1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright (c) 2021, Microsoft Corporation. */
3
4 #include <linux/debugfs.h>
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include <linux/utsname.h>
8 #include <linux/version.h>
9 #include <linux/msi.h>
10 #include <linux/irqdomain.h>
11 #include <linux/export.h>
12
13 #include <net/mana/mana.h>
14 #include <net/mana/hw_channel.h>
15
16 struct dentry *mana_debugfs_root;
17
18 struct mana_dev_recovery {
19 struct list_head list;
20 struct pci_dev *pdev;
21 enum gdma_eqe_type type;
22 };
23
24 static struct mana_dev_recovery_work {
25 struct list_head dev_list;
26 struct delayed_work work;
27
28 /* Lock for dev_list above */
29 spinlock_t lock;
30 } mana_dev_recovery_work;
31
mana_gd_r32(struct gdma_context * g,u64 offset)32 static u32 mana_gd_r32(struct gdma_context *g, u64 offset)
33 {
34 return readl(g->bar0_va + offset);
35 }
36
mana_gd_r64(struct gdma_context * g,u64 offset)37 static u64 mana_gd_r64(struct gdma_context *g, u64 offset)
38 {
39 return readq(g->bar0_va + offset);
40 }
41
mana_gd_init_pf_regs(struct pci_dev * pdev)42 static void mana_gd_init_pf_regs(struct pci_dev *pdev)
43 {
44 struct gdma_context *gc = pci_get_drvdata(pdev);
45 void __iomem *sriov_base_va;
46 u64 sriov_base_off;
47
48 gc->db_page_size = mana_gd_r32(gc, GDMA_PF_REG_DB_PAGE_SIZE) & 0xFFFF;
49 gc->db_page_base = gc->bar0_va +
50 mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF);
51
52 gc->phys_db_page_base = gc->bar0_pa +
53 mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF);
54
55 sriov_base_off = mana_gd_r64(gc, GDMA_SRIOV_REG_CFG_BASE_OFF);
56
57 sriov_base_va = gc->bar0_va + sriov_base_off;
58 gc->shm_base = sriov_base_va +
59 mana_gd_r64(gc, sriov_base_off + GDMA_PF_REG_SHM_OFF);
60 }
61
mana_gd_init_vf_regs(struct pci_dev * pdev)62 static void mana_gd_init_vf_regs(struct pci_dev *pdev)
63 {
64 struct gdma_context *gc = pci_get_drvdata(pdev);
65
66 gc->db_page_size = mana_gd_r32(gc, GDMA_REG_DB_PAGE_SIZE) & 0xFFFF;
67
68 gc->db_page_base = gc->bar0_va +
69 mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET);
70
71 gc->phys_db_page_base = gc->bar0_pa +
72 mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET);
73
74 gc->shm_base = gc->bar0_va + mana_gd_r64(gc, GDMA_REG_SHM_OFFSET);
75 }
76
mana_gd_init_registers(struct pci_dev * pdev)77 static void mana_gd_init_registers(struct pci_dev *pdev)
78 {
79 struct gdma_context *gc = pci_get_drvdata(pdev);
80
81 if (gc->is_pf)
82 mana_gd_init_pf_regs(pdev);
83 else
84 mana_gd_init_vf_regs(pdev);
85 }
86
87 /* Suppress logging when we set timeout to zero */
mana_need_log(struct gdma_context * gc,int err)88 bool mana_need_log(struct gdma_context *gc, int err)
89 {
90 struct hw_channel_context *hwc;
91
92 if (err != -ETIMEDOUT)
93 return true;
94
95 if (!gc)
96 return true;
97
98 hwc = gc->hwc.driver_data;
99 if (hwc && hwc->hwc_timeout == 0)
100 return false;
101
102 return true;
103 }
104
mana_gd_query_max_resources(struct pci_dev * pdev)105 static int mana_gd_query_max_resources(struct pci_dev *pdev)
106 {
107 struct gdma_context *gc = pci_get_drvdata(pdev);
108 struct gdma_query_max_resources_resp resp = {};
109 struct gdma_general_req req = {};
110 int err;
111
112 mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_MAX_RESOURCES,
113 sizeof(req), sizeof(resp));
114
115 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
116 if (err || resp.hdr.status) {
117 dev_err(gc->dev, "Failed to query resource info: %d, 0x%x\n",
118 err, resp.hdr.status);
119 return err ? err : -EPROTO;
120 }
121
122 if (!pci_msix_can_alloc_dyn(pdev)) {
123 if (gc->num_msix_usable > resp.max_msix)
124 gc->num_msix_usable = resp.max_msix;
125 } else {
126 /* If dynamic allocation is enabled we have already allocated
127 * hwc msi
128 */
129 gc->num_msix_usable = min(resp.max_msix, num_online_cpus() + 1);
130 }
131
132 if (gc->num_msix_usable <= 1)
133 return -ENOSPC;
134
135 gc->max_num_queues = num_online_cpus();
136 if (gc->max_num_queues > MANA_MAX_NUM_QUEUES)
137 gc->max_num_queues = MANA_MAX_NUM_QUEUES;
138
139 if (gc->max_num_queues > resp.max_eq)
140 gc->max_num_queues = resp.max_eq;
141
142 if (gc->max_num_queues > resp.max_cq)
143 gc->max_num_queues = resp.max_cq;
144
145 if (gc->max_num_queues > resp.max_sq)
146 gc->max_num_queues = resp.max_sq;
147
148 if (gc->max_num_queues > resp.max_rq)
149 gc->max_num_queues = resp.max_rq;
150
151 /* The Hardware Channel (HWC) used 1 MSI-X */
152 if (gc->max_num_queues > gc->num_msix_usable - 1)
153 gc->max_num_queues = gc->num_msix_usable - 1;
154
155 return 0;
156 }
157
mana_gd_query_hwc_timeout(struct pci_dev * pdev,u32 * timeout_val)158 static int mana_gd_query_hwc_timeout(struct pci_dev *pdev, u32 *timeout_val)
159 {
160 struct gdma_context *gc = pci_get_drvdata(pdev);
161 struct gdma_query_hwc_timeout_resp resp = {};
162 struct gdma_query_hwc_timeout_req req = {};
163 int err;
164
165 mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_HWC_TIMEOUT,
166 sizeof(req), sizeof(resp));
167 req.timeout_ms = *timeout_val;
168 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
169 if (err || resp.hdr.status)
170 return err ? err : -EPROTO;
171
172 *timeout_val = resp.timeout_ms;
173
174 return 0;
175 }
176
mana_gd_detect_devices(struct pci_dev * pdev)177 static int mana_gd_detect_devices(struct pci_dev *pdev)
178 {
179 struct gdma_context *gc = pci_get_drvdata(pdev);
180 struct gdma_list_devices_resp resp = {};
181 struct gdma_general_req req = {};
182 struct gdma_dev_id dev;
183 int found_dev = 0;
184 u16 dev_type;
185 int err;
186 u32 i;
187
188 mana_gd_init_req_hdr(&req.hdr, GDMA_LIST_DEVICES, sizeof(req),
189 sizeof(resp));
190
191 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
192 if (err || resp.hdr.status) {
193 dev_err(gc->dev, "Failed to detect devices: %d, 0x%x\n", err,
194 resp.hdr.status);
195 return err ? err : -EPROTO;
196 }
197
198 for (i = 0; i < GDMA_DEV_LIST_SIZE &&
199 found_dev < resp.num_of_devs; i++) {
200 dev = resp.devs[i];
201 dev_type = dev.type;
202
203 /* Skip empty devices */
204 if (dev.as_uint32 == 0)
205 continue;
206
207 found_dev++;
208
209 /* HWC is already detected in mana_hwc_create_channel(). */
210 if (dev_type == GDMA_DEVICE_HWC)
211 continue;
212
213 if (dev_type == GDMA_DEVICE_MANA) {
214 gc->mana.gdma_context = gc;
215 gc->mana.dev_id = dev;
216 } else if (dev_type == GDMA_DEVICE_MANA_IB) {
217 gc->mana_ib.dev_id = dev;
218 gc->mana_ib.gdma_context = gc;
219 }
220 }
221
222 return gc->mana.dev_id.type == 0 ? -ENODEV : 0;
223 }
224
mana_gd_send_request(struct gdma_context * gc,u32 req_len,const void * req,u32 resp_len,void * resp)225 int mana_gd_send_request(struct gdma_context *gc, u32 req_len, const void *req,
226 u32 resp_len, void *resp)
227 {
228 struct hw_channel_context *hwc = gc->hwc.driver_data;
229
230 return mana_hwc_send_request(hwc, req_len, req, resp_len, resp);
231 }
232 EXPORT_SYMBOL_NS(mana_gd_send_request, "NET_MANA");
233
mana_gd_alloc_memory(struct gdma_context * gc,unsigned int length,struct gdma_mem_info * gmi)234 int mana_gd_alloc_memory(struct gdma_context *gc, unsigned int length,
235 struct gdma_mem_info *gmi)
236 {
237 dma_addr_t dma_handle;
238 void *buf;
239
240 if (length < MANA_PAGE_SIZE || !is_power_of_2(length))
241 return -EINVAL;
242
243 gmi->dev = gc->dev;
244 buf = dma_alloc_coherent(gmi->dev, length, &dma_handle, GFP_KERNEL);
245 if (!buf)
246 return -ENOMEM;
247
248 gmi->dma_handle = dma_handle;
249 gmi->virt_addr = buf;
250 gmi->length = length;
251
252 return 0;
253 }
254
mana_gd_free_memory(struct gdma_mem_info * gmi)255 void mana_gd_free_memory(struct gdma_mem_info *gmi)
256 {
257 dma_free_coherent(gmi->dev, gmi->length, gmi->virt_addr,
258 gmi->dma_handle);
259 }
260
mana_gd_create_hw_eq(struct gdma_context * gc,struct gdma_queue * queue)261 static int mana_gd_create_hw_eq(struct gdma_context *gc,
262 struct gdma_queue *queue)
263 {
264 struct gdma_create_queue_resp resp = {};
265 struct gdma_create_queue_req req = {};
266 int err;
267
268 if (queue->type != GDMA_EQ)
269 return -EINVAL;
270
271 mana_gd_init_req_hdr(&req.hdr, GDMA_CREATE_QUEUE,
272 sizeof(req), sizeof(resp));
273
274 req.hdr.dev_id = queue->gdma_dev->dev_id;
275 req.type = queue->type;
276 req.pdid = queue->gdma_dev->pdid;
277 req.doolbell_id = queue->gdma_dev->doorbell;
278 req.gdma_region = queue->mem_info.dma_region_handle;
279 req.queue_size = queue->queue_size;
280 req.log2_throttle_limit = queue->eq.log2_throttle_limit;
281 req.eq_pci_msix_index = queue->eq.msix_index;
282
283 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
284 if (err || resp.hdr.status) {
285 dev_err(gc->dev, "Failed to create queue: %d, 0x%x\n", err,
286 resp.hdr.status);
287 return err ? err : -EPROTO;
288 }
289
290 queue->id = resp.queue_index;
291 queue->eq.disable_needed = true;
292 queue->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION;
