1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright (c) 2021, Microsoft Corporation. */
3
4 #include <linux/debugfs.h>
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include <linux/utsname.h>
8 #include <linux/version.h>
9 #include <linux/msi.h>
10 #include <linux/irqdomain.h>
11 #include <linux/export.h>
12
13 #include <net/mana/mana.h>
14 #include <net/mana/hw_channel.h>
15
16 struct dentry *mana_debugfs_root;
17
mana_gd_r32(struct gdma_context * g,u64 offset)18 static u32 mana_gd_r32(struct gdma_context *g, u64 offset)
19 {
20 return readl(g->bar0_va + offset);
21 }
22
mana_gd_r64(struct gdma_context * g,u64 offset)23 static u64 mana_gd_r64(struct gdma_context *g, u64 offset)
24 {
25 return readq(g->bar0_va + offset);
26 }
27
mana_gd_init_pf_regs(struct pci_dev * pdev)28 static void mana_gd_init_pf_regs(struct pci_dev *pdev)
29 {
30 struct gdma_context *gc = pci_get_drvdata(pdev);
31 void __iomem *sriov_base_va;
32 u64 sriov_base_off;
33
34 gc->db_page_size = mana_gd_r32(gc, GDMA_PF_REG_DB_PAGE_SIZE) & 0xFFFF;
35 gc->db_page_base = gc->bar0_va +
36 mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF);
37
38 gc->phys_db_page_base = gc->bar0_pa +
39 mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF);
40
41 sriov_base_off = mana_gd_r64(gc, GDMA_SRIOV_REG_CFG_BASE_OFF);
42
43 sriov_base_va = gc->bar0_va + sriov_base_off;
44 gc->shm_base = sriov_base_va +
45 mana_gd_r64(gc, sriov_base_off + GDMA_PF_REG_SHM_OFF);
46 }
47
mana_gd_init_vf_regs(struct pci_dev * pdev)48 static void mana_gd_init_vf_regs(struct pci_dev *pdev)
49 {
50 struct gdma_context *gc = pci_get_drvdata(pdev);
51
52 gc->db_page_size = mana_gd_r32(gc, GDMA_REG_DB_PAGE_SIZE) & 0xFFFF;
53
54 gc->db_page_base = gc->bar0_va +
55 mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET);
56
57 gc->phys_db_page_base = gc->bar0_pa +
58 mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET);
59
60 gc->shm_base = gc->bar0_va + mana_gd_r64(gc, GDMA_REG_SHM_OFFSET);
61 }
62
mana_gd_init_registers(struct pci_dev * pdev)63 static void mana_gd_init_registers(struct pci_dev *pdev)
64 {
65 struct gdma_context *gc = pci_get_drvdata(pdev);
66
67 if (gc->is_pf)
68 mana_gd_init_pf_regs(pdev);
69 else
70 mana_gd_init_vf_regs(pdev);
71 }
72
73 /* Suppress logging when we set timeout to zero */
mana_need_log(struct gdma_context * gc,int err)74 bool mana_need_log(struct gdma_context *gc, int err)
75 {
76 struct hw_channel_context *hwc;
77
78 if (err != -ETIMEDOUT)
79 return true;
80
81 if (!gc)
82 return true;
83
84 hwc = gc->hwc.driver_data;
85 if (hwc && hwc->hwc_timeout == 0)
86 return false;
87
88 return true;
89 }
90
mana_gd_query_max_resources(struct pci_dev * pdev)91 static int mana_gd_query_max_resources(struct pci_dev *pdev)
92 {
93 struct gdma_context *gc = pci_get_drvdata(pdev);
94 struct gdma_query_max_resources_resp resp = {};
95 struct gdma_general_req req = {};
96 int err;
97
98 mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_MAX_RESOURCES,
99 sizeof(req), sizeof(resp));
100
101 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
102 if (err || resp.hdr.status) {
103 dev_err(gc->dev, "Failed to query resource info: %d, 0x%x\n",
104 err, resp.hdr.status);
105 return err ? err : -EPROTO;
106 }
107
108 if (!pci_msix_can_alloc_dyn(pdev)) {
109 if (gc->num_msix_usable > resp.max_msix)
110 gc->num_msix_usable = resp.max_msix;
111 } else {
112 /* If dynamic allocation is enabled we have already allocated
113 * hwc msi
114 */
115 gc->num_msix_usable = min(resp.max_msix, num_online_cpus() + 1);
116 }
117
118 if (gc->num_msix_usable <= 1)
119 return -ENOSPC;
120
121 gc->max_num_queues = num_online_cpus();
122 if (gc->max_num_queues > MANA_MAX_NUM_QUEUES)
123 gc->max_num_queues = MANA_MAX_NUM_QUEUES;
124
125 if (gc->max_num_queues > resp.max_eq)
126 gc->max_num_queues = resp.max_eq;
127
128 if (gc->max_num_queues > resp.max_cq)
129 gc->max_num_queues = resp.max_cq;
130
131 if (gc->max_num_queues > resp.max_sq)
132 gc->max_num_queues = resp.max_sq;
133
134 if (gc->max_num_queues > resp.max_rq)
135 gc->max_num_queues = resp.max_rq;
136
137 /* The Hardware Channel (HWC) used 1 MSI-X */
138 if (gc->max_num_queues > gc->num_msix_usable - 1)
139 gc->max_num_queues = gc->num_msix_usable - 1;
140
141 return 0;
142 }
143
mana_gd_query_hwc_timeout(struct pci_dev * pdev,u32 * timeout_val)144 static int mana_gd_query_hwc_timeout(struct pci_dev *pdev, u32 *timeout_val)
145 {
146 struct gdma_context *gc = pci_get_drvdata(pdev);
147 struct gdma_query_hwc_timeout_resp resp = {};
148 struct gdma_query_hwc_timeout_req req = {};
149 int err;
150
151 mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_HWC_TIMEOUT,
152 sizeof(req), sizeof(resp));
153 req.timeout_ms = *timeout_val;
154 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
155 if (err || resp.hdr.status)
156 return err ? err : -EPROTO;
157
158 *timeout_val = resp.timeout_ms;
159
160 return 0;
161 }
162
mana_gd_detect_devices(struct pci_dev * pdev)163 static int mana_gd_detect_devices(struct pci_dev *pdev)
164 {
165 struct gdma_context *gc = pci_get_drvdata(pdev);
166 struct gdma_list_devices_resp resp = {};
167 struct gdma_general_req req = {};
168 struct gdma_dev_id dev;
169 int found_dev = 0;
170 u16 dev_type;
171 int err;
172 u32 i;
173
174 mana_gd_init_req_hdr(&req.hdr, GDMA_LIST_DEVICES, sizeof(req),
175 sizeof(resp));
176
177 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
178 if (err || resp.hdr.status) {
179 dev_err(gc->dev, "Failed to detect devices: %d, 0x%x\n", err,
180 resp.hdr.status);
181 return err ? err : -EPROTO;
182 }
183
184 for (i = 0; i < GDMA_DEV_LIST_SIZE &&
185 found_dev < resp.num_of_devs; i++) {
186 dev = resp.devs[i];
187 dev_type = dev.type;
188
189 /* Skip empty devices */
190 if (dev.as_uint32 == 0)
191 continue;
192
193 found_dev++;
194
195 /* HWC is already detected in mana_hwc_create_channel(). */
196 if (dev_type == GDMA_DEVICE_HWC)
197 continue;
198
199 if (dev_type == GDMA_DEVICE_MANA) {
200 gc->mana.gdma_context = gc;
201 gc->mana.dev_id = dev;
202 } else if (dev_type == GDMA_DEVICE_MANA_IB) {
203 gc->mana_ib.dev_id = dev;
204 gc->mana_ib.gdma_context = gc;
205 }
206 }
207
208 return gc->mana.dev_id.type == 0 ? -ENODEV : 0;
209 }
210
mana_gd_send_request(struct gdma_context * gc,u32 req_len,const void * req,u32 resp_len,void * resp)211 int mana_gd_send_request(struct gdma_context *gc, u32 req_len, const void *req,
212 u32 resp_len, void *resp)
213 {
214 struct hw_channel_context *hwc = gc->hwc.driver_data;
215
216 return mana_hwc_send_request(hwc, req_len, req, resp_len, resp);
217 }
218 EXPORT_SYMBOL_NS(mana_gd_send_request, "NET_MANA");
219
mana_gd_alloc_memory(struct gdma_context * gc,unsigned int length,struct gdma_mem_info * gmi)220 int mana_gd_alloc_memory(struct gdma_context *gc, unsigned int length,
221 struct gdma_mem_info *gmi)
222 {
223 dma_addr_t dma_handle;
224 void *buf;
225
226 if (length < MANA_PAGE_SIZE || !is_power_of_2(length))
227 return -EINVAL;
228
229 gmi->dev = gc->dev;
230 buf = dma_alloc_coherent(gmi->dev, length, &dma_handle, GFP_KERNEL);
231 if (!buf)
232 return -ENOMEM;
233
234 gmi->dma_handle = dma_handle;
235 gmi->virt_addr = buf;
236 gmi->length = length;
237
238 return 0;
239 }
240
mana_gd_free_memory(struct gdma_mem_info * gmi)241 void mana_gd_free_memory(struct gdma_mem_info *gmi)
242 {
243 dma_free_coherent(gmi->dev, gmi->length, gmi->virt_addr,
244 gmi->dma_handle);
245 }
246
mana_gd_create_hw_eq(struct gdma_context * gc,struct gdma_queue * queue)247 static int mana_gd_create_hw_eq(struct gdma_context *gc,
248 struct gdma_queue *queue)
249 {
250 struct gdma_create_queue_resp resp = {};
251 struct gdma_create_queue_req req = {};
252 int err;
253
254 if (queue->type != GDMA_EQ)
255 return -EINVAL;
256
257 mana_gd_init_req_hdr(&req.hdr, GDMA_CREATE_QUEUE,
258 sizeof(req), sizeof(resp));
259
260 req.hdr.dev_id = queue->gdma_dev->dev_id;
261 req.type = queue->type;
262 req.pdid = queue->gdma_dev->pdid;
263 req.doolbell_id = queue->gdma_dev->doorbell;
264 req.gdma_region = queue->mem_info.dma_region_handle;
265 req.queue_size = queue->queue_size;
266 req.log2_throttle_limit = queue->eq.log2_throttle_limit;
267 req.eq_pci_msix_index = queue->eq.msix_index;
268
269 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
270 if (err || resp.hdr.status) {
271 dev_err(gc->dev, "Failed to create queue: %d, 0x%x\n", err,
272 resp.hdr.status);
273 return err ? err : -EPROTO;
274 }
275
276 queue->id = resp.queue_index;
277 queue->eq.disable_needed = true;
278 queue->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION;
279 return 0;
280 }
281
