xref: /linux/drivers/net/ethernet/microsoft/mana/gdma_main.c (revision 8f7aa3d3c7323f4ca2768a9e74ebbe359c4f8f88)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright (c) 2021, Microsoft Corporation. */
3 
4 #include <linux/debugfs.h>
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include <linux/utsname.h>
8 #include <linux/version.h>
9 #include <linux/msi.h>
10 #include <linux/irqdomain.h>
11 #include <linux/export.h>
12 
13 #include <net/mana/mana.h>
14 #include <net/mana/hw_channel.h>
15 
16 struct dentry *mana_debugfs_root;
17 
18 struct mana_dev_recovery {
19 	struct list_head list;
20 	struct pci_dev *pdev;
21 	enum gdma_eqe_type type;
22 };
23 
24 static struct mana_dev_recovery_work {
25 	struct list_head dev_list;
26 	struct delayed_work work;
27 
28 	/* Lock for dev_list above */
29 	spinlock_t lock;
30 } mana_dev_recovery_work;
31 
32 static u32 mana_gd_r32(struct gdma_context *g, u64 offset)
33 {
34 	return readl(g->bar0_va + offset);
35 }
36 
37 static u64 mana_gd_r64(struct gdma_context *g, u64 offset)
38 {
39 	return readq(g->bar0_va + offset);
40 }
41 
42 static void mana_gd_init_pf_regs(struct pci_dev *pdev)
43 {
44 	struct gdma_context *gc = pci_get_drvdata(pdev);
45 	void __iomem *sriov_base_va;
46 	u64 sriov_base_off;
47 
48 	gc->db_page_size = mana_gd_r32(gc, GDMA_PF_REG_DB_PAGE_SIZE) & 0xFFFF;
49 	gc->db_page_base = gc->bar0_va +
50 				mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF);
51 
52 	gc->phys_db_page_base = gc->bar0_pa +
53 				mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF);
54 
55 	sriov_base_off = mana_gd_r64(gc, GDMA_SRIOV_REG_CFG_BASE_OFF);
56 
57 	sriov_base_va = gc->bar0_va + sriov_base_off;
58 	gc->shm_base = sriov_base_va +
59 			mana_gd_r64(gc, sriov_base_off + GDMA_PF_REG_SHM_OFF);
60 }
61 
62 static void mana_gd_init_vf_regs(struct pci_dev *pdev)
63 {
64 	struct gdma_context *gc = pci_get_drvdata(pdev);
65 
66 	gc->db_page_size = mana_gd_r32(gc, GDMA_REG_DB_PAGE_SIZE) & 0xFFFF;
67 
68 	gc->db_page_base = gc->bar0_va +
69 				mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET);
70 
71 	gc->phys_db_page_base = gc->bar0_pa +
72 				mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET);
73 
74 	gc->shm_base = gc->bar0_va + mana_gd_r64(gc, GDMA_REG_SHM_OFFSET);
75 }
76 
77 static void mana_gd_init_registers(struct pci_dev *pdev)
78 {
79 	struct gdma_context *gc = pci_get_drvdata(pdev);
80 
81 	if (gc->is_pf)
82 		mana_gd_init_pf_regs(pdev);
83 	else
84 		mana_gd_init_vf_regs(pdev);
85 }
86 
87 /* Suppress logging when we set timeout to zero */
88 bool mana_need_log(struct gdma_context *gc, int err)
89 {
90 	struct hw_channel_context *hwc;
91 
92 	if (err != -ETIMEDOUT)
93 		return true;
94 
95 	if (!gc)
96 		return true;
97 
98 	hwc = gc->hwc.driver_data;
99 	if (hwc && hwc->hwc_timeout == 0)
100 		return false;
101 
102 	return true;
103 }
104 
105 static int mana_gd_query_max_resources(struct pci_dev *pdev)
106 {
107 	struct gdma_context *gc = pci_get_drvdata(pdev);
108 	struct gdma_query_max_resources_resp resp = {};
109 	struct gdma_general_req req = {};
110 	int err;
111 
112 	mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_MAX_RESOURCES,
113 			     sizeof(req), sizeof(resp));
114 
115 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
116 	if (err || resp.hdr.status) {
117 		dev_err(gc->dev, "Failed to query resource info: %d, 0x%x\n",
118 			err, resp.hdr.status);
119 		return err ? err : -EPROTO;
120 	}
121 
122 	if (!pci_msix_can_alloc_dyn(pdev)) {
123 		if (gc->num_msix_usable > resp.max_msix)
124 			gc->num_msix_usable = resp.max_msix;
125 	} else {
126 		/* If dynamic allocation is enabled we have already allocated
127 		 * hwc msi
128 		 */
129 		gc->num_msix_usable = min(resp.max_msix, num_online_cpus() + 1);
130 	}
131 
132 	if (gc->num_msix_usable <= 1)
133 		return -ENOSPC;
134 
135 	gc->max_num_queues = num_online_cpus();
136 	if (gc->max_num_queues > MANA_MAX_NUM_QUEUES)
137 		gc->max_num_queues = MANA_MAX_NUM_QUEUES;
138 
139 	if (gc->max_num_queues > resp.max_eq)
140 		gc->max_num_queues = resp.max_eq;
141 
142 	if (gc->max_num_queues > resp.max_cq)
143 		gc->max_num_queues = resp.max_cq;
144 
145 	if (gc->max_num_queues > resp.max_sq)
146 		gc->max_num_queues = resp.max_sq;
147 
148 	if (gc->max_num_queues > resp.max_rq)
149 		gc->max_num_queues = resp.max_rq;
150 
151 	/* The Hardware Channel (HWC) used 1 MSI-X */
152 	if (gc->max_num_queues > gc->num_msix_usable - 1)
153 		gc->max_num_queues = gc->num_msix_usable - 1;
154 
155 	return 0;
156 }
157 
158 static int mana_gd_query_hwc_timeout(struct pci_dev *pdev, u32 *timeout_val)
159 {
160 	struct gdma_context *gc = pci_get_drvdata(pdev);
161 	struct gdma_query_hwc_timeout_resp resp = {};
162 	struct gdma_query_hwc_timeout_req req = {};
163 	int err;
164 
165 	mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_HWC_TIMEOUT,
166 			     sizeof(req), sizeof(resp));
167 	req.timeout_ms = *timeout_val;
168 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
169 	if (err || resp.hdr.status)
170 		return err ? err : -EPROTO;
171 
172 	*timeout_val = resp.timeout_ms;
173 
174 	return 0;
175 }
176 
177 static int mana_gd_detect_devices(struct pci_dev *pdev)
178 {
179 	struct gdma_context *gc = pci_get_drvdata(pdev);
180 	struct gdma_list_devices_resp resp = {};
181 	struct gdma_general_req req = {};
182 	struct gdma_dev_id dev;
183 	int found_dev = 0;
184 	u16 dev_type;
185 	int err;
186 	u32 i;
187 
188 	mana_gd_init_req_hdr(&req.hdr, GDMA_LIST_DEVICES, sizeof(req),
189 			     sizeof(resp));
190 
191 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
192 	if (err || resp.hdr.status) {
193 		dev_err(gc->dev, "Failed to detect devices: %d, 0x%x\n", err,
194 			resp.hdr.status);
195 		return err ? err : -EPROTO;
196 	}
197 
198 	for (i = 0; i < GDMA_DEV_LIST_SIZE &&
199 	     found_dev < resp.num_of_devs; i++) {
200 		dev = resp.devs[i];
201 		dev_type = dev.type;
202 
203 		/* Skip empty devices */
204 		if (dev.as_uint32 == 0)
205 			continue;
206 
207 		found_dev++;
208 
209 		/* HWC is already detected in mana_hwc_create_channel(). */
210 		if (dev_type == GDMA_DEVICE_HWC)
211 			continue;
212 
213 		if (dev_type == GDMA_DEVICE_MANA) {
214 			gc->mana.gdma_context = gc;
215 			gc->mana.dev_id = dev;
216 		} else if (dev_type == GDMA_DEVICE_MANA_IB) {
217 			gc->mana_ib.dev_id = dev;
218 			gc->mana_ib.gdma_context = gc;
219 		}
220 	}
221 
222 	return gc->mana.dev_id.type == 0 ? -ENODEV : 0;
223 }
224 
225 int mana_gd_send_request(struct gdma_context *gc, u32 req_len, const void *req,
226 			 u32 resp_len, void *resp)
227 {
228 	struct hw_channel_context *hwc = gc->hwc.driver_data;
229 
230 	return mana_hwc_send_request(hwc, req_len, req, resp_len, resp);
231 }
232 EXPORT_SYMBOL_NS(mana_gd_send_request, "NET_MANA");
233 
234 int mana_gd_alloc_memory(struct gdma_context *gc, unsigned int length,
235 			 struct gdma_mem_info *gmi)
236 {
237 	dma_addr_t dma_handle;
238 	void *buf;
239 
240 	if (length < MANA_PAGE_SIZE || !is_power_of_2(length))
241 		return -EINVAL;
242 
243 	gmi->dev = gc->dev;
244 	buf = dma_alloc_coherent(gmi->dev, length, &dma_handle, GFP_KERNEL);
245 	if (!buf)
246 		return -ENOMEM;
247 
248 	gmi->dma_handle = dma_handle;
249 	gmi->virt_addr = buf;
250 	gmi->length = length;
251 
252 	return 0;
253 }
254 
255 void mana_gd_free_memory(struct gdma_mem_info *gmi)
256 {
257 	dma_free_coherent(gmi->dev, gmi->length, gmi->virt_addr,
258 			  gmi->dma_handle);
259 }
260 
261 static int mana_gd_create_hw_eq(struct gdma_context *gc,
262 				struct gdma_queue *queue)
263 {
264 	struct gdma_create_queue_resp resp = {};
265 	struct gdma_create_queue_req req = {};
266 	int err;
267 
268 	if (queue->type != GDMA_EQ)
269 		return -EINVAL;
270 
271 	mana_gd_init_req_hdr(&req.hdr, GDMA_CREATE_QUEUE,
272 			     sizeof(req), sizeof(resp));
273 
274 	req.hdr.dev_id = queue->gdma_dev->dev_id;
275 	req.type = queue->type;
276 	req.pdid = queue->gdma_dev->pdid;
277 	req.doolbell_id = queue->gdma_dev->doorbell;
278 	req.gdma_region = queue->mem_info.dma_region_handle;
279 	req.queue_size = queue->queue_size;
280 	req.log2_throttle_limit = queue->eq.log2_throttle_limit;
281 	req.eq_pci_msix_index = queue->eq.msix_index;
282 
283 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
284 	if (err || resp.hdr.status) {
285 		dev_err(gc->dev, "Failed to create queue: %d, 0x%x\n", err,
286 			resp.hdr.status);
287 		return err ? err : -EPROTO;
288 	}
289 
290 	queue->id = resp.queue_index;
291 	queue->eq.disable_needed = true;
292 	queue->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION;
293 	return 0;
294 }
295 