293 return 0;
294 }
295
mana_gd_disable_queue(struct gdma_queue * queue)296 static int mana_gd_disable_queue(struct gdma_queue *queue)
297 {
298 struct gdma_context *gc = queue->gdma_dev->gdma_context;
299 struct gdma_disable_queue_req req = {};
300 struct gdma_general_resp resp = {};
301 int err;
302
303 WARN_ON(queue->type != GDMA_EQ);
304
305 mana_gd_init_req_hdr(&req.hdr, GDMA_DISABLE_QUEUE,
306 sizeof(req), sizeof(resp));
307
308 req.hdr.dev_id = queue->gdma_dev->dev_id;
309 req.type = queue->type;
310 req.queue_index = queue->id;
311 req.alloc_res_id_on_creation = 1;
312
313 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
314 if (err || resp.hdr.status) {
315 if (mana_need_log(gc, err))
316 dev_err(gc->dev, "Failed to disable queue: %d, 0x%x\n", err,
317 resp.hdr.status);
318 return err ? err : -EPROTO;
319 }
320
321 return 0;
322 }
323
324 #define DOORBELL_OFFSET_SQ 0x0
325 #define DOORBELL_OFFSET_RQ 0x400
326 #define DOORBELL_OFFSET_CQ 0x800
327 #define DOORBELL_OFFSET_EQ 0xFF8
328
mana_gd_ring_doorbell(struct gdma_context * gc,u32 db_index,enum gdma_queue_type q_type,u32 qid,u32 tail_ptr,u8 num_req)329 static void mana_gd_ring_doorbell(struct gdma_context *gc, u32 db_index,
330 enum gdma_queue_type q_type, u32 qid,
331 u32 tail_ptr, u8 num_req)
332 {
333 void __iomem *addr = gc->db_page_base + gc->db_page_size * db_index;
334 union gdma_doorbell_entry e = {};
335
336 switch (q_type) {
337 case GDMA_EQ:
338 e.eq.id = qid;
339 e.eq.tail_ptr = tail_ptr;
340 e.eq.arm = num_req;
341
342 addr += DOORBELL_OFFSET_EQ;
343 break;
344
345 case GDMA_CQ:
346 e.cq.id = qid;
347 e.cq.tail_ptr = tail_ptr;
348 e.cq.arm = num_req;
349
350 addr += DOORBELL_OFFSET_CQ;
351 break;
352
353 case GDMA_RQ:
354 e.rq.id = qid;
355 e.rq.tail_ptr = tail_ptr;
356 e.rq.wqe_cnt = num_req;
357
358 addr += DOORBELL_OFFSET_RQ;
359 break;
360
361 case GDMA_SQ:
362 e.sq.id = qid;
363 e.sq.tail_ptr = tail_ptr;
364
365 addr += DOORBELL_OFFSET_SQ;
366 break;
367
368 default:
369 WARN_ON(1);
370 return;
371 }
372
373 /* Ensure all writes are done before ring doorbell */
374 wmb();
375
376 writeq(e.as_uint64, addr);
377 }
378
mana_gd_wq_ring_doorbell(struct gdma_context * gc,struct gdma_queue * queue)379 void mana_gd_wq_ring_doorbell(struct gdma_context *gc, struct gdma_queue *queue)
380 {
381 /* Hardware Spec specifies that software client should set 0 for
382 * wqe_cnt for Receive Queues. This value is not used in Send Queues.
383 */
384 mana_gd_ring_doorbell(gc, queue->gdma_dev->doorbell, queue->type,
385 queue->id, queue->head * GDMA_WQE_BU_SIZE, 0);
386 }
387 EXPORT_SYMBOL_NS(mana_gd_wq_ring_doorbell, "NET_MANA");
388
mana_gd_ring_cq(struct gdma_queue * cq,u8 arm_bit)389 void mana_gd_ring_cq(struct gdma_queue *cq, u8 arm_bit)
390 {
391 struct gdma_context *gc = cq->gdma_dev->gdma_context;
392
393 u32 num_cqe = cq->queue_size / GDMA_CQE_SIZE;
394
395 u32 head = cq->head % (num_cqe << GDMA_CQE_OWNER_BITS);
396
397 mana_gd_ring_doorbell(gc, cq->gdma_dev->doorbell, cq->type, cq->id,
398 head, arm_bit);
399 }
400 EXPORT_SYMBOL_NS(mana_gd_ring_cq, "NET_MANA");
401
402 #define MANA_SERVICE_PERIOD 10
403
mana_serv_rescan(struct pci_dev * pdev)404 static void mana_serv_rescan(struct pci_dev *pdev)
405 {
406 struct pci_bus *parent;
407
408 pci_lock_rescan_remove();
409
410 parent = pdev->bus;
411 if (!parent) {
412 dev_err(&pdev->dev, "MANA service: no parent bus\n");
413 goto out;
414 }
415
416 pci_stop_and_remove_bus_device(pdev);
417 pci_rescan_bus(parent);
418
419 out:
420 pci_unlock_rescan_remove();
421 }
422
mana_serv_fpga(struct pci_dev * pdev)423 static void mana_serv_fpga(struct pci_dev *pdev)
424 {
425 struct pci_bus *bus, *parent;
426
427 pci_lock_rescan_remove();
428
429 bus = pdev->bus;
430 if (!bus) {
431 dev_err(&pdev->dev, "MANA service: no bus\n");
432 goto out;
433 }
434
435 parent = bus->parent;
436 if (!parent) {
437 dev_err(&pdev->dev, "MANA service: no parent bus\n");
438 goto out;
439 }
440
441 pci_stop_and_remove_bus_device(bus->self);
442
443 msleep(MANA_SERVICE_PERIOD * 1000);
444
445 pci_rescan_bus(parent);
446
447 out:
448 pci_unlock_rescan_remove();
449 }
450
mana_serv_reset(struct pci_dev * pdev)451 static void mana_serv_reset(struct pci_dev *pdev)
452 {
453 struct gdma_context *gc = pci_get_drvdata(pdev);
454 struct hw_channel_context *hwc;
455 int ret;
456
457 if (!gc) {
458 /* Perform PCI rescan on device if GC is not set up */
459 dev_err(&pdev->dev, "MANA service: GC not setup, rescanning\n");
460 mana_serv_rescan(pdev);
461 return;
462 }
463
464 hwc = gc->hwc.driver_data;
465 if (!hwc) {
466 dev_err(&pdev->dev, "MANA service: no HWC\n");
467 goto out;
468 }
469
470 /* HWC is not responding in this case, so don't wait */
471 hwc->hwc_timeout = 0;
472
473 dev_info(&pdev->dev, "MANA reset cycle start\n");
474
475 mana_gd_suspend(pdev, PMSG_SUSPEND);
476
477 msleep(MANA_SERVICE_PERIOD * 1000);
478
479 ret = mana_gd_resume(pdev);
480 if (ret == -ETIMEDOUT || ret == -EPROTO) {
481 /* Perform PCI rescan on device if we failed on HWC */
482 dev_err(&pdev->dev, "MANA service: resume failed, rescanning\n");
483 mana_serv_rescan(pdev);
484 return;
485 }
486
487 if (ret)
488 dev_info(&pdev->dev, "MANA reset cycle failed err %d\n", ret);
489 else
490 dev_info(&pdev->dev, "MANA reset cycle completed\n");
491
492 out:
493 gc->in_service = false;
494 }
495
496 struct mana_serv_work {
497 struct work_struct serv_work;
498 struct pci_dev *pdev;
499 enum gdma_eqe_type type;
500 };
501
mana_do_service(enum gdma_eqe_type type,struct pci_dev * pdev)502 static void mana_do_service(enum gdma_eqe_type type, struct pci_dev *pdev)
503 {
504 switch (type) {
505 case GDMA_EQE_HWC_FPGA_RECONFIG:
506 mana_serv_fpga(pdev);
507 break;
508
509 case GDMA_EQE_HWC_RESET_REQUEST:
510 mana_serv_reset(pdev);
511 break;
512
513 default:
514 dev_err(&pdev->dev, "MANA service: unknown type %d\n", type);
515 break;
516 }
517 }
518
mana_recovery_delayed_func(struct work_struct * w)519 static void mana_recovery_delayed_func(struct work_struct *w)
520 {
521 struct mana_dev_recovery_work *work;
522 struct mana_dev_recovery *dev;
523 unsigned long flags;
524
525 work = container_of(w, struct mana_dev_recovery_work, work.work);
526
527 spin_lock_irqsave(&work->lock, flags);
528
529 while (!list_empty(&work->dev_list)) {
530 dev = list_first_entry(&work->dev_list,
531 struct mana_dev_recovery, list);
532 list_del(&dev->list);
533 spin_unlock_irqrestore(&work->lock, flags);
534
535 mana_do_service(dev->type, dev->pdev);
536 pci_dev_put(dev->pdev);
537 kfree(dev);
538
539 spin_lock_irqsave(&work->lock, flags);
540 }
541
542 spin_unlock_irqrestore(&work->lock, flags);
543 }
544
mana_serv_func(struct work_struct * w)545 static void mana_serv_func(struct work_struct *w)
546 {
547 struct mana_serv_work *mns_wk;
548 struct pci_dev *pdev;
549
550 mns_wk = container_of(w, struct mana_serv_work, serv_work);
551 pdev = mns_wk->pdev;
552
553 if (pdev)
554 mana_do_service(mns_wk->type, pdev);
555
556 pci_dev_put(pdev);
557 kfree(mns_wk);
558 module_put(THIS_MODULE);
559 }
560
mana_gd_process_eqe(struct gdma_queue * eq)561 static void mana_gd_process_eqe(struct gdma_queue *eq)
562 {
563 u32 head = eq->head % (eq->queue_size / GDMA_EQE_SIZE);
564 struct gdma_context *gc = eq->gdma_dev->gdma_context;
565 struct gdma_eqe *eq_eqe_ptr = eq->queue_mem_ptr;
566 struct mana_serv_work *mns_wk;
567 union gdma_eqe_info eqe_info;
568 enum gdma_eqe_type type;
569 struct gdma_event event;
570 struct gdma_queue *cq;
571 struct gdma_eqe *eqe;
572 u32 cq_id;
573
574 eqe = &eq_eqe_ptr[head];
575 eqe_info.as_uint32 = eqe->eqe_info;
576 type = eqe_info.type;
577
578 switch (type) {
579 case GDMA_EQE_COMPLETION:
580 cq_id = eqe->details[0] & 0xFFFFFF;
581 if (WARN_ON_ONCE(cq_id >= gc->max_num_cqs))
582 break;
583
584 cq = gc->cq_table[cq_id];
585 if (WARN_ON_ONCE(!cq || cq->type != GDMA_CQ || cq->id != cq_id))
586 break;
587
588 if (cq->cq.callback)
589 cq->cq.callback(cq->cq.context, cq);
590
591 break;
592
593 case GDMA_EQE_TEST_EVENT:
594 gc->test_event_eq_id = eq->id;
595 complete(&gc->eq_test_event);
596 break;
597
598 case GDMA_EQE_HWC_INIT_EQ_ID_DB:
599 case GDMA_EQE_HWC_INIT_DATA:
600 case GDMA_EQE_HWC_INIT_DONE:
601 case GDMA_EQE_HWC_SOC_SERVICE:
602 case GDMA_EQE_RNIC_QP_FATAL:
603 case GDMA_EQE_HWC_SOC_RECONFIG_DATA:
604 if (!eq->eq.callback)
605 break;
606
607 event.type = type;
608 memcpy(&event.details, &eqe->details, GDMA_EVENT_DATA_SIZE);
609 eq->eq.callback(eq->eq.context, eq, &event);
610 break;
611
612 case GDMA_EQE_HWC_FPGA_RECONFIG:
613 case GDMA_EQE_HWC_RESET_REQUEST:
614 dev_info(gc->dev, "Recv MANA service type:%d\n", type);
615
616 if (!test_and_set_bit(GC_PROBE_SUCCEEDED, &gc->flags)) {
617 /*
618 * Device is in probe and we received a hardware reset
619 * event, the probe function will detect that the flag
620 * has changed and perform service procedure.
