xref: /linux/fs/ext4/super.c (revision 8883957b3c9de2087fb6cf9691c1188cccf1ac9c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51 
52 #include "ext4.h"
53 #include "ext4_extents.h"	/* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62 
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66 
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 			     unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 					struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 				  struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 					    unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 				      struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static void ext4_kill_sb(struct super_block *sb);
97 static const struct fs_parameter_spec ext4_param_specs[];
98 
99 /*
100  * Lock ordering
101  *
102  * page fault path:
103  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104  *   -> page lock -> i_data_sem (rw)
105  *
106  * buffered write path:
107  * sb_start_write -> i_mutex -> mmap_lock
108  * sb_start_write -> i_mutex -> transaction start -> page lock ->
109  *   i_data_sem (rw)
110  *
111  * truncate:
112  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113  *   page lock
114  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
115  *   i_data_sem (rw)
116  *
117  * direct IO:
118  * sb_start_write -> i_mutex -> mmap_lock
119  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
120  *
121  * writepages:
122  * transaction start -> page lock(s) -> i_data_sem (rw)
123  */
124 
125 static const struct fs_context_operations ext4_context_ops = {
126 	.parse_param	= ext4_parse_param,
127 	.get_tree	= ext4_get_tree,
128 	.reconfigure	= ext4_reconfigure,
129 	.free		= ext4_fc_free,
130 };
131 
132 
133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134 static struct file_system_type ext2_fs_type = {
135 	.owner			= THIS_MODULE,
136 	.name			= "ext2",
137 	.init_fs_context	= ext4_init_fs_context,
138 	.parameters		= ext4_param_specs,
139 	.kill_sb		= ext4_kill_sb,
140 	.fs_flags		= FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("ext2");
143 MODULE_ALIAS("ext2");
144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
145 #else
146 #define IS_EXT2_SB(sb) (0)
147 #endif
148 
149 
150 static struct file_system_type ext3_fs_type = {
151 	.owner			= THIS_MODULE,
152 	.name			= "ext3",
153 	.init_fs_context	= ext4_init_fs_context,
154 	.parameters		= ext4_param_specs,
155 	.kill_sb		= ext4_kill_sb,
156 	.fs_flags		= FS_REQUIRES_DEV,
157 };
158 MODULE_ALIAS_FS("ext3");
159 MODULE_ALIAS("ext3");
160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
161 
162 
__ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
164 				  bh_end_io_t *end_io, bool simu_fail)
165 {
166 	if (simu_fail) {
167 		clear_buffer_uptodate(bh);
168 		unlock_buffer(bh);
169 		return;
170 	}
171 
172 	/*
173 	 * buffer's verified bit is no longer valid after reading from
174 	 * disk again due to write out error, clear it to make sure we
175 	 * recheck the buffer contents.
176 	 */
177 	clear_buffer_verified(bh);
178 
179 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
180 	get_bh(bh);
181 	submit_bh(REQ_OP_READ | op_flags, bh);
182 }
183 
ext4_read_bh_nowait(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)184 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
185 			 bh_end_io_t *end_io, bool simu_fail)
186 {
187 	BUG_ON(!buffer_locked(bh));
188 
189 	if (ext4_buffer_uptodate(bh)) {
190 		unlock_buffer(bh);
191 		return;
192 	}
193 	__ext4_read_bh(bh, op_flags, end_io, simu_fail);
194 }
195 
ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)196 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
197 		 bh_end_io_t *end_io, bool simu_fail)
198 {
199 	BUG_ON(!buffer_locked(bh));
200 
201 	if (ext4_buffer_uptodate(bh)) {
202 		unlock_buffer(bh);
203 		return 0;
204 	}
205 
206 	__ext4_read_bh(bh, op_flags, end_io, simu_fail);
207 
208 	wait_on_buffer(bh);
209 	if (buffer_uptodate(bh))
210 		return 0;
211 	return -EIO;
212 }
213 
ext4_read_bh_lock(struct buffer_head * bh,blk_opf_t op_flags,bool wait)214 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
215 {
216 	lock_buffer(bh);
217 	if (!wait) {
218 		ext4_read_bh_nowait(bh, op_flags, NULL, false);
219 		return 0;
220 	}
221 	return ext4_read_bh(bh, op_flags, NULL, false);
222 }
223 
224 /*
225  * This works like __bread_gfp() except it uses ERR_PTR for error
226  * returns.  Currently with sb_bread it's impossible to distinguish
227  * between ENOMEM and EIO situations (since both result in a NULL
228  * return.
229  */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,blk_opf_t op_flags,gfp_t gfp)230 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
231 					       sector_t block,
232 					       blk_opf_t op_flags, gfp_t gfp)
233 {
234 	struct buffer_head *bh;
235 	int ret;
236 
237 	bh = sb_getblk_gfp(sb, block, gfp);
238 	if (bh == NULL)
239 		return ERR_PTR(-ENOMEM);
240 	if (ext4_buffer_uptodate(bh))
241 		return bh;
242 
243 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
244 	if (ret) {
245 		put_bh(bh);
246 		return ERR_PTR(ret);
247 	}
248 	return bh;
249 }
250 
ext4_sb_bread(struct super_block * sb,sector_t block,blk_opf_t op_flags)251 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
252 				   blk_opf_t op_flags)
253 {
254 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
255 			~__GFP_FS) | __GFP_MOVABLE;
256 
257 	return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
258 }
259 
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)260 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
261 					    sector_t block)
262 {
263 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
264 			~__GFP_FS);
265 
266 	return __ext4_sb_bread_gfp(sb, block, 0, gfp);
267 }
268 
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)269 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
270 {
271 	struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
272 			sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN);
273 
274 	if (likely(bh)) {
275 		if (trylock_buffer(bh))
276 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false);
277 		brelse(bh);
278 	}
279 }
280 
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)281 static int ext4_verify_csum_type(struct super_block *sb,
282 				 struct ext4_super_block *es)
283 {
284 	if (!ext4_has_feature_metadata_csum(sb))
285 		return 1;
286 
287 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
288 }
289 
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)290 __le32 ext4_superblock_csum(struct super_block *sb,
291 			    struct ext4_super_block *es)
292 {
293 	struct ext4_sb_info *sbi = EXT4_SB(sb);
294 	int offset = offsetof(struct ext4_super_block, s_checksum);
295 	__u32 csum;
296 
297 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
298 
299 	return cpu_to_le32(csum);
300 }
301 
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)302 static int ext4_superblock_csum_verify(struct super_block *sb,
303 				       struct ext4_super_block *es)
304 {
305 	if (!ext4_has_metadata_csum(sb))
306 		return 1;
307 
308 	return es->s_checksum == ext4_superblock_csum(sb, es);
309 }
310 
ext4_superblock_csum_set(struct super_block * sb)311 void ext4_superblock_csum_set(struct super_block *sb)
312 {
313 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
314 
315 	if (!ext4_has_metadata_csum(sb))
316 		return;
317 
318 	es->s_checksum = ext4_superblock_csum(sb, es);
319 }
320 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)321 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
322 			       struct ext4_group_desc *bg)
323 {
324 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
325 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
326 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
327 }
328 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)329 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
330 			       struct ext4_group_desc *bg)
331 {
332 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
333 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
334 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
335 }
336 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)337 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
338 			      struct ext4_group_desc *bg)
339 {
340 	return le32_to_cpu(bg->bg_inode_table_lo) |
341 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
342 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
343 }
344 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)345 __u32 ext4_free_group_clusters(struct super_block *sb,
346 			       struct ext4_group_desc *bg)
347 {
348 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
349 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
350 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
351 }
352 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)353 __u32 ext4_free_inodes_count(struct super_block *sb,
354 			      struct ext4_group_desc *bg)
355 {
356 	return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) |
357 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
358 		 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0);
359 }
360 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)361 __u32 ext4_used_dirs_count(struct super_block *sb,
362 			      struct ext4_group_desc *bg)
363 {
364 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
365 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
366 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
367 }
368 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)369 __u32 ext4_itable_unused_count(struct super_block *sb,
370 			      struct ext4_group_desc *bg)
371 {
372 	return le16_to_cpu(bg->bg_itable_unused_lo) |
373 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
374 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
375 }
376 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)377 void ext4_block_bitmap_set(struct super_block *sb,
378 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
379 {
380 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
381 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
382 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
383 }
384 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)385 void ext4_inode_bitmap_set(struct super_block *sb,
386 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
387 {
388 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
389 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
390 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
391 }
392 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)393 void ext4_inode_table_set(struct super_block *sb,
394 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
395 {
396 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
397 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
398 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
399 }
400 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)401 void ext4_free_group_clusters_set(struct super_block *sb,
402 				  struct ext4_group_desc *bg, __u32 count)
403 {
404 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
405 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
406 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
407 }
408 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)409 void ext4_free_inodes_set(struct super_block *sb,
410 			  struct ext4_group_desc *bg, __u32 count)
411 {
412 	WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count));
413 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
414 		WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16));
415 }
416 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)417 void ext4_used_dirs_set(struct super_block *sb,
418 			  struct ext4_group_desc *bg, __u32 count)
419 {
420 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
421 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
422 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
423 }
424 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)425 void ext4_itable_unused_set(struct super_block *sb,
426 			  struct ext4_group_desc *bg, __u32 count)
427 {
428 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
429 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
430 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
431 }
432 
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)433 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
434 {
435 	now = clamp_val(now, 0, (1ull << 40) - 1);
436 
437 	*lo = cpu_to_le32(lower_32_bits(now));
438 	*hi = upper_32_bits(now);
439 }
440 
__ext4_get_tstamp(__le32 * lo,__u8 * hi)441 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
442 {
443 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
444 }
445 #define ext4_update_tstamp(es, tstamp) \
446 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
447 			     ktime_get_real_seconds())
448 #define ext4_get_tstamp(es, tstamp) \
449 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
450 
451 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
452 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
453 
454 /*
455  * The ext4_maybe_update_superblock() function checks and updates the
456  * superblock if needed.
457  *
458  * This function is designed to update the on-disk superblock only under
459  * certain conditions to prevent excessive disk writes and unnecessary
460  * waking of the disk from sleep. The superblock will be updated if:
461  * 1. More than an hour has passed since the last superblock update, and
462  * 2. More than 16MB have been written since the last superblock update.
463  *
464  * @sb: The superblock
465  */
ext4_maybe_update_superblock(struct super_block * sb)466 static void ext4_maybe_update_superblock(struct super_block *sb)
467 {
468 	struct ext4_sb_info *sbi = EXT4_SB(sb);
469 	struct ext4_super_block *es = sbi->s_es;
470 	journal_t *journal = sbi->s_journal;
471 	time64_t now;
472 	__u64 last_update;
473 	__u64 lifetime_write_kbytes;
474 	__u64 diff_size;
475 
476 	if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
477 	    !journal || (journal->j_flags & JBD2_UNMOUNT))
478 		return;
479 
480 	now = ktime_get_real_seconds();
481 	last_update = ext4_get_tstamp(es, s_wtime);
482 
483 	if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
484 		return;
485 
486 	lifetime_write_kbytes = sbi->s_kbytes_written +
487 		((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
488 		  sbi->s_sectors_written_start) >> 1);
489 
490 	/* Get the number of kilobytes not written to disk to account
491 	 * for statistics and compare with a multiple of 16 MB. This
492 	 * is used to determine when the next superblock commit should
493 	 * occur (i.e. not more often than once per 16MB if there was
494 	 * less written in an hour).
495 	 */
496 	diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
497 
498 	if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
499 		schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
500 }
501 
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)502 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
503 {
504 	struct super_block		*sb = journal->j_private;
505 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
506 	int				error = is_journal_aborted(journal);
507 	struct ext4_journal_cb_entry	*jce;
508 
509 	BUG_ON(txn->t_state == T_FINISHED);
510 
511 	ext4_process_freed_data(sb, txn->t_tid);
512 	ext4_maybe_update_superblock(sb);
513 
514 	spin_lock(&sbi->s_md_lock);
515 	while (!list_empty(&txn->t_private_list)) {
516 		jce = list_entry(txn->t_private_list.next,
517 				 struct ext4_journal_cb_entry, jce_list);
518 		list_del_init(&jce->jce_list);
519 		spin_unlock(&sbi->s_md_lock);
520 		jce->jce_func(sb, jce, error);
521 		spin_lock(&sbi->s_md_lock);
522 	}
523 	spin_unlock(&sbi->s_md_lock);
524 }
525 
526 /*
527  * This writepage callback for write_cache_pages()
528  * takes care of a few cases after page cleaning.
529  *
530  * write_cache_pages() already checks for dirty pages
531  * and calls clear_page_dirty_for_io(), which we want,
532  * to write protect the pages.
533  *
534  * However, we may have to redirty a page (see below.)
535  */
ext4_journalled_writepage_callback(struct folio * folio,struct writeback_control * wbc,void * data)536 static int ext4_journalled_writepage_callback(struct folio *folio,
537 					      struct writeback_control *wbc,
538 					      void *data)
539 {
540 	transaction_t *transaction = (transaction_t *) data;
541 	struct buffer_head *bh, *head;
542 	struct journal_head *jh;
543 
544 	bh = head = folio_buffers(folio);
545 	do {
546 		/*
547 		 * We have to redirty a page in these cases:
548 		 * 1) If buffer is dirty, it means the page was dirty because it
549 		 * contains a buffer that needs checkpointing. So the dirty bit
550 		 * needs to be preserved so that checkpointing writes the buffer
551 		 * properly.
552 		 * 2) If buffer is not part of the committing transaction
553 		 * (we may have just accidentally come across this buffer because
554 		 * inode range tracking is not exact) or if the currently running
555 		 * transaction already contains this buffer as well, dirty bit
556 		 * needs to be preserved so that the buffer gets writeprotected
557 		 * properly on running transaction's commit.
558 		 */
559 		jh = bh2jh(bh);
560 		if (buffer_dirty(bh) ||
561 		    (jh && (jh->b_transaction != transaction ||
562 			    jh->b_next_transaction))) {
563 			folio_redirty_for_writepage(wbc, folio);
564 			goto out;
565 		}
566 	} while ((bh = bh->b_this_page) != head);
567 
568 out:
569 	return AOP_WRITEPAGE_ACTIVATE;
570 }
571 
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)572 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
573 {
574 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
575 	struct writeback_control wbc = {
576 		.sync_mode =  WB_SYNC_ALL,
577 		.nr_to_write = LONG_MAX,
578 		.range_start = jinode->i_dirty_start,
579 		.range_end = jinode->i_dirty_end,
580         };
581 
582 	return write_cache_pages(mapping, &wbc,
583 				 ext4_journalled_writepage_callback,
584 				 jinode->i_transaction);
585 }
586 
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)587 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
588 {
589 	int ret;
590 
591 	if (ext4_should_journal_data(jinode->i_vfs_inode))
592 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
593 	else
594 		ret = ext4_normal_submit_inode_data_buffers(jinode);
595 	return ret;
596 }
597 
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)598 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
599 {
600 	int ret = 0;
601 
602 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
603 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
604 
605 	return ret;
606 }
607 
system_going_down(void)608 static bool system_going_down(void)
609 {
610 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
611 		|| system_state == SYSTEM_RESTART;
612 }
613 
614 struct ext4_err_translation {
615 	int code;
616 	int errno;
617 };
618 
619 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
620 
621 static struct ext4_err_translation err_translation[] = {
622 	EXT4_ERR_TRANSLATE(EIO),
623 	EXT4_ERR_TRANSLATE(ENOMEM),
624 	EXT4_ERR_TRANSLATE(EFSBADCRC),
625 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
626 	EXT4_ERR_TRANSLATE(ENOSPC),
627 	EXT4_ERR_TRANSLATE(ENOKEY),
628 	EXT4_ERR_TRANSLATE(EROFS),
629 	EXT4_ERR_TRANSLATE(EFBIG),
630 	EXT4_ERR_TRANSLATE(EEXIST),
631 	EXT4_ERR_TRANSLATE(ERANGE),
632 	EXT4_ERR_TRANSLATE(EOVERFLOW),
633 	EXT4_ERR_TRANSLATE(EBUSY),
634 	EXT4_ERR_TRANSLATE(ENOTDIR),
635 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
636 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
637 	EXT4_ERR_TRANSLATE(EFAULT),
638 };
639 
ext4_errno_to_code(int errno)640 static int ext4_errno_to_code(int errno)
641 {
642 	int i;
643 
644 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
645 		if (err_translation[i].errno == errno)
646 			return err_translation[i].code;
647 	return EXT4_ERR_UNKNOWN;
648 }
649 
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)650 static void save_error_info(struct super_block *sb, int error,
651 			    __u32 ino, __u64 block,
652 			    const char *func, unsigned int line)
653 {
654 	struct ext4_sb_info *sbi = EXT4_SB(sb);
655 
656 	/* We default to EFSCORRUPTED error... */
657 	if (error == 0)
658 		error = EFSCORRUPTED;
659 
660 	spin_lock(&sbi->s_error_lock);
661 	sbi->s_add_error_count++;
662 	sbi->s_last_error_code = error;
663 	sbi->s_last_error_line = line;
664 	sbi->s_last_error_ino = ino;
665 	sbi->s_last_error_block = block;
666 	sbi->s_last_error_func = func;
667 	sbi->s_last_error_time = ktime_get_real_seconds();
668 	if (!sbi->s_first_error_time) {
669 		sbi->s_first_error_code = error;
670 		sbi->s_first_error_line = line;
671 		sbi->s_first_error_ino = ino;
672 		sbi->s_first_error_block = block;
673 		sbi->s_first_error_func = func;
674 		sbi->s_first_error_time = sbi->s_last_error_time;
675 	}
676 	spin_unlock(&sbi->s_error_lock);
677 }
678 
679 /* Deal with the reporting of failure conditions on a filesystem such as
680  * inconsistencies detected or read IO failures.
681  *
682  * On ext2, we can store the error state of the filesystem in the
683  * superblock.  That is not possible on ext4, because we may have other
684  * write ordering constraints on the superblock which prevent us from
685  * writing it out straight away; and given that the journal is about to
686  * be aborted, we can't rely on the current, or future, transactions to
687  * write out the superblock safely.
688  *
689  * We'll just use the jbd2_journal_abort() error code to record an error in
690  * the journal instead.  On recovery, the journal will complain about
691  * that error until we've noted it down and cleared it.
692  *
693  * If force_ro is set, we unconditionally force the filesystem into an
694  * ABORT|READONLY state, unless the error response on the fs has been set to
695  * panic in which case we take the easy way out and panic immediately. This is
696  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
697  * at a critical moment in log management.
698  */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)699 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
700 			      __u32 ino, __u64 block,
701 			      const char *func, unsigned int line)
702 {
703 	journal_t *journal = EXT4_SB(sb)->s_journal;
704 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
705 
706 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
707 	if (test_opt(sb, WARN_ON_ERROR))
708 		WARN_ON_ONCE(1);
709 
710 	if (!continue_fs && !sb_rdonly(sb)) {
711 		set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
712 		if (journal)
713 			jbd2_journal_abort(journal, -EIO);
714 	}
715 
716 	if (!bdev_read_only(sb->s_bdev)) {
717 		save_error_info(sb, error, ino, block, func, line);
718 		/*
719 		 * In case the fs should keep running, we need to writeout
720 		 * superblock through the journal. Due to lock ordering
721 		 * constraints, it may not be safe to do it right here so we
722 		 * defer superblock flushing to a workqueue.
723 		 */
724 		if (continue_fs && journal)
725 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
726 		else
727 			ext4_commit_super(sb);
728 	}
729 
730 	/*
731 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
732 	 * could panic during 'reboot -f' as the underlying device got already
733 	 * disabled.
734 	 */
735 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
736 		panic("EXT4-fs (device %s): panic forced after error\n",
737 			sb->s_id);
738 	}
739 
740 	if (sb_rdonly(sb) || continue_fs)
741 		return;
742 
743 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
744 	/*
745 	 * EXT4_FLAGS_SHUTDOWN was set which stops all filesystem
746 	 * modifications. We don't set SB_RDONLY because that requires
747 	 * sb->s_umount semaphore and setting it without proper remount
748 	 * procedure is confusing code such as freeze_super() leading to
749 	 * deadlocks and other problems.
750 	 */
751 }
752 
update_super_work(struct work_struct * work)753 static void update_super_work(struct work_struct *work)
754 {
755 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
756 						s_sb_upd_work);
757 	journal_t *journal = sbi->s_journal;
758 	handle_t *handle;
759 
760 	/*
761 	 * If the journal is still running, we have to write out superblock
762 	 * through the journal to avoid collisions of other journalled sb
763 	 * updates.
764 	 *
765 	 * We use directly jbd2 functions here to avoid recursing back into
766 	 * ext4 error handling code during handling of previous errors.
767 	 */
768 	if (!sb_rdonly(sbi->s_sb) && journal) {
769 		struct buffer_head *sbh = sbi->s_sbh;
770 		bool call_notify_err = false;
771 
772 		handle = jbd2_journal_start(journal, 1);
773 		if (IS_ERR(handle))
774 			goto write_directly;
775 		if (jbd2_journal_get_write_access(handle, sbh)) {
776 			jbd2_journal_stop(handle);
777 			goto write_directly;
778 		}
779 
780 		if (sbi->s_add_error_count > 0)
781 			call_notify_err = true;
782 
783 		ext4_update_super(sbi->s_sb);
784 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
785 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
786 				 "superblock detected");
787 			clear_buffer_write_io_error(sbh);
788 			set_buffer_uptodate(sbh);
789 		}
790 
791 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
792 			jbd2_journal_stop(handle);
793 			goto write_directly;
794 		}
795 		jbd2_journal_stop(handle);
796 
797 		if (call_notify_err)
798 			ext4_notify_error_sysfs(sbi);
799 
800 		return;
801 	}
802 write_directly:
803 	/*
804 	 * Write through journal failed. Write sb directly to get error info
805 	 * out and hope for the best.
806 	 */
807 	ext4_commit_super(sbi->s_sb);
808 	ext4_notify_error_sysfs(sbi);
809 }
810 
811 #define ext4_error_ratelimit(sb)					\
812 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
813 			     "EXT4-fs error")
814 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)815 void __ext4_error(struct super_block *sb, const char *function,
816 		  unsigned int line, bool force_ro, int error, __u64 block,
817 		  const char *fmt, ...)
818 {
819 	struct va_format vaf;
820 	va_list args;
821 
822 	if (unlikely(ext4_forced_shutdown(sb)))
823 		return;
824 
825 	trace_ext4_error(sb, function, line);
826 	if (ext4_error_ratelimit(sb)) {
827 		va_start(args, fmt);
828 		vaf.fmt = fmt;
829 		vaf.va = &args;
830 		printk(KERN_CRIT
831 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
832 		       sb->s_id, function, line, current->comm, &vaf);
833 		va_end(args);
834 	}
835 	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
836 
837 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
838 }
839 
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)840 void __ext4_error_inode(struct inode *inode, const char *function,
841 			unsigned int line, ext4_fsblk_t block, int error,
842 			const char *fmt, ...)
843 {
844 	va_list args;
845 	struct va_format vaf;
846 
847 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
848 		return;
849 
850 	trace_ext4_error(inode->i_sb, function, line);
851 	if (ext4_error_ratelimit(inode->i_sb)) {
852 		va_start(args, fmt);
853 		vaf.fmt = fmt;
854 		vaf.va = &args;
855 		if (block)
856 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
857 			       "inode #%lu: block %llu: comm %s: %pV\n",
858 			       inode->i_sb->s_id, function, line, inode->i_ino,
859 			       block, current->comm, &vaf);
860 		else
861 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
862 			       "inode #%lu: comm %s: %pV\n",
863 			       inode->i_sb->s_id, function, line, inode->i_ino,
864 			       current->comm, &vaf);
865 		va_end(args);
866 	}
867 	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
868 
869 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
870 			  function, line);
871 }
872 
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)873 void __ext4_error_file(struct file *file, const char *function,
874 		       unsigned int line, ext4_fsblk_t block,
875 		       const char *fmt, ...)
876 {
877 	va_list args;
878 	struct va_format vaf;
879 	struct inode *inode = file_inode(file);
880 	char pathname[80], *path;
881 
882 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
883 		return;
884 
885 	trace_ext4_error(inode->i_sb, function, line);
886 	if (ext4_error_ratelimit(inode->i_sb)) {
887 		path = file_path(file, pathname, sizeof(pathname));
888 		if (IS_ERR(path))
889 			path = "(unknown)";
890 		va_start(args, fmt);
891 		vaf.fmt = fmt;
892 		vaf.va = &args;
893 		if (block)
894 			printk(KERN_CRIT
895 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
896 			       "block %llu: comm %s: path %s: %pV\n",
897 			       inode->i_sb->s_id, function, line, inode->i_ino,
898 			       block, current->comm, path, &vaf);
899 		else
900 			printk(KERN_CRIT
901 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
902 			       "comm %s: path %s: %pV\n",
903 			       inode->i_sb->s_id, function, line, inode->i_ino,
904 			       current->comm, path, &vaf);
905 		va_end(args);
906 	}
907 	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
908 
909 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
910 			  function, line);
911 }
912 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])913 const char *ext4_decode_error(struct super_block *sb, int errno,
914 			      char nbuf[16])
915 {
916 	char *errstr = NULL;
917 
918 	switch (errno) {
919 	case -EFSCORRUPTED:
920 		errstr = "Corrupt filesystem";
921 		break;
922 	case -EFSBADCRC:
923 		errstr = "Filesystem failed CRC";
924 		break;
925 	case -EIO:
926 		errstr = "IO failure";
927 		break;
928 	case -ENOMEM:
929 		errstr = "Out of memory";
930 		break;
931 	case -EROFS:
932 		if (!sb || (EXT4_SB(sb)->s_journal &&
933 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
934 			errstr = "Journal has aborted";
935 		else
936 			errstr = "Readonly filesystem";
937 		break;
938 	default:
939 		/* If the caller passed in an extra buffer for unknown
940 		 * errors, textualise them now.  Else we just return
941 		 * NULL. */
942 		if (nbuf) {
943 			/* Check for truncated error codes... */
944 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
945 				errstr = nbuf;
946 		}
947 		break;
948 	}
949 
950 	return errstr;
951 }
952 
953 /* __ext4_std_error decodes expected errors from journaling functions
954  * automatically and invokes the appropriate error response.  */
955 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)956 void __ext4_std_error(struct super_block *sb, const char *function,
957 		      unsigned int line, int errno)
958 {
959 	char nbuf[16];
960 	const char *errstr;
961 
962 	if (unlikely(ext4_forced_shutdown(sb)))
963 		return;
964 
965 	/* Special case: if the error is EROFS, and we're not already
966 	 * inside a transaction, then there's really no point in logging
967 	 * an error. */
968 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
969 		return;
970 
971 	if (ext4_error_ratelimit(sb)) {
972 		errstr = ext4_decode_error(sb, errno, nbuf);
973 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
974 		       sb->s_id, function, line, errstr);
975 	}
976 	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
977 
978 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
979 }
980 
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)981 void __ext4_msg(struct super_block *sb,
982 		const char *prefix, const char *fmt, ...)
983 {
984 	struct va_format vaf;
985 	va_list args;
986 
987 	if (sb) {
988 		atomic_inc(&EXT4_SB(sb)->s_msg_count);
989 		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
990 				  "EXT4-fs"))
991 			return;
992 	}
993 
994 	va_start(args, fmt);
995 	vaf.fmt = fmt;
996 	vaf.va = &args;
997 	if (sb)
998 		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
999 	else
1000 		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1001 	va_end(args);
1002 }
1003 
ext4_warning_ratelimit(struct super_block * sb)1004 static int ext4_warning_ratelimit(struct super_block *sb)
1005 {
1006 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
1007 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1008 			    "EXT4-fs warning");
1009 }
1010 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)1011 void __ext4_warning(struct super_block *sb, const char *function,
1012 		    unsigned int line, const char *fmt, ...)
1013 {
1014 	struct va_format vaf;
1015 	va_list args;
1016 
1017 	if (!ext4_warning_ratelimit(sb))
1018 		return;
1019 
1020 	va_start(args, fmt);
1021 	vaf.fmt = fmt;
1022 	vaf.va = &args;
1023 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1024 	       sb->s_id, function, line, &vaf);
1025 	va_end(args);
1026 }
1027 
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)1028 void __ext4_warning_inode(const struct inode *inode, const char *function,
1029 			  unsigned int line, const char *fmt, ...)
1030 {
1031 	struct va_format vaf;
1032 	va_list args;
1033 
1034 	if (!ext4_warning_ratelimit(inode->i_sb))
1035 		return;
1036 
1037 	va_start(args, fmt);
1038 	vaf.fmt = fmt;
1039 	vaf.va = &args;
1040 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1041 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1042 	       function, line, inode->i_ino, current->comm, &vaf);
1043 	va_end(args);
1044 }
1045 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)1046 void __ext4_grp_locked_error(const char *function, unsigned int line,
1047 			     struct super_block *sb, ext4_group_t grp,
1048 			     unsigned long ino, ext4_fsblk_t block,
1049 			     const char *fmt, ...)
1050 __releases(bitlock)
1051 __acquires(bitlock)
1052 {
1053 	struct va_format vaf;
1054 	va_list args;
1055 
1056 	if (unlikely(ext4_forced_shutdown(sb)))
1057 		return;
1058 
1059 	trace_ext4_error(sb, function, line);
1060 	if (ext4_error_ratelimit(sb)) {
1061 		va_start(args, fmt);
1062 		vaf.fmt = fmt;
1063 		vaf.va = &args;
1064 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1065 		       sb->s_id, function, line, grp);
1066 		if (ino)
1067 			printk(KERN_CONT "inode %lu: ", ino);
1068 		if (block)
1069 			printk(KERN_CONT "block %llu:",
1070 			       (unsigned long long) block);
1071 		printk(KERN_CONT "%pV\n", &vaf);
1072 		va_end(args);
1073 	}
1074 
1075 	if (test_opt(sb, ERRORS_CONT)) {
1076 		if (test_opt(sb, WARN_ON_ERROR))
1077 			WARN_ON_ONCE(1);
1078 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1079 		if (!bdev_read_only(sb->s_bdev)) {
1080 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1081 					line);
1082 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1083 		}
1084 		return;
1085 	}
1086 	ext4_unlock_group(sb, grp);
1087 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1088 	/*
1089 	 * We only get here in the ERRORS_RO case; relocking the group
1090 	 * may be dangerous, but nothing bad will happen since the
1091 	 * filesystem will have already been marked read/only and the
1092 	 * journal has been aborted.  We return 1 as a hint to callers
1093 	 * who might what to use the return value from
1094 	 * ext4_grp_locked_error() to distinguish between the
1095 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1096 	 * aggressively from the ext4 function in question, with a
1097 	 * more appropriate error code.