296 static int mana_gd_disable_queue(struct gdma_queue *queue)
297 {
298 	struct gdma_context *gc = queue->gdma_dev->gdma_context;
299 	struct gdma_disable_queue_req req = {};
300 	struct gdma_general_resp resp = {};
301 	int err;
302 
303 	WARN_ON(queue->type != GDMA_EQ);
304 
305 	mana_gd_init_req_hdr(&req.hdr, GDMA_DISABLE_QUEUE,
306 			     sizeof(req), sizeof(resp));
307 
308 	req.hdr.dev_id = queue->gdma_dev->dev_id;
309 	req.type = queue->type;
310 	req.queue_index =  queue->id;
311 	req.alloc_res_id_on_creation = 1;
312 
313 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
314 	if (err || resp.hdr.status) {
315 		if (mana_need_log(gc, err))
316 			dev_err(gc->dev, "Failed to disable queue: %d, 0x%x\n", err,
317 				resp.hdr.status);
318 		return err ? err : -EPROTO;
319 	}
320 
321 	return 0;
322 }
323 
324 #define DOORBELL_OFFSET_SQ	0x0
325 #define DOORBELL_OFFSET_RQ	0x400
326 #define DOORBELL_OFFSET_CQ	0x800
327 #define DOORBELL_OFFSET_EQ	0xFF8
328 
329 static void mana_gd_ring_doorbell(struct gdma_context *gc, u32 db_index,
330 				  enum gdma_queue_type q_type, u32 qid,
331 				  u32 tail_ptr, u8 num_req)
332 {
333 	void __iomem *addr = gc->db_page_base + gc->db_page_size * db_index;
334 	union gdma_doorbell_entry e = {};
335 
336 	switch (q_type) {
337 	case GDMA_EQ:
338 		e.eq.id = qid;
339 		e.eq.tail_ptr = tail_ptr;
340 		e.eq.arm = num_req;
341 
342 		addr += DOORBELL_OFFSET_EQ;
343 		break;
344 
345 	case GDMA_CQ:
346 		e.cq.id = qid;
347 		e.cq.tail_ptr = tail_ptr;
348 		e.cq.arm = num_req;
349 
350 		addr += DOORBELL_OFFSET_CQ;
351 		break;
352 
353 	case GDMA_RQ:
354 		e.rq.id = qid;
355 		e.rq.tail_ptr = tail_ptr;
356 		e.rq.wqe_cnt = num_req;
357 
358 		addr += DOORBELL_OFFSET_RQ;
359 		break;
360 
361 	case GDMA_SQ:
362 		e.sq.id = qid;
363 		e.sq.tail_ptr = tail_ptr;
364 
365 		addr += DOORBELL_OFFSET_SQ;
366 		break;
367 
368 	default:
369 		WARN_ON(1);
370 		return;
371 	}
372 
373 	/* Ensure all writes are done before ring doorbell */
374 	wmb();
375 
376 	writeq(e.as_uint64, addr);
377 }
378 
379 void mana_gd_wq_ring_doorbell(struct gdma_context *gc, struct gdma_queue *queue)
380 {
381 	/* Hardware Spec specifies that software client should set 0 for
382 	 * wqe_cnt for Receive Queues. This value is not used in Send Queues.
383 	 */
384 	mana_gd_ring_doorbell(gc, queue->gdma_dev->doorbell, queue->type,
385 			      queue->id, queue->head * GDMA_WQE_BU_SIZE, 0);
386 }
387 EXPORT_SYMBOL_NS(mana_gd_wq_ring_doorbell, "NET_MANA");
388 
389 void mana_gd_ring_cq(struct gdma_queue *cq, u8 arm_bit)
390 {
391 	struct gdma_context *gc = cq->gdma_dev->gdma_context;
392 
393 	u32 num_cqe = cq->queue_size / GDMA_CQE_SIZE;
394 
395 	u32 head = cq->head % (num_cqe << GDMA_CQE_OWNER_BITS);
396 
397 	mana_gd_ring_doorbell(gc, cq->gdma_dev->doorbell, cq->type, cq->id,
398 			      head, arm_bit);
399 }
400 EXPORT_SYMBOL_NS(mana_gd_ring_cq, "NET_MANA");
401 
402 #define MANA_SERVICE_PERIOD 10
403 
404 static void mana_serv_rescan(struct pci_dev *pdev)
405 {
406 	struct pci_bus *parent;
407 
408 	pci_lock_rescan_remove();
409 
410 	parent = pdev->bus;
411 	if (!parent) {
412 		dev_err(&pdev->dev, "MANA service: no parent bus\n");
413 		goto out;
414 	}
415 
416 	pci_stop_and_remove_bus_device(pdev);
417 	pci_rescan_bus(parent);
418 
419 out:
420 	pci_unlock_rescan_remove();
421 }
422 
423 static void mana_serv_fpga(struct pci_dev *pdev)
424 {
425 	struct pci_bus *bus, *parent;
426 
427 	pci_lock_rescan_remove();
428 
429 	bus = pdev->bus;
430 	if (!bus) {
431 		dev_err(&pdev->dev, "MANA service: no bus\n");
432 		goto out;
433 	}
434 
435 	parent = bus->parent;
436 	if (!parent) {
437 		dev_err(&pdev->dev, "MANA service: no parent bus\n");
438 		goto out;
439 	}
440 
441 	pci_stop_and_remove_bus_device(bus->self);
442 
443 	msleep(MANA_SERVICE_PERIOD * 1000);
444 
445 	pci_rescan_bus(parent);
446 
447 out:
448 	pci_unlock_rescan_remove();
449 }
450 
451 static void mana_serv_reset(struct pci_dev *pdev)
452 {
453 	struct gdma_context *gc = pci_get_drvdata(pdev);
454 	struct hw_channel_context *hwc;
455 	int ret;
456 
457 	if (!gc) {
458 		/* Perform PCI rescan on device if GC is not set up */
459 		dev_err(&pdev->dev, "MANA service: GC not setup, rescanning\n");
460 		mana_serv_rescan(pdev);
461 		return;
462 	}
463 
464 	hwc = gc->hwc.driver_data;
465 	if (!hwc) {
466 		dev_err(&pdev->dev, "MANA service: no HWC\n");
467 		goto out;
468 	}
469 
470 	/* HWC is not responding in this case, so don't wait */
471 	hwc->hwc_timeout = 0;
472 
473 	dev_info(&pdev->dev, "MANA reset cycle start\n");
474 
475 	mana_gd_suspend(pdev, PMSG_SUSPEND);
476 
477 	msleep(MANA_SERVICE_PERIOD * 1000);
478 
479 	ret = mana_gd_resume(pdev);
480 	if (ret == -ETIMEDOUT || ret == -EPROTO) {
481 		/* Perform PCI rescan on device if we failed on HWC */
482 		dev_err(&pdev->dev, "MANA service: resume failed, rescanning\n");
483 		mana_serv_rescan(pdev);
484 		goto out;
485 	}
486 
487 	if (ret)
488 		dev_info(&pdev->dev, "MANA reset cycle failed err %d\n", ret);
489 	else
490 		dev_info(&pdev->dev, "MANA reset cycle completed\n");
491 
492 out:
493 	gc->in_service = false;
494 }
495 
496 struct mana_serv_work {
497 	struct work_struct serv_work;
498 	struct pci_dev *pdev;
499 	enum gdma_eqe_type type;
500 };
501 
502 static void mana_do_service(enum gdma_eqe_type type, struct pci_dev *pdev)
503 {
504 	switch (type) {
505 	case GDMA_EQE_HWC_FPGA_RECONFIG:
506 		mana_serv_fpga(pdev);
507 		break;
508 
509 	case GDMA_EQE_HWC_RESET_REQUEST:
510 		mana_serv_reset(pdev);
511 		break;
512 
513 	default:
514 		dev_err(&pdev->dev, "MANA service: unknown type %d\n", type);
515 		break;
516 	}
517 }
518 
519 static void mana_recovery_delayed_func(struct work_struct *w)
520 {
521 	struct mana_dev_recovery_work *work;
522 	struct mana_dev_recovery *dev;
523 	unsigned long flags;
524 
525 	work = container_of(w, struct mana_dev_recovery_work, work.work);
526 
527 	spin_lock_irqsave(&work->lock, flags);
528 
529 	while (!list_empty(&work->dev_list)) {
530 		dev = list_first_entry(&work->dev_list,
531 				       struct mana_dev_recovery, list);
532 		list_del(&dev->list);
533 		spin_unlock_irqrestore(&work->lock, flags);
534 
535 		mana_do_service(dev->type, dev->pdev);
536 		pci_dev_put(dev->pdev);
537 		kfree(dev);
538 
539 		spin_lock_irqsave(&work->lock, flags);
540 	}
541 
542 	spin_unlock_irqrestore(&work->lock, flags);
543 }
544 
545 static void mana_serv_func(struct work_struct *w)
546 {
547 	struct mana_serv_work *mns_wk;
548 	struct pci_dev *pdev;
549 
550 	mns_wk = container_of(w, struct mana_serv_work, serv_work);
551 	pdev = mns_wk->pdev;
552 
553 	if (pdev)
554 		mana_do_service(mns_wk->type, pdev);
555 
556 	pci_dev_put(pdev);
557 	kfree(mns_wk);
558 	module_put(THIS_MODULE);
559 }
560 
561 static void mana_gd_process_eqe(struct gdma_queue *eq)
562 {
563 	u32 head = eq->head % (eq->queue_size / GDMA_EQE_SIZE);
564 	struct gdma_context *gc = eq->gdma_dev->gdma_context;
565 	struct gdma_eqe *eq_eqe_ptr = eq->queue_mem_ptr;
566 	struct mana_serv_work *mns_wk;
567 	union gdma_eqe_info eqe_info;
568 	enum gdma_eqe_type type;
569 	struct gdma_event event;
570 	struct gdma_queue *cq;
571 	struct gdma_eqe *eqe;
572 	u32 cq_id;
573 
574 	eqe = &eq_eqe_ptr[head];
575 	eqe_info.as_uint32 = eqe->eqe_info;
576 	type = eqe_info.type;
577 
578 	switch (type) {
579 	case GDMA_EQE_COMPLETION:
580 		cq_id = eqe->details[0] & 0xFFFFFF;
581 		if (WARN_ON_ONCE(cq_id >= gc->max_num_cqs))
582 			break;
583 
584 		cq = gc->cq_table[cq_id];
585 		if (WARN_ON_ONCE(!cq || cq->type != GDMA_CQ || cq->id != cq_id))
586 			break;
587 
588 		if (cq->cq.callback)
589 			cq->cq.callback(cq->cq.context, cq);
590 
591 		break;
592 
593 	case GDMA_EQE_TEST_EVENT:
594 		gc->test_event_eq_id = eq->id;
595 		complete(&gc->eq_test_event);
596 		break;
597 
598 	case GDMA_EQE_HWC_INIT_EQ_ID_DB:
599 	case GDMA_EQE_HWC_INIT_DATA:
600 	case GDMA_EQE_HWC_INIT_DONE:
601 	case GDMA_EQE_HWC_SOC_SERVICE:
602 	case GDMA_EQE_RNIC_QP_FATAL:
603 	case GDMA_EQE_HWC_SOC_RECONFIG_DATA:
604 		if (!eq->eq.callback)
605 			break;
606 
607 		event.type = type;
608 		memcpy(&event.details, &eqe->details, GDMA_EVENT_DATA_SIZE);
609 		eq->eq.callback(eq->eq.context, eq, &event);
610 		break;
611 
612 	case GDMA_EQE_HWC_FPGA_RECONFIG:
613 	case GDMA_EQE_HWC_RESET_REQUEST:
614 		dev_info(gc->dev, "Recv MANA service type:%d\n", type);
615 
616 		if (!test_and_set_bit(GC_PROBE_SUCCEEDED, &gc->flags)) {
617 			/*
618 			 * Device is in probe and we received a hardware reset
619 			 * event, the probe function will detect that the flag
620 			 * has changed and perform service procedure.
621 			 */
622 			dev_info(gc->dev,
623 				 "Service is to be processed in probe\n");
624 			break;
625 		}
626 
627 		if (gc->in_service) {
628 			dev_info(gc->dev, "Already in service\n");
629 			break;
630 		}
631 
632 		if (!try_module_get(THIS_MODULE)) {
633 			dev_info(gc->dev, "Module is unloading\n");
634 			break;
635 		}
636 
637 		mns_wk = kzalloc(sizeof(*mns_wk), GFP_ATOMIC);
638 		if (!mns_wk) {
639 			module_put(THIS_MODULE);
640 			break;
641 		}
642 
643 		dev_info(gc->dev, "Start MANA service type:%d\n", type);
644 		gc->in_service = true;
645 		mns_wk->pdev = to_pci_dev(gc->dev);
646 		mns_wk->type = type;
647 		pci_dev_get(mns_wk->pdev);
648 		INIT_WORK(&mns_wk->serv_work, mana_serv_func);
649 		schedule_work(&mns_wk->serv_work);
650 		break;
651 
652 	default:
653 		break;
654 	}
655 }
656 
657 static void mana_gd_process_eq_events(void *arg)
658 {
659 	u32 owner_bits, new_bits, old_bits;
660 	union gdma_eqe_info eqe_info;
661 	struct gdma_eqe *eq_eqe_ptr;
662 	struct gdma_queue *eq = arg;
663 	struct gdma_context *gc;
664 	struct gdma_eqe *eqe;
665 	u32 head, num_eqe;
666 	int i;
667 
668 	gc = eq->gdma_dev->gdma_context;
669 
670 	num_eqe = eq->queue_size / GDMA_EQE_SIZE;
671 	eq_eqe_ptr = eq->queue_mem_ptr;
672 
673 	/* Process up to 5 EQEs at a time, and update the HW head. */
674 	for (i = 0; i < 5; i++) {
675 		eqe = &eq_eqe_ptr[eq->head % num_eqe];
676 		eqe_info.as_uint32 = eqe->eqe_info;
677 		owner_bits = eqe_info.owner_bits;
678 
679 		old_bits = (eq->head / num_eqe - 1) & GDMA_EQE_OWNER_MASK;
680 		/* No more entries */
681 		if (owner_bits == old_bits) {
682 			/* return here without ringing the doorbell */
683 			if (i == 0)
684 				return;
685 			break;
686 		}
687 
688 		new_bits = (eq->head / num_eqe) & GDMA_EQE_OWNER_MASK;
689 		if (owner_bits != new_bits) {
690 			dev_err(gc->dev, "EQ %d: overflow detected\n", eq->id);
691 			break;
692 		}
693 
694 		/* Per GDMA spec, rmb is necessary after checking owner_bits, before
695 		 * reading eqe.
696 		 */
697 		rmb();
698 
699 		mana_gd_process_eqe(eq);
700 
701 		eq->head++;
702 	}
703 
704 	head = eq->head % (num_eqe << GDMA_EQE_OWNER_BITS);
705 
706 	mana_gd_ring_doorbell(gc, eq->gdma_dev->doorbell, eq->type, eq->id,
707 			      head, SET_ARM_BIT);
708 }
709 
710 static int mana_gd_register_irq(struct gdma_queue *queue,
711 				const struct gdma_queue_spec *spec)
712 {
713 	struct gdma_dev *gd = queue->gdma_dev;
714 	struct gdma_irq_context *gic;
715 	struct gdma_context *gc;
716 	unsigned int msi_index;
717 	unsigned long flags;
718 	struct device *dev;
719 	int err = 0;
720 
721 	gc = gd->gdma_context;
722 	dev = gc->dev;
723 	msi_index = spec->eq.msix_index;
724 
725 	if (msi_index >= gc->num_msix_usable) {
726 		err = -ENOSPC;
727 		dev_err(dev, "Register IRQ err:%d, msi:%u nMSI:%u",
728 			err, msi_index, gc->num_msix_usable);
729 
730 		return err;
731 	}
732 
733 	queue->eq.msix_index = msi_index;
734 	gic = xa_load(&gc->irq_contexts, msi_index);
735 	if (WARN_ON(!gic))
736 		return -EINVAL;
737 
738 	spin_lock_irqsave(&gic->lock, flags);
739 	list_add_rcu(&queue->entry, &gic->eq_list);
740 	spin_unlock_irqrestore(&gic->lock, flags);
741 
742 	return 0;
743 }
744 
745 static void mana_gd_deregister_irq(struct gdma_queue *queue)
746 {
747 	struct gdma_dev *gd = queue->gdma_dev;
748 	struct gdma_irq_context *gic;
749 	struct gdma_context *gc;
750 	unsigned int msix_index;
751 	unsigned long flags;
752 	struct gdma_queue *eq;
753 
754 	gc = gd->gdma_context;
755 
756 	/* At most num_online_cpus() + 1 interrupts are used. */
757 	msix_index = queue->eq.msix_index;
758 	if (WARN_ON(msix_index >= gc->num_msix_usable))
759 		return;
760 
761 	gic = xa_load(&gc->irq_contexts, msix_index);
762 	if (WARN_ON(!gic))
763 		return;
764 
765 	spin_lock_irqsave(&gic->lock, flags);
766 	list_for_each_entry_rcu(eq, &gic->eq_list, entry) {
767 		if (queue == eq) {
768 			list_del_rcu(&eq->entry);
769 			break;
770 		}
771 	}
772 	spin_unlock_irqrestore(&gic->lock, flags);
773 
774 	queue->eq.msix_index = INVALID_PCI_MSIX_INDEX;
775 	synchronize_rcu();
776 }
777 
778 int mana_gd_test_eq(struct gdma_context *gc, struct gdma_queue *eq)
779 {
780 	struct gdma_generate_test_event_req req = {};
781 	struct gdma_general_resp resp = {};
782 	struct device *dev = gc->dev;
783 	int err;
784 
785 	mutex_lock(&gc->eq_test_event_mutex);
786 
787 	init_completion(&gc->eq_test_event);
788 	gc->test_event_eq_id = INVALID_QUEUE_ID;
789 
790 	mana_gd_init_req_hdr(&req.hdr, GDMA_GENERATE_TEST_EQE,
791 			     sizeof(req), sizeof(resp));
792 
793 	req.hdr.dev_id = eq->gdma_dev->dev_id;
794 	req.queue_index = eq->id;
795 
796 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
797 	if (err) {
798 		if (mana_need_log(gc, err))
799 			dev_err(dev, "test_eq failed: %d\n", err);
800 		goto out;
801 	}
802 
803 	err = -EPROTO;
804 
805 	if (resp.hdr.status) {
806 		dev_err(dev, "test_eq failed: 0x%x\n", resp.hdr.status);
807 		goto out;
808 	}
809 
810 	if (!wait_for_completion_timeout(&gc->eq_test_event, 30 * HZ)) {
811 		dev_err(dev, "test_eq timed out on queue %d\n", eq->id);
812 		goto out;
813 	}
814 
815 	if (eq->id != gc->test_event_eq_id) {
816 		dev_err(dev, "test_eq got an event on wrong queue %d (%d)\n",
817 			gc->test_event_eq_id, eq->id);
818 		goto out;
819 	}
820 
821 	err = 0;
822 out:
823 	mutex_unlock(&gc->eq_test_event_mutex);
824 	return err;
825 }
826 
827 static void mana_gd_destroy_eq(struct gdma_context *gc, bool flush_evenets,
828 			       struct gdma_queue *queue)
829 {
830 	int err;
831 
832 	if (flush_evenets) {
833 		err = mana_gd_test_eq(gc, queue);
834 		if (err && mana_need_log(gc, err))
835 			dev_warn(gc->dev, "Failed to flush EQ: %d\n", err);
836 	}
837 
838 	mana_gd_deregister_irq(queue);
839 
840 	if (queue->eq.disable_needed)
841 		mana_gd_disable_queue(queue);
842 }
843 
844 static int mana_gd_create_eq(struct gdma_dev *gd,
845 			     const struct gdma_queue_spec *spec,
846 			     bool create_hwq, struct gdma_queue *queue)
847 {
848 	struct gdma_context *gc = gd->gdma_context;
849 	struct device *dev = gc->dev;
850 	u32 log2_num_entries;
851 	int err;
852 
853 	queue->eq.msix_index = INVALID_PCI_MSIX_INDEX;
854 	queue->id = INVALID_QUEUE_ID;
855 
856 	log2_num_entries = ilog2(queue->queue_size / GDMA_EQE_SIZE);
857 
858 	if (spec->eq.log2_throttle_limit > log2_num_entries) {
859 		dev_err(dev, "EQ throttling limit (%lu) > maximum EQE (%u)\n",
860 			spec->eq.log2_throttle_limit, log2_num_entries);
861 		return -EINVAL;
862 	}
863 
864 	err = mana_gd_register_irq(queue, spec);
865 	if (err) {
866 		dev_err(dev, "Failed to register irq: %d\n", err);
867 		return err;
868 	}
869 
870 	queue->eq.callback = spec->eq.callback;
871 	queue->eq.context = spec->eq.context;
872 	queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries);
873 	queue->eq.log2_throttle_limit = spec->eq.log2_throttle_limit ?: 1;
874 
875 	if (create_hwq) {
876 		err = mana_gd_create_hw_eq(gc, queue);
877 		if (err)
878 			goto out;
879 
880 		err = mana_gd_test_eq(gc, queue);
881 		if (err)
882 			goto out;
883 	}
884 
885 	return 0;
886 out:
887 	dev_err(dev, "Failed to create EQ: %d\n", err);
888 	mana_gd_destroy_eq(gc, false, queue);
889 	return err;
890 }
891 
892 static void mana_gd_create_cq(const struct gdma_queue_spec *spec,
893 			      struct gdma_queue *queue)
894 {
895 	u32 log2_num_entries = ilog2(spec->queue_size / GDMA_CQE_SIZE);
896 
897 	queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries);
898 	queue->cq.parent = spec->cq.parent_eq;
899 	queue->cq.context = spec->cq.context;
900 	queue->cq.callback = spec->cq.callback;
901 }
902 
903 static void mana_gd_destroy_cq(struct gdma_context *gc,
904 			       struct gdma_queue *queue)
905 {
906 	u32 id = queue->id;
907 
908 	if (id >= gc->max_num_cqs)
909 		return;
910 
911 	if (!gc->cq_table[id])
912 		return;
913 
914 	gc->cq_table[id] = NULL;
915 }
916 
917 int mana_gd_create_hwc_queue(struct gdma_dev *gd,
918 			     const struct gdma_queue_spec *spec,
919 			     struct gdma_queue **queue_ptr)
920 {
921 	struct gdma_context *gc = gd->gdma_context;
922 	struct gdma_mem_info *gmi;
923 	struct gdma_queue *queue;
924 	int err;
925 
926 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
927 	if (!queue)
928 		return -ENOMEM;
929 
930 	gmi = &queue->mem_info;
931 	err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
932 	if (err) {
933 		dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n",
934 			spec->type, spec->queue_size, err);
935 		goto free_q;
936 	}
937 
938 	queue->head = 0;
939 	queue->tail = 0;
940 	queue->queue_mem_ptr = gmi->virt_addr;
941 	queue->queue_size = spec->queue_size;
942 	queue->monitor_avl_buf = spec->monitor_avl_buf;
943 	queue->type = spec->type;
944 	queue->gdma_dev = gd;
945 
946 	if (spec->type == GDMA_EQ)
947 		err = mana_gd_create_eq(gd, spec, false, queue);
948 	else if (spec->type == GDMA_CQ)
949 		mana_gd_create_cq(spec, queue);
950 
951 	if (err)
952 		goto out;
953 
954 	*queue_ptr = queue;
955 	return 0;
956 out:
957 	dev_err(gc->dev, "Failed to create queue type %d of size %u, err: %d\n",
958 		spec->type, spec->queue_size, err);
959 	mana_gd_free_memory(gmi);
960 free_q:
961 	kfree(queue);
962 	return err;
963 }
964 
965 int mana_gd_destroy_dma_region(struct gdma_context *gc, u64 dma_region_handle)
966 {
967 	struct gdma_destroy_dma_region_req req = {};
968 	struct gdma_general_resp resp = {};
969 	int err;
970 
971 	if (dma_region_handle == GDMA_INVALID_DMA_REGION)
972 		return 0;
973 
974 	mana_gd_init_req_hdr(&req.hdr, GDMA_DESTROY_DMA_REGION, sizeof(req),
975 			     sizeof(resp));
976 	req.dma_region_handle = dma_region_handle;
977 
978 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
979 	if (err || resp.hdr.status) {
980 		if (mana_need_log(gc, err))
981 			dev_err(gc->dev, "Failed to destroy DMA region: %d, 0x%x\n",
982 				err, resp.hdr.status);
983 		return -EPROTO;
984 	}
985 
986 	return 0;
987 }
988 EXPORT_SYMBOL_NS(mana_gd_destroy_dma_region, "NET_MANA");
989 
990 static int mana_gd_create_dma_region(struct gdma_dev *gd,
991 				     struct gdma_mem_info *gmi)
992 {
993 	unsigned int num_page = gmi->length / MANA_PAGE_SIZE;
994 	struct gdma_create_dma_region_req *req = NULL;
995 	struct gdma_create_dma_region_resp resp = {};
996 	struct gdma_context *gc = gd->gdma_context;
997 	struct hw_channel_context *hwc;
998 	u32 length = gmi->length;
999 	size_t req_msg_size;
1000 	int err;
1001 	int i;
1002 
1003 	if (length < MANA_PAGE_SIZE || !is_power_of_2(length))
1004 		return -EINVAL;
1005 
1006 	if (!MANA_PAGE_ALIGNED(gmi->virt_addr))
1007 		return -EINVAL;
1008 
1009 	hwc = gc->hwc.driver_data;
1010 	req_msg_size = struct_size(req, page_addr_list, num_page);
1011 	if (req_msg_size > hwc->max_req_msg_size)
1012 		return -EINVAL;
1013 
1014 	req = kzalloc(req_msg_size, GFP_KERNEL);
1015 	if (!req)
1016 		return -ENOMEM;
1017 
1018 	mana_gd_init_req_hdr(&req->hdr, GDMA_CREATE_DMA_REGION,
1019 			     req_msg_size, sizeof(resp));
1020 	req->length = length;
1021 	req->offset_in_page = 0;
1022 	req->gdma_page_type = GDMA_PAGE_TYPE_4K;
1023 	req->page_count = num_page;
1024 	req->page_addr_list_len = num_page;
1025 
1026 	for (i = 0; i < num_page; i++)
1027 		req->page_addr_list[i] = gmi->dma_handle +  i * MANA_PAGE_SIZE;
1028 
1029 	err = mana_gd_send_request(gc, req_msg_size, req, sizeof(resp), &resp);
1030 	if (err)
1031 		goto out;
1032 
1033 	if (resp.hdr.status ||
1034 	    resp.dma_region_handle == GDMA_INVALID_DMA_REGION) {
1035 		dev_err(gc->dev, "Failed to create DMA region: 0x%x\n",
1036 			resp.hdr.status);
1037 		err = -EPROTO;
1038 		goto out;
1039 	}
1040 
1041 	gmi->dma_region_handle = resp.dma_region_handle;
1042 	dev_dbg(gc->dev, "Created DMA region handle 0x%llx\n",
1043 		gmi->dma_region_handle);
1044 out:
1045 	if (err)
1046 		dev_dbg(gc->dev,
1047 			"Failed to create DMA region of length: %u, page_type: %d, status: 0x%x, err: %d\n",
1048 			length, req->gdma_page_type, resp.hdr.status, err);
1049 	kfree(req);
1050 	return err;
1051 }
1052 
1053 int mana_gd_create_mana_eq(struct gdma_dev *gd,
1054 			   const struct gdma_queue_spec *spec,
1055 			   struct gdma_queue **queue_ptr)
1056 {
1057 	struct gdma_context *gc = gd->gdma_context;
1058 	struct gdma_mem_info *gmi;
1059 	struct gdma_queue *queue;
1060 	int err;
1061 
1062 	if (spec->type != GDMA_EQ)
1063 		return -EINVAL;
1064 
1065 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1066 	if (!queue)
1067 		return -ENOMEM;
1068 
1069 	gmi = &queue->mem_info;
1070 	err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
1071 	if (err) {
1072 		dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n",
1073 			spec->type, spec->queue_size, err);
1074 		goto free_q;
1075 	}
1076 
1077 	err = mana_gd_create_dma_region(gd, gmi);
1078 	if (err)
1079 		goto out;
1080 
1081 	queue->head = 0;
1082 	queue->tail = 0;
1083 	queue->queue_mem_ptr = gmi->virt_addr;
1084 	queue->queue_size = spec->queue_size;
1085 	queue->monitor_avl_buf = spec->monitor_avl_buf;
1086 	queue->type = spec->type;
1087 	queue->gdma_dev = gd;
1088 
1089 	err = mana_gd_create_eq(gd, spec, true, queue);
1090 	if (err)
1091 		goto out;
1092 
1093 	*queue_ptr = queue;
1094 	return 0;
1095 out:
1096 	dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n",
1097 		spec->type, spec->queue_size, err);
1098 	mana_gd_free_memory(gmi);
1099 free_q:
1100 	kfree(queue);
1101 	return err;
1102 }
1103 EXPORT_SYMBOL_NS(mana_gd_create_mana_eq, "NET_MANA");
1104 
1105 int mana_gd_create_mana_wq_cq(struct gdma_dev *gd,
1106 			      const struct gdma_queue_spec *spec,
1107 			      struct gdma_queue **queue_ptr)
1108 {
1109 	struct gdma_context *gc = gd->gdma_context;
1110 	struct gdma_mem_info *gmi;
1111 	struct gdma_queue *queue;
1112 	int err;
1113 
1114 	if (spec->type != GDMA_CQ && spec->type != GDMA_SQ &&
1115 	    spec->type != GDMA_RQ)
1116 		return -EINVAL;
1117 
1118 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1119 	if (!queue)
1120 		return -ENOMEM;
1121 
1122 	gmi = &queue->mem_info;
1123 	err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
1124 	if (err) {
1125 		dev_err(gc->dev, "GDMA queue type: %d, size: %u, memory allocation err: %d\n",
1126 			spec->type, spec->queue_size, err);
1127 		goto free_q;
1128 	}
1129 
1130 	err = mana_gd_create_dma_region(gd, gmi);
1131 	if (err)
1132 		goto out;
1133 
1134 	queue->head = 0;
1135 	queue->tail = 0;
1136 	queue->queue_mem_ptr = gmi->virt_addr;
1137 	queue->queue_size = spec->queue_size;
1138 	queue->monitor_avl_buf = spec->monitor_avl_buf;
1139 	queue->type = spec->type;
1140 	queue->gdma_dev = gd;
1141 
1142 	if (spec->type == GDMA_CQ)
1143 		mana_gd_create_cq(spec, queue);
1144 
1145 	*queue_ptr = queue;
1146 	return 0;
1147 out:
1148 	dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n",
1149 		spec->type, spec->queue_size, err);
1150 	mana_gd_free_memory(gmi);
1151 free_q:
1152 	kfree(queue);
1153 	return err;
1154 }
1155 EXPORT_SYMBOL_NS(mana_gd_create_mana_wq_cq, "NET_MANA");
1156 
1157 void mana_gd_destroy_queue(struct gdma_context *gc, struct gdma_queue *queue)
1158 {
1159 	struct gdma_mem_info *gmi = &queue->mem_info;
1160 
1161 	switch (queue->type) {
1162 	case GDMA_EQ:
1163 		mana_gd_destroy_eq(gc, queue->eq.disable_needed, queue);
1164 		break;
1165 
1166 	case GDMA_CQ:
1167 		mana_gd_destroy_cq(gc, queue);
1168 		break;
1169 
1170 	case GDMA_RQ:
1171 		break;
1172 
1173 	case GDMA_SQ:
1174 		break;
1175 
1176 	default:
1177 		dev_err(gc->dev, "Can't destroy unknown queue: type=%d\n",
1178 			queue->type);
1179 		return;
1180 	}
1181 
1182 	mana_gd_destroy_dma_region(gc, gmi->dma_region_handle);
1183 	mana_gd_free_memory(gmi);
1184 	kfree(queue);
1185 }
1186 EXPORT_SYMBOL_NS(mana_gd_destroy_queue, "NET_MANA");
1187 
1188 int mana_gd_verify_vf_version(struct pci_dev *pdev)
1189 {
1190 	struct gdma_context *gc = pci_get_drvdata(pdev);
1191 	struct gdma_verify_ver_resp resp = {};
1192 	struct gdma_verify_ver_req req = {};
1193 	struct hw_channel_context *hwc;
1194 	int err;
1195 
1196 	hwc = gc->hwc.driver_data;
1197 	mana_gd_init_req_hdr(&req.hdr, GDMA_VERIFY_VF_DRIVER_VERSION,
1198 			     sizeof(req), sizeof(resp));
1199 
1200 	req.protocol_ver_min = GDMA_PROTOCOL_FIRST;
1201 	req.protocol_ver_max = GDMA_PROTOCOL_LAST;
1202 
1203 	req.gd_drv_cap_flags1 = GDMA_DRV_CAP_FLAGS1;
1204 	req.gd_drv_cap_flags2 = GDMA_DRV_CAP_FLAGS2;
1205 	req.gd_drv_cap_flags3 = GDMA_DRV_CAP_FLAGS3;
1206 	req.gd_drv_cap_flags4 = GDMA_DRV_CAP_FLAGS4;
1207 
1208 	req.drv_ver = 0;	/* Unused*/
1209 	req.os_type = 0x10;	/* Linux */
1210 	req.os_ver_major = LINUX_VERSION_MAJOR;
1211 	req.os_ver_minor = LINUX_VERSION_PATCHLEVEL;
1212 	req.os_ver_build = LINUX_VERSION_SUBLEVEL;
1213 	strscpy(req.os_ver_str1, utsname()->sysname, sizeof(req.os_ver_str1));
1214 	strscpy(req.os_ver_str2, utsname()->release, sizeof(req.os_ver_str2));
1215 	strscpy(req.os_ver_str3, utsname()->version, sizeof(req.os_ver_str3));
1216 
1217 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1218 	if (err || resp.hdr.status) {
1219 		dev_err(gc->dev, "VfVerifyVersionOutput: %d, status=0x%x\n",
1220 			err, resp.hdr.status);
1221 		return err ? err : -EPROTO;
1222 	}
1223 	gc->pf_cap_flags1 = resp.pf_cap_flags1;
1224 	if (resp.pf_cap_flags1 & GDMA_DRV_CAP_FLAG_1_HWC_TIMEOUT_RECONFIG) {
1225 		err = mana_gd_query_hwc_timeout(pdev, &hwc->hwc_timeout);
1226 		if (err) {
1227 			dev_err(gc->dev, "Failed to set the hwc timeout %d\n", err);
1228 			return err;
1229 		}
1230 		dev_dbg(gc->dev, "set the hwc timeout to %u\n", hwc->hwc_timeout);
1231 	}
1232 	return 0;
1233 }
1234 
1235 int mana_gd_register_device(struct gdma_dev *gd)
1236 {
1237 	struct gdma_context *gc = gd->gdma_context;
1238 	struct gdma_register_device_resp resp = {};
1239 	struct gdma_general_req req = {};
1240 	int err;
1241 
1242 	gd->pdid = INVALID_PDID;
1243 	gd->doorbell = INVALID_DOORBELL;
1244 	gd->gpa_mkey = INVALID_MEM_KEY;
1245 
1246 	mana_gd_init_req_hdr(&req.hdr, GDMA_REGISTER_DEVICE, sizeof(req),
1247 			     sizeof(resp));
1248 
1249 	req.hdr.dev_id = gd->dev_id;
1250 
1251 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1252 	if (err || resp.hdr.status) {
1253 		dev_err(gc->dev, "gdma_register_device_resp failed: %d, 0x%x\n",
1254 			err, resp.hdr.status);
1255 		return err ? err : -EPROTO;
1256 	}
1257 
1258 	gd->pdid = resp.pdid;
1259 	gd->gpa_mkey = resp.gpa_mkey;
1260 	gd->doorbell = resp.db_id;
1261 
1262 	return 0;
1263 }
1264 
1265 int mana_gd_deregister_device(struct gdma_dev *gd)
1266 {
1267 	struct gdma_context *gc = gd->gdma_context;
1268 	struct gdma_general_resp resp = {};
1269 	struct gdma_general_req req = {};
1270 	int err;
1271 
1272 	if (gd->pdid == INVALID_PDID)
1273 		return -EINVAL;
1274 
1275 	mana_gd_init_req_hdr(&req.hdr, GDMA_DEREGISTER_DEVICE, sizeof(req),
1276 			     sizeof(resp));
1277 
1278 	req.hdr.dev_id = gd->dev_id;
1279 
1280 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1281 	if (err || resp.hdr.status) {
1282 		if (mana_need_log(gc, err))
1283 			dev_err(gc->dev, "Failed to deregister device: %d, 0x%x\n",
1284 				err, resp.hdr.status);
1285 		if (!err)
1286 			err = -EPROTO;
1287 	}
1288 
1289 	gd->pdid = INVALID_PDID;
1290 	gd->doorbell = INVALID_DOORBELL;
1291 	gd->gpa_mkey = INVALID_MEM_KEY;
1292 
1293 	return err;
1294 }
1295 
1296 u32 mana_gd_wq_avail_space(struct gdma_queue *wq)
1297 {
1298 	u32 used_space = (wq->head - wq->tail) * GDMA_WQE_BU_SIZE;
1299 	u32 wq_size = wq->queue_size;
1300 
1301 	WARN_ON_ONCE(used_space > wq_size);
1302 
1303 	return wq_size - used_space;
1304 }
1305 
1306 u8 *mana_gd_get_wqe_ptr(const struct gdma_queue *wq, u32 wqe_offset)
1307 {
1308 	u32 offset = (wqe_offset * GDMA_WQE_BU_SIZE) & (wq->queue_size - 1);
1309 
1310 	WARN_ON_ONCE((offset + GDMA_WQE_BU_SIZE) > wq->queue_size);
1311 
1312 	return wq->queue_mem_ptr + offset;
1313 }
1314 
1315 static u32 mana_gd_write_client_oob(const struct gdma_wqe_request *wqe_req,
1316 				    enum gdma_queue_type q_type,
1317 				    u32 client_oob_size, u32 sgl_data_size,
1318 				    u8 *wqe_ptr)
1319 {
1320 	bool oob_in_sgl = !!(wqe_req->flags & GDMA_WR_OOB_IN_SGL);
1321 	bool pad_data = !!(wqe_req->flags & GDMA_WR_PAD_BY_SGE0);
1322 	struct gdma_wqe *header = (struct gdma_wqe *)wqe_ptr;
1323 	u8 *ptr;
1324 
1325 	memset(header, 0, sizeof(struct gdma_wqe));
1326 	header->num_sge = wqe_req->num_sge;
1327 	header->inline_oob_size_div4 = client_oob_size / sizeof(u32);
1328 
1329 	if (oob_in_sgl) {
1330 		WARN_ON_ONCE(wqe_req->num_sge < 2);
1331 
1332 		header->client_oob_in_sgl = 1;
1333 
1334 		if (pad_data)
1335 			header->last_vbytes = wqe_req->sgl[0].size;
1336 	}
1337 
1338 	if (q_type == GDMA_SQ)
1339 		header->client_data_unit = wqe_req->client_data_unit;
1340 
1341 	/* The size of gdma_wqe + client_oob_size must be less than or equal
1342 	 * to one Basic Unit (i.e. 32 bytes), so the pointer can't go beyond
1343 	 * the queue memory buffer boundary.
1344 	 */
1345 	ptr = wqe_ptr + sizeof(header);
1346 
1347 	if (wqe_req->inline_oob_data && wqe_req->inline_oob_size > 0) {
1348 		memcpy(ptr, wqe_req->inline_oob_data, wqe_req->inline_oob_size);
1349 
1350 		if (client_oob_size > wqe_req->inline_oob_size)
1351 			memset(ptr + wqe_req->inline_oob_size, 0,
1352 			       client_oob_size - wqe_req->inline_oob_size);
1353 	}
1354 
1355 	return sizeof(header) + client_oob_size;
1356 }
1357 
1358 static void mana_gd_write_sgl(struct gdma_queue *wq, u8 *wqe_ptr,
1359 			      const struct gdma_wqe_request *wqe_req)
1360 {
1361 	u32 sgl_size = sizeof(struct gdma_sge) * wqe_req->num_sge;
1362 	const u8 *address = (u8 *)wqe_req->sgl;
1363 	u8 *base_ptr, *end_ptr;
1364 	u32 size_to_end;
1365 
1366 	base_ptr = wq->queue_mem_ptr;
1367 	end_ptr = base_ptr + wq->queue_size;
1368 	size_to_end = (u32)(end_ptr - wqe_ptr);
1369 
1370 	if (size_to_end < sgl_size) {
1371 		memcpy(wqe_ptr, address, size_to_end);
1372 
1373 		wqe_ptr = base_ptr;
1374 		address += size_to_end;
1375 		sgl_size -= size_to_end;
1376 	}
1377 
1378 	memcpy(wqe_ptr, address, sgl_size);
1379 }
1380 
1381 int mana_gd_post_work_request(struct gdma_queue *wq,
1382 			      const struct gdma_wqe_request *wqe_req,
1383 			      struct gdma_posted_wqe_info *wqe_info)
1384 {
1385 	u32 client_oob_size = wqe_req->inline_oob_size;
1386 	u32 sgl_data_size;
1387 	u32 max_wqe_size;
1388 	u32 wqe_size;
1389 	u8 *wqe_ptr;
1390 
1391 	if (wqe_req->num_sge == 0)
1392 		return -EINVAL;
1393 
1394 	if (wq->type == GDMA_RQ) {
1395 		if (client_oob_size != 0)
1396 			return -EINVAL;
1397 
1398 		client_oob_size = INLINE_OOB_SMALL_SIZE;
1399 
1400 		max_wqe_size = GDMA_MAX_RQE_SIZE;
1401 	} else {
1402 		if (client_oob_size != INLINE_OOB_SMALL_SIZE &&
1403 		    client_oob_size != INLINE_OOB_LARGE_SIZE)
1404 			return -EINVAL;
1405 
1406 		max_wqe_size = GDMA_MAX_SQE_SIZE;
1407 	}
1408 
1409 	sgl_data_size = sizeof(struct gdma_sge) * wqe_req->num_sge;
1410 	wqe_size = ALIGN(sizeof(struct gdma_wqe) + client_oob_size +
1411 			 sgl_data_size, GDMA_WQE_BU_SIZE);
1412 	if (wqe_size > max_wqe_size)
1413 		return -EINVAL;
1414 
1415 	if (wq->monitor_avl_buf && wqe_size > mana_gd_wq_avail_space(wq))
1416 		return -ENOSPC;
1417 
1418 	if (wqe_info)
1419 		wqe_info->wqe_size_in_bu = wqe_size / GDMA_WQE_BU_SIZE;
1420 
1421 	wqe_ptr = mana_gd_get_wqe_ptr(wq, wq->head);
1422 	wqe_ptr += mana_gd_write_client_oob(wqe_req, wq->type, client_oob_size,
1423 					    sgl_data_size, wqe_ptr);
1424 	if (wqe_ptr >= (u8 *)wq->queue_mem_ptr + wq->queue_size)
1425 		wqe_ptr -= wq->queue_size;
1426 
1427 	mana_gd_write_sgl(wq, wqe_ptr, wqe_req);
1428 
1429 	wq->head += wqe_size / GDMA_WQE_BU_SIZE;
1430 
1431 	return 0;
1432 }
1433 EXPORT_SYMBOL_NS(mana_gd_post_work_request, "NET_MANA");
1434 
1435 int mana_gd_post_and_ring(struct gdma_queue *queue,
1436 			  const struct gdma_wqe_request *wqe_req,
1437 			  struct gdma_posted_wqe_info *wqe_info)
1438 {
1439 	struct gdma_context *gc = queue->gdma_dev->gdma_context;
1440 	int err;
1441 
1442 	err = mana_gd_post_work_request(queue, wqe_req, wqe_info);
1443 	if (err) {
1444 		dev_err(gc->dev, "Failed to post work req from queue type %d of size %u (err=%d)\n",
1445 			queue->type, queue->queue_size, err);
1446 		return err;
1447 	}
1448 
1449 	mana_gd_wq_ring_doorbell(gc, queue);
1450 
1451 	return 0;
1452 }
1453 
1454 static int mana_gd_read_cqe(struct gdma_queue *cq, struct gdma_comp *comp)
1455 {
1456 	unsigned int num_cqe = cq->queue_size / sizeof(struct gdma_cqe);
1457 	struct gdma_cqe *cq_cqe = cq->queue_mem_ptr;
1458 	u32 owner_bits, new_bits, old_bits;
1459 	struct gdma_cqe *cqe;
1460 
1461 	cqe = &cq_cqe[cq->head % num_cqe];
1462 	owner_bits = cqe->cqe_info.owner_bits;
1463 
1464 	old_bits = (cq->head / num_cqe - 1) & GDMA_CQE_OWNER_MASK;
1465 	/* Return 0 if no more entries. */
1466 	if (owner_bits == old_bits)
1467 		return 0;
1468 
1469 	new_bits = (cq->head / num_cqe) & GDMA_CQE_OWNER_MASK;
1470 	/* Return -1 if overflow detected. */
1471 	if (WARN_ON_ONCE(owner_bits != new_bits))
1472 		return -1;
1473 
1474 	/* Per GDMA spec, rmb is necessary after checking owner_bits, before
1475 	 * reading completion info
1476 	 */
1477 	rmb();
1478 
1479 	comp->wq_num = cqe->cqe_info.wq_num;
1480 	comp->is_sq = cqe->cqe_info.is_sq;
1481 	memcpy(comp->cqe_data, cqe->cqe_data, GDMA_COMP_DATA_SIZE);
1482 
1483 	return 1;
1484 }
1485 
1486 int mana_gd_poll_cq(struct gdma_queue *cq, struct gdma_comp *comp, int num_cqe)
1487 {
1488 	int cqe_idx;
1489 	int ret;
1490 
1491 	for (cqe_idx = 0; cqe_idx < num_cqe; cqe_idx++) {
1492 		ret = mana_gd_read_cqe(cq, &comp[cqe_idx]);
1493 
1494 		if (ret < 0) {
1495 			cq->head -= cqe_idx;
1496 			return ret;
1497 		}
1498 
1499 		if (ret == 0)
1500 			break;
1501 
1502 		cq->head++;
1503 	}
1504 
1505 	return cqe_idx;
1506 }
1507 EXPORT_SYMBOL_NS(mana_gd_poll_cq, "NET_MANA");
1508 
1509 static irqreturn_t mana_gd_intr(int irq, void *arg)
1510 {
1511 	struct gdma_irq_context *gic = arg;
1512 	struct list_head *eq_list = &gic->eq_list;
1513 	struct gdma_queue *eq;
1514 
1515 	rcu_read_lock();
1516 	list_for_each_entry_rcu(eq, eq_list, entry) {
1517 		gic->handler(eq);
1518 	}
1519 	rcu_read_unlock();
1520 
1521 	return IRQ_HANDLED;
1522 }
1523 
1524 int mana_gd_alloc_res_map(u32 res_avail, struct gdma_resource *r)
1525 {
1526 	r->map = bitmap_zalloc(res_avail, GFP_KERNEL);
1527 	if (!r->map)
1528 		return -ENOMEM;
1529 
1530 	r->size = res_avail;
1531 	spin_lock_init(&r->lock);
1532 
1533 	return 0;
1534 }
1535 
1536 void mana_gd_free_res_map(struct gdma_resource *r)
1537 {
1538 	bitmap_free(r->map);
1539 	r->map = NULL;
1540 	r->size = 0;
1541 }
1542 
1543 /*
1544  * Spread on CPUs with the following heuristics:
1545  *
1546  * 1. No more than one IRQ per CPU, if possible;
1547  * 2. NUMA locality is the second priority;
1548  * 3. Sibling dislocality is the last priority.
1549  *
1550  * Let's consider this topology:
1551  *
1552  * Node            0               1
1553  * Core        0       1       2       3
1554  * CPU       0   1   2   3   4   5   6   7
1555  *
1556  * The most performant IRQ distribution based on the above topology
1557  * and heuristics may look like this:
1558  *
1559  * IRQ     Nodes   Cores   CPUs
1560  * 0       1       0       0-1
1561  * 1       1       1       2-3
1562  * 2       1       0       0-1
1563  * 3       1       1       2-3
1564  * 4       2       2       4-5
1565  * 5       2       3       6-7
1566  * 6       2       2       4-5
1567  * 7       2       3       6-7
1568  *
1569  * The heuristics is implemented as follows.
1570  *
1571  * The outer for_each() loop resets the 'weight' to the actual number
1572  * of CPUs in the hop. Then inner for_each() loop decrements it by the
1573  * number of sibling groups (cores) while assigning first set of IRQs
1574  * to each group. IRQs 0 and 1 above are distributed this way.
1575  *
1576  * Now, because NUMA locality is more important, we should walk the
1577  * same set of siblings and assign 2nd set of IRQs (2 and 3), and it's
1578  * implemented by the medium while() loop. We do like this unless the
1579  * number of IRQs assigned on this hop will not become equal to number
1580  * of CPUs in the hop (weight == 0). Then we switch to the next hop and
1581  * do the same thing.
1582  */
1583 
1584 static int irq_setup(unsigned int *irqs, unsigned int len, int node,
1585 		     bool skip_first_cpu)
1586 {
1587 	const struct cpumask *next, *prev = cpu_none_mask;
1588 	cpumask_var_t cpus __free(free_cpumask_var);
1589 	int cpu, weight;
1590 
1591 	if (!alloc_cpumask_var(&cpus, GFP_KERNEL))
1592 		return -ENOMEM;
1593 
1594 	rcu_read_lock();
1595 	for_each_numa_hop_mask(next, node) {
1596 		weight = cpumask_weight_andnot(next, prev);
1597 		while (weight > 0) {
1598 			cpumask_andnot(cpus, next, prev);
1599 			for_each_cpu(cpu, cpus) {
1600 				cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
1601 				--weight;
1602 
1603 				if (unlikely(skip_first_cpu)) {
1604 					skip_first_cpu = false;
1605 					continue;
1606 				}
1607 
1608 				if (len-- == 0)
1609 					goto done;
1610 
1611 				irq_set_affinity_and_hint(*irqs++, topology_sibling_cpumask(cpu));
1612 			}
1613 		}
1614 		prev = next;
1615 	}
1616 done:
1617 	rcu_read_unlock();
1618 	return 0;
1619 }
1620 
1621 static int mana_gd_setup_dyn_irqs(struct pci_dev *pdev, int nvec)
1622 {
1623 	struct gdma_context *gc = pci_get_drvdata(pdev);
1624 	struct gdma_irq_context *gic;
1625 	bool skip_first_cpu = false;
1626 	int *irqs, irq, err, i;
1627 
1628 	irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL);
1629 	if (!irqs)
1630 		return -ENOMEM;
1631 
1632 	/*
1633 	 * While processing the next pci irq vector, we start with index 1,
1634 	 * as IRQ vector at index 0 is already processed for HWC.
1635 	 * However, the population of irqs array starts with index 0, to be
1636 	 * further used in irq_setup()
1637 	 */
1638 	for (i = 1; i <= nvec; i++) {
1639 		gic = kzalloc(sizeof(*gic), GFP_KERNEL);
1640 		if (!gic) {
1641 			err = -ENOMEM;
1642 			goto free_irq;
1643 		}
1644 		gic->handler = mana_gd_process_eq_events;
1645 		INIT_LIST_HEAD(&gic->eq_list);
1646 		spin_lock_init(&gic->lock);
1647 
1648 		snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s",
1649 			 i - 1, pci_name(pdev));
1650 
1651 		/* one pci vector is already allocated for HWC */
1652 		irqs[i - 1] = pci_irq_vector(pdev, i);
1653 		if (irqs[i - 1] < 0) {
1654 			err = irqs[i - 1];
1655 			goto free_current_gic;
1656 		}
1657 
1658 		err = request_irq(irqs[i - 1], mana_gd_intr, 0, gic->name, gic);
1659 		if (err)
1660 			goto free_current_gic;
1661 
1662 		xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL);
1663 	}
1664 
1665 	/*
1666 	 * When calling irq_setup() for dynamically added IRQs, if number of
1667 	 * CPUs is more than or equal to allocated MSI-X, we need to skip the
1668 	 * first CPU sibling group since they are already affinitized to HWC IRQ
1669 	 */
1670 	cpus_read_lock();
1671 	if (gc->num_msix_usable <= num_online_cpus())
1672 		skip_first_cpu = true;
1673 
1674 	err = irq_setup(irqs, nvec, gc->numa_node, skip_first_cpu);
1675 	if (err) {
1676 		cpus_read_unlock();
1677 		goto free_irq;
1678 	}
1679 
1680 	cpus_read_unlock();
1681 	kfree(irqs);
1682 	return 0;
1683 
1684 free_current_gic:
1685 	kfree(gic);
1686 free_irq:
1687 	for (i -= 1; i > 0; i--) {
1688 		irq = pci_irq_vector(pdev, i);
1689 		gic = xa_load(&gc->irq_contexts, i);
1690 		if (WARN_ON(!gic))
1691 			continue;
1692 
1693 		irq_update_affinity_hint(irq, NULL);
1694 		free_irq(irq, gic);
1695 		xa_erase(&gc->irq_contexts, i);
1696 		kfree(gic);
1697 	}
1698 	kfree(irqs);
1699 	return err;
1700 }
1701 
1702 static int mana_gd_setup_irqs(struct pci_dev *pdev, int nvec)
1703 {
1704 	struct gdma_context *gc = pci_get_drvdata(pdev);
1705 	struct gdma_irq_context *gic;
1706 	int *irqs, *start_irqs, irq;
1707 	unsigned int cpu;
1708 	int err, i;
1709 
1710 	irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL);
1711 	if (!irqs)
1712 		return -ENOMEM;
1713 
1714 	start_irqs = irqs;
1715 
1716 	for (i = 0; i < nvec; i++) {
1717 		gic = kzalloc(sizeof(*gic), GFP_KERNEL);
1718 		if (!gic) {
1719 			err = -ENOMEM;
1720 			goto free_irq;
1721 		}
1722 
1723 		gic->handler = mana_gd_process_eq_events;
1724 		INIT_LIST_HEAD(&gic->eq_list);
1725 		spin_lock_init(&gic->lock);
1726 
1727 		if (!i)
1728 			snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_hwc@pci:%s",
1729 				 pci_name(pdev));
1730 		else
1731 			snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s",
1732 				 i - 1, pci_name(pdev));
1733 
1734 		irqs[i] = pci_irq_vector(pdev, i);
1735 		if (irqs[i] < 0) {
1736 			err = irqs[i];
1737 			goto free_current_gic;
1738 		}
1739 
1740 		err = request_irq(irqs[i], mana_gd_intr, 0, gic->name, gic);
1741 		if (err)
1742 			goto free_current_gic;
1743 
1744 		xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL);
1745 	}
1746 
1747 	/* If number of IRQ is one extra than number of online CPUs,
1748 	 * then we need to assign IRQ0 (hwc irq) and IRQ1 to
1749 	 * same CPU.
1750 	 * Else we will use different CPUs for IRQ0 and IRQ1.
1751 	 * Also we are using cpumask_local_spread instead of
1752 	 * cpumask_first for the node, because the node can be
1753 	 * mem only.
1754 	 */
1755 	cpus_read_lock();
1756 	if (nvec > num_online_cpus()) {
1757 		cpu = cpumask_local_spread(0, gc->numa_node);
1758 		irq_set_affinity_and_hint(irqs[0], cpumask_of(cpu));
1759 		irqs++;
1760 		nvec -= 1;
1761 	}
1762 
1763 	err = irq_setup(irqs, nvec, gc->numa_node, false);
1764 	if (err) {
1765 		cpus_read_unlock();
1766 		goto free_irq;
1767 	}
1768 
1769 	cpus_read_unlock();
1770 	kfree(start_irqs);
1771 	return 0;
1772 
1773 free_current_gic:
1774 	kfree(gic);
1775 free_irq:
1776 	for (i -= 1; i >= 0; i--) {
1777 		irq = pci_irq_vector(pdev, i);
1778 		gic = xa_load(&gc->irq_contexts, i);
1779 		if (WARN_ON(!gic))
1780 			continue;
1781 
1782 		irq_update_affinity_hint(irq, NULL);
1783 		free_irq(irq, gic);
1784 		xa_erase(&gc->irq_contexts, i);
1785 		kfree(gic);
1786 	}
1787 
1788 	kfree(start_irqs);
1789 	return err;
1790 }
1791 
1792 static int mana_gd_setup_hwc_irqs(struct pci_dev *pdev)
1793 {
1794 	struct gdma_context *gc = pci_get_drvdata(pdev);
1795 	unsigned int max_irqs, min_irqs;
1796 	int nvec, err;
1797 
1798 	if (pci_msix_can_alloc_dyn(pdev)) {
1799 		max_irqs = 1;
1800 		min_irqs = 1;
1801 	} else {
1802 		/* Need 1 interrupt for HWC */
1803 		max_irqs = min(num_online_cpus(), MANA_MAX_NUM_QUEUES) + 1;
1804 		min_irqs = 2;
1805 	}
1806 
1807 	nvec = pci_alloc_irq_vectors(pdev, min_irqs, max_irqs, PCI_IRQ_MSIX);
1808 	if (nvec < 0)
1809 		return nvec;
1810 
1811 	err = mana_gd_setup_irqs(pdev, nvec);
1812 	if (err) {
1813 		pci_free_irq_vectors(pdev);
1814 		return err;
1815 	}
1816 
1817 	gc->num_msix_usable = nvec;
1818 	gc->max_num_msix = nvec;
1819 
1820 	return 0;
1821 }
1822 
1823 static int mana_gd_setup_remaining_irqs(struct pci_dev *pdev)
1824 {
1825 	struct gdma_context *gc = pci_get_drvdata(pdev);
1826 	struct msi_map irq_map;
1827 	int max_irqs, i, err;
1828 
1829 	if (!pci_msix_can_alloc_dyn(pdev))
1830 		/* remain irqs are already allocated with HWC IRQ */
1831 		return 0;
1832 
1833 	/* allocate only remaining IRQs*/
1834 	max_irqs = gc->num_msix_usable - 1;
1835 
1836 	for (i = 1; i <= max_irqs; i++) {
1837 		irq_map = pci_msix_alloc_irq_at(pdev, i, NULL);
1838 		if (!irq_map.virq) {
1839 			err = irq_map.index;
1840 			/* caller will handle cleaning up all allocated
1841 			 * irqs, after HWC is destroyed
1842 			 */
1843 			return err;
1844 		}
1845 	}
1846 
1847 	err = mana_gd_setup_dyn_irqs(pdev, max_irqs);
1848 	if (err)
1849 		return err;
1850 
1851 	gc->max_num_msix = gc->max_num_msix + max_irqs;
1852 
1853 	return 0;
1854 }
1855 
1856 static void mana_gd_remove_irqs(struct pci_dev *pdev)
1857 {
1858 	struct gdma_context *gc = pci_get_drvdata(pdev);
1859 	struct gdma_irq_context *gic;
1860 	int irq, i;
1861 
1862 	if (gc->max_num_msix < 1)
1863 		return;
1864 
1865 	for (i = 0; i < gc->max_num_msix; i++) {
1866 		irq = pci_irq_vector(pdev, i);
1867 		if (irq < 0)
1868 			continue;
1869 
1870 		gic = xa_load(&gc->irq_contexts, i);
1871 		if (WARN_ON(!gic))
1872 			continue;
1873 
1874 		/* Need to clear the hint before free_irq */
1875 		irq_update_affinity_hint(irq, NULL);
1876 		free_irq(irq, gic);
1877 		xa_erase(&gc->irq_contexts, i);
1878 		kfree(gic);
1879 	}
1880 
1881 	pci_free_irq_vectors(pdev);
1882 
1883 	gc->max_num_msix = 0;
1884 	gc->num_msix_usable = 0;
1885 }
1886 
1887 static int mana_gd_setup(struct pci_dev *pdev)
1888 {
1889 	struct gdma_context *gc = pci_get_drvdata(pdev);
1890 	int err;
1891 
1892 	mana_gd_init_registers(pdev);
1893 	mana_smc_init(&gc->shm_channel, gc->dev, gc->shm_base);
1894 
1895 	gc->service_wq = alloc_ordered_workqueue("gdma_service_wq", 0);
1896 	if (!gc->service_wq)
1897 		return -ENOMEM;
1898 
1899 	err = mana_gd_setup_hwc_irqs(pdev);
1900 	if (err) {
1901 		dev_err(gc->dev, "Failed to setup IRQs for HWC creation: %d\n",
1902 			err);
1903 		goto free_workqueue;
1904 	}
1905 
1906 	err = mana_hwc_create_channel(gc);
1907 	if (err)
1908 		goto remove_irq;
1909 
1910 	err = mana_gd_verify_vf_version(pdev);
1911 	if (err)
1912 		goto destroy_hwc;
1913 
1914 	err = mana_gd_query_max_resources(pdev);
1915 	if (err)
1916 		goto destroy_hwc;
1917 
1918 	err = mana_gd_setup_remaining_irqs(pdev);
1919 	if (err) {
1920 		dev_err(gc->dev, "Failed to setup remaining IRQs: %d", err);
1921 		goto destroy_hwc;
1922 	}
1923 
1924 	err = mana_gd_detect_devices(pdev);
1925 	if (err)
1926 		goto destroy_hwc;
1927 
1928 	dev_dbg(&pdev->dev, "mana gdma setup successful\n");
1929 	return 0;
1930 
1931 destroy_hwc:
1932 	mana_hwc_destroy_channel(gc);
1933 remove_irq:
1934 	mana_gd_remove_irqs(pdev);
1935 free_workqueue:
1936 	destroy_workqueue(gc->service_wq);
1937 	dev_err(&pdev->dev, "%s failed (error %d)\n", __func__, err);
1938 	return err;
1939 }
1940 
1941 static void mana_gd_cleanup(struct pci_dev *pdev)
1942 {
1943 	struct gdma_context *gc = pci_get_drvdata(pdev);
1944 
1945 	mana_hwc_destroy_channel(gc);
1946 
1947 	mana_gd_remove_irqs(pdev);
1948 
1949 	destroy_workqueue(gc->service_wq);
1950 	dev_dbg(&pdev->dev, "mana gdma cleanup successful\n");
1951 }
1952 
1953 static bool mana_is_pf(unsigned short dev_id)
1954 {
1955 	return dev_id == MANA_PF_DEVICE_ID;
1956 }
1957 
1958 static int mana_gd_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1959 {
1960 	struct gdma_context *gc;
1961 	void __iomem *bar0_va;
1962 	int bar = 0;
1963 	int err;
1964 
1965 	/* Each port has 2 CQs, each CQ has at most 1 EQE at a time */
1966 	BUILD_BUG_ON(2 * MAX_PORTS_IN_MANA_DEV * GDMA_EQE_SIZE > EQ_SIZE);
1967 
1968 	err = pci_enable_device(pdev);
1969 	if (err) {
1970 		dev_err(&pdev->dev, "Failed to enable pci device (err=%d)\n", err);
1971 		return -ENXIO;
1972 	}
1973 
1974 	pci_set_master(pdev);
1975 
1976 	err = pci_request_regions(pdev, "mana");
1977 	if (err)
1978 		goto disable_dev;
1979 
1980 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1981 	if (err) {
1982 		dev_err(&pdev->dev, "DMA set mask failed: %d\n", err);
1983 		goto release_region;
1984 	}
1985 	dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1986 
1987 	err = -ENOMEM;
1988 	gc = vzalloc(sizeof(*gc));
1989 	if (!gc)
1990 		goto release_region;
1991 
1992 	mutex_init(&gc->eq_test_event_mutex);
1993 	pci_set_drvdata(pdev, gc);
1994 	gc->bar0_pa = pci_resource_start(pdev, 0);
1995 
1996 	bar0_va = pci_iomap(pdev, bar, 0);
1997 	if (!bar0_va)
1998 		goto free_gc;
1999 
2000 	gc->numa_node = dev_to_node(&pdev->dev);
2001 	gc->is_pf = mana_is_pf(pdev->device);
2002 	gc->bar0_va = bar0_va;
2003 	gc->dev = &pdev->dev;
2004 	xa_init(&gc->irq_contexts);
2005 
2006 	if (gc->is_pf)
2007 		gc->mana_pci_debugfs = debugfs_create_dir("0", mana_debugfs_root);
2008 	else
2009 		gc->mana_pci_debugfs = debugfs_create_dir(pci_slot_name(pdev->slot),
2010 							  mana_debugfs_root);
2011 
2012 	err = mana_gd_setup(pdev);
2013 	if (err)
2014 		goto unmap_bar;
2015 
2016 	err = mana_probe(&gc->mana, false);
2017 	if (err)
2018 		goto cleanup_gd;
2019 
2020 	err = mana_rdma_probe(&gc->mana_ib);
2021 	if (err)
2022 		goto cleanup_mana;
2023 
2024 	/*
2025 	 * If a hardware reset event has occurred over HWC during probe,
2026 	 * rollback and perform hardware reset procedure.
2027 	 */
2028 	if (test_and_set_bit(GC_PROBE_SUCCEEDED, &gc->flags)) {
2029 		err = -EPROTO;
2030 		goto cleanup_mana_rdma;
2031 	}
2032 
2033 	return 0;
2034 
2035 cleanup_mana_rdma:
2036 	mana_rdma_remove(&gc->mana_ib);
2037 cleanup_mana:
2038 	mana_remove(&gc->mana, false);
2039 cleanup_gd:
2040 	mana_gd_cleanup(pdev);
2041 unmap_bar:
2042 	/*
2043 	 * at this point we know that the other debugfs child dir/files
2044 	 * are either not yet created or are already cleaned up.
2045 	 * The pci debugfs folder clean-up now, will only be cleaning up
2046 	 * adapter-MTU file and apc->mana_pci_debugfs folder.
2047 	 */
2048 	debugfs_remove_recursive(gc->mana_pci_debugfs);
2049 	gc->mana_pci_debugfs = NULL;
2050 	xa_destroy(&gc->irq_contexts);
2051 	pci_iounmap(pdev, bar0_va);
2052 free_gc:
2053 	pci_set_drvdata(pdev, NULL);
2054 	vfree(gc);
2055 release_region:
2056 	pci_release_regions(pdev);
2057 disable_dev:
2058 	pci_disable_device(pdev);
2059 	dev_err(&pdev->dev, "gdma probe failed: err = %d\n", err);
2060 
2061 	/*
2062 	 * Hardware could be in recovery mode and the HWC returns TIMEDOUT or
2063 	 * EPROTO from mana_gd_setup(), mana_probe() or mana_rdma_probe(), or
2064 	 * we received a hardware reset event over HWC interrupt. In this case,
2065 	 * perform the device recovery procedure after MANA_SERVICE_PERIOD
2066 	 * seconds.
2067 	 */
2068 	if (err == -ETIMEDOUT || err == -EPROTO) {
2069 		struct mana_dev_recovery *dev;
2070 		unsigned long flags;
2071 
2072 		dev_info(&pdev->dev, "Start MANA recovery mode\n");
2073 
2074 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2075 		if (!dev)
2076 			return err;
2077 
2078 		dev->pdev = pci_dev_get(pdev);
2079 		dev->type = GDMA_EQE_HWC_RESET_REQUEST;
2080 
2081 		spin_lock_irqsave(&mana_dev_recovery_work.lock, flags);
2082 		list_add_tail(&dev->list, &mana_dev_recovery_work.dev_list);
2083 		spin_unlock_irqrestore(&mana_dev_recovery_work.lock, flags);
2084 
2085 		schedule_delayed_work(&mana_dev_recovery_work.work,
2086 				      secs_to_jiffies(MANA_SERVICE_PERIOD));
2087 	}
2088 
2089 	return err;
2090 }
2091 
2092 static void mana_gd_remove(struct pci_dev *pdev)
2093 {
2094 	struct gdma_context *gc = pci_get_drvdata(pdev);
2095 
2096 	mana_rdma_remove(&gc->mana_ib);
2097 	mana_remove(&gc->mana, false);
2098 
2099 	mana_gd_cleanup(pdev);
2100 
2101 	debugfs_remove_recursive(gc->mana_pci_debugfs);
2102 
2103 	gc->mana_pci_debugfs = NULL;
2104 
2105 	xa_destroy(&gc->irq_contexts);
2106 
2107 	pci_iounmap(pdev, gc->bar0_va);
2108 
2109 	vfree(gc);
2110 
2111 	pci_release_regions(pdev);
2112 	pci_disable_device(pdev);
2113 
2114 	dev_dbg(&pdev->dev, "mana gdma remove successful\n");
2115 }
2116 
2117 /* The 'state' parameter is not used. */
2118 int mana_gd_suspend(struct pci_dev *pdev, pm_message_t state)
2119 {
2120 	struct gdma_context *gc = pci_get_drvdata(pdev);
2121 
2122 	mana_rdma_remove(&gc->mana_ib);
2123 	mana_remove(&gc->mana, true);
2124 
2125 	mana_gd_cleanup(pdev);
2126 
2127 	return 0;
2128 }
2129 
2130 /* In case the NIC hardware stops working, the suspend and resume callbacks will
2131  * fail -- if this happens, it's safer to just report an error than try to undo
2132  * what has been done.
2133  */
2134 int mana_gd_resume(struct pci_dev *pdev)
2135 {
2136 	struct gdma_context *gc = pci_get_drvdata(pdev);
2137 	int err;
2138 
2139 	err = mana_gd_setup(pdev);
2140 	if (err)
2141 		return err;
2142 
2143 	err = mana_probe(&gc->mana, true);
2144 	if (err)
2145 		return err;
2146 
2147 	err = mana_rdma_probe(&gc->mana_ib);
2148 	if (err)
2149 		return err;
2150 
2151 	return 0;
2152 }
2153 
2154 /* Quiesce the device for kexec. This is also called upon reboot/shutdown. */
2155 static void mana_gd_shutdown(struct pci_dev *pdev)
2156 {
2157 	struct gdma_context *gc = pci_get_drvdata(pdev);
2158 
2159 	dev_info(&pdev->dev, "Shutdown was called\n");
2160 
2161 	mana_rdma_remove(&gc->mana_ib);
2162 	mana_remove(&gc->mana, true);
2163 
2164 	mana_gd_cleanup(pdev);
2165 
2166 	debugfs_remove_recursive(gc->mana_pci_debugfs);
2167 
2168 	gc->mana_pci_debugfs = NULL;
2169 
2170 	pci_disable_device(pdev);
2171 }
2172 
2173 static const struct pci_device_id mana_id_table[] = {
2174 	{ PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_PF_DEVICE_ID) },
2175 	{ PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_VF_DEVICE_ID) },
2176 	{ }
2177 };
2178 
2179 static struct pci_driver mana_driver = {
2180 	.name		= "mana",
2181 	.id_table	= mana_id_table,
2182 	.probe		= mana_gd_probe,
2183 	.remove		= mana_gd_remove,
2184 	.suspend	= mana_gd_suspend,
2185 	.resume		= mana_gd_resume,
2186 	.shutdown	= mana_gd_shutdown,
2187 };
2188 
2189 static int __init mana_driver_init(void)
2190 {
2191 	int err;
2192 
2193 	INIT_LIST_HEAD(&mana_dev_recovery_work.dev_list);
2194 	spin_lock_init(&mana_dev_recovery_work.lock);
2195 	INIT_DELAYED_WORK(&mana_dev_recovery_work.work, mana_recovery_delayed_func);
2196 
2197 	mana_debugfs_root = debugfs_create_dir("mana", NULL);
2198 
2199 	err = pci_register_driver(&mana_driver);
2200 	if (err) {
2201 		debugfs_remove(mana_debugfs_root);
2202 		mana_debugfs_root = NULL;
2203 	}
2204 
2205 	return err;
2206 }
2207 
2208 static void __exit mana_driver_exit(void)
2209 {
2210 	struct mana_dev_recovery *dev;
2211 	unsigned long flags;
2212 
2213 	disable_delayed_work_sync(&mana_dev_recovery_work.work);
2214 
2215 	spin_lock_irqsave(&mana_dev_recovery_work.lock, flags);
2216 	while (!list_empty(&mana_dev_recovery_work.dev_list)) {
2217 		dev = list_first_entry(&mana_dev_recovery_work.dev_list,
2218 				       struct mana_dev_recovery, list);
2219 		list_del(&dev->list);
2220 		pci_dev_put(dev->pdev);
2221 		kfree(dev);
2222 	}
2223 	spin_unlock_irqrestore(&mana_dev_recovery_work.lock, flags);
2224 
2225 	pci_unregister_driver(&mana_driver);
2226 
2227 	debugfs_remove(mana_debugfs_root);
2228 
2229 	mana_debugfs_root = NULL;
2230 }
2231 
2232 module_init(mana_driver_init);
2233 module_exit(mana_driver_exit);
2234 
2235 MODULE_DEVICE_TABLE(pci, mana_id_table);
2236 
2237 MODULE_LICENSE("Dual BSD/GPL");
2238 MODULE_DESCRIPTION("Microsoft Azure Network Adapter driver");
2239