621 */
622 dev_info(gc->dev,
623 "Service is to be processed in probe\n");
624 break;
625 }
626
627 if (gc->in_service) {
628 dev_info(gc->dev, "Already in service\n");
629 break;
630 }
631
632 if (!try_module_get(THIS_MODULE)) {
633 dev_info(gc->dev, "Module is unloading\n");
634 break;
635 }
636
637 mns_wk = kzalloc(sizeof(*mns_wk), GFP_ATOMIC);
638 if (!mns_wk) {
639 module_put(THIS_MODULE);
640 break;
641 }
642
643 dev_info(gc->dev, "Start MANA service type:%d\n", type);
644 gc->in_service = true;
645 mns_wk->pdev = to_pci_dev(gc->dev);
646 mns_wk->type = type;
647 pci_dev_get(mns_wk->pdev);
648 INIT_WORK(&mns_wk->serv_work, mana_serv_func);
649 schedule_work(&mns_wk->serv_work);
650 break;
651
652 default:
653 break;
654 }
655 }
656
mana_gd_process_eq_events(void * arg)657 static void mana_gd_process_eq_events(void *arg)
658 {
659 u32 owner_bits, new_bits, old_bits;
660 union gdma_eqe_info eqe_info;
661 struct gdma_eqe *eq_eqe_ptr;
662 struct gdma_queue *eq = arg;
663 struct gdma_context *gc;
664 struct gdma_eqe *eqe;
665 u32 head, num_eqe;
666 int i;
667
668 gc = eq->gdma_dev->gdma_context;
669
670 num_eqe = eq->queue_size / GDMA_EQE_SIZE;
671 eq_eqe_ptr = eq->queue_mem_ptr;
672
673 /* Process up to 5 EQEs at a time, and update the HW head. */
674 for (i = 0; i < 5; i++) {
675 eqe = &eq_eqe_ptr[eq->head % num_eqe];
676 eqe_info.as_uint32 = eqe->eqe_info;
677 owner_bits = eqe_info.owner_bits;
678
679 old_bits = (eq->head / num_eqe - 1) & GDMA_EQE_OWNER_MASK;
680 /* No more entries */
681 if (owner_bits == old_bits) {
682 /* return here without ringing the doorbell */
683 if (i == 0)
684 return;
685 break;
686 }
687
688 new_bits = (eq->head / num_eqe) & GDMA_EQE_OWNER_MASK;
689 if (owner_bits != new_bits) {
690 dev_err(gc->dev, "EQ %d: overflow detected\n", eq->id);
691 break;
692 }
693
694 /* Per GDMA spec, rmb is necessary after checking owner_bits, before
695 * reading eqe.
696 */
697 rmb();
698
699 mana_gd_process_eqe(eq);
700
701 eq->head++;
702 }
703
704 head = eq->head % (num_eqe << GDMA_EQE_OWNER_BITS);
705
706 mana_gd_ring_doorbell(gc, eq->gdma_dev->doorbell, eq->type, eq->id,
707 head, SET_ARM_BIT);
708 }
709
mana_gd_register_irq(struct gdma_queue * queue,const struct gdma_queue_spec * spec)710 static int mana_gd_register_irq(struct gdma_queue *queue,
711 const struct gdma_queue_spec *spec)
712 {
713 struct gdma_dev *gd = queue->gdma_dev;
714 struct gdma_irq_context *gic;
715 struct gdma_context *gc;
716 unsigned int msi_index;
717 unsigned long flags;
718 struct device *dev;
719 int err = 0;
720
721 gc = gd->gdma_context;
722 dev = gc->dev;
723 msi_index = spec->eq.msix_index;
724
725 if (msi_index >= gc->num_msix_usable) {
726 err = -ENOSPC;
727 dev_err(dev, "Register IRQ err:%d, msi:%u nMSI:%u",
728 err, msi_index, gc->num_msix_usable);
729
730 return err;
731 }
732
733 queue->eq.msix_index = msi_index;
734 gic = xa_load(&gc->irq_contexts, msi_index);
735 if (WARN_ON(!gic))
736 return -EINVAL;
737
738 spin_lock_irqsave(&gic->lock, flags);
739 list_add_rcu(&queue->entry, &gic->eq_list);
740 spin_unlock_irqrestore(&gic->lock, flags);
741
742 return 0;
743 }
744
mana_gd_deregister_irq(struct gdma_queue * queue)745 static void mana_gd_deregister_irq(struct gdma_queue *queue)
746 {
747 struct gdma_dev *gd = queue->gdma_dev;
748 struct gdma_irq_context *gic;
749 struct gdma_context *gc;
750 unsigned int msix_index;
751 unsigned long flags;
752 struct gdma_queue *eq;
753
754 gc = gd->gdma_context;
755
756 /* At most num_online_cpus() + 1 interrupts are used. */
757 msix_index = queue->eq.msix_index;
758 if (WARN_ON(msix_index >= gc->num_msix_usable))
759 return;
760
761 gic = xa_load(&gc->irq_contexts, msix_index);
762 if (WARN_ON(!gic))
763 return;
764
765 spin_lock_irqsave(&gic->lock, flags);
766 list_for_each_entry_rcu(eq, &gic->eq_list, entry) {
767 if (queue == eq) {
768 list_del_rcu(&eq->entry);
769 break;
770 }
771 }
772 spin_unlock_irqrestore(&gic->lock, flags);
773
774 queue->eq.msix_index = INVALID_PCI_MSIX_INDEX;
775 synchronize_rcu();
776 }
777
mana_gd_test_eq(struct gdma_context * gc,struct gdma_queue * eq)778 int mana_gd_test_eq(struct gdma_context *gc, struct gdma_queue *eq)
779 {
780 struct gdma_generate_test_event_req req = {};
781 struct gdma_general_resp resp = {};
782 struct device *dev = gc->dev;
783 int err;
784
785 mutex_lock(&gc->eq_test_event_mutex);
786
787 init_completion(&gc->eq_test_event);
788 gc->test_event_eq_id = INVALID_QUEUE_ID;
789
790 mana_gd_init_req_hdr(&req.hdr, GDMA_GENERATE_TEST_EQE,
791 sizeof(req), sizeof(resp));
792
793 req.hdr.dev_id = eq->gdma_dev->dev_id;
794 req.queue_index = eq->id;
795
796 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
797 if (err) {
798 if (mana_need_log(gc, err))
799 dev_err(dev, "test_eq failed: %d\n", err);
800 goto out;
801 }
802
803 err = -EPROTO;
804
805 if (resp.hdr.status) {
806 dev_err(dev, "test_eq failed: 0x%x\n", resp.hdr.status);
807 goto out;
808 }
809
810 if (!wait_for_completion_timeout(&gc->eq_test_event, 30 * HZ)) {
811 dev_err(dev, "test_eq timed out on queue %d\n", eq->id);
812 goto out;
813 }
814
815 if (eq->id != gc->test_event_eq_id) {
816 dev_err(dev, "test_eq got an event on wrong queue %d (%d)\n",
817 gc->test_event_eq_id, eq->id);
818 goto out;
819 }
820
821 err = 0;
822 out:
823 mutex_unlock(&gc->eq_test_event_mutex);
824 return err;
825 }
826
mana_gd_destroy_eq(struct gdma_context * gc,bool flush_evenets,struct gdma_queue * queue)827 static void mana_gd_destroy_eq(struct gdma_context *gc, bool flush_evenets,
828 struct gdma_queue *queue)
829 {
830 int err;
831
832 if (flush_evenets) {
833 err = mana_gd_test_eq(gc, queue);
834 if (err && mana_need_log(gc, err))
835 dev_warn(gc->dev, "Failed to flush EQ: %d\n", err);
836 }
837
838 mana_gd_deregister_irq(queue);
839
840 if (queue->eq.disable_needed)
841 mana_gd_disable_queue(queue);
842 }
843
mana_gd_create_eq(struct gdma_dev * gd,const struct gdma_queue_spec * spec,bool create_hwq,struct gdma_queue * queue)844 static int mana_gd_create_eq(struct gdma_dev *gd,
845 const struct gdma_queue_spec *spec,
846 bool create_hwq, struct gdma_queue *queue)
847 {
848 struct gdma_context *gc = gd->gdma_context;
849 struct device *dev = gc->dev;
850 u32 log2_num_entries;
851 int err;
852
853 queue->eq.msix_index = INVALID_PCI_MSIX_INDEX;
854 queue->id = INVALID_QUEUE_ID;
855
856 log2_num_entries = ilog2(queue->queue_size / GDMA_EQE_SIZE);
857
858 if (spec->eq.log2_throttle_limit > log2_num_entries) {
859 dev_err(dev, "EQ throttling limit (%lu) > maximum EQE (%u)\n",
860 spec->eq.log2_throttle_limit, log2_num_entries);
861 return -EINVAL;
862 }
863
864 err = mana_gd_register_irq(queue, spec);
865 if (err) {
866 dev_err(dev, "Failed to register irq: %d\n", err);
867 return err;
868 }
869
870 queue->eq.callback = spec->eq.callback;
871 queue->eq.context = spec->eq.context;
872 queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries);
873 queue->eq.log2_throttle_limit = spec->eq.log2_throttle_limit ?: 1;
874
875 if (create_hwq) {
876 err = mana_gd_create_hw_eq(gc, queue);
877 if (err)
878 goto out;
879
880 err = mana_gd_test_eq(gc, queue);
881 if (err)
882 goto out;
883 }
884
885 return 0;