1098 	 */
1099 	ext4_lock_group(sb, grp);
1100 	return;
1101 }
1102 
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1103 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1104 				     ext4_group_t group,
1105 				     unsigned int flags)
1106 {
1107 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1108 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1109 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1110 	int ret;
1111 
1112 	if (!grp || !gdp)
1113 		return;
1114 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1115 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1116 					    &grp->bb_state);
1117 		if (!ret)
1118 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1119 					   grp->bb_free);
1120 	}
1121 
1122 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1123 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1124 					    &grp->bb_state);
1125 		if (!ret && gdp) {
1126 			int count;
1127 
1128 			count = ext4_free_inodes_count(sb, gdp);
1129 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1130 					   count);
1131 		}
1132 	}
1133 }
1134 
ext4_update_dynamic_rev(struct super_block * sb)1135 void ext4_update_dynamic_rev(struct super_block *sb)
1136 {
1137 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1138 
1139 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1140 		return;
1141 
1142 	ext4_warning(sb,
1143 		     "updating to rev %d because of new feature flag, "
1144 		     "running e2fsck is recommended",
1145 		     EXT4_DYNAMIC_REV);
1146 
1147 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1148 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1149 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1150 	/* leave es->s_feature_*compat flags alone */
1151 	/* es->s_uuid will be set by e2fsck if empty */
1152 
1153 	/*
1154 	 * The rest of the superblock fields should be zero, and if not it
1155 	 * means they are likely already in use, so leave them alone.  We
1156 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1157 	 */
1158 }
1159 
orphan_list_entry(struct list_head * l)1160 static inline struct inode *orphan_list_entry(struct list_head *l)
1161 {
1162 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1163 }
1164 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1165 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1166 {
1167 	struct list_head *l;
1168 
1169 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1170 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1171 
1172 	printk(KERN_ERR "sb_info orphan list:\n");
1173 	list_for_each(l, &sbi->s_orphan) {
1174 		struct inode *inode = orphan_list_entry(l);
1175 		printk(KERN_ERR "  "
1176 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1177 		       inode->i_sb->s_id, inode->i_ino, inode,
1178 		       inode->i_mode, inode->i_nlink,
1179 		       NEXT_ORPHAN(inode));
1180 	}
1181 }
1182 
1183 #ifdef CONFIG_QUOTA
1184 static int ext4_quota_off(struct super_block *sb, int type);
1185 
ext4_quotas_off(struct super_block * sb,int type)1186 static inline void ext4_quotas_off(struct super_block *sb, int type)
1187 {
1188 	BUG_ON(type > EXT4_MAXQUOTAS);
1189 
1190 	/* Use our quota_off function to clear inode flags etc. */
1191 	for (type--; type >= 0; type--)
1192 		ext4_quota_off(sb, type);
1193 }
1194 
1195 /*
1196  * This is a helper function which is used in the mount/remount
1197  * codepaths (which holds s_umount) to fetch the quota file name.
1198  */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1199 static inline char *get_qf_name(struct super_block *sb,
1200 				struct ext4_sb_info *sbi,
1201 				int type)
1202 {
1203 	return rcu_dereference_protected(sbi->s_qf_names[type],
1204 					 lockdep_is_held(&sb->s_umount));
1205 }
1206 #else
ext4_quotas_off(struct super_block * sb,int type)1207 static inline void ext4_quotas_off(struct super_block *sb, int type)
1208 {
1209 }
1210 #endif
1211 
ext4_percpu_param_init(struct ext4_sb_info * sbi)1212 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1213 {
1214 	ext4_fsblk_t block;
1215 	int err;
1216 
1217 	block = ext4_count_free_clusters(sbi->s_sb);
1218 	ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1219 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1220 				  GFP_KERNEL);
1221 	if (!err) {
1222 		unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1223 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1224 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1225 					  GFP_KERNEL);
1226 	}
1227 	if (!err)
1228 		err = percpu_counter_init(&sbi->s_dirs_counter,
1229 					  ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1230 	if (!err)
1231 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1232 					  GFP_KERNEL);
1233 	if (!err)
1234 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1235 					  GFP_KERNEL);
1236 	if (!err)
1237 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1238 
1239 	if (err)
1240 		ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1241 
1242 	return err;
1243 }
1244 
ext4_percpu_param_destroy(struct ext4_sb_info * sbi)1245 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1246 {
1247 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1248 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1249 	percpu_counter_destroy(&sbi->s_dirs_counter);
1250 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1251 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1252 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1253 }
1254 
ext4_group_desc_free(struct ext4_sb_info * sbi)1255 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1256 {
1257 	struct buffer_head **group_desc;
1258 	int i;
1259 
1260 	rcu_read_lock();
1261 	group_desc = rcu_dereference(sbi->s_group_desc);
1262 	for (i = 0; i < sbi->s_gdb_count; i++)
1263 		brelse(group_desc[i]);
1264 	kvfree(group_desc);
1265 	rcu_read_unlock();
1266 }
1267 
ext4_flex_groups_free(struct ext4_sb_info * sbi)1268 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1269 {
1270 	struct flex_groups **flex_groups;
1271 	int i;
1272 
1273 	rcu_read_lock();
1274 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1275 	if (flex_groups) {
1276 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1277 			kvfree(flex_groups[i]);
1278 		kvfree(flex_groups);
1279 	}
1280 	rcu_read_unlock();
1281 }
1282 
ext4_put_super(struct super_block * sb)1283 static void ext4_put_super(struct super_block *sb)
1284 {
1285 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1286 	struct ext4_super_block *es = sbi->s_es;
1287 	int aborted = 0;
1288 	int err;
1289 
1290 	/*
1291 	 * Unregister sysfs before destroying jbd2 journal.
1292 	 * Since we could still access attr_journal_task attribute via sysfs
1293 	 * path which could have sbi->s_journal->j_task as NULL
1294 	 * Unregister sysfs before flush sbi->s_sb_upd_work.
1295 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1296 	 * read metadata verify failed then will queue error work.
1297 	 * update_super_work will call start_this_handle may trigger
1298 	 * BUG_ON.
1299 	 */
1300 	ext4_unregister_sysfs(sb);
1301 
1302 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1303 		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1304 			 &sb->s_uuid);
1305 
1306 	ext4_unregister_li_request(sb);
1307 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1308 
1309 	flush_work(&sbi->s_sb_upd_work);
1310 	destroy_workqueue(sbi->rsv_conversion_wq);
1311 	ext4_release_orphan_info(sb);
1312 
1313 	if (sbi->s_journal) {
1314 		aborted = is_journal_aborted(sbi->s_journal);
1315 		err = jbd2_journal_destroy(sbi->s_journal);
1316 		sbi->s_journal = NULL;
1317 		if ((err < 0) && !aborted) {
1318 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1319 		}
1320 	}
1321 
1322 	ext4_es_unregister_shrinker(sbi);
1323 	timer_shutdown_sync(&sbi->s_err_report);
1324 	ext4_release_system_zone(sb);
1325 	ext4_mb_release(sb);
1326 	ext4_ext_release(sb);
1327 
1328 	if (!sb_rdonly(sb) && !aborted) {
1329 		ext4_clear_feature_journal_needs_recovery(sb);
1330 		ext4_clear_feature_orphan_present(sb);
1331 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1332 	}
1333 	if (!sb_rdonly(sb))
1334 		ext4_commit_super(sb);
1335 
1336 	ext4_group_desc_free(sbi);
1337 	ext4_flex_groups_free(sbi);
1338 
1339 	WARN_ON_ONCE(!(sbi->s_mount_state & EXT4_ERROR_FS) &&
1340 		     percpu_counter_sum(&sbi->s_dirtyclusters_counter));
1341 	ext4_percpu_param_destroy(sbi);
1342 #ifdef CONFIG_QUOTA
1343 	for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1344 		kfree(get_qf_name(sb, sbi, i));
1345 #endif
1346 
1347 	/* Debugging code just in case the in-memory inode orphan list
1348 	 * isn't empty.  The on-disk one can be non-empty if we've
1349 	 * detected an error and taken the fs readonly, but the
1350 	 * in-memory list had better be clean by this point. */
1351 	if (!list_empty(&sbi->s_orphan))
1352 		dump_orphan_list(sb, sbi);
1353 	ASSERT(list_empty(&sbi->s_orphan));
1354 
1355 	sync_blockdev(sb->s_bdev);
1356 	invalidate_bdev(sb->s_bdev);
1357 	if (sbi->s_journal_bdev_file) {
1358 		/*
1359 		 * Invalidate the journal device's buffers.  We don't want them
1360 		 * floating about in memory - the physical journal device may
1361 		 * hotswapped, and it breaks the `ro-after' testing code.
1362 		 */
1363 		sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1364 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
1365 	}
1366 
1367 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1368 	sbi->s_ea_inode_cache = NULL;
1369 
1370 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1371 	sbi->s_ea_block_cache = NULL;
1372 
1373 	ext4_stop_mmpd(sbi);
1374 
1375 	brelse(sbi->s_sbh);
1376 	sb->s_fs_info = NULL;
1377 	/*
1378 	 * Now that we are completely done shutting down the
1379 	 * superblock, we need to actually destroy the kobject.
1380 	 */
1381 	kobject_put(&sbi->s_kobj);
1382 	wait_for_completion(&sbi->s_kobj_unregister);
1383 	kfree(sbi->s_blockgroup_lock);
1384 	fs_put_dax(sbi->s_daxdev, NULL);
1385 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1386 #if IS_ENABLED(CONFIG_UNICODE)
1387 	utf8_unload(sb->s_encoding);
1388 #endif
1389 	kfree(sbi);
1390 }
1391 
1392 static struct kmem_cache *ext4_inode_cachep;
1393 
1394 /*
1395  * Called inside transaction, so use GFP_NOFS
1396  */
ext4_alloc_inode(struct super_block * sb)1397 static struct inode *ext4_alloc_inode(struct super_block *sb)
1398 {
1399 	struct ext4_inode_info *ei;
1400 
1401 	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1402 	if (!ei)
1403 		return NULL;
1404 
1405 	inode_set_iversion(&ei->vfs_inode, 1);
1406 	ei->i_flags = 0;
1407 	spin_lock_init(&ei->i_raw_lock);
1408 	ei->i_prealloc_node = RB_ROOT;
1409 	atomic_set(&ei->i_prealloc_active, 0);
1410 	rwlock_init(&ei->i_prealloc_lock);
1411 	ext4_es_init_tree(&ei->i_es_tree);
1412 	rwlock_init(&ei->i_es_lock);
1413 	INIT_LIST_HEAD(&ei->i_es_list);
1414 	ei->i_es_all_nr = 0;
1415 	ei->i_es_shk_nr = 0;
1416 	ei->i_es_shrink_lblk = 0;
1417 	ei->i_reserved_data_blocks = 0;
1418 	spin_lock_init(&(ei->i_block_reservation_lock));
1419 	ext4_init_pending_tree(&ei->i_pending_tree);
1420 #ifdef CONFIG_QUOTA
1421 	ei->i_reserved_quota = 0;
1422 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1423 #endif
1424 	ei->jinode = NULL;
1425 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1426 	spin_lock_init(&ei->i_completed_io_lock);
1427 	ei->i_sync_tid = 0;
1428 	ei->i_datasync_tid = 0;
1429 	atomic_set(&ei->i_unwritten, 0);
1430 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1431 	ext4_fc_init_inode(&ei->vfs_inode);
1432 	mutex_init(&ei->i_fc_lock);
1433 	return &ei->vfs_inode;
1434 }
1435 
ext4_drop_inode(struct inode * inode)1436 static int ext4_drop_inode(struct inode *inode)
1437 {
1438 	int drop = generic_drop_inode(inode);
1439 
1440 	if (!drop)
1441 		drop = fscrypt_drop_inode(inode);
1442 
1443 	trace_ext4_drop_inode(inode, drop);
1444 	return drop;
1445 }
1446 
ext4_free_in_core_inode(struct inode * inode)1447 static void ext4_free_in_core_inode(struct inode *inode)
1448 {
1449 	fscrypt_free_inode(inode);
1450 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1451 		pr_warn("%s: inode %ld still in fc list",
1452 			__func__, inode->i_ino);
1453 	}
1454 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1455 }
1456 
ext4_destroy_inode(struct inode * inode)1457 static void ext4_destroy_inode(struct inode *inode)
1458 {
1459 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1460 		ext4_msg(inode->i_sb, KERN_ERR,
1461 			 "Inode %lu (%p): orphan list check failed!",
1462 			 inode->i_ino, EXT4_I(inode));
1463 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1464 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1465 				true);
1466 		dump_stack();
1467 	}
1468 
1469 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ERROR_FS) &&
1470 	    WARN_ON_ONCE(EXT4_I(inode)->i_reserved_data_blocks))
1471 		ext4_msg(inode->i_sb, KERN_ERR,
1472 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1473 			 inode->i_ino, EXT4_I(inode),
1474 			 EXT4_I(inode)->i_reserved_data_blocks);
1475 }
1476 
ext4_shutdown(struct super_block * sb)1477 static void ext4_shutdown(struct super_block *sb)
1478 {
1479        ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1480 }
1481 
init_once(void * foo)1482 static void init_once(void *foo)
1483 {
1484 	struct ext4_inode_info *ei = foo;
1485 
1486 	INIT_LIST_HEAD(&ei->i_orphan);
1487 	init_rwsem(&ei->xattr_sem);
1488 	init_rwsem(&ei->i_data_sem);
1489 	inode_init_once(&ei->vfs_inode);
1490 	ext4_fc_init_inode(&ei->vfs_inode);
1491 }
1492 
init_inodecache(void)1493 static int __init init_inodecache(void)
1494 {
1495 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1496 				sizeof(struct ext4_inode_info), 0,
1497 				SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
1498 				offsetof(struct ext4_inode_info, i_data),
1499 				sizeof_field(struct ext4_inode_info, i_data),
1500 				init_once);
1501 	if (ext4_inode_cachep == NULL)
1502 		return -ENOMEM;
1503 	return 0;
1504 }
1505 
destroy_inodecache(void)1506 static void destroy_inodecache(void)
1507 {
1508 	/*
1509 	 * Make sure all delayed rcu free inodes are flushed before we
1510 	 * destroy cache.
1511 	 */
1512 	rcu_barrier();
1513 	kmem_cache_destroy(ext4_inode_cachep);
1514 }
1515 
ext4_clear_inode(struct inode * inode)1516 void ext4_clear_inode(struct inode *inode)
1517 {
1518 	ext4_fc_del(inode);
1519 	invalidate_inode_buffers(inode);
1520 	clear_inode(inode);
1521 	ext4_discard_preallocations(inode);
1522 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1523 	dquot_drop(inode);
1524 	if (EXT4_I(inode)->jinode) {
1525 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1526 					       EXT4_I(inode)->jinode);
1527 		jbd2_free_inode(EXT4_I(inode)->jinode);
1528 		EXT4_I(inode)->jinode = NULL;
1529 	}
1530 	fscrypt_put_encryption_info(inode);
1531 	fsverity_cleanup_inode(inode);
1532 }
1533 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1534 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1535 					u64 ino, u32 generation)
1536 {
1537 	struct inode *inode;
1538 
1539 	/*
1540 	 * Currently we don't know the generation for parent directory, so
1541 	 * a generation of 0 means "accept any"
1542 	 */
1543 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1544 	if (IS_ERR(inode))
1545 		return ERR_CAST(inode);
1546 	if (generation && inode->i_generation != generation) {
1547 		iput(inode);
1548 		return ERR_PTR(-ESTALE);
1549 	}
1550 
1551 	return inode;
1552 }
1553 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1554 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1555 					int fh_len, int fh_type)
1556 {
1557 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1558 				    ext4_nfs_get_inode);
1559 }
1560 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1561 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1562 					int fh_len, int fh_type)
1563 {
1564 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1565 				    ext4_nfs_get_inode);
1566 }
1567 
ext4_nfs_commit_metadata(struct inode * inode)1568 static int ext4_nfs_commit_metadata(struct inode *inode)
1569 {
1570 	struct writeback_control wbc = {
1571 		.sync_mode = WB_SYNC_ALL
1572 	};
1573 
1574 	trace_ext4_nfs_commit_metadata(inode);
1575 	return ext4_write_inode(inode, &wbc);
1576 }
1577 
1578 #ifdef CONFIG_QUOTA
1579 static const char * const quotatypes[] = INITQFNAMES;
1580 #define QTYPE2NAME(t) (quotatypes[t])
1581 
1582 static int ext4_write_dquot(struct dquot *dquot);
1583 static int ext4_acquire_dquot(struct dquot *dquot);
1584 static int ext4_release_dquot(struct dquot *dquot);
1585 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1586 static int ext4_write_info(struct super_block *sb, int type);
1587 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1588 			 const struct path *path);
1589 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1590 			       size_t len, loff_t off);
1591 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1592 				const char *data, size_t len, loff_t off);
1593 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1594 			     unsigned int flags);
1595 
ext4_get_dquots(struct inode * inode)1596 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1597 {
1598 	return EXT4_I(inode)->i_dquot;
1599 }
1600 
1601 static const struct dquot_operations ext4_quota_operations = {
1602 	.get_reserved_space	= ext4_get_reserved_space,
1603 	.write_dquot		= ext4_write_dquot,
1604 	.acquire_dquot		= ext4_acquire_dquot,
1605 	.release_dquot		= ext4_release_dquot,
1606 	.mark_dirty		= ext4_mark_dquot_dirty,
1607 	.write_info		= ext4_write_info,
1608 	.alloc_dquot		= dquot_alloc,
1609 	.destroy_dquot		= dquot_destroy,
1610 	.get_projid		= ext4_get_projid,
1611 	.get_inode_usage	= ext4_get_inode_usage,
1612 	.get_next_id		= dquot_get_next_id,
1613 };
1614 
1615 static const struct quotactl_ops ext4_qctl_operations = {
1616 	.quota_on	= ext4_quota_on,
1617 	.quota_off	= ext4_quota_off,
1618 	.quota_sync	= dquot_quota_sync,
1619 	.get_state	= dquot_get_state,
1620 	.set_info	= dquot_set_dqinfo,
1621 	.get_dqblk	= dquot_get_dqblk,
1622 	.set_dqblk	= dquot_set_dqblk,
1623 	.get_nextdqblk	= dquot_get_next_dqblk,
1624 };
1625 #endif
1626 
1627 static const struct super_operations ext4_sops = {
1628 	.alloc_inode	= ext4_alloc_inode,
1629 	.free_inode	= ext4_free_in_core_inode,
1630 	.destroy_inode	= ext4_destroy_inode,
1631 	.write_inode	= ext4_write_inode,
1632 	.dirty_inode	= ext4_dirty_inode,
1633 	.drop_inode	= ext4_drop_inode,
1634 	.evict_inode	= ext4_evict_inode,
1635 	.put_super	= ext4_put_super,
1636 	.sync_fs	= ext4_sync_fs,
1637 	.freeze_fs	= ext4_freeze,
1638 	.unfreeze_fs	= ext4_unfreeze,
1639 	.statfs		= ext4_statfs,
1640 	.show_options	= ext4_show_options,
1641 	.shutdown	= ext4_shutdown,
1642 #ifdef CONFIG_QUOTA
1643 	.quota_read	= ext4_quota_read,
1644 	.quota_write	= ext4_quota_write,
1645 	.get_dquots	= ext4_get_dquots,
1646 #endif
1647 };
1648 
1649 static const struct export_operations ext4_export_ops = {
1650 	.encode_fh = generic_encode_ino32_fh,
1651 	.fh_to_dentry = ext4_fh_to_dentry,
1652 	.fh_to_parent = ext4_fh_to_parent,
1653 	.get_parent = ext4_get_parent,
1654 	.commit_metadata = ext4_nfs_commit_metadata,
1655 };
1656 
1657 enum {
1658 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1659 	Opt_resgid, Opt_resuid, Opt_sb,
1660 	Opt_nouid32, Opt_debug, Opt_removed,
1661 	Opt_user_xattr, Opt_acl,
1662 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1663 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1664 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1665 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1666 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1667 	Opt_inlinecrypt,
1668 	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1669 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1670 	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1671 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1672 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1673 	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1674 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1675 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1676 	Opt_dioread_nolock, Opt_dioread_lock,
1677 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1678 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1679 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1680 	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1681 #ifdef CONFIG_EXT4_DEBUG
1682 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1683 #endif
1684 };
1685 
1686 static const struct constant_table ext4_param_errors[] = {
1687 	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1688 	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1689 	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1690 	{}
1691 };
1692 
1693 static const struct constant_table ext4_param_data[] = {
1694 	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1695 	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1696 	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1697 	{}
1698 };
1699 
1700 static const struct constant_table ext4_param_data_err[] = {
1701 	{"abort",	Opt_data_err_abort},
1702 	{"ignore",	Opt_data_err_ignore},
1703 	{}
1704 };
1705 
1706 static const struct constant_table ext4_param_jqfmt[] = {
1707 	{"vfsold",	QFMT_VFS_OLD},
1708 	{"vfsv0",	QFMT_VFS_V0},
1709 	{"vfsv1",	QFMT_VFS_V1},
1710 	{}
1711 };
1712 
1713 static const struct constant_table ext4_param_dax[] = {
1714 	{"always",	Opt_dax_always},
1715 	{"inode",	Opt_dax_inode},
1716 	{"never",	Opt_dax_never},
1717 	{}
1718 };
1719 
1720 /*
1721  * Mount option specification
1722  * We don't use fsparam_flag_no because of the way we set the
1723  * options and the way we show them in _ext4_show_options(). To
1724  * keep the changes to a minimum, let's keep the negative options
1725  * separate for now.
1726  */
1727 static const struct fs_parameter_spec ext4_param_specs[] = {
1728 	fsparam_flag	("bsddf",		Opt_bsd_df),
1729 	fsparam_flag	("minixdf",		Opt_minix_df),
1730 	fsparam_flag	("grpid",		Opt_grpid),
1731 	fsparam_flag	("bsdgroups",		Opt_grpid),
1732 	fsparam_flag	("nogrpid",		Opt_nogrpid),
1733 	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1734 	fsparam_gid	("resgid",		Opt_resgid),
1735 	fsparam_uid	("resuid",		Opt_resuid),
1736 	fsparam_u32	("sb",			Opt_sb),
1737 	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1738 	fsparam_flag	("nouid32",		Opt_nouid32),
1739 	fsparam_flag	("debug",		Opt_debug),
1740 	fsparam_flag	("oldalloc",		Opt_removed),
1741 	fsparam_flag	("orlov",		Opt_removed),
1742 	fsparam_flag	("user_xattr",		Opt_user_xattr),
1743 	fsparam_flag	("acl",			Opt_acl),
1744 	fsparam_flag	("norecovery",		Opt_noload),
1745 	fsparam_flag	("noload",		Opt_noload),
1746 	fsparam_flag	("bh",			Opt_removed),
1747 	fsparam_flag	("nobh",		Opt_removed),
1748 	fsparam_u32	("commit",		Opt_commit),
1749 	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1750 	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1751 	fsparam_u32	("journal_dev",		Opt_journal_dev),
1752 	fsparam_bdev	("journal_path",	Opt_journal_path),
1753 	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1754 	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1755 	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1756 	fsparam_flag	("abort",		Opt_abort),
1757 	fsparam_enum	("data",		Opt_data, ext4_param_data),
1758 	fsparam_enum	("data_err",		Opt_data_err,
1759 						ext4_param_data_err),
1760 	fsparam_string_empty
1761 			("usrjquota",		Opt_usrjquota),
1762 	fsparam_string_empty
1763 			("grpjquota",		Opt_grpjquota),
1764 	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1765 	fsparam_flag	("grpquota",		Opt_grpquota),
1766 	fsparam_flag	("quota",		Opt_quota),
1767 	fsparam_flag	("noquota",		Opt_noquota),
1768 	fsparam_flag	("usrquota",		Opt_usrquota),
1769 	fsparam_flag	("prjquota",		Opt_prjquota),
1770 	fsparam_flag	("barrier",		Opt_barrier),
1771 	fsparam_u32	("barrier",		Opt_barrier),
1772 	fsparam_flag	("nobarrier",		Opt_nobarrier),
1773 	fsparam_flag	("i_version",		Opt_removed),
1774 	fsparam_flag	("dax",			Opt_dax),
1775 	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1776 	fsparam_u32	("stripe",		Opt_stripe),
1777 	fsparam_flag	("delalloc",		Opt_delalloc),
1778 	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1779 	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1780 	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1781 	fsparam_u32	("debug_want_extra_isize",
1782 						Opt_debug_want_extra_isize),
1783 	fsparam_flag	("mblk_io_submit",	Opt_removed),
1784 	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1785 	fsparam_flag	("block_validity",	Opt_block_validity),
1786 	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1787 	fsparam_u32	("inode_readahead_blks",
1788 						Opt_inode_readahead_blks),
1789 	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1790 	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1791 	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1792 	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1793 	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1794 	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1795 	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1796 	fsparam_flag	("discard",		Opt_discard),
1797 	fsparam_flag	("nodiscard",		Opt_nodiscard),
1798 	fsparam_u32	("init_itable",		Opt_init_itable),
1799 	fsparam_flag	("init_itable",		Opt_init_itable),
1800 	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1801 #ifdef CONFIG_EXT4_DEBUG
1802 	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1803 	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1804 #endif
1805 	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1806 	fsparam_flag	("test_dummy_encryption",
1807 						Opt_test_dummy_encryption),
1808 	fsparam_string	("test_dummy_encryption",
1809 						Opt_test_dummy_encryption),
1810 	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1811 	fsparam_flag	("nombcache",		Opt_nombcache),
1812 	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1813 	fsparam_flag	("prefetch_block_bitmaps",
1814 						Opt_removed),
1815 	fsparam_flag	("no_prefetch_block_bitmaps",
1816 						Opt_no_prefetch_block_bitmaps),
1817 	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1818 	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1819 	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1820 	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1821 	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1822 	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1823 	{}
1824 };
1825 
1826 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1827 
1828 #define MOPT_SET	0x0001
1829 #define MOPT_CLEAR	0x0002
1830 #define MOPT_NOSUPPORT	0x0004
1831 #define MOPT_EXPLICIT	0x0008
1832 #ifdef CONFIG_QUOTA
1833 #define MOPT_Q		0
1834 #define MOPT_QFMT	0x0010
1835 #else
1836 #define MOPT_Q		MOPT_NOSUPPORT
1837 #define MOPT_QFMT	MOPT_NOSUPPORT
1838 #endif
1839 #define MOPT_NO_EXT2	0x0020
1840 #define MOPT_NO_EXT3	0x0040
1841 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1842 #define MOPT_SKIP	0x0080
1843 #define	MOPT_2		0x0100
1844 
1845 static const struct mount_opts {
1846 	int	token;
1847 	int	mount_opt;
1848 	int	flags;
1849 } ext4_mount_opts[] = {
1850 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1851 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1852 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1853 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1854 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1855 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1856 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1857 	 MOPT_EXT4_ONLY | MOPT_SET},
1858 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1859 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1860 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1861 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1862 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1863 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1864 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1865 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1866 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1867 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1868 	{Opt_commit, 0, MOPT_NO_EXT2},
1869 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1870 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1871 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1872 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1873 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1874 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1875 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1876 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1877 	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1878 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1879 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1880 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1881 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1882 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1883 	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1884 	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1885 	{Opt_journal_path, 0, MOPT_NO_EXT2},
1886 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1887 	{Opt_data, 0, MOPT_NO_EXT2},
1888 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1889 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1890 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1891 #else
1892 	{Opt_acl, 0, MOPT_NOSUPPORT},
1893 #endif
1894 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1895 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1896 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1897 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1898 							MOPT_SET | MOPT_Q},
1899 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1900 							MOPT_SET | MOPT_Q},
1901 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1902 							MOPT_SET | MOPT_Q},
1903 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1904 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1905 							MOPT_CLEAR | MOPT_Q},
1906 	{Opt_usrjquota, 0, MOPT_Q},
1907 	{Opt_grpjquota, 0, MOPT_Q},
1908 	{Opt_jqfmt, 0, MOPT_QFMT},
1909 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1910 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1911 	 MOPT_SET},
1912 #ifdef CONFIG_EXT4_DEBUG
1913 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1914 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1915 #endif
1916 	{Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1917 	{Opt_err, 0, 0}
1918 };
1919 
1920 #if IS_ENABLED(CONFIG_UNICODE)
1921 static const struct ext4_sb_encodings {
1922 	__u16 magic;
1923 	char *name;
1924 	unsigned int version;
1925 } ext4_sb_encoding_map[] = {
1926 	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1927 };
1928 
1929 static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block * es)1930 ext4_sb_read_encoding(const struct ext4_super_block *es)
1931 {
1932 	__u16 magic = le16_to_cpu(es->s_encoding);
1933 	int i;
1934 
1935 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1936 		if (magic == ext4_sb_encoding_map[i].magic)
1937 			return &ext4_sb_encoding_map[i];
1938 
1939 	return NULL;
1940 }
1941 #endif
1942 
1943 #define EXT4_SPEC_JQUOTA			(1 <<  0)
1944 #define EXT4_SPEC_JQFMT				(1 <<  1)
1945 #define EXT4_SPEC_DATAJ				(1 <<  2)
1946 #define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1947 #define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1948 #define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1949 #define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1950 #define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1951 #define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1952 #define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1953 #define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1954 #define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1955 #define EXT4_SPEC_s_stripe			(1 << 13)
1956 #define EXT4_SPEC_s_resuid			(1 << 14)
1957 #define EXT4_SPEC_s_resgid			(1 << 15)
1958 #define EXT4_SPEC_s_commit_interval		(1 << 16)
1959 #define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1960 #define EXT4_SPEC_s_sb_block			(1 << 18)
1961 #define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1962 
1963 struct ext4_fs_context {
1964 	char		*s_qf_names[EXT4_MAXQUOTAS];
1965 	struct fscrypt_dummy_policy dummy_enc_policy;
1966 	int		s_jquota_fmt;	/* Format of quota to use */
1967 #ifdef CONFIG_EXT4_DEBUG
1968 	int s_fc_debug_max_replay;
1969 #endif
1970 	unsigned short	qname_spec;
1971 	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1972 	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1973 	unsigned long	journal_devnum;
1974 	unsigned long	s_commit_interval;
1975 	unsigned long	s_stripe;
1976 	unsigned int	s_inode_readahead_blks;
1977 	unsigned int	s_want_extra_isize;
1978 	unsigned int	s_li_wait_mult;
1979 	unsigned int	s_max_dir_size_kb;
1980 	unsigned int	journal_ioprio;
1981 	unsigned int	vals_s_mount_opt;
1982 	unsigned int	mask_s_mount_opt;
1983 	unsigned int	vals_s_mount_opt2;
1984 	unsigned int	mask_s_mount_opt2;
1985 	unsigned int	opt_flags;	/* MOPT flags */
1986 	unsigned int	spec;
1987 	u32		s_max_batch_time;
1988 	u32		s_min_batch_time;
1989 	kuid_t		s_resuid;
1990 	kgid_t		s_resgid;
1991 	ext4_fsblk_t	s_sb_block;
1992 };
1993 
ext4_fc_free(struct fs_context * fc)1994 static void ext4_fc_free(struct fs_context *fc)
1995 {
1996 	struct ext4_fs_context *ctx = fc->fs_private;
1997 	int i;
1998 
1999 	if (!ctx)
2000 		return;
2001 
2002 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
2003 		kfree(ctx->s_qf_names[i]);
2004 
2005 	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2006 	kfree(ctx);
2007 }
2008 
ext4_init_fs_context(struct fs_context * fc)2009 int ext4_init_fs_context(struct fs_context *fc)
2010 {
2011 	struct ext4_fs_context *ctx;
2012 
2013 	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2014 	if (!ctx)
2015 		return -ENOMEM;
2016 
2017 	fc->fs_private = ctx;
2018 	fc->ops = &ext4_context_ops;
2019 
2020 	return 0;
2021 }
2022 
2023 #ifdef CONFIG_QUOTA
2024 /*
2025  * Note the name of the specified quota file.
