1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * f2fs compress support
4 *
5 * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6 */
7
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25
page_array_alloc(struct f2fs_sb_info * sbi,int nr)26 static void *page_array_alloc(struct f2fs_sb_info *sbi, int nr)
27 {
28 unsigned int size = sizeof(struct page *) * nr;
29
30 if (likely(size <= sbi->page_array_slab_size))
31 return f2fs_kmem_cache_alloc(sbi->page_array_slab,
32 GFP_F2FS_ZERO, false, sbi);
33 return f2fs_kzalloc(sbi, size, GFP_NOFS);
34 }
35
page_array_free(struct f2fs_sb_info * sbi,void * pages,int nr)36 static void page_array_free(struct f2fs_sb_info *sbi, void *pages, int nr)
37 {
38 unsigned int size = sizeof(struct page *) * nr;
39
40 if (!pages)
41 return;
42
43 if (likely(size <= sbi->page_array_slab_size))
44 kmem_cache_free(sbi->page_array_slab, pages);
45 else
46 kfree(pages);
47 }
48
49 struct f2fs_compress_ops {
50 int (*init_compress_ctx)(struct compress_ctx *cc);
51 void (*destroy_compress_ctx)(struct compress_ctx *cc);
52 int (*compress_pages)(struct compress_ctx *cc);
53 int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
54 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
55 int (*decompress_pages)(struct decompress_io_ctx *dic);
56 bool (*is_level_valid)(int level);
57 };
58
offset_in_cluster(struct compress_ctx * cc,pgoff_t index)59 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
60 {
61 return index & (cc->cluster_size - 1);
62 }
63
cluster_idx(struct compress_ctx * cc,pgoff_t index)64 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
65 {
66 return index >> cc->log_cluster_size;
67 }
68
start_idx_of_cluster(struct compress_ctx * cc)69 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
70 {
71 return cc->cluster_idx << cc->log_cluster_size;
72 }
73
f2fs_is_compressed_page(struct folio * folio)74 bool f2fs_is_compressed_page(struct folio *folio)
75 {
76 if (!folio->private)
77 return false;
78 if (folio_test_f2fs_nonpointer(folio))
79 return false;
80
81 f2fs_bug_on(F2FS_F_SB(folio),
82 *((u32 *)folio->private) != F2FS_COMPRESSED_PAGE_MAGIC);
83 return true;
84 }
85
f2fs_set_compressed_page(struct page * page,struct inode * inode,pgoff_t index,void * data)86 static void f2fs_set_compressed_page(struct page *page,
87 struct inode *inode, pgoff_t index, void *data)
88 {
89 struct folio *folio = page_folio(page);
90
91 folio_attach_private(folio, (void *)data);
92
93 /* i_crypto_info and iv index */
94 folio->index = index;
95 folio->mapping = inode->i_mapping;
96 }
97
f2fs_drop_rpages(struct compress_ctx * cc,int len,bool unlock)98 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
99 {
100 int i;
101
102 for (i = 0; i < len; i++) {
103 if (!cc->rpages[i])
104 continue;
105 if (unlock)
106 unlock_page(cc->rpages[i]);
107 else
108 put_page(cc->rpages[i]);
109 }
110 }
111
f2fs_put_rpages(struct compress_ctx * cc)112 static void f2fs_put_rpages(struct compress_ctx *cc)
113 {
114 f2fs_drop_rpages(cc, cc->cluster_size, false);
115 }
116
f2fs_unlock_rpages(struct compress_ctx * cc,int len)117 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
118 {
119 f2fs_drop_rpages(cc, len, true);
120 }
121
f2fs_put_rpages_wbc(struct compress_ctx * cc,struct writeback_control * wbc,bool redirty,bool unlock)122 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
123 struct writeback_control *wbc, bool redirty, bool unlock)
124 {
125 unsigned int i;
126
127 for (i = 0; i < cc->cluster_size; i++) {
128 if (!cc->rpages[i])
129 continue;
130 if (redirty)
131 redirty_page_for_writepage(wbc, cc->rpages[i]);
132 f2fs_put_page(cc->rpages[i], unlock);
133 }
134 }
135
f2fs_compress_control_folio(struct folio * folio)136 struct folio *f2fs_compress_control_folio(struct folio *folio)
137 {
138 struct compress_io_ctx *ctx = folio->private;
139
140 return page_folio(ctx->rpages[0]);
141 }
142
f2fs_init_compress_ctx(struct compress_ctx * cc)143 int f2fs_init_compress_ctx(struct compress_ctx *cc)
144 {
145 if (cc->rpages)
146 return 0;
147
148 cc->rpages = page_array_alloc(F2FS_I_SB(cc->inode), cc->cluster_size);
149 return cc->rpages ? 0 : -ENOMEM;
150 }
151
f2fs_destroy_compress_ctx(struct compress_ctx * cc,bool reuse)152 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
153 {
154 page_array_free(F2FS_I_SB(cc->inode), cc->rpages, cc->cluster_size);
155 cc->rpages = NULL;
156 cc->nr_rpages = 0;
157 cc->nr_cpages = 0;
158 cc->valid_nr_cpages = 0;
159 if (!reuse)
160 cc->cluster_idx = NULL_CLUSTER;
161 }
162
f2fs_compress_ctx_add_page(struct compress_ctx * cc,struct folio * folio)163 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio)
164 {
165 unsigned int cluster_ofs;
166
167 if (!f2fs_cluster_can_merge_page(cc, folio->index))
168 f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
169
170 cluster_ofs = offset_in_cluster(cc, folio->index);
171 cc->rpages[cluster_ofs] = folio_page(folio, 0);
172 cc->nr_rpages++;
173 cc->cluster_idx = cluster_idx(cc, folio->index);
174 }
175
176 #ifdef CONFIG_F2FS_FS_LZO
lzo_init_compress_ctx(struct compress_ctx * cc)177 static int lzo_init_compress_ctx(struct compress_ctx *cc)
178 {
179 cc->private = f2fs_vmalloc(F2FS_I_SB(cc->inode),
180 LZO1X_MEM_COMPRESS);
181 if (!cc->private)
182 return -ENOMEM;
183
184 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
185 return 0;
186 }
187
lzo_destroy_compress_ctx(struct compress_ctx * cc)188 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
189 {
190 vfree(cc->private);
191 cc->private = NULL;
192 }
193
lzo_compress_pages(struct compress_ctx * cc)194 static int lzo_compress_pages(struct compress_ctx *cc)
195 {
196 int ret;
197
198 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
199 &cc->clen, cc->private);
200 if (ret != LZO_E_OK) {
201 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
202 "lzo compress failed, ret:%d", ret);
203 return -EIO;
204 }
205 return 0;
206 }
207
lzo_decompress_pages(struct decompress_io_ctx * dic)208 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
209 {
210 int ret;
211
212 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
213 dic->rbuf, &dic->rlen);
214 if (ret != LZO_E_OK) {
215 f2fs_err_ratelimited(dic->sbi,
216 "lzo decompress failed, ret:%d", ret);
217 return -EIO;
218 }
219
220 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
221 f2fs_err_ratelimited(dic->sbi,
222 "lzo invalid rlen:%zu, expected:%lu",
223 dic->rlen, PAGE_SIZE << dic->log_cluster_size);
224 return -EIO;
225 }
226 return 0;
227 }
228
229 static const struct f2fs_compress_ops f2fs_lzo_ops = {
230 .init_compress_ctx = lzo_init_compress_ctx,
231 .destroy_compress_ctx = lzo_destroy_compress_ctx,
232 .compress_pages = lzo_compress_pages,
233 .decompress_pages = lzo_decompress_pages,
234 };
235 #endif
236
237 #ifdef CONFIG_F2FS_FS_LZ4
lz4_init_compress_ctx(struct compress_ctx * cc)238 static int lz4_init_compress_ctx(struct compress_ctx *cc)
239 {
240 unsigned int size = LZ4_MEM_COMPRESS;
241
242 #ifdef CONFIG_F2FS_FS_LZ4HC
243 if (F2FS_I(cc->inode)->i_compress_level)
244 size = LZ4HC_MEM_COMPRESS;
245 #endif
246
247 cc->private = f2fs_vmalloc(F2FS_I_SB(cc->inode), size);
248 if (!cc->private)
249 return -ENOMEM;
250
251 /*
252 * we do not change cc->clen to LZ4_compressBound(inputsize) to
253 * adapt worst compress case, because lz4 compressor can handle
254 * output budget properly.