886 out:
887 dev_err(dev, "Failed to create EQ: %d\n", err);
888 mana_gd_destroy_eq(gc, false, queue);
889 return err;
890 }
891
mana_gd_create_cq(const struct gdma_queue_spec * spec,struct gdma_queue * queue)892 static void mana_gd_create_cq(const struct gdma_queue_spec *spec,
893 struct gdma_queue *queue)
894 {
895 u32 log2_num_entries = ilog2(spec->queue_size / GDMA_CQE_SIZE);
896
897 queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries);
898 queue->cq.parent = spec->cq.parent_eq;
899 queue->cq.context = spec->cq.context;
900 queue->cq.callback = spec->cq.callback;
901 }
902
mana_gd_destroy_cq(struct gdma_context * gc,struct gdma_queue * queue)903 static void mana_gd_destroy_cq(struct gdma_context *gc,
904 struct gdma_queue *queue)
905 {
906 u32 id = queue->id;
907
908 if (id >= gc->max_num_cqs)
909 return;
910
911 if (!gc->cq_table[id])
912 return;
913
914 gc->cq_table[id] = NULL;
915 }
916
mana_gd_create_hwc_queue(struct gdma_dev * gd,const struct gdma_queue_spec * spec,struct gdma_queue ** queue_ptr)917 int mana_gd_create_hwc_queue(struct gdma_dev *gd,
918 const struct gdma_queue_spec *spec,
919 struct gdma_queue **queue_ptr)
920 {
921 struct gdma_context *gc = gd->gdma_context;
922 struct gdma_mem_info *gmi;
923 struct gdma_queue *queue;
924 int err;
925
926 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
927 if (!queue)
928 return -ENOMEM;
929
930 gmi = &queue->mem_info;
931 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
932 if (err) {
933 dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n",
934 spec->type, spec->queue_size, err);
935 goto free_q;
936 }
937
938 queue->head = 0;
939 queue->tail = 0;
940 queue->queue_mem_ptr = gmi->virt_addr;
941 queue->queue_size = spec->queue_size;
942 queue->monitor_avl_buf = spec->monitor_avl_buf;
943 queue->type = spec->type;
944 queue->gdma_dev = gd;
945
946 if (spec->type == GDMA_EQ)
947 err = mana_gd_create_eq(gd, spec, false, queue);
948 else if (spec->type == GDMA_CQ)
949 mana_gd_create_cq(spec, queue);
950
951 if (err)
952 goto out;
953
954 *queue_ptr = queue;
955 return 0;
956 out:
957 dev_err(gc->dev, "Failed to create queue type %d of size %u, err: %d\n",
958 spec->type, spec->queue_size, err);
959 mana_gd_free_memory(gmi);
960 free_q:
961 kfree(queue);
962 return err;
963 }
964
mana_gd_destroy_dma_region(struct gdma_context * gc,u64 dma_region_handle)965 int mana_gd_destroy_dma_region(struct gdma_context *gc, u64 dma_region_handle)
966 {
967 struct gdma_destroy_dma_region_req req = {};
968 struct gdma_general_resp resp = {};
969 int err;
970
971 if (dma_region_handle == GDMA_INVALID_DMA_REGION)
972 return 0;
973
974 mana_gd_init_req_hdr(&req.hdr, GDMA_DESTROY_DMA_REGION, sizeof(req),
975 sizeof(resp));
976 req.dma_region_handle = dma_region_handle;
977
978 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
979 if (err || resp.hdr.status) {
980 if (mana_need_log(gc, err))
981 dev_err(gc->dev, "Failed to destroy DMA region: %d, 0x%x\n",
982 err, resp.hdr.status);
983 return -EPROTO;
984 }
985
986 return 0;
987 }
988 EXPORT_SYMBOL_NS(mana_gd_destroy_dma_region, "NET_MANA");
989
mana_gd_create_dma_region(struct gdma_dev * gd,struct gdma_mem_info * gmi)990 static int mana_gd_create_dma_region(struct gdma_dev *gd,
991 struct gdma_mem_info *gmi)
992 {
993 unsigned int num_page = gmi->length / MANA_PAGE_SIZE;
994 struct gdma_create_dma_region_req *req = NULL;
995 struct gdma_create_dma_region_resp resp = {};
996 struct gdma_context *gc = gd->gdma_context;
997 struct hw_channel_context *hwc;
998 u32 length = gmi->length;
999 size_t req_msg_size;
1000 int err;
1001 int i;
1002
1003 if (length < MANA_PAGE_SIZE || !is_power_of_2(length))
1004 return -EINVAL;
1005
1006 if (!MANA_PAGE_ALIGNED(gmi->virt_addr))
1007 return -EINVAL;
1008
1009 hwc = gc->hwc.driver_data;
1010 req_msg_size = struct_size(req, page_addr_list, num_page);
1011 if (req_msg_size > hwc->max_req_msg_size)
1012 return -EINVAL;
1013
1014 req = kzalloc(req_msg_size, GFP_KERNEL);
1015 if (!req)
1016 return -ENOMEM;
1017
1018 mana_gd_init_req_hdr(&req->hdr, GDMA_CREATE_DMA_REGION,
1019 req_msg_size, sizeof(resp));
1020 req->length = length;
1021 req->offset_in_page = 0;
1022 req->gdma_page_type = GDMA_PAGE_TYPE_4K;
1023 req->page_count = num_page;
1024 req->page_addr_list_len = num_page;
1025
1026 for (i = 0; i < num_page; i++)
1027 req->page_addr_list[i] = gmi->dma_handle + i * MANA_PAGE_SIZE;
1028
1029 err = mana_gd_send_request(gc, req_msg_size, req, sizeof(resp), &resp);
1030 if (err)
1031 goto out;
1032
1033 if (resp.hdr.status ||
1034 resp.dma_region_handle == GDMA_INVALID_DMA_REGION) {
1035 dev_err(gc->dev, "Failed to create DMA region: 0x%x\n",
1036 resp.hdr.status);
1037 err = -EPROTO;
1038 goto out;
1039 }
1040
1041 gmi->dma_region_handle = resp.dma_region_handle;
1042 dev_dbg(gc->dev, "Created DMA region handle 0x%llx\n",
1043 gmi->dma_region_handle);
1044 out:
1045 if (err)
1046 dev_dbg(gc->dev,
1047 "Failed to create DMA region of length: %u, page_type: %d, status: 0x%x, err: %d\n",
1048 length, req->gdma_page_type, resp.hdr.status, err);
1049 kfree(req);
1050 return err;
1051 }
1052
mana_gd_create_mana_eq(struct gdma_dev * gd,const struct gdma_queue_spec * spec,struct gdma_queue ** queue_ptr)1053 int mana_gd_create_mana_eq(struct gdma_dev *gd,
1054 const struct gdma_queue_spec *spec,
1055 struct gdma_queue **queue_ptr)
1056 {
1057 struct gdma_context *gc = gd->gdma_context;
1058 struct gdma_mem_info *gmi;
1059 struct gdma_queue *queue;
1060 int err;
1061
1062 if (spec->type != GDMA_EQ)
1063 return -EINVAL;
1064
1065 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1066 if (!queue)
1067 return -ENOMEM;
1068
1069 gmi = &queue->mem_info;
1070 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
1071 if (err) {
1072 dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n",
1073 spec->type, spec->queue_size, err);
1074 goto free_q;
1075 }
1076
1077 err = mana_gd_create_dma_region(gd, gmi);
1078 if (err)
1079 goto out;
1080
1081 queue->head = 0;
1082 queue->tail = 0;
1083 queue->queue_mem_ptr = gmi->virt_addr;
1084 queue->queue_size = spec->queue_size;
1085 queue->monitor_avl_buf = spec->monitor_avl_buf;
1086 queue->type = spec->type;
1087 queue->gdma_dev = gd;
1088
1089 err = mana_gd_create_eq(gd, spec, true, queue);
1090 if (err)
1091 goto out;
1092
1093 *queue_ptr = queue;
1094 return 0;
1095 out:
1096 dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n",
1097 spec->type, spec->queue_size, err);
1098 mana_gd_free_memory(gmi);
1099 free_q:
1100 kfree(queue);
1101 return err;
1102 }
1103 EXPORT_SYMBOL_NS(mana_gd_create_mana_eq, "NET_MANA");
1104
mana_gd_create_mana_wq_cq(struct gdma_dev * gd,const struct gdma_queue_spec * spec,struct gdma_queue ** queue_ptr)1105 int mana_gd_create_mana_wq_cq(struct gdma_dev *gd,
1106 const struct gdma_queue_spec *spec,
1107 struct gdma_queue **queue_ptr)
1108 {
1109 struct gdma_context *gc = gd->gdma_context;
1110 struct gdma_mem_info *gmi;
1111 struct gdma_queue *queue;
1112 int err;
1113
1114 if (spec->type != GDMA_CQ && spec->type != GDMA_SQ &&
1115 spec->type != GDMA_RQ)
1116 return -EINVAL;
1117
1118 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1119 if (!queue)
