1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* Copyright (c) 2021, Microsoft Corporation. */ 3 4 #include <linux/debugfs.h> 5 #include <linux/module.h> 6 #include <linux/pci.h> 7 #include <linux/utsname.h> 8 #include <linux/version.h> 9 #include <linux/msi.h> 10 #include <linux/irqdomain.h> 11 #include <linux/export.h> 12 13 #include <net/mana/mana.h> 14 #include <net/mana/hw_channel.h> 15 16 struct dentry *mana_debugfs_root; 17 18 struct mana_dev_recovery { 19 struct list_head list; 20 struct pci_dev *pdev; 21 enum gdma_eqe_type type; 22 }; 23 24 static struct mana_dev_recovery_work { 25 struct list_head dev_list; 26 struct delayed_work work; 27 28 /* Lock for dev_list above */ 29 spinlock_t lock; 30 } mana_dev_recovery_work; 31 32 static u32 mana_gd_r32(struct gdma_context *g, u64 offset) 33 { 34 return readl(g->bar0_va + offset); 35 } 36 37 static u64 mana_gd_r64(struct gdma_context *g, u64 offset) 38 { 39 return readq(g->bar0_va + offset); 40 } 41 42 static void mana_gd_init_pf_regs(struct pci_dev *pdev) 43 { 44 struct gdma_context *gc = pci_get_drvdata(pdev); 45 void __iomem *sriov_base_va; 46 u64 sriov_base_off; 47 48 gc->db_page_size = mana_gd_r32(gc, GDMA_PF_REG_DB_PAGE_SIZE) & 0xFFFF; 49 gc->db_page_base = gc->bar0_va + 50 mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF); 51 52 gc->phys_db_page_base = gc->bar0_pa + 53 mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF); 54 55 sriov_base_off = mana_gd_r64(gc, GDMA_SRIOV_REG_CFG_BASE_OFF); 56 57 sriov_base_va = gc->bar0_va + sriov_base_off; 58 gc->shm_base = sriov_base_va + 59 mana_gd_r64(gc, sriov_base_off + GDMA_PF_REG_SHM_OFF); 60 } 61 62 static void mana_gd_init_vf_regs(struct pci_dev *pdev) 63 { 64 struct gdma_context *gc = pci_get_drvdata(pdev); 65 66 gc->db_page_size = mana_gd_r32(gc, GDMA_REG_DB_PAGE_SIZE) & 0xFFFF; 67 68 gc->db_page_base = gc->bar0_va + 69 mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET); 70 71 gc->phys_db_page_base = gc->bar0_pa + 72 mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET); 73 74 gc->shm_base = gc->bar0_va + mana_gd_r64(gc, GDMA_REG_SHM_OFFSET); 75 } 76 77 static void mana_gd_init_registers(struct pci_dev *pdev) 78 { 79 struct gdma_context *gc = pci_get_drvdata(pdev); 80 81 if (gc->is_pf) 82 mana_gd_init_pf_regs(pdev); 83 else 84 mana_gd_init_vf_regs(pdev); 85 } 86 87 /* Suppress logging when we set timeout to zero */ 88 bool mana_need_log(struct gdma_context *gc, int err) 89 { 90 struct hw_channel_context *hwc; 91 92 if (err != -ETIMEDOUT) 93 return true; 94 95 if (!gc) 96 return true; 97 98 hwc = gc->hwc.driver_data; 99 if (hwc && hwc->hwc_timeout == 0) 100 return false; 101 102 return true; 103 } 104 105 static int mana_gd_query_max_resources(struct pci_dev *pdev) 106 { 107 struct gdma_context *gc = pci_get_drvdata(pdev); 108 struct gdma_query_max_resources_resp resp = {}; 109 struct gdma_general_req req = {}; 110 int err; 111 112 mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_MAX_RESOURCES, 113 sizeof(req), sizeof(resp)); 114 115 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 116 if (err || resp.hdr.status) { 117 dev_err(gc->dev, "Failed to query resource info: %d, 0x%x\n", 118 err, resp.hdr.status); 119 return err ? err : -EPROTO; 120 } 121 122 if (!pci_msix_can_alloc_dyn(pdev)) { 123 if (gc->num_msix_usable > resp.max_msix) 124 gc->num_msix_usable = resp.max_msix; 125 } else { 126 /* If dynamic allocation is enabled we have already allocated 127 * hwc msi 128 */ 129 gc->num_msix_usable = min(resp.max_msix, num_online_cpus() + 1); 130 } 131 132 if (gc->num_msix_usable <= 1) 133 return -ENOSPC; 134 135 gc->max_num_queues = num_online_cpus(); 136 if (gc->max_num_queues > MANA_MAX_NUM_QUEUES) 137 gc->max_num_queues = MANA_MAX_NUM_QUEUES; 138 139 if (gc->max_num_queues > resp.max_eq) 140 gc->max_num_queues = resp.max_eq; 141 142 if (gc->max_num_queues > resp.max_cq) 143 gc->max_num_queues = resp.max_cq; 144 145 if (gc->max_num_queues > resp.max_sq) 146 gc->max_num_queues = resp.max_sq; 147 148 if (gc->max_num_queues > resp.max_rq) 149 gc->max_num_queues = resp.max_rq; 150 151 /* The Hardware Channel (HWC) used 1 MSI-X */ 152 if (gc->max_num_queues > gc->num_msix_usable - 1) 153 gc->max_num_queues = gc->num_msix_usable - 1; 154 155 return 0; 156 } 157 158 static int mana_gd_query_hwc_timeout(struct pci_dev *pdev, u32 *timeout_val) 159 { 160 struct gdma_context *gc = pci_get_drvdata(pdev); 161 struct gdma_query_hwc_timeout_resp resp = {}; 162 struct gdma_query_hwc_timeout_req req = {}; 163 int err; 164 165 mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_HWC_TIMEOUT, 166 sizeof(req), sizeof(resp)); 167 req.timeout_ms = *timeout_val; 168 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 169 if (err || resp.hdr.status) 170 return err ? err : -EPROTO; 171 172 *timeout_val = resp.timeout_ms; 173 174 return 0; 175 } 176 177 static int mana_gd_detect_devices(struct pci_dev *pdev) 178 { 179 struct gdma_context *gc = pci_get_drvdata(pdev); 180 struct gdma_list_devices_resp resp = {}; 181 struct gdma_general_req req = {}; 182 struct gdma_dev_id dev; 183 int found_dev = 0; 184 u16 dev_type; 185 int err; 186 u32 i; 187 188 mana_gd_init_req_hdr(&req.hdr, GDMA_LIST_DEVICES, sizeof(req), 189 sizeof(resp)); 190 191 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 192 if (err || resp.hdr.status) { 193 dev_err(gc->dev, "Failed to detect devices: %d, 0x%x\n", err, 194 resp.hdr.status); 195 return err ? err : -EPROTO; 196 } 197 198 for (i = 0; i < GDMA_DEV_LIST_SIZE && 199 found_dev < resp.num_of_devs; i++) { 200 dev = resp.devs[i]; 201 dev_type = dev.type; 202 203 /* Skip empty devices */ 204 if (dev.as_uint32 == 0) 205 continue; 206 207 found_dev++; 208 209 /* HWC is already detected in mana_hwc_create_channel(). */ 210 if (dev_type == GDMA_DEVICE_HWC) 211 continue; 212 213 if (dev_type == GDMA_DEVICE_MANA) { 214 gc->mana.gdma_context = gc; 215 gc->mana.dev_id = dev; 216 } else if (dev_type == GDMA_DEVICE_MANA_IB) { 217 gc->mana_ib.dev_id = dev; 218 gc->mana_ib.gdma_context = gc; 219 } 220 } 221 222 return gc->mana.dev_id.type == 0 ? -ENODEV : 0; 223 } 224 225 int mana_gd_send_request(struct gdma_context *gc, u32 req_len, const void *req, 226 u32 resp_len, void *resp) 227 { 228 struct hw_channel_context *hwc = gc->hwc.driver_data; 229 230 return mana_hwc_send_request(hwc, req_len, req, resp_len, resp); 231 } 232 EXPORT_SYMBOL_NS(mana_gd_send_request, "NET_MANA"); 233 234 int mana_gd_alloc_memory(struct gdma_context *gc, unsigned int length, 235 struct gdma_mem_info *gmi) 236 { 237 dma_addr_t dma_handle; 238 void *buf; 239 240 if (length < MANA_PAGE_SIZE || !is_power_of_2(length)) 241 return -EINVAL; 242 243 gmi->dev = gc->dev; 244 buf = dma_alloc_coherent(gmi->dev, length, &dma_handle, GFP_KERNEL); 245 if (!buf) 246 return -ENOMEM; 247 248 gmi->dma_handle = dma_handle; 249 gmi->virt_addr = buf; 250 gmi->length = length; 251 252 return 0; 253 } 254 255 void mana_gd_free_memory(struct gdma_mem_info *gmi) 256 { 257 dma_free_coherent(gmi->dev, gmi->length, gmi->virt_addr, 258 gmi->dma_handle); 259 } 260 261 static int mana_gd_create_hw_eq(struct gdma_context *gc, 262 struct gdma_queue *queue) 263 { 264 struct gdma_create_queue_resp resp = {}; 265 struct gdma_create_queue_req req = {}; 266 int err; 267 268 if (queue->type != GDMA_EQ) 269 return -EINVAL; 270 271 mana_gd_init_req_hdr(&req.hdr, GDMA_CREATE_QUEUE, 272 sizeof(req), sizeof(resp)); 273 274 req.hdr.dev_id = queue->gdma_dev->dev_id; 275 req.type = queue->type; 276 req.pdid = queue->gdma_dev->pdid; 277 req.doolbell_id = queue->gdma_dev->doorbell; 