255 */
256 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
257 return 0;
258 }
259
lz4_destroy_compress_ctx(struct compress_ctx * cc)260 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
261 {
262 vfree(cc->private);
263 cc->private = NULL;
264 }
265
lz4_compress_pages(struct compress_ctx * cc)266 static int lz4_compress_pages(struct compress_ctx *cc)
267 {
268 int len = -EINVAL;
269 unsigned char level = F2FS_I(cc->inode)->i_compress_level;
270
271 if (!level)
272 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
273 cc->clen, cc->private);
274 #ifdef CONFIG_F2FS_FS_LZ4HC
275 else
276 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
277 cc->clen, level, cc->private);
278 #endif
279 if (len < 0)
280 return len;
281 if (!len)
282 return -EAGAIN;
283
284 cc->clen = len;
285 return 0;
286 }
287
lz4_decompress_pages(struct decompress_io_ctx * dic)288 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
289 {
290 int ret;
291
292 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
293 dic->clen, dic->rlen);
294 if (ret < 0) {
295 f2fs_err_ratelimited(dic->sbi,
296 "lz4 decompress failed, ret:%d", ret);
297 return -EIO;
298 }
299
300 if (ret != PAGE_SIZE << dic->log_cluster_size) {
301 f2fs_err_ratelimited(dic->sbi,
302 "lz4 invalid ret:%d, expected:%lu",
303 ret, PAGE_SIZE << dic->log_cluster_size);
304 return -EIO;
305 }
306 return 0;
307 }
308
lz4_is_level_valid(int lvl)309 static bool lz4_is_level_valid(int lvl)
310 {
311 #ifdef CONFIG_F2FS_FS_LZ4HC
312 return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL);
313 #else
314 return lvl == 0;
315 #endif
316 }
317
318 static const struct f2fs_compress_ops f2fs_lz4_ops = {
319 .init_compress_ctx = lz4_init_compress_ctx,
320 .destroy_compress_ctx = lz4_destroy_compress_ctx,
321 .compress_pages = lz4_compress_pages,
322 .decompress_pages = lz4_decompress_pages,
323 .is_level_valid = lz4_is_level_valid,
324 };
325 #endif
326
327 #ifdef CONFIG_F2FS_FS_ZSTD
zstd_init_compress_ctx(struct compress_ctx * cc)328 static int zstd_init_compress_ctx(struct compress_ctx *cc)
329 {
330 zstd_parameters params;
331 zstd_cstream *stream;
332 void *workspace;
333 unsigned int workspace_size;
334 unsigned char level = F2FS_I(cc->inode)->i_compress_level;
335
336 /* Need to remain this for backward compatibility */
337 if (!level)
338 level = F2FS_ZSTD_DEFAULT_CLEVEL;
339
340 params = zstd_get_params(level, cc->rlen);
341 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams);
342
343 workspace = f2fs_vmalloc(F2FS_I_SB(cc->inode), workspace_size);
344 if (!workspace)
345 return -ENOMEM;
346
347 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size);
348 if (!stream) {
349 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
350 "%s zstd_init_cstream failed", __func__);
351 vfree(workspace);
352 return -EIO;
353 }
354
355 cc->private = workspace;
356 cc->private2 = stream;
357
358 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
359 return 0;
360 }
361
zstd_destroy_compress_ctx(struct compress_ctx * cc)362 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
363 {
364 vfree(cc->private);
365 cc->private = NULL;
366 cc->private2 = NULL;
367 }
368
zstd_compress_pages(struct compress_ctx * cc)369 static int zstd_compress_pages(struct compress_ctx *cc)
370 {
371 zstd_cstream *stream = cc->private2;
372 zstd_in_buffer inbuf;
373 zstd_out_buffer outbuf;
374 int src_size = cc->rlen;
375 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
376 int ret;
377
378 inbuf.pos = 0;
379 inbuf.src = cc->rbuf;
380 inbuf.size = src_size;
381
382 outbuf.pos = 0;
383 outbuf.dst = cc->cbuf->cdata;
384 outbuf.size = dst_size;
385
386 ret = zstd_compress_stream(stream, &outbuf, &inbuf);
387 if (zstd_is_error(ret)) {
388 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
389 "%s zstd_compress_stream failed, ret: %d",
390 __func__, zstd_get_error_code(ret));
391 return -EIO;
392 }
393
394 ret = zstd_end_stream(stream, &outbuf);
395 if (zstd_is_error(ret)) {
396 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
397 "%s zstd_end_stream returned %d",
398 __func__, zstd_get_error_code(ret));
399 return -EIO;
400 }
401
402 /*
403 * there is compressed data remained in intermediate buffer due to
404 * no more space in cbuf.cdata
405 */
406 if (ret)
407 return -EAGAIN;
408
409 cc->clen = outbuf.pos;
410 return 0;
411 }
412
zstd_init_decompress_ctx(struct decompress_io_ctx * dic)413 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
414 {
415 zstd_dstream *stream;
416 void *workspace;
417 unsigned int workspace_size;
418 unsigned int max_window_size =
419 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
420
421 workspace_size = zstd_dstream_workspace_bound(max_window_size);
422
423 workspace = f2fs_vmalloc(dic->sbi, workspace_size);
424 if (!workspace)
425 return -ENOMEM;
426
427 stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
428 if (!stream) {
429 f2fs_err_ratelimited(dic->sbi,
430 "%s zstd_init_dstream failed", __func__);
431 vfree(workspace);
432 return -EIO;
433 }
434
435 dic->private = workspace;
436 dic->private2 = stream;
437
438 return 0;
439 }
440
zstd_destroy_decompress_ctx(struct decompress_io_ctx * dic)441 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
442 {
443 vfree(dic->private);
444 dic->private = NULL;
445 dic->private2 = NULL;
446 }
447
zstd_decompress_pages(struct decompress_io_ctx * dic)448 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
449 {
450 zstd_dstream *stream = dic->private2;
451 zstd_in_buffer inbuf;
452 zstd_out_buffer outbuf;
453 int ret;
454
455 inbuf.pos = 0;
456 inbuf.src = dic->cbuf->cdata;
457 inbuf.size = dic->clen;
458
459 outbuf.pos = 0;
460 outbuf.dst = dic->rbuf;
461 outbuf.size = dic->rlen;
462
463 ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
464 if (zstd_is_error(ret)) {
465 f2fs_err_ratelimited(dic->sbi,
466 "%s zstd_decompress_stream failed, ret: %d",
467 __func__, zstd_get_error_code(ret));
468 return -EIO;
469 }
470
471 if (dic->rlen != outbuf.pos) {
472 f2fs_err_ratelimited(dic->sbi,
473 "%s ZSTD invalid rlen:%zu, expected:%lu",
474 __func__, dic->rlen,
475 PAGE_SIZE << dic->log_cluster_size);
476 return -EIO;
477 }
478
479 return 0;
480 }
481