1120 return -ENOMEM;
1121
1122 gmi = &queue->mem_info;
1123 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
1124 if (err) {
1125 dev_err(gc->dev, "GDMA queue type: %d, size: %u, memory allocation err: %d\n",
1126 spec->type, spec->queue_size, err);
1127 goto free_q;
1128 }
1129
1130 err = mana_gd_create_dma_region(gd, gmi);
1131 if (err)
1132 goto out;
1133
1134 queue->head = 0;
1135 queue->tail = 0;
1136 queue->queue_mem_ptr = gmi->virt_addr;
1137 queue->queue_size = spec->queue_size;
1138 queue->monitor_avl_buf = spec->monitor_avl_buf;
1139 queue->type = spec->type;
1140 queue->gdma_dev = gd;
1141
1142 if (spec->type == GDMA_CQ)
1143 mana_gd_create_cq(spec, queue);
1144
1145 *queue_ptr = queue;
1146 return 0;
1147 out:
1148 dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n",
1149 spec->type, spec->queue_size, err);
1150 mana_gd_free_memory(gmi);
1151 free_q:
1152 kfree(queue);
1153 return err;
1154 }
1155 EXPORT_SYMBOL_NS(mana_gd_create_mana_wq_cq, "NET_MANA");
1156
mana_gd_destroy_queue(struct gdma_context * gc,struct gdma_queue * queue)1157 void mana_gd_destroy_queue(struct gdma_context *gc, struct gdma_queue *queue)
1158 {
1159 struct gdma_mem_info *gmi = &queue->mem_info;
1160
1161 switch (queue->type) {
1162 case GDMA_EQ:
1163 mana_gd_destroy_eq(gc, queue->eq.disable_needed, queue);
1164 break;
1165
1166 case GDMA_CQ:
1167 mana_gd_destroy_cq(gc, queue);
1168 break;
1169
1170 case GDMA_RQ:
1171 break;
1172
1173 case GDMA_SQ:
1174 break;
1175
1176 default:
1177 dev_err(gc->dev, "Can't destroy unknown queue: type=%d\n",
1178 queue->type);
1179 return;
1180 }
1181
1182 mana_gd_destroy_dma_region(gc, gmi->dma_region_handle);
1183 mana_gd_free_memory(gmi);
1184 kfree(queue);
1185 }
1186 EXPORT_SYMBOL_NS(mana_gd_destroy_queue, "NET_MANA");
1187
mana_gd_verify_vf_version(struct pci_dev * pdev)1188 int mana_gd_verify_vf_version(struct pci_dev *pdev)
1189 {
1190 struct gdma_context *gc = pci_get_drvdata(pdev);
1191 struct gdma_verify_ver_resp resp = {};
1192 struct gdma_verify_ver_req req = {};
1193 struct hw_channel_context *hwc;
1194 int err;
1195
1196 hwc = gc->hwc.driver_data;
1197 mana_gd_init_req_hdr(&req.hdr, GDMA_VERIFY_VF_DRIVER_VERSION,
1198 sizeof(req), sizeof(resp));
1199
1200 req.protocol_ver_min = GDMA_PROTOCOL_FIRST;
1201 req.protocol_ver_max = GDMA_PROTOCOL_LAST;
1202
1203 req.gd_drv_cap_flags1 = GDMA_DRV_CAP_FLAGS1;
1204 req.gd_drv_cap_flags2 = GDMA_DRV_CAP_FLAGS2;
1205 req.gd_drv_cap_flags3 = GDMA_DRV_CAP_FLAGS3;
1206 req.gd_drv_cap_flags4 = GDMA_DRV_CAP_FLAGS4;
1207
1208 req.drv_ver = 0; /* Unused*/
1209 req.os_type = 0x10; /* Linux */
1210 req.os_ver_major = LINUX_VERSION_MAJOR;
1211 req.os_ver_minor = LINUX_VERSION_PATCHLEVEL;
1212 req.os_ver_build = LINUX_VERSION_SUBLEVEL;
1213 strscpy(req.os_ver_str1, utsname()->sysname, sizeof(req.os_ver_str1));
1214 strscpy(req.os_ver_str2, utsname()->release, sizeof(req.os_ver_str2));
1215 strscpy(req.os_ver_str3, utsname()->version, sizeof(req.os_ver_str3));
1216
1217 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1218 if (err || resp.hdr.status) {
1219 dev_err(gc->dev, "VfVerifyVersionOutput: %d, status=0x%x\n",
1220 err, resp.hdr.status);
1221 return err ? err : -EPROTO;
1222 }
1223 gc->pf_cap_flags1 = resp.pf_cap_flags1;
1224 if (resp.pf_cap_flags1 & GDMA_DRV_CAP_FLAG_1_HWC_TIMEOUT_RECONFIG) {
1225 err = mana_gd_query_hwc_timeout(pdev, &hwc->hwc_timeout);
1226 if (err) {
1227 dev_err(gc->dev, "Failed to set the hwc timeout %d\n", err);
1228 return err;
1229 }
1230 dev_dbg(gc->dev, "set the hwc timeout to %u\n", hwc->hwc_timeout);
1231 }
1232 return 0;
1233 }
1234
mana_gd_register_device(struct gdma_dev * gd)1235 int mana_gd_register_device(struct gdma_dev *gd)
1236 {
1237 struct gdma_context *gc = gd->gdma_context;
1238 struct gdma_register_device_resp resp = {};
1239 struct gdma_general_req req = {};
1240 int err;
1241
1242 gd->pdid = INVALID_PDID;
1243 gd->doorbell = INVALID_DOORBELL;
1244 gd->gpa_mkey = INVALID_MEM_KEY;
1245
1246 mana_gd_init_req_hdr(&req.hdr, GDMA_REGISTER_DEVICE, sizeof(req),
1247 sizeof(resp));
1248
1249 req.hdr.dev_id = gd->dev_id;
1250
1251 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1252 if (err || resp.hdr.status) {
1253 dev_err(gc->dev, "gdma_register_device_resp failed: %d, 0x%x\n",
1254 err, resp.hdr.status);
1255 return err ? err : -EPROTO;
1256 }
1257
1258 gd->pdid = resp.pdid;
1259 gd->gpa_mkey = resp.gpa_mkey;
1260 gd->doorbell = resp.db_id;
1261
1262 return 0;
1263 }
1264
mana_gd_deregister_device(struct gdma_dev * gd)1265 int mana_gd_deregister_device(struct gdma_dev *gd)
1266 {
1267 struct gdma_context *gc = gd->gdma_context;
1268 struct gdma_general_resp resp = {};
1269 struct gdma_general_req req = {};
1270 int err;
1271
1272 if (gd->pdid == INVALID_PDID)
1273 return -EINVAL;
1274
1275 mana_gd_init_req_hdr(&req.hdr, GDMA_DEREGISTER_DEVICE, sizeof(req),
1276 sizeof(resp));
1277
1278 req.hdr.dev_id = gd->dev_id;
1279
1280 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1281 if (err || resp.hdr.status) {
1282 if (mana_need_log(gc, err))
1283 dev_err(gc->dev, "Failed to deregister device: %d, 0x%x\n",
1284 err, resp.hdr.status);
1285 if (!err)
1286 err = -EPROTO;
1287 }
1288
1289 gd->pdid = INVALID_PDID;
1290 gd->doorbell = INVALID_DOORBELL;
1291 gd->gpa_mkey = INVALID_MEM_KEY;
1292
1293 return err;
1294 }
1295
mana_gd_wq_avail_space(struct gdma_queue * wq)1296 u32 mana_gd_wq_avail_space(struct gdma_queue *wq)
1297 {
1298 u32 used_space = (wq->head - wq->tail) * GDMA_WQE_BU_SIZE;
1299 u32 wq_size = wq->queue_size;
1300
1301 WARN_ON_ONCE(used_space > wq_size);
1302
1303 return wq_size - used_space;
1304 }
1305
mana_gd_get_wqe_ptr(const struct gdma_queue * wq,u32 wqe_offset)1306 u8 *mana_gd_get_wqe_ptr(const struct gdma_queue *wq, u32 wqe_offset)
1307 {
1308 u32 offset = (wqe_offset * GDMA_WQE_BU_SIZE) & (wq->queue_size - 1);
1309
1310 WARN_ON_ONCE((offset + GDMA_WQE_BU_SIZE) > wq->queue_size);
1311
1312 return wq->queue_mem_ptr + offset;
1313 }
1314
mana_gd_write_client_oob(const struct gdma_wqe_request * wqe_req,enum gdma_queue_type q_type,u32 client_oob_size,u32 sgl_data_size,u8 * wqe_ptr)1315 static u32 mana_gd_write_client_oob(const struct gdma_wqe_request *wqe_req,
1316 enum gdma_queue_type q_type,
1317 u32 client_oob_size, u32 sgl_data_size,
1318 u8 *wqe_ptr)
1319 {
1320 bool oob_in_sgl = !!(wqe_req->flags & GDMA_WR_OOB_IN_SGL);
1321 bool pad_data = !!(wqe_req->flags & GDMA_WR_PAD_BY_SGE0);
1322 struct gdma_wqe *header = (struct gdma_wqe *)wqe_ptr;
1323 u8 *ptr;
1324
1325 memset(header, 0, sizeof(struct gdma_wqe));
1326 header->num_sge = wqe_req->num_sge;
1327 header->inline_oob_size_div4 = client_oob_size / sizeof(u32);
1328
1329 if (oob_in_sgl) {
1330 WARN_ON_ONCE(wqe_req->num_sge < 2);
1331
1332 header->client_oob_in_sgl = 1;
1333
1334 if (pad_data)
1335 header->last_vbytes = wqe_req->sgl[0].size;
1336 }
1337
1338 if (q_type == GDMA_SQ)
1339 header->client_data_unit = wqe_req->client_data_unit;
1340
1341 /* The size of gdma_wqe + client_oob_size must be less than or equal
1342 * to one Basic Unit (i.e. 32 bytes), so the pointer can't go beyond
1343 * the queue memory buffer boundary.