mana_gd_disable_queue(struct gdma_queue * queue)282 static int mana_gd_disable_queue(struct gdma_queue *queue)
283 {
284 struct gdma_context *gc = queue->gdma_dev->gdma_context;
285 struct gdma_disable_queue_req req = {};
286 struct gdma_general_resp resp = {};
287 int err;
288
289 WARN_ON(queue->type != GDMA_EQ);
290
291 mana_gd_init_req_hdr(&req.hdr, GDMA_DISABLE_QUEUE,
292 sizeof(req), sizeof(resp));
293
294 req.hdr.dev_id = queue->gdma_dev->dev_id;
295 req.type = queue->type;
296 req.queue_index = queue->id;
297 req.alloc_res_id_on_creation = 1;
298
299 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
300 if (err || resp.hdr.status) {
301 if (mana_need_log(gc, err))
302 dev_err(gc->dev, "Failed to disable queue: %d, 0x%x\n", err,
303 resp.hdr.status);
304 return err ? err : -EPROTO;
305 }
306
307 return 0;
308 }
309
310 #define DOORBELL_OFFSET_SQ 0x0
311 #define DOORBELL_OFFSET_RQ 0x400
312 #define DOORBELL_OFFSET_CQ 0x800
313 #define DOORBELL_OFFSET_EQ 0xFF8
314
mana_gd_ring_doorbell(struct gdma_context * gc,u32 db_index,enum gdma_queue_type q_type,u32 qid,u32 tail_ptr,u8 num_req)315 static void mana_gd_ring_doorbell(struct gdma_context *gc, u32 db_index,
316 enum gdma_queue_type q_type, u32 qid,
317 u32 tail_ptr, u8 num_req)
318 {
319 void __iomem *addr = gc->db_page_base + gc->db_page_size * db_index;
320 union gdma_doorbell_entry e = {};
321
322 switch (q_type) {
323 case GDMA_EQ:
324 e.eq.id = qid;
325 e.eq.tail_ptr = tail_ptr;
326 e.eq.arm = num_req;
327
328 addr += DOORBELL_OFFSET_EQ;
329 break;
330
331 case GDMA_CQ:
332 e.cq.id = qid;
333 e.cq.tail_ptr = tail_ptr;
334 e.cq.arm = num_req;
335
336 addr += DOORBELL_OFFSET_CQ;
337 break;
338
339 case GDMA_RQ:
340 e.rq.id = qid;
341 e.rq.tail_ptr = tail_ptr;
342 e.rq.wqe_cnt = num_req;
343
344 addr += DOORBELL_OFFSET_RQ;
345 break;
346
347 case GDMA_SQ:
348 e.sq.id = qid;
349 e.sq.tail_ptr = tail_ptr;
350
351 addr += DOORBELL_OFFSET_SQ;
352 break;
353
354 default:
355 WARN_ON(1);
356 return;
357 }
358
359 /* Ensure all writes are done before ring doorbell */
360 wmb();
361
362 writeq(e.as_uint64, addr);
363 }
364
mana_gd_wq_ring_doorbell(struct gdma_context * gc,struct gdma_queue * queue)365 void mana_gd_wq_ring_doorbell(struct gdma_context *gc, struct gdma_queue *queue)
366 {
367 /* Hardware Spec specifies that software client should set 0 for
368 * wqe_cnt for Receive Queues. This value is not used in Send Queues.
369 */
370 mana_gd_ring_doorbell(gc, queue->gdma_dev->doorbell, queue->type,
371 queue->id, queue->head * GDMA_WQE_BU_SIZE, 0);
372 }
373 EXPORT_SYMBOL_NS(mana_gd_wq_ring_doorbell, "NET_MANA");
374
mana_gd_ring_cq(struct gdma_queue * cq,u8 arm_bit)375 void mana_gd_ring_cq(struct gdma_queue *cq, u8 arm_bit)
376 {
377 struct gdma_context *gc = cq->gdma_dev->gdma_context;
378
379 u32 num_cqe = cq->queue_size / GDMA_CQE_SIZE;
380
381 u32 head = cq->head % (num_cqe << GDMA_CQE_OWNER_BITS);
382
383 mana_gd_ring_doorbell(gc, cq->gdma_dev->doorbell, cq->type, cq->id,
384 head, arm_bit);
385 }
386 EXPORT_SYMBOL_NS(mana_gd_ring_cq, "NET_MANA");
387
388 #define MANA_SERVICE_PERIOD 10
389
mana_serv_fpga(struct pci_dev * pdev)390 static void mana_serv_fpga(struct pci_dev *pdev)
391 {
392 struct pci_bus *bus, *parent;
393
394 pci_lock_rescan_remove();
395
396 bus = pdev->bus;
397 if (!bus) {
398 dev_err(&pdev->dev, "MANA service: no bus\n");
399 goto out;
400 }
401
402 parent = bus->parent;
403 if (!parent) {
404 dev_err(&pdev->dev, "MANA service: no parent bus\n");
405 goto out;
406 }
407
408 pci_stop_and_remove_bus_device(bus->self);
409
410 msleep(MANA_SERVICE_PERIOD * 1000);
411
412 pci_rescan_bus(parent);
413
414 out:
415 pci_unlock_rescan_remove();
416 }
417
mana_serv_reset(struct pci_dev * pdev)418 static void mana_serv_reset(struct pci_dev *pdev)
419 {
420 struct gdma_context *gc = pci_get_drvdata(pdev);
421 struct hw_channel_context *hwc;
422
423 if (!gc) {
424 dev_err(&pdev->dev, "MANA service: no GC\n");
425 return;
426 }
427
428 hwc = gc->hwc.driver_data;
429 if (!hwc) {
430 dev_err(&pdev->dev, "MANA service: no HWC\n");
431 goto out;
432 }
433
434 /* HWC is not responding in this case, so don't wait */
435 hwc->hwc_timeout = 0;
436
437 dev_info(&pdev->dev, "MANA reset cycle start\n");
438
439 mana_gd_suspend(pdev, PMSG_SUSPEND);
440
441 msleep(MANA_SERVICE_PERIOD * 1000);
442
443 mana_gd_resume(pdev);
444
445 dev_info(&pdev->dev, "MANA reset cycle completed\n");
446
447 out:
448 gc->in_service = false;
449 }
450
451 struct mana_serv_work {
452 struct work_struct serv_work;
453 struct pci_dev *pdev;
454 enum gdma_eqe_type type;
455 };
456
mana_serv_func(struct work_struct * w)457 static void mana_serv_func(struct work_struct *w)
458 {
459 struct mana_serv_work *mns_wk;
460 struct pci_dev *pdev;
461
462 mns_wk = container_of(w, struct mana_serv_work, serv_work);
463 pdev = mns_wk->pdev;
464
465 if (!pdev)
466 goto out;
467
468 switch (mns_wk->type) {
469 case GDMA_EQE_HWC_FPGA_RECONFIG:
470 mana_serv_fpga(pdev);
471 break;
472
473 case GDMA_EQE_HWC_RESET_REQUEST:
474 mana_serv_reset(pdev);
475 break;
476
477 default:
478 dev_err(&pdev->dev, "MANA service: unknown type %d\n",
479 mns_wk->type);
480 break;
481 }
482
483 out:
484 pci_dev_put(pdev);
485 kfree(mns_wk);
486 module_put(THIS_MODULE);
487 }
488
mana_gd_process_eqe(struct gdma_queue * eq)489 static void mana_gd_process_eqe(struct gdma_queue *eq)
490 {
491 u32 head = eq->head % (eq->queue_size / GDMA_EQE_SIZE);
492 struct gdma_context *gc = eq->gdma_dev->gdma_context;
493 struct gdma_eqe *eq_eqe_ptr = eq->queue_mem_ptr;
494 struct mana_serv_work *mns_wk;
495 union gdma_eqe_info eqe_info;
496 enum gdma_eqe_type type;
497 struct gdma_event event;
498 struct gdma_queue *cq;
499 struct gdma_eqe *eqe;
500 u32 cq_id;
501
502 eqe = &eq_eqe_ptr[head];
503 eqe_info.as_uint32 = eqe->eqe_info;
504 type = eqe_info.type;
505
506 switch (type) {
507 case GDMA_EQE_COMPLETION:
508 cq_id = eqe->details[0] & 0xFFFFFF;
509 if (WARN_ON_ONCE(cq_id >= gc->max_num_cqs))
510 break;
511
512 cq = gc->cq_table[cq_id];
513 if (WARN_ON_ONCE(!cq || cq->type != GDMA_CQ || cq->id != cq_id))
514 break;
515
516 if (cq->cq.callback)
517 cq->cq.callback(cq->cq.context, cq);
518
519 break;
520
521 case GDMA_EQE_TEST_EVENT:
522 gc->test_event_eq_id = eq->id;
523 complete(&gc->eq_test_event);
524 break;
525
526 case GDMA_EQE_HWC_INIT_EQ_ID_DB:
527 case GDMA_EQE_HWC_INIT_DATA:
528 case GDMA_EQE_HWC_INIT_DONE:
529 case GDMA_EQE_HWC_SOC_SERVICE:
530 case GDMA_EQE_RNIC_QP_FATAL:
531 if (!eq->eq.callback)
532 break;
533
534 event.type = type;
535 memcpy(&event.details, &eqe->details, GDMA_EVENT_DATA_SIZE);
536 eq->eq.callback(eq->eq.context, eq, &event);
537 break;
538
539 case GDMA_EQE_HWC_FPGA_RECONFIG:
540 case GDMA_EQE_HWC_RESET_REQUEST:
541 dev_info(gc->dev, "Recv MANA service type:%d\n", type);
542
543 if (gc->in_service) {
544 dev_info(gc->dev, "Already in service\n");
545 break;
546 }
547
548 if (!try_module_get(THIS_MODULE)) {
549 dev_info(gc->dev, "Module is unloading\n");
550 break;
551 }
552
553 mns_wk = kzalloc(sizeof(*mns_wk), GFP_ATOMIC);
554 if (!mns_wk) {
555 module_put(THIS_MODULE);
556 break;
557 }
558
559 dev_info(gc->dev, "Start MANA service type:%d\n", type);
560 gc->in_service = true;
561 mns_wk->pdev = to_pci_dev(gc->dev);
562 mns_wk->type = type;
563 pci_dev_get(mns_wk->pdev);
564 INIT_WORK(&mns_wk->serv_work, mana_serv_func);
565 schedule_work(&mns_wk->serv_work);
566 break;
567
568 default:
569 break;
570 }
571 }
572
mana_gd_process_eq_events(void * arg)573 static void mana_gd_process_eq_events(void *arg)
574 {
575 u32 owner_bits, new_bits, old_bits;
576 union gdma_eqe_info eqe_info;
577 struct gdma_eqe *eq_eqe_ptr;
578 struct gdma_queue *eq = arg;
579 struct gdma_context *gc;
580 struct gdma_eqe *eqe;
581 u32 head, num_eqe;
582 int i;
583
584 gc = eq->gdma_dev->gdma_context;
585
586 num_eqe = eq->queue_size / GDMA_EQE_SIZE;
587 eq_eqe_ptr = eq->queue_mem_ptr;
588
589 /* Process up to 5 EQEs at a time, and update the HW head. */
590 for (i = 0; i < 5; i++) {
591 eqe = &eq_eqe_ptr[eq->head % num_eqe];
592 eqe_info.as_uint32 = eqe->eqe_info;
593 owner_bits = eqe_info.owner_bits;
594
595 old_bits = (eq->head / num_eqe - 1) & GDMA_EQE_OWNER_MASK;
596 /* No more entries */
597 if (owner_bits == old_bits) {
598 /* return here without ringing the doorbell */
599 if (i == 0)
600 return;
601 break;
602 }
603
604 new_bits = (eq->head / num_eqe) & GDMA_EQE_OWNER_MASK;
605 if (owner_bits != new_bits) {
606 dev_err(gc->dev, "EQ %d: overflow detected\n", eq->id);
607 break;
608 }
609
610 /* Per GDMA spec, rmb is necessary after checking owner_bits, before
611 * reading eqe.
612 */
613 rmb();
614
615 mana_gd_process_eqe(eq);
616
617 eq->head++;
618 }
619
620 head = eq->head % (num_eqe << GDMA_EQE_OWNER_BITS);
621
622 mana_gd_ring_doorbell(gc, eq->gdma_dev->doorbell, eq->type, eq->id,
623 head, SET_ARM_BIT);
624 }
625
mana_gd_register_irq(struct gdma_queue * queue,const struct gdma_queue_spec * spec)626 static int mana_gd_register_irq(struct gdma_queue *queue,
627 const struct gdma_queue_spec *spec)
628 {
629 struct gdma_dev *gd = queue->gdma_dev;
630 struct gdma_irq_context *gic;
631 struct gdma_context *gc;
632 unsigned int msi_index;
633 unsigned long flags;
634 struct device *dev;
635 int err = 0;
636
637 gc = gd->gdma_context;
638 dev = gc->dev;
639 msi_index = spec->eq.msix_index;
640
641 if (msi_index >= gc->num_msix_usable) {
642 err = -ENOSPC;
643 dev_err(dev, "Register IRQ err:%d, msi:%u nMSI:%u",
644 err, msi_index, gc->num_msix_usable);
645
646 return err;
647 }
648
649 queue->eq.msix_index = msi_index;
650 gic = xa_load(&gc->irq_contexts, msi_index);
651 if (WARN_ON(!gic))
652 return -EINVAL;
653
654 spin_lock_irqsave(&gic->lock, flags);
655 list_add_rcu(&queue->entry, &gic->eq_list);
656 spin_unlock_irqrestore(&gic->lock, flags);
657
658 return 0;
659 }
660
mana_gd_deregister_irq(struct gdma_queue * queue)661 static void mana_gd_deregister_irq(struct gdma_queue *queue)
662 {
663 struct gdma_dev *gd = queue->gdma_dev;
664 struct gdma_irq_context *gic;
665 struct gdma_context *gc;
666 unsigned int msix_index;
667 unsigned long flags;
668 struct gdma_queue *eq;
669
670 gc = gd->gdma_context;
671
672 /* At most num_online_cpus() + 1 interrupts are used. */
673 msix_index = queue->eq.msix_index;
674 if (WARN_ON(msix_index >= gc->num_msix_usable))
675 return;
676
677 gic = xa_load(&gc->irq_contexts, msix_index);
678 if (WARN_ON(!gic))
679 return;
680
681 spin_lock_irqsave(&gic->lock, flags);
682 list_for_each_entry_rcu(eq, &gic->eq_list, entry) {
683 if (queue == eq) {
684 list_del_rcu(&eq->entry);
685 break;
686 }
687 }
688 spin_unlock_irqrestore(&gic->lock, flags);
689
690 queue->eq.msix_index = INVALID_PCI_MSIX_INDEX;
691 synchronize_rcu();
692 }
693
mana_gd_test_eq(struct gdma_context * gc,struct gdma_queue * eq)694 int mana_gd_test_eq(struct gdma_context *gc, struct gdma_queue *eq)
695 {
696 struct gdma_generate_test_event_req req = {};
697 struct gdma_general_resp resp = {};
698 struct device *dev = gc->dev;
699 int err;
700
701 mutex_lock(&gc->eq_test_event_mutex);
702
703 init_completion(&gc->eq_test_event);
704 gc->test_event_eq_id = INVALID_QUEUE_ID;
705
706 mana_gd_init_req_hdr(&req.hdr, GDMA_GENERATE_TEST_EQE,
707 sizeof(req), sizeof(resp));
708
709 req.hdr.dev_id = eq->gdma_dev->dev_id;
710 req.queue_index = eq->id;
711
712 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
713 if (err) {
714 if (mana_need_log(gc, err))
715 dev_err(dev, "test_eq failed: %d\n", err);
716 goto out;
717 }
718
719 err = -EPROTO;
720
721 if (resp.hdr.status) {
722 dev_err(dev, "test_eq failed: 0x%x\n", resp.hdr.status);
723 goto out;
724 }
725
726 if (!wait_for_completion_timeout(&gc->eq_test_event, 30 * HZ)) {
727 dev_err(dev, "test_eq timed out on queue %d\n", eq->id);
728 goto out;
729 }
730
731 if (eq->id != gc->test_event_eq_id) {
732 dev_err(dev, "test_eq got an event on wrong queue %d (%d)\n",
733 gc->test_event_eq_id, eq->id);
734 goto out;
735 }
736
737 err = 0;
738 out:
739 mutex_unlock(&gc->eq_test_event_mutex);
740 return err;
741 }
742
mana_gd_destroy_eq(struct gdma_context * gc,bool flush_evenets,struct gdma_queue * queue)743 static void mana_gd_destroy_eq(struct gdma_context *gc, bool flush_evenets,
744 struct gdma_queue *queue)
745 {
746 int err;
747
748 if (flush_evenets) {
749 err = mana_gd_test_eq(gc, queue);
750 if (err && mana_need_log(gc, err))
751 dev_warn(gc->dev, "Failed to flush EQ: %d\n", err);
752 }
753
754 mana_gd_deregister_irq(queue);
755
756 if (queue->eq.disable_needed)
757 mana_gd_disable_queue(queue);
758 }
759
mana_gd_create_eq(struct gdma_dev * gd,const struct gdma_queue_spec * spec,bool create_hwq,struct gdma_queue * queue)760 static int mana_gd_create_eq(struct gdma_dev *gd,
761 const struct gdma_queue_spec *spec,
762 bool create_hwq, struct gdma_queue *queue)
763 {
764 struct gdma_context *gc = gd->gdma_context;
765 struct device *dev = gc->dev;
766 u32 log2_num_entries;
767 int err;
768
769 queue->eq.msix_index = INVALID_PCI_MSIX_INDEX;
770 queue->id = INVALID_QUEUE_ID;
771
772 log2_num_entries = ilog2(queue->queue_size / GDMA_EQE_SIZE);
773
774 if (spec->eq.log2_throttle_limit > log2_num_entries) {
775 dev_err(dev, "EQ throttling limit (%lu) > maximum EQE (%u)\n",
776 spec->eq.log2_throttle_limit, log2_num_entries);
777 return -EINVAL;
778 }
779
780 err = mana_gd_register_irq(queue, spec);
781 if (err) {
782 dev_err(dev, "Failed to register irq: %d\n", err);
783 return err;
784 }
785
786 queue->eq.callback = spec->eq.callback;
787 queue->eq.context = spec->eq.context;
788 queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries);
789 queue->eq.log2_throttle_limit = spec->eq.log2_throttle_limit ?: 1;
790
791 if (create_hwq) {
792 err = mana_gd_create_hw_eq(gc, queue);
793 if (err)
794 goto out;
795
796 err = mana_gd_test_eq(gc, queue);
797 if (err)
798 goto out;
799 }
800
801 return 0;
802 out:
803 dev_err(dev, "Failed to create EQ: %d\n", err);
804 mana_gd_destroy_eq(gc, false, queue);
805 return err;
806 }
807
mana_gd_create_cq(const struct gdma_queue_spec * spec,struct gdma_queue * queue)808 static void mana_gd_create_cq(const struct gdma_queue_spec *spec,
809 struct gdma_queue *queue)
810 {
811 u32 log2_num_entries = ilog2(spec->queue_size / GDMA_CQE_SIZE);
812
813 queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries);
814 queue->cq.parent = spec->cq.parent_eq;
815 queue->cq.context = spec->cq.context;
816 queue->cq.callback = spec->cq.callback;
817 }
818
mana_gd_destroy_cq(struct gdma_context * gc,struct gdma_queue * queue)819 static void mana_gd_destroy_cq(struct gdma_context *gc,
820 struct gdma_queue *queue)
821 {
822 u32 id = queue->id;
823
824 if (id >= gc->max_num_cqs)
825 return;
826
827 if (!gc->cq_table[id])
828 return;
829
830 gc->cq_table[id] = NULL;
831 }
832
mana_gd_create_hwc_queue(struct gdma_dev * gd,const struct gdma_queue_spec * spec,struct gdma_queue ** queue_ptr)833 int mana_gd_create_hwc_queue(struct gdma_dev *gd,
834 const struct gdma_queue_spec *spec,
835 struct gdma_queue **queue_ptr)
836 {
837 struct gdma_context *gc = gd->gdma_context;
838 struct gdma_mem_info *gmi;
839 struct gdma_queue *queue;
840 int err;
841
842 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
843 if (!queue)
844 return -ENOMEM;
845
846 gmi = &queue->mem_info;
847 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
848 if (err) {
849 dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n",
850 spec->type, spec->queue_size, err);
851 goto free_q;
852 }
853
854 queue->head = 0;
855 queue->tail = 0;
856 queue->queue_mem_ptr = gmi->virt_addr;
857 queue->queue_size = spec->queue_size;
858 queue->monitor_avl_buf = spec->monitor_avl_buf;
859 queue->type = spec->type;
860 queue->gdma_dev = gd;
861
862 if (spec->type == GDMA_EQ)
863 err = mana_gd_create_eq(gd, spec, false, queue);
864 else if (spec->type == GDMA_CQ)
865 mana_gd_create_cq(spec, queue);
866
867 if (err)
868 goto out;
869
870 *queue_ptr = queue;
871 return 0;
872 out:
873 dev_err(gc->dev, "Failed to create queue type %d of size %u, err: %d\n",
874 spec->type, spec->queue_size, err);
875 mana_gd_free_memory(gmi);
876 free_q:
877 kfree(queue);
878 return err;
879 }
880
mana_gd_destroy_dma_region(struct gdma_context * gc,u64 dma_region_handle)881 int mana_gd_destroy_dma_region(struct gdma_context *gc, u64 dma_region_handle)
882 {
883 struct gdma_destroy_dma_region_req req = {};
884 struct gdma_general_resp resp = {};
885 int err;
886
887 if (dma_region_handle == GDMA_INVALID_DMA_REGION)
888 return 0;
889
890 mana_gd_init_req_hdr(&req.hdr, GDMA_DESTROY_DMA_REGION, sizeof(req),
891 sizeof(resp));
892 req.dma_region_handle = dma_region_handle;
893
894 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
895 if (err || resp.hdr.status) {
896 if (mana_need_log(gc, err))
897 dev_err(gc->dev, "Failed to destroy DMA region: %d, 0x%x\n",
898 err, resp.hdr.status);
899 return -EPROTO;
900 }
901
902 return 0;
903 }
904 EXPORT_SYMBOL_NS(mana_gd_destroy_dma_region, "NET_MANA");
905
mana_gd_create_dma_region(struct gdma_dev * gd,struct gdma_mem_info * gmi)906 static int mana_gd_create_dma_region(struct gdma_dev *gd,
907 struct gdma_mem_info *gmi)
908 {
909 unsigned int num_page = gmi->length / MANA_PAGE_SIZE;
910 struct gdma_create_dma_region_req *req = NULL;
911 struct gdma_create_dma_region_resp resp = {};
912 struct gdma_context *gc = gd->gdma_context;
913 struct hw_channel_context *hwc;
914 u32 length = gmi->length;
915 size_t req_msg_size;
916 int err;
917 int i;
918
919 if (length < MANA_PAGE_SIZE || !is_power_of_2(length))
920 return -EINVAL;
921
922 if (!MANA_PAGE_ALIGNED(gmi->virt_addr))
923 return -EINVAL;
924
925 hwc = gc->hwc.driver_data;
926 req_msg_size = struct_size(req, page_addr_list, num_page);
927 if (req_msg_size > hwc->max_req_msg_size)
928 return -EINVAL;
929
930 req = kzalloc(req_msg_size, GFP_KERNEL);
931 if (!req)
932 return -ENOMEM;
933
934 mana_gd_init_req_hdr(&req->hdr, GDMA_CREATE_DMA_REGION,
935 req_msg_size, sizeof(resp));
936 req->length = length;
937 req->offset_in_page = 0;
938 req->gdma_page_type = GDMA_PAGE_TYPE_4K;
939 req->page_count = num_page;
940 req->page_addr_list_len = num_page;
941
942 for (i = 0; i < num_page; i++)
943 req->page_addr_list[i] = gmi->dma_handle + i * MANA_PAGE_SIZE;
944
945 err = mana_gd_send_request(gc, req_msg_size, req, sizeof(resp), &resp);
946 if (err)
947 goto out;
948
949 if (resp.hdr.status ||
950 resp.dma_region_handle == GDMA_INVALID_DMA_REGION) {
951 dev_err(gc->dev, "Failed to create DMA region: 0x%x\n",
952 resp.hdr.status);
953 err = -EPROTO;
954 goto out;
955 }
956
957 gmi->dma_region_handle = resp.dma_region_handle;
958 dev_dbg(gc->dev, "Created DMA region handle 0x%llx\n",
959 gmi->dma_region_handle);
960 out:
961 if (err)
962 dev_dbg(gc->dev,
963 "Failed to create DMA region of length: %u, page_type: %d, status: 0x%x, err: %d\n",
964 length, req->gdma_page_type, resp.hdr.status, err);
965 kfree(req);
966 return err;
967 }
968
mana_gd_create_mana_eq(struct gdma_dev * gd,const struct gdma_queue_spec * spec,struct gdma_queue ** queue_ptr)969 int mana_gd_create_mana_eq(struct gdma_dev *gd,
970 const struct gdma_queue_spec *spec,
971 struct gdma_queue **queue_ptr)
972 {
973 struct gdma_context *gc = gd->gdma_context;
974 struct gdma_mem_info *gmi;
975 struct gdma_queue *queue;
976 int err;
977
978 if (spec->type != GDMA_EQ)
979 return -EINVAL;
980
981 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
982 if (!queue)
983 return -ENOMEM;
984
985 gmi = &queue->mem_info;
986 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
987 if (err) {
988 dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n",
989 spec->type, spec->queue_size, err);
990 goto free_q;
991 }
992
993 err = mana_gd_create_dma_region(gd, gmi);
994 if (err)
995 goto out;
996
997 queue->head = 0;
998 queue->tail = 0;
999 queue->queue_mem_ptr = gmi->virt_addr;
1000 queue->queue_size = spec->queue_size;
1001 queue->monitor_avl_buf = spec->monitor_avl_buf;
1002 queue->type = spec->type;
1003 queue->gdma_dev = gd;
1004
1005 err = mana_gd_create_eq(gd, spec, true, queue);
1006 if (err)
1007 goto out;
1008
1009 *queue_ptr = queue;
1010 return 0;
1011 out:
1012 dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n",
1013 spec->type, spec->queue_size, err);
1014 mana_gd_free_memory(gmi);
1015 free_q:
1016 kfree(queue);
1017 return err;
1018 }
1019 EXPORT_SYMBOL_NS(mana_gd_create_mana_eq, "NET_MANA");
1020
mana_gd_create_mana_wq_cq(struct gdma_dev * gd,const struct gdma_queue_spec * spec,struct gdma_queue ** queue_ptr)1021 int mana_gd_create_mana_wq_cq(struct gdma_dev *gd,
1022 const struct gdma_queue_spec *spec,
1023 struct gdma_queue **queue_ptr)
1024 {
1025 struct gdma_context *gc = gd->gdma_context;
1026 struct gdma_mem_info *gmi;
1027 struct gdma_queue *queue;
1028 int err;
1029
1030 if (spec->type != GDMA_CQ && spec->type != GDMA_SQ &&
1031 spec->type != GDMA_RQ)
1032 return -EINVAL;
1033
1034 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1035 if (!queue)
1036 return -ENOMEM;
1037
1038 gmi = &queue->mem_info;
1039 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
1040 if (err) {
1041 dev_err(gc->dev, "GDMA queue type: %d, size: %u, memory allocation err: %d\n",
1042 spec->type, spec->queue_size, err);
1043 goto free_q;
1044 }
1045
1046 err = mana_gd_create_dma_region(gd, gmi);
1047 if (err)
1048 goto out;
1049
1050 queue->head = 0;
1051 queue->tail = 0;
1052 queue->queue_mem_ptr = gmi->virt_addr;
1053 queue->queue_size = spec->queue_size;
1054 queue->monitor_avl_buf = spec->monitor_avl_buf;
1055 queue->type = spec->type;
1056 queue->gdma_dev = gd;
1057
1058 if (spec->type == GDMA_CQ)
1059 mana_gd_create_cq(spec, queue);
1060
1061 *queue_ptr = queue;
1062 return 0;
1063 out:
1064 dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n",
1065 spec->type, spec->queue_size, err);
1066 mana_gd_free_memory(gmi);
1067 free_q:
1068 kfree(queue);
1069 return err;
1070 }
1071 EXPORT_SYMBOL_NS(mana_gd_create_mana_wq_cq, "NET_MANA");
1072
mana_gd_destroy_queue(struct gdma_context * gc,struct gdma_queue * queue)1073 void mana_gd_destroy_queue(struct gdma_context *gc, struct gdma_queue *queue)
1074 {
1075 struct gdma_mem_info *gmi = &queue->mem_info;
1076
1077 switch (queue->type) {
1078 case GDMA_EQ:
1079 mana_gd_destroy_eq(gc, queue->eq.disable_needed, queue);
1080 break;
1081
1082 case GDMA_CQ:
1083 mana_gd_destroy_cq(gc, queue);
1084 break;
1085
1086 case GDMA_RQ:
1087 break;
1088
1089 case GDMA_SQ:
1090 break;
1091
1092 default:
1093 dev_err(gc->dev, "Can't destroy unknown queue: type=%d\n",
1094 queue->type);
1095 return;
1096 }
1097
1098 mana_gd_destroy_dma_region(gc, gmi->dma_region_handle);
1099 mana_gd_free_memory(gmi);
1100 kfree(queue);
1101 }
1102 EXPORT_SYMBOL_NS(mana_gd_destroy_queue, "NET_MANA");
1103
mana_gd_verify_vf_version(struct pci_dev * pdev)1104 int mana_gd_verify_vf_version(struct pci_dev *pdev)
1105 {
1106 struct gdma_context *gc = pci_get_drvdata(pdev);
1107 struct gdma_verify_ver_resp resp = {};
1108 struct gdma_verify_ver_req req = {};
1109 struct hw_channel_context *hwc;
1110 int err;
1111
1112 hwc = gc->hwc.driver_data;
1113 mana_gd_init_req_hdr(&req.hdr, GDMA_VERIFY_VF_DRIVER_VERSION,
1114 sizeof(req), sizeof(resp));
1115
1116 req.protocol_ver_min = GDMA_PROTOCOL_FIRST;
1117 req.protocol_ver_max = GDMA_PROTOCOL_LAST;
1118
1119 req.gd_drv_cap_flags1 = GDMA_DRV_CAP_FLAGS1;
1120 req.gd_drv_cap_flags2 = GDMA_DRV_CAP_FLAGS2;
1121 req.gd_drv_cap_flags3 = GDMA_DRV_CAP_FLAGS3;
1122 req.gd_drv_cap_flags4 = GDMA_DRV_CAP_FLAGS4;
1123
1124 req.drv_ver = 0; /* Unused*/
1125 req.os_type = 0x10; /* Linux */
1126 req.os_ver_major = LINUX_VERSION_MAJOR;
1127 req.os_ver_minor = LINUX_VERSION_PATCHLEVEL;
1128 req.os_ver_build = LINUX_VERSION_SUBLEVEL;
1129 strscpy(req.os_ver_str1, utsname()->sysname, sizeof(req.os_ver_str1));
1130 strscpy(req.os_ver_str2, utsname()->release, sizeof(req.os_ver_str2));
1131 strscpy(req.os_ver_str3, utsname()->version, sizeof(req.os_ver_str3));
1132
1133 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1134 if (err || resp.hdr.status) {
1135 dev_err(gc->dev, "VfVerifyVersionOutput: %d, status=0x%x\n",
1136 err, resp.hdr.status);
1137 return err ? err : -EPROTO;
1138 }
1139 gc->pf_cap_flags1 = resp.pf_cap_flags1;
1140 if (resp.pf_cap_flags1 & GDMA_DRV_CAP_FLAG_1_HWC_TIMEOUT_RECONFIG) {
1141 err = mana_gd_query_hwc_timeout(pdev, &hwc->hwc_timeout);
1142 if (err) {
1143 dev_err(gc->dev, "Failed to set the hwc timeout %d\n", err);
1144 return err;
1145 }
1146 dev_dbg(gc->dev, "set the hwc timeout to %u\n", hwc->hwc_timeout);
1147 }
1148 return 0;
1149 }
1150
mana_gd_register_device(struct gdma_dev * gd)1151 int mana_gd_register_device(struct gdma_dev *gd)
1152 {
1153 struct gdma_context *gc = gd->gdma_context;
1154 struct gdma_register_device_resp resp = {};
1155 struct gdma_general_req req = {};
1156 int err;
1157
1158 gd->pdid = INVALID_PDID;
1159 gd->doorbell = INVALID_DOORBELL;
1160 gd->gpa_mkey = INVALID_MEM_KEY;
1161
1162 mana_gd_init_req_hdr(&req.hdr, GDMA_REGISTER_DEVICE, sizeof(req),
1163 sizeof(resp));
1164
1165 req.hdr.dev_id = gd->dev_id;
1166
1167 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1168 if (err || resp.hdr.status) {
1169 dev_err(gc->dev, "gdma_register_device_resp failed: %d, 0x%x\n",
1170 err, resp.hdr.status);
1171 return err ? err : -EPROTO;
1172 }
1173
1174 gd->pdid = resp.pdid;
1175 gd->gpa_mkey = resp.gpa_mkey;
1176 gd->doorbell = resp.db_id;
1177
1178 return 0;
1179 }
1180
mana_gd_deregister_device(struct gdma_dev * gd)1181 int mana_gd_deregister_device(struct gdma_dev *gd)
1182 {
1183 struct gdma_context *gc = gd->gdma_context;
1184 struct gdma_general_resp resp = {};
1185 struct gdma_general_req req = {};
1186 int err;
1187
1188 if (gd->pdid == INVALID_PDID)
1189 return -EINVAL;
1190
1191 mana_gd_init_req_hdr(&req.hdr, GDMA_DEREGISTER_DEVICE, sizeof(req),
1192 sizeof(resp));
1193
1194 req.hdr.dev_id = gd->dev_id;
1195
1196 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1197 if (err || resp.hdr.status) {
1198 if (mana_need_log(gc, err))
1199 dev_err(gc->dev, "Failed to deregister device: %d, 0x%x\n",
1200 err, resp.hdr.status);
1201 if (!err)
1202 err = -EPROTO;
1203 }
1204
1205 gd->pdid = INVALID_PDID;
1206 gd->doorbell = INVALID_DOORBELL;
1207 gd->gpa_mkey = INVALID_MEM_KEY;
1208
1209 return err;
1210 }
1211
mana_gd_wq_avail_space(struct gdma_queue * wq)1212 u32 mana_gd_wq_avail_space(struct gdma_queue *wq)
1213 {
1214 u32 used_space = (wq->head - wq->tail) * GDMA_WQE_BU_SIZE;
1215 u32 wq_size = wq->queue_size;
1216
1217 WARN_ON_ONCE(used_space > wq_size);
1218
1219 return wq_size - used_space;
1220 }
1221
mana_gd_get_wqe_ptr(const struct gdma_queue * wq,u32 wqe_offset)1222 u8 *mana_gd_get_wqe_ptr(const struct gdma_queue *wq, u32 wqe_offset)
1223 {
1224 u32 offset = (wqe_offset * GDMA_WQE_BU_SIZE) & (wq->queue_size - 1);
1225
1226 WARN_ON_ONCE((offset + GDMA_WQE_BU_SIZE) > wq->queue_size);
1227
1228 return wq->queue_mem_ptr + offset;
1229 }
1230
mana_gd_write_client_oob(const struct gdma_wqe_request * wqe_req,enum gdma_queue_type q_type,u32 client_oob_size,u32 sgl_data_size,u8 * wqe_ptr)1231 static u32 mana_gd_write_client_oob(const struct gdma_wqe_request *wqe_req,
1232 enum gdma_queue_type q_type,
1233 u32 client_oob_size, u32 sgl_data_size,
1234 u8 *wqe_ptr)
1235 {
1236 bool oob_in_sgl = !!(wqe_req->flags & GDMA_WR_OOB_IN_SGL);
1237 bool pad_data = !!(wqe_req->flags & GDMA_WR_PAD_BY_SGE0);
1238 struct gdma_wqe *header = (struct gdma_wqe *)wqe_ptr;
1239 u8 *ptr;
1240
1241 memset(header, 0, sizeof(struct gdma_wqe));
1242 header->num_sge = wqe_req->num_sge;
1243 header->inline_oob_size_div4 = client_oob_size / sizeof(u32);
1244
1245 if (oob_in_sgl) {
1246 WARN_ON_ONCE(wqe_req->num_sge < 2);
1247
1248 header->client_oob_in_sgl = 1;
1249
1250 if (pad_data)
1251 header->last_vbytes = wqe_req->sgl[0].size;
1252 }
1253
1254 if (q_type == GDMA_SQ)
1255 header->client_data_unit = wqe_req->client_data_unit;
1256
1257 /* The size of gdma_wqe + client_oob_size must be less than or equal
1258 * to one Basic Unit (i.e. 32 bytes), so the pointer can't go beyond
1259 * the queue memory buffer boundary.
1260 */
1261 ptr = wqe_ptr + sizeof(header);
1262
1263 if (wqe_req->inline_oob_data && wqe_req->inline_oob_size > 0) {
1264 memcpy(ptr, wqe_req->inline_oob_data, wqe_req->inline_oob_size);
1265
1266 if (client_oob_size > wqe_req->inline_oob_size)
1267 memset(ptr + wqe_req->inline_oob_size, 0,
1268 client_oob_size - wqe_req->inline_oob_size);
1269 }
1270
1271 return sizeof(header) + client_oob_size;
1272 }
1273
mana_gd_write_sgl(struct gdma_queue * wq,u8 * wqe_ptr,const struct gdma_wqe_request * wqe_req)1274 static void mana_gd_write_sgl(struct gdma_queue *wq, u8 *wqe_ptr,
1275 const struct gdma_wqe_request *wqe_req)
1276 {
1277 u32 sgl_size = sizeof(struct gdma_sge) * wqe_req->num_sge;
1278 const u8 *address = (u8 *)wqe_req->sgl;
1279 u8 *base_ptr, *end_ptr;
1280 u32 size_to_end;
1281
1282 base_ptr = wq->queue_mem_ptr;
1283 end_ptr = base_ptr + wq->queue_size;
1284 size_to_end = (u32)(end_ptr - wqe_ptr);
1285
1286 if (size_to_end < sgl_size) {
1287 memcpy(wqe_ptr, address, size_to_end);
1288
1289 wqe_ptr = base_ptr;
1290 address += size_to_end;
1291 sgl_size -= size_to_end;
1292 }
1293
1294 memcpy(wqe_ptr, address, sgl_size);
1295 }
1296
mana_gd_post_work_request(struct gdma_queue * wq,const struct gdma_wqe_request * wqe_req,struct gdma_posted_wqe_info * wqe_info)1297 int mana_gd_post_work_request(struct gdma_queue *wq,
1298 const struct gdma_wqe_request *wqe_req,
1299 struct gdma_posted_wqe_info *wqe_info)
1300 {
1301 u32 client_oob_size = wqe_req->inline_oob_size;
1302 struct gdma_context *gc;
1303 u32 sgl_data_size;
1304 u32 max_wqe_size;
1305 u32 wqe_size;
1306 u8 *wqe_ptr;
1307
1308 if (wqe_req->num_sge == 0)
1309 return -EINVAL;
1310
1311 if (wq->type == GDMA_RQ) {
1312 if (client_oob_size != 0)
1313 return -EINVAL;
1314
1315 client_oob_size = INLINE_OOB_SMALL_SIZE;
1316
1317 max_wqe_size = GDMA_MAX_RQE_SIZE;
1318 } else {
1319 if (client_oob_size != INLINE_OOB_SMALL_SIZE &&
1320 client_oob_size != INLINE_OOB_LARGE_SIZE)
1321 return -EINVAL;
1322
1323 max_wqe_size = GDMA_MAX_SQE_SIZE;
1324 }
1325
1326 sgl_data_size = sizeof(struct gdma_sge) * wqe_req->num_sge;
1327 wqe_size = ALIGN(sizeof(struct gdma_wqe) + client_oob_size +
1328 sgl_data_size, GDMA_WQE_BU_SIZE);
1329 if (wqe_size > max_wqe_size)
1330 return -EINVAL;
1331
1332 if (wq->monitor_avl_buf && wqe_size > mana_gd_wq_avail_space(wq)) {
1333 gc = wq->gdma_dev->gdma_context;
1334 dev_err(gc->dev, "unsuccessful flow control!\n");
1335 return -ENOSPC;
1336 }
1337
1338 if (wqe_info)
1339 wqe_info->wqe_size_in_bu = wqe_size / GDMA_WQE_BU_SIZE;
1340
1341 wqe_ptr = mana_gd_get_wqe_ptr(wq, wq->head);
1342 wqe_ptr += mana_gd_write_client_oob(wqe_req, wq->type, client_oob_size,
1343 sgl_data_size, wqe_ptr);
1344 if (wqe_ptr >= (u8 *)wq->queue_mem_ptr + wq->queue_size)
1345 wqe_ptr -= wq->queue_size;
1346
1347 mana_gd_write_sgl(wq, wqe_ptr, wqe_req);
1348
1349 wq->head += wqe_size / GDMA_WQE_BU_SIZE;
1350
1351 return 0;
1352 }
1353 EXPORT_SYMBOL_NS(mana_gd_post_work_request, "NET_MANA");
1354
mana_gd_post_and_ring(struct gdma_queue * queue,const struct gdma_wqe_request * wqe_req,struct gdma_posted_wqe_info * wqe_info)1355 int mana_gd_post_and_ring(struct gdma_queue *queue,
1356 const struct gdma_wqe_request *wqe_req,
1357 struct gdma_posted_wqe_info *wqe_info)
1358 {
1359 struct gdma_context *gc = queue->gdma_dev->gdma_context;
1360 int err;
1361
1362 err = mana_gd_post_work_request(queue, wqe_req, wqe_info);
1363 if (err) {
1364 dev_err(gc->dev, "Failed to post work req from queue type %d of size %u (err=%d)\n",
1365 queue->type, queue->queue_size, err);
1366 return err;
1367 }
1368
1369 mana_gd_wq_ring_doorbell(gc, queue);
1370
1371 return 0;
1372 }
1373
mana_gd_read_cqe(struct gdma_queue * cq,struct gdma_comp * comp)1374 static int mana_gd_read_cqe(struct gdma_queue *cq, struct gdma_comp *comp)
1375 {
1376 unsigned int num_cqe = cq->queue_size / sizeof(struct gdma_cqe);
1377 struct gdma_cqe *cq_cqe = cq->queue_mem_ptr;
1378 u32 owner_bits, new_bits, old_bits;
1379 struct gdma_cqe *cqe;
1380
1381 cqe = &cq_cqe[cq->head % num_cqe];
1382 owner_bits = cqe->cqe_info.owner_bits;
1383
1384 old_bits = (cq->head / num_cqe - 1) & GDMA_CQE_OWNER_MASK;
1385 /* Return 0 if no more entries. */
1386 if (owner_bits == old_bits)
1387 return 0;
1388
1389 new_bits = (cq->head / num_cqe) & GDMA_CQE_OWNER_MASK;
1390 /* Return -1 if overflow detected. */
1391 if (WARN_ON_ONCE(owner_bits != new_bits))
1392 return -1;
1393
1394 /* Per GDMA spec, rmb is necessary after checking owner_bits, before
1395 * reading completion info
1396 */
1397 rmb();
1398
1399 comp->wq_num = cqe->cqe_info.wq_num;
1400 comp->is_sq = cqe->cqe_info.is_sq;
1401 memcpy(comp->cqe_data, cqe->cqe_data, GDMA_COMP_DATA_SIZE);
1402
1403 return 1;
1404 }
1405
mana_gd_poll_cq(struct gdma_queue * cq,struct gdma_comp * comp,int num_cqe)1406 int mana_gd_poll_cq(struct gdma_queue *cq, struct gdma_comp *comp, int num_cqe)
1407 {
1408 int cqe_idx;
1409 int ret;
1410
1411 for (cqe_idx = 0; cqe_idx < num_cqe; cqe_idx++) {
1412 ret = mana_gd_read_cqe(cq, &comp[cqe_idx]);
1413
1414 if (ret < 0) {
1415 cq->head -= cqe_idx;
1416 return ret;
1417 }
1418
1419 if (ret == 0)
1420 break;
1421
1422 cq->head++;
1423 }
1424
1425 return cqe_idx;
1426 }
1427 EXPORT_SYMBOL_NS(mana_gd_poll_cq, "NET_MANA");
1428
mana_gd_intr(int irq,void * arg)1429 static irqreturn_t mana_gd_intr(int irq, void *arg)
1430 {
1431 struct gdma_irq_context *gic = arg;
1432 struct list_head *eq_list = &gic->eq_list;
1433 struct gdma_queue *eq;
1434
1435 rcu_read_lock();
1436 list_for_each_entry_rcu(eq, eq_list, entry) {
1437 gic->handler(eq);
1438 }
1439 rcu_read_unlock();
1440
1441 return IRQ_HANDLED;
1442 }
1443
mana_gd_alloc_res_map(u32 res_avail,struct gdma_resource * r)1444 int mana_gd_alloc_res_map(u32 res_avail, struct gdma_resource *r)
1445 {
1446 r->map = bitmap_zalloc(res_avail, GFP_KERNEL);
1447 if (!r->map)
1448 return -ENOMEM;
1449
1450 r->size = res_avail;
1451 spin_lock_init(&r->lock);
1452
1453 return 0;
1454 }
1455
mana_gd_free_res_map(struct gdma_resource * r)1456 void mana_gd_free_res_map(struct gdma_resource *r)
1457 {
1458 bitmap_free(r->map);
1459 r->map = NULL;
1460 r->size = 0;
1461 }
1462
1463 /*
1464 * Spread on CPUs with the following heuristics:
1465 *
1466 * 1. No more than one IRQ per CPU, if possible;
1467 * 2. NUMA locality is the second priority;
1468 * 3. Sibling dislocality is the last priority.
1469 *
1470 * Let's consider this topology:
1471 *
1472 * Node 0 1
1473 * Core 0 1 2 3
1474 * CPU 0 1 2 3 4 5 6 7
1475 *
1476 * The most performant IRQ distribution based on the above topology
1477 * and heuristics may look like this:
1478 *
1479 * IRQ Nodes Cores CPUs
1480 * 0 1 0 0-1
1481 * 1 1 1 2-3
1482 * 2 1 0 0-1
1483 * 3 1 1 2-3
1484 * 4 2 2 4-5
1485 * 5 2 3 6-7
1486 * 6 2 2 4-5
1487 * 7 2 3 6-7
1488 *
1489 * The heuristics is implemented as follows.
1490 *
1491 * The outer for_each() loop resets the 'weight' to the actual number
1492 * of CPUs in the hop. Then inner for_each() loop decrements it by the
1493 * number of sibling groups (cores) while assigning first set of IRQs
1494 * to each group. IRQs 0 and 1 above are distributed this way.
1495 *
1496 * Now, because NUMA locality is more important, we should walk the
1497 * same set of siblings and assign 2nd set of IRQs (2 and 3), and it's
1498 * implemented by the medium while() loop. We do like this unless the
1499 * number of IRQs assigned on this hop will not become equal to number
1500 * of CPUs in the hop (weight == 0). Then we switch to the next hop and
1501 * do the same thing.
1502 */
1503
irq_setup(unsigned int * irqs,unsigned int len,int node,bool skip_first_cpu)1504 static int irq_setup(unsigned int *irqs, unsigned int len, int node,
1505 bool skip_first_cpu)
1506 {
1507 const struct cpumask *next, *prev = cpu_none_mask;
1508 cpumask_var_t cpus __free(free_cpumask_var);
1509 int cpu, weight;
1510
1511 if (!alloc_cpumask_var(&cpus, GFP_KERNEL))
1512 return -ENOMEM;
1513
1514 rcu_read_lock();
1515 for_each_numa_hop_mask(next, node) {
1516 weight = cpumask_weight_andnot(next, prev);
1517 while (weight > 0) {
1518 cpumask_andnot(cpus, next, prev);
1519 for_each_cpu(cpu, cpus) {
1520 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
1521 --weight;
1522
1523 if (unlikely(skip_first_cpu)) {
1524 skip_first_cpu = false;
1525 continue;
1526 }
1527
1528 if (len-- == 0)
1529 goto done;
1530
1531 irq_set_affinity_and_hint(*irqs++, topology_sibling_cpumask(cpu));
1532 }
1533 }
1534 prev = next;
1535 }
1536 done:
1537 rcu_read_unlock();
1538 return 0;
1539 }
1540
mana_gd_setup_dyn_irqs(struct pci_dev * pdev,int nvec)1541 static int mana_gd_setup_dyn_irqs(struct pci_dev *pdev, int nvec)
1542 {
1543 struct gdma_context *gc = pci_get_drvdata(pdev);
1544 struct gdma_irq_context *gic;
1545 bool skip_first_cpu = false;
1546 int *irqs, irq, err, i;
1547
1548 irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL);
1549 if (!irqs)
1550 return -ENOMEM;
1551
1552 /*
1553 * While processing the next pci irq vector, we start with index 1,
1554 * as IRQ vector at index 0 is already processed for HWC.
1555 * However, the population of irqs array starts with index 0, to be
1556 * further used in irq_setup()
1557 */
1558 for (i = 1; i <= nvec; i++) {
1559 gic = kzalloc(sizeof(*gic), GFP_KERNEL);
1560 if (!gic) {
1561 err = -ENOMEM;
1562 goto free_irq;
1563 }
1564 gic->handler = mana_gd_process_eq_events;
1565 INIT_LIST_HEAD(&gic->eq_list);
1566 spin_lock_init(&gic->lock);
1567
1568 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s",
1569 i - 1, pci_name(pdev));
1570
1571 /* one pci vector is already allocated for HWC */
1572 irqs[i - 1] = pci_irq_vector(pdev, i);
1573 if (irqs[i - 1] < 0) {
1574 err = irqs[i - 1];
1575 goto free_current_gic;
1576 }
1577
1578 err = request_irq(irqs[i - 1], mana_gd_intr, 0, gic->name, gic);
1579 if (err)
1580 goto free_current_gic;
1581
1582 xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL);
1583 }
1584
1585 /*
1586 * When calling irq_setup() for dynamically added IRQs, if number of
1587 * CPUs is more than or equal to allocated MSI-X, we need to skip the
1588 * first CPU sibling group since they are already affinitized to HWC IRQ
1589 */
1590 cpus_read_lock();
1591 if (gc->num_msix_usable <= num_online_cpus())
1592 skip_first_cpu = true;
1593
1594 err = irq_setup(irqs, nvec, gc->numa_node, skip_first_cpu);
1595 if (err) {
1596 cpus_read_unlock();
1597 goto free_irq;
1598 }
1599
1600 cpus_read_unlock();
1601 kfree(irqs);
1602 return 0;
1603
1604 free_current_gic:
1605 kfree(gic);
1606 free_irq:
1607 for (i -= 1; i > 0; i--) {
1608 irq = pci_irq_vector(pdev, i);
1609 gic = xa_load(&gc->irq_contexts, i);
1610 if (WARN_ON(!gic))
1611 continue;
1612
1613 irq_update_affinity_hint(irq, NULL);
1614 free_irq(irq, gic);
1615 xa_erase(&gc->irq_contexts, i);
1616 kfree(gic);
1617 }
1618 kfree(irqs);
1619 return err;
1620 }
1621
mana_gd_setup_irqs(struct pci_dev * pdev,int nvec)1622 static int mana_gd_setup_irqs(struct pci_dev *pdev, int nvec)
1623 {
1624 struct gdma_context *gc = pci_get_drvdata(pdev);
1625 struct gdma_irq_context *gic;
1626 int *irqs, *start_irqs, irq;
1627 unsigned int cpu;
1628 int err, i;
1629
1630 irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL);
1631 if (!irqs)
1632 return -ENOMEM;
1633
1634 start_irqs = irqs;
1635
1636 for (i = 0; i < nvec; i++) {
1637 gic = kzalloc(sizeof(*gic), GFP_KERNEL);
1638 if (!gic) {
1639 err = -ENOMEM;
1640 goto free_irq;
1641 }
1642
1643 gic->handler = mana_gd_process_eq_events;
1644 INIT_LIST_HEAD(&gic->eq_list);
1645 spin_lock_init(&gic->lock);
1646
1647 if (!i)
1648 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_hwc@pci:%s",
1649 pci_name(pdev));
1650 else
1651 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s",
1652 i - 1, pci_name(pdev));
1653
1654 irqs[i] = pci_irq_vector(pdev, i);
1655 if (irqs[i] < 0) {
1656 err = irqs[i];
1657 goto free_current_gic;
1658 }
1659
1660 err = request_irq(irqs[i], mana_gd_intr, 0, gic->name, gic);
1661 if (err)
1662 goto free_current_gic;
1663
1664 xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL);
1665 }
1666
1667 /* If number of IRQ is one extra than number of online CPUs,
1668 * then we need to assign IRQ0 (hwc irq) and IRQ1 to
1669 * same CPU.
1670 * Else we will use different CPUs for IRQ0 and IRQ1.
1671 * Also we are using cpumask_local_spread instead of
1672 * cpumask_first for the node, because the node can be
1673 * mem only.
1674 */
1675 cpus_read_lock();
1676 if (nvec > num_online_cpus()) {
1677 cpu = cpumask_local_spread(0, gc->numa_node);
1678 irq_set_affinity_and_hint(irqs[0], cpumask_of(cpu));
1679 irqs++;
1680 nvec -= 1;
1681 }
1682
1683 err = irq_setup(irqs, nvec, gc->numa_node, false);
1684 if (err) {
1685 cpus_read_unlock();
1686 goto free_irq;
1687 }
1688
1689 cpus_read_unlock();
1690 kfree(start_irqs);
1691 return 0;
1692
1693 free_current_gic:
1694 kfree(gic);
1695 free_irq:
1696 for (i -= 1; i >= 0; i--) {
1697 irq = pci_irq_vector(pdev, i);
1698 gic = xa_load(&gc->irq_contexts, i);
1699 if (WARN_ON(!gic))
1700 continue;
1701
1702 irq_update_affinity_hint(irq, NULL);
1703 free_irq(irq, gic);
1704 xa_erase(&gc->irq_contexts, i);
1705 kfree(gic);
1706 }
1707
1708 kfree(start_irqs);
1709 return err;
1710 }
1711
mana_gd_setup_hwc_irqs(struct pci_dev * pdev)1712 static int mana_gd_setup_hwc_irqs(struct pci_dev *pdev)
1713 {
1714 struct gdma_context *gc = pci_get_drvdata(pdev);
1715 unsigned int max_irqs, min_irqs;
1716 int nvec, err;
1717
1718 if (pci_msix_can_alloc_dyn(pdev)) {
1719 max_irqs = 1;
1720 min_irqs = 1;
1721 } else {
1722 /* Need 1 interrupt for HWC */
1723 max_irqs = min(num_online_cpus(), MANA_MAX_NUM_QUEUES) + 1;
1724 min_irqs = 2;
1725 }
1726
1727 nvec = pci_alloc_irq_vectors(pdev, min_irqs, max_irqs, PCI_IRQ_MSIX);
1728 if (nvec < 0)
1729 return nvec;
1730
1731 err = mana_gd_setup_irqs(pdev, nvec);
1732 if (err) {
1733 pci_free_irq_vectors(pdev);
1734 return err;
1735 }
1736
1737 gc->num_msix_usable = nvec;
1738 gc->max_num_msix = nvec;
1739
1740 return 0;
1741 }
1742
mana_gd_setup_remaining_irqs(struct pci_dev * pdev)1743 static int mana_gd_setup_remaining_irqs(struct pci_dev *pdev)
1744 {
1745 struct gdma_context *gc = pci_get_drvdata(pdev);
1746 struct msi_map irq_map;
1747 int max_irqs, i, err;
1748
1749 if (!pci_msix_can_alloc_dyn(pdev))
1750 /* remain irqs are already allocated with HWC IRQ */
1751 return 0;
1752
1753 /* allocate only remaining IRQs*/
1754 max_irqs = gc->num_msix_usable - 1;
1755
1756 for (i = 1; i <= max_irqs; i++) {
1757 irq_map = pci_msix_alloc_irq_at(pdev, i, NULL);
1758 if (!irq_map.virq) {
1759 err = irq_map.index;
1760 /* caller will handle cleaning up all allocated
1761 * irqs, after HWC is destroyed
1762 */
1763 return err;
1764 }
1765 }
1766
1767 err = mana_gd_setup_dyn_irqs(pdev, max_irqs);
1768 if (err)
1769 return err;
1770
1771 gc->max_num_msix = gc->max_num_msix + max_irqs;
1772
1773 return 0;
1774 }
1775
mana_gd_remove_irqs(struct pci_dev * pdev)1776 static void mana_gd_remove_irqs(struct pci_dev *pdev)
1777 {
1778 struct gdma_context *gc = pci_get_drvdata(pdev);
1779 struct gdma_irq_context *gic;
1780 int irq, i;
1781
1782 if (gc->max_num_msix < 1)
1783 return;
1784
1785 for (i = 0; i < gc->max_num_msix; i++) {
1786 irq = pci_irq_vector(pdev, i);
1787 if (irq < 0)
1788 continue;
1789
1790 gic = xa_load(&gc->irq_contexts, i);
1791 if (WARN_ON(!gic))
1792 continue;
1793
1794 /* Need to clear the hint before free_irq */
1795 irq_update_affinity_hint(irq, NULL);
1796 free_irq(irq, gic);
1797 xa_erase(&gc->irq_contexts, i);
1798 kfree(gic);
1799 }
1800
1801 pci_free_irq_vectors(pdev);
1802
1803 gc->max_num_msix = 0;
1804 gc->num_msix_usable = 0;
1805 }
1806
mana_gd_setup(struct pci_dev * pdev)1807 static int mana_gd_setup(struct pci_dev *pdev)
1808 {
1809 struct gdma_context *gc = pci_get_drvdata(pdev);
1810 int err;
1811
1812 mana_gd_init_registers(pdev);
1813 mana_smc_init(&gc->shm_channel, gc->dev, gc->shm_base);
1814
1815 gc->service_wq = alloc_ordered_workqueue("gdma_service_wq", 0);
1816 if (!gc->service_wq)
1817 return -ENOMEM;
1818
1819 err = mana_gd_setup_hwc_irqs(pdev);
1820 if (err) {
1821 dev_err(gc->dev, "Failed to setup IRQs for HWC creation: %d\n",
1822 err);
1823 goto free_workqueue;
1824 }
1825
1826 err = mana_hwc_create_channel(gc);
1827 if (err)
1828 goto remove_irq;
1829
1830 err = mana_gd_verify_vf_version(pdev);
1831 if (err)
1832 goto destroy_hwc;
1833
1834 err = mana_gd_query_max_resources(pdev);
1835 if (err)
1836 goto destroy_hwc;
1837
1838 err = mana_gd_setup_remaining_irqs(pdev);
1839 if (err) {
1840 dev_err(gc->dev, "Failed to setup remaining IRQs: %d", err);
1841 goto destroy_hwc;
1842 }
1843
1844 err = mana_gd_detect_devices(pdev);
1845 if (err)
1846 goto destroy_hwc;
1847
1848 dev_dbg(&pdev->dev, "mana gdma setup successful\n");
1849 return 0;
1850
1851 destroy_hwc:
1852 mana_hwc_destroy_channel(gc);
1853 remove_irq:
1854 mana_gd_remove_irqs(pdev);
1855 free_workqueue:
1856 destroy_workqueue(gc->service_wq);
1857 dev_err(&pdev->dev, "%s failed (error %d)\n", __func__, err);
1858 return err;
1859 }
1860
mana_gd_cleanup(struct pci_dev * pdev)1861 static void mana_gd_cleanup(struct pci_dev *pdev)
1862 {
1863 struct gdma_context *gc = pci_get_drvdata(pdev);
1864
1865 mana_hwc_destroy_channel(gc);
1866
1867 mana_gd_remove_irqs(pdev);
1868
1869 destroy_workqueue(gc->service_wq);
1870 dev_dbg(&pdev->dev, "mana gdma cleanup successful\n");
1871 }
1872
mana_is_pf(unsigned short dev_id)1873 static bool mana_is_pf(unsigned short dev_id)
1874 {
1875 return dev_id == MANA_PF_DEVICE_ID;
1876 }
1877
mana_gd_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1878 static int mana_gd_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1879 {
1880 struct gdma_context *gc;
1881 void __iomem *bar0_va;
1882 int bar = 0;
1883 int err;
1884
1885 /* Each port has 2 CQs, each CQ has at most 1 EQE at a time */
1886 BUILD_BUG_ON(2 * MAX_PORTS_IN_MANA_DEV * GDMA_EQE_SIZE > EQ_SIZE);
1887
1888 err = pci_enable_device(pdev);
1889 if (err) {
1890 dev_err(&pdev->dev, "Failed to enable pci device (err=%d)\n", err);
1891 return -ENXIO;
1892 }
1893
1894 pci_set_master(pdev);
1895
1896 err = pci_request_regions(pdev, "mana");
1897 if (err)
1898 goto disable_dev;
1899
1900 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1901 if (err) {
1902 dev_err(&pdev->dev, "DMA set mask failed: %d\n", err);
1903 goto release_region;
1904 }
1905 dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1906
1907 err = -ENOMEM;
1908 gc = vzalloc(sizeof(*gc));
1909 if (!gc)
1910 goto release_region;
1911
1912 mutex_init(&gc->eq_test_event_mutex);
1913 pci_set_drvdata(pdev, gc);
1914 gc->bar0_pa = pci_resource_start(pdev, 0);
1915
1916 bar0_va = pci_iomap(pdev, bar, 0);
1917 if (!bar0_va)
1918 goto free_gc;
1919
1920 gc->numa_node = dev_to_node(&pdev->dev);
1921 gc->is_pf = mana_is_pf(pdev->device);
1922 gc->bar0_va = bar0_va;
1923 gc->dev = &pdev->dev;
1924 xa_init(&gc->irq_contexts);
1925
1926 if (gc->is_pf)
1927 gc->mana_pci_debugfs = debugfs_create_dir("0", mana_debugfs_root);
1928 else
1929 gc->mana_pci_debugfs = debugfs_create_dir(pci_slot_name(pdev->slot),
1930 mana_debugfs_root);
1931
1932 err = mana_gd_setup(pdev);
1933 if (err)
1934 goto unmap_bar;
1935
1936 err = mana_probe(&gc->mana, false);
1937 if (err)
1938 goto cleanup_gd;
1939
1940 err = mana_rdma_probe(&gc->mana_ib);
1941 if (err)
1942 goto cleanup_mana;
1943
1944 return 0;
1945
1946 cleanup_mana:
1947 mana_remove(&gc->mana, false);
1948 cleanup_gd:
1949 mana_gd_cleanup(pdev);
1950 unmap_bar:
1951 /*
1952 * at this point we know that the other debugfs child dir/files
1953 * are either not yet created or are already cleaned up.
1954 * The pci debugfs folder clean-up now, will only be cleaning up
1955 * adapter-MTU file and apc->mana_pci_debugfs folder.
1956 */
1957 debugfs_remove_recursive(gc->mana_pci_debugfs);
1958 gc->mana_pci_debugfs = NULL;
1959 xa_destroy(&gc->irq_contexts);
1960 pci_iounmap(pdev, bar0_va);
1961 free_gc:
1962 pci_set_drvdata(pdev, NULL);
1963 vfree(gc);
1964 release_region:
1965 pci_release_regions(pdev);
1966 disable_dev:
1967 pci_disable_device(pdev);
1968 dev_err(&pdev->dev, "gdma probe failed: err = %d\n", err);
1969 return err;
1970 }
1971
mana_gd_remove(struct pci_dev * pdev)1972 static void mana_gd_remove(struct pci_dev *pdev)
1973 {
1974 struct gdma_context *gc = pci_get_drvdata(pdev);
1975
1976 mana_rdma_remove(&gc->mana_ib);
1977 mana_remove(&gc->mana, false);
1978
1979 mana_gd_cleanup(pdev);
1980
1981 debugfs_remove_recursive(gc->mana_pci_debugfs);
1982
1983 gc->mana_pci_debugfs = NULL;
1984
1985 xa_destroy(&gc->irq_contexts);
1986
1987 pci_iounmap(pdev, gc->bar0_va);
1988
1989 vfree(gc);
1990
1991 pci_release_regions(pdev);
1992 pci_disable_device(pdev);
1993
1994 dev_dbg(&pdev->dev, "mana gdma remove successful\n");
1995 }
1996
1997 /* The 'state' parameter is not used. */
mana_gd_suspend(struct pci_dev * pdev,pm_message_t state)1998 int mana_gd_suspend(struct pci_dev *pdev, pm_message_t state)
1999 {
2000 struct gdma_context *gc = pci_get_drvdata(pdev);
2001
2002 mana_rdma_remove(&gc->mana_ib);
2003 mana_remove(&gc->mana, true);
2004
2005 mana_gd_cleanup(pdev);
2006
2007 return 0;
2008 }
2009
2010 /* In case the NIC hardware stops working, the suspend and resume callbacks will
2011 * fail -- if this happens, it's safer to just report an error than try to undo
2012 * what has been done.
2013 */
mana_gd_resume(struct pci_dev * pdev)2014 int mana_gd_resume(struct pci_dev *pdev)
2015 {
2016 struct gdma_context *gc = pci_get_drvdata(pdev);
2017 int err;
2018
2019 err = mana_gd_setup(pdev);
2020 if (err)
2021 return err;
2022
2023 err = mana_probe(&gc->mana, true);
2024 if (err)
2025 return err;
2026
2027 err = mana_rdma_probe(&gc->mana_ib);
2028 if (err)
2029 return err;
2030
2031 return 0;
2032 }
2033
2034 /* Quiesce the device for kexec. This is also called upon reboot/shutdown. */
mana_gd_shutdown(struct pci_dev * pdev)2035 static void mana_gd_shutdown(struct pci_dev *pdev)
2036 {
2037 struct gdma_context *gc = pci_get_drvdata(pdev);
2038
2039 dev_info(&pdev->dev, "Shutdown was called\n");
2040
2041 mana_rdma_remove(&gc->mana_ib);
2042 mana_remove(&gc->mana, true);
2043
2044 mana_gd_cleanup(pdev);
2045
2046 debugfs_remove_recursive(gc->mana_pci_debugfs);
2047
2048 gc->mana_pci_debugfs = NULL;
2049
2050 pci_disable_device(pdev);
2051 }
2052
2053 static const struct pci_device_id mana_id_table[] = {
2054 { PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_PF_DEVICE_ID) },
2055 { PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_VF_DEVICE_ID) },
2056 { }
2057 };
2058
2059 static struct pci_driver mana_driver = {
2060 .name = "mana",
2061 .id_table = mana_id_table,
2062 .probe = mana_gd_probe,
2063 .remove = mana_gd_remove,
2064 .suspend = mana_gd_suspend,
2065 .resume = mana_gd_resume,
2066 .shutdown = mana_gd_shutdown,
2067 };
2068
mana_driver_init(void)2069 static int __init mana_driver_init(void)
2070 {
2071 int err;
2072
2073 mana_debugfs_root = debugfs_create_dir("mana", NULL);
2074
2075 err = pci_register_driver(&mana_driver);
2076 if (err) {
2077 debugfs_remove(mana_debugfs_root);
2078 mana_debugfs_root = NULL;
2079 }
2080
2081 return err;
2082 }
2083
mana_driver_exit(void)2084 static void __exit mana_driver_exit(void)
2085 {
2086 pci_unregister_driver(&mana_driver);
2087
2088 debugfs_remove(mana_debugfs_root);
2089
2090 mana_debugfs_root = NULL;
2091 }
2092
2093 module_init(mana_driver_init);
2094 module_exit(mana_driver_exit);
2095
2096 MODULE_DEVICE_TABLE(pci, mana_id_table);
2097
2098 MODULE_LICENSE("Dual BSD/GPL");
2099 MODULE_DESCRIPTION("Microsoft Azure Network Adapter driver");
2100