zstd_is_level_valid(int lvl)482 static bool zstd_is_level_valid(int lvl)
483 {
484 return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel();
485 }
486
487 static const struct f2fs_compress_ops f2fs_zstd_ops = {
488 .init_compress_ctx = zstd_init_compress_ctx,
489 .destroy_compress_ctx = zstd_destroy_compress_ctx,
490 .compress_pages = zstd_compress_pages,
491 .init_decompress_ctx = zstd_init_decompress_ctx,
492 .destroy_decompress_ctx = zstd_destroy_decompress_ctx,
493 .decompress_pages = zstd_decompress_pages,
494 .is_level_valid = zstd_is_level_valid,
495 };
496 #endif
497
498 #ifdef CONFIG_F2FS_FS_LZO
499 #ifdef CONFIG_F2FS_FS_LZORLE
lzorle_compress_pages(struct compress_ctx * cc)500 static int lzorle_compress_pages(struct compress_ctx *cc)
501 {
502 int ret;
503
504 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
505 &cc->clen, cc->private);
506 if (ret != LZO_E_OK) {
507 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
508 "lzo-rle compress failed, ret:%d", ret);
509 return -EIO;
510 }
511 return 0;
512 }
513
514 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
515 .init_compress_ctx = lzo_init_compress_ctx,
516 .destroy_compress_ctx = lzo_destroy_compress_ctx,
517 .compress_pages = lzorle_compress_pages,
518 .decompress_pages = lzo_decompress_pages,
519 };
520 #endif
521 #endif
522
523 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
524 #ifdef CONFIG_F2FS_FS_LZO
525 &f2fs_lzo_ops,
526 #else
527 NULL,
528 #endif
529 #ifdef CONFIG_F2FS_FS_LZ4
530 &f2fs_lz4_ops,
531 #else
532 NULL,
533 #endif
534 #ifdef CONFIG_F2FS_FS_ZSTD
535 &f2fs_zstd_ops,
536 #else
537 NULL,
538 #endif
539 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
540 &f2fs_lzorle_ops,
541 #else
542 NULL,
543 #endif
544 };
545
f2fs_is_compress_backend_ready(struct inode * inode)546 bool f2fs_is_compress_backend_ready(struct inode *inode)
547 {
548 if (!f2fs_compressed_file(inode))
549 return true;
550 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
551 }
552
f2fs_is_compress_level_valid(int alg,int lvl)553 bool f2fs_is_compress_level_valid(int alg, int lvl)
554 {
555 const struct f2fs_compress_ops *cops = f2fs_cops[alg];
556
557 if (cops->is_level_valid)
558 return cops->is_level_valid(lvl);
559
560 return lvl == 0;
561 }
562
563 static mempool_t *compress_page_pool;
564 static int num_compress_pages = 512;
565 module_param(num_compress_pages, uint, 0444);
566 MODULE_PARM_DESC(num_compress_pages,
567 "Number of intermediate compress pages to preallocate");
568
f2fs_init_compress_mempool(void)569 int __init f2fs_init_compress_mempool(void)
570 {
571 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
572 return compress_page_pool ? 0 : -ENOMEM;
573 }
574
f2fs_destroy_compress_mempool(void)575 void f2fs_destroy_compress_mempool(void)
576 {
577 mempool_destroy(compress_page_pool);
578 }
579
f2fs_compress_alloc_page(void)580 static struct page *f2fs_compress_alloc_page(void)
581 {
582 struct page *page;
583
584 page = mempool_alloc(compress_page_pool, GFP_NOFS);
585 lock_page(page);
586
587 return page;
588 }
589
f2fs_compress_free_page(struct page * page)590 static void f2fs_compress_free_page(struct page *page)
591 {
592 struct folio *folio;
593
594 if (!page)
595 return;
596 folio = page_folio(page);
597 folio_detach_private(folio);
598 folio->mapping = NULL;
599 folio_unlock(folio);
600 mempool_free(page, compress_page_pool);
601 }
602
603 #define MAX_VMAP_RETRIES 3
604
f2fs_vmap(struct page ** pages,unsigned int count)605 static void *f2fs_vmap(struct page **pages, unsigned int count)
606 {
607 int i;
608 void *buf = NULL;
609
610 for (i = 0; i < MAX_VMAP_RETRIES; i++) {
611 buf = vm_map_ram(pages, count, -1);
612 if (buf)
613 break;
614 vm_unmap_aliases();
615 }
616 return buf;
617 }
618
f2fs_compress_pages(struct compress_ctx * cc)619 static int f2fs_compress_pages(struct compress_ctx *cc)
620 {
621 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
622 struct f2fs_inode_info *fi = F2FS_I(cc->inode);
623 const struct f2fs_compress_ops *cops =
624 f2fs_cops[fi->i_compress_algorithm];
625 unsigned int max_len, new_nr_cpages;
626 u32 chksum = 0;
627 int i, ret;
628
629 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
630 cc->cluster_size, fi->i_compress_algorithm);
631
632 if (cops->init_compress_ctx) {
633 ret = cops->init_compress_ctx(cc);
634 if (ret)
635 goto out;
636 }
637
638 max_len = COMPRESS_HEADER_SIZE + cc->clen;
639 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
640 cc->valid_nr_cpages = cc->nr_cpages;
641
642 cc->cpages = page_array_alloc(sbi, cc->nr_cpages);
643 if (!cc->cpages) {
644 ret = -ENOMEM;
645 goto destroy_compress_ctx;
646 }
647
648 for (i = 0; i < cc->nr_cpages; i++)
649 cc->cpages[i] = f2fs_compress_alloc_page();
650
651 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
652 if (!cc->rbuf) {
653 ret = -ENOMEM;
654 goto out_free_cpages;
655 }
656
657 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
658 if (!cc->cbuf) {
659 ret = -ENOMEM;
660 goto out_vunmap_rbuf;
661 }
662
663 ret = cops->compress_pages(cc);
664 if (ret)
665 goto out_vunmap_cbuf;
666
667 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
668
669 if (cc->clen > max_len) {
670 ret = -EAGAIN;
671 goto out_vunmap_cbuf;
672 }
673
674 cc->cbuf->clen = cpu_to_le32(cc->clen);
675
676 if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))
677 chksum = f2fs_crc32(cc->cbuf->cdata, cc->clen);
678 cc->cbuf->chksum = cpu_to_le32(chksum);
679
680 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
681 cc->cbuf->reserved[i] = cpu_to_le32(0);
682
683 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
684
685 /* zero out any unused part of the last page */
686 memset(&cc->cbuf->cdata[cc->clen], 0,
687 (new_nr_cpages * PAGE_SIZE) -
688 (cc->clen + COMPRESS_HEADER_SIZE));
689
690 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
691 vm_unmap_ram(cc->rbuf, cc->cluster_size);
692
693 for (i = new_nr_cpages; i < cc->nr_cpages; i++) {
694 f2fs_compress_free_page(cc->cpages[i]);
695 cc->cpages[i] = NULL;
696 }
697
698 if (cops->destroy_compress_ctx)
699 cops->destroy_compress_ctx(cc);
700
701 cc->valid_nr_cpages = new_nr_cpages;
702
703 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