2026  */
note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)2027 static int note_qf_name(struct fs_context *fc, int qtype,
2028 		       struct fs_parameter *param)
2029 {
2030 	struct ext4_fs_context *ctx = fc->fs_private;
2031 	char *qname;
2032 
2033 	if (param->size < 1) {
2034 		ext4_msg(NULL, KERN_ERR, "Missing quota name");
2035 		return -EINVAL;
2036 	}
2037 	if (strchr(param->string, '/')) {
2038 		ext4_msg(NULL, KERN_ERR,
2039 			 "quotafile must be on filesystem root");
2040 		return -EINVAL;
2041 	}
2042 	if (ctx->s_qf_names[qtype]) {
2043 		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2044 			ext4_msg(NULL, KERN_ERR,
2045 				 "%s quota file already specified",
2046 				 QTYPE2NAME(qtype));
2047 			return -EINVAL;
2048 		}
2049 		return 0;
2050 	}
2051 
2052 	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2053 	if (!qname) {
2054 		ext4_msg(NULL, KERN_ERR,
2055 			 "Not enough memory for storing quotafile name");
2056 		return -ENOMEM;
2057 	}
2058 	ctx->s_qf_names[qtype] = qname;
2059 	ctx->qname_spec |= 1 << qtype;
2060 	ctx->spec |= EXT4_SPEC_JQUOTA;
2061 	return 0;
2062 }
2063 
2064 /*
2065  * Clear the name of the specified quota file.
2066  */
unnote_qf_name(struct fs_context * fc,int qtype)2067 static int unnote_qf_name(struct fs_context *fc, int qtype)
2068 {
2069 	struct ext4_fs_context *ctx = fc->fs_private;
2070 
2071 	kfree(ctx->s_qf_names[qtype]);
2072 
2073 	ctx->s_qf_names[qtype] = NULL;
2074 	ctx->qname_spec |= 1 << qtype;
2075 	ctx->spec |= EXT4_SPEC_JQUOTA;
2076 	return 0;
2077 }
2078 #endif
2079 
ext4_parse_test_dummy_encryption(const struct fs_parameter * param,struct ext4_fs_context * ctx)2080 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2081 					    struct ext4_fs_context *ctx)
2082 {
2083 	int err;
2084 
2085 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2086 		ext4_msg(NULL, KERN_WARNING,
2087 			 "test_dummy_encryption option not supported");
2088 		return -EINVAL;
2089 	}
2090 	err = fscrypt_parse_test_dummy_encryption(param,
2091 						  &ctx->dummy_enc_policy);
2092 	if (err == -EINVAL) {
2093 		ext4_msg(NULL, KERN_WARNING,
2094 			 "Value of option \"%s\" is unrecognized", param->key);
2095 	} else if (err == -EEXIST) {
2096 		ext4_msg(NULL, KERN_WARNING,
2097 			 "Conflicting test_dummy_encryption options");
2098 		return -EINVAL;
2099 	}
2100 	return err;
2101 }
2102 
2103 #define EXT4_SET_CTX(name)						\
2104 static inline __maybe_unused						\
2105 void ctx_set_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2106 {									\
2107 	ctx->mask_s_##name |= flag;					\
2108 	ctx->vals_s_##name |= flag;					\
2109 }
2110 
2111 #define EXT4_CLEAR_CTX(name)						\
2112 static inline __maybe_unused						\
2113 void ctx_clear_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2114 {									\
2115 	ctx->mask_s_##name |= flag;					\
2116 	ctx->vals_s_##name &= ~flag;					\
2117 }
2118 
2119 #define EXT4_TEST_CTX(name)						\
2120 static inline unsigned long						\
2121 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2122 {									\
2123 	return (ctx->vals_s_##name & flag);				\
2124 }
2125 
2126 EXT4_SET_CTX(flags); /* set only */
2127 EXT4_SET_CTX(mount_opt);
2128 EXT4_CLEAR_CTX(mount_opt);
2129 EXT4_TEST_CTX(mount_opt);
2130 EXT4_SET_CTX(mount_opt2);
2131 EXT4_CLEAR_CTX(mount_opt2);
2132 EXT4_TEST_CTX(mount_opt2);
2133 
ext4_parse_param(struct fs_context * fc,struct fs_parameter * param)2134 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2135 {
2136 	struct ext4_fs_context *ctx = fc->fs_private;
2137 	struct fs_parse_result result;
2138 	const struct mount_opts *m;
2139 	int is_remount;
2140 	int token;
2141 
2142 	token = fs_parse(fc, ext4_param_specs, param, &result);
2143 	if (token < 0)
2144 		return token;
2145 	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2146 
2147 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2148 		if (token == m->token)
2149 			break;
2150 
2151 	ctx->opt_flags |= m->flags;
2152 
2153 	if (m->flags & MOPT_EXPLICIT) {
2154 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2155 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2156 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2157 			ctx_set_mount_opt2(ctx,
2158 				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2159 		} else
2160 			return -EINVAL;
2161 	}
2162 
2163 	if (m->flags & MOPT_NOSUPPORT) {
2164 		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2165 			 param->key);
2166 		return 0;
2167 	}
2168 
2169 	switch (token) {
2170 #ifdef CONFIG_QUOTA
2171 	case Opt_usrjquota:
2172 		if (!*param->string)
2173 			return unnote_qf_name(fc, USRQUOTA);
2174 		else
2175 			return note_qf_name(fc, USRQUOTA, param);
2176 	case Opt_grpjquota:
2177 		if (!*param->string)
2178 			return unnote_qf_name(fc, GRPQUOTA);
2179 		else
2180 			return note_qf_name(fc, GRPQUOTA, param);
2181 #endif
2182 	case Opt_sb:
2183 		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2184 			ext4_msg(NULL, KERN_WARNING,
2185 				 "Ignoring %s option on remount", param->key);
2186 		} else {
2187 			ctx->s_sb_block = result.uint_32;
2188 			ctx->spec |= EXT4_SPEC_s_sb_block;
2189 		}
2190 		return 0;
2191 	case Opt_removed:
2192 		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2193 			 param->key);
2194 		return 0;
2195 	case Opt_inlinecrypt:
2196 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2197 		ctx_set_flags(ctx, SB_INLINECRYPT);
2198 #else
2199 		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2200 #endif
2201 		return 0;
2202 	case Opt_errors:
2203 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2204 		ctx_set_mount_opt(ctx, result.uint_32);
2205 		return 0;
2206 #ifdef CONFIG_QUOTA
2207 	case Opt_jqfmt:
2208 		ctx->s_jquota_fmt = result.uint_32;
2209 		ctx->spec |= EXT4_SPEC_JQFMT;
2210 		return 0;
2211 #endif
2212 	case Opt_data:
2213 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2214 		ctx_set_mount_opt(ctx, result.uint_32);
2215 		ctx->spec |= EXT4_SPEC_DATAJ;
2216 		return 0;
2217 	case Opt_commit:
2218 		if (result.uint_32 == 0)
2219 			result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2220 		else if (result.uint_32 > INT_MAX / HZ) {
2221 			ext4_msg(NULL, KERN_ERR,
2222 				 "Invalid commit interval %d, "
2223 				 "must be smaller than %d",
2224 				 result.uint_32, INT_MAX / HZ);
2225 			return -EINVAL;
2226 		}
2227 		ctx->s_commit_interval = HZ * result.uint_32;
2228 		ctx->spec |= EXT4_SPEC_s_commit_interval;
2229 		return 0;
2230 	case Opt_debug_want_extra_isize:
2231 		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2232 			ext4_msg(NULL, KERN_ERR,
2233 				 "Invalid want_extra_isize %d", result.uint_32);
2234 			return -EINVAL;
2235 		}
2236 		ctx->s_want_extra_isize = result.uint_32;
2237 		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2238 		return 0;
2239 	case Opt_max_batch_time:
2240 		ctx->s_max_batch_time = result.uint_32;
2241 		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2242 		return 0;
2243 	case Opt_min_batch_time:
2244 		ctx->s_min_batch_time = result.uint_32;
2245 		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2246 		return 0;
2247 	case Opt_inode_readahead_blks:
2248 		if (result.uint_32 &&
2249 		    (result.uint_32 > (1 << 30) ||
2250 		     !is_power_of_2(result.uint_32))) {
2251 			ext4_msg(NULL, KERN_ERR,
2252 				 "EXT4-fs: inode_readahead_blks must be "
2253 				 "0 or a power of 2 smaller than 2^31");
2254 			return -EINVAL;
2255 		}
2256 		ctx->s_inode_readahead_blks = result.uint_32;
2257 		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2258 		return 0;
2259 	case Opt_init_itable:
2260 		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2261 		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2262 		if (param->type == fs_value_is_string)
2263 			ctx->s_li_wait_mult = result.uint_32;
2264 		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2265 		return 0;
2266 	case Opt_max_dir_size_kb:
2267 		ctx->s_max_dir_size_kb = result.uint_32;
2268 		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2269 		return 0;
2270 #ifdef CONFIG_EXT4_DEBUG
2271 	case Opt_fc_debug_max_replay:
2272 		ctx->s_fc_debug_max_replay = result.uint_32;
2273 		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2274 		return 0;
2275 #endif
2276 	case Opt_stripe:
2277 		ctx->s_stripe = result.uint_32;
2278 		ctx->spec |= EXT4_SPEC_s_stripe;
2279 		return 0;
2280 	case Opt_resuid:
2281 		ctx->s_resuid = result.uid;
2282 		ctx->spec |= EXT4_SPEC_s_resuid;
2283 		return 0;
2284 	case Opt_resgid:
2285 		ctx->s_resgid = result.gid;
2286 		ctx->spec |= EXT4_SPEC_s_resgid;
2287 		return 0;
2288 	case Opt_journal_dev:
2289 		if (is_remount) {
2290 			ext4_msg(NULL, KERN_ERR,
2291 				 "Cannot specify journal on remount");
2292 			return -EINVAL;
2293 		}
2294 		ctx->journal_devnum = result.uint_32;
2295 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2296 		return 0;
2297 	case Opt_journal_path:
2298 	{
2299 		struct inode *journal_inode;
2300 		struct path path;
2301 		int error;
2302 
2303 		if (is_remount) {
2304 			ext4_msg(NULL, KERN_ERR,
2305 				 "Cannot specify journal on remount");
2306 			return -EINVAL;
2307 		}
2308 
2309 		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2310 		if (error) {
2311 			ext4_msg(NULL, KERN_ERR, "error: could not find "
2312 				 "journal device path");
2313 			return -EINVAL;
2314 		}
2315 
2316 		journal_inode = d_inode(path.dentry);
2317 		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2318 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2319 		path_put(&path);
2320 		return 0;
2321 	}
2322 	case Opt_journal_ioprio:
2323 		if (result.uint_32 > 7) {
2324 			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2325 				 " (must be 0-7)");
2326 			return -EINVAL;
2327 		}
2328 		ctx->journal_ioprio =
2329 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2330 		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2331 		return 0;
2332 	case Opt_test_dummy_encryption:
2333 		return ext4_parse_test_dummy_encryption(param, ctx);
2334 	case Opt_dax:
2335 	case Opt_dax_type:
2336 #ifdef CONFIG_FS_DAX
2337 	{
2338 		int type = (token == Opt_dax) ?
2339 			   Opt_dax : result.uint_32;
2340 
2341 		switch (type) {
2342 		case Opt_dax:
2343 		case Opt_dax_always:
2344 			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2345 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2346 			break;
2347 		case Opt_dax_never:
2348 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2349 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2350 			break;
2351 		case Opt_dax_inode:
2352 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2353 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2354 			/* Strictly for printing options */
2355 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2356 			break;
2357 		}
2358 		return 0;
2359 	}
2360 #else
2361 		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2362 		return -EINVAL;
2363 #endif
2364 	case Opt_data_err:
2365 		if (result.uint_32 == Opt_data_err_abort)
2366 			ctx_set_mount_opt(ctx, m->mount_opt);
2367 		else if (result.uint_32 == Opt_data_err_ignore)
2368 			ctx_clear_mount_opt(ctx, m->mount_opt);
2369 		return 0;
2370 	case Opt_mb_optimize_scan:
2371 		if (result.int_32 == 1) {
2372 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2373 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2374 		} else if (result.int_32 == 0) {
2375 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2376 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2377 		} else {
2378 			ext4_msg(NULL, KERN_WARNING,
2379 				 "mb_optimize_scan should be set to 0 or 1.");
2380 			return -EINVAL;
2381 		}
2382 		return 0;
2383 	}
2384 
2385 	/*
2386 	 * At this point we should only be getting options requiring MOPT_SET,
2387 	 * or MOPT_CLEAR. Anything else is a bug
2388 	 */
2389 	if (m->token == Opt_err) {
2390 		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2391 			 param->key);
2392 		WARN_ON(1);
2393 		return -EINVAL;
2394 	}
2395 
2396 	else {
2397 		unsigned int set = 0;
2398 
2399 		if ((param->type == fs_value_is_flag) ||
2400 		    result.uint_32 > 0)
2401 			set = 1;
2402 
2403 		if (m->flags & MOPT_CLEAR)
2404 			set = !set;
2405 		else if (unlikely(!(m->flags & MOPT_SET))) {
2406 			ext4_msg(NULL, KERN_WARNING,
2407 				 "buggy handling of option %s",
2408 				 param->key);
2409 			WARN_ON(1);
2410 			return -EINVAL;
2411 		}
2412 		if (m->flags & MOPT_2) {
2413 			if (set != 0)
2414 				ctx_set_mount_opt2(ctx, m->mount_opt);
2415 			else
2416 				ctx_clear_mount_opt2(ctx, m->mount_opt);
2417 		} else {
2418 			if (set != 0)
2419 				ctx_set_mount_opt(ctx, m->mount_opt);
2420 			else
2421 				ctx_clear_mount_opt(ctx, m->mount_opt);
2422 		}
2423 	}
2424 
2425 	return 0;
2426 }
2427 
parse_options(struct fs_context * fc,char * options)2428 static int parse_options(struct fs_context *fc, char *options)
2429 {
2430 	struct fs_parameter param;
2431 	int ret;
2432 	char *key;
2433 
2434 	if (!options)
2435 		return 0;
2436 
2437 	while ((key = strsep(&options, ",")) != NULL) {
2438 		if (*key) {
2439 			size_t v_len = 0;
2440 			char *value = strchr(key, '=');
2441 
2442 			param.type = fs_value_is_flag;
2443 			param.string = NULL;
2444 
2445 			if (value) {
2446 				if (value == key)
2447 					continue;
2448 
2449 				*value++ = 0;
2450 				v_len = strlen(value);
2451 				param.string = kmemdup_nul(value, v_len,
2452 							   GFP_KERNEL);
2453 				if (!param.string)
2454 					return -ENOMEM;
2455 				param.type = fs_value_is_string;
2456 			}
2457 
2458 			param.key = key;
2459 			param.size = v_len;
2460 
2461 			ret = ext4_parse_param(fc, &param);
2462 			kfree(param.string);
2463 			if (ret < 0)
2464 				return ret;
2465 		}
2466 	}
2467 
2468 	ret = ext4_validate_options(fc);
2469 	if (ret < 0)
2470 		return ret;
2471 
2472 	return 0;
2473 }
2474 
parse_apply_sb_mount_options(struct super_block * sb,struct ext4_fs_context * m_ctx)2475 static int parse_apply_sb_mount_options(struct super_block *sb,
2476 					struct ext4_fs_context *m_ctx)
2477 {
2478 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2479 	char *s_mount_opts = NULL;
2480 	struct ext4_fs_context *s_ctx = NULL;
2481 	struct fs_context *fc = NULL;
2482 	int ret = -ENOMEM;
2483 
2484 	if (!sbi->s_es->s_mount_opts[0])
2485 		return 0;
2486 
2487 	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2488 				sizeof(sbi->s_es->s_mount_opts),
2489 				GFP_KERNEL);
2490 	if (!s_mount_opts)
2491 		return ret;
2492 
2493 	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2494 	if (!fc)
2495 		goto out_free;
2496 
2497 	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2498 	if (!s_ctx)
2499 		goto out_free;
2500 
2501 	fc->fs_private = s_ctx;
2502 	fc->s_fs_info = sbi;
2503 
2504 	ret = parse_options(fc, s_mount_opts);
2505 	if (ret < 0)
2506 		goto parse_failed;
2507 
2508 	ret = ext4_check_opt_consistency(fc, sb);
2509 	if (ret < 0) {
2510 parse_failed:
2511 		ext4_msg(sb, KERN_WARNING,
2512 			 "failed to parse options in superblock: %s",
2513 			 s_mount_opts);
2514 		ret = 0;
2515 		goto out_free;
2516 	}
2517 
2518 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2519 		m_ctx->journal_devnum = s_ctx->journal_devnum;
2520 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2521 		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2522 
2523 	ext4_apply_options(fc, sb);
2524 	ret = 0;
2525 
2526 out_free:
2527 	if (fc) {
2528 		ext4_fc_free(fc);
2529 		kfree(fc);
2530 	}
2531 	kfree(s_mount_opts);
2532 	return ret;
2533 }
2534 
ext4_apply_quota_options(struct fs_context * fc,struct super_block * sb)2535 static void ext4_apply_quota_options(struct fs_context *fc,
2536 				     struct super_block *sb)
2537 {
2538 #ifdef CONFIG_QUOTA
2539 	bool quota_feature = ext4_has_feature_quota(sb);
2540 	struct ext4_fs_context *ctx = fc->fs_private;
2541 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2542 	char *qname;
2543 	int i;
2544 
2545 	if (quota_feature)
2546 		return;
2547 
2548 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2549 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2550 			if (!(ctx->qname_spec & (1 << i)))
2551 				continue;
2552 
2553 			qname = ctx->s_qf_names[i]; /* May be NULL */
2554 			if (qname)
2555 				set_opt(sb, QUOTA);
2556 			ctx->s_qf_names[i] = NULL;
2557 			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2558 						lockdep_is_held(&sb->s_umount));
2559 			if (qname)
2560 				kfree_rcu_mightsleep(qname);
2561 		}
2562 	}
2563 
2564 	if (ctx->spec & EXT4_SPEC_JQFMT)
2565 		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2566 #endif
2567 }
2568 
2569 /*
2570  * Check quota settings consistency.
2571  */
ext4_check_quota_consistency(struct fs_context * fc,struct super_block * sb)2572 static int ext4_check_quota_consistency(struct fs_context *fc,
2573 					struct super_block *sb)
2574 {
2575 #ifdef CONFIG_QUOTA
2576 	struct ext4_fs_context *ctx = fc->fs_private;
2577 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2578 	bool quota_feature = ext4_has_feature_quota(sb);
2579 	bool quota_loaded = sb_any_quota_loaded(sb);
2580 	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2581 	int quota_flags, i;
2582 
2583 	/*
2584 	 * We do the test below only for project quotas. 'usrquota' and
2585 	 * 'grpquota' mount options are allowed even without quota feature
2586 	 * to support legacy quotas in quota files.
2587 	 */
2588 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2589 	    !ext4_has_feature_project(sb)) {
2590 		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2591 			 "Cannot enable project quota enforcement.");
2592 		return -EINVAL;
2593 	}
2594 
2595 	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2596 		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2597 	if (quota_loaded &&
2598 	    ctx->mask_s_mount_opt & quota_flags &&
2599 	    !ctx_test_mount_opt(ctx, quota_flags))
2600 		goto err_quota_change;
2601 
2602 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2603 
2604 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2605 			if (!(ctx->qname_spec & (1 << i)))
2606 				continue;
2607 
2608 			if (quota_loaded &&
2609 			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2610 				goto err_jquota_change;
2611 
2612 			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2613 			    strcmp(get_qf_name(sb, sbi, i),
2614 				   ctx->s_qf_names[i]) != 0)
2615 				goto err_jquota_specified;
2616 		}
2617 
2618 		if (quota_feature) {
2619 			ext4_msg(NULL, KERN_INFO,
2620 				 "Journaled quota options ignored when "
2621 				 "QUOTA feature is enabled");
2622 			return 0;
2623 		}
2624 	}
2625 
2626 	if (ctx->spec & EXT4_SPEC_JQFMT) {
2627 		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2628 			goto err_jquota_change;
2629 		if (quota_feature) {
2630 			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2631 				 "ignored when QUOTA feature is enabled");
2632 			return 0;
2633 		}
2634 	}
2635 
2636 	/* Make sure we don't mix old and new quota format */
2637 	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2638 		       ctx->s_qf_names[USRQUOTA]);
2639 	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2640 		       ctx->s_qf_names[GRPQUOTA]);
2641 
2642 	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2643 		    test_opt(sb, USRQUOTA));
2644 
2645 	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2646 		    test_opt(sb, GRPQUOTA));
2647 
2648 	if (usr_qf_name) {
2649 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2650 		usrquota = false;
2651 	}
2652 	if (grp_qf_name) {
2653 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2654 		grpquota = false;
2655 	}
2656 
2657 	if (usr_qf_name || grp_qf_name) {
2658 		if (usrquota || grpquota) {
2659 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2660 				 "format mixing");
2661 			return -EINVAL;
2662 		}
2663 
2664 		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2665 			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2666 				 "not specified");
2667 			return -EINVAL;
2668 		}
2669 	}
2670 
2671 	return 0;
2672 
2673 err_quota_change:
2674 	ext4_msg(NULL, KERN_ERR,
2675 		 "Cannot change quota options when quota turned on");
2676 	return -EINVAL;
2677 err_jquota_change:
2678 	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2679 		 "options when quota turned on");
2680 	return -EINVAL;
2681 err_jquota_specified:
2682 	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2683 		 QTYPE2NAME(i));
2684 	return -EINVAL;
2685 #else
2686 	return 0;
2687 #endif
2688 }
2689 
ext4_check_test_dummy_encryption(const struct fs_context * fc,struct super_block * sb)2690 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2691 					    struct super_block *sb)
2692 {
2693 	const struct ext4_fs_context *ctx = fc->fs_private;
2694 	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2695 
2696 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2697 		return 0;
2698 
2699 	if (!ext4_has_feature_encrypt(sb)) {
2700 		ext4_msg(NULL, KERN_WARNING,
2701 			 "test_dummy_encryption requires encrypt feature");
2702 		return -EINVAL;
2703 	}
2704 	/*
2705 	 * This mount option is just for testing, and it's not worthwhile to
2706 	 * implement the extra complexity (e.g. RCU protection) that would be
2707 	 * needed to allow it to be set or changed during remount.  We do allow
2708 	 * it to be specified during remount, but only if there is no change.