1344 */
1345 ptr = wqe_ptr + sizeof(header);
1346
1347 if (wqe_req->inline_oob_data && wqe_req->inline_oob_size > 0) {
1348 memcpy(ptr, wqe_req->inline_oob_data, wqe_req->inline_oob_size);
1349
1350 if (client_oob_size > wqe_req->inline_oob_size)
1351 memset(ptr + wqe_req->inline_oob_size, 0,
1352 client_oob_size - wqe_req->inline_oob_size);
1353 }
1354
1355 return sizeof(header) + client_oob_size;
1356 }
1357
mana_gd_write_sgl(struct gdma_queue * wq,u8 * wqe_ptr,const struct gdma_wqe_request * wqe_req)1358 static void mana_gd_write_sgl(struct gdma_queue *wq, u8 *wqe_ptr,
1359 const struct gdma_wqe_request *wqe_req)
1360 {
1361 u32 sgl_size = sizeof(struct gdma_sge) * wqe_req->num_sge;
1362 const u8 *address = (u8 *)wqe_req->sgl;
1363 u8 *base_ptr, *end_ptr;
1364 u32 size_to_end;
1365
1366 base_ptr = wq->queue_mem_ptr;
1367 end_ptr = base_ptr + wq->queue_size;
1368 size_to_end = (u32)(end_ptr - wqe_ptr);
1369
1370 if (size_to_end < sgl_size) {
1371 memcpy(wqe_ptr, address, size_to_end);
1372
1373 wqe_ptr = base_ptr;
1374 address += size_to_end;
1375 sgl_size -= size_to_end;
1376 }
1377
1378 memcpy(wqe_ptr, address, sgl_size);
1379 }
1380
mana_gd_post_work_request(struct gdma_queue * wq,const struct gdma_wqe_request * wqe_req,struct gdma_posted_wqe_info * wqe_info)1381 int mana_gd_post_work_request(struct gdma_queue *wq,
1382 const struct gdma_wqe_request *wqe_req,
1383 struct gdma_posted_wqe_info *wqe_info)
1384 {
1385 u32 client_oob_size = wqe_req->inline_oob_size;
1386 u32 sgl_data_size;
1387 u32 max_wqe_size;
1388 u32 wqe_size;
1389 u8 *wqe_ptr;
1390
1391 if (wqe_req->num_sge == 0)
1392 return -EINVAL;
1393
1394 if (wq->type == GDMA_RQ) {
1395 if (client_oob_size != 0)
1396 return -EINVAL;
1397
1398 client_oob_size = INLINE_OOB_SMALL_SIZE;
1399
1400 max_wqe_size = GDMA_MAX_RQE_SIZE;
1401 } else {
1402 if (client_oob_size != INLINE_OOB_SMALL_SIZE &&
1403 client_oob_size != INLINE_OOB_LARGE_SIZE)
1404 return -EINVAL;
1405
1406 max_wqe_size = GDMA_MAX_SQE_SIZE;
1407 }
1408
1409 sgl_data_size = sizeof(struct gdma_sge) * wqe_req->num_sge;
1410 wqe_size = ALIGN(sizeof(struct gdma_wqe) + client_oob_size +
1411 sgl_data_size, GDMA_WQE_BU_SIZE);
1412 if (wqe_size > max_wqe_size)
1413 return -EINVAL;
1414
1415 if (wq->monitor_avl_buf && wqe_size > mana_gd_wq_avail_space(wq))
1416 return -ENOSPC;
1417
1418 if (wqe_info)
1419 wqe_info->wqe_size_in_bu = wqe_size / GDMA_WQE_BU_SIZE;
1420
1421 wqe_ptr = mana_gd_get_wqe_ptr(wq, wq->head);
1422 wqe_ptr += mana_gd_write_client_oob(wqe_req, wq->type, client_oob_size,
1423 sgl_data_size, wqe_ptr);
1424 if (wqe_ptr >= (u8 *)wq->queue_mem_ptr + wq->queue_size)
1425 wqe_ptr -= wq->queue_size;
1426
1427 mana_gd_write_sgl(wq, wqe_ptr, wqe_req);
1428
1429 wq->head += wqe_size / GDMA_WQE_BU_SIZE;
1430
1431 return 0;
1432 }
1433 EXPORT_SYMBOL_NS(mana_gd_post_work_request, "NET_MANA");
1434
mana_gd_post_and_ring(struct gdma_queue * queue,const struct gdma_wqe_request * wqe_req,struct gdma_posted_wqe_info * wqe_info)1435 int mana_gd_post_and_ring(struct gdma_queue *queue,
1436 const struct gdma_wqe_request *wqe_req,
1437 struct gdma_posted_wqe_info *wqe_info)
1438 {
1439 struct gdma_context *gc = queue->gdma_dev->gdma_context;
1440 int err;
1441
1442 err = mana_gd_post_work_request(queue, wqe_req, wqe_info);
1443 if (err) {
1444 dev_err(gc->dev, "Failed to post work req from queue type %d of size %u (err=%d)\n",
1445 queue->type, queue->queue_size, err);
1446 return err;
1447 }
1448
1449 mana_gd_wq_ring_doorbell(gc, queue);
1450
1451 return 0;
1452 }
1453
mana_gd_read_cqe(struct gdma_queue * cq,struct gdma_comp * comp)1454 static int mana_gd_read_cqe(struct gdma_queue *cq, struct gdma_comp *comp)
1455 {
1456 unsigned int num_cqe = cq->queue_size / sizeof(struct gdma_cqe);
1457 struct gdma_cqe *cq_cqe = cq->queue_mem_ptr;
1458 u32 owner_bits, new_bits, old_bits;
1459 struct gdma_cqe *cqe;
1460
1461 cqe = &cq_cqe[cq->head % num_cqe];
1462 owner_bits = cqe->cqe_info.owner_bits;
1463
1464 old_bits = (cq->head / num_cqe - 1) & GDMA_CQE_OWNER_MASK;
1465 /* Return 0 if no more entries. */
1466 if (owner_bits == old_bits)
1467 return 0;
1468
1469 new_bits = (cq->head / num_cqe) & GDMA_CQE_OWNER_MASK;
1470 /* Return -1 if overflow detected. */
1471 if (WARN_ON_ONCE(owner_bits != new_bits))
1472 return -1;
1473
1474 /* Per GDMA spec, rmb is necessary after checking owner_bits, before
1475 * reading completion info
1476 */
1477 rmb();
1478
1479 comp->wq_num = cqe->cqe_info.wq_num;
1480 comp->is_sq = cqe->cqe_info.is_sq;
1481 memcpy(comp->cqe_data, cqe->cqe_data, GDMA_COMP_DATA_SIZE);
1482
1483 return 1;
1484 }
1485
mana_gd_poll_cq(struct gdma_queue * cq,struct gdma_comp * comp,int num_cqe)1486 int mana_gd_poll_cq(struct gdma_queue *cq, struct gdma_comp *comp, int num_cqe)
1487 {
1488 int cqe_idx;
1489 int ret;
1490
1491 for (cqe_idx = 0; cqe_idx < num_cqe; cqe_idx++) {
1492 ret = mana_gd_read_cqe(cq, &comp[cqe_idx]);
1493
1494 if (ret < 0) {
1495 cq->head -= cqe_idx;
1496 return ret;
1497 }
1498
1499 if (ret == 0)
1500 break;
1501
1502 cq->head++;
1503 }
1504
1505 return cqe_idx;
1506 }
1507 EXPORT_SYMBOL_NS(mana_gd_poll_cq, "NET_MANA");
1508
mana_gd_intr(int irq,void * arg)1509 static irqreturn_t mana_gd_intr(int irq, void *arg)
1510 {
1511 struct gdma_irq_context *gic = arg;
1512 struct list_head *eq_list = &gic->eq_list;
1513 struct gdma_queue *eq;
1514
1515 rcu_read_lock();
1516 list_for_each_entry_rcu(eq, eq_list, entry) {
1517 gic->handler(eq);
1518 }
1519 rcu_read_unlock();
1520
1521 return IRQ_HANDLED;
1522 }
1523
mana_gd_alloc_res_map(u32 res_avail,struct gdma_resource * r)1524 int mana_gd_alloc_res_map(u32 res_avail, struct gdma_resource *r)
1525 {
1526 r->map = bitmap_zalloc(res_avail, GFP_KERNEL);
1527 if (!r->map)
1528 return -ENOMEM;
1529
1530 r->size = res_avail;
1531 spin_lock_init(&r->lock);
1532
1533 return 0;
1534 }
1535
mana_gd_free_res_map(struct gdma_resource * r)1536 void mana_gd_free_res_map(struct gdma_resource *r)
1537 {
1538 bitmap_free(r->map);
1539 r->map = NULL;
1540 r->size = 0;
1541 }
1542
1543 /*
1544 * Spread on CPUs with the following heuristics:
1545 *
1546 * 1. No more than one IRQ per CPU, if possible;
1547 * 2. NUMA locality is the second priority;
1548 * 3. Sibling dislocality is the last priority.
1549 *
1550 * Let's consider this topology:
1551 *
1552 * Node 0 1
1553 * Core 0 1 2 3
1554 * CPU 0 1 2 3 4 5 6 7
1555 *
1556 * The most performant IRQ distribution based on the above topology
1557 * and heuristics may look like this:
1558 *
1559 * IRQ Nodes Cores CPUs
1560 * 0 1 0 0-1
1561 * 1 1 1 2-3
1562 * 2 1 0 0-1
1563 * 3 1 1 2-3
1564 * 4 2 2 4-5
1565 * 5 2 3 6-7
1566 * 6 2 2 4-5
1567 * 7 2 3 6-7
1568 *
1569 * The heuristics is implemented as follows.
1570 *
1571 * The outer for_each() loop resets the 'weight' to the actual number
1572 * of CPUs in the hop. Then inner for_each() loop decrements it by the
1573 * number of sibling groups (cores) while assigning first set of IRQs
1574 * to each group. IRQs 0 and 1 above are distributed this way.
1575 *
1576 * Now, because NUMA locality is more important, we should walk the
1577 * same set of siblings and assign 2nd set of IRQs (2 and 3), and it's
1578 * implemented by the medium while() loop. We do like this unless the
1579 * number of IRQs assigned on this hop will not become equal to number
1580 * of CPUs in the hop (weight == 0). Then we switch to the next hop and
1581 * do the same thing.
1582 */
1583
irq_setup(unsigned int * irqs,unsigned int len,int node,bool skip_first_cpu)1584 static int irq_setup(unsigned int *irqs, unsigned int len, int node,
1585 bool skip_first_cpu)
1586 {
1587 const struct cpumask *next, *prev = cpu_none_mask;
1588 cpumask_var_t cpus __free(free_cpumask_var);
1589 int cpu, weight;
1590
1591 if (!alloc_cpumask_var(&cpus, GFP_KERNEL))
1592 return -ENOMEM;
1593
1594 rcu_read_lock();
1595 for_each_numa_hop_mask(next, node) {
1596 weight = cpumask_weight_andnot(next, prev);
1597 while (weight > 0) {
1598 cpumask_andnot(cpus, next, prev);
1599 for_each_cpu(cpu, cpus) {
1600 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
1601 --weight;
1602
1603 if (unlikely(skip_first_cpu)) {
1604 skip_first_cpu = false;
1605 continue;
1606 }
1607
1608 if (len-- == 0)
1609 goto done;
1610
1611 irq_set_affinity_and_hint(*irqs++, topology_sibling_cpumask(cpu));
1612 }
1613 }
1614 prev = next;
1615 }
1616 done:
1617 rcu_read_unlock();
1618 return 0;
1619 }
1620
mana_gd_setup_dyn_irqs(struct pci_dev * pdev,int nvec)1621 static int mana_gd_setup_dyn_irqs(struct pci_dev *pdev, int nvec)
1622 {
1623 struct gdma_context *gc = pci_get_drvdata(pdev);
1624 struct gdma_irq_context *gic;
1625 bool skip_first_cpu = false;
1626 int *irqs, irq, err, i;
1627
1628 irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL);
1629 if (!irqs)
1630 return -ENOMEM;
1631
1632 /*
1633 * While processing the next pci irq vector, we start with index 1,
1634 * as IRQ vector at index 0 is already processed for HWC.