704 cc->clen, ret);
705 return 0;
706
707 out_vunmap_cbuf:
708 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
709 out_vunmap_rbuf:
710 vm_unmap_ram(cc->rbuf, cc->cluster_size);
711 out_free_cpages:
712 for (i = 0; i < cc->nr_cpages; i++) {
713 if (cc->cpages[i])
714 f2fs_compress_free_page(cc->cpages[i]);
715 }
716 page_array_free(sbi, cc->cpages, cc->nr_cpages);
717 cc->cpages = NULL;
718 destroy_compress_ctx:
719 if (cops->destroy_compress_ctx)
720 cops->destroy_compress_ctx(cc);
721 out:
722 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
723 cc->clen, ret);
724 return ret;
725 }
726
727 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
728 bool pre_alloc);
729 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
730 bool bypass_destroy_callback, bool pre_alloc);
731
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)732 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
733 {
734 struct f2fs_sb_info *sbi = dic->sbi;
735 struct f2fs_inode_info *fi = F2FS_I(dic->inode);
736 const struct f2fs_compress_ops *cops =
737 f2fs_cops[fi->i_compress_algorithm];
738 bool bypass_callback = false;
739 int ret;
740
741 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
742 dic->cluster_size, fi->i_compress_algorithm);
743
744 if (dic->failed) {
745 ret = -EIO;
746 goto out_end_io;
747 }
748
749 ret = f2fs_prepare_decomp_mem(dic, false);
750 if (ret) {
751 bypass_callback = true;
752 goto out_release;
753 }
754
755 dic->clen = le32_to_cpu(dic->cbuf->clen);
756 dic->rlen = PAGE_SIZE << dic->log_cluster_size;
757
758 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
759 ret = -EFSCORRUPTED;
760
761 /* Avoid f2fs_commit_super in irq context */
762 f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
763 goto out_release;
764 }
765
766 ret = cops->decompress_pages(dic);
767
768 if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) {
769 u32 provided = le32_to_cpu(dic->cbuf->chksum);
770 u32 calculated = f2fs_crc32(dic->cbuf->cdata, dic->clen);
771
772 if (provided != calculated) {
773 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
774 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
775 f2fs_info_ratelimited(sbi,
776 "checksum invalid, nid = %lu, %x vs %x",
777 dic->inode->i_ino,
778 provided, calculated);
779 }
780 set_sbi_flag(sbi, SBI_NEED_FSCK);
781 }
782 }
783
784 out_release:
785 f2fs_release_decomp_mem(dic, bypass_callback, false);
786
787 out_end_io:
788 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
789 dic->clen, ret);
790 f2fs_decompress_end_io(dic, ret, in_task);
791 }
792
793 static void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
794 struct folio *folio, nid_t ino, block_t blkaddr);
795
796 /*
797 * This is called when a page of a compressed cluster has been read from disk
798 * (or failed to be read from disk). It checks whether this page was the last
799 * page being waited on in the cluster, and if so, it decompresses the cluster
800 * (or in the case of a failure, cleans up without actually decompressing).
801 */
f2fs_end_read_compressed_page(struct folio * folio,bool failed,block_t blkaddr,bool in_task)802 void f2fs_end_read_compressed_page(struct folio *folio, bool failed,
803 block_t blkaddr, bool in_task)
804 {
805 struct decompress_io_ctx *dic = folio->private;
806 struct f2fs_sb_info *sbi = dic->sbi;
807
808 dec_page_count(sbi, F2FS_RD_DATA);
809
810 if (failed)
811 WRITE_ONCE(dic->failed, true);
812 else if (blkaddr && in_task)
813 f2fs_cache_compressed_page(sbi, folio,
814 dic->inode->i_ino, blkaddr);
815
816 if (atomic_dec_and_test(&dic->remaining_pages))
817 f2fs_decompress_cluster(dic, in_task);
818 }
819
is_page_in_cluster(struct compress_ctx * cc,pgoff_t index)820 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
821 {
822 if (cc->cluster_idx == NULL_CLUSTER)
823 return true;
824 return cc->cluster_idx == cluster_idx(cc, index);
825 }
826
f2fs_cluster_is_empty(struct compress_ctx * cc)827 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
828 {
829 return cc->nr_rpages == 0;
830 }
831
f2fs_cluster_is_full(struct compress_ctx * cc)832 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
833 {
834 return cc->cluster_size == cc->nr_rpages;
835 }
836
f2fs_cluster_can_merge_page(struct compress_ctx * cc,pgoff_t index)837 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
838 {
839 if (f2fs_cluster_is_empty(cc))
840 return true;
841 return is_page_in_cluster(cc, index);
842 }
843
f2fs_all_cluster_page_ready(struct compress_ctx * cc,struct page ** pages,int index,int nr_pages,bool uptodate)844 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
845 int index, int nr_pages, bool uptodate)
846 {
847 unsigned long pgidx = page_folio(pages[index])->index;
848 int i = uptodate ? 0 : 1;
849
850 /*
851 * when uptodate set to true, try to check all pages in cluster is
852 * uptodate or not.
853 */
854 if (uptodate && (pgidx % cc->cluster_size))
855 return false;
856
857 if (nr_pages - index < cc->cluster_size)
858 return false;
859
860 for (; i < cc->cluster_size; i++) {
861 struct folio *folio = page_folio(pages[index + i]);
862
863 if (folio->index != pgidx + i)
864 return false;
865 if (uptodate && !folio_test_uptodate(folio))
866 return false;
867 }
868
869 return true;
870 }
871
cluster_has_invalid_data(struct compress_ctx * cc)872 static bool cluster_has_invalid_data(struct compress_ctx *cc)
873 {
874 loff_t i_size = i_size_read(cc->inode);
875 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
876 int i;
877
878 for (i = 0; i < cc->cluster_size; i++) {
879 struct page *page = cc->rpages[i];
880
881 f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
882
883 /* beyond EOF */
884 if (page_folio(page)->index >= nr_pages)
885 return true;
886 }
887 return false;
888 }
889
f2fs_sanity_check_cluster(struct dnode_of_data * dn)890 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
891 {
892 #ifdef CONFIG_F2FS_CHECK_FS
893 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
894 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
895 int cluster_end = 0;
896 unsigned int count;
897 int i;
898 char *reason = "";
899
900 if (dn->data_blkaddr != COMPRESS_ADDR)
901 return false;
902
903 /* [..., COMPR_ADDR, ...] */