2709 	 */
2710 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2711 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2712 						 &ctx->dummy_enc_policy))
2713 			return 0;
2714 		ext4_msg(NULL, KERN_WARNING,
2715 			 "Can't set or change test_dummy_encryption on remount");
2716 		return -EINVAL;
2717 	}
2718 	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2719 	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2720 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2721 						 &ctx->dummy_enc_policy))
2722 			return 0;
2723 		ext4_msg(NULL, KERN_WARNING,
2724 			 "Conflicting test_dummy_encryption options");
2725 		return -EINVAL;
2726 	}
2727 	return 0;
2728 }
2729 
ext4_apply_test_dummy_encryption(struct ext4_fs_context * ctx,struct super_block * sb)2730 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2731 					     struct super_block *sb)
2732 {
2733 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2734 	    /* if already set, it was already verified to be the same */
2735 	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2736 		return;
2737 	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2738 	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2739 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2740 }
2741 
ext4_check_opt_consistency(struct fs_context * fc,struct super_block * sb)2742 static int ext4_check_opt_consistency(struct fs_context *fc,
2743 				      struct super_block *sb)
2744 {
2745 	struct ext4_fs_context *ctx = fc->fs_private;
2746 	struct ext4_sb_info *sbi = fc->s_fs_info;
2747 	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2748 	int err;
2749 
2750 	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2751 		ext4_msg(NULL, KERN_ERR,
2752 			 "Mount option(s) incompatible with ext2");
2753 		return -EINVAL;
2754 	}
2755 	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2756 		ext4_msg(NULL, KERN_ERR,
2757 			 "Mount option(s) incompatible with ext3");
2758 		return -EINVAL;
2759 	}
2760 
2761 	if (ctx->s_want_extra_isize >
2762 	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2763 		ext4_msg(NULL, KERN_ERR,
2764 			 "Invalid want_extra_isize %d",
2765 			 ctx->s_want_extra_isize);
2766 		return -EINVAL;
2767 	}
2768 
2769 	err = ext4_check_test_dummy_encryption(fc, sb);
2770 	if (err)
2771 		return err;
2772 
2773 	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2774 		if (!sbi->s_journal) {
2775 			ext4_msg(NULL, KERN_WARNING,
2776 				 "Remounting file system with no journal "
2777 				 "so ignoring journalled data option");
2778 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2779 		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2780 			   test_opt(sb, DATA_FLAGS)) {
2781 			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2782 				 "on remount");
2783 			return -EINVAL;
2784 		}
2785 	}
2786 
2787 	if (is_remount) {
2788 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2789 		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2790 			ext4_msg(NULL, KERN_ERR, "can't mount with "
2791 				 "both data=journal and dax");
2792 			return -EINVAL;
2793 		}
2794 
2795 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2796 		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2797 		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2798 fail_dax_change_remount:
2799 			ext4_msg(NULL, KERN_ERR, "can't change "
2800 				 "dax mount option while remounting");
2801 			return -EINVAL;
2802 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2803 			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2804 			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2805 			goto fail_dax_change_remount;
2806 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2807 			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2808 			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2809 			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2810 			goto fail_dax_change_remount;
2811 		}
2812 	}
2813 
2814 	return ext4_check_quota_consistency(fc, sb);
2815 }
2816 
ext4_apply_options(struct fs_context * fc,struct super_block * sb)2817 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2818 {
2819 	struct ext4_fs_context *ctx = fc->fs_private;
2820 	struct ext4_sb_info *sbi = fc->s_fs_info;
2821 
2822 	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2823 	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2824 	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2825 	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2826 	sb->s_flags &= ~ctx->mask_s_flags;
2827 	sb->s_flags |= ctx->vals_s_flags;
2828 
2829 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2830 	APPLY(s_commit_interval);
2831 	APPLY(s_stripe);
2832 	APPLY(s_max_batch_time);
2833 	APPLY(s_min_batch_time);
2834 	APPLY(s_want_extra_isize);
2835 	APPLY(s_inode_readahead_blks);
2836 	APPLY(s_max_dir_size_kb);
2837 	APPLY(s_li_wait_mult);
2838 	APPLY(s_resgid);
2839 	APPLY(s_resuid);
2840 
2841 #ifdef CONFIG_EXT4_DEBUG
2842 	APPLY(s_fc_debug_max_replay);
2843 #endif
2844 
2845 	ext4_apply_quota_options(fc, sb);
2846 	ext4_apply_test_dummy_encryption(ctx, sb);
2847 }
2848 
2849 
ext4_validate_options(struct fs_context * fc)2850 static int ext4_validate_options(struct fs_context *fc)
2851 {
2852 #ifdef CONFIG_QUOTA
2853 	struct ext4_fs_context *ctx = fc->fs_private;
2854 	char *usr_qf_name, *grp_qf_name;
2855 
2856 	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2857 	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2858 
2859 	if (usr_qf_name || grp_qf_name) {
2860 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2861 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2862 
2863 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2864 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2865 
2866 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2867 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2868 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2869 				 "format mixing");
2870 			return -EINVAL;
2871 		}
2872 	}
2873 #endif
2874 	return 1;
2875 }
2876 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2877 static inline void ext4_show_quota_options(struct seq_file *seq,
2878 					   struct super_block *sb)
2879 {
2880 #if defined(CONFIG_QUOTA)
2881 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2882 	char *usr_qf_name, *grp_qf_name;
2883 
2884 	if (sbi->s_jquota_fmt) {
2885 		char *fmtname = "";
2886 
2887 		switch (sbi->s_jquota_fmt) {
2888 		case QFMT_VFS_OLD:
2889 			fmtname = "vfsold";
2890 			break;
2891 		case QFMT_VFS_V0:
2892 			fmtname = "vfsv0";
2893 			break;
2894 		case QFMT_VFS_V1:
2895 			fmtname = "vfsv1";
2896 			break;
2897 		}
2898 		seq_printf(seq, ",jqfmt=%s", fmtname);
2899 	}
2900 
2901 	rcu_read_lock();
2902 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2903 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2904 	if (usr_qf_name)
2905 		seq_show_option(seq, "usrjquota", usr_qf_name);
2906 	if (grp_qf_name)
2907 		seq_show_option(seq, "grpjquota", grp_qf_name);
2908 	rcu_read_unlock();
2909 #endif
2910 }
2911 
token2str(int token)2912 static const char *token2str(int token)
2913 {
2914 	const struct fs_parameter_spec *spec;
2915 
2916 	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2917 		if (spec->opt == token && !spec->type)
2918 			break;
2919 	return spec->name;
2920 }
2921 
2922 /*
2923  * Show an option if
2924  *  - it's set to a non-default value OR
2925  *  - if the per-sb default is different from the global default
2926  */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2927 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2928 			      int nodefs)
2929 {
2930 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2931 	struct ext4_super_block *es = sbi->s_es;
2932 	int def_errors;
2933 	const struct mount_opts *m;
2934 	char sep = nodefs ? '\n' : ',';
2935 
2936 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2937 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2938 
2939 	if (sbi->s_sb_block != 1)
2940 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2941 
2942 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2943 		int want_set = m->flags & MOPT_SET;
2944 		int opt_2 = m->flags & MOPT_2;
2945 		unsigned int mount_opt, def_mount_opt;
2946 
2947 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2948 		    m->flags & MOPT_SKIP)
2949 			continue;
2950 
2951 		if (opt_2) {
2952 			mount_opt = sbi->s_mount_opt2;
2953 			def_mount_opt = sbi->s_def_mount_opt2;
2954 		} else {
2955 			mount_opt = sbi->s_mount_opt;
2956 			def_mount_opt = sbi->s_def_mount_opt;
2957 		}
2958 		/* skip if same as the default */
2959 		if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2960 			continue;
2961 		/* select Opt_noFoo vs Opt_Foo */
2962 		if ((want_set &&
2963 		     (mount_opt & m->mount_opt) != m->mount_opt) ||
2964 		    (!want_set && (mount_opt & m->mount_opt)))
2965 			continue;
2966 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2967 	}
2968 
2969 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2970 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2971 		SEQ_OPTS_PRINT("resuid=%u",
2972 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2973 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2974 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2975 		SEQ_OPTS_PRINT("resgid=%u",
2976 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2977 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2978 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2979 		SEQ_OPTS_PUTS("errors=remount-ro");
2980 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2981 		SEQ_OPTS_PUTS("errors=continue");
2982 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2983 		SEQ_OPTS_PUTS("errors=panic");
2984 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2985 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2986 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2987 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2988 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2989 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2990 	if (nodefs || sbi->s_stripe)
2991 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2992 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2993 			(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
2994 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2995 			SEQ_OPTS_PUTS("data=journal");
2996 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2997 			SEQ_OPTS_PUTS("data=ordered");
2998 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2999 			SEQ_OPTS_PUTS("data=writeback");
3000 	}
3001 	if (nodefs ||
3002 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3003 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3004 			       sbi->s_inode_readahead_blks);
3005 
3006 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3007 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3008 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3009 	if (nodefs || sbi->s_max_dir_size_kb)
3010 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3011 	if (test_opt(sb, DATA_ERR_ABORT))
3012 		SEQ_OPTS_PUTS("data_err=abort");
3013 
3014 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
3015 
3016 	if (sb->s_flags & SB_INLINECRYPT)
3017 		SEQ_OPTS_PUTS("inlinecrypt");
3018 
3019 	if (test_opt(sb, DAX_ALWAYS)) {
3020 		if (IS_EXT2_SB(sb))
3021 			SEQ_OPTS_PUTS("dax");
3022 		else
3023 			SEQ_OPTS_PUTS("dax=always");
3024 	} else if (test_opt2(sb, DAX_NEVER)) {
3025 		SEQ_OPTS_PUTS("dax=never");
3026 	} else if (test_opt2(sb, DAX_INODE)) {
3027 		SEQ_OPTS_PUTS("dax=inode");
3028 	}
3029 
3030 	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3031 			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3032 		SEQ_OPTS_PUTS("mb_optimize_scan=0");
3033 	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3034 			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3035 		SEQ_OPTS_PUTS("mb_optimize_scan=1");
3036 	}
3037 
3038 	if (nodefs && !test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS))
3039 		SEQ_OPTS_PUTS("prefetch_block_bitmaps");
3040 
3041 	ext4_show_quota_options(seq, sb);
3042 	return 0;
3043 }
3044 
ext4_show_options(struct seq_file * seq,struct dentry * root)3045 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3046 {
3047 	return _ext4_show_options(seq, root->d_sb, 0);
3048 }
3049 
ext4_seq_options_show(struct seq_file * seq,void * offset)3050 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3051 {
3052 	struct super_block *sb = seq->private;
3053 	int rc;
3054 
3055 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3056 	rc = _ext4_show_options(seq, sb, 1);
3057 	seq_putc(seq, '\n');
3058 	return rc;
3059 }
3060 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)3061 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3062 			    int read_only)
3063 {
3064 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3065 	int err = 0;
3066 
3067 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3068 		ext4_msg(sb, KERN_ERR, "revision level too high, "
3069 			 "forcing read-only mode");
3070 		err = -EROFS;
3071 		goto done;
3072 	}
3073 	if (read_only)
3074 		goto done;
3075 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3076 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3077 			 "running e2fsck is recommended");
3078 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3079 		ext4_msg(sb, KERN_WARNING,
3080 			 "warning: mounting fs with errors, "
3081 			 "running e2fsck is recommended");
3082 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3083 		 le16_to_cpu(es->s_mnt_count) >=
3084 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3085 		ext4_msg(sb, KERN_WARNING,
3086 			 "warning: maximal mount count reached, "
3087 			 "running e2fsck is recommended");
3088 	else if (le32_to_cpu(es->s_checkinterval) &&
3089 		 (ext4_get_tstamp(es, s_lastcheck) +
3090 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3091 		ext4_msg(sb, KERN_WARNING,
3092 			 "warning: checktime reached, "
3093 			 "running e2fsck is recommended");
3094 	if (!sbi->s_journal)
3095 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3096 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3097 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3098 	le16_add_cpu(&es->s_mnt_count, 1);
3099 	ext4_update_tstamp(es, s_mtime);
3100 	if (sbi->s_journal) {
3101 		ext4_set_feature_journal_needs_recovery(sb);
3102 		if (ext4_has_feature_orphan_file(sb))
3103 			ext4_set_feature_orphan_present(sb);
3104 	}
3105 
3106 	err = ext4_commit_super(sb);
3107 done:
3108 	if (test_opt(sb, DEBUG))
3109 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3110 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3111 			sb->s_blocksize,
3112 			sbi->s_groups_count,
3113 			EXT4_BLOCKS_PER_GROUP(sb),
3114 			EXT4_INODES_PER_GROUP(sb),
3115 			sbi->s_mount_opt, sbi->s_mount_opt2);
3116 	return err;
3117 }
3118 
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)3119 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3120 {
3121 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3122 	struct flex_groups **old_groups, **new_groups;
3123 	int size, i, j;
3124 
3125 	if (!sbi->s_log_groups_per_flex)
3126 		return 0;
3127 
3128 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3129 	if (size <= sbi->s_flex_groups_allocated)
3130 		return 0;
3131 
3132 	new_groups = kvzalloc(roundup_pow_of_two(size *
3133 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3134 	if (!new_groups) {
3135 		ext4_msg(sb, KERN_ERR,
3136 			 "not enough memory for %d flex group pointers", size);
3137 		return -ENOMEM;
3138 	}
3139 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3140 		new_groups[i] = kvzalloc(roundup_pow_of_two(
3141 					 sizeof(struct flex_groups)),
3142 					 GFP_KERNEL);
3143 		if (!new_groups[i]) {
3144 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3145 				kvfree(new_groups[j]);
3146 			kvfree(new_groups);
3147 			ext4_msg(sb, KERN_ERR,
3148 				 "not enough memory for %d flex groups", size);
3149 			return -ENOMEM;
3150 		}
3151 	}
3152 	rcu_read_lock();
3153 	old_groups = rcu_dereference(sbi->s_flex_groups);
3154 	if (old_groups)
3155 		memcpy(new_groups, old_groups,
3156 		       (sbi->s_flex_groups_allocated *
3157 			sizeof(struct flex_groups *)));
3158 	rcu_read_unlock();
3159 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3160 	sbi->s_flex_groups_allocated = size;
3161 	if (old_groups)
3162 		ext4_kvfree_array_rcu(old_groups);
3163 	return 0;
3164 }
3165 
ext4_fill_flex_info(struct super_block * sb)3166 static int ext4_fill_flex_info(struct super_block *sb)
3167 {
3168 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3169 	struct ext4_group_desc *gdp = NULL;
3170 	struct flex_groups *fg;
3171 	ext4_group_t flex_group;
3172 	int i, err;
3173 
3174 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3175 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3176 		sbi->s_log_groups_per_flex = 0;
3177 		return 1;
3178 	}
3179 
3180 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3181 	if (err)
3182 		goto failed;
3183 
3184 	for (i = 0; i < sbi->s_groups_count; i++) {
3185 		gdp = ext4_get_group_desc(sb, i, NULL);
3186 
3187 		flex_group = ext4_flex_group(sbi, i);
3188 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3189 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3190 		atomic64_add(ext4_free_group_clusters(sb, gdp),
3191 			     &fg->free_clusters);
3192 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3193 	}
3194 
3195 	return 1;
3196 failed:
3197 	return 0;
3198 }
3199 
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3200 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3201 				   struct ext4_group_desc *gdp)
3202 {
3203 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3204 	__u16 crc = 0;
3205 	__le32 le_group = cpu_to_le32(block_group);
3206 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3207 
3208 	if (ext4_has_metadata_csum(sbi->s_sb)) {
3209 		/* Use new metadata_csum algorithm */
3210 		__u32 csum32;
3211 		__u16 dummy_csum = 0;
3212 
3213 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3214 				     sizeof(le_group));
3215 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3216 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3217 				     sizeof(dummy_csum));
3218 		offset += sizeof(dummy_csum);
3219 		if (offset < sbi->s_desc_size)
3220 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3221 					     sbi->s_desc_size - offset);
3222 
3223 		crc = csum32 & 0xFFFF;
3224 		goto out;
3225 	}
3226 
3227 	/* old crc16 code */
3228 	if (!ext4_has_feature_gdt_csum(sb))
3229 		return 0;
3230 
3231 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3232 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3233 	crc = crc16(crc, (__u8 *)gdp, offset);
3234 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3235 	/* for checksum of struct ext4_group_desc do the rest...*/
3236 	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3237 		crc = crc16(crc, (__u8 *)gdp + offset,
3238 			    sbi->s_desc_size - offset);
3239 
3240 out:
3241 	return cpu_to_le16(crc);
3242 }
3243 
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3244 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3245 				struct ext4_group_desc *gdp)
3246 {
3247 	if (ext4_has_group_desc_csum(sb) &&
3248 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3249 		return 0;
3250 
3251 	return 1;
3252 }
3253 
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3254 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3255 			      struct ext4_group_desc *gdp)
3256 {
3257 	if (!ext4_has_group_desc_csum(sb))
3258 		return;
3259 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3260 }
3261 
3262 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)3263 static int ext4_check_descriptors(struct super_block *sb,
3264 				  ext4_fsblk_t sb_block,
3265 				  ext4_group_t *first_not_zeroed)
3266 {
3267 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3268 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3269 	ext4_fsblk_t last_block;
3270 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3271 	ext4_fsblk_t block_bitmap;
3272 	ext4_fsblk_t inode_bitmap;
3273 	ext4_fsblk_t inode_table;
3274 	int flexbg_flag = 0;
3275 	ext4_group_t i, grp = sbi->s_groups_count;
3276 
3277 	if (ext4_has_feature_flex_bg(sb))
3278 		flexbg_flag = 1;
3279 
3280 	ext4_debug("Checking group descriptors");
3281 
3282 	for (i = 0; i < sbi->s_groups_count; i++) {
3283 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3284 
3285 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3286 			last_block = ext4_blocks_count(sbi->s_es) - 1;
3287 		else
3288 			last_block = first_block +
3289 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3290 
3291 		if ((grp == sbi->s_groups_count) &&
3292 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3293 			grp = i;
3294 
3295 		block_bitmap = ext4_block_bitmap(sb, gdp);
3296 		if (block_bitmap == sb_block) {
3297 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3298 				 "Block bitmap for group %u overlaps "
3299 				 "superblock", i);
3300 			if (!sb_rdonly(sb))
3301 				return 0;
3302 		}
3303 		if (block_bitmap >= sb_block + 1 &&
3304 		    block_bitmap <= last_bg_block) {
3305 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3306 				 "Block bitmap for group %u overlaps "
3307 				 "block group descriptors", i);
3308 			if (!sb_rdonly(sb))
3309 				return 0;
3310 		}
3311 		if (block_bitmap < first_block || block_bitmap > last_block) {
3312 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3313 			       "Block bitmap for group %u not in group "
3314 			       "(block %llu)!", i, block_bitmap);
3315 			return 0;
3316 		}
3317 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3318 		if (inode_bitmap == sb_block) {
3319 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3320 				 "Inode bitmap for group %u overlaps "
3321 				 "superblock", i);
3322 			if (!sb_rdonly(sb))
3323 				return 0;
3324 		}
3325 		if (inode_bitmap >= sb_block + 1 &&
3326 		    inode_bitmap <= last_bg_block) {
3327 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3328 				 "Inode bitmap for group %u overlaps "
3329 				 "block group descriptors", i);
3330 			if (!sb_rdonly(sb))
3331 				return 0;
3332 		}
3333 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3334 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3335 			       "Inode bitmap for group %u not in group "
3336 			       "(block %llu)!", i, inode_bitmap);
3337 			return 0;
3338 		}
3339 		inode_table = ext4_inode_table(sb, gdp);
3340 		if (inode_table == sb_block) {
3341 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3342 				 "Inode table for group %u overlaps "
3343 				 "superblock", i);
3344 			if (!sb_rdonly(sb))
3345 				return 0;
3346 		}
3347 		if (inode_table >= sb_block + 1 &&
3348 		    inode_table <= last_bg_block) {
3349 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3350 				 "Inode table for group %u overlaps "
3351 				 "block group descriptors", i);
3352 			if (!sb_rdonly(sb))
3353 				return 0;
3354 		}
3355 		if (inode_table < first_block ||
3356 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3357 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3358 			       "Inode table for group %u not in group "
3359 			       "(block %llu)!", i, inode_table);
3360 			return 0;
3361 		}
3362 		ext4_lock_group(sb, i);
3363 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3364 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3365 				 "Checksum for group %u failed (%u!=%u)",
3366 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3367 				     gdp)), le16_to_cpu(gdp->bg_checksum));
3368 			if (!sb_rdonly(sb)) {
3369 				ext4_unlock_group(sb, i);
3370 				return 0;
3371 			}
3372 		}
3373 		ext4_unlock_group(sb, i);
3374 		if (!flexbg_flag)
3375 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3376 	}
3377 	if (NULL != first_not_zeroed)
3378 		*first_not_zeroed = grp;
3379 	return 1;
3380 }
3381 
3382 /*
3383  * Maximal extent format file size.
3384  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3385  * extent format containers, within a sector_t, and within i_blocks
3386  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3387  * so that won't be a limiting factor.
3388  *
3389  * However there is other limiting factor. We do store extents in the form
3390  * of starting block and length, hence the resulting length of the extent
3391  * covering maximum file size must fit into on-disk format containers as
3392  * well. Given that length is always by 1 unit bigger than max unit (because
3393  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3394  *
3395  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3396  */
ext4_max_size(int blkbits,int has_huge_files)3397 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3398 {
3399 	loff_t res;
3400 	loff_t upper_limit = MAX_LFS_FILESIZE;
3401 
3402 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3403 
3404 	if (!has_huge_files) {
3405 		upper_limit = (1LL << 32) - 1;
3406 
3407 		/* total blocks in file system block size */
3408 		upper_limit >>= (blkbits - 9);
3409 		upper_limit <<= blkbits;
3410 	}
3411 
3412 	/*
3413 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3414 	 * by one fs block, so ee_len can cover the extent of maximum file
3415 	 * size
3416 	 */
3417 	res = (1LL << 32) - 1;
3418 	res <<= blkbits;
3419 
3420 	/* Sanity check against vm- & vfs- imposed limits */
3421 	if (res > upper_limit)
3422 		res = upper_limit;
3423 
3424 	return res;
3425 }
3426 
3427 /*
3428  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3429  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3430  * We need to be 1 filesystem block less than the 2^48 sector limit.
3431  */
ext4_max_bitmap_size(int bits,int has_huge_files)3432 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3433 {
3434 	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3435 	int meta_blocks;
3436 	unsigned int ppb = 1 << (bits - 2);
3437 
3438 	/*
3439 	 * This is calculated to be the largest file size for a dense, block
3440 	 * mapped file such that the file's total number of 512-byte sectors,
3441 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3442 	 *
3443 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3444 	 * number of 512-byte sectors of the file.
3445 	 */
3446 	if (!has_huge_files) {
3447 		/*
3448 		 * !has_huge_files or implies that the inode i_block field
3449 		 * represents total file blocks in 2^32 512-byte sectors ==
3450 		 * size of vfs inode i_blocks * 8
3451 		 */
3452 		upper_limit = (1LL << 32) - 1;
3453 
3454 		/* total blocks in file system block size */
3455 		upper_limit >>= (bits - 9);
3456 
3457 	} else {
3458 		/*
3459 		 * We use 48 bit ext4_inode i_blocks
3460 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3461 		 * represent total number of blocks in
3462 		 * file system block size
3463 		 */
3464 		upper_limit = (1LL << 48) - 1;
3465 
3466 	}
3467 
3468 	/* Compute how many blocks we can address by block tree */
3469 	res += ppb;
3470 	res += ppb * ppb;
3471 	res += ((loff_t)ppb) * ppb * ppb;
3472 	/* Compute how many metadata blocks are needed */
3473 	meta_blocks = 1;
3474 	meta_blocks += 1 + ppb;
3475 	meta_blocks += 1 + ppb + ppb * ppb;
3476 	/* Does block tree limit file size? */
3477 	if (res + meta_blocks <= upper_limit)
3478 		goto check_lfs;
3479 
3480 	res = upper_limit;
3481 	/* How many metadata blocks are needed for addressing upper_limit? */
3482 	upper_limit -= EXT4_NDIR_BLOCKS;
3483 	/* indirect blocks */
3484 	meta_blocks = 1;
3485 	upper_limit -= ppb;
3486 	/* double indirect blocks */
3487 	if (upper_limit < ppb * ppb) {
3488 		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3489 		res -= meta_blocks;
3490 		goto check_lfs;
3491 	}
3492 	meta_blocks += 1 + ppb;
3493 	upper_limit -= ppb * ppb;
3494 	/* tripple indirect blocks for the rest */
3495 	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3496 		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3497 	res -= meta_blocks;
3498 check_lfs:
3499 	res <<= bits;
3500 	if (res > MAX_LFS_FILESIZE)
3501 		res = MAX_LFS_FILESIZE;
3502 
3503 	return res;
3504 }
3505 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3506 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3507 				   ext4_fsblk_t logical_sb_block, int nr)
3508 {
3509 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3510 	ext4_group_t bg, first_meta_bg;
3511 	int has_super = 0;
3512 
3513 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3514 
3515 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3516 		return logical_sb_block + nr + 1;
3517 	bg = sbi->s_desc_per_block * nr;
3518 	if (ext4_bg_has_super(sb, bg))
3519 		has_super = 1;
3520 
3521 	/*
3522 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3523 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3524 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3525 	 * compensate.
3526 	 */
3527 	if (sb->s_blocksize == 1024 && nr == 0 &&
3528 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3529 		has_super++;
3530 
3531 	return (has_super + ext4_group_first_block_no(sb, bg));
3532 }
3533 
3534 /**
3535  * ext4_get_stripe_size: Get the stripe size.
3536  * @sbi: In memory super block info
3537  *
3538  * If we have specified it via mount option, then
3539  * use the mount option value. If the value specified at mount time is
3540  * greater than the blocks per group use the super block value.
3541  * If the super block value is greater than blocks per group return 0.
3542  * Allocator needs it be less than blocks per group.
3543  *
3544  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3545 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3546 {
3547 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3548 	unsigned long stripe_width =
3549 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3550 	int ret;
3551 
3552 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3553 		ret = sbi->s_stripe;
3554 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3555 		ret = stripe_width;
3556 	else if (stride && stride <= sbi->s_blocks_per_group)
3557 		ret = stride;
3558 	else
3559 		ret = 0;
3560 
3561 	/*
3562 	 * If the stripe width is 1, this makes no sense and
3563 	 * we set it to 0 to turn off stripe handling code.
3564 	 */
3565 	if (ret <= 1)
3566 		ret = 0;
3567 
3568 	return ret;
3569 }
3570 
3571 /*
3572  * Check whether this filesystem can be mounted based on
3573  * the features present and the RDONLY/RDWR mount requested.
3574  * Returns 1 if this filesystem can be mounted as requested,
3575  * 0 if it cannot be.
3576  */
ext4_feature_set_ok(struct super_block * sb,int readonly)3577 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3578 {
3579 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3580 		ext4_msg(sb, KERN_ERR,
3581 			"Couldn't mount because of "
3582 			"unsupported optional features (%x)",
3583 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3584 			~EXT4_FEATURE_INCOMPAT_SUPP));
3585 		return 0;
3586 	}
3587 
3588 	if (!IS_ENABLED(CONFIG_UNICODE) && ext4_has_feature_casefold(sb)) {
3589 		ext4_msg(sb, KERN_ERR,
3590 			 "Filesystem with casefold feature cannot be "
3591 			 "mounted without CONFIG_UNICODE");
3592 		return 0;
3593 	}
3594 
3595 	if (readonly)
3596 		return 1;
3597 
3598 	if (ext4_has_feature_readonly(sb)) {
3599 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3600 		sb->s_flags |= SB_RDONLY;
3601 		return 1;
3602 	}
3603 
3604 	/* Check that feature set is OK for a read-write mount */
3605 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3606 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3607 			 "unsupported optional features (%x)",
3608 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3609 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3610 		return 0;
3611 	}
3612 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3613 		ext4_msg(sb, KERN_ERR,
3614 			 "Can't support bigalloc feature without "
3615 			 "extents feature\n");
3616 		return 0;
3617 	}
3618 
3619 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3620 	if (!readonly && (ext4_has_feature_quota(sb) ||
3621 			  ext4_has_feature_project(sb))) {
3622 		ext4_msg(sb, KERN_ERR,
3623 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3624 		return 0;
3625 	}
3626 #endif  /* CONFIG_QUOTA */
3627 	return 1;
3628 }
3629 
3630 /*
3631  * This function is called once a day if we have errors logged
3632  * on the file system
3633  */
print_daily_error_info(struct timer_list * t)3634 static void print_daily_error_info(struct timer_list *t)
3635 {
3636 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3637 	struct super_block *sb = sbi->s_sb;
3638 	struct ext4_super_block *es = sbi->s_es;
3639 
3640 	if (es->s_error_count)
3641 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3642 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3643 			 le32_to_cpu(es->s_error_count));
3644 	if (es->s_first_error_time) {
3645 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3646 		       sb->s_id,
3647 		       ext4_get_tstamp(es, s_first_error_time),
3648 		       (int) sizeof(es->s_first_error_func),
3649 		       es->s_first_error_func,
3650 		       le32_to_cpu(es->s_first_error_line));
3651 		if (es->s_first_error_ino)
3652 			printk(KERN_CONT ": inode %u",
3653 			       le32_to_cpu(es->s_first_error_ino));
3654 		if (es->s_first_error_block)
3655 			printk(KERN_CONT ": block %llu", (unsigned long long)
3656 			       le64_to_cpu(es->s_first_error_block));
3657 		printk(KERN_CONT "\n");
3658 	}
3659 	if (es->s_last_error_time) {
3660 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3661 		       sb->s_id,
3662 		       ext4_get_tstamp(es, s_last_error_time),
3663 		       (int) sizeof(es->s_last_error_func),
3664 		       es->s_last_error_func,
3665 		       le32_to_cpu(es->s_last_error_line));
3666 		if (es->s_last_error_ino)
3667 			printk(KERN_CONT ": inode %u",
3668 			       le32_to_cpu(es->s_last_error_ino));
3669 		if (es->s_last_error_block)
3670 			printk(KERN_CONT ": block %llu", (unsigned long long)
3671 			       le64_to_cpu(es->s_last_error_block));
3672 		printk(KERN_CONT "\n");
3673 	}
3674 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3675 }
3676 
3677 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3678 static int ext4_run_li_request(struct ext4_li_request *elr)
3679 {
3680 	struct ext4_group_desc *gdp = NULL;
3681 	struct super_block *sb = elr->lr_super;
3682 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3683 	ext4_group_t group = elr->lr_next_group;
3684 	unsigned int prefetch_ios = 0;
3685 	int ret = 0;
3686 	int nr = EXT4_SB(sb)->s_mb_prefetch;
3687 	u64 start_time;
3688 
3689 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3690 		elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3691 		ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3692 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3693 		if (group >= elr->lr_next_group) {
3694 			ret = 1;
3695 			if (elr->lr_first_not_zeroed != ngroups &&
3696 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3697 				elr->lr_next_group = elr->lr_first_not_zeroed;
3698 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3699 				ret = 0;
3700 			}
3701 		}
3702 		return ret;
3703 	}
3704 
3705 	for (; group < ngroups; group++) {
3706 		gdp = ext4_get_group_desc(sb, group, NULL);
3707 		if (!gdp) {
3708 			ret = 1;
3709 			break;
3710 		}
3711 
3712 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3713 			break;
3714 	}
3715 
3716 	if (group >= ngroups)
3717 		ret = 1;
3718 
3719 	if (!ret) {
3720 		start_time = ktime_get_ns();
3721 		ret = ext4_init_inode_table(sb, group,
3722 					    elr->lr_timeout ? 0 : 1);
3723 		trace_ext4_lazy_itable_init(sb, group);
3724 		if (elr->lr_timeout == 0) {
3725 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_ns() - start_time) *
3726 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3727 		}
3728 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3729 		elr->lr_next_group = group + 1;
3730 	}
3731 	return ret;
3732 }
3733 
3734 /*
3735  * Remove lr_request from the list_request and free the
3736  * request structure. Should be called with li_list_mtx held
3737  */
ext4_remove_li_request(struct ext4_li_request * elr)3738 static void ext4_remove_li_request(struct ext4_li_request *elr)
3739 {
3740 	if (!elr)
3741 		return;
3742 
3743 	list_del(&elr->lr_request);
3744 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3745 	kfree(elr);
3746 }
3747 
ext4_unregister_li_request(struct super_block * sb)3748 static void ext4_unregister_li_request(struct super_block *sb)
3749 {
3750 	mutex_lock(&ext4_li_mtx);
3751 	if (!ext4_li_info) {
3752 		mutex_unlock(&ext4_li_mtx);
3753 		return;
3754 	}
3755 
3756 	mutex_lock(&ext4_li_info->li_list_mtx);
3757 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3758 	mutex_unlock(&ext4_li_info->li_list_mtx);
3759 	mutex_unlock(&ext4_li_mtx);
3760 }
3761 
3762 static struct task_struct *ext4_lazyinit_task;
3763 
3764 /*
3765  * This is the function where ext4lazyinit thread lives. It walks
3766  * through the request list searching for next scheduled filesystem.
3767  * When such a fs is found, run the lazy initialization request
3768  * (ext4_rn_li_request) and keep track of the time spend in this
3769  * function. Based on that time we compute next schedule time of
3770  * the request. When walking through the list is complete, compute
3771  * next waking time and put itself into sleep.