1635 * However, the population of irqs array starts with index 0, to be
1636 * further used in irq_setup()
1637 */
1638 for (i = 1; i <= nvec; i++) {
1639 gic = kzalloc(sizeof(*gic), GFP_KERNEL);
1640 if (!gic) {
1641 err = -ENOMEM;
1642 goto free_irq;
1643 }
1644 gic->handler = mana_gd_process_eq_events;
1645 INIT_LIST_HEAD(&gic->eq_list);
1646 spin_lock_init(&gic->lock);
1647
1648 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s",
1649 i - 1, pci_name(pdev));
1650
1651 /* one pci vector is already allocated for HWC */
1652 irqs[i - 1] = pci_irq_vector(pdev, i);
1653 if (irqs[i - 1] < 0) {
1654 err = irqs[i - 1];
1655 goto free_current_gic;
1656 }
1657
1658 err = request_irq(irqs[i - 1], mana_gd_intr, 0, gic->name, gic);
1659 if (err)
1660 goto free_current_gic;
1661
1662 xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL);
1663 }
1664
1665 /*
1666 * When calling irq_setup() for dynamically added IRQs, if number of
1667 * CPUs is more than or equal to allocated MSI-X, we need to skip the
1668 * first CPU sibling group since they are already affinitized to HWC IRQ
1669 */
1670 cpus_read_lock();
1671 if (gc->num_msix_usable <= num_online_cpus())
1672 skip_first_cpu = true;
1673
1674 err = irq_setup(irqs, nvec, gc->numa_node, skip_first_cpu);
1675 if (err) {
1676 cpus_read_unlock();
1677 goto free_irq;
1678 }
1679
1680 cpus_read_unlock();
1681 kfree(irqs);
1682 return 0;
1683
1684 free_current_gic:
1685 kfree(gic);
1686 free_irq:
1687 for (i -= 1; i > 0; i--) {
1688 irq = pci_irq_vector(pdev, i);
1689 gic = xa_load(&gc->irq_contexts, i);
1690 if (WARN_ON(!gic))
1691 continue;
1692
1693 irq_update_affinity_hint(irq, NULL);
1694 free_irq(irq, gic);
1695 xa_erase(&gc->irq_contexts, i);
1696 kfree(gic);
1697 }
1698 kfree(irqs);
1699 return err;
1700 }
1701
mana_gd_setup_irqs(struct pci_dev * pdev,int nvec)1702 static int mana_gd_setup_irqs(struct pci_dev *pdev, int nvec)
1703 {
1704 struct gdma_context *gc = pci_get_drvdata(pdev);
1705 struct gdma_irq_context *gic;
1706 int *irqs, *start_irqs, irq;
1707 unsigned int cpu;
1708 int err, i;
1709
1710 irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL);
1711 if (!irqs)
1712 return -ENOMEM;
1713
1714 start_irqs = irqs;
1715
1716 for (i = 0; i < nvec; i++) {
1717 gic = kzalloc(sizeof(*gic), GFP_KERNEL);
1718 if (!gic) {
1719 err = -ENOMEM;
1720 goto free_irq;
1721 }
1722
1723 gic->handler = mana_gd_process_eq_events;
1724 INIT_LIST_HEAD(&gic->eq_list);
1725 spin_lock_init(&gic->lock);
1726
1727 if (!i)
1728 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_hwc@pci:%s",
1729 pci_name(pdev));
1730 else
1731 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s",
1732 i - 1, pci_name(pdev));
1733
1734 irqs[i] = pci_irq_vector(pdev, i);
1735 if (irqs[i] < 0) {
1736 err = irqs[i];
1737 goto free_current_gic;
1738 }
1739
1740 err = request_irq(irqs[i], mana_gd_intr, 0, gic->name, gic);
1741 if (err)
1742 goto free_current_gic;
1743
1744 xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL);
1745 }
1746
1747 /* If number of IRQ is one extra than number of online CPUs,
1748 * then we need to assign IRQ0 (hwc irq) and IRQ1 to
1749 * same CPU.
1750 * Else we will use different CPUs for IRQ0 and IRQ1.
1751 * Also we are using cpumask_local_spread instead of
1752 * cpumask_first for the node, because the node can be
1753 * mem only.
1754 */
1755 cpus_read_lock();
1756 if (nvec > num_online_cpus()) {
1757 cpu = cpumask_local_spread(0, gc->numa_node);
1758 irq_set_affinity_and_hint(irqs[0], cpumask_of(cpu));
1759 irqs++;
1760 nvec -= 1;
1761 }
1762
1763 err = irq_setup(irqs, nvec, gc->numa_node, false);
1764 if (err) {
1765 cpus_read_unlock();
1766 goto free_irq;
1767 }
1768
1769 cpus_read_unlock();
1770 kfree(start_irqs);
1771 return 0;
1772
1773 free_current_gic:
1774 kfree(gic);
1775 free_irq:
1776 for (i -= 1; i >= 0; i--) {
1777 irq = pci_irq_vector(pdev, i);
1778 gic = xa_load(&gc->irq_contexts, i);
1779 if (WARN_ON(!gic))
1780 continue;
1781
1782 irq_update_affinity_hint(irq, NULL);
1783 free_irq(irq, gic);
1784 xa_erase(&gc->irq_contexts, i);
1785 kfree(gic);
1786 }
1787
1788 kfree(start_irqs);
1789 return err;
1790 }
1791
mana_gd_setup_hwc_irqs(struct pci_dev * pdev)1792 static int mana_gd_setup_hwc_irqs(struct pci_dev *pdev)
1793 {
1794 struct gdma_context *gc = pci_get_drvdata(pdev);
1795 unsigned int max_irqs, min_irqs;
1796 int nvec, err;
1797
1798 if (pci_msix_can_alloc_dyn(pdev)) {
1799 max_irqs = 1;
1800 min_irqs = 1;
1801 } else {
1802 /* Need 1 interrupt for HWC */
1803 max_irqs = min(num_online_cpus(), MANA_MAX_NUM_QUEUES) + 1;
1804 min_irqs = 2;
1805 }
1806
1807 nvec = pci_alloc_irq_vectors(pdev, min_irqs, max_irqs, PCI_IRQ_MSIX);
1808 if (nvec < 0)
1809 return nvec;
1810
1811 err = mana_gd_setup_irqs(pdev, nvec);
1812 if (err) {
1813 pci_free_irq_vectors(pdev);
1814 return err;
1815 }
1816
1817 gc->num_msix_usable = nvec;
1818 gc->max_num_msix = nvec;
1819
1820 return 0;
1821 }
1822
mana_gd_setup_remaining_irqs(struct pci_dev * pdev)1823 static int mana_gd_setup_remaining_irqs(struct pci_dev *pdev)
1824 {
1825 struct gdma_context *gc = pci_get_drvdata(pdev);
1826 struct msi_map irq_map;
1827 int max_irqs, i, err;
1828
1829 if (!pci_msix_can_alloc_dyn(pdev))
1830 /* remain irqs are already allocated with HWC IRQ */
1831 return 0;
1832
1833 /* allocate only remaining IRQs*/
1834 max_irqs = gc->num_msix_usable - 1;
1835
1836 for (i = 1; i <= max_irqs; i++) {
1837 irq_map = pci_msix_alloc_irq_at(pdev, i, NULL);
1838 if (!irq_map.virq) {
1839 err = irq_map.index;
1840 /* caller will handle cleaning up all allocated
1841 * irqs, after HWC is destroyed
1842 */
1843 return err;
1844 }
1845 }
1846
1847 err = mana_gd_setup_dyn_irqs(pdev, max_irqs);
1848 if (err)
1849 return err;
1850
1851 gc->max_num_msix = gc->max_num_msix + max_irqs;
1852
1853 return 0;
1854 }
1855
mana_gd_remove_irqs(struct pci_dev * pdev)1856 static void mana_gd_remove_irqs(struct pci_dev *pdev)
1857 {
1858 struct gdma_context *gc = pci_get_drvdata(pdev);
1859 struct gdma_irq_context *gic;
1860 int irq, i;
1861
1862 if (gc->max_num_msix < 1)
1863 return;
1864
1865 for (i = 0; i < gc->max_num_msix; i++) {
1866 irq = pci_irq_vector(pdev, i);
1867 if (irq < 0)
1868 continue;
1869
1870 gic = xa_load(&gc->irq_contexts, i);
1871 if (WARN_ON(!gic))
1872 continue;
1873
1874 /* Need to clear the hint before free_irq */
1875 irq_update_affinity_hint(irq, NULL);
1876 free_irq(irq, gic);
1877 xa_erase(&gc->irq_contexts, i);
1878 kfree(gic);
1879 }
1880
1881 pci_free_irq_vectors(pdev);
1882
1883 gc->max_num_msix = 0;
1884 gc->num_msix_usable = 0;
1885 }
1886
mana_gd_setup(struct pci_dev * pdev)1887 static int mana_gd_setup(struct pci_dev *pdev)
1888 {
1889 struct gdma_context *gc = pci_get_drvdata(pdev);
1890 int err;
1891
1892 mana_gd_init_registers(pdev);
1893 mana_smc_init(&gc->shm_channel, gc->dev, gc->shm_base);
1894
1895 gc->service_wq = alloc_ordered_workqueue("gdma_service_wq", 0);
1896 if (!gc->service_wq)
1897 return -ENOMEM;
1898
1899 err = mana_gd_setup_hwc_irqs(pdev);
1900 if (err) {
1901 dev_err(gc->dev, "Failed to setup IRQs for HWC creation: %d\n",
1902 err);
1903 goto free_workqueue;
1904 }
1905
1906 err = mana_hwc_create_channel(gc);
1907 if (err)
1908 goto remove_irq;
1909
1910 err = mana_gd_verify_vf_version(pdev);
1911 if (err)
1912 goto destroy_hwc;
1913
1914 err = mana_gd_query_max_resources(pdev);
1915 if (err)
1916 goto destroy_hwc;
1917
1918 err = mana_gd_setup_remaining_irqs(pdev);
1919 if (err) {
1920 dev_err(gc->dev, "Failed to setup remaining IRQs: %d", err);
1921 goto destroy_hwc;
1922 }
1923
1924 err = mana_gd_detect_devices(pdev);
1925 if (err)
1926 goto destroy_hwc;
1927
1928 dev_dbg(&pdev->dev, "mana gdma setup successful\n");
1929 return 0;
1930
1931 destroy_hwc:
1932 mana_hwc_destroy_channel(gc);
1933 remove_irq:
1934 mana_gd_remove_irqs(pdev);
1935 free_workqueue:
1936 destroy_workqueue(gc->service_wq);
1937 dev_err(&pdev->dev, "%s failed (error %d)\n", __func__, err);
1938 return err;
1939 }
1940
mana_gd_cleanup(struct pci_dev * pdev)1941 static void mana_gd_cleanup(struct pci_dev *pdev)
1942 {
1943 struct gdma_context *gc = pci_get_drvdata(pdev);
1944
1945 mana_hwc_destroy_channel(gc);
1946
1947 mana_gd_remove_irqs(pdev);
1948
1949 destroy_workqueue(gc->service_wq);
1950 dev_dbg(&pdev->dev, "mana gdma cleanup successful\n");
1951 }
1952
mana_is_pf(unsigned short dev_id)1953 static bool mana_is_pf(unsigned short dev_id)
1954 {
1955 return dev_id == MANA_PF_DEVICE_ID;
1956 }
1957
mana_gd_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1958 static int mana_gd_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1959 {
1960 struct gdma_context *gc;
1961 void __iomem *bar0_va;
1962 int bar = 0;
1963 int err;
1964
1965 /* Each port has 2 CQs, each CQ has at most 1 EQE at a time */
1966 BUILD_BUG_ON(2 * MAX_PORTS_IN_MANA_DEV * GDMA_EQE_SIZE > EQ_SIZE);
1967
1968 err = pci_enable_device(pdev);
1969 if (err) {
1970 dev_err(&pdev->dev, "Failed to enable pci device (err=%d)\n", err);
1971 return -ENXIO;
1972 }
1973
1974 pci_set_master(pdev);
1975
1976 err = pci_request_regions(pdev, "mana");
1977 if (err)
1978 goto disable_dev;
1979
1980 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1981 if (err) {
1982 dev_err(&pdev->dev, "DMA set mask failed: %d\n", err);
1983 goto release_region;
1984 }
1985 dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1986
1987 err = -ENOMEM;
1988 gc = vzalloc(sizeof(*gc));
1989 if (!gc)
1990 goto release_region;
1991
1992 mutex_init(&gc->eq_test_event_mutex);
1993 pci_set_drvdata(pdev, gc);
1994 gc->bar0_pa = pci_resource_start(pdev, 0);
1995
1996 bar0_va = pci_iomap(pdev, bar, 0);
1997 if (!bar0_va)
1998 goto free_gc;
1999
2000 gc->numa_node = dev_to_node(&pdev->dev);
2001 gc->is_pf = mana_is_pf(pdev->device);
2002 gc->bar0_va = bar0_va;
2003 gc->dev = &pdev->dev;
2004 xa_init(&gc->irq_contexts);
2005
2006 if (gc->is_pf)
2007 gc->mana_pci_debugfs = debugfs_create_dir("0", mana_debugfs_root);
2008 else
2009 gc->mana_pci_debugfs = debugfs_create_dir(pci_slot_name(pdev->slot),
2010 mana_debugfs_root);
2011
2012 err = mana_gd_setup(pdev);
2013 if (err)
2014 goto unmap_bar;
2015
2016 err = mana_probe(&gc->mana, false);
2017 if (err)
2018 goto cleanup_gd;
2019
2020 err = mana_rdma_probe(&gc->mana_ib);
2021 if (err)
2022 goto cleanup_mana;
2023
2024 /*
2025 * If a hardware reset event has occurred over HWC during probe,
2026 * rollback and perform hardware reset procedure.