904 if (dn->ofs_in_node % cluster_size) {
905 reason = "[*|C|*|*]";
906 goto out;
907 }
908
909 for (i = 1, count = 1; i < cluster_size; i++, count++) {
910 block_t blkaddr = data_blkaddr(dn->inode, dn->node_folio,
911 dn->ofs_in_node + i);
912
913 /* [COMPR_ADDR, ..., COMPR_ADDR] */
914 if (blkaddr == COMPRESS_ADDR) {
915 reason = "[C|*|C|*]";
916 goto out;
917 }
918 if (!__is_valid_data_blkaddr(blkaddr)) {
919 if (!cluster_end)
920 cluster_end = i;
921 continue;
922 }
923 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
924 if (cluster_end) {
925 reason = "[C|N|N|V]";
926 goto out;
927 }
928 }
929
930 f2fs_bug_on(F2FS_I_SB(dn->inode), count != cluster_size &&
931 !is_inode_flag_set(dn->inode, FI_COMPRESS_RELEASED));
932
933 return false;
934 out:
935 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
936 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
937 set_sbi_flag(sbi, SBI_NEED_FSCK);
938 return true;
939 #else
940 return false;
941 #endif
942 }
943
__f2fs_get_cluster_blocks(struct inode * inode,struct dnode_of_data * dn)944 static int __f2fs_get_cluster_blocks(struct inode *inode,
945 struct dnode_of_data *dn)
946 {
947 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
948 int count, i;
949
950 for (i = 0, count = 0; i < cluster_size; i++) {
951 block_t blkaddr = data_blkaddr(dn->inode, dn->node_folio,
952 dn->ofs_in_node + i);
953
954 if (__is_valid_data_blkaddr(blkaddr))
955 count++;
956 }
957
958 return count;
959 }
960
__f2fs_cluster_blocks(struct inode * inode,unsigned int cluster_idx,enum cluster_check_type type)961 static int __f2fs_cluster_blocks(struct inode *inode, unsigned int cluster_idx,
962 enum cluster_check_type type)
963 {
964 struct dnode_of_data dn;
965 unsigned int start_idx = cluster_idx <<
966 F2FS_I(inode)->i_log_cluster_size;
967 int ret;
968
969 set_new_dnode(&dn, inode, NULL, NULL, 0);
970 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
971 if (ret) {
972 if (ret == -ENOENT)
973 ret = 0;
974 goto fail;
975 }
976
977 if (f2fs_sanity_check_cluster(&dn)) {
978 ret = -EFSCORRUPTED;
979 goto fail;
980 }
981
982 if (dn.data_blkaddr == COMPRESS_ADDR) {
983 if (type == CLUSTER_COMPR_BLKS)
984 ret = 1 + __f2fs_get_cluster_blocks(inode, &dn);
985 else if (type == CLUSTER_IS_COMPR)
986 ret = 1;
987 } else if (type == CLUSTER_RAW_BLKS) {
988 ret = __f2fs_get_cluster_blocks(inode, &dn);
989 }
990 fail:
991 f2fs_put_dnode(&dn);
992 return ret;
993 }
994
995 /* return # of compressed blocks in compressed cluster */
f2fs_compressed_blocks(struct compress_ctx * cc)996 static int f2fs_compressed_blocks(struct compress_ctx *cc)
997 {
998 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx,
999 CLUSTER_COMPR_BLKS);
1000 }
1001
1002 /* return # of raw blocks in non-compressed cluster */
f2fs_decompressed_blocks(struct inode * inode,unsigned int cluster_idx)1003 static int f2fs_decompressed_blocks(struct inode *inode,
1004 unsigned int cluster_idx)
1005 {
1006 return __f2fs_cluster_blocks(inode, cluster_idx,
1007 CLUSTER_RAW_BLKS);
1008 }
1009
1010 /* return whether cluster is compressed one or not */
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)1011 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
1012 {
1013 return __f2fs_cluster_blocks(inode,
1014 index >> F2FS_I(inode)->i_log_cluster_size,
1015 CLUSTER_IS_COMPR);
1016 }
1017
1018 /* return whether cluster contains non raw blocks or not */
f2fs_is_sparse_cluster(struct inode * inode,pgoff_t index)1019 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index)
1020 {
1021 unsigned int cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size;
1022
1023 return f2fs_decompressed_blocks(inode, cluster_idx) !=
1024 F2FS_I(inode)->i_cluster_size;
1025 }
1026
cluster_may_compress(struct compress_ctx * cc)1027 static bool cluster_may_compress(struct compress_ctx *cc)
1028 {
1029 if (!f2fs_need_compress_data(cc->inode))
1030 return false;
1031 if (f2fs_is_atomic_file(cc->inode))
1032 return false;
1033 if (!f2fs_cluster_is_full(cc))
1034 return false;
1035 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1036 return false;
1037 return !cluster_has_invalid_data(cc);
1038 }
1039
set_cluster_writeback(struct compress_ctx * cc)1040 static void set_cluster_writeback(struct compress_ctx *cc)
1041 {
1042 int i;
1043
1044 for (i = 0; i < cc->cluster_size; i++) {
1045 if (cc->rpages[i])
1046 set_page_writeback(cc->rpages[i]);
1047 }
1048 }
1049
cancel_cluster_writeback(struct compress_ctx * cc,struct compress_io_ctx * cic,int submitted)1050 static void cancel_cluster_writeback(struct compress_ctx *cc,
1051 struct compress_io_ctx *cic, int submitted)
1052 {
1053 int i;
1054
1055 /* Wait for submitted IOs. */
1056 if (submitted > 1) {
1057 f2fs_submit_merged_write(F2FS_I_SB(cc->inode), DATA);
1058 while (atomic_read(&cic->pending_pages) !=
1059 (cc->valid_nr_cpages - submitted + 1))
1060 f2fs_io_schedule_timeout(DEFAULT_SCHEDULE_TIMEOUT);
1061 }
1062
1063 /* Cancel writeback and stay locked. */
1064 for (i = 0; i < cc->cluster_size; i++) {
1065 if (i < submitted) {
1066 inode_inc_dirty_pages(cc->inode);
1067 lock_page(cc->rpages[i]);
1068 }
1069 clear_page_private_gcing(cc->rpages[i]);
1070 if (folio_test_writeback(page_folio(cc->rpages[i])))
1071 end_page_writeback(cc->rpages[i]);
1072 }
1073 }
1074
set_cluster_dirty(struct compress_ctx * cc)1075 static void set_cluster_dirty(struct compress_ctx *cc)
1076 {
1077 int i;
1078
1079 for (i = 0; i < cc->cluster_size; i++)
1080 if (cc->rpages[i]) {
1081 set_page_dirty(cc->rpages[i]);
1082 set_page_private_gcing(cc->rpages[i]);
1083 }
1084 }
1085
prepare_compress_overwrite(struct compress_ctx * cc,struct page ** pagep,pgoff_t index,void ** fsdata)1086 static int prepare_compress_overwrite(struct compress_ctx *cc,
1087 struct page **pagep, pgoff_t index, void **fsdata)
1088 {
1089 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1090 struct address_space *mapping = cc->inode->i_mapping;
1091 struct folio *folio;
1092 sector_t last_block_in_bio;
1093 fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1094 pgoff_t start_idx = start_idx_of_cluster(cc);
1095 int i, ret;
1096
1097 retry:
1098 ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1099 if (ret <= 0)