3772  */
ext4_lazyinit_thread(void * arg)3773 static int ext4_lazyinit_thread(void *arg)
3774 {
3775 	struct ext4_lazy_init *eli = arg;
3776 	struct list_head *pos, *n;
3777 	struct ext4_li_request *elr;
3778 	unsigned long next_wakeup, cur;
3779 
3780 	BUG_ON(NULL == eli);
3781 	set_freezable();
3782 
3783 cont_thread:
3784 	while (true) {
3785 		bool next_wakeup_initialized = false;
3786 
3787 		next_wakeup = 0;
3788 		mutex_lock(&eli->li_list_mtx);
3789 		if (list_empty(&eli->li_request_list)) {
3790 			mutex_unlock(&eli->li_list_mtx);
3791 			goto exit_thread;
3792 		}
3793 		list_for_each_safe(pos, n, &eli->li_request_list) {
3794 			int err = 0;
3795 			int progress = 0;
3796 			elr = list_entry(pos, struct ext4_li_request,
3797 					 lr_request);
3798 
3799 			if (time_before(jiffies, elr->lr_next_sched)) {
3800 				if (!next_wakeup_initialized ||
3801 				    time_before(elr->lr_next_sched, next_wakeup)) {
3802 					next_wakeup = elr->lr_next_sched;
3803 					next_wakeup_initialized = true;
3804 				}
3805 				continue;
3806 			}
3807 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3808 				if (sb_start_write_trylock(elr->lr_super)) {
3809 					progress = 1;
3810 					/*
3811 					 * We hold sb->s_umount, sb can not
3812 					 * be removed from the list, it is
3813 					 * now safe to drop li_list_mtx
3814 					 */
3815 					mutex_unlock(&eli->li_list_mtx);
3816 					err = ext4_run_li_request(elr);
3817 					sb_end_write(elr->lr_super);
3818 					mutex_lock(&eli->li_list_mtx);
3819 					n = pos->next;
3820 				}
3821 				up_read((&elr->lr_super->s_umount));
3822 			}
3823 			/* error, remove the lazy_init job */
3824 			if (err) {
3825 				ext4_remove_li_request(elr);
3826 				continue;
3827 			}
3828 			if (!progress) {
3829 				elr->lr_next_sched = jiffies +
3830 					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3831 			}
3832 			if (!next_wakeup_initialized ||
3833 			    time_before(elr->lr_next_sched, next_wakeup)) {
3834 				next_wakeup = elr->lr_next_sched;
3835 				next_wakeup_initialized = true;
3836 			}
3837 		}
3838 		mutex_unlock(&eli->li_list_mtx);
3839 
3840 		try_to_freeze();
3841 
3842 		cur = jiffies;
3843 		if (!next_wakeup_initialized || time_after_eq(cur, next_wakeup)) {
3844 			cond_resched();
3845 			continue;
3846 		}
3847 
3848 		schedule_timeout_interruptible(next_wakeup - cur);
3849 
3850 		if (kthread_should_stop()) {
3851 			ext4_clear_request_list();
3852 			goto exit_thread;
3853 		}
3854 	}
3855 
3856 exit_thread:
3857 	/*
3858 	 * It looks like the request list is empty, but we need
3859 	 * to check it under the li_list_mtx lock, to prevent any
3860 	 * additions into it, and of course we should lock ext4_li_mtx
3861 	 * to atomically free the list and ext4_li_info, because at
3862 	 * this point another ext4 filesystem could be registering
3863 	 * new one.
3864 	 */
3865 	mutex_lock(&ext4_li_mtx);
3866 	mutex_lock(&eli->li_list_mtx);
3867 	if (!list_empty(&eli->li_request_list)) {
3868 		mutex_unlock(&eli->li_list_mtx);
3869 		mutex_unlock(&ext4_li_mtx);
3870 		goto cont_thread;
3871 	}
3872 	mutex_unlock(&eli->li_list_mtx);
3873 	kfree(ext4_li_info);
3874 	ext4_li_info = NULL;
3875 	mutex_unlock(&ext4_li_mtx);
3876 
3877 	return 0;
3878 }
3879 
ext4_clear_request_list(void)3880 static void ext4_clear_request_list(void)
3881 {
3882 	struct list_head *pos, *n;
3883 	struct ext4_li_request *elr;
3884 
3885 	mutex_lock(&ext4_li_info->li_list_mtx);
3886 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3887 		elr = list_entry(pos, struct ext4_li_request,
3888 				 lr_request);
3889 		ext4_remove_li_request(elr);
3890 	}
3891 	mutex_unlock(&ext4_li_info->li_list_mtx);
3892 }
3893 
ext4_run_lazyinit_thread(void)3894 static int ext4_run_lazyinit_thread(void)
3895 {
3896 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3897 					 ext4_li_info, "ext4lazyinit");
3898 	if (IS_ERR(ext4_lazyinit_task)) {
3899 		int err = PTR_ERR(ext4_lazyinit_task);
3900 		ext4_clear_request_list();
3901 		kfree(ext4_li_info);
3902 		ext4_li_info = NULL;
3903 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3904 				 "initialization thread\n",
3905 				 err);
3906 		return err;
3907 	}
3908 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3909 	return 0;
3910 }
3911 
3912 /*
3913  * Check whether it make sense to run itable init. thread or not.
3914  * If there is at least one uninitialized inode table, return
3915  * corresponding group number, else the loop goes through all
3916  * groups and return total number of groups.
3917  */
ext4_has_uninit_itable(struct super_block * sb)3918 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3919 {
3920 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3921 	struct ext4_group_desc *gdp = NULL;
3922 
3923 	if (!ext4_has_group_desc_csum(sb))
3924 		return ngroups;
3925 
3926 	for (group = 0; group < ngroups; group++) {
3927 		gdp = ext4_get_group_desc(sb, group, NULL);
3928 		if (!gdp)
3929 			continue;
3930 
3931 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3932 			break;
3933 	}
3934 
3935 	return group;
3936 }
3937 
ext4_li_info_new(void)3938 static int ext4_li_info_new(void)
3939 {
3940 	struct ext4_lazy_init *eli = NULL;
3941 
3942 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3943 	if (!eli)
3944 		return -ENOMEM;
3945 
3946 	INIT_LIST_HEAD(&eli->li_request_list);
3947 	mutex_init(&eli->li_list_mtx);
3948 
3949 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3950 
3951 	ext4_li_info = eli;
3952 
3953 	return 0;
3954 }
3955 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3956 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3957 					    ext4_group_t start)
3958 {
3959 	struct ext4_li_request *elr;
3960 
3961 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3962 	if (!elr)
3963 		return NULL;
3964 
3965 	elr->lr_super = sb;
3966 	elr->lr_first_not_zeroed = start;
3967 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3968 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3969 		elr->lr_next_group = start;
3970 	} else {
3971 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3972 	}
3973 
3974 	/*
3975 	 * Randomize first schedule time of the request to
3976 	 * spread the inode table initialization requests
3977 	 * better.
3978 	 */
3979 	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3980 	return elr;
3981 }
3982 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3983 int ext4_register_li_request(struct super_block *sb,
3984 			     ext4_group_t first_not_zeroed)
3985 {
3986 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3987 	struct ext4_li_request *elr = NULL;
3988 	ext4_group_t ngroups = sbi->s_groups_count;
3989 	int ret = 0;
3990 
3991 	mutex_lock(&ext4_li_mtx);
3992 	if (sbi->s_li_request != NULL) {
3993 		/*
3994 		 * Reset timeout so it can be computed again, because
3995 		 * s_li_wait_mult might have changed.
3996 		 */
3997 		sbi->s_li_request->lr_timeout = 0;
3998 		goto out;
3999 	}
4000 
4001 	if (sb_rdonly(sb) ||
4002 	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4003 	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4004 		goto out;
4005 
4006 	elr = ext4_li_request_new(sb, first_not_zeroed);
4007 	if (!elr) {
4008 		ret = -ENOMEM;
4009 		goto out;
4010 	}
4011 
4012 	if (NULL == ext4_li_info) {
4013 		ret = ext4_li_info_new();
4014 		if (ret)
4015 			goto out;
4016 	}
4017 
4018 	mutex_lock(&ext4_li_info->li_list_mtx);
4019 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4020 	mutex_unlock(&ext4_li_info->li_list_mtx);
4021 
4022 	sbi->s_li_request = elr;
4023 	/*
4024 	 * set elr to NULL here since it has been inserted to
4025 	 * the request_list and the removal and free of it is
4026 	 * handled by ext4_clear_request_list from now on.
4027 	 */
4028 	elr = NULL;
4029 
4030 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4031 		ret = ext4_run_lazyinit_thread();
4032 		if (ret)
4033 			goto out;
4034 	}
4035 out:
4036 	mutex_unlock(&ext4_li_mtx);
4037 	if (ret)
4038 		kfree(elr);
4039 	return ret;
4040 }
4041 
4042 /*
4043  * We do not need to lock anything since this is called on
4044  * module unload.
4045  */
ext4_destroy_lazyinit_thread(void)4046 static void ext4_destroy_lazyinit_thread(void)
4047 {
4048 	/*
4049 	 * If thread exited earlier
4050 	 * there's nothing to be done.
4051 	 */
4052 	if (!ext4_li_info || !ext4_lazyinit_task)
4053 		return;
4054 
4055 	kthread_stop(ext4_lazyinit_task);
4056 }
4057 
set_journal_csum_feature_set(struct super_block * sb)4058 static int set_journal_csum_feature_set(struct super_block *sb)
4059 {
4060 	int ret = 1;
4061 	int compat, incompat;
4062 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4063 
4064 	if (ext4_has_metadata_csum(sb)) {
4065 		/* journal checksum v3 */
4066 		compat = 0;
4067 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4068 	} else {
4069 		/* journal checksum v1 */
4070 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4071 		incompat = 0;
4072 	}
4073 
4074 	jbd2_journal_clear_features(sbi->s_journal,
4075 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4076 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4077 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4078 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4079 		ret = jbd2_journal_set_features(sbi->s_journal,
4080 				compat, 0,
4081 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4082 				incompat);
4083 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4084 		ret = jbd2_journal_set_features(sbi->s_journal,
4085 				compat, 0,
4086 				incompat);
4087 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4088 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4089 	} else {
4090 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4091 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4092 	}
4093 
4094 	return ret;
4095 }
4096 
4097 /*
4098  * Note: calculating the overhead so we can be compatible with
4099  * historical BSD practice is quite difficult in the face of
4100  * clusters/bigalloc.  This is because multiple metadata blocks from
4101  * different block group can end up in the same allocation cluster.
4102  * Calculating the exact overhead in the face of clustered allocation
4103  * requires either O(all block bitmaps) in memory or O(number of block
4104  * groups**2) in time.  We will still calculate the superblock for
4105  * older file systems --- and if we come across with a bigalloc file
4106  * system with zero in s_overhead_clusters the estimate will be close to
4107  * correct especially for very large cluster sizes --- but for newer
4108  * file systems, it's better to calculate this figure once at mkfs
4109  * time, and store it in the superblock.  If the superblock value is
4110  * present (even for non-bigalloc file systems), we will use it.
4111  */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)4112 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4113 			  char *buf)
4114 {
4115 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4116 	struct ext4_group_desc	*gdp;
4117 	ext4_fsblk_t		first_block, last_block, b;
4118 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4119 	int			s, j, count = 0;
4120 	int			has_super = ext4_bg_has_super(sb, grp);
4121 
4122 	if (!ext4_has_feature_bigalloc(sb))
4123 		return (has_super + ext4_bg_num_gdb(sb, grp) +
4124 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4125 			sbi->s_itb_per_group + 2);
4126 
4127 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4128 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4129 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4130 	for (i = 0; i < ngroups; i++) {
4131 		gdp = ext4_get_group_desc(sb, i, NULL);
4132 		b = ext4_block_bitmap(sb, gdp);
4133 		if (b >= first_block && b <= last_block) {
4134 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4135 			count++;
4136 		}
4137 		b = ext4_inode_bitmap(sb, gdp);
4138 		if (b >= first_block && b <= last_block) {
4139 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4140 			count++;
4141 		}
4142 		b = ext4_inode_table(sb, gdp);
4143 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4144 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4145 				int c = EXT4_B2C(sbi, b - first_block);
4146 				ext4_set_bit(c, buf);
4147 				count++;
4148 			}
4149 		if (i != grp)
4150 			continue;
4151 		s = 0;
4152 		if (ext4_bg_has_super(sb, grp)) {
4153 			ext4_set_bit(s++, buf);
4154 			count++;
4155 		}
4156 		j = ext4_bg_num_gdb(sb, grp);
4157 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4158 			ext4_error(sb, "Invalid number of block group "
4159 				   "descriptor blocks: %d", j);
4160 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4161 		}
4162 		count += j;
4163 		for (; j > 0; j--)
4164 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4165 	}
4166 	if (!count)
4167 		return 0;
4168 	return EXT4_CLUSTERS_PER_GROUP(sb) -
4169 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4170 }
4171 
4172 /*
4173  * Compute the overhead and stash it in sbi->s_overhead
4174  */
ext4_calculate_overhead(struct super_block * sb)4175 int ext4_calculate_overhead(struct super_block *sb)
4176 {
4177 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4178 	struct ext4_super_block *es = sbi->s_es;
4179 	struct inode *j_inode;
4180 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4181 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4182 	ext4_fsblk_t overhead = 0;
4183 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4184 
4185 	if (!buf)
4186 		return -ENOMEM;
4187 
4188 	/*
4189 	 * Compute the overhead (FS structures).  This is constant
4190 	 * for a given filesystem unless the number of block groups
4191 	 * changes so we cache the previous value until it does.
4192 	 */
4193 
4194 	/*
4195 	 * All of the blocks before first_data_block are overhead
4196 	 */
4197 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4198 
4199 	/*
4200 	 * Add the overhead found in each block group
4201 	 */
4202 	for (i = 0; i < ngroups; i++) {
4203 		int blks;
4204 
4205 		blks = count_overhead(sb, i, buf);
4206 		overhead += blks;
4207 		if (blks)
4208 			memset(buf, 0, PAGE_SIZE);
4209 		cond_resched();
4210 	}
4211 
4212 	/*
4213 	 * Add the internal journal blocks whether the journal has been
4214 	 * loaded or not
4215 	 */
4216 	if (sbi->s_journal && !sbi->s_journal_bdev_file)
4217 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4218 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4219 		/* j_inum for internal journal is non-zero */
4220 		j_inode = ext4_get_journal_inode(sb, j_inum);
4221 		if (!IS_ERR(j_inode)) {
4222 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4223 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4224 			iput(j_inode);
4225 		} else {
4226 			ext4_msg(sb, KERN_ERR, "can't get journal size");
4227 		}
4228 	}
4229 	sbi->s_overhead = overhead;
4230 	smp_wmb();
4231 	free_page((unsigned long) buf);
4232 	return 0;
4233 }
4234 
ext4_set_resv_clusters(struct super_block * sb)4235 static void ext4_set_resv_clusters(struct super_block *sb)
4236 {
4237 	ext4_fsblk_t resv_clusters;
4238 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4239 
4240 	/*
4241 	 * There's no need to reserve anything when we aren't using extents.
4242 	 * The space estimates are exact, there are no unwritten extents,
4243 	 * hole punching doesn't need new metadata... This is needed especially
4244 	 * to keep ext2/3 backward compatibility.
4245 	 */
4246 	if (!ext4_has_feature_extents(sb))
4247 		return;
4248 	/*
4249 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4250 	 * This should cover the situations where we can not afford to run
4251 	 * out of space like for example punch hole, or converting
4252 	 * unwritten extents in delalloc path. In most cases such
4253 	 * allocation would require 1, or 2 blocks, higher numbers are
4254 	 * very rare.
4255 	 */
4256 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4257 			 sbi->s_cluster_bits);
4258 
4259 	do_div(resv_clusters, 50);
4260 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4261 
4262 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4263 }
4264 
ext4_quota_mode(struct super_block * sb)4265 static const char *ext4_quota_mode(struct super_block *sb)
4266 {
4267 #ifdef CONFIG_QUOTA
4268 	if (!ext4_quota_capable(sb))
4269 		return "none";
4270 
4271 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4272 		return "journalled";
4273 	else
4274 		return "writeback";
4275 #else
4276 	return "disabled";
4277 #endif
4278 }
4279 
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))4280 static void ext4_setup_csum_trigger(struct super_block *sb,
4281 				    enum ext4_journal_trigger_type type,
4282 				    void (*trigger)(
4283 					struct jbd2_buffer_trigger_type *type,
4284 					struct buffer_head *bh,
4285 					void *mapped_data,
4286 					size_t size))
4287 {
4288 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4289 
4290 	sbi->s_journal_triggers[type].sb = sb;
4291 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4292 }
4293 
ext4_free_sbi(struct ext4_sb_info * sbi)4294 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4295 {
4296 	if (!sbi)
4297 		return;
4298 
4299 	kfree(sbi->s_blockgroup_lock);
4300 	fs_put_dax(sbi->s_daxdev, NULL);
4301 	kfree(sbi);
4302 }
4303 
ext4_alloc_sbi(struct super_block * sb)4304 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4305 {
4306 	struct ext4_sb_info *sbi;
4307 
4308 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4309 	if (!sbi)
4310 		return NULL;
4311 
4312 	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4313 					   NULL, NULL);
4314 
4315 	sbi->s_blockgroup_lock =
4316 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4317 
4318 	if (!sbi->s_blockgroup_lock)
4319 		goto err_out;
4320 
4321 	sb->s_fs_info = sbi;
4322 	sbi->s_sb = sb;
4323 	return sbi;
4324 err_out:
4325 	fs_put_dax(sbi->s_daxdev, NULL);
4326 	kfree(sbi);
4327 	return NULL;
4328 }
4329 
ext4_set_def_opts(struct super_block * sb,struct ext4_super_block * es)4330 static void ext4_set_def_opts(struct super_block *sb,
4331 			      struct ext4_super_block *es)
4332 {
4333 	unsigned long def_mount_opts;
4334 
4335 	/* Set defaults before we parse the mount options */
4336 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4337 	set_opt(sb, INIT_INODE_TABLE);
4338 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4339 		set_opt(sb, DEBUG);
4340 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4341 		set_opt(sb, GRPID);
4342 	if (def_mount_opts & EXT4_DEFM_UID16)
4343 		set_opt(sb, NO_UID32);
4344 	/* xattr user namespace & acls are now defaulted on */
4345 	set_opt(sb, XATTR_USER);
4346 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4347 	set_opt(sb, POSIX_ACL);
4348 #endif
4349 	if (ext4_has_feature_fast_commit(sb))
4350 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4351 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4352 	if (ext4_has_metadata_csum(sb))
4353 		set_opt(sb, JOURNAL_CHECKSUM);
4354 
4355 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4356 		set_opt(sb, JOURNAL_DATA);
4357 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4358 		set_opt(sb, ORDERED_DATA);
4359 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4360 		set_opt(sb, WRITEBACK_DATA);
4361 
4362 	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4363 		set_opt(sb, ERRORS_PANIC);
4364 	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4365 		set_opt(sb, ERRORS_CONT);
4366 	else
4367 		set_opt(sb, ERRORS_RO);
4368 	/* block_validity enabled by default; disable with noblock_validity */
4369 	set_opt(sb, BLOCK_VALIDITY);
4370 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4371 		set_opt(sb, DISCARD);
4372 
4373 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4374 		set_opt(sb, BARRIER);
4375 
4376 	/*
4377 	 * enable delayed allocation by default
4378 	 * Use -o nodelalloc to turn it off
4379 	 */
4380 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4381 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4382 		set_opt(sb, DELALLOC);
4383 
4384 	if (sb->s_blocksize <= PAGE_SIZE)
4385 		set_opt(sb, DIOREAD_NOLOCK);
4386 }
4387 
ext4_handle_clustersize(struct super_block * sb)4388 static int ext4_handle_clustersize(struct super_block *sb)
4389 {
4390 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4391 	struct ext4_super_block *es = sbi->s_es;
4392 	int clustersize;
4393 
4394 	/* Handle clustersize */
4395 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4396 	if (ext4_has_feature_bigalloc(sb)) {
4397 		if (clustersize < sb->s_blocksize) {
4398 			ext4_msg(sb, KERN_ERR,
4399 				 "cluster size (%d) smaller than "
4400 				 "block size (%lu)", clustersize, sb->s_blocksize);
4401 			return -EINVAL;
4402 		}
4403 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4404 			le32_to_cpu(es->s_log_block_size);
4405 	} else {
4406 		if (clustersize != sb->s_blocksize) {
4407 			ext4_msg(sb, KERN_ERR,
4408 				 "fragment/cluster size (%d) != "
4409 				 "block size (%lu)", clustersize, sb->s_blocksize);
4410 			return -EINVAL;
4411 		}
4412 		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4413 			ext4_msg(sb, KERN_ERR,
4414 				 "#blocks per group too big: %lu",
4415 				 sbi->s_blocks_per_group);
4416 			return -EINVAL;
4417 		}
4418 		sbi->s_cluster_bits = 0;
4419 	}
4420 	sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4421 	if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4422 		ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4423 			 sbi->s_clusters_per_group);
4424 		return -EINVAL;
4425 	}
4426 	if (sbi->s_blocks_per_group !=
4427 	    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4428 		ext4_msg(sb, KERN_ERR,
4429 			 "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4430 			 sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4431 		return -EINVAL;
4432 	}
4433 	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4434 
4435 	/* Do we have standard group size of clustersize * 8 blocks ? */
4436 	if (sbi->s_blocks_per_group == clustersize << 3)
4437 		set_opt2(sb, STD_GROUP_SIZE);
4438 
4439 	return 0;
4440 }
4441 
4442 /*
4443  * ext4_atomic_write_init: Initializes filesystem min & max atomic write units.
4444  * @sb: super block
4445  * TODO: Later add support for bigalloc
4446  */
ext4_atomic_write_init(struct super_block * sb)4447 static void ext4_atomic_write_init(struct super_block *sb)
4448 {
4449 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4450 	struct block_device *bdev = sb->s_bdev;
4451 
4452 	if (!bdev_can_atomic_write(bdev))
4453 		return;
4454 
4455 	if (!ext4_has_feature_extents(sb))
4456 		return;
4457 
4458 	sbi->s_awu_min = max(sb->s_blocksize,
4459 			      bdev_atomic_write_unit_min_bytes(bdev));
4460 	sbi->s_awu_max = min(sb->s_blocksize,
4461 			      bdev_atomic_write_unit_max_bytes(bdev));
4462 	if (sbi->s_awu_min && sbi->s_awu_max &&
4463 	    sbi->s_awu_min <= sbi->s_awu_max) {
4464 		ext4_msg(sb, KERN_NOTICE, "Supports (experimental) DIO atomic writes awu_min: %u, awu_max: %u",
4465 			 sbi->s_awu_min, sbi->s_awu_max);
4466 	} else {
4467 		sbi->s_awu_min = 0;
4468 		sbi->s_awu_max = 0;
4469 	}
4470 }
4471 
ext4_fast_commit_init(struct super_block * sb)4472 static void ext4_fast_commit_init(struct super_block *sb)
4473 {
4474 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4475 
4476 	/* Initialize fast commit stuff */
4477 	atomic_set(&sbi->s_fc_subtid, 0);
4478 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4479 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4480 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4481 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4482 	sbi->s_fc_bytes = 0;
4483 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4484 	sbi->s_fc_ineligible_tid = 0;
4485 	spin_lock_init(&sbi->s_fc_lock);
4486 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4487 	sbi->s_fc_replay_state.fc_regions = NULL;
4488 	sbi->s_fc_replay_state.fc_regions_size = 0;
4489 	sbi->s_fc_replay_state.fc_regions_used = 0;
4490 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4491 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4492 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4493 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4494 }
4495 
ext4_inode_info_init(struct super_block * sb,struct ext4_super_block * es)4496 static int ext4_inode_info_init(struct super_block *sb,
4497 				struct ext4_super_block *es)
4498 {
4499 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4500 
4501 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4502 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4503 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4504 	} else {
4505 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4506 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4507 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4508 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4509 				 sbi->s_first_ino);
4510 			return -EINVAL;
4511 		}
4512 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4513 		    (!is_power_of_2(sbi->s_inode_size)) ||
4514 		    (sbi->s_inode_size > sb->s_blocksize)) {
4515 			ext4_msg(sb, KERN_ERR,
4516 			       "unsupported inode size: %d",
4517 			       sbi->s_inode_size);
4518 			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4519 			return -EINVAL;
4520 		}
4521 		/*
4522 		 * i_atime_extra is the last extra field available for
4523 		 * [acm]times in struct ext4_inode. Checking for that
4524 		 * field should suffice to ensure we have extra space
4525 		 * for all three.
4526 		 */
4527 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4528 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4529 			sb->s_time_gran = 1;
4530 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4531 		} else {
4532 			sb->s_time_gran = NSEC_PER_SEC;
4533 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4534 		}
4535 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4536 	}
4537 
4538 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4539 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4540 			EXT4_GOOD_OLD_INODE_SIZE;
4541 		if (ext4_has_feature_extra_isize(sb)) {
4542 			unsigned v, max = (sbi->s_inode_size -
4543 					   EXT4_GOOD_OLD_INODE_SIZE);
4544 
4545 			v = le16_to_cpu(es->s_want_extra_isize);
4546 			if (v > max) {
4547 				ext4_msg(sb, KERN_ERR,
4548 					 "bad s_want_extra_isize: %d", v);
4549 				return -EINVAL;
4550 			}
4551 			if (sbi->s_want_extra_isize < v)
4552 				sbi->s_want_extra_isize = v;
4553 
4554 			v = le16_to_cpu(es->s_min_extra_isize);
4555 			if (v > max) {
4556 				ext4_msg(sb, KERN_ERR,
4557 					 "bad s_min_extra_isize: %d", v);
4558 				return -EINVAL;
4559 			}
4560 			if (sbi->s_want_extra_isize < v)
4561 				sbi->s_want_extra_isize = v;
4562 		}
4563 	}
4564 
4565 	return 0;
4566 }
4567 
4568 #if IS_ENABLED(CONFIG_UNICODE)
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4569 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4570 {
4571 	const struct ext4_sb_encodings *encoding_info;
4572 	struct unicode_map *encoding;
4573 	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4574 
4575 	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4576 		return 0;
4577 
4578 	encoding_info = ext4_sb_read_encoding(es);
4579 	if (!encoding_info) {
4580 		ext4_msg(sb, KERN_ERR,
4581 			"Encoding requested by superblock is unknown");
4582 		return -EINVAL;
4583 	}
4584 
4585 	encoding = utf8_load(encoding_info->version);
4586 	if (IS_ERR(encoding)) {
4587 		ext4_msg(sb, KERN_ERR,
4588 			"can't mount with superblock charset: %s-%u.%u.%u "
4589 			"not supported by the kernel. flags: 0x%x.",
4590 			encoding_info->name,
4591 			unicode_major(encoding_info->version),
4592 			unicode_minor(encoding_info->version),
4593 			unicode_rev(encoding_info->version),
4594 			encoding_flags);
4595 		return -EINVAL;
4596 	}
4597 	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4598 		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4599 		unicode_major(encoding_info->version),
4600 		unicode_minor(encoding_info->version),
4601 		unicode_rev(encoding_info->version),
4602 		encoding_flags);
4603 
4604 	sb->s_encoding = encoding;
4605 	sb->s_encoding_flags = encoding_flags;
4606 
4607 	return 0;
4608 }
4609 #else
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4610 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4611 {
4612 	return 0;
4613 }
4614 #endif
4615 
ext4_init_metadata_csum(struct super_block * sb,struct ext4_super_block * es)4616 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4617 {
4618 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4619 
4620 	/* Warn if metadata_csum and gdt_csum are both set. */
4621 	if (ext4_has_feature_metadata_csum(sb) &&
4622 	    ext4_has_feature_gdt_csum(sb))
4623 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4624 			     "redundant flags; please run fsck.");
4625 
4626 	/* Check for a known checksum algorithm */
4627 	if (!ext4_verify_csum_type(sb, es)) {
4628 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4629 			 "unknown checksum algorithm.");
4630 		return -EINVAL;
4631 	}
4632 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4633 				ext4_orphan_file_block_trigger);
4634 
4635 	/* Check superblock checksum */
4636 	if (!ext4_superblock_csum_verify(sb, es)) {
4637 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4638 			 "invalid superblock checksum.  Run e2fsck?");
4639 		return -EFSBADCRC;
4640 	}
4641 
4642 	/* Precompute checksum seed for all metadata */
4643 	if (ext4_has_feature_csum_seed(sb))
4644 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4645 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4646 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4647 					       sizeof(es->s_uuid));
4648 	return 0;
4649 }
4650 
ext4_check_feature_compatibility(struct super_block * sb,struct ext4_super_block * es,int silent)4651 static int ext4_check_feature_compatibility(struct super_block *sb,
4652 					    struct ext4_super_block *es,
4653 					    int silent)
4654 {
4655 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4656 
4657 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4658 	    (ext4_has_compat_features(sb) ||
4659 	     ext4_has_ro_compat_features(sb) ||
4660 	     ext4_has_incompat_features(sb)))
4661 		ext4_msg(sb, KERN_WARNING,
4662 		       "feature flags set on rev 0 fs, "
4663 		       "running e2fsck is recommended");
4664 
4665 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4666 		set_opt2(sb, HURD_COMPAT);
4667 		if (ext4_has_feature_64bit(sb)) {
4668 			ext4_msg(sb, KERN_ERR,
4669 				 "The Hurd can't support 64-bit file systems");
4670 			return -EINVAL;
4671 		}
4672 
4673 		/*
4674 		 * ea_inode feature uses l_i_version field which is not
4675 		 * available in HURD_COMPAT mode.
4676 		 */
4677 		if (ext4_has_feature_ea_inode(sb)) {
4678 			ext4_msg(sb, KERN_ERR,
4679 				 "ea_inode feature is not supported for Hurd");
4680 			return -EINVAL;
4681 		}
4682 	}
4683 
4684 	if (IS_EXT2_SB(sb)) {
4685 		if (ext2_feature_set_ok(sb))
4686 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4687 				 "using the ext4 subsystem");
4688 		else {
4689 			/*
4690 			 * If we're probing be silent, if this looks like
4691 			 * it's actually an ext[34] filesystem.
4692 			 */
4693 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4694 				return -EINVAL;
4695 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4696 				 "to feature incompatibilities");
4697 			return -EINVAL;
4698 		}
4699 	}
4700 
4701 	if (IS_EXT3_SB(sb)) {
4702 		if (ext3_feature_set_ok(sb))
4703 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4704 				 "using the ext4 subsystem");
4705 		else {
4706 			/*
4707 			 * If we're probing be silent, if this looks like
4708 			 * it's actually an ext4 filesystem.
4709 			 */
4710 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4711 				return -EINVAL;
4712 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4713 				 "to feature incompatibilities");
4714 			return -EINVAL;
4715 		}
4716 	}
4717 
4718 	/*
4719 	 * Check feature flags regardless of the revision level, since we
4720 	 * previously didn't change the revision level when setting the flags,
4721 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4722 	 */
4723 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4724 		return -EINVAL;
4725 
4726 	if (sbi->s_daxdev) {
4727 		if (sb->s_blocksize == PAGE_SIZE)
4728 			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4729 		else
4730 			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4731 	}
4732 
4733 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4734 		if (ext4_has_feature_inline_data(sb)) {
4735 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4736 					" that may contain inline data");
4737 			return -EINVAL;
4738 		}
4739 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4740 			ext4_msg(sb, KERN_ERR,
4741 				"DAX unsupported by block device.");
4742 			return -EINVAL;
4743 		}
4744 	}
4745 
4746 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4747 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4748 			 es->s_encryption_level);
4749 		return -EINVAL;
4750 	}
4751 
4752 	return 0;
4753 }
4754 
ext4_check_geometry(struct super_block * sb,struct ext4_super_block * es)4755 static int ext4_check_geometry(struct super_block *sb,
4756 			       struct ext4_super_block *es)
4757 {
4758 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4759 	__u64 blocks_count;
4760 	int err;
4761 
4762 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4763 		ext4_msg(sb, KERN_ERR,
4764 			 "Number of reserved GDT blocks insanely large: %d",
4765 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4766 		return -EINVAL;
4767 	}
4768 	/*
4769 	 * Test whether we have more sectors than will fit in sector_t,
4770 	 * and whether the max offset is addressable by the page cache.
