2745 	if (map == 0xffff)
2746 		return 0;
2747 
2748 	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2749 		return 0;
2750 	if (mcs <= 7)
2751 		mcs_encoding = 0;
2752 	else if (mcs == 8)
2753 		mcs_encoding = 1;
2754 	else
2755 		mcs_encoding = 2;
2756 
2757 	if (!max_vht_nss) {
2758 		/* find max_vht_nss for the given MCS */
2759 		for (i = 7; i >= 0; i--) {
2760 			int supp = (map >> (2 * i)) & 3;
2761 
2762 			if (supp == 3)
2763 				continue;
2764 
2765 			if (supp >= mcs_encoding) {
2766 				max_vht_nss = i + 1;
2767 				break;
2768 			}
2769 		}
2770 	}
2771 
2772 	if (!(cap->supp_mcs.tx_mcs_map &
2773 			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2774 		return max_vht_nss;
2775 
2776 	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2777 				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2778 	supp_width = le32_get_bits(cap->vht_cap_info,
2779 				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2780 
2781 	/* if not capable, treat ext_nss_bw as 0 */
2782 	if (!ext_nss_bw_capable)
2783 		ext_nss_bw = 0;
2784 
2785 	/* This is invalid */
2786 	if (supp_width == 3)
2787 		return 0;
2788 
2789 	/* This is an invalid combination so pretend nothing is supported */
2790 	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2791 		return 0;
2792 
2793 	/*
2794 	 * Cover all the special cases according to IEEE 802.11-2016
2795 	 * Table 9-250. All other cases are either factor of 1 or not
2796 	 * valid/supported.
2797 	 */
2798 	switch (bw) {
2799 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2800 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2801 		if ((supp_width == 1 || supp_width == 2) &&
2802 		    ext_nss_bw == 3)
2803 			return 2 * max_vht_nss;
2804 		break;
2805 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2806 		if (supp_width == 0 &&
2807 		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2808 			return max_vht_nss / 2;
2809 		if (supp_width == 0 &&
2810 		    ext_nss_bw == 3)
2811 			return (3 * max_vht_nss) / 4;
2812 		if (supp_width == 1 &&
2813 		    ext_nss_bw == 3)
2814 			return 2 * max_vht_nss;
2815 		break;
2816 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2817 		if (supp_width == 0 && ext_nss_bw == 1)
2818 			return 0; /* not possible */
2819 		if (supp_width == 0 &&
2820 		    ext_nss_bw == 2)
2821 			return max_vht_nss / 2;
2822 		if (supp_width == 0 &&
2823 		    ext_nss_bw == 3)
2824 			return (3 * max_vht_nss) / 4;
2825 		if (supp_width == 1 &&
2826 		    ext_nss_bw == 0)
2827 			return 0; /* not possible */
2828 		if (supp_width == 1 &&
2829 		    ext_nss_bw == 1)
2830 			return max_vht_nss / 2;
2831 		if (supp_width == 1 &&
2832 		    ext_nss_bw == 2)
2833 			return (3 * max_vht_nss) / 4;
2834 		break;
2835 	}
2836 
2837 	/* not covered or invalid combination received */
2838 	return max_vht_nss;
2839 }
2840 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2841 
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2842 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2843 			     bool is_4addr, u8 check_swif)
2844 
2845 {
2846 	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2847 
2848 	switch (check_swif) {
2849 	case 0:
2850 		if (is_vlan && is_4addr)
2851 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2852 		return wiphy->interface_modes & BIT(iftype);
2853 	case 1:
2854 		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2855 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2856 		return wiphy->software_iftypes & BIT(iftype);
2857 	default:
2858 		break;
2859 	}
2860 
2861 	return false;
2862 }
2863 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2864 
cfg80211_remove_link(struct wireless_dev * wdev,unsigned int link_id)2865 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2866 {
2867 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2868 