1100 return ret;
1101
1102 ret = f2fs_init_compress_ctx(cc);
1103 if (ret)
1104 return ret;
1105
1106 /* keep folio reference to avoid page reclaim */
1107 for (i = 0; i < cc->cluster_size; i++) {
1108 folio = f2fs_filemap_get_folio(mapping, start_idx + i,
1109 fgp_flag, GFP_NOFS);
1110 if (IS_ERR(folio)) {
1111 ret = PTR_ERR(folio);
1112 goto unlock_pages;
1113 }
1114
1115 if (folio_test_uptodate(folio))
1116 f2fs_folio_put(folio, true);
1117 else
1118 f2fs_compress_ctx_add_page(cc, folio);
1119 }
1120
1121 if (!f2fs_cluster_is_empty(cc)) {
1122 struct bio *bio = NULL;
1123
1124 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1125 &last_block_in_bio, NULL, true);
1126 f2fs_put_rpages(cc);
1127 f2fs_destroy_compress_ctx(cc, true);
1128 if (ret)
1129 goto out;
1130 if (bio)
1131 f2fs_submit_read_bio(sbi, bio, DATA);
1132
1133 ret = f2fs_init_compress_ctx(cc);
1134 if (ret)
1135 goto out;
1136 }
1137
1138 for (i = 0; i < cc->cluster_size; i++) {
1139 f2fs_bug_on(sbi, cc->rpages[i]);
1140
1141 folio = filemap_lock_folio(mapping, start_idx + i);
1142 if (IS_ERR(folio)) {
1143 /* folio could be truncated */
1144 goto release_and_retry;
1145 }
1146
1147 f2fs_folio_wait_writeback(folio, DATA, true, true);
1148 f2fs_compress_ctx_add_page(cc, folio);
1149
1150 if (!folio_test_uptodate(folio)) {
1151 f2fs_handle_page_eio(sbi, folio, DATA);
1152 release_and_retry:
1153 f2fs_put_rpages(cc);
1154 f2fs_unlock_rpages(cc, i + 1);
1155 f2fs_destroy_compress_ctx(cc, true);
1156 goto retry;
1157 }
1158 }
1159
1160 if (likely(!ret)) {
1161 *fsdata = cc->rpages;
1162 *pagep = cc->rpages[offset_in_cluster(cc, index)];
1163 return cc->cluster_size;
1164 }
1165
1166 unlock_pages:
1167 f2fs_put_rpages(cc);
1168 f2fs_unlock_rpages(cc, i);
1169 f2fs_destroy_compress_ctx(cc, true);
1170 out:
1171 return ret;
1172 }
1173
f2fs_prepare_compress_overwrite(struct inode * inode,struct page ** pagep,pgoff_t index,void ** fsdata)1174 int f2fs_prepare_compress_overwrite(struct inode *inode,
1175 struct page **pagep, pgoff_t index, void **fsdata)
1176 {
1177 struct compress_ctx cc = {
1178 .inode = inode,
1179 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1180 .cluster_size = F2FS_I(inode)->i_cluster_size,
1181 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1182 .rpages = NULL,
1183 .nr_rpages = 0,
1184 };
1185
1186 return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1187 }
1188
f2fs_compress_write_end(struct inode * inode,void * fsdata,pgoff_t index,unsigned copied)1189 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1190 pgoff_t index, unsigned copied)
1191
1192 {
1193 struct compress_ctx cc = {
1194 .inode = inode,
1195 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1196 .cluster_size = F2FS_I(inode)->i_cluster_size,
1197 .rpages = fsdata,
1198 };
1199 struct folio *folio = page_folio(cc.rpages[0]);
1200 bool first_index = (index == folio->index);
1201
1202 if (copied)
1203 set_cluster_dirty(&cc);
1204
1205 f2fs_put_rpages_wbc(&cc, NULL, false, true);
1206 f2fs_destroy_compress_ctx(&cc, false);
1207
1208 return first_index;
1209 }
1210
f2fs_truncate_partial_cluster(struct inode * inode,u64 from,bool lock)1211 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1212 {
1213 void *fsdata = NULL;
1214 struct page *pagep;
1215 struct page **rpages;
1216 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1217 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1218 log_cluster_size;
1219 int i;
1220 int err;
1221
1222 err = f2fs_is_compressed_cluster(inode, start_idx);
1223 if (err < 0)
1224 return err;
1225
1226 /* truncate normal cluster */
1227 if (!err)
1228 return f2fs_do_truncate_blocks(inode, from, lock);
1229
1230 /* truncate compressed cluster */
1231 err = f2fs_prepare_compress_overwrite(inode, &pagep,
1232 start_idx, &fsdata);
1233
1234 /* should not be a normal cluster */
1235 f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1236
1237 if (err <= 0)
1238 return err;
1239
1240 rpages = fsdata;
1241
1242 for (i = (1 << log_cluster_size) - 1; i >= 0; i--) {
1243 struct folio *folio = page_folio(rpages[i]);
1244 loff_t start = (loff_t)folio->index << PAGE_SHIFT;
1245 loff_t offset = from > start ? from - start : 0;
1246
1247 folio_zero_segment(folio, offset, folio_size(folio));
1248
1249 if (from >= start)
1250 break;
1251 }
1252
1253 f2fs_compress_write_end(inode, fsdata, start_idx, true);
1254
1255 err = filemap_write_and_wait_range(inode->i_mapping,
1256 round_down(from, 1 << log_cluster_size << PAGE_SHIFT),
1257 LLONG_MAX);
1258 if (err)
1259 return err;
1260
1261 truncate_pagecache(inode, from);
1262
1263 return f2fs_do_truncate_blocks(inode, round_up(from, PAGE_SIZE), lock);
1264 }
1265
f2fs_write_compressed_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1266 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1267 int *submitted,
1268 struct writeback_control *wbc,
1269 enum iostat_type io_type)
1270 {
1271 struct inode *inode = cc->inode;
1272 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1273 struct f2fs_inode_info *fi = F2FS_I(inode);
1274 struct f2fs_io_info fio = {
1275 .sbi = sbi,
1276 .ino = cc->inode->i_ino,
1277 .type = DATA,
1278 .op = REQ_OP_WRITE,
1279 .op_flags = wbc_to_write_flags(wbc),
1280 .old_blkaddr = NEW_ADDR,
1281 .page = NULL,
1282 .encrypted_page = NULL,
1283 .compressed_page = NULL,
1284 .io_type = io_type,
1285 .io_wbc = wbc,
1286 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ?
1287 1 : 0,
1288 };
1289 struct folio *folio;
1290 struct dnode_of_data dn;
1291 struct node_info ni;
1292 struct compress_io_ctx *cic;
1293 pgoff_t start_idx = start_idx_of_cluster(cc);
1294 unsigned int last_index = cc->cluster_size - 1;
1295 loff_t psize;
1296 int i, err;
1297 bool quota_inode = IS_NOQUOTA(inode);
1298
1299 /* we should bypass data pages to proceed the kworker jobs */
1300 if (unlikely(f2fs_cp_error(sbi))) {
1301 mapping_set_error(inode->i_mapping, -EIO);
1302 goto out_free;
1303 }
1304
1305 if (quota_inode) {
1306 /*
1307 * We need to wait for node_write to avoid block allocation during
1308 * checkpoint. This can only happen to quota writes which can cause
1309 * the below discard race condition.