4771 	 */
4772 	err = generic_check_addressable(sb->s_blocksize_bits,
4773 					ext4_blocks_count(es));
4774 	if (err) {
4775 		ext4_msg(sb, KERN_ERR, "filesystem"
4776 			 " too large to mount safely on this system");
4777 		return err;
4778 	}
4779 
4780 	/* check blocks count against device size */
4781 	blocks_count = sb_bdev_nr_blocks(sb);
4782 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4783 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4784 		       "exceeds size of device (%llu blocks)",
4785 		       ext4_blocks_count(es), blocks_count);
4786 		return -EINVAL;
4787 	}
4788 
4789 	/*
4790 	 * It makes no sense for the first data block to be beyond the end
4791 	 * of the filesystem.
4792 	 */
4793 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4794 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4795 			 "block %u is beyond end of filesystem (%llu)",
4796 			 le32_to_cpu(es->s_first_data_block),
4797 			 ext4_blocks_count(es));
4798 		return -EINVAL;
4799 	}
4800 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4801 	    (sbi->s_cluster_ratio == 1)) {
4802 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4803 			 "block is 0 with a 1k block and cluster size");
4804 		return -EINVAL;
4805 	}
4806 
4807 	blocks_count = (ext4_blocks_count(es) -
4808 			le32_to_cpu(es->s_first_data_block) +
4809 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4810 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4811 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4812 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4813 		       "(block count %llu, first data block %u, "
4814 		       "blocks per group %lu)", blocks_count,
4815 		       ext4_blocks_count(es),
4816 		       le32_to_cpu(es->s_first_data_block),
4817 		       EXT4_BLOCKS_PER_GROUP(sb));
4818 		return -EINVAL;
4819 	}
4820 	sbi->s_groups_count = blocks_count;
4821 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4822 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4823 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4824 	    le32_to_cpu(es->s_inodes_count)) {
4825 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4826 			 le32_to_cpu(es->s_inodes_count),
4827 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4828 		return -EINVAL;
4829 	}
4830 
4831 	return 0;
4832 }
4833 
ext4_group_desc_init(struct super_block * sb,struct ext4_super_block * es,ext4_fsblk_t logical_sb_block,ext4_group_t * first_not_zeroed)4834 static int ext4_group_desc_init(struct super_block *sb,
4835 				struct ext4_super_block *es,
4836 				ext4_fsblk_t logical_sb_block,
4837 				ext4_group_t *first_not_zeroed)
4838 {
4839 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4840 	unsigned int db_count;
4841 	ext4_fsblk_t block;
4842 	int i;
4843 
4844 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4845 		   EXT4_DESC_PER_BLOCK(sb);
4846 	if (ext4_has_feature_meta_bg(sb)) {
4847 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4848 			ext4_msg(sb, KERN_WARNING,
4849 				 "first meta block group too large: %u "
4850 				 "(group descriptor block count %u)",
4851 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4852 			return -EINVAL;
4853 		}
4854 	}
4855 	rcu_assign_pointer(sbi->s_group_desc,
4856 			   kvmalloc_array(db_count,
4857 					  sizeof(struct buffer_head *),
4858 					  GFP_KERNEL));
4859 	if (sbi->s_group_desc == NULL) {
4860 		ext4_msg(sb, KERN_ERR, "not enough memory");
4861 		return -ENOMEM;
4862 	}
4863 
4864 	bgl_lock_init(sbi->s_blockgroup_lock);
4865 
4866 	/* Pre-read the descriptors into the buffer cache */
4867 	for (i = 0; i < db_count; i++) {
4868 		block = descriptor_loc(sb, logical_sb_block, i);
4869 		ext4_sb_breadahead_unmovable(sb, block);
4870 	}
4871 
4872 	for (i = 0; i < db_count; i++) {
4873 		struct buffer_head *bh;
4874 
4875 		block = descriptor_loc(sb, logical_sb_block, i);
4876 		bh = ext4_sb_bread_unmovable(sb, block);
4877 		if (IS_ERR(bh)) {
4878 			ext4_msg(sb, KERN_ERR,
4879 			       "can't read group descriptor %d", i);
4880 			sbi->s_gdb_count = i;
4881 			return PTR_ERR(bh);
4882 		}
4883 		rcu_read_lock();
4884 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4885 		rcu_read_unlock();
4886 	}
4887 	sbi->s_gdb_count = db_count;
4888 	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4889 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4890 		return -EFSCORRUPTED;
4891 	}
4892 
4893 	return 0;
4894 }
4895 
ext4_load_and_init_journal(struct super_block * sb,struct ext4_super_block * es,struct ext4_fs_context * ctx)4896 static int ext4_load_and_init_journal(struct super_block *sb,
4897 				      struct ext4_super_block *es,
4898 				      struct ext4_fs_context *ctx)
4899 {
4900 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4901 	int err;
4902 
4903 	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4904 	if (err)
4905 		return err;
4906 
4907 	if (ext4_has_feature_64bit(sb) &&
4908 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4909 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4910 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4911 		goto out;
4912 	}
4913 
4914 	if (!set_journal_csum_feature_set(sb)) {
4915 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4916 			 "feature set");
4917 		goto out;
4918 	}
4919 
4920 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4921 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4922 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4923 		ext4_msg(sb, KERN_ERR,
4924 			"Failed to set fast commit journal feature");
4925 		goto out;
4926 	}
4927 
4928 	/* We have now updated the journal if required, so we can
4929 	 * validate the data journaling mode. */
4930 	switch (test_opt(sb, DATA_FLAGS)) {
4931 	case 0:
4932 		/* No mode set, assume a default based on the journal
4933 		 * capabilities: ORDERED_DATA if the journal can
4934 		 * cope, else JOURNAL_DATA
4935 		 */
4936 		if (jbd2_journal_check_available_features
4937 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4938 			set_opt(sb, ORDERED_DATA);
4939 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4940 		} else {
4941 			set_opt(sb, JOURNAL_DATA);
4942 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4943 		}
4944 		break;
4945 
4946 	case EXT4_MOUNT_ORDERED_DATA:
4947 	case EXT4_MOUNT_WRITEBACK_DATA:
4948 		if (!jbd2_journal_check_available_features
4949 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4950 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4951 			       "requested data journaling mode");
4952 			goto out;
4953 		}
4954 		break;
4955 	default:
4956 		break;
4957 	}
4958 
4959 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4960 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4961 		ext4_msg(sb, KERN_ERR, "can't mount with "
4962 			"journal_async_commit in data=ordered mode");
4963 		goto out;
4964 	}
4965 
4966 	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4967 
4968 	sbi->s_journal->j_submit_inode_data_buffers =
4969 		ext4_journal_submit_inode_data_buffers;
4970 	sbi->s_journal->j_finish_inode_data_buffers =
4971 		ext4_journal_finish_inode_data_buffers;
4972 
4973 	return 0;
4974 
4975 out:
4976 	/* flush s_sb_upd_work before destroying the journal. */
4977 	flush_work(&sbi->s_sb_upd_work);
4978 	jbd2_journal_destroy(sbi->s_journal);
4979 	sbi->s_journal = NULL;
4980 	return -EINVAL;
4981 }
4982 
ext4_check_journal_data_mode(struct super_block * sb)4983 static int ext4_check_journal_data_mode(struct super_block *sb)
4984 {
4985 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4986 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4987 			    "data=journal disables delayed allocation, "
4988 			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
4989 		/* can't mount with both data=journal and dioread_nolock. */
4990 		clear_opt(sb, DIOREAD_NOLOCK);
4991 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4992 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4993 			ext4_msg(sb, KERN_ERR, "can't mount with "
4994 				 "both data=journal and delalloc");
4995 			return -EINVAL;
4996 		}
4997 		if (test_opt(sb, DAX_ALWAYS)) {
4998 			ext4_msg(sb, KERN_ERR, "can't mount with "
4999 				 "both data=journal and dax");
5000 			return -EINVAL;
5001 		}
5002 		if (ext4_has_feature_encrypt(sb)) {
5003 			ext4_msg(sb, KERN_WARNING,
5004 				 "encrypted files will use data=ordered "
5005 				 "instead of data journaling mode");
5006 		}
5007 		if (test_opt(sb, DELALLOC))
5008 			clear_opt(sb, DELALLOC);
5009 	} else {
5010 		sb->s_iflags |= SB_I_CGROUPWB;
5011 	}
5012 
5013 	return 0;
5014 }
5015 
ext4_load_super(struct super_block * sb,ext4_fsblk_t * lsb,int silent)5016 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5017 			   int silent)
5018 {
5019 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5020 	struct ext4_super_block *es;
5021 	ext4_fsblk_t logical_sb_block;
5022 	unsigned long offset = 0;
5023 	struct buffer_head *bh;
5024 	int ret = -EINVAL;
5025 	int blocksize;
5026 
5027 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5028 	if (!blocksize) {
5029 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5030 		return -EINVAL;
5031 	}
5032 
5033 	/*
5034 	 * The ext4 superblock will not be buffer aligned for other than 1kB
5035 	 * block sizes.  We need to calculate the offset from buffer start.
5036 	 */
5037 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5038 		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5039 		offset = do_div(logical_sb_block, blocksize);
5040 	} else {
5041 		logical_sb_block = sbi->s_sb_block;
5042 	}
5043 
5044 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5045 	if (IS_ERR(bh)) {
5046 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
5047 		return PTR_ERR(bh);
5048 	}
5049 	/*
5050 	 * Note: s_es must be initialized as soon as possible because
5051 	 *       some ext4 macro-instructions depend on its value
5052 	 */
5053 	es = (struct ext4_super_block *) (bh->b_data + offset);
5054 	sbi->s_es = es;
5055 	sb->s_magic = le16_to_cpu(es->s_magic);
5056 	if (sb->s_magic != EXT4_SUPER_MAGIC) {
5057 		if (!silent)
5058 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5059 		goto out;
5060 	}
5061 
5062 	if (le32_to_cpu(es->s_log_block_size) >
5063 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5064 		ext4_msg(sb, KERN_ERR,
5065 			 "Invalid log block size: %u",
5066 			 le32_to_cpu(es->s_log_block_size));
5067 		goto out;
5068 	}
5069 	if (le32_to_cpu(es->s_log_cluster_size) >
5070 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5071 		ext4_msg(sb, KERN_ERR,
5072 			 "Invalid log cluster size: %u",
5073 			 le32_to_cpu(es->s_log_cluster_size));
5074 		goto out;
5075 	}
5076 
5077 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5078 
5079 	/*
5080 	 * If the default block size is not the same as the real block size,
5081 	 * we need to reload it.
5082 	 */
5083 	if (sb->s_blocksize == blocksize) {
5084 		*lsb = logical_sb_block;
5085 		sbi->s_sbh = bh;
5086 		return 0;
5087 	}
5088 
5089 	/*
5090 	 * bh must be released before kill_bdev(), otherwise
5091 	 * it won't be freed and its page also. kill_bdev()
5092 	 * is called by sb_set_blocksize().
5093 	 */
5094 	brelse(bh);
5095 	/* Validate the filesystem blocksize */
5096 	if (!sb_set_blocksize(sb, blocksize)) {
5097 		ext4_msg(sb, KERN_ERR, "bad block size %d",
5098 				blocksize);
5099 		bh = NULL;
5100 		goto out;
5101 	}
5102 
5103 	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5104 	offset = do_div(logical_sb_block, blocksize);
5105 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5106 	if (IS_ERR(bh)) {
5107 		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5108 		ret = PTR_ERR(bh);
5109 		bh = NULL;
5110 		goto out;
5111 	}
5112 	es = (struct ext4_super_block *)(bh->b_data + offset);
5113 	sbi->s_es = es;
5114 	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5115 		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5116 		goto out;
5117 	}
5118 	*lsb = logical_sb_block;
5119 	sbi->s_sbh = bh;
5120 	return 0;
5121 out:
5122 	brelse(bh);
5123 	return ret;
5124 }
5125 
ext4_hash_info_init(struct super_block * sb)5126 static int ext4_hash_info_init(struct super_block *sb)
5127 {
5128 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5129 	struct ext4_super_block *es = sbi->s_es;
5130 	unsigned int i;
5131 
5132 	sbi->s_def_hash_version = es->s_def_hash_version;
5133 
5134 	if (sbi->s_def_hash_version > DX_HASH_LAST) {
5135 		ext4_msg(sb, KERN_ERR,
5136 			 "Invalid default hash set in the superblock");
5137 		return -EINVAL;
5138 	} else if (sbi->s_def_hash_version == DX_HASH_SIPHASH) {
5139 		ext4_msg(sb, KERN_ERR,
5140 			 "SIPHASH is not a valid default hash value");
5141 		return -EINVAL;
5142 	}
5143 
5144 	for (i = 0; i < 4; i++)
5145 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5146 
5147 	if (ext4_has_feature_dir_index(sb)) {
5148 		i = le32_to_cpu(es->s_flags);
5149 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5150 			sbi->s_hash_unsigned = 3;
5151 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5152 #ifdef __CHAR_UNSIGNED__
5153 			if (!sb_rdonly(sb))
5154 				es->s_flags |=
5155 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5156 			sbi->s_hash_unsigned = 3;
5157 #else
5158 			if (!sb_rdonly(sb))
5159 				es->s_flags |=
5160 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5161 #endif
5162 		}
5163 	}
5164 	return 0;
5165 }
5166 
ext4_block_group_meta_init(struct super_block * sb,int silent)5167 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5168 {
5169 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5170 	struct ext4_super_block *es = sbi->s_es;
5171 	int has_huge_files;
5172 
5173 	has_huge_files = ext4_has_feature_huge_file(sb);
5174 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5175 						      has_huge_files);
5176 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5177 
5178 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5179 	if (ext4_has_feature_64bit(sb)) {
5180 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5181 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5182 		    !is_power_of_2(sbi->s_desc_size)) {
5183 			ext4_msg(sb, KERN_ERR,
5184 			       "unsupported descriptor size %lu",
5185 			       sbi->s_desc_size);
5186 			return -EINVAL;
5187 		}
5188 	} else
5189 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5190 
5191 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5192 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5193 
5194 	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5195 	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5196 		if (!silent)
5197 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5198 		return -EINVAL;
5199 	}
5200 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5201 	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5202 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5203 			 sbi->s_inodes_per_group);
5204 		return -EINVAL;
5205 	}
5206 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5207 					sbi->s_inodes_per_block;
5208 	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5209 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5210 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5211 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5212 
5213 	return 0;
5214 }
5215 
5216 /*
5217  * It's hard to get stripe aligned blocks if stripe is not aligned with
5218  * cluster, just disable stripe and alert user to simplify code and avoid
5219  * stripe aligned allocation which will rarely succeed.
5220  */
ext4_is_stripe_incompatible(struct super_block * sb,unsigned long stripe)5221 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5222 {
5223 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5224 	return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5225 		stripe % sbi->s_cluster_ratio != 0);
5226 }
5227 
__ext4_fill_super(struct fs_context * fc,struct super_block * sb)5228 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5229 {
5230 	struct ext4_super_block *es = NULL;
5231 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5232 	ext4_fsblk_t logical_sb_block;
5233 	struct inode *root;
5234 	int needs_recovery;
5235 	int err;
5236 	ext4_group_t first_not_zeroed;
5237 	struct ext4_fs_context *ctx = fc->fs_private;
5238 	int silent = fc->sb_flags & SB_SILENT;
5239 
5240 	/* Set defaults for the variables that will be set during parsing */
5241 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5242 		ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5243 
5244 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5245 	sbi->s_sectors_written_start =
5246 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5247 
5248 	err = ext4_load_super(sb, &logical_sb_block, silent);
5249 	if (err)
5250 		goto out_fail;
5251 
5252 	es = sbi->s_es;
5253 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5254 
5255 	err = ext4_init_metadata_csum(sb, es);
5256 	if (err)
5257 		goto failed_mount;
5258 
5259 	ext4_set_def_opts(sb, es);
5260 
5261 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5262 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5263 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5264 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5265 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5266 
5267 	/*
5268 	 * set default s_li_wait_mult for lazyinit, for the case there is
5269 	 * no mount option specified.
5270 	 */
5271 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5272 
5273 	err = ext4_inode_info_init(sb, es);
5274 	if (err)
5275 		goto failed_mount;
5276 
5277 	err = parse_apply_sb_mount_options(sb, ctx);
5278 	if (err < 0)
5279 		goto failed_mount;
5280 
5281 	sbi->s_def_mount_opt = sbi->s_mount_opt;
5282 	sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5283 
5284 	err = ext4_check_opt_consistency(fc, sb);
5285 	if (err < 0)
5286 		goto failed_mount;
5287 
5288 	ext4_apply_options(fc, sb);
5289 
5290 	err = ext4_encoding_init(sb, es);
5291 	if (err)
5292 		goto failed_mount;
5293 
5294 	err = ext4_check_journal_data_mode(sb);
5295 	if (err)
5296 		goto failed_mount;
5297 
5298 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5299 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5300 
5301 	/* i_version is always enabled now */
5302 	sb->s_flags |= SB_I_VERSION;
5303 
5304 	/* HSM events are allowed by default. */
5305 	sb->s_iflags |= SB_I_ALLOW_HSM;
5306 
5307 	err = ext4_check_feature_compatibility(sb, es, silent);
5308 	if (err)
5309 		goto failed_mount;
5310 
5311 	err = ext4_block_group_meta_init(sb, silent);
5312 	if (err)
5313 		goto failed_mount;
5314 
5315 	err = ext4_hash_info_init(sb);
5316 	if (err)
5317 		goto failed_mount;
5318 
5319 	err = ext4_handle_clustersize(sb);
5320 	if (err)
5321 		goto failed_mount;
5322 
5323 	err = ext4_check_geometry(sb, es);
5324 	if (err)
5325 		goto failed_mount;
5326 
5327 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5328 	spin_lock_init(&sbi->s_error_lock);
5329 	INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5330 
5331 	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5332 	if (err)
5333 		goto failed_mount3;
5334 
5335 	err = ext4_es_register_shrinker(sbi);
5336 	if (err)
5337 		goto failed_mount3;
5338 
5339 	sbi->s_stripe = ext4_get_stripe_size(sbi);
5340 	if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5341 		ext4_msg(sb, KERN_WARNING,
5342 			 "stripe (%lu) is not aligned with cluster size (%u), "
5343 			 "stripe is disabled",
5344 			 sbi->s_stripe, sbi->s_cluster_ratio);
5345 		sbi->s_stripe = 0;
5346 	}
5347 	sbi->s_extent_max_zeroout_kb = 32;
5348 
5349 	/*
5350 	 * set up enough so that it can read an inode
5351 	 */
5352 	sb->s_op = &ext4_sops;
5353 	sb->s_export_op = &ext4_export_ops;
5354 	sb->s_xattr = ext4_xattr_handlers;
5355 #ifdef CONFIG_FS_ENCRYPTION
5356 	sb->s_cop = &ext4_cryptops;
5357 #endif
5358 #ifdef CONFIG_FS_VERITY
5359 	sb->s_vop = &ext4_verityops;
5360 #endif
5361 #ifdef CONFIG_QUOTA
5362 	sb->dq_op = &ext4_quota_operations;
5363 	if (ext4_has_feature_quota(sb))
5364 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5365 	else
5366 		sb->s_qcop = &ext4_qctl_operations;
5367 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5368 #endif
5369 	super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5370 	super_set_sysfs_name_bdev(sb);
5371 
5372 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5373 	mutex_init(&sbi->s_orphan_lock);
5374 
5375 	spin_lock_init(&sbi->s_bdev_wb_lock);
5376 
5377 	ext4_atomic_write_init(sb);
5378 	ext4_fast_commit_init(sb);
5379 
5380 	sb->s_root = NULL;
5381 
5382 	needs_recovery = (es->s_last_orphan != 0 ||
5383 			  ext4_has_feature_orphan_present(sb) ||
5384 			  ext4_has_feature_journal_needs_recovery(sb));
5385 
5386 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5387 		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5388 		if (err)
5389 			goto failed_mount3a;
5390 	}
5391 
5392 	err = -EINVAL;
5393 	/*
5394 	 * The first inode we look at is the journal inode.  Don't try
5395 	 * root first: it may be modified in the journal!
5396 	 */
5397 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5398 		err = ext4_load_and_init_journal(sb, es, ctx);
5399 		if (err)
5400 			goto failed_mount3a;
5401 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5402 		   ext4_has_feature_journal_needs_recovery(sb)) {
5403 		ext4_msg(sb, KERN_ERR, "required journal recovery "
5404 		       "suppressed and not mounted read-only");
5405 		goto failed_mount3a;
5406 	} else {
5407 		/* Nojournal mode, all journal mount options are illegal */
5408 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5409 			ext4_msg(sb, KERN_ERR, "can't mount with "
5410 				 "journal_async_commit, fs mounted w/o journal");
5411 			goto failed_mount3a;
5412 		}
5413 
5414 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5415 			ext4_msg(sb, KERN_ERR, "can't mount with "
5416 				 "journal_checksum, fs mounted w/o journal");
5417 			goto failed_mount3a;
5418 		}
5419 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5420 			ext4_msg(sb, KERN_ERR, "can't mount with "
5421 				 "commit=%lu, fs mounted w/o journal",
5422 				 sbi->s_commit_interval / HZ);
5423 			goto failed_mount3a;
5424 		}
5425 		if (EXT4_MOUNT_DATA_FLAGS &
5426 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5427 			ext4_msg(sb, KERN_ERR, "can't mount with "
5428 				 "data=, fs mounted w/o journal");
5429 			goto failed_mount3a;
5430 		}
5431 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5432 		clear_opt(sb, JOURNAL_CHECKSUM);
5433 		clear_opt(sb, DATA_FLAGS);
5434 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5435 		sbi->s_journal = NULL;
5436 		needs_recovery = 0;
5437 	}
5438 
5439 	if (!test_opt(sb, NO_MBCACHE)) {
5440 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5441 		if (!sbi->s_ea_block_cache) {
5442 			ext4_msg(sb, KERN_ERR,
5443 				 "Failed to create ea_block_cache");
5444 			err = -EINVAL;
5445 			goto failed_mount_wq;
5446 		}
5447 
5448 		if (ext4_has_feature_ea_inode(sb)) {
5449 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5450 			if (!sbi->s_ea_inode_cache) {
5451 				ext4_msg(sb, KERN_ERR,
5452 					 "Failed to create ea_inode_cache");
5453 				err = -EINVAL;
5454 				goto failed_mount_wq;
5455 			}
5456 		}
5457 	}
5458 
5459 	/*
5460 	 * Get the # of file system overhead blocks from the
5461 	 * superblock if present.
5462 	 */
5463 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5464 	/* ignore the precalculated value if it is ridiculous */
5465 	if (sbi->s_overhead > ext4_blocks_count(es))
5466 		sbi->s_overhead = 0;
5467 	/*
5468 	 * If the bigalloc feature is not enabled recalculating the
5469 	 * overhead doesn't take long, so we might as well just redo
5470 	 * it to make sure we are using the correct value.
5471 	 */
5472 	if (!ext4_has_feature_bigalloc(sb))
5473 		sbi->s_overhead = 0;
5474 	if (sbi->s_overhead == 0) {
5475 		err = ext4_calculate_overhead(sb);
5476 		if (err)
5477 			goto failed_mount_wq;
5478 	}
5479 
5480 	/*
5481 	 * The maximum number of concurrent works can be high and
5482 	 * concurrency isn't really necessary.  Limit it to 1.
5483 	 */
5484 	EXT4_SB(sb)->rsv_conversion_wq =
5485 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5486 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5487 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5488 		err = -ENOMEM;
5489 		goto failed_mount4;
5490 	}
5491 
5492 	/*
5493 	 * The jbd2_journal_load will have done any necessary log recovery,
5494 	 * so we can safely mount the rest of the filesystem now.
5495 	 */
5496 
5497 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5498 	if (IS_ERR(root)) {
5499 		ext4_msg(sb, KERN_ERR, "get root inode failed");
5500 		err = PTR_ERR(root);
5501 		root = NULL;
5502 		goto failed_mount4;
5503 	}
5504 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5505 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5506 		iput(root);
5507 		err = -EFSCORRUPTED;
5508 		goto failed_mount4;
5509 	}
5510 
5511 	generic_set_sb_d_ops(sb);
5512 	sb->s_root = d_make_root(root);
5513 	if (!sb->s_root) {
5514 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5515 		err = -ENOMEM;
5516 		goto failed_mount4;
5517 	}
5518 
5519 	err = ext4_setup_super(sb, es, sb_rdonly(sb));
5520 	if (err == -EROFS) {
5521 		sb->s_flags |= SB_RDONLY;
5522 	} else if (err)
5523 		goto failed_mount4a;
5524 
5525 	ext4_set_resv_clusters(sb);
5526 
5527 	if (test_opt(sb, BLOCK_VALIDITY)) {
5528 		err = ext4_setup_system_zone(sb);
5529 		if (err) {
5530 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5531 				 "zone (%d)", err);
5532 			goto failed_mount4a;
5533 		}
5534 	}
5535 	ext4_fc_replay_cleanup(sb);
5536 
5537 	ext4_ext_init(sb);
5538 
5539 	/*
5540 	 * Enable optimize_scan if number of groups is > threshold. This can be
5541 	 * turned off by passing "mb_optimize_scan=0". This can also be
5542 	 * turned on forcefully by passing "mb_optimize_scan=1".
5543 	 */
5544 	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5545 		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5546 			set_opt2(sb, MB_OPTIMIZE_SCAN);
5547 		else
5548 			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5549 	}
5550 
5551 	err = ext4_mb_init(sb);
5552 	if (err) {
5553 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5554 			 err);
5555 		goto failed_mount5;
5556 	}
5557 
5558 	/*
5559 	 * We can only set up the journal commit callback once
5560 	 * mballoc is initialized
5561 	 */
5562 	if (sbi->s_journal)
5563 		sbi->s_journal->j_commit_callback =
5564 			ext4_journal_commit_callback;
5565 
5566 	err = ext4_percpu_param_init(sbi);
5567 	if (err)
5568 		goto failed_mount6;
5569 
5570 	if (ext4_has_feature_flex_bg(sb))
5571 		if (!ext4_fill_flex_info(sb)) {
5572 			ext4_msg(sb, KERN_ERR,
5573 			       "unable to initialize "
5574 			       "flex_bg meta info!");
5575 			err = -ENOMEM;
5576 			goto failed_mount6;
5577 		}
5578 
5579 	err = ext4_register_li_request(sb, first_not_zeroed);
5580 	if (err)
5581 		goto failed_mount6;
5582 
5583 	err = ext4_init_orphan_info(sb);
5584 	if (err)
5585 		goto failed_mount7;
5586 #ifdef CONFIG_QUOTA
5587 	/* Enable quota usage during mount. */
5588 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5589 		err = ext4_enable_quotas(sb);
5590 		if (err)
5591 			goto failed_mount8;
5592 	}
5593 #endif  /* CONFIG_QUOTA */
5594 
5595 	/*
5596 	 * Save the original bdev mapping's wb_err value which could be
5597 	 * used to detect the metadata async write error.
5598 	 */
5599 	errseq_check_and_advance(&sb->s_bdev->bd_mapping->wb_err,
5600 				 &sbi->s_bdev_wb_err);
5601 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5602 	ext4_orphan_cleanup(sb, es);
5603 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5604 	/*
5605 	 * Update the checksum after updating free space/inode counters and
5606 	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5607 	 * checksum in the buffer cache until it is written out and
5608 	 * e2fsprogs programs trying to open a file system immediately
5609 	 * after it is mounted can fail.