2027 */
2028 if (test_and_set_bit(GC_PROBE_SUCCEEDED, &gc->flags)) {
2029 err = -EPROTO;
2030 goto cleanup_mana_rdma;
2031 }
2032
2033 return 0;
2034
2035 cleanup_mana_rdma:
2036 mana_rdma_remove(&gc->mana_ib);
2037 cleanup_mana:
2038 mana_remove(&gc->mana, false);
2039 cleanup_gd:
2040 mana_gd_cleanup(pdev);
2041 unmap_bar:
2042 /*
2043 * at this point we know that the other debugfs child dir/files
2044 * are either not yet created or are already cleaned up.
2045 * The pci debugfs folder clean-up now, will only be cleaning up
2046 * adapter-MTU file and apc->mana_pci_debugfs folder.
2047 */
2048 debugfs_remove_recursive(gc->mana_pci_debugfs);
2049 gc->mana_pci_debugfs = NULL;
2050 xa_destroy(&gc->irq_contexts);
2051 pci_iounmap(pdev, bar0_va);
2052 free_gc:
2053 pci_set_drvdata(pdev, NULL);
2054 vfree(gc);
2055 release_region:
2056 pci_release_regions(pdev);
2057 disable_dev:
2058 pci_disable_device(pdev);
2059 dev_err(&pdev->dev, "gdma probe failed: err = %d\n", err);
2060
2061 /*
2062 * Hardware could be in recovery mode and the HWC returns TIMEDOUT or
2063 * EPROTO from mana_gd_setup(), mana_probe() or mana_rdma_probe(), or
2064 * we received a hardware reset event over HWC interrupt. In this case,
2065 * perform the device recovery procedure after MANA_SERVICE_PERIOD
2066 * seconds.
2067 */
2068 if (err == -ETIMEDOUT || err == -EPROTO) {
2069 struct mana_dev_recovery *dev;
2070 unsigned long flags;
2071
2072 dev_info(&pdev->dev, "Start MANA recovery mode\n");
2073
2074 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2075 if (!dev)
2076 return err;
2077
2078 dev->pdev = pci_dev_get(pdev);
2079 dev->type = GDMA_EQE_HWC_RESET_REQUEST;
2080
2081 spin_lock_irqsave(&mana_dev_recovery_work.lock, flags);
2082 list_add_tail(&dev->list, &mana_dev_recovery_work.dev_list);
2083 spin_unlock_irqrestore(&mana_dev_recovery_work.lock, flags);
2084
2085 schedule_delayed_work(&mana_dev_recovery_work.work,
2086 secs_to_jiffies(MANA_SERVICE_PERIOD));
2087 }
2088
2089 return err;
2090 }
2091
mana_gd_remove(struct pci_dev * pdev)2092 static void mana_gd_remove(struct pci_dev *pdev)
2093 {
2094 struct gdma_context *gc = pci_get_drvdata(pdev);
2095
2096 mana_rdma_remove(&gc->mana_ib);
2097 mana_remove(&gc->mana, false);
2098
2099 mana_gd_cleanup(pdev);
2100
2101 debugfs_remove_recursive(gc->mana_pci_debugfs);
2102
2103 gc->mana_pci_debugfs = NULL;
2104
2105 xa_destroy(&gc->irq_contexts);
2106
2107 pci_iounmap(pdev, gc->bar0_va);
2108
2109 vfree(gc);
2110
2111 pci_release_regions(pdev);
2112 pci_disable_device(pdev);
2113
2114 dev_dbg(&pdev->dev, "mana gdma remove successful\n");
2115 }
2116
2117 /* The 'state' parameter is not used. */
mana_gd_suspend(struct pci_dev * pdev,pm_message_t state)2118 int mana_gd_suspend(struct pci_dev *pdev, pm_message_t state)
2119 {
2120 struct gdma_context *gc = pci_get_drvdata(pdev);
2121
2122 mana_rdma_remove(&gc->mana_ib);
2123 mana_remove(&gc->mana, true);
2124
2125 mana_gd_cleanup(pdev);
2126
2127 return 0;
2128 }
2129
2130 /* In case the NIC hardware stops working, the suspend and resume callbacks will
2131 * fail -- if this happens, it's safer to just report an error than try to undo
2132 * what has been done.
2133 */
mana_gd_resume(struct pci_dev * pdev)2134 int mana_gd_resume(struct pci_dev *pdev)
2135 {
2136 struct gdma_context *gc = pci_get_drvdata(pdev);
2137 int err;
2138
2139 err = mana_gd_setup(pdev);
2140 if (err)
2141 return err;
2142
2143 err = mana_probe(&gc->mana, true);
2144 if (err)
2145 return err;
2146
2147 err = mana_rdma_probe(&gc->mana_ib);
2148 if (err)
2149 return err;
2150
2151 return 0;
2152 }
2153
2154 /* Quiesce the device for kexec. This is also called upon reboot/shutdown. */
mana_gd_shutdown(struct pci_dev * pdev)2155 static void mana_gd_shutdown(struct pci_dev *pdev)
2156 {
2157 struct gdma_context *gc = pci_get_drvdata(pdev);
2158
2159 dev_info(&pdev->dev, "Shutdown was called\n");
2160
2161 mana_rdma_remove(&gc->mana_ib);
2162 mana_remove(&gc->mana, true);
2163
2164 mana_gd_cleanup(pdev);
2165
2166 debugfs_remove_recursive(gc->mana_pci_debugfs);
2167
2168 gc->mana_pci_debugfs = NULL;
2169
2170 pci_disable_device(pdev);
2171 }
2172
2173 static const struct pci_device_id mana_id_table[] = {
2174 { PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_PF_DEVICE_ID) },
2175 { PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_VF_DEVICE_ID) },
2176 { }
2177 };
2178
2179 static struct pci_driver mana_driver = {
2180 .name = "mana",
2181 .id_table = mana_id_table,
2182 .probe = mana_gd_probe,
2183 .remove = mana_gd_remove,
2184 .suspend = mana_gd_suspend,
2185 .resume = mana_gd_resume,
2186 .shutdown = mana_gd_shutdown,
2187 };
2188
mana_driver_init(void)2189 static int __init mana_driver_init(void)
2190 {
2191 int err;
2192
2193 INIT_LIST_HEAD(&mana_dev_recovery_work.dev_list);
2194 spin_lock_init(&mana_dev_recovery_work.lock);
2195 INIT_DELAYED_WORK(&mana_dev_recovery_work.work, mana_recovery_delayed_func);
2196
2197 mana_debugfs_root = debugfs_create_dir("mana", NULL);
2198
2199 err = pci_register_driver(&mana_driver);
2200 if (err) {
2201 debugfs_remove(mana_debugfs_root);
2202 mana_debugfs_root = NULL;
2203 }
2204
2205 return err;
2206 }
2207
mana_driver_exit(void)2208 static void __exit mana_driver_exit(void)
2209 {
2210 struct mana_dev_recovery *dev;
2211 unsigned long flags;
2212
2213 disable_delayed_work_sync(&mana_dev_recovery_work.work);
2214
2215 spin_lock_irqsave(&mana_dev_recovery_work.lock, flags);
2216 while (!list_empty(&mana_dev_recovery_work.dev_list)) {
2217 dev = list_first_entry(&mana_dev_recovery_work.dev_list,
2218 struct mana_dev_recovery, list);
2219 list_del(&dev->list);
2220 pci_dev_put(dev->pdev);
2221 kfree(dev);
2222 }
2223 spin_unlock_irqrestore(&mana_dev_recovery_work.lock, flags);
2224
2225 pci_unregister_driver(&mana_driver);
2226
2227 debugfs_remove(mana_debugfs_root);
2228
2229 mana_debugfs_root = NULL;
2230 }
2231
2232 module_init(mana_driver_init);
2233 module_exit(mana_driver_exit);
2234
2235 MODULE_DEVICE_TABLE(pci, mana_id_table);
2236
2237 MODULE_LICENSE("Dual BSD/GPL");
2238 MODULE_DESCRIPTION("Microsoft Azure Network Adapter driver");
2239