1310 */
1311 f2fs_down_read(&sbi->node_write);
1312 } else if (!f2fs_trylock_op(sbi)) {
1313 goto out_free;
1314 }
1315
1316 set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1317
1318 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1319 if (err)
1320 goto out_unlock_op;
1321
1322 for (i = 0; i < cc->cluster_size; i++) {
1323 if (data_blkaddr(dn.inode, dn.node_folio,
1324 dn.ofs_in_node + i) == NULL_ADDR)
1325 goto out_put_dnode;
1326 }
1327
1328 folio = page_folio(cc->rpages[last_index]);
1329 psize = folio_next_pos(folio);
1330
1331 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1332 if (err)
1333 goto out_put_dnode;
1334
1335 fio.version = ni.version;
1336
1337 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1338 if (!cic)
1339 goto out_put_dnode;
1340
1341 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1342 cic->inode = inode;
1343 atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1344 cic->rpages = page_array_alloc(sbi, cc->cluster_size);
1345 if (!cic->rpages)
1346 goto out_put_cic;
1347
1348 cic->nr_rpages = cc->cluster_size;
1349
1350 for (i = 0; i < cc->valid_nr_cpages; i++) {
1351 f2fs_set_compressed_page(cc->cpages[i], inode,
1352 page_folio(cc->rpages[i + 1])->index, cic);
1353 fio.compressed_page = cc->cpages[i];
1354
1355 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_folio,
1356 dn.ofs_in_node + i + 1);
1357
1358 /* wait for GCed page writeback via META_MAPPING */
1359 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1360
1361 if (fio.encrypted) {
1362 fio.page = cc->rpages[i + 1];
1363 err = f2fs_encrypt_one_page(&fio);
1364 if (err)
1365 goto out_destroy_crypt;
1366 cc->cpages[i] = fio.encrypted_page;
1367 }
1368 }
1369
1370 set_cluster_writeback(cc);
1371
1372 for (i = 0; i < cc->cluster_size; i++)
1373 cic->rpages[i] = cc->rpages[i];
1374
1375 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1376 block_t blkaddr;
1377
1378 blkaddr = f2fs_data_blkaddr(&dn);
1379 fio.page = cc->rpages[i];
1380 fio.old_blkaddr = blkaddr;
1381
1382 /* cluster header */
1383 if (i == 0) {
1384 if (blkaddr == COMPRESS_ADDR)
1385 fio.compr_blocks++;
1386 if (__is_valid_data_blkaddr(blkaddr))
1387 f2fs_invalidate_blocks(sbi, blkaddr, 1);
1388 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1389 goto unlock_continue;
1390 }
1391
1392 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1393 fio.compr_blocks++;
1394
1395 if (i > cc->valid_nr_cpages) {
1396 if (__is_valid_data_blkaddr(blkaddr)) {
1397 f2fs_invalidate_blocks(sbi, blkaddr, 1);
1398 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1399 }
1400 goto unlock_continue;
1401 }
1402
1403 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1404
1405 if (fio.encrypted)
1406 fio.encrypted_page = cc->cpages[i - 1];
1407 else
1408 fio.compressed_page = cc->cpages[i - 1];
1409
1410 cc->cpages[i - 1] = NULL;
1411 fio.submitted = 0;
1412 f2fs_outplace_write_data(&dn, &fio);
1413 if (unlikely(!fio.submitted)) {
1414 cancel_cluster_writeback(cc, cic, i);
1415
1416 /* To call fscrypt_finalize_bounce_page */
1417 i = cc->valid_nr_cpages;
1418 *submitted = 0;
1419 goto out_destroy_crypt;
1420 }
1421 (*submitted)++;
1422 unlock_continue:
1423 inode_dec_dirty_pages(cc->inode);
1424 folio_unlock(fio.folio);
1425 }
1426
1427 if (fio.compr_blocks)
1428 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1429 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1430 add_compr_block_stat(inode, cc->valid_nr_cpages);
1431
1432 set_inode_flag(cc->inode, FI_APPEND_WRITE);
1433
1434 f2fs_put_dnode(&dn);
1435 if (quota_inode)
1436 f2fs_up_read(&sbi->node_write);
1437 else
1438 f2fs_unlock_op(sbi);
1439
1440 spin_lock(&fi->i_size_lock);
1441 if (fi->last_disk_size < psize)
1442 fi->last_disk_size = psize;
1443 spin_unlock(&fi->i_size_lock);
1444
1445 f2fs_put_rpages(cc);
1446 page_array_free(sbi, cc->cpages, cc->nr_cpages);
1447 cc->cpages = NULL;
1448 f2fs_destroy_compress_ctx(cc, false);
1449 return 0;
1450
1451 out_destroy_crypt:
1452 page_array_free(sbi, cic->rpages, cc->cluster_size);
1453
1454 for (--i; i >= 0; i--) {
1455 if (!cc->cpages[i])
1456 continue;
1457 fscrypt_finalize_bounce_page(&cc->cpages[i]);
1458 }
1459 out_put_cic:
1460 kmem_cache_free(cic_entry_slab, cic);
1461 out_put_dnode:
1462 f2fs_put_dnode(&dn);
1463 out_unlock_op:
1464 if (quota_inode)
1465 f2fs_up_read(&sbi->node_write);
1466 else
1467 f2fs_unlock_op(sbi);
1468 out_free:
1469 for (i = 0; i < cc->valid_nr_cpages; i++) {
1470 f2fs_compress_free_page(cc->cpages[i]);
1471 cc->cpages[i] = NULL;
1472 }
1473 page_array_free(sbi, cc->cpages, cc->nr_cpages);
1474 cc->cpages = NULL;
1475 return -EAGAIN;
1476 }
1477
f2fs_compress_write_end_io(struct bio * bio,struct folio * folio)1478 void f2fs_compress_write_end_io(struct bio *bio, struct folio *folio)
1479 {
1480 struct page *page = &folio->page;
1481 struct f2fs_sb_info *sbi = bio->bi_private;
1482 struct compress_io_ctx *cic = folio->private;
1483 enum count_type type = WB_DATA_TYPE(folio,
1484 f2fs_is_compressed_page(folio));
1485 int i;
1486
1487 if (unlikely(bio->bi_status != BLK_STS_OK))
1488 mapping_set_error(cic->inode->i_mapping, -EIO);
1489
1490 f2fs_compress_free_page(page);
1491
1492 dec_page_count(sbi, type);
1493
1494 if (atomic_dec_return(&cic->pending_pages))
1495 return;
1496
1497 for (i = 0; i < cic->nr_rpages; i++) {
1498 WARN_ON(!cic->rpages[i]);
1499 clear_page_private_gcing(cic->rpages[i]);
1500 end_page_writeback(cic->rpages[i]);
1501 }
1502
1503 page_array_free(sbi, cic->rpages, cic->nr_rpages);
1504 kmem_cache_free(cic_entry_slab, cic);
1505 }
1506
f2fs_write_raw_pages(struct compress_ctx * cc,int * submitted_p,struct writeback_control * wbc,enum iostat_type io_type)1507 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1508 int *submitted_p,
1509 struct writeback_control *wbc,
1510 enum iostat_type io_type)
1511 {
1512 struct address_space *mapping = cc->inode->i_mapping;
1513 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1514 int submitted, compr_blocks, i;
1515 int ret = 0;
1516
1517 compr_blocks = f2fs_compressed_blocks(cc);
1518
1519 for (i = 0; i < cc->cluster_size; i++) {
1520 if (!cc->rpages[i])
1521 continue;
1522
1523 redirty_page_for_writepage(wbc, cc->rpages[i]);
1524 unlock_page(cc->rpages[i]);
1525 }
1526
1527 if (compr_blocks < 0)
1528 return compr_blocks;
1529
1530 /* overwrite compressed cluster w/ normal cluster */
1531 if (compr_blocks > 0)
1532 f2fs_lock_op(sbi);
1533
1534 for (i = 0; i < cc->cluster_size; i++) {
1535 struct folio *folio;
1536
1537 if (!cc->rpages[i])
1538 continue;
1539 folio = page_folio(cc->rpages[i]);
1540 retry_write:
1541 folio_lock(folio);
1542
1543 if (folio->mapping != mapping) {
1544 continue_unlock:
1545 folio_unlock(folio);
1546 continue;
1547 }
1548
1549 if (!folio_test_dirty(folio))
1550 goto continue_unlock;
1551
1552 if (folio_test_writeback(folio)) {
1553 if (wbc->sync_mode == WB_SYNC_NONE)
1554 goto continue_unlock;
1555 f2fs_folio_wait_writeback(folio, DATA, true, true);
1556 }
1557
1558 if (!folio_clear_dirty_for_io(folio))
1559 goto continue_unlock;
1560
1561 submitted = 0;
1562 ret = f2fs_write_single_data_page(folio, &submitted,
1563 NULL, NULL, wbc, io_type,
1564 compr_blocks, false);
1565 if (ret) {
1566 if (ret == 1) {
1567 ret = 0;
1568 } else if (ret == -EAGAIN) {
1569 ret = 0;
1570 /*
1571 * for quota file, just redirty left pages to
1572 * avoid deadlock caused by cluster update race
1573 * from foreground operation.
1574 */
1575 if (IS_NOQUOTA(cc->inode))
1576 goto out;
1577 f2fs_schedule_timeout(DEFAULT_SCHEDULE_TIMEOUT);
1578 goto retry_write;
1579 }
1580 goto out;
1581 }
1582
1583 *submitted_p += submitted;
1584 }
1585
1586 out:
1587 if (compr_blocks > 0)
1588 f2fs_unlock_op(sbi);
1589
1590 f2fs_balance_fs(sbi, true);
1591 return ret;
1592 }
1593
f2fs_write_multi_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1594 int f2fs_write_multi_pages(struct compress_ctx *cc,
1595 int *submitted,
1596 struct writeback_control *wbc,
1597 enum iostat_type io_type)
1598 {
1599 int err;
1600
1601 *submitted = 0;
1602 if (cluster_may_compress(cc)) {
1603 err = f2fs_compress_pages(cc);
1604 if (err == -EAGAIN) {
1605 add_compr_block_stat(cc->inode, cc->cluster_size);
1606 goto write;
1607 } else if (err) {
1608 f2fs_put_rpages_wbc(cc, wbc, true, true);
1609 goto destroy_out;
1610 }
1611
1612 err = f2fs_write_compressed_pages(cc, submitted,
1613 wbc, io_type);
1614 if (!err)
1615 return 0;
1616 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1617 }
1618 write:
1619 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1620
1621 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1622 f2fs_put_rpages_wbc(cc, wbc, false, false);
1623 destroy_out:
1624 f2fs_destroy_compress_ctx(cc, false);
1625 return err;
1626 }
1627
allow_memalloc_for_decomp(struct f2fs_sb_info * sbi,bool pre_alloc)1628 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1629 bool pre_alloc)
1630 {
1631 return pre_alloc ^ f2fs_low_mem_mode(sbi);
1632 }
1633
f2fs_prepare_decomp_mem(struct decompress_io_ctx * dic,bool pre_alloc)1634 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1635 bool pre_alloc)
1636 {
1637 const struct f2fs_compress_ops *cops = f2fs_cops[dic->compress_algorithm];
1638 int i;
1639
1640 if (!allow_memalloc_for_decomp(dic->sbi, pre_alloc))
1641 return 0;
1642
1643 dic->tpages = page_array_alloc(dic->sbi, dic->cluster_size);
1644 if (!dic->tpages)
1645 return -ENOMEM;
1646
1647 for (i = 0; i < dic->cluster_size; i++) {
1648 if (dic->rpages[i]) {
1649 dic->tpages[i] = dic->rpages[i];
1650 continue;
1651 }
1652
1653 dic->tpages[i] = f2fs_compress_alloc_page();
1654 }
1655
1656 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1657 if (!dic->rbuf)
1658 return -ENOMEM;
1659
1660 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1661 if (!dic->cbuf)
1662 return -ENOMEM;
1663
1664 if (cops->init_decompress_ctx)
1665 return cops->init_decompress_ctx(dic);
1666
1667 return 0;
1668 }
1669
f2fs_release_decomp_mem(struct decompress_io_ctx * dic,bool bypass_destroy_callback,bool pre_alloc)1670 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1671 bool bypass_destroy_callback, bool pre_alloc)
1672 {
1673 const struct f2fs_compress_ops *cops = f2fs_cops[dic->compress_algorithm];
1674
1675 if (!allow_memalloc_for_decomp(dic->sbi, pre_alloc))
1676 return;
1677
1678 if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1679 cops->destroy_decompress_ctx(dic);
1680
1681 if (dic->cbuf)
1682 vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1683
1684 if (dic->rbuf)
1685 vm_unmap_ram(dic->rbuf, dic->cluster_size);
1686 }
1687
1688 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1689 bool bypass_destroy_callback);
1690
f2fs_alloc_dic(struct compress_ctx * cc)1691 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1692 {
1693 struct decompress_io_ctx *dic;
1694 pgoff_t start_idx = start_idx_of_cluster(cc);
1695 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1696 int i, ret;
1697
1698 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1699 if (!dic)
1700 return ERR_PTR(-ENOMEM);
1701
1702 dic->rpages = page_array_alloc(sbi, cc->cluster_size);
1703 if (!dic->rpages) {
1704 kmem_cache_free(dic_entry_slab, dic);
1705 return ERR_PTR(-ENOMEM);
1706 }
1707
1708 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1709 dic->inode = cc->inode;
1710 dic->sbi = sbi;
1711 dic->compress_algorithm = F2FS_I(cc->inode)->i_compress_algorithm;
1712 atomic_set(&dic->remaining_pages, cc->nr_cpages);
1713 dic->cluster_idx = cc->cluster_idx;
1714 dic->cluster_size = cc->cluster_size;
1715 dic->log_cluster_size = cc->log_cluster_size;
1716 dic->nr_cpages = cc->nr_cpages;
1717 refcount_set(&dic->refcnt, 1);
1718 dic->failed = false;
1719 dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1720
1721 for (i = 0; i < dic->cluster_size; i++)
1722 dic->rpages[i] = cc->rpages[i];
1723 dic->nr_rpages = cc->cluster_size;
1724
1725 dic->cpages = page_array_alloc(sbi, dic->nr_cpages);
1726 if (!dic->cpages) {
1727 ret = -ENOMEM;
1728 goto out_free;
1729 }
1730
1731 for (i = 0; i < dic->nr_cpages; i++) {
1732 struct page *page;
1733
1734 page = f2fs_compress_alloc_page();
1735 f2fs_set_compressed_page(page, cc->inode,
1736 start_idx + i + 1, dic);
1737 dic->cpages[i] = page;
1738 }
1739
1740 ret = f2fs_prepare_decomp_mem(dic, true);
1741 if (ret)
1742 goto out_free;
1743
1744 return dic;
1745
1746 out_free:
1747 f2fs_free_dic(dic, true);
1748 return ERR_PTR(ret);
1749 }
1750
f2fs_free_dic(struct decompress_io_ctx * dic,bool bypass_destroy_callback)1751 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1752 bool bypass_destroy_callback)
1753 {
1754 int i;
1755 /* use sbi in dic to avoid UFA of dic->inode*/
1756 struct f2fs_sb_info *sbi = dic->sbi;
1757
1758 f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1759
1760 if (dic->tpages) {
1761 for (i = 0; i < dic->cluster_size; i++) {
1762 if (dic->rpages[i])
1763 continue;
1764 if (!dic->tpages[i])
1765 continue;
1766 f2fs_compress_free_page(dic->tpages[i]);
1767 }
1768 page_array_free(sbi, dic->tpages, dic->cluster_size);
1769 }
1770
1771 if (dic->cpages) {
1772 for (i = 0; i < dic->nr_cpages; i++) {
1773 if (!dic->cpages[i])
1774 continue;
1775 f2fs_compress_free_page(dic->cpages[i]);
1776 }
1777 page_array_free(sbi, dic->cpages, dic->nr_cpages);
1778 }
1779
1780 page_array_free(sbi, dic->rpages, dic->nr_rpages);
1781 kmem_cache_free(dic_entry_slab, dic);
1782 }
1783
f2fs_late_free_dic(struct work_struct * work)1784 static void f2fs_late_free_dic(struct work_struct *work)
1785 {
1786 struct decompress_io_ctx *dic =
1787 container_of(work, struct decompress_io_ctx, free_work);
1788
1789 f2fs_free_dic(dic, false);
1790 }
1791
f2fs_put_dic(struct decompress_io_ctx * dic,bool in_task)1792 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1793 {
1794 if (refcount_dec_and_test(&dic->refcnt)) {
1795 if (in_task) {
1796 f2fs_free_dic(dic, false);
1797 } else {
1798 INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1799 queue_work(dic->sbi->post_read_wq, &dic->free_work);
1800 }
1801 }
1802 }
1803
f2fs_verify_cluster(struct work_struct * work)1804 static void f2fs_verify_cluster(struct work_struct *work)
1805 {
1806 struct decompress_io_ctx *dic =
1807 container_of(work, struct decompress_io_ctx