5610 	 */
5611 	ext4_superblock_csum_set(sb);
5612 	if (needs_recovery) {
5613 		ext4_msg(sb, KERN_INFO, "recovery complete");
5614 		err = ext4_mark_recovery_complete(sb, es);
5615 		if (err)
5616 			goto failed_mount9;
5617 	}
5618 
5619 	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5620 		ext4_msg(sb, KERN_WARNING,
5621 			 "mounting with \"discard\" option, but the device does not support discard");
5622 
5623 	if (es->s_error_count)
5624 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5625 
5626 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5627 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5628 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5629 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5630 	atomic_set(&sbi->s_warning_count, 0);
5631 	atomic_set(&sbi->s_msg_count, 0);
5632 
5633 	/* Register sysfs after all initializations are complete. */
5634 	err = ext4_register_sysfs(sb);
5635 	if (err)
5636 		goto failed_mount9;
5637 
5638 	return 0;
5639 
5640 failed_mount9:
5641 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5642 failed_mount8: __maybe_unused
5643 	ext4_release_orphan_info(sb);
5644 failed_mount7:
5645 	ext4_unregister_li_request(sb);
5646 failed_mount6:
5647 	ext4_mb_release(sb);
5648 	ext4_flex_groups_free(sbi);
5649 	ext4_percpu_param_destroy(sbi);
5650 failed_mount5:
5651 	ext4_ext_release(sb);
5652 	ext4_release_system_zone(sb);
5653 failed_mount4a:
5654 	dput(sb->s_root);
5655 	sb->s_root = NULL;
5656 failed_mount4:
5657 	ext4_msg(sb, KERN_ERR, "mount failed");
5658 	if (EXT4_SB(sb)->rsv_conversion_wq)
5659 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5660 failed_mount_wq:
5661 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5662 	sbi->s_ea_inode_cache = NULL;
5663 
5664 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5665 	sbi->s_ea_block_cache = NULL;
5666 
5667 	if (sbi->s_journal) {
5668 		/* flush s_sb_upd_work before journal destroy. */
5669 		flush_work(&sbi->s_sb_upd_work);
5670 		jbd2_journal_destroy(sbi->s_journal);
5671 		sbi->s_journal = NULL;
5672 	}
5673 failed_mount3a:
5674 	ext4_es_unregister_shrinker(sbi);
5675 failed_mount3:
5676 	/* flush s_sb_upd_work before sbi destroy */
5677 	flush_work(&sbi->s_sb_upd_work);
5678 	ext4_stop_mmpd(sbi);
5679 	del_timer_sync(&sbi->s_err_report);
5680 	ext4_group_desc_free(sbi);
5681 failed_mount:
5682 #if IS_ENABLED(CONFIG_UNICODE)
5683 	utf8_unload(sb->s_encoding);
5684 #endif
5685 
5686 #ifdef CONFIG_QUOTA
5687 	for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5688 		kfree(get_qf_name(sb, sbi, i));
5689 #endif
5690 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5691 	brelse(sbi->s_sbh);
5692 	if (sbi->s_journal_bdev_file) {
5693 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5694 		bdev_fput(sbi->s_journal_bdev_file);
5695 	}
5696 out_fail:
5697 	invalidate_bdev(sb->s_bdev);
5698 	sb->s_fs_info = NULL;
5699 	return err;
5700 }
5701 
ext4_fill_super(struct super_block * sb,struct fs_context * fc)5702 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5703 {
5704 	struct ext4_fs_context *ctx = fc->fs_private;
5705 	struct ext4_sb_info *sbi;
5706 	const char *descr;
5707 	int ret;
5708 
5709 	sbi = ext4_alloc_sbi(sb);
5710 	if (!sbi)
5711 		return -ENOMEM;
5712 
5713 	fc->s_fs_info = sbi;
5714 
5715 	/* Cleanup superblock name */
5716 	strreplace(sb->s_id, '/', '!');
5717 
5718 	sbi->s_sb_block = 1;	/* Default super block location */
5719 	if (ctx->spec & EXT4_SPEC_s_sb_block)
5720 		sbi->s_sb_block = ctx->s_sb_block;
5721 
5722 	ret = __ext4_fill_super(fc, sb);
5723 	if (ret < 0)
5724 		goto free_sbi;
5725 
5726 	if (sbi->s_journal) {
5727 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5728 			descr = " journalled data mode";
5729 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5730 			descr = " ordered data mode";
5731 		else
5732 			descr = " writeback data mode";
5733 	} else
5734 		descr = "out journal";
5735 
5736 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5737 		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5738 			 "Quota mode: %s.", &sb->s_uuid,
5739 			 sb_rdonly(sb) ? "ro" : "r/w", descr,
5740 			 ext4_quota_mode(sb));
5741 
5742 	/* Update the s_overhead_clusters if necessary */
5743 	ext4_update_overhead(sb, false);
5744 	return 0;
5745 
5746 free_sbi:
5747 	ext4_free_sbi(sbi);
5748 	fc->s_fs_info = NULL;
5749 	return ret;
5750 }
5751 
ext4_get_tree(struct fs_context * fc)5752 static int ext4_get_tree(struct fs_context *fc)
5753 {
5754 	return get_tree_bdev(fc, ext4_fill_super);
5755 }
5756 
5757 /*
5758  * Setup any per-fs journal parameters now.  We'll do this both on
5759  * initial mount, once the journal has been initialised but before we've
5760  * done any recovery; and again on any subsequent remount.
5761  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5762 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5763 {
5764 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5765 
5766 	journal->j_commit_interval = sbi->s_commit_interval;
5767 	journal->j_min_batch_time = sbi->s_min_batch_time;
5768 	journal->j_max_batch_time = sbi->s_max_batch_time;
5769 	ext4_fc_init(sb, journal);
5770 
5771 	write_lock(&journal->j_state_lock);
5772 	if (test_opt(sb, BARRIER))
5773 		journal->j_flags |= JBD2_BARRIER;
5774 	else
5775 		journal->j_flags &= ~JBD2_BARRIER;
5776 	if (test_opt(sb, DATA_ERR_ABORT))
5777 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5778 	else
5779 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5780 	/*
5781 	 * Always enable journal cycle record option, letting the journal
5782 	 * records log transactions continuously between each mount.
5783 	 */
5784 	journal->j_flags |= JBD2_CYCLE_RECORD;
5785 	write_unlock(&journal->j_state_lock);
5786 }
5787 
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5788 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5789 					     unsigned int journal_inum)
5790 {
5791 	struct inode *journal_inode;
5792 
5793 	/*
5794 	 * Test for the existence of a valid inode on disk.  Bad things
5795 	 * happen if we iget() an unused inode, as the subsequent iput()
5796 	 * will try to delete it.
5797 	 */
5798 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5799 	if (IS_ERR(journal_inode)) {
5800 		ext4_msg(sb, KERN_ERR, "no journal found");
5801 		return ERR_CAST(journal_inode);
5802 	}
5803 	if (!journal_inode->i_nlink) {
5804 		make_bad_inode(journal_inode);
5805 		iput(journal_inode);
5806 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5807 		return ERR_PTR(-EFSCORRUPTED);
5808 	}
5809 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5810 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5811 		iput(journal_inode);
5812 		return ERR_PTR(-EFSCORRUPTED);
5813 	}
5814 
5815 	ext4_debug("Journal inode found at %p: %lld bytes\n",
5816 		  journal_inode, journal_inode->i_size);
5817 	return journal_inode;
5818 }
5819 
ext4_journal_bmap(journal_t * journal,sector_t * block)5820 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5821 {
5822 	struct ext4_map_blocks map;
5823 	int ret;
5824 
5825 	if (journal->j_inode == NULL)
5826 		return 0;
5827 
5828 	map.m_lblk = *block;
5829 	map.m_len = 1;
5830 	ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5831 	if (ret <= 0) {
5832 		ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5833 			 "journal bmap failed: block %llu ret %d\n",
5834 			 *block, ret);
5835 		jbd2_journal_abort(journal, ret ? ret : -EIO);
5836 		return ret;
5837 	}
5838 	*block = map.m_pblk;
5839 	return 0;
5840 }
5841 
ext4_open_inode_journal(struct super_block * sb,unsigned int journal_inum)5842 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5843 					  unsigned int journal_inum)
5844 {
5845 	struct inode *journal_inode;
5846 	journal_t *journal;
5847 
5848 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5849 	if (IS_ERR(journal_inode))
5850 		return ERR_CAST(journal_inode);
5851 
5852 	journal = jbd2_journal_init_inode(journal_inode);
5853 	if (IS_ERR(journal)) {
5854 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5855 		iput(journal_inode);
5856 		return ERR_CAST(journal);
5857 	}
5858 	journal->j_private = sb;
5859 	journal->j_bmap = ext4_journal_bmap;
5860 	ext4_init_journal_params(sb, journal);
5861 	return journal;
5862 }
5863 
ext4_get_journal_blkdev(struct super_block * sb,dev_t j_dev,ext4_fsblk_t * j_start,ext4_fsblk_t * j_len)5864 static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5865 					dev_t j_dev, ext4_fsblk_t *j_start,
5866 					ext4_fsblk_t *j_len)
5867 {
5868 	struct buffer_head *bh;
5869 	struct block_device *bdev;
5870 	struct file *bdev_file;
5871 	int hblock, blocksize;
5872 	ext4_fsblk_t sb_block;
5873 	unsigned long offset;
5874 	struct ext4_super_block *es;
5875 	int errno;
5876 
5877 	bdev_file = bdev_file_open_by_dev(j_dev,
5878 		BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5879 		sb, &fs_holder_ops);
5880 	if (IS_ERR(bdev_file)) {
5881 		ext4_msg(sb, KERN_ERR,
5882 			 "failed to open journal device unknown-block(%u,%u) %ld",
5883 			 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5884 		return bdev_file;
5885 	}
5886 
5887 	bdev = file_bdev(bdev_file);
5888 	blocksize = sb->s_blocksize;
5889 	hblock = bdev_logical_block_size(bdev);
5890 	if (blocksize < hblock) {
5891 		ext4_msg(sb, KERN_ERR,
5892 			"blocksize too small for journal device");
5893 		errno = -EINVAL;
5894 		goto out_bdev;
5895 	}
5896 
5897 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5898 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5899 	set_blocksize(bdev_file, blocksize);
5900 	bh = __bread(bdev, sb_block, blocksize);
5901 	if (!bh) {
5902 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5903 		       "external journal");
5904 		errno = -EINVAL;
5905 		goto out_bdev;
5906 	}
5907 
5908 	es = (struct ext4_super_block *) (bh->b_data + offset);
5909 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5910 	    !(le32_to_cpu(es->s_feature_incompat) &
5911 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5912 		ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5913 		errno = -EFSCORRUPTED;
5914 		goto out_bh;
5915 	}
5916 
5917 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5918 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5919 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5920 		ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5921 		errno = -EFSCORRUPTED;
5922 		goto out_bh;
5923 	}
5924 
5925 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5926 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5927 		errno = -EFSCORRUPTED;
5928 		goto out_bh;
5929 	}
5930 
5931 	*j_start = sb_block + 1;
5932 	*j_len = ext4_blocks_count(es);
5933 	brelse(bh);
5934 	return bdev_file;
5935 
5936 out_bh:
5937 	brelse(bh);
5938 out_bdev:
5939 	bdev_fput(bdev_file);
5940 	return ERR_PTR(errno);
5941 }
5942 
ext4_open_dev_journal(struct super_block * sb,dev_t j_dev)5943 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5944 					dev_t j_dev)
5945 {
5946 	journal_t *journal;
5947 	ext4_fsblk_t j_start;
5948 	ext4_fsblk_t j_len;
5949 	struct file *bdev_file;
5950 	int errno = 0;
5951 
5952 	bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5953 	if (IS_ERR(bdev_file))
5954 		return ERR_CAST(bdev_file);
5955 
5956 	journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
5957 					j_len, sb->s_blocksize);
5958 	if (IS_ERR(journal)) {
5959 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5960 		errno = PTR_ERR(journal);
5961 		goto out_bdev;
5962 	}
5963 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5964 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5965 					"user (unsupported) - %d",
5966 			be32_to_cpu(journal->j_superblock->s_nr_users));
5967 		errno = -EINVAL;
5968 		goto out_journal;
5969 	}
5970 	journal->j_private = sb;
5971 	EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
5972 	ext4_init_journal_params(sb, journal);
5973 	return journal;
5974 
5975 out_journal:
5976 	jbd2_journal_destroy(journal);
5977 out_bdev:
5978 	bdev_fput(bdev_file);
5979 	return ERR_PTR(errno);
5980 }
5981 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5982 static int ext4_load_journal(struct super_block *sb,
5983 			     struct ext4_super_block *es,
5984 			     unsigned long journal_devnum)
5985 {
5986 	journal_t *journal;
5987 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5988 	dev_t journal_dev;
5989 	int err = 0;
5990 	int really_read_only;
5991 	int journal_dev_ro;
5992 
5993 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5994 		return -EFSCORRUPTED;
5995 
5996 	if (journal_devnum &&
5997 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5998 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5999 			"numbers have changed");
6000 		journal_dev = new_decode_dev(journal_devnum);
6001 	} else
6002 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
6003 
6004 	if (journal_inum && journal_dev) {
6005 		ext4_msg(sb, KERN_ERR,
6006 			 "filesystem has both journal inode and journal device!");
6007 		return -EINVAL;
6008 	}
6009 
6010 	if (journal_inum) {
6011 		journal = ext4_open_inode_journal(sb, journal_inum);
6012 		if (IS_ERR(journal))
6013 			return PTR_ERR(journal);
6014 	} else {
6015 		journal = ext4_open_dev_journal(sb, journal_dev);
6016 		if (IS_ERR(journal))
6017 			return PTR_ERR(journal);
6018 	}
6019 
6020 	journal_dev_ro = bdev_read_only(journal->j_dev);
6021 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6022 
6023 	if (journal_dev_ro && !sb_rdonly(sb)) {
6024 		ext4_msg(sb, KERN_ERR,
6025 			 "journal device read-only, try mounting with '-o ro'");
6026 		err = -EROFS;
6027 		goto err_out;
6028 	}
6029 
6030 	/*
6031 	 * Are we loading a blank journal or performing recovery after a
6032 	 * crash?  For recovery, we need to check in advance whether we
6033 	 * can get read-write access to the device.
6034 	 */
6035 	if (ext4_has_feature_journal_needs_recovery(sb)) {
6036 		if (sb_rdonly(sb)) {
6037 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
6038 					"required on readonly filesystem");
6039 			if (really_read_only) {
6040 				ext4_msg(sb, KERN_ERR, "write access "
6041 					"unavailable, cannot proceed "
6042 					"(try mounting with noload)");
6043 				err = -EROFS;
6044 				goto err_out;
6045 			}
6046 			ext4_msg(sb, KERN_INFO, "write access will "
6047 			       "be enabled during recovery");
6048 		}
6049 	}
6050 
6051 	if (!(journal->j_flags & JBD2_BARRIER))
6052 		ext4_msg(sb, KERN_INFO, "barriers disabled");
6053 
6054 	if (!ext4_has_feature_journal_needs_recovery(sb))
6055 		err = jbd2_journal_wipe(journal, !really_read_only);
6056 	if (!err) {
6057 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6058 		__le16 orig_state;
6059 		bool changed = false;
6060 
6061 		if (save)
6062 			memcpy(save, ((char *) es) +
6063 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6064 		err = jbd2_journal_load(journal);
6065 		if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6066 				   save, EXT4_S_ERR_LEN)) {
6067 			memcpy(((char *) es) + EXT4_S_ERR_START,
6068 			       save, EXT4_S_ERR_LEN);
6069 			changed = true;
6070 		}
6071 		kfree(save);
6072 		orig_state = es->s_state;
6073 		es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6074 					   EXT4_ERROR_FS);
6075 		if (orig_state != es->s_state)
6076 			changed = true;
6077 		/* Write out restored error information to the superblock */
6078 		if (changed && !really_read_only) {
6079 			int err2;
6080 			err2 = ext4_commit_super(sb);
6081 			err = err ? : err2;
6082 		}
6083 	}
6084 
6085 	if (err) {
6086 		ext4_msg(sb, KERN_ERR, "error loading journal");
6087 		goto err_out;
6088 	}
6089 
6090 	EXT4_SB(sb)->s_journal = journal;
6091 	err = ext4_clear_journal_err(sb, es);
6092 	if (err) {
6093 		EXT4_SB(sb)->s_journal = NULL;
6094 		jbd2_journal_destroy(journal);
6095 		return err;
6096 	}
6097 
6098 	if (!really_read_only && journal_devnum &&
6099 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6100 		es->s_journal_dev = cpu_to_le32(journal_devnum);
6101 		ext4_commit_super(sb);
6102 	}
6103 	if (!really_read_only && journal_inum &&
6104 	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
6105 		es->s_journal_inum = cpu_to_le32(journal_inum);
6106 		ext4_commit_super(sb);
6107 	}
6108 
6109 	return 0;
6110 
6111 err_out:
6112 	jbd2_journal_destroy(journal);
6113 	return err;
6114 }
6115 
6116 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)6117 static void ext4_update_super(struct super_block *sb)
6118 {
6119 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6120 	struct ext4_super_block *es = sbi->s_es;
6121 	struct buffer_head *sbh = sbi->s_sbh;
6122 
6123 	lock_buffer(sbh);
6124 	/*
6125 	 * If the file system is mounted read-only, don't update the
6126 	 * superblock write time.  This avoids updating the superblock
6127 	 * write time when we are mounting the root file system
6128 	 * read/only but we need to replay the journal; at that point,
6129 	 * for people who are east of GMT and who make their clock
6130 	 * tick in localtime for Windows bug-for-bug compatibility,
6131 	 * the clock is set in the future, and this will cause e2fsck
6132 	 * to complain and force a full file system check.
6133 	 */
6134 	if (!sb_rdonly(sb))
6135 		ext4_update_tstamp(es, s_wtime);
6136 	es->s_kbytes_written =
6137 		cpu_to_le64(sbi->s_kbytes_written +
6138 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6139 		      sbi->s_sectors_written_start) >> 1));
6140 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6141 		ext4_free_blocks_count_set(es,
6142 			EXT4_C2B(sbi, percpu_counter_sum_positive(
6143 				&sbi->s_freeclusters_counter)));
6144 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6145 		es->s_free_inodes_count =
6146 			cpu_to_le32(percpu_counter_sum_positive(
6147 				&sbi->s_freeinodes_counter));
6148 	/* Copy error information to the on-disk superblock */
6149 	spin_lock(&sbi->s_error_lock);
6150 	if (sbi->s_add_error_count > 0) {
6151 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6152 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6153 			__ext4_update_tstamp(&es->s_first_error_time,
6154 					     &es->s_first_error_time_hi,
6155 					     sbi->s_first_error_time);
6156 			strtomem_pad(es->s_first_error_func,
6157 				     sbi->s_first_error_func, 0);
6158 			es->s_first_error_line =
6159 				cpu_to_le32(sbi->s_first_error_line);
6160 			es->s_first_error_ino =
6161 				cpu_to_le32(sbi->s_first_error_ino);
6162 			es->s_first_error_block =
6163 				cpu_to_le64(sbi->s_first_error_block);
6164 			es->s_first_error_errcode =
6165 				ext4_errno_to_code(sbi->s_first_error_code);
6166 		}
6167 		__ext4_update_tstamp(&es->s_last_error_time,
6168 				     &es->s_last_error_time_hi,
6169 				     sbi->s_last_error_time);
6170 		strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0);
6171 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6172 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6173 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6174 		es->s_last_error_errcode =
6175 				ext4_errno_to_code(sbi->s_last_error_code);
6176 		/*
6177 		 * Start the daily error reporting function if it hasn't been
6178 		 * started already
6179 		 */
6180 		if (!es->s_error_count)
6181 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6182 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6183 		sbi->s_add_error_count = 0;
6184 	}
6185 	spin_unlock(&sbi->s_error_lock);
6186 
6187 	ext4_superblock_csum_set(sb);
6188 	unlock_buffer(sbh);
6189 }
6190 
ext4_commit_super(struct super_block * sb)6191 static int ext4_commit_super(struct super_block *sb)
6192 {
6193 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6194 
6195 	if (!sbh)
6196 		return -EINVAL;
6197 
6198 	ext4_update_super(sb);
6199 
6200 	lock_buffer(sbh);
6201 	/* Buffer got discarded which means block device got invalidated */
6202 	if (!buffer_mapped(sbh)) {
6203 		unlock_buffer(sbh);
6204 		return -EIO;
6205 	}
6206 
6207 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6208 		/*
6209 		 * Oh, dear.  A previous attempt to write the
6210 		 * superblock failed.  This could happen because the
6211 		 * USB device was yanked out.  Or it could happen to
6212 		 * be a transient write error and maybe the block will
6213 		 * be remapped.  Nothing we can do but to retry the
6214 		 * write and hope for the best.
6215 		 */
6216 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6217 		       "superblock detected");
6218 		clear_buffer_write_io_error(sbh);
6219 		set_buffer_uptodate(sbh);
6220 	}
6221 	get_bh(sbh);
6222 	/* Clear potential dirty bit if it was journalled update */
6223 	clear_buffer_dirty(sbh);
6224 	sbh->b_end_io = end_buffer_write_sync;
6225 	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6226 		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6227 	wait_on_buffer(sbh);
6228 	if (buffer_write_io_error(sbh)) {
6229 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6230 		       "superblock");
6231 		clear_buffer_write_io_error(sbh);
6232 		set_buffer_uptodate(sbh);
6233 		return -EIO;
6234 	}
6235 	return 0;
6236 }
6237 
6238 /*
6239  * Have we just finished recovery?  If so, and if we are mounting (or
6240  * remounting) the filesystem readonly, then we will end up with a
6241  * consistent fs on disk.  Record that fact.
6242  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)6243 static int ext4_mark_recovery_complete(struct super_block *sb,
6244 				       struct ext4_super_block *es)
6245 {
6246 	int err;
6247 	journal_t *journal = EXT4_SB(sb)->s_journal;
6248 
6249 	if (!ext4_has_feature_journal(sb)) {
6250 		if (journal != NULL) {
6251 			ext4_error(sb, "Journal got removed while the fs was "
6252 				   "mounted!");
6253 			return -EFSCORRUPTED;
6254 		}
6255 		return 0;
6256 	}
6257 	jbd2_journal_lock_updates(journal);
6258 	err = jbd2_journal_flush(journal, 0);
6259 	if (err < 0)
6260 		goto out;
6261 
6262 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6263 	    ext4_has_feature_orphan_present(sb))) {
6264 		if (!ext4_orphan_file_empty(sb)) {
6265 			ext4_error(sb, "Orphan file not empty on read-only fs.");
6266 			err = -EFSCORRUPTED;
6267 			goto out;
6268 		}
6269 		ext4_clear_feature_journal_needs_recovery(sb);
6270 		ext4_clear_feature_orphan_present(sb);
6271 		ext4_commit_super(sb);
6272 	}
6273 out:
6274 	jbd2_journal_unlock_updates(journal);
6275 	return err;
6276 }
6277 
6278 /*
6279  * If we are mounting (or read-write remounting) a filesystem whose journal
6280  * has recorded an error from a previous lifetime, move that error to the
6281  * main filesystem now.
6282  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)6283 static int ext4_clear_journal_err(struct super_block *sb,
6284 				   struct ext4_super_block *es)
6285 {
6286 	journal_t *journal;
6287 	int j_errno;
6288 	const char *errstr;
6289 
6290 	if (!ext4_has_feature_journal(sb)) {
6291 		ext4_error(sb, "Journal got removed while the fs was mounted!");
6292 		return -EFSCORRUPTED;
6293 	}
6294 
6295 	journal = EXT4_SB(sb)->s_journal;
6296 
6297 	/*
6298 	 * Now check for any error status which may have been recorded in the
6299 	 * journal by a prior ext4_error() or ext4_abort()
6300 	 */
6301 
6302 	j_errno = jbd2_journal_errno(journal);
6303 	if (j_errno) {
6304 		char nbuf[16];
6305 
6306 		errstr = ext4_decode_error(sb, j_errno, nbuf);
6307 		ext4_warning(sb, "Filesystem error recorded "
6308 			     "from previous mount: %s", errstr);
6309 
6310 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6311 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6312 		j_errno = ext4_commit_super(sb);
6313 		if (j_errno)
6314 			return j_errno;
6315 		ext4_warning(sb, "Marked fs in need of filesystem check.");
6316 
6317 		jbd2_journal_clear_err(journal);
6318 		jbd2_journal_update_sb_errno(journal);
6319 	}
6320 	return 0;
6321 }
6322 
6323 /*
6324  * Force the running and committing transactions to commit,
6325  * and wait on the commit.
6326  */
ext4_force_commit(struct super_block * sb)6327 int ext4_force_commit(struct super_block *sb)
6328 {
6329 	return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6330 }
6331 
ext4_sync_fs(struct super_block * sb,int wait)6332 static int ext4_sync_fs(struct super_block *sb, int wait)
6333 {
6334 	int ret = 0;
6335 	tid_t target;
6336 	bool needs_barrier = false;
6337 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6338 
6339 	if (unlikely(ext4_forced_shutdown(sb)))
6340 		return -EIO;
6341 
6342 	trace_ext4_sync_fs(sb, wait);
6343 	flush_workqueue(sbi->rsv_conversion_wq);
6344 	/*
6345 	 * Writeback quota in non-journalled quota case - journalled quota has
6346 	 * no dirty dquots
6347 	 */
6348 	dquot_writeback_dquots(sb, -1);
6349 	/*
6350 	 * Data writeback is possible w/o journal transaction, so barrier must
6351 	 * being sent at the end of the function. But we can skip it if
6352 	 * transaction_commit will do it for us.
6353 	 */
6354 	if (sbi->s_journal) {
6355 		target = jbd2_get_latest_transaction(sbi->s_journal);
6356 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6357 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6358 			needs_barrier = true;
6359 
6360 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6361 			if (wait)
6362 				ret = jbd2_log_wait_commit(sbi->s_journal,
6363 							   target);
6364 		}
6365 	} else if (wait && test_opt(sb, BARRIER))
6366 		needs_barrier = true;
6367 	if (needs_barrier) {
6368 		int err;
6369 		err = blkdev_issue_flush(sb->s_bdev);
6370 		if (!ret)
6371 			ret = err;
6372 	}
6373 
6374 	return ret;
6375 }
6376 
6377 /*
6378  * LVM calls this function before a (read-only) snapshot is created.  This
6379  * gives us a chance to flush the journal completely and mark the fs clean.
6380  *
6381  * Note that only this function cannot bring a filesystem to be in a clean
6382  * state independently. It relies on upper layer to stop all data & metadata
6383  * modifications.
6384  */
ext4_freeze(struct super_block * sb)6385 static int ext4_freeze(struct super_block *sb)
6386 {
6387 	int error = 0;
6388 	journal_t *journal = EXT4_SB(sb)->s_journal;
6389 
6390 	if (journal) {
6391 		/* Now we set up the journal barrier. */
6392 		jbd2_journal_lock_updates(journal);
6393 
6394 		/*
6395 		 * Don't clear the needs_recovery flag if we failed to
6396 		 * flush the journal.
6397 		 */
6398 		error = jbd2_journal_flush(journal, 0);
6399 		if (error < 0)
6400 			goto out;
6401 
6402 		/* Journal blocked and flushed, clear needs_recovery flag. */
6403 		ext4_clear_feature_journal_needs_recovery(sb);
6404 		if (ext4_orphan_file_empty(sb))
6405 			ext4_clear_feature_orphan_present(sb);
6406 	}
6407 
6408 	error = ext4_commit_super(sb);
6409 out:
6410 	if (journal)
6411 		/* we rely on upper layer to stop further updates */
6412 		jbd2_journal_unlock_updates(journal);
6413 	return error;
6414 }
6415 
6416 /*
6417  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6418  * flag here, even though the filesystem is not technically dirty yet.
6419  */
ext4_unfreeze(struct super_block * sb)6420 static int ext4_unfreeze(struct super_block *sb)
6421 {
6422 	if (ext4_forced_shutdown(sb))
6423 		return 0;
6424 
6425 	if (EXT4_SB(sb)->s_journal) {
6426 		/* Reset the needs_recovery flag before the fs is unlocked. */
6427 		ext4_set_feature_journal_needs_recovery(sb);
6428 		if (ext4_has_feature_orphan_file(sb))
6429 			ext4_set_feature_orphan_present(sb);
6430 	}
6431 
6432 	ext4_commit_super(sb);
6433 	return 0;
6434 }
6435 
6436 /*
6437  * Structure to save mount options for ext4_remount's benefit
6438  */
6439 struct ext4_mount_options {
6440 	unsigned long s_mount_opt;
6441 	unsigned long s_mount_opt2;
6442 	kuid_t s_resuid;
6443 	kgid_t s_resgid;
6444 	unsigned long s_commit_interval;
6445 	u32 s_min_batch_time, s_max_batch_time;
6446 #ifdef CONFIG_QUOTA
6447 	int s_jquota_fmt;
6448 	char *s_qf_names[EXT4_MAXQUOTAS];
6449 #endif
6450 };
6451 
__ext4_remount(struct fs_context * fc,struct super_block * sb)6452 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6453 {
6454 	struct ext4_fs_context *ctx = fc->fs_private;
6455 	struct ext4_super_block *es;
6456 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6457 	unsigned long old_sb_flags;
6458 	struct ext4_mount_options old_opts;
6459 	ext4_group_t g;
6460 	int err = 0;
6461 	int alloc_ctx;
6462 #ifdef CONFIG_QUOTA
6463 	int enable_quota = 0;
6464 	int i, j;
6465 	char *to_free[EXT4_MAXQUOTAS];
6466 #endif
6467 
6468 
6469 	/* Store the original options */
6470 	old_sb_flags = sb->s_flags;
6471 	old_opts.s_mount_opt = sbi->s_mount_opt;
6472 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6473 	old_opts.s_resuid = sbi->s_resuid;
6474 	old_opts.s_resgid = sbi->s_resgid;
6475 	old_opts.s_commit_interval = sbi->s_commit_interval;
6476 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6477 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6478 #ifdef CONFIG_QUOTA
6479 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6480 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6481 		if (sbi->s_qf_names[i]) {
6482 			char *qf_name = get_qf_name(sb, sbi, i);
6483 
6484 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6485 			if (!old_opts.s_qf_names[i]) {
6486 				for (j = 0; j < i; j++)
6487 					kfree(old_opts.s_qf_names[j]);
6488 				return -ENOMEM;
6489 			}
6490 		} else
6491 			old_opts.s_qf_names[i] = NULL;
6492 #endif
6493 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6494 		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6495 			ctx->journal_ioprio =
6496 				sbi->s_journal->j_task->io_context->ioprio;
6497 		else
6498 			ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6499 
6500 	}
6501 
6502 	if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6503 	    ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6504 		ext4_msg(sb, KERN_WARNING,
6505 			 "stripe (%lu) is not aligned with cluster size (%u), "
6506 			 "stripe is disabled",
6507 			 ctx->s_stripe, sbi->s_cluster_ratio);
6508 		ctx->s_stripe = 0;
6509 	}
6510 
6511 	/*
6512 	 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6513 	 * two calls to ext4_should_dioread_nolock() to return inconsistent
6514 	 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6515 	 * here s_writepages_rwsem to avoid race between writepages ops and
6516 	 * remount.
6517 	 */
6518 	alloc_ctx = ext4_writepages_down_write(sb);
6519 	ext4_apply_options(fc, sb);
6520 	ext4_writepages_up_write(sb, alloc_ctx);
6521 
6522 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6523 	    test_opt(sb, JOURNAL_CHECKSUM)) {
6524 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6525 			 "during remount not supported; ignoring");
6526 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6527 	}
6528 
6529 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6530 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6531 			ext4_msg(sb, KERN_ERR, "can't mount with "
6532 				 "both data=journal and delalloc");
6533 			err = -EINVAL;
6534 			goto restore_opts;
6535 		}
6536 		if (test_opt(sb, DIOREAD_NOLOCK)) {
6537 			ext4_msg(sb, KERN_ERR, "can't mount with "
6538 				 "both data=journal and dioread_nolock");
6539 			err = -EINVAL;
6540 			goto restore_opts;
6541 		}
6542 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6543 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6544 			ext4_msg(sb, KERN_ERR, "can't mount with "
6545 				"journal_async_commit in data=ordered mode");
6546 			err = -EINVAL;
6547 			goto restore_opts;
6548 		}
6549 	}
6550 
6551 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6552 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6553 		err = -EINVAL;
6554 		goto restore_opts;
6555 	}
6556 
6557 	if ((old_opts.s_mount_opt & EXT4_MOUNT_DELALLOC) &&
6558 	    !test_opt(sb, DELALLOC)) {
6559 		ext4_msg(sb, KERN_ERR, "can't disable delalloc during remount");
6560 		err = -EINVAL;
6561 		goto restore_opts;
6562 	}
6563 
6564 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6565 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6566 
6567 	es = sbi->s_es;
6568 
6569 	if (sbi->s_journal) {
6570 		ext4_init_journal_params(sb, sbi->s_journal);
6571 		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6572 	}
6573 
6574 	/* Flush outstanding errors before changing fs state */
6575 	flush_work(&sbi->s_sb_upd_work);
6576 
6577 	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6578 		if (ext4_forced_shutdown(sb)) {
6579 			err = -EROFS;
6580 			goto restore_opts;
6581 		}
6582 
6583 		if (fc->sb_flags & SB_RDONLY) {
6584 			err = sync_filesystem(sb);
6585 			if (err < 0)
6586 				goto restore_opts;
6587 			err = dquot_suspend(sb, -1);
6588 			if (err < 0)
6589 				goto restore_opts;
6590 
6591 			/*
6592 			 * First of all, the unconditional stuff we have to do
6593 			 * to disable replay of the journal when we next remount
6594 			 */
6595 			sb->s_flags |= SB_RDONLY;
6596 
6597 			/*
6598 			 * OK, test if we are remounting a valid rw partition
6599 			 * readonly, and if so set the rdonly flag and then
6600 			 * mark the partition as valid again.
6601 			 */
6602 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6603 			    (sbi->s_mount_state & EXT4_VALID_FS))
6604 				es->s_state = cpu_to_le16(sbi->s_mount_state);
6605 
6606 			if (sbi->s_journal) {
6607 				/*
6608 				 * We let remount-ro finish even if marking fs
6609 				 * as clean failed...
6610 				 */
6611 				ext4_mark_recovery_complete(sb, es);
6612 			}
6613 		} else {
6614 			/* Make sure we can mount this feature set readwrite */
6615 			if (ext4_has_feature_readonly(sb) ||
6616 			    !ext4_feature_set_ok(sb, 0)) {
6617 				err = -EROFS;
6618 				goto restore_opts;
6619 			}
6620 			/*
6621 			 * Make sure the group descriptor checksums
6622 			 * are sane.  If they aren't, refuse to remount r/w.
6623 			 */
6624 			for (g = 0; g < sbi->s_groups_count; g++) {
6625 				struct ext4_group_desc *gdp =
6626 					ext4_get_group_desc(sb, g, NULL);
6627 
6628 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6629 					ext4_msg(sb, KERN_ERR,
6630 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6631 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6632 					       le16_to_cpu(gdp->bg_checksum));
6633 					err = -EFSBADCRC;
6634 					goto restore_opts;
6635 				}
6636 			}
6637 
6638 			/*
6639 			 * If we have an unprocessed orphan list hanging
6640 			 * around from a previously readonly bdev mount,
6641 			 * require a full umount/remount for now.
6642 			 */
6643 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6644 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6645 				       "remount RDWR because of unprocessed "
6646 				       "orphan inode list.  Please "
6647 				       "umount/remount instead");
6648 				err = -EINVAL;
6649 				goto restore_opts;
6650 			}
6651 
6652 			/*
6653 			 * Mounting a RDONLY partition read-write, so reread
6654 			 * and store the current valid flag.  (It may have
6655 			 * been changed by e2fsck since we originally mounted
6656 			 * the partition.)
6657 			 */
6658 			if (sbi->s_journal) {
6659 				err = ext4_clear_journal_err(sb, es);
6660 				if (err)
6661 					goto restore_opts;
6662 			}
6663 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6664 					      ~EXT4_FC_REPLAY);
6665 
6666 			err = ext4_setup_super(sb, es, 0);
6667 			if (err)
6668 				goto restore_opts;
6669 
6670 			sb->s_flags &= ~SB_RDONLY;
6671 			if (ext4_has_feature_mmp(sb)) {
6672 				err = ext4_multi_mount_protect(sb,
6673 						le64_to_cpu(es->s_mmp_block));
6674 				if (err)
6675 					goto restore_opts;
6676 			}
6677 #ifdef CONFIG_QUOTA
6678 			enable_quota = 1;
6679 #endif
6680 		}
6681 	}
6682 
6683 	/*
6684 	 * Handle creation of system zone data early because it can fail.
6685 	 * Releasing of existing data is done when we are sure remount will
6686 	 * succeed.
6687 	 */
6688 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6689 		err = ext4_setup_system_zone(sb);
6690 		if (err)
6691 			goto restore_opts;
6692 	}
6693 
6694 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6695 		err = ext4_commit_super(sb);
6696 		if (err)
6697 			goto restore_opts;
6698 	}
6699 
6700 #ifdef CONFIG_QUOTA
6701 	if (enable_quota) {
6702 		if (sb_any_quota_suspended(sb))
6703 			dquot_resume(sb, -1);
6704 		else if (ext4_has_feature_quota(sb)) {
6705 			err = ext4_enable_quotas(sb);
6706 			if (err)
6707 				goto restore_opts;
6708 		}
6709 	}
6710 	/* Release old quota file names */
6711 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6712 		kfree(old_opts.s_qf_names[i]);
6713 #endif
6714 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6715 		ext4_release_system_zone(sb);
6716 
6717 	/*
6718 	 * Reinitialize lazy itable initialization thread based on
6719 	 * current settings
6720 	 */
6721 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6722 		ext4_unregister_li_request(sb);
6723 	else {
6724 		ext4_group_t first_not_zeroed;
6725 		first_not_zeroed = ext4_has_uninit_itable(sb);
6726 		ext4_register_li_request(sb, first_not_zeroed);
6727 	}
6728 
6729 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6730 		ext4_stop_mmpd(sbi);
6731 
6732 	/*
6733 	 * Handle aborting the filesystem as the last thing during remount to
6734 	 * avoid obsure errors during remount when some option changes fail to
6735 	 * apply due to shutdown filesystem.
6736 	 */
6737 	if (test_opt2(sb, ABORT))
6738 		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6739 
6740 	return 0;
6741 
6742 restore_opts:
6743 	/*
6744 	 * If there was a failing r/w to ro transition, we may need to
6745 	 * re-enable quota
6746 	 */
6747 	if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6748 	    sb_any_quota_suspended(sb))
6749 		dquot_resume(sb, -1);
6750 
6751 	alloc_ctx = ext4_writepages_down_write(sb);
6752 	sb->s_flags = old_sb_flags;
6753 	sbi->s_mount_opt = old_opts.s_mount_opt;
6754 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6755 	sbi->s_resuid = old_opts.s_resuid;
6756 	sbi->s_resgid = old_opts.s_resgid;
6757 	sbi->s_commit_interval = old_opts.s_commit_interval;
6758 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6759 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6760 	ext4_writepages_up_write(sb, alloc_ctx);
6761 
6762 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6763 		ext4_release_system_zone(sb);
6764 #ifdef CONFIG_QUOTA
6765 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6766 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6767 		to_free[i] = get_qf_name(sb, sbi, i);
6768 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6769 	}
6770 	synchronize_rcu();
6771 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6772 		kfree(to_free[i]);
6773 #endif
6774 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6775 		ext4_stop_mmpd(sbi);
6776 	return err;
6777 }
6778 
ext4_reconfigure(struct fs_context * fc)6779 static int ext4_reconfigure(struct fs_context *fc)
6780 {
6781 	struct super_block *sb = fc->root->d_sb;
6782 	int ret;
6783 
6784 	fc->s_fs_info = EXT4_SB(sb);
6785 
6786 	ret = ext4_check_opt_consistency(fc, sb);
6787 	if (ret < 0)
6788 		return ret;
6789 
6790 	ret = __ext4_remount(fc, sb);
6791 	if (ret < 0)
6792 		return ret;
6793 
6794 	ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6795 		 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6796 		 ext4_quota_mode(sb));
6797 
6798 	return 0;
6799 }
6800 
6801 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6802 static int ext4_statfs_project(struct super_block *sb,
6803 			       kprojid_t projid, struct kstatfs *buf)
6804 {
6805 	struct kqid qid;
6806 	struct dquot *dquot;
6807 	u64 limit;
6808 	u64 curblock;
6809 
6810 	qid = make_kqid_projid(projid);
6811 	dquot = dqget(sb, qid);
6812 	if (IS_ERR(dquot))
6813 		return PTR_ERR(dquot);
6814 	spin_lock(&dquot->dq_dqb_lock);
6815 
6816 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6817 			     dquot->dq_dqb.dqb_bhardlimit);
6818 	limit >>= sb->s_blocksize_bits;
6819 
6820 	if (limit && buf->f_blocks > limit) {
6821 		curblock = (dquot->dq_dqb.dqb_curspace +
6822 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6823 		buf->f_blocks = limit;
6824 		buf->f_bfree = buf->f_bavail =
6825 			(buf->f_blocks > curblock) ?
6826 			 (buf->f_blocks - curblock) : 0;
6827 	}
6828 
6829 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6830 			     dquot->dq_dqb.dqb_ihardlimit);
6831 	if (limit && buf->f_files > limit) {
6832 		buf->f_files = limit;
6833 		buf->f_ffree =
6834 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6835 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6836 	}
6837 
6838 	spin_unlock(&dquot->dq_dqb_lock);
6839 	dqput(dquot);
6840 	return 0;
6841 }
6842 #endif
6843 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6844 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6845 {
6846 	struct super_block *sb = dentry->d_sb;
6847 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6848 	struct ext4_super_block *es = sbi->s_es;
6849 	ext4_fsblk_t overhead = 0, resv_blocks;
6850 	s64 bfree;
6851 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6852 
6853 	if (!test_opt(sb, MINIX_DF))
6854 		overhead = sbi->s_overhead;
6855 
6856 	buf->f_type = EXT4_SUPER_MAGIC;
6857 	buf->f_bsize = sb->s_blocksize;
6858 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6859 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6860 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6861 	/* prevent underflow in case that few free space is available */
6862 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6863 	buf->f_bavail = buf->f_bfree -
6864 			(ext4_r_blocks_count(es) + resv_blocks);
6865 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6866 		buf->f_bavail = 0;
6867 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6868 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6869 	buf->f_namelen = EXT4_NAME_LEN;
6870 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6871 
6872 #ifdef CONFIG_QUOTA
6873 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6874 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6875 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6876 #endif
6877 	return 0;
6878 }
6879 
6880 
6881 #ifdef CONFIG_QUOTA
6882 
6883 /*
6884  * Helper functions so that transaction is started before we acquire dqio_sem
6885  * to keep correct lock ordering of transaction > dqio_sem
6886  */
dquot_to_inode(struct dquot * dquot)6887 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6888 {
6889 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6890 }
6891 
ext4_write_dquot(struct dquot * dquot)6892 static int ext4_write_dquot(struct dquot *dquot)
6893 {
6894 	int ret, err;
6895 	handle_t *handle;
6896 	struct inode *inode;
6897 
6898 	inode = dquot_to_inode(dquot);
6899 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6900 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6901 	if (IS_ERR(handle))
6902 		return PTR_ERR(handle);
6903 	ret = dquot_commit(dquot);
6904 	if (ret < 0)
6905 		ext4_error_err(dquot->dq_sb, -ret,
6906 			       "Failed to commit dquot type %d",
6907 			       dquot->dq_id.type);
6908 	err = ext4_journal_stop(handle);
6909 	if (!ret)
6910 		ret = err;
6911 	return ret;
6912 }
6913 
ext4_acquire_dquot(struct dquot * dquot)6914 static int ext4_acquire_dquot(struct dquot *dquot)
6915 {
6916 	int ret, err;
6917 	handle_t *handle;
6918 
6919 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6920 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6921 	if (IS_ERR(handle))
6922 		return PTR_ERR(handle);
6923 	ret = dquot_acquire(dquot);
6924 	if (ret < 0)
6925 		ext4_error_err(dquot->dq_sb, -ret,
6926 			      "Failed to acquire dquot type %d",
6927 			      dquot->dq_id.type);
6928 	err = ext4_journal_stop(handle);
6929 	if (!ret)
6930 		ret = err;
6931 	return ret;
6932 }
6933 
ext4_release_dquot(struct dquot * dquot)6934 static int ext4_release_dquot(struct dquot *dquot)
6935 {
6936 	int ret, err;
6937 	handle_t *handle;
6938 
6939 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6940 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6941 	if (IS_ERR(handle)) {
6942 		/* Release dquot anyway to avoid endless cycle in dqput() */
6943 		dquot_release(dquot);
6944 		return PTR_ERR(handle);
6945 	}
6946 	ret = dquot_release(dquot);
6947 	if (ret < 0)
6948 		ext4_error_err(dquot->dq_sb, -ret,
6949 			       "Failed to release dquot type %d",
6950 			       dquot->dq_id.type);
6951 	err = ext4_journal_stop(handle);
6952 	if (!ret)
6953 		ret = err;
6954 	return ret;
6955 }
6956 
ext4_mark_dquot_dirty(struct dquot * dquot)6957 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6958 {
6959 	struct super_block *sb = dquot->dq_sb;
6960 
6961 	if (ext4_is_quota_journalled(sb)) {
6962 		dquot_mark_dquot_dirty(dquot);
6963 		return ext4_write_dquot(dquot);
6964 	} else {
6965 		return dquot_mark_dquot_dirty(dquot);
6966 	}
6967 }
6968 
ext4_write_info(struct super_block * sb,int type)6969 static int ext4_write_info(struct super_block *sb, int type)
6970 {
6971 	int ret, err;
6972 	handle_t *handle;
6973 
6974 	/* Data block + inode block */
6975 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6976 	if (IS_ERR(handle))
6977 		return PTR_ERR(handle);
6978 	ret = dquot_commit_info(sb, type);
6979 	err = ext4_journal_stop(handle);
6980 	if (!ret)
6981 		ret = err;
6982 	return ret;
6983 }
6984 
lockdep_set_quota_inode(struct inode * inode,int subclass)6985 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6986 {
6987 	struct ext4_inode_info *ei = EXT4_I(inode);
6988 
6989 	/* The first argument of lockdep_set_subclass has to be
6990 	 * *exactly* the same as the argument to init_rwsem() --- in
6991 	 * this case, in init_once() --- or lockdep gets unhappy
6992 	 * because the name of the lock is set using the
6993 	 * stringification of the argument to init_rwsem().
6994 	 */
6995 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6996 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6997 }
6998 
6999 /*
7000  * Standard function to be called on quota_on
7001  */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)7002 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
7003 			 const struct path *path)
7004 {
7005 	int err;
7006 
7007 	if (!test_opt(sb, QUOTA))
7008 		return -EINVAL;
7009 
7010 	/* Quotafile not on the same filesystem? */
7011 	if (path->dentry->d_sb != sb)
7012 		return -EXDEV;
7013 
7014 	/* Quota already enabled for this file? */
7015 	if (IS_NOQUOTA(d_inode(path->dentry)))
7016 		return -EBUSY;
7017 
7018 	/* Journaling quota? */
7019 	if (EXT4_SB(sb)->s_qf_names[type]) {
7020 		/* Quotafile not in fs root? */
7021 		if (path->dentry->d_parent != sb->s_root)
7022 			ext4_msg(sb, KERN_WARNING,
7023 				"Quota file not on filesystem root. "
7024 				"Journaled quota will not work");
7025 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7026 	} else {
7027 		/*
7028 		 * Clear the flag just in case mount options changed since
7029 		 * last time.
7030 		 */
7031 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7032 	}
7033 
7034 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7035 	err = dquot_quota_on(sb, type, format_id, path);
7036 	if (!err) {
7037 		struct inode *inode = d_inode(path->dentry);
7038 		handle_t *handle;
7039 
7040 		/*
7041 		 * Set inode flags to prevent userspace from messing with quota
7042 		 * files. If this fails, we return success anyway since quotas
7043 		 * are already enabled and this is not a hard failure.
7044 		 */
7045 		inode_lock(inode);
7046 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7047 		if (IS_ERR(handle))
7048 			goto unlock_inode;
7049 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7050 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7051 				S_NOATIME | S_IMMUTABLE);
7052 		err = ext4_mark_inode_dirty(handle, inode);
7053 		ext4_journal_stop(handle);
7054 	unlock_inode:
7055 		inode_unlock(inode);
7056 		if (err)
7057 			dquot_quota_off(sb, type);
7058 	}
7059 	if (err)
7060 		lockdep_set_quota_inode(path->dentry->d_inode,
7061 					     I_DATA_SEM_NORMAL);
7062 	return err;
7063 }
7064 
ext4_check_quota_inum(int type,unsigned long qf_inum)7065 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7066 {
7067 	switch (type) {
7068 	case USRQUOTA:
7069 		return qf_inum == EXT4_USR_QUOTA_INO;
7070 	case GRPQUOTA:
7071 		return qf_inum == EXT4_GRP_QUOTA_INO;
7072 	case PRJQUOTA:
7073 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7074 	default:
7075 		BUG();
7076 	}
7077 }
7078 
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)7079 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7080 			     unsigned int flags)
7081 {
7082 	int err;
7083 	struct inode *qf_inode;
7084 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7085 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7086 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7087 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7088 	};
7089 
7090 	BUG_ON(!ext4_has_feature_quota(sb));
7091 
7092 	if (!qf_inums[type])
7093 		return -EPERM;
7094 
7095 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
7096 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
7097 				qf_inums[type], type);
7098 		return -EUCLEAN;
7099 	}
7100 
7101 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7102 	if (IS_ERR(qf_inode)) {
7103 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
7104 				qf_inums[type], type);
7105 		return PTR_ERR(qf_inode);
7106 	}
7107 
7108 	/* Don't account quota for quota files to avoid recursion */
7109 	qf_inode->i_flags |= S_NOQUOTA;
7110 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7111 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7112 	if (err)
7113 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7114 	iput(qf_inode);
7115 
7116 	return err;
7117 }
7118 
7119 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)7120 int ext4_enable_quotas(struct super_block *sb)
7121 {
7122 	int type, err = 0;
7123 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7124 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7125 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7126 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7127 	};
7128 	bool quota_mopt[EXT4_MAXQUOTAS] = {
7129 		test_opt(sb, USRQUOTA),
7130 		test_opt(sb, GRPQUOTA),
7131 		test_opt(sb, PRJQUOTA),
7132 	};
7133 
7134 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7135 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7136 		if (qf_inums[type]) {
7137 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7138 				DQUOT_USAGE_ENABLED |
7139 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7140 			if (err) {
7141 				ext4_warning(sb,
7142 					"Failed to enable quota tracking "
7143 					"(type=%d, err=%d, ino=%lu). "
7144 					"Please run e2fsck to fix.", type,
7145 					err, qf_inums[type]);
7146 
7147 				ext4_quotas_off(sb, type);
7148 				return err;
7149 			}
7150 		}
7151 	}
7152 	return 0;
7153 }
7154 
ext4_quota_off(struct super_block * sb,int type)7155 static int ext4_quota_off(struct super_block *sb, int type)
7156 {
7157 	struct inode *inode = sb_dqopt(sb)->files[type];
7158 	handle_t *handle;
7159 	int err;
7160 
7161 	/* Force all delayed allocation blocks to be allocated.
7162 	 * Caller already holds s_umount sem */
7163 	if (test_opt(sb, DELALLOC))
7164 		sync_filesystem(sb);
7165 
7166 	if (!inode || !igrab(inode))
7167 		goto out;
7168 
7169 	err = dquot_quota_off(sb, type);
7170 	if (err || ext4_has_feature_quota(sb))
7171 		goto out_put;
7172 	/*
7173 	 * When the filesystem was remounted read-only first, we cannot cleanup
7174 	 * inode flags here. Bad luck but people should be using QUOTA feature
7175 	 * these days anyway.
7176 	 */
7177 	if (sb_rdonly(sb))
7178 		goto out_put;
7179 
7180 	inode_lock(inode);
7181 	/*
7182 	 * Update modification times of quota files when userspace can
7183 	 * start looking at them. If we fail, we return success anyway since
7184 	 * this is not a hard failure and quotas are already disabled.
7185 	 */
7186 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7187 	if (IS_ERR(handle)) {
7188 		err = PTR_ERR(handle);
7189 		goto out_unlock;
7190 	}
7191 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7192 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7193 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7194 	err = ext4_mark_inode_dirty(handle, inode);
7195 	ext4_journal_stop(handle);
7196 out_unlock:
7197 	inode_unlock(inode);
7198 out_put:
7199 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7200 	iput(inode);
7201 	return err;
7202 out:
7203 	return dquot_quota_off(sb, type);
7204 }
7205 
7206 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7207  * acquiring the locks... As quota files are never truncated and quota code
7208  * itself serializes the operations (and no one else should touch the files)
7209  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)7210 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7211 			       size_t len, loff_t off)
7212 {
7213 	struct inode *inode = sb_dqopt(sb)->files[type];
7214 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7215 	int offset = off & (sb->s_blocksize - 1);
7216 	int tocopy;
7217 	size_t toread;
7218 	struct buffer_head *bh;
7219 	loff_t i_size = i_size_read(inode);
7220 
7221 	if (off > i_size)
7222 		return 0;
7223 	if (off+len > i_size)
7224 		len = i_size-off;
7225 	toread = len;
7226 	while (toread > 0) {
7227 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7228 		bh = ext4_bread(NULL, inode, blk, 0);
7229 		if (IS_ERR(bh))
7230 			return PTR_ERR(bh);
7231 		if (!bh)	/* A hole? */
7232 			memset(data, 0, tocopy);
7233 		else
7234 			memcpy(data, bh->b_data+offset, tocopy);
7235 		brelse(bh);
7236 		offset = 0;
7237 		toread -= tocopy;
7238 		data += tocopy;
7239 		blk++;
7240 	}
7241 	return len;
7242 }
7243 
7244 /* Write to quotafile (we know the transaction is already started and has
7245  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)7246 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7247 				const char *data, size_t len, loff_t off)
7248 {
7249 	struct inode *inode = sb_dqopt(sb)->files[type];
7250 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7251 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7252 	int retries = 0;
7253 	struct buffer_head *bh;
7254 	handle_t *handle = journal_current_handle();
7255 
7256 	if (!handle) {
7257 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7258 			" cancelled because transaction is not started",
7259 			(unsigned long long)off, (unsigned long long)len);
7260 		return -EIO;
7261 	}
7262 	/*
7263 	 * Since we account only one data block in transaction credits,
7264 	 * then it is impossible to cross a block boundary.
7265 	 */
7266 	if (sb->s_blocksize - offset < len) {
7267 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7268 			" cancelled because not block aligned",
7269 			(unsigned long long)off, (unsigned long long)len);
7270 		return -EIO;
7271 	}
7272 
7273 	do {
7274 		bh = ext4_bread(handle, inode, blk,
7275 				EXT4_GET_BLOCKS_CREATE |
7276 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7277 	} while (PTR_ERR(bh) == -ENOSPC &&
7278 		 ext4_should_retry_alloc(inode->i_sb, &retries));
7279 	if (IS_ERR(bh))
7280 		return PTR_ERR(bh);
7281 	if (!bh)
7282 		goto out;
7283 	BUFFER_TRACE(bh, "get write access");
7284 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7285 	if (err) {
7286 		brelse(bh);
7287 		return err;
7288 	}
7289 	lock_buffer(bh);
7290 	memcpy(bh->b_data+offset, data, len);
7291 	flush_dcache_page(bh->b_page);
7292 	unlock_buffer(bh);
7293 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7294 	brelse(bh);
7295 out:
7296 	if (inode->i_size < off + len) {
7297 		i_size_write(inode, off + len);
7298 		EXT4_I(inode)->i_disksize = inode->i_size;
7299 		err2 = ext4_mark_inode_dirty(handle, inode);
7300 		if (unlikely(err2 && !err))
7301 			err = err2;
7302 	}
7303 	return err ? err : len;
7304 }
7305 #endif
7306 
7307 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)7308 static inline void register_as_ext2(void)
7309 {
7310 	int err = register_filesystem(&ext2_fs_type);
7311 	if (err)
7312 		printk(KERN_WARNING
7313 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7314 }
7315 
unregister_as_ext2(void)7316 static inline void unregister_as_ext2(void)
7317 {
7318 	unregister_filesystem(&ext2_fs_type);
7319 }
7320 
ext2_feature_set_ok(struct super_block * sb)7321 static inline int ext2_feature_set_ok(struct super_block *sb)
7322 {
7323 	if (ext4_has_unknown_ext2_incompat_features(sb))
7324 		return 0;
7325 	if (sb_rdonly(sb))
7326 		return 1;
7327 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7328 		return 0;
7329 	return 1;
7330 }
7331 #else
register_as_ext2(void)7332 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)7333 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)7334 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7335 #endif
7336 
register_as_ext3(void)7337 static inline void register_as_ext3(void)
7338 {
7339 	int err = register_filesystem(&ext3_fs_type);
7340 	if (err)
7341 		printk(KERN_WARNING
7342 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7343 }
7344 
unregister_as_ext3(void)7345 static inline void unregister_as_ext3(void)
7346 {
7347 	unregister_filesystem(&ext3_fs_type);
7348 }
7349 
ext3_feature_set_ok(struct super_block * sb)7350 static inline int ext3_feature_set_ok(struct super_block *sb)
7351 {
7352 	if (ext4_has_unknown_ext3_incompat_features(sb))
7353 		return 0;
7354 	if (!ext4_has_feature_journal(sb))
7355 		return 0;
7356 	if (sb_rdonly(sb))
7357 		return 1;
7358 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7359 		return 0;
7360 	return 1;
7361 }
7362 
ext4_kill_sb(struct super_block * sb)7363 static void ext4_kill_sb(struct super_block *sb)
7364 {
7365 	struct ext4_sb_info *sbi = EXT4_SB(sb);
7366 	struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7367 
7368 	kill_block_super(sb);
7369 
7370 	if (bdev_file)
7371 		bdev_fput(bdev_file);
7372 }
7373 
7374 static struct file_system_type ext4_fs_type = {
7375 	.owner			= THIS_MODULE,
7376 	.name			= "ext4",
7377 	.init_fs_context	= ext4_init_fs_context,
7378 	.parameters		= ext4_param_specs,
7379 	.kill_sb		= ext4_kill_sb,
7380 	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME,
7381 };
7382 MODULE_ALIAS_FS("ext4");
7383 
7384 /* Shared across all ext4 file systems */
7385 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7386 
ext4_init_fs(void)7387 static int __init ext4_init_fs(void)
7388 {
7389 	int i, err;
7390 
7391 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7392 	ext4_li_info = NULL;
7393 
7394 	/* Build-time check for flags consistency */
7395 	ext4_check_flag_values();
7396 
7397 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7398 		init_waitqueue_head(&ext4__ioend_wq[i]);
7399 
7400 	err = ext4_init_es();
7401 	if (err)
7402 		return err;
7403 
7404 	err = ext4_init_pending();
7405 	if (err)
7406 		goto out7;
7407 
7408 	err = ext4_init_post_read_processing();
7409 	if (err)
7410 		goto out6;
7411 
7412 	err = ext4_init_pageio();
7413 	if (err)
7414 		goto out5;
7415 
7416 	err = ext4_init_system_zone();
7417 	if (err)
7418 		goto out4;
7419 
7420 	err = ext4_init_sysfs();
7421 	if (err)
7422 		goto out3;
7423 
7424 	err = ext4_init_mballoc();
7425 	if (err)
7426 		goto out2;
7427 	err = init_inodecache();
7428 	if (err)
7429 		goto out1;
7430 
7431 	err = ext4_fc_init_dentry_cache();
7432 	if (err)
7433 		goto out05;
7434 
7435 	register_as_ext3();
7436 	register_as_ext2();
7437 	err = register_filesystem(&ext4_fs_type);
7438 	if (err)
7439 		goto out;
7440 
7441 	return 0;
7442 out:
7443 	unregister_as_ext2();
7444 	unregister_as_ext3();
7445 	ext4_fc_destroy_dentry_cache();
7446 out05:
7447 	destroy_inodecache();
7448 out1:
7449 	ext4_exit_mballoc();
7450 out2:
7451 	ext4_exit_sysfs();
7452 out3:
7453 	ext4_exit_system_zone();
7454 out4:
7455 	ext4_exit_pageio();
7456 out5:
7457 	ext4_exit_post_read_processing();
7458 out6:
7459 	ext4_exit_pending();
7460 out7:
7461 	ext4_exit_es();
7462 
7463 	return err;
7464 }
7465 
ext4_exit_fs(void)7466 static void __exit ext4_exit_fs(void)
7467 {
7468 	ext4_destroy_lazyinit_thread();
7469 	unregister_as_ext2();
7470 	unregister_as_ext3();
7471 	unregister_filesystem(&ext4_fs_type);
7472 	ext4_fc_destroy_dentry_cache();
7473 	destroy_inodecache();
7474 	ext4_exit_mballoc();
7475 	ext4_exit_sysfs();
7476 	ext4_exit_system_zone();
7477 	ext4_exit_pageio();
7478 	ext4_exit_post_read_processing();
7479 	ext4_exit_es();
7480 	ext4_exit_pending();
7481 }
7482 
7483 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7484 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7485 MODULE_LICENSE("GPL");
7486 module_init(ext4_init_fs)
7487 module_exit(ext4_exit_fs)
7488