2869 	lockdep_assert_wiphy(wdev->wiphy);
2870 
2871 	switch (wdev->iftype) {
2872 	case NL80211_IFTYPE_AP:
2873 	case NL80211_IFTYPE_P2P_GO:
2874 		cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2875 		break;
2876 	default:
2877 		/* per-link not relevant */
2878 		break;
2879 	}
2880 
2881 	rdev_del_intf_link(rdev, wdev, link_id);
2882 
2883 	wdev->valid_links &= ~BIT(link_id);
2884 	eth_zero_addr(wdev->links[link_id].addr);
2885 }
2886 
cfg80211_remove_links(struct wireless_dev * wdev)2887 void cfg80211_remove_links(struct wireless_dev *wdev)
2888 {
2889 	unsigned int link_id;
2890 
2891 	/*
2892 	 * links are controlled by upper layers (userspace/cfg)
2893 	 * only for AP mode, so only remove them here for AP
2894 	 */
2895 	if (wdev->iftype != NL80211_IFTYPE_AP)
2896 		return;
2897 
2898 	if (wdev->valid_links) {
2899 		for_each_valid_link(wdev, link_id)
2900 			cfg80211_remove_link(wdev, link_id);
2901 	}
2902 }
2903 
cfg80211_remove_virtual_intf(struct cfg80211_registered_device * rdev,struct wireless_dev * wdev)2904 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2905 				 struct wireless_dev *wdev)
2906 {
2907 	cfg80211_remove_links(wdev);
2908 
2909 	return rdev_del_virtual_intf(rdev, wdev);
2910 }
2911 
2912 const struct wiphy_iftype_ext_capab *
cfg80211_get_iftype_ext_capa(struct wiphy * wiphy,enum nl80211_iftype type)2913 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2914 {
2915 	int i;
2916 
2917 	for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2918 		if (wiphy->iftype_ext_capab[i].iftype == type)
2919 			return &wiphy->iftype_ext_capab[i];
2920 	}
2921 
2922 	return NULL;
2923 }
2924 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2925 
ieee80211_radio_freq_range_valid(const struct wiphy_radio * radio,u32 freq,u32 width)2926 bool ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio,
2927 				      u32 freq, u32 width)
2928 {
2929 	const struct wiphy_radio_freq_range *r;
2930 	int i;
2931 
2932 	for (i = 0; i < radio->n_freq_range; i++) {
2933 		r = &radio->freq_range[i];
2934 		if (freq - width / 2 >= r->start_freq &&
2935 		    freq + width / 2 <= r->end_freq)
2936 			return true;
2937 	}
2938 
2939 	return false;
2940 }
2941 EXPORT_SYMBOL(ieee80211_radio_freq_range_valid);
2942 
cfg80211_radio_chandef_valid(const struct wiphy_radio * radio,const struct cfg80211_chan_def * chandef)2943 bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio,
2944 				  const struct cfg80211_chan_def *chandef)
2945 {
2946 	u32 freq, width;
2947 
2948 	freq = ieee80211_chandef_to_khz(chandef);
2949 	width = MHZ_TO_KHZ(cfg80211_chandef_get_width(chandef));
2950 	if (!ieee80211_radio_freq_range_valid(radio, freq, width))
2951 		return false;
2952 
2953 	freq = MHZ_TO_KHZ(chandef->center_freq2);
2954 	if (freq && !ieee80211_radio_freq_range_valid(radio, freq, width))
2955 		return false;
2956 
2957 	return true;
2958 }
2959 EXPORT_SYMBOL(cfg80211_radio_chandef_valid);
2960 
cfg80211_wdev_channel_allowed(struct wireless_dev * wdev,struct ieee80211_channel * chan)2961 bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev,
2962 				   struct ieee80211_channel *chan)
2963 {
2964 	struct wiphy *wiphy = wdev->wiphy;
2965 	const struct wiphy_radio *radio;
2966 	struct cfg80211_chan_def chandef;
2967 	u32 radio_mask;
2968 	int i;
2969 
2970 	radio_mask = wdev->radio_mask;
2971 	if (!wiphy->n_radio || radio_mask == BIT(wiphy->n_radio) - 1)
2972 		return true;
2973 
2974 	cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_HT20);
2975 	for (i = 0; i < wiphy->n_radio; i++) {
2976 		if (!(radio_mask & BIT(i)))
2977 			continue;
2978 
2979 		radio = &wiphy->radio[i];
2980 		if (!cfg80211_radio_chandef_valid(radio, &chandef))
2981 			continue;
2982 
2983 		return true;
2984 	}
2985 
2986 	return false;
2987 }
2988 EXPORT_SYMBOL(cfg80211_wdev_channel_allowed);
2989