278 req.gdma_region = queue->mem_info.dma_region_handle; 279 req.queue_size = queue->queue_size; 280 req.log2_throttle_limit = queue->eq.log2_throttle_limit; 281 req.eq_pci_msix_index = queue->eq.msix_index; 282 283 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 284 if (err || resp.hdr.status) { 285 dev_err(gc->dev, "Failed to create queue: %d, 0x%x\n", err, 286 resp.hdr.status); 287 return err ? err : -EPROTO; 288 } 289 290 queue->id = resp.queue_index; 291 queue->eq.disable_needed = true; 292 queue->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION; 293 return 0; 294 } 295 296 static int mana_gd_disable_queue(struct gdma_queue *queue) 297 { 298 struct gdma_context *gc = queue->gdma_dev->gdma_context; 299 struct gdma_disable_queue_req req = {}; 300 struct gdma_general_resp resp = {}; 301 int err; 302 303 WARN_ON(queue->type != GDMA_EQ); 304 305 mana_gd_init_req_hdr(&req.hdr, GDMA_DISABLE_QUEUE, 306 sizeof(req), sizeof(resp)); 307 308 req.hdr.dev_id = queue->gdma_dev->dev_id; 309 req.type = queue->type; 310 req.queue_index = queue->id; 311 req.alloc_res_id_on_creation = 1; 312 313 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 314 if (err || resp.hdr.status) { 315 if (mana_need_log(gc, err)) 316 dev_err(gc->dev, "Failed to disable queue: %d, 0x%x\n", err, 317 resp.hdr.status); 318 return err ? err : -EPROTO; 319 } 320 321 return 0; 322 } 323 324 #define DOORBELL_OFFSET_SQ 0x0 325 #define DOORBELL_OFFSET_RQ 0x400 326 #define DOORBELL_OFFSET_CQ 0x800 327 #define DOORBELL_OFFSET_EQ 0xFF8 328 329 static void mana_gd_ring_doorbell(struct gdma_context *gc, u32 db_index, 330 enum gdma_queue_type q_type, u32 qid, 331 u32 tail_ptr, u8 num_req) 332 { 333 void __iomem *addr = gc->db_page_base + gc->db_page_size * db_index; 334 union gdma_doorbell_entry e = {}; 335 336 switch (q_type) { 337 case GDMA_EQ: 338 e.eq.id = qid; 339 e.eq.tail_ptr = tail_ptr; 340 e.eq.arm = num_req; 341 342 addr += DOORBELL_OFFSET_EQ; 343 break; 344 345 case GDMA_CQ: 346 e.cq.id = qid; 347 e.cq.tail_ptr = tail_ptr; 348 e.cq.arm = num_req; 349 350 addr += DOORBELL_OFFSET_CQ; 351 break; 352 353 case GDMA_RQ: 354 e.rq.id = qid; 355 e.rq.tail_ptr = tail_ptr; 356 e.rq.wqe_cnt = num_req; 357 358 addr += DOORBELL_OFFSET_RQ; 359 break; 360 361 case GDMA_SQ: 362 e.sq.id = qid; 363 e.sq.tail_ptr = tail_ptr; 364 365 addr += DOORBELL_OFFSET_SQ; 366 break; 367 368 default: 369 WARN_ON(1); 370 return; 371 } 372 373 /* Ensure all writes are done before ring doorbell */ 374 wmb(); 375 376 writeq(e.as_uint64, addr); 377 } 378 379 void mana_gd_wq_ring_doorbell(struct gdma_context *gc, struct gdma_queue *queue) 380 { 381 /* Hardware Spec specifies that software client should set 0 for 382 * wqe_cnt for Receive Queues. This value is not used in Send Queues. 383 */ 384 mana_gd_ring_doorbell(gc, queue->gdma_dev->doorbell, queue->type, 385 queue->id, queue->head * GDMA_WQE_BU_SIZE, 0); 386 } 387 EXPORT_SYMBOL_NS(mana_gd_wq_ring_doorbell, "NET_MANA"); 388 389 void mana_gd_ring_cq(struct gdma_queue *cq, u8 arm_bit) 390 { 391 struct gdma_context *gc = cq->gdma_dev->gdma_context; 392 393 u32 num_cqe = cq->queue_size / GDMA_CQE_SIZE; 394 395 u32 head = cq->head % (num_cqe << GDMA_CQE_OWNER_BITS); 396 397 mana_gd_ring_doorbell(gc, cq->gdma_dev->doorbell, cq->type, cq->id, 398 head, arm_bit); 399 } 400 EXPORT_SYMBOL_NS(mana_gd_ring_cq, "NET_MANA"); 401 402 #define MANA_SERVICE_PERIOD 10 403 404 static void mana_serv_rescan(struct pci_dev *pdev) 405 { 406 struct pci_bus *parent; 407 408 pci_lock_rescan_remove(); 409 410 parent = pdev->bus; 411 if (!parent) { 412 dev_err(&pdev->dev, "MANA service: no parent bus\n"); 413 goto out; 414 } 415 416 pci_stop_and_remove_bus_device(pdev); 417 pci_rescan_bus(parent); 418 419 out: 420 pci_unlock_rescan_remove(); 421 } 422 423 static void mana_serv_fpga(struct pci_dev *pdev) 424 { 425 struct pci_bus *bus, *parent; 426 427 pci_lock_rescan_remove(); 428 429 bus = pdev->bus; 430 if (!bus) { 431 dev_err(&pdev->dev, "MANA service: no bus\n"); 432 goto out; 433 } 434 435 parent = bus->parent; 436 if (!parent) { 437 dev_err(&pdev->dev, "MANA service: no parent bus\n"); 438 goto out; 439 } 440 441 pci_stop_and_remove_bus_device(bus->self); 442 443 msleep(MANA_SERVICE_PERIOD * 1000); 444 445 pci_rescan_bus(parent); 446 447 out: 448 pci_unlock_rescan_remove(); 449 } 450 451 static void mana_serv_reset(struct pci_dev *pdev) 452 { 453 struct gdma_context *gc = pci_get_drvdata(pdev); 454 struct hw_channel_context *hwc; 455 int ret; 456 457 if (!gc) { 458 /* Perform PCI rescan on device if GC is not set up */ 459 dev_err(&pdev->dev, "MANA service: GC not setup, rescanning\n"); 460 mana_serv_rescan(pdev); 461 return; 462 } 463 464 hwc = gc->hwc.driver_data; 465 if (!hwc) { 466 dev_err(&pdev->dev, "MANA service: no HWC\n"); 467 goto out; 468 } 469 470 /* HWC is not responding in this case, so don't wait */ 471 hwc->hwc_timeout = 0; 472 473 dev_info(&pdev->dev, "MANA reset cycle start\n"); 474 475 mana_gd_suspend(pdev, PMSG_SUSPEND); 476 477 msleep(MANA_SERVICE_PERIOD * 1000); 478 479 ret = mana_gd_resume(pdev); 480 if (ret == -ETIMEDOUT || ret == -EPROTO) { 481 /* Perform PCI rescan on device if we failed on HWC */ 482 dev_err(&pdev->dev, "MANA service: resume failed, rescanning\n"); 483 mana_serv_rescan(pdev); 484 goto out; 485 } 486 487 if (ret) 488 dev_info(&pdev->dev, "MANA reset cycle failed err %d\n", ret); 489 else 490 dev_info(&pdev->dev, "MANA reset cycle completed\n"); 491 492 out: 493 gc->in_service = false; 494 } 495 496 struct mana_serv_work { 497 struct work_struct serv_work; 498 struct pci_dev *pdev; 499 enum gdma_eqe_type type; 500 }; 501 502 static void mana_do_service(enum gdma_eqe_type type, struct pci_dev *pdev) 503 { 504 switch (type) { 505 case GDMA_EQE_HWC_FPGA_RECONFIG: 506 mana_serv_fpga(pdev); 507 break; 508 509 case GDMA_EQE_HWC_RESET_REQUEST: 510 mana_serv_reset(pdev); 511 break; 512 513 default: 514 dev_err(&pdev->dev, "MANA service: unknown type %d\n", type); 515 break; 516 } 517 } 518 519 static void mana_recovery_delayed_func(struct work_struct *w) 520 { 521 struct mana_dev_recovery_work *work; 522 struct mana_dev_recovery *dev; 523 unsigned long flags; 524 525 work = container_of(w, struct mana_dev_recovery_work, work.work); 526 527 spin_lock_irqsave(&work->lock, flags); 528 529 while (!list_empty(&work->dev_list)) { 530 dev = list_first_entry(&work->dev_list, 531 struct mana_dev_recovery, list); 532 list_del(&dev->list); 533 spin_unlock_irqrestore(&work->lock, flags); 534 535 mana_do_service(dev->type, dev->pdev); 536 pci_dev_put(dev->pdev); 537 kfree(dev); 538 539 spin_lock_irqsave(&work->lock, flags); 540 } 541 542 spin_unlock_irqrestore(&work->lock, flags); 543 } 544 545 static void mana_serv_func(struct work_struct *w) 546 { 547 struct mana_serv_work *mns_wk; 548 struct pci_dev *pdev; 549 550 mns_wk = container_of(w, struct mana_serv_work, serv_work); 551 pdev = mns_wk->pdev; 552 553 if (pdev) 554 mana_do_service(mns_wk->type, pdev); 555 556 pci_dev_put(pdev); 557 kfree(mns_wk); 558 module_put(THIS_MODULE); 559 } 560 561 static void mana_gd_process_eqe(struct gdma_queue *eq) 562 { 563 u32 head = eq->head % (eq->queue_size / GDMA_EQE_SIZE); 564 struct gdma_context *gc = eq->gdma_dev->gdma_context; 565 struct gdma_eqe *eq_eqe_ptr = eq->queue_mem_ptr; 566 struct mana_serv_work *mns_wk; 567 union gdma_eqe_info eqe_info; 568 enum gdma_eqe_type type; 569 struct gdma_event event; 570 struct gdma_queue *cq; 571 struct gdma_eqe *eqe; 572 u32 cq_id; 573 574 eqe = &eq_eqe_ptr[head]; 575 eqe_info.as_uint32 = eqe->eqe_info; 576 type = eqe_info.type; 577 578 switch (type) { 579 case GDMA_EQE_COMPLETION: 580 cq_id = eqe->details[0] & 0xFFFFFF; 581 if (WARN_ON_ONCE(cq_id >= gc->max_num_cqs)) 582 break; 583 584 cq = gc->cq_table[cq_id]; 585 if (WARN_ON_ONCE(!cq || cq->type != GDMA_CQ || cq->id != cq_id)) 586 break; 587 588 if (cq->cq.callback) 589 cq->cq.callback(cq->cq.context, cq); 590 591 break; 592 593 case GDMA_EQE_TEST_EVENT: 594 gc->test_event_eq_id = eq->id; 595 complete(&gc->eq_test_event); 596 break; 597 598 case GDMA_EQE_HWC_INIT_EQ_ID_DB: 599 case GDMA_EQE_HWC_INIT_DATA: 600 case GDMA_EQE_HWC_INIT_DONE: 601 case GDMA_EQE_HWC_SOC_SERVICE: 602 case GDMA_EQE_RNIC_QP_FATAL: 603 case GDMA_EQE_HWC_SOC_RECONFIG_DATA: 604 if (!eq->eq.callback) 605 break; 606 607 event.type = type; 608 memcpy(&event.details, &eqe->details, GDMA_EVENT_DATA_SIZE); 609 eq->eq.callback(eq->eq.context, eq, &event); 610 break; 611 612 case GDMA_EQE_HWC_FPGA_RECONFIG: 613 case GDMA_EQE_HWC_RESET_REQUEST: 614 dev_info(gc->dev, "Recv MANA service type:%d\n", type); 615 616 if (!test_and_set_bit(GC_PROBE_SUCCEEDED, &gc->flags)) { 617 /* 618 * Device is in probe and we received a hardware reset 619 * event, the probe function will detect that the flag 620 * has changed and perform service procedure. 621 */ 622 dev_info(gc->dev, 623 "Service is to be processed in probe\n"); 624 break; 625 } 626 627 if (gc->in_service) { 628 dev_info(gc->dev, "Already in service\n"); 629 break; 630 } 631 632 if (!try_module_get(THIS_MODULE)) { 633 dev_info(gc->dev, "Module is unloading\n"); 634 break; 635 } 636 637 mns_wk = kzalloc(sizeof(*mns_wk), GFP_ATOMIC); 638 if (!mns_wk) { 639 module_put(THIS_MODULE); 640 break; 641 } 642 643 dev_info(gc->dev, "Start MANA service type:%d\n", type); 644 gc->in_service = true; 645 mns_wk->pdev = to_pci_dev(gc->dev); 646 mns_wk->type = type; 647 pci_dev_get(mns_wk->pdev); 648 INIT_WORK(&mns_wk->serv_work, mana_serv_func); 649 schedule_work(&mns_wk->serv_work); 650 break; 651 652 default: 653 break; 654 } 655 } 656 657 static void mana_gd_process_eq_events(void *arg) 658 { 659 u32 owner_bits, new_bits, old_bits; 660 union gdma_eqe_info eqe_info; 661 struct gdma_eqe *eq_eqe_ptr; 662 struct gdma_queue *eq = arg; 663 struct gdma_context *gc; 664 struct gdma_eqe *eqe; 665 u32 head, num_eqe; 666 int i; 667 668 gc = eq->gdma_dev->gdma_context; 669 670 num_eqe = eq->queue_size / GDMA_EQE_SIZE; 671 eq_eqe_ptr = eq->queue_mem_ptr; 672 673 /* Process up to 5 EQEs at a time, and update the HW head. */ 674 for (i = 0; i < 5; i++) { 675 eqe = &eq_eqe_ptr[eq->head % num_eqe]; 676 eqe_info.as_uint32 = eqe->eqe_info; 677 owner_bits = eqe_info.owner_bits; 678 679 old_bits = (eq->head / num_eqe - 1) & GDMA_EQE_OWNER_MASK; 680 /* No more entries */ 681 if (owner_bits == old_bits) { 682 /* return here without ringing the doorbell */ 683 if (i == 0) 684 return; 685 break; 686 } 687 688 new_bits = (eq->head / num_eqe) & GDMA_EQE_OWNER_MASK; 689 if (owner_bits != new_bits) { 690 dev_err(gc->dev, "EQ %d: overflow detected\n", eq->id); 691 break; 692 } 693 694 /* Per GDMA spec, rmb is necessary after checking owner_bits, before 695 * reading eqe. 696 */ 697 rmb(); 698 699 mana_gd_process_eqe(eq); 700 701 eq->head++; 702 } 703 704 head = eq->head % (num_eqe << GDMA_EQE_OWNER_BITS); 705 706 mana_gd_ring_doorbell(gc, eq->gdma_dev->doorbell, eq->type, eq->id, 707 head, SET_ARM_BIT); 708 } 709 710 static int mana_gd_register_irq(struct gdma_queue *queue, 711 const struct gdma_queue_spec *spec) 712 { 713 struct gdma_dev *gd = queue->gdma_dev; 714 struct gdma_irq_context *gic; 715 struct gdma_context *gc; 716 unsigned int msi_index; 717 unsigned long flags; 718 struct device *dev; 719 int err = 0; 720 721 gc = gd->gdma_context; 722 dev = gc->dev; 723 msi_index = spec->eq.msix_index; 724 725 if (msi_index >= gc->num_msix_usable) { 726 err = -ENOSPC; 727 dev_err(dev, "Register IRQ err:%d, msi:%u nMSI:%u", 728 err, msi_index, gc->num_msix_usable); 729 730 return err; 731 } 732 733 queue->eq.msix_index = msi_index; 734 gic = xa_load(&gc->irq_contexts, msi_index); 735 if (WARN_ON(!gic)) 736 return -EINVAL; 737 738 spin_lock_irqsave(&gic->lock, flags); 739 list_add_rcu(&queue->entry, &gic->eq_list); 740 spin_unlock_irqrestore(&gic->lock, flags); 741 742 return 0; 743 } 744 745 static void mana_gd_deregister_irq(struct gdma_queue *queue) 746 { 747 struct gdma_dev *gd = queue->gdma_dev; 748 struct gdma_irq_context *gic; 749 struct gdma_context *gc; 750 unsigned int msix_index; 751 unsigned long flags; 752 struct gdma_queue *eq; 753 754 gc = gd->gdma_context; 755 756 /* At most num_online_cpus() + 1 interrupts are used. */ 757 msix_index = queue->eq.msix_index; 758 if (WARN_ON(msix_index >= gc->num_msix_usable)) 759 return; 760 761 gic = xa_load(&gc->irq_contexts, msix_index); 762 if (WARN_ON(!gic)) 763 return; 764 765 spin_lock_irqsave(&gic->lock, flags); 766 list_for_each_entry_rcu(eq, &gic->eq_list, entry) { 767 if (queue == eq) { 768 list_del_rcu(&eq->entry); 769 break; 770 } 771 } 772 spin_unlock_irqrestore(&gic->lock, flags); 773 774 queue->eq.msix_index = INVALID_PCI_MSIX_INDEX; 775 synchronize_rcu(); 776 } 777 778 int mana_gd_test_eq(struct gdma_context *gc, struct gdma_queue *eq) 779 { 780 struct gdma_generate_test_event_req req = {}; 781 struct gdma_general_resp resp = {}; 782 struct device *dev = gc->dev; 783 int err; 784 785 mutex_lock(&gc->eq_test_event_mutex); 786 787 init_completion(&gc->eq_test_event); 788 gc->test_event_eq_id = INVALID_QUEUE_ID; 789 790 mana_gd_init_req_hdr(&req.hdr, GDMA_GENERATE_TEST_EQE, 791 sizeof(req), sizeof(resp)); 792 793 req.hdr.dev_id = eq->gdma_dev->dev_id; 794 req.queue_index = eq->id; 795 796 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 797 if (err) { 798 if (mana_need_log(gc, err)) 799 dev_err(dev, "test_eq failed: %d\n", err); 800 goto out; 801 } 802 803 err = -EPROTO; 804 805 if (resp.hdr.status) { 806 dev_err(dev, "test_eq failed: 0x%x\n", resp.hdr.status); 807 goto out; 808 } 809 810 if (!wait_for_completion_timeout(&gc->eq_test_event, 30 * HZ)) { 811 dev_err(dev, "test_eq timed out on queue %d\n", eq->id); 812 goto out; 813 } 814 815 if (eq->id != gc->test_event_eq_id) { 816 dev_err(dev, "test_eq got an event on wrong queue %d (%d)\n", 817 gc->test_event_eq_id, eq->id); 818 goto out; 819 } 820 821 err = 0; 822 out: 823 mutex_unlock(&gc->eq_test_event_mutex); 824 return err; 825 } 826 827 static void mana_gd_destroy_eq(struct gdma_context *gc, bool flush_evenets, 828 struct gdma_queue *queue) 829 { 830 int err; 831 832 if (flush_evenets) { 833 err = mana_gd_test_eq(gc, queue); 834 if (err && mana_need_log(gc, err)) 835 dev_warn(gc->dev, "Failed to flush EQ: %d\n", err); 836 } 837 838 mana_gd_deregister_irq(queue); 839 840 if (queue->eq.disable_needed) 841 mana_gd_disable_queue(queue); 842 } 843 844 static int mana_gd_create_eq(struct gdma_dev *gd, 845 const struct gdma_queue_spec *spec, 846 bool create_hwq, struct gdma_queue *queue) 847 { 848 struct gdma_context *gc = gd->gdma_context; 849 struct device *dev = gc->dev; 850 u32 log2_num_entries; 851 int err; 852 853 queue->eq.msix_index = INVALID_PCI_MSIX_INDEX; 854 queue->id = INVALID_QUEUE_ID; 855 856 log2_num_entries = ilog2(queue->queue_size / GDMA_EQE_SIZE); 857 858 if (spec->eq.log2_throttle_limit > log2_num_entries) { 859 dev_err(dev, "EQ throttling limit (%lu) > maximum EQE (%u)\n", 860 spec->eq.log2_throttle_limit, log2_num_entries); 861 return -EINVAL; 862 } 863 864 err = mana_gd_register_irq(queue, spec); 865 if (err) { 866 dev_err(dev, "Failed to register irq: %d\n", err); 867 return err; 868 } 869 870 queue->eq.callback = spec->eq.callback; 871 queue->eq.context = spec->eq.context; 872 queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries); 873 queue->eq.log2_throttle_limit = spec->eq.log2_throttle_limit ?: 1; 874 875 if (create_hwq) { 876 err = mana_gd_create_hw_eq(gc, queue); 877 if (err) 878 goto out; 879 880 err = mana_gd_test_eq(gc, queue); 881 if (err) 882 goto out; 883 } 884 885 return 0; 886 out: 887 dev_err(dev, "Failed to create EQ: %d\n", err); 888 mana_gd_destroy_eq(gc, false, queue); 889 return err; 890 } 891 892 static void mana_gd_create_cq(const struct gdma_queue_spec *spec, 893 struct gdma_queue *queue) 894 { 895 u32 log2_num_entries = ilog2(spec->queue_size / GDMA_CQE_SIZE); 896 897 queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries); 898 queue->cq.parent = spec->cq.parent_eq; 899 queue->cq.context = spec->cq.context; 900 queue->cq.callback = spec->cq.callback; 901 } 902 903 static void mana_gd_destroy_cq(struct gdma_context *gc, 904 struct gdma_queue *queue) 905 { 906 u32 id = queue->id; 907 908 if (id >= gc->max_num_cqs) 909 return; 910 911 if (!gc->cq_table[id]) 912 return; 913 914 gc->cq_table[id] = NULL; 915 } 916 917 int mana_gd_create_hwc_queue(struct gdma_dev *gd, 918 const struct gdma_queue_spec *spec, 919 struct gdma_queue **queue_ptr) 920 { 921 struct gdma_context *gc = gd->gdma_context; 922 struct gdma_mem_info *gmi; 923 struct gdma_queue *queue; 924 int err; 925 926 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 927 if (!queue) 928 return -ENOMEM; 929 930 gmi = &queue->mem_info; 931 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); 932 if (err) { 933 dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n", 934 spec->type, spec->queue_size, err); 935 goto free_q; 936 } 937 938 queue->head = 0; 939 queue->tail = 0; 940 queue->queue_mem_ptr = gmi->virt_addr; 941 queue->queue_size = spec->queue_size; 942 queue->monitor_avl_buf = spec->monitor_avl_buf; 943 queue->type = spec->type; 944 queue->gdma_dev = gd; 945 946 if (spec->type == GDMA_EQ) 947 err = mana_gd_create_eq(gd, spec, false, queue); 948 else if (spec->type == GDMA_CQ) 949 mana_gd_create_cq(spec, queue); 950 951 if (err) 952 goto out; 953 954 *queue_ptr = queue; 955 return 0; 956 out: 957 dev_err(gc->dev, "Failed to create queue type %d of size %u, err: %d\n", 958 spec->type, spec->queue_size, err); 959 mana_gd_free_memory(gmi); 960 free_q: 961 kfree(queue); 962 return err; 963 } 964 965 int mana_gd_destroy_dma_region(struct gdma_context *gc, u64 dma_region_handle) 966 { 967 struct gdma_destroy_dma_region_req req = {}; 968 struct gdma_general_resp resp = {}; 969 int err; 970 971 if (dma_region_handle == GDMA_INVALID_DMA_REGION) 972 return 0; 973 974 mana_gd_init_req_hdr(&req.hdr, GDMA_DESTROY_DMA_REGION, sizeof(req), 975 sizeof(resp)); 976 req.dma_region_handle = dma_region_handle; 977 978 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 979 if (err || resp.hdr.status) { 980 if (mana_need_log(gc, err)) 981 dev_err(gc->dev, "Failed to destroy DMA region: %d, 0x%x\n", 982 err, resp.hdr.status); 983 return -EPROTO; 984 } 985 986 return 0; 987 } 988 EXPORT_SYMBOL_NS(mana_gd_destroy_dma_region, "NET_MANA"); 989 990 static int mana_gd_create_dma_region(struct gdma_dev *gd, 991 struct gdma_mem_info *gmi) 992 { 993 unsigned int num_page = gmi->length / MANA_PAGE_SIZE; 994 struct gdma_create_dma_region_req *req = NULL; 995 struct gdma_create_dma_region_resp resp = {}; 996 struct gdma_context *gc = gd->gdma_context; 997 struct hw_channel_context *hwc; 998 u32 length = gmi->length; 999 size_t req_msg_size; 1000 int err; 1001 int i; 1002 1003 if (length < MANA_PAGE_SIZE || !is_power_of_2(length)) 1004 return -EINVAL; 1005 1006 if (!MANA_PAGE_ALIGNED(gmi->virt_addr)) 1007 return -EINVAL; 1008 1009 hwc = gc->hwc.driver_data; 1010 req_msg_size = struct_size(req, page_addr_list, num_page); 1011 if (req_msg_size > hwc->max_req_msg_size) 1012 return -EINVAL; 1013 1014 req = kzalloc(req_msg_size, GFP_KERNEL); 1015 if (!req) 1016 return -ENOMEM; 1017 1018 mana_gd_init_req_hdr(&req->hdr, GDMA_CREATE_DMA_REGION, 1019 req_msg_size, sizeof(resp)); 1020 req->length = length; 1021 req->offset_in_page = 0; 1022 req->gdma_page_type = GDMA_PAGE_TYPE_4K; 1023 req->page_count = num_page; 1024 req->page_addr_list_len = num_page; 1025 1026 for (i = 0; i < num_page; i++) 1027 req->page_addr_list[i] = gmi->dma_handle + i * MANA_PAGE_SIZE; 1028 1029 err = mana_gd_send_request(gc, req_msg_size, req, sizeof(resp), &resp); 1030 if (err) 1031 goto out; 1032 1033 if (resp.hdr.status || 1034 resp.dma_region_handle == GDMA_INVALID_DMA_REGION) { 1035 dev_err(gc->dev, "Failed to create DMA region: 0x%x\n", 1036 resp.hdr.status); 1037 err = -EPROTO; 1038 goto out; 1039 } 1040 1041 gmi->dma_region_handle = resp.dma_region_handle; 1042 dev_dbg(gc->dev, "Created DMA region handle 0x%llx\n", 1043 gmi->dma_region_handle); 1044 out: 1045 if (err) 1046 dev_dbg(gc->dev, 1047 "Failed to create DMA region of length: %u, page_type: %d, status: 0x%x, err: %d\n", 1048 length, req->gdma_page_type, resp.hdr.status, err); 1049 kfree(req); 1050 return err; 1051 } 1052 1053 int mana_gd_create_mana_eq(struct gdma_dev *gd, 1054 const struct gdma_queue_spec *spec, 1055 struct gdma_queue **queue_ptr) 1056 { 1057 struct gdma_context *gc = gd->gdma_context; 1058 struct gdma_mem_info *gmi; 1059 struct gdma_queue *queue; 1060 int err; 1061 1062 if (spec->type != GDMA_EQ) 1063 return -EINVAL; 1064 1065 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1066 if (!queue) 1067 return -ENOMEM; 1068 1069 gmi = &queue->mem_info; 1070 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); 1071 if (err) { 1072 dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n", 1073 spec->type, spec->queue_size, err); 1074 goto free_q; 1075 } 1076 1077 err = mana_gd_create_dma_region(gd, gmi); 1078 if (err) 1079 goto out; 1080 1081 queue->head = 0; 1082 queue->tail = 0; 1083 queue->queue_mem_ptr = gmi->virt_addr; 1084 queue->queue_size = spec->queue_size; 1085 queue->monitor_avl_buf = spec->monitor_avl_buf; 1086 queue->type = spec->type; 1087 queue->gdma_dev = gd; 1088 1089 err = mana_gd_create_eq(gd, spec, true, queue); 1090 if (err) 1091 goto out; 1092 1093 *queue_ptr = queue; 1094 return 0; 1095 out: 1096 dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n", 1097 spec->type, spec->queue_size, err); 1098 mana_gd_free_memory(gmi); 1099 free_q: 1100 kfree(queue); 1101 return err; 1102 } 1103 EXPORT_SYMBOL_NS(mana_gd_create_mana_eq, "NET_MANA"); 1104 1105 int mana_gd_create_mana_wq_cq(struct gdma_dev *gd, 1106 const struct gdma_queue_spec *spec, 1107 struct gdma_queue **queue_ptr) 1108 { 1109 struct gdma_context *gc = gd->gdma_context; 1110 struct gdma_mem_info *gmi; 1111 struct gdma_queue *queue; 1112 int err; 1113 1114 if (spec->type != GDMA_CQ && spec->type != GDMA_SQ && 1115 spec->type != GDMA_RQ) 1116 return -EINVAL; 1117 1118 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1119 if (!queue) 1120 return -ENOMEM; 1121 1122 gmi = &queue->mem_info; 1123 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); 1124 if (err) { 1125 dev_err(gc->dev, "GDMA queue type: %d, size: %u, memory allocation err: %d\n", 1126 spec->type, spec->queue_size, err); 1127 goto free_q; 1128 } 1129 1130 err = mana_gd_create_dma_region(gd, gmi); 1131 if (err) 1132 goto out; 1133 1134 queue->head = 0; 1135 queue->tail = 0; 1136 queue->queue_mem_ptr = gmi->virt_addr; 1137 queue->queue_size = spec->queue_size; 1138 queue->monitor_avl_buf = spec->monitor_avl_buf; 1139 queue->type = spec->type; 1140 queue->gdma_dev = gd; 1141 1142 if (spec->type == GDMA_CQ) 1143 mana_gd_create_cq(spec, queue); 1144 1145 *queue_ptr = queue; 1146 return 0; 1147 out: 1148 dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n", 1149 spec->type, spec->queue_size, err); 1150 mana_gd_free_memory(gmi); 1151 free_q: 1152 kfree(queue); 1153 return err; 1154 } 1155 EXPORT_SYMBOL_NS(mana_gd_create_mana_wq_cq, "NET_MANA"); 1156 1157 void mana_gd_destroy_queue(struct gdma_context *gc, struct gdma_queue *queue) 1158 { 1159 struct gdma_mem_info *gmi = &queue->mem_info; 1160 1161 switch (queue->type) { 1162 case GDMA_EQ: 1163 mana_gd_destroy_eq(gc, queue->eq.disable_needed, queue); 1164 break; 1165 1166 case GDMA_CQ: 1167 mana_gd_destroy_cq(gc, queue); 1168 break; 1169 1170 case GDMA_RQ: 1171 break; 1172 1173 case GDMA_SQ: 1174 break; 1175 1176 default: 1177 dev_err(gc->dev, "Can't destroy unknown queue: type=%d\n", 1178 queue->type); 1179 return; 1180 } 1181 1182 mana_gd_destroy_dma_region(gc, gmi->dma_region_handle); 1183 mana_gd_free_memory(gmi); 1184 kfree(queue); 1185 } 1186 EXPORT_SYMBOL_NS(mana_gd_destroy_queue, "NET_MANA"); 1187 1188 int mana_gd_verify_vf_version(struct pci_dev *pdev) 1189 { 1190 struct gdma_context *gc = pci_get_drvdata(pdev); 1191 struct gdma_verify_ver_resp resp = {}; 1192 struct gdma_verify_ver_req req = {}; 1193 struct hw_channel_context *hwc; 1194 int err; 1195 1196 hwc = gc->hwc.driver_data; 1197 mana_gd_init_req_hdr(&req.hdr, GDMA_VERIFY_VF_DRIVER_VERSION, 1198 sizeof(req), sizeof(resp)); 1199 1200 req.protocol_ver_min = GDMA_PROTOCOL_FIRST; 1201 req.protocol_ver_max = GDMA_PROTOCOL_LAST; 1202 1203 req.gd_drv_cap_flags1 = GDMA_DRV_CAP_FLAGS1; 1204 req.gd_drv_cap_flags2 = GDMA_DRV_CAP_FLAGS2; 1205 req.gd_drv_cap_flags3 = GDMA_DRV_CAP_FLAGS3; 1206 req.gd_drv_cap_flags4 = GDMA_DRV_CAP_FLAGS4; 1207 1208 req.drv_ver = 0; /* Unused*/ 1209 req.os_type = 0x10; /* Linux */ 1210 req.os_ver_major = LINUX_VERSION_MAJOR; 1211 req.os_ver_minor = LINUX_VERSION_PATCHLEVEL; 1212 req.os_ver_build = LINUX_VERSION_SUBLEVEL; 1213 strscpy(req.os_ver_str1, utsname()->sysname, sizeof(req.os_ver_str1)); 1214 strscpy(req.os_ver_str2, utsname()->release, sizeof(req.os_ver_str2)); 1215 strscpy(req.os_ver_str3, utsname()->version, sizeof(req.os_ver_str3)); 1216 1217 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 1218 if (err || resp.hdr.status) { 1219 dev_err(gc->dev, "VfVerifyVersionOutput: %d, status=0x%x\n", 1220 err, resp.hdr.status); 1221 return err ? err : -EPROTO; 1222 } 1223 gc->pf_cap_flags1 = resp.pf_cap_flags1; 1224 if (resp.pf_cap_flags1 & GDMA_DRV_CAP_FLAG_1_HWC_TIMEOUT_RECONFIG) { 1225 err = mana_gd_query_hwc_timeout(pdev, &hwc->hwc_timeout); 1226 if (err) { 1227 dev_err(gc->dev, "Failed to set the hwc timeout %d\n", err); 1228 return err; 1229 } 1230 dev_dbg(gc->dev, "set the hwc timeout to %u\n", hwc->hwc_timeout); 1231 } 1232 return 0; 1233 } 1234 1235 int mana_gd_register_device(struct gdma_dev *gd) 1236 { 1237 struct gdma_context *gc = gd->gdma_context; 1238 struct gdma_register_device_resp resp = {}; 1239 struct gdma_general_req req = {}; 1240 int err; 1241 1242 gd->pdid = INVALID_PDID; 1243 gd->doorbell = INVALID_DOORBELL; 1244 gd->gpa_mkey = INVALID_MEM_KEY; 1245 1246 mana_gd_init_req_hdr(&req.hdr, GDMA_REGISTER_DEVICE, sizeof(req), 1247 sizeof(resp)); 1248 1249 req.hdr.dev_id = gd->dev_id; 1250 1251 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 1252 if (err || resp.hdr.status) { 1253 dev_err(gc->dev, "gdma_register_device_resp failed: %d, 0x%x\n", 1254 err, resp.hdr.status); 1255 return err ? err : -EPROTO; 1256 } 1257 1258 gd->pdid = resp.pdid; 1259 gd->gpa_mkey = resp.gpa_mkey; 1260 gd->doorbell = resp.db_id; 1261 1262 return 0; 1263 } 1264 1265 int mana_gd_deregister_device(struct gdma_dev *gd) 1266 { 1267 struct gdma_context *gc = gd->gdma_context; 1268 struct gdma_general_resp resp = {}; 1269 struct gdma_general_req req = {}; 1270 int err; 1271 1272 if (gd->pdid == INVALID_PDID) 1273 return -EINVAL; 1274 1275 mana_gd_init_req_hdr(&req.hdr, GDMA_DEREGISTER_DEVICE, sizeof(req), 1276 sizeof(resp)); 1277 1278 req.hdr.dev_id = gd->dev_id; 1279 1280 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 1281 if (err || resp.hdr.status) { 1282 if (mana_need_log(gc, err)) 1283 dev_err(gc->dev, "Failed to deregister device: %d, 0x%x\n", 1284 err, resp.hdr.status); 1285 if (!err) 1286 err = -EPROTO; 1287 } 1288 1289 gd->pdid = INVALID_PDID; 1290 gd->doorbell = INVALID_DOORBELL; 1291 gd->gpa_mkey = INVALID_MEM_KEY; 1292 1293 return err; 1294 } 1295 1296 u32 mana_gd_wq_avail_space(struct gdma_queue *wq) 1297 { 1298 u32 used_space = (wq->head - wq->tail) * GDMA_WQE_BU_SIZE; 1299 u32 wq_size = wq->queue_size; 1300 1301 WARN_ON_ONCE(used_space > wq_size); 1302 1303 return wq_size - used_space; 1304 } 1305 1306 u8 *mana_gd_get_wqe_ptr(const struct gdma_queue *wq, u32 wqe_offset) 1307 { 1308 u32 offset = (wqe_offset * GDMA_WQE_BU_SIZE) & (wq->queue_size - 1); 1309 1310 WARN_ON_ONCE((offset + GDMA_WQE_BU_SIZE) > wq->queue_size); 1311 1312 return wq->queue_mem_ptr + offset; 1313 } 1314 1315 static u32 mana_gd_write_client_oob(const struct gdma_wqe_request *wqe_req, 1316 enum gdma_queue_type q_type, 1317 u32 client_oob_size, u32 sgl_data_size, 1318 u8 *wqe_ptr) 1319 { 1320 bool oob_in_sgl = !!(wqe_req->flags & GDMA_WR_OOB_IN_SGL); 1321 bool pad_data = !!(wqe_req->flags & GDMA_WR_PAD_BY_SGE0); 1322 struct gdma_wqe *header = (struct gdma_wqe *)wqe_ptr; 1323 u8 *ptr; 1324 1325 memset(header, 0, sizeof(struct gdma_wqe)); 1326 header->num_sge = wqe_req->num_sge; 1327 header->inline_oob_size_div4 = client_oob_size / sizeof(u32); 1328 1329 if (oob_in_sgl) { 1330 WARN_ON_ONCE(wqe_req->num_sge < 2); 1331 1332 header->client_oob_in_sgl = 1; 1333 1334 if (pad_data) 1335 header->last_vbytes = wqe_req->sgl[0].size; 1336 } 1337 1338 if (q_type == GDMA_SQ) 1339 header->client_data_unit = wqe_req->client_data_unit; 1340 1341 /* The size of gdma_wqe + client_oob_size must be less than or equal 1342 * to one Basic Unit (i.e. 32 bytes), so the pointer can't go beyond 1343 * the queue memory buffer boundary. 1344 */ 1345 ptr = wqe_ptr + sizeof(header); 1346 1347 if (wqe_req->inline_oob_data && wqe_req->inline_oob_size > 0) { 1348 memcpy(ptr, wqe_req->inline_oob_data, wqe_req->inline_oob_size); 1349 1350 if (client_oob_size > wqe_req->inline_oob_size) 1351 memset(ptr + wqe_req->inline_oob_size, 0, 1352 client_oob_size - wqe_req->inline_oob_size); 1353 } 1354 1355 return sizeof(header) + client_oob_size; 1356 } 1357 1358 static void mana_gd_write_sgl(struct gdma_queue *wq, u8 *wqe_ptr, 1359 const struct gdma_wqe_request *wqe_req) 1360 { 1361 u32 sgl_size = sizeof(struct gdma_sge) * wqe_req->num_sge; 1362 const u8 *address = (u8 *)wqe_req->sgl; 1363 u8 *base_ptr, *end_ptr; 1364 u32 size_to_end; 1365 1366 base_ptr = wq->queue_mem_ptr; 1367 end_ptr = base_ptr + wq->queue_size; 1368 size_to_end = (u32)(end_ptr - wqe_ptr); 1369 1370 if (size_to_end < sgl_size) { 1371 memcpy(wqe_ptr, address, size_to_end); 1372 1373 wqe_ptr = base_ptr; 1374 address += size_to_end; 1375 sgl_size -= size_to_end; 1376 } 1377 1378 memcpy(wqe_ptr, address, sgl_size); 1379 } 1380 1381 int mana_gd_post_work_request(struct gdma_queue *wq, 1382 const struct gdma_wqe_request *wqe_req, 1383 struct gdma_posted_wqe_info *wqe_info) 1384 { 1385 u32 client_oob_size = wqe_req->inline_oob_size; 1386 u32 sgl_data_size; 1387 u32 max_wqe_size; 1388 u32 wqe_size; 1389 u8 *wqe_ptr; 1390 1391 if (wqe_req->num_sge == 0) 1392 return -EINVAL; 1393 1394 if (wq->type == GDMA_RQ) { 1395 if (client_oob_size != 0) 1396 return -EINVAL; 1397 1398 client_oob_size = INLINE_OOB_SMALL_SIZE; 1399 1400 max_wqe_size = GDMA_MAX_RQE_SIZE; 1401 } else { 1402 if (client_oob_size != INLINE_OOB_SMALL_SIZE && 1403 client_oob_size != INLINE_OOB_LARGE_SIZE) 1404 return -EINVAL; 1405 1406 max_wqe_size = GDMA_MAX_SQE_SIZE; 1407 } 1408 1409 sgl_data_size = sizeof(struct gdma_sge) * wqe_req->num_sge; 1410 wqe_size = ALIGN(sizeof(struct gdma_wqe) + client_oob_size + 1411 sgl_data_size, GDMA_WQE_BU_SIZE); 1412 if (wqe_size > max_wqe_size) 1413 return -EINVAL; 1414 1415 if (wq->monitor_avl_buf && wqe_size > mana_gd_wq_avail_space(wq)) 1416 return -ENOSPC; 1417 1418 if (wqe_info) 1419 wqe_info->wqe_size_in_bu = wqe_size / GDMA_WQE_BU_SIZE; 1420 1421 wqe_ptr = mana_gd_get_wqe_ptr(wq, wq->head); 1422 wqe_ptr += mana_gd_write_client_oob(wqe_req, wq->type, client_oob_size, 1423 sgl_data_size, wqe_ptr); 1424 if (wqe_ptr >= (u8 *)wq->queue_mem_ptr + wq->queue_size) 1425 wqe_ptr -= wq->queue_size; 1426 1427 mana_gd_write_sgl(wq, wqe_ptr, wqe_req); 1428 1429 wq->head += wqe_size / GDMA_WQE_BU_SIZE; 1430 1431 return 0; 1432 } 1433 EXPORT_SYMBOL_NS(mana_gd_post_work_request, "NET_MANA"); 1434 1435 int mana_gd_post_and_ring(struct gdma_queue *queue, 1436 const struct gdma_wqe_request *wqe_req, 1437 struct gdma_posted_wqe_info *wqe_info) 1438 { 1439 struct gdma_context *gc = queue->gdma_dev->gdma_context; 1440 int err; 1441 1442 err = mana_gd_post_work_request(queue, wqe_req, wqe_info); 1443 if (err) { 1444 dev_err(gc->dev, "Failed to post work req from queue type %d of size %u (err=%d)\n", 1445 queue->type, queue->queue_size, err); 1446 return err; 1447 } 1448 1449 mana_gd_wq_ring_doorbell(gc, queue); 1450 1451 return 0; 1452 } 1453 1454 static int mana_gd_read_cqe(struct gdma_queue *cq, struct gdma_comp *comp) 1455 { 1456 unsigned int num_cqe = cq->queue_size / sizeof(struct gdma_cqe); 1457 struct gdma_cqe *cq_cqe = cq->queue_mem_ptr; 1458 u32 owner_bits, new_bits, old_bits; 1459 struct gdma_cqe *cqe; 1460 1461 cqe = &cq_cqe[cq->head % num_cqe]; 1462 owner_bits = cqe->cqe_info.owner_bits; 1463 1464 old_bits = (cq->head / num_cqe - 1) & GDMA_CQE_OWNER_MASK; 1465 /* Return 0 if no more entries. */ 1466 if (owner_bits == old_bits) 1467 return 0; 1468 1469 new_bits = (cq->head / num_cqe) & GDMA_CQE_OWNER_MASK; 1470 /* Return -1 if overflow detected. */ 1471 if (WARN_ON_ONCE(owner_bits != new_bits)) 1472 return -1; 1473 1474 /* Per GDMA spec, rmb is necessary after checking owner_bits, before 1475 * reading completion info 1476 */ 1477 rmb(); 1478 1479 comp->wq_num = cqe->cqe_info.wq_num; 1480 comp->is_sq = cqe->cqe_info.is_sq; 1481 memcpy(comp->cqe_data, cqe->cqe_data, GDMA_COMP_DATA_SIZE); 1482 1483 return 1; 1484 } 1485 1486 int mana_gd_poll_cq(struct gdma_queue *cq, struct gdma_comp *comp, int num_cqe) 1487 { 1488 int cqe_idx; 1489 int ret; 1490 1491 for (cqe_idx = 0; cqe_idx < num_cqe; cqe_idx++) { 1492 ret = mana_gd_read_cqe(cq, &comp[cqe_idx]); 1493 1494 if (ret < 0) { 1495 cq->head -= cqe_idx; 1496 return ret; 1497 } 1498 1499 if (ret == 0) 1500 break; 1501 1502 cq->head++; 1503 } 1504 1505 return cqe_idx; 1506 } 1507 EXPORT_SYMBOL_NS(mana_gd_poll_cq, "NET_MANA"); 1508 1509 static irqreturn_t mana_gd_intr(int irq, void *arg) 1510 { 1511 struct gdma_irq_context *gic = arg; 1512 struct list_head *eq_list = &gic->eq_list; 1513 struct gdma_queue *eq; 1514 1515 rcu_read_lock(); 1516 list_for_each_entry_rcu(eq, eq_list, entry) { 1517 gic->handler(eq); 1518 } 1519 rcu_read_unlock(); 1520 1521 return IRQ_HANDLED; 1522 } 1523 1524 int mana_gd_alloc_res_map(u32 res_avail, struct gdma_resource *r) 1525 { 1526 r->map = bitmap_zalloc(res_avail, GFP_KERNEL); 1527 if (!r->map) 1528 return -ENOMEM; 1529 1530 r->size = res_avail; 1531 spin_lock_init(&r->lock); 1532 1533 return 0; 1534 } 1535 1536 void mana_gd_free_res_map(struct gdma_resource *r) 1537 { 1538 bitmap_free(r->map); 1539 r->map = NULL; 1540 r->size = 0; 1541 } 1542 1543 /* 1544 * Spread on CPUs with the following heuristics: 1545 * 1546 * 1. No more than one IRQ per CPU, if possible; 1547 * 2. NUMA locality is the second priority; 1548 * 3. Sibling dislocality is the last priority. 1549 * 1550 * Let's consider this topology: 1551 * 1552 * Node 0 1 1553 * Core 0 1 2 3 1554 * CPU 0 1 2 3 4 5 6 7 1555 * 1556 * The most performant IRQ distribution based on the above topology 1557 * and heuristics may look like this: 1558 * 1559 * IRQ Nodes Cores CPUs 1560 * 0 1 0 0-1 1561 * 1 1 1 2-3 1562 * 2 1 0 0-1 1563 * 3 1 1 2-3 1564 * 4 2 2 4-5 1565 * 5 2 3 6-7 1566 * 6 2 2 4-5 1567 * 7 2 3 6-7 1568 * 1569 * The heuristics is implemented as follows. 1570 * 1571 * The outer for_each() loop resets the 'weight' to the actual number 1572 * of CPUs in the hop. Then inner for_each() loop decrements it by the 1573 * number of sibling groups (cores) while assigning first set of IRQs 1574 * to each group. IRQs 0 and 1 above are distributed this way. 1575 * 1576 * Now, because NUMA locality is more important, we should walk the 1577 * same set of siblings and assign 2nd set of IRQs (2 and 3), and it's 1578 * implemented by the medium while() loop. We do like this unless the 1579 * number of IRQs assigned on this hop will not become equal to number 1580 * of CPUs in the hop (weight == 0). Then we switch to the next hop and 1581 * do the same thing. 1582 */ 1583 1584 static int irq_setup(unsigned int *irqs, unsigned int len, int node, 1585 bool skip_first_cpu) 1586 { 1587 const struct cpumask *next, *prev = cpu_none_mask; 1588 cpumask_var_t cpus __free(free_cpumask_var); 1589 int cpu, weight; 1590 1591 if (!alloc_cpumask_var(&cpus, GFP_KERNEL)) 1592 return -ENOMEM; 1593 1594 rcu_read_lock(); 1595 for_each_numa_hop_mask(next, node) { 1596 weight = cpumask_weight_andnot(next, prev); 1597 while (weight > 0) { 1598 cpumask_andnot(cpus, next, prev); 1599 for_each_cpu(cpu, cpus) { 1600 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 1601 --weight; 1602 1603 if (unlikely(skip_first_cpu)) { 1604 skip_first_cpu = false; 1605 continue; 1606 } 1607 1608 if (len-- == 0) 1609 goto done; 1610 1611 irq_set_affinity_and_hint(*irqs++, topology_sibling_cpumask(cpu)); 1612 } 1613 } 1614 prev = next; 1615 } 1616 done: 1617 rcu_read_unlock(); 1618 return 0; 1619 } 1620 1621 static int mana_gd_setup_dyn_irqs(struct pci_dev *pdev, int nvec) 1622 { 1623 struct gdma_context *gc = pci_get_drvdata(pdev); 1624 struct gdma_irq_context *gic; 1625 bool skip_first_cpu = false; 1626 int *irqs, irq, err, i; 1627 1628 irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL); 1629 if (!irqs) 1630 return -ENOMEM; 1631 1632 /* 1633 * While processing the next pci irq vector, we start with index 1, 1634 * as IRQ vector at index 0 is already processed for HWC. 1635 * However, the population of irqs array starts with index 0, to be 1636 * further used in irq_setup() 1637 */ 1638 for (i = 1; i <= nvec; i++) { 1639 gic = kzalloc(sizeof(*gic), GFP_KERNEL); 1640 if (!gic) { 1641 err = -ENOMEM; 1642 goto free_irq; 1643 } 1644 gic->handler = mana_gd_process_eq_events; 1645 INIT_LIST_HEAD(&gic->eq_list); 1646 spin_lock_init(&gic->lock); 1647 1648 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s", 1649 i - 1, pci_name(pdev)); 1650 1651 /* one pci vector is already allocated for HWC */ 1652 irqs[i - 1] = pci_irq_vector(pdev, i); 1653 if (irqs[i - 1] < 0) { 1654 err = irqs[i - 1]; 1655 goto free_current_gic; 1656 } 1657 1658 err = request_irq(irqs[i - 1], mana_gd_intr, 0, gic->name, gic); 1659 if (err) 1660 goto free_current_gic; 1661 1662 xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL); 1663 } 1664 1665 /* 1666 * When calling irq_setup() for dynamically added IRQs, if number of 1667 * CPUs is more than or equal to allocated MSI-X, we need to skip the 1668 * first CPU sibling group since they are already affinitized to HWC IRQ 1669 */ 1670 cpus_read_lock(); 1671 if (gc->num_msix_usable <= num_online_cpus()) 1672 skip_first_cpu = true; 1673 1674 err = irq_setup(irqs, nvec, gc->numa_node, skip_first_cpu); 1675 if (err) { 1676 cpus_read_unlock(); 1677 goto free_irq; 1678 } 1679 1680 cpus_read_unlock(); 1681 kfree(irqs); 1682 return 0; 1683 1684 free_current_gic: 1685 kfree(gic); 1686 free_irq: 1687 for (i -= 1; i > 0; i--) { 1688 irq = pci_irq_vector(pdev, i); 1689 gic = xa_load(&gc->irq_contexts, i); 1690 if (WARN_ON(!gic)) 1691 continue; 1692 1693 irq_update_affinity_hint(irq, NULL); 1694 free_irq(irq, gic); 1695 xa_erase(&gc->irq_contexts, i); 1696 kfree(gic); 1697 } 1698 kfree(irqs); 1699 return err; 1700 } 1701 1702 static int mana_gd_setup_irqs(struct pci_dev *pdev, int nvec) 1703 { 1704 struct gdma_context *gc = pci_get_drvdata(pdev); 1705 struct gdma_irq_context *gic; 1706 int *irqs, *start_irqs, irq; 1707 unsigned int cpu; 1708 int err, i; 1709 1710 irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL); 1711 if (!irqs) 1712 return -ENOMEM; 1713 1714 start_irqs = irqs; 1715 1716 for (i = 0; i < nvec; i++) { 1717 gic = kzalloc(sizeof(*gic), GFP_KERNEL); 1718 if (!gic) { 1719 err = -ENOMEM; 1720 goto free_irq; 1721 } 1722 1723 gic->handler = mana_gd_process_eq_events; 1724 INIT_LIST_HEAD(&gic->eq_list); 1725 spin_lock_init(&gic->lock); 1726 1727 if (!i) 1728 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_hwc@pci:%s", 1729 pci_name(pdev)); 1730 else 1731 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s", 1732 i - 1, pci_name(pdev)); 1733 1734 irqs[i] = pci_irq_vector(pdev, i); 1735 if (irqs[i] < 0) { 1736 err = irqs[i]; 1737 goto free_current_gic; 1738 } 1739 1740 err = request_irq(irqs[i], mana_gd_intr, 0, gic->name, gic); 1741 if (err) 1742 goto free_current_gic; 1743 1744 xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL); 1745 } 1746 1747 /* If number of IRQ is one extra than number of online CPUs, 1748 * then we need to assign IRQ0 (hwc irq) and IRQ1 to 1749 * same CPU. 1750 * Else we will use different CPUs for IRQ0 and IRQ1. 1751 * Also we are using cpumask_local_spread instead of 1752 * cpumask_first for the node, because the node can be 1753 * mem only. 1754 */ 1755 cpus_read_lock(); 1756 if (nvec > num_online_cpus()) { 1757 cpu = cpumask_local_spread(0, gc->numa_node); 1758 irq_set_affinity_and_hint(irqs[0], cpumask_of(cpu)); 1759 irqs++; 1760 nvec -= 1; 1761 } 1762 1763 err = irq_setup(irqs, nvec, gc->numa_node, false); 1764 if (err) { 1765 cpus_read_unlock(); 1766 goto free_irq; 1767 } 1768 1769 cpus_read_unlock(); 1770 kfree(start_irqs); 1771 return 0; 1772 1773 free_current_gic: 1774 kfree(gic); 1775 free_irq: 1776 for (i -= 1; i >= 0; i--) { 1777 irq = pci_irq_vector(pdev, i); 1778 gic = xa_load(&gc->irq_contexts, i); 1779 if (WARN_ON(!gic)) 1780 continue; 1781 1782 irq_update_affinity_hint(irq, NULL); 1783 free_irq(irq, gic); 1784 xa_erase(&gc->irq_contexts, i); 1785 kfree(gic); 1786 } 1787 1788 kfree(start_irqs); 1789 return err; 1790 } 1791 1792 static int mana_gd_setup_hwc_irqs(struct pci_dev *pdev) 1793 { 1794 struct gdma_context *gc = pci_get_drvdata(pdev); 1795 unsigned int max_irqs, min_irqs; 1796 int nvec, err; 1797 1798 if (pci_msix_can_alloc_dyn(pdev)) { 1799 max_irqs = 1; 1800 min_irqs = 1; 1801 } else { 1802 /* Need 1 interrupt for HWC */ 1803 max_irqs = min(num_online_cpus(), MANA_MAX_NUM_QUEUES) + 1; 1804 min_irqs = 2; 1805 } 1806 1807 nvec = pci_alloc_irq_vectors(pdev, min_irqs, max_irqs, PCI_IRQ_MSIX); 1808 if (nvec < 0) 1809 return nvec; 1810 1811 err = mana_gd_setup_irqs(pdev, nvec); 1812 if (err) { 1813 pci_free_irq_vectors(pdev); 1814 return err; 1815 } 1816 1817 gc->num_msix_usable = nvec; 1818 gc->max_num_msix = nvec; 1819 1820 return 0; 1821 } 1822 1823 static int mana_gd_setup_remaining_irqs(struct pci_dev *pdev) 1824 { 1825 struct gdma_context *gc = pci_get_drvdata(pdev); 1826 struct msi_map irq_map; 1827 int max_irqs, i, err; 1828 1829 if (!pci_msix_can_alloc_dyn(pdev)) 1830 /* remain irqs are already allocated with HWC IRQ */ 1831 return 0; 1832 1833 /* allocate only remaining IRQs*/ 1834 max_irqs = gc->num_msix_usable - 1; 1835 1836 for (i = 1; i <= max_irqs; i++) { 1837 irq_map = pci_msix_alloc_irq_at(pdev, i, NULL); 1838 if (!irq_map.virq) { 1839 err = irq_map.index; 1840 /* caller will handle cleaning up all allocated 1841 * irqs, after HWC is destroyed 1842 */ 1843 return err; 1844 } 1845 } 1846 1847 err = mana_gd_setup_dyn_irqs(pdev, max_irqs); 1848 if (err) 1849 return err; 1850 1851 gc->max_num_msix = gc->max_num_msix + max_irqs; 1852 1853 return 0; 1854 } 1855 1856 static void mana_gd_remove_irqs(struct pci_dev *pdev) 1857 { 1858 struct gdma_context *gc = pci_get_drvdata(pdev); 1859 struct gdma_irq_context *gic; 1860 int irq, i; 1861 1862 if (gc->max_num_msix < 1) 1863 return; 1864 1865 for (i = 0; i < gc->max_num_msix; i++) { 1866 irq = pci_irq_vector(pdev, i); 1867 if (irq < 0) 1868 continue; 1869 1870 gic = xa_load(&gc->irq_contexts, i); 1871 if (WARN_ON(!gic)) 1872 continue; 1873 1874 /* Need to clear the hint before free_irq */ 1875 irq_update_affinity_hint(irq, NULL); 1876 free_irq(irq, gic); 1877 xa_erase(&gc->irq_contexts, i); 1878 kfree(gic); 1879 } 1880 1881 pci_free_irq_vectors(pdev); 1882 1883 gc->max_num_msix = 0; 1884 gc->num_msix_usable = 0; 1885 } 1886 1887 static int mana_gd_setup(struct pci_dev *pdev) 1888 { 1889 struct gdma_context *gc = pci_get_drvdata(pdev); 1890 int err; 1891 1892 mana_gd_init_registers(pdev); 1893 mana_smc_init(&gc->shm_channel, gc->dev, gc->shm_base); 1894 1895 gc->service_wq = alloc_ordered_workqueue("gdma_service_wq", 0); 1896 if (!gc->service_wq) 1897 return -ENOMEM; 1898 1899 err = mana_gd_setup_hwc_irqs(pdev); 1900 if (err) { 1901 dev_err(gc->dev, "Failed to setup IRQs for HWC creation: %d\n", 1902 err); 1903 goto free_workqueue; 1904 } 1905 1906 err = mana_hwc_create_channel(gc); 1907 if (err) 1908 goto remove_irq; 1909 1910 err = mana_gd_verify_vf_version(pdev); 1911 if (err) 1912 goto destroy_hwc; 1913 1914 err = mana_gd_query_max_resources(pdev); 1915 if (err) 1916 goto destroy_hwc; 1917 1918 err = mana_gd_setup_remaining_irqs(pdev); 1919 if (err) { 1920 dev_err(gc->dev, "Failed to setup remaining IRQs: %d", err); 1921 goto destroy_hwc; 1922 } 1923 1924 err = mana_gd_detect_devices(pdev); 1925 if (err) 1926 goto destroy_hwc; 1927 1928 dev_dbg(&pdev->dev, "mana gdma setup successful\n"); 1929 return 0; 1930 1931 destroy_hwc: 1932 mana_hwc_destroy_channel(gc); 1933 remove_irq: 1934 mana_gd_remove_irqs(pdev); 1935 free_workqueue: 1936 destroy_workqueue(gc->service_wq); 1937 dev_err(&pdev->dev, "%s failed (error %d)\n", __func__, err); 1938 return err; 1939 } 1940 1941 static void mana_gd_cleanup(struct pci_dev *pdev) 1942 { 1943 struct gdma_context *gc = pci_get_drvdata(pdev); 1944 1945 mana_hwc_destroy_channel(gc); 1946 1947 mana_gd_remove_irqs(pdev); 1948 1949 destroy_workqueue(gc->service_wq); 1950 dev_dbg(&pdev->dev, "mana gdma cleanup successful\n"); 1951 } 1952 1953 static bool mana_is_pf(unsigned short dev_id) 1954 { 1955 return dev_id == MANA_PF_DEVICE_ID; 1956 } 1957 1958 static int mana_gd_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1959 { 1960 struct gdma_context *gc; 1961 void __iomem *bar0_va; 1962 int bar = 0; 1963 int err; 1964 1965 /* Each port has 2 CQs, each CQ has at most 1 EQE at a time */ 1966 BUILD_BUG_ON(2 * MAX_PORTS_IN_MANA_DEV * GDMA_EQE_SIZE > EQ_SIZE); 1967 1968 err = pci_enable_device(pdev); 1969 if (err) { 1970 dev_err(&pdev->dev, "Failed to enable pci device (err=%d)\n", err); 1971 return -ENXIO; 1972 } 1973 1974 pci_set_master(pdev); 1975 1976 err = pci_request_regions(pdev, "mana"); 1977 if (err) 1978 goto disable_dev; 1979 1980 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1981 if (err) { 1982 dev_err(&pdev->dev, "DMA set mask failed: %d\n", err); 1983 goto release_region; 1984 } 1985 dma_set_max_seg_size(&pdev->dev, UINT_MAX); 1986 1987 err = -ENOMEM; 1988 gc = vzalloc(sizeof(*gc)); 1989 if (!gc) 1990 goto release_region; 1991 1992 mutex_init(&gc->eq_test_event_mutex); 1993 pci_set_drvdata(pdev, gc); 1994 gc->bar0_pa = pci_resource_start(pdev, 0); 1995 1996 bar0_va = pci_iomap(pdev, bar, 0); 1997 if (!bar0_va) 1998 goto free_gc; 1999 2000 gc->numa_node = dev_to_node(&pdev->dev); 2001 gc->is_pf = mana_is_pf(pdev->device); 2002 gc->bar0_va = bar0_va; 2003 gc->dev = &pdev->dev; 2004 xa_init(&gc->irq_contexts); 2005 2006 if (gc->is_pf) 2007 gc->mana_pci_debugfs = debugfs_create_dir("0", mana_debugfs_root); 2008 else 2009 gc->mana_pci_debugfs = debugfs_create_dir(pci_slot_name(pdev->slot), 2010 mana_debugfs_root); 2011 2012 err = mana_gd_setup(pdev); 2013 if (err) 2014 goto unmap_bar; 2015 2016 err = mana_probe(&gc->mana, false); 2017 if (err) 2018 goto cleanup_gd; 2019 2020 err = mana_rdma_probe(&gc->mana_ib); 2021 if (err) 2022 goto cleanup_mana; 2023 2024 /* 2025 * If a hardware reset event has occurred over HWC during probe, 2026 * rollback and perform hardware reset procedure. 2027 */ 2028 if (test_and_set_bit(GC_PROBE_SUCCEEDED, &gc->flags)) { 2029 err = -EPROTO; 2030 goto cleanup_mana_rdma; 2031 } 2032 2033 return 0; 2034 2035 cleanup_mana_rdma: 2036 mana_rdma_remove(&gc->mana_ib); 2037 cleanup_mana: 2038 mana_remove(&gc->mana, false); 2039 cleanup_gd: 2040 mana_gd_cleanup(pdev); 2041 unmap_bar: 2042 /* 2043 * at this point we know that the other debugfs child dir/files 2044 * are either not yet created or are already cleaned up. 2045 * The pci debugfs folder clean-up now, will only be cleaning up 2046 * adapter-MTU file and apc->mana_pci_debugfs folder. 2047 */ 2048 debugfs_remove_recursive(gc->mana_pci_debugfs); 2049 gc->mana_pci_debugfs = NULL; 2050 xa_destroy(&gc->irq_contexts); 2051 pci_iounmap(pdev, bar0_va); 2052 free_gc: 2053 pci_set_drvdata(pdev, NULL); 2054 vfree(gc); 2055 release_region: 2056 pci_release_regions(pdev); 2057 disable_dev: 2058 pci_disable_device(pdev); 2059 dev_err(&pdev->dev, "gdma probe failed: err = %d\n", err); 2060 2061 /* 2062 * Hardware could be in recovery mode and the HWC returns TIMEDOUT or 2063 * EPROTO from mana_gd_setup(), mana_probe() or mana_rdma_probe(), or 2064 * we received a hardware reset event over HWC interrupt. In this case, 2065 * perform the device recovery procedure after MANA_SERVICE_PERIOD 2066 * seconds. 2067 */ 2068 if (err == -ETIMEDOUT || err == -EPROTO) { 2069 struct mana_dev_recovery *dev; 2070 unsigned long flags; 2071 2072 dev_info(&pdev->dev, "Start MANA recovery mode\n"); 2073 2074 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2075 if (!dev) 2076 return err; 2077 2078 dev->pdev = pci_dev_get(pdev); 2079 dev->type = GDMA_EQE_HWC_RESET_REQUEST; 2080 2081 spin_lock_irqsave(&mana_dev_recovery_work.lock, flags); 2082 list_add_tail(&dev->list, &mana_dev_recovery_work.dev_list); 2083 spin_unlock_irqrestore(&mana_dev_recovery_work.lock, flags); 2084 2085 schedule_delayed_work(&mana_dev_recovery_work.work, 2086 secs_to_jiffies(MANA_SERVICE_PERIOD)); 2087 } 2088 2089 return err; 2090 } 2091 2092 static void mana_gd_remove(struct pci_dev *pdev) 2093 { 2094 struct gdma_context *gc = pci_get_drvdata(pdev); 2095 2096 mana_rdma_remove(&gc->mana_ib); 2097 mana_remove(&gc->mana, false); 2098 2099 mana_gd_cleanup(pdev); 2100 2101 debugfs_remove_recursive(gc->mana_pci_debugfs); 2102 2103 gc->mana_pci_debugfs = NULL; 2104 2105 xa_destroy(&gc->irq_contexts); 2106 2107 pci_iounmap(pdev, gc->bar0_va); 2108 2109 vfree(gc); 2110 2111 pci_release_regions(pdev); 2112 pci_disable_device(pdev); 2113 2114 dev_dbg(&pdev->dev, "mana gdma remove successful\n"); 2115 } 2116 2117 /* The 'state' parameter is not used. */ 2118 int mana_gd_suspend(struct pci_dev *pdev, pm_message_t state) 2119 { 2120 struct gdma_context *gc = pci_get_drvdata(pdev); 2121 2122 mana_rdma_remove(&gc->mana_ib); 2123 mana_remove(&gc->mana, true); 2124 2125 mana_gd_cleanup(pdev); 2126 2127 return 0; 2128 } 2129 2130 /* In case the NIC hardware stops working, the suspend and resume callbacks will 2131 * fail -- if this happens, it's safer to just report an error than try to undo 2132 * what has been done. 2133 */ 2134 int mana_gd_resume(struct pci_dev *pdev) 2135 { 2136 struct gdma_context *gc = pci_get_drvdata(pdev); 2137 int err; 2138 2139 err = mana_gd_setup(pdev); 2140 if (err) 2141 return err; 2142 2143 err = mana_probe(&gc->mana, true); 2144 if (err) 2145 return err; 2146 2147 err = mana_rdma_probe(&gc->mana_ib); 2148 if (err) 2149 return err; 2150 2151 return 0; 2152 } 2153 2154 /* Quiesce the device for kexec. This is also called upon reboot/shutdown. */ 2155 static void mana_gd_shutdown(struct pci_dev *pdev) 2156 { 2157 struct gdma_context *gc = pci_get_drvdata(pdev); 2158 2159 dev_info(&pdev->dev, "Shutdown was called\n"); 2160 2161 mana_rdma_remove(&gc->mana_ib); 2162 mana_remove(&gc->mana, true); 2163 2164 mana_gd_cleanup(pdev); 2165 2166 debugfs_remove_recursive(gc->mana_pci_debugfs); 2167 2168 gc->mana_pci_debugfs = NULL; 2169 2170 pci_disable_device(pdev); 2171 } 2172 2173 static const struct pci_device_id mana_id_table[] = { 2174 { PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_PF_DEVICE_ID) }, 2175 { PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_VF_DEVICE_ID) }, 2176 { } 2177 }; 2178 2179 static struct pci_driver mana_driver = { 2180 .name = "mana", 2181 .id_table = mana_id_table, 2182 .probe = mana_gd_probe, 2183 .remove = mana_gd_remove, 2184 .suspend = mana_gd_suspend, 2185 .resume = mana_gd_resume, 2186 .shutdown = mana_gd_shutdown, 2187 }; 2188 2189 static int __init mana_driver_init(void) 2190 { 2191 int err; 2192 2193 INIT_LIST_HEAD(&mana_dev_recovery_work.dev_list); 2194 spin_lock_init(&mana_dev_recovery_work.lock); 2195 INIT_DELAYED_WORK(&mana_dev_recovery_work.work, mana_recovery_delayed_func); 2196 2197 mana_debugfs_root = debugfs_create_dir("mana", NULL); 2198 2199 err = pci_register_driver(&mana_driver); 2200 if (err) { 2201 debugfs_remove(mana_debugfs_root); 2202 mana_debugfs_root = NULL; 2203 } 2204 2205 return err; 2206 } 2207 2208 static void __exit mana_driver_exit(void) 2209 { 2210 struct mana_dev_recovery *dev; 2211 unsigned long flags; 2212 2213 disable_delayed_work_sync(&mana_dev_recovery_work.work); 2214 2215 spin_lock_irqsave(&mana_dev_recovery_work.lock, flags); 2216 while (!list_empty(&mana_dev_recovery_work.dev_list)) { 2217 dev = list_first_entry(&mana_dev_recovery_work.dev_list, 2218 struct mana_dev_recovery, list); 2219 list_del(&dev->list); 2220 pci_dev_put(dev->pdev); 2221 kfree(dev); 2222 } 2223 spin_unlock_irqrestore(&mana_dev_recovery_work.lock, flags); 2224 2225 pci_unregister_driver(&mana_driver); 2226 2227 debugfs_remove(mana_debugfs_root); 2228 2229 mana_debugfs_root = NULL; 2230 } 2231 2232 module_init(mana_driver_init); 2233 module_exit(mana_driver_exit); 2234 2235 MODULE_DEVICE_TABLE(pci, mana_id_table); 2236 2237 MODULE_LICENSE("Dual BSD/GPL"); 2238 MODULE_DESCRIPTION("Microsoft Azure Network Adapter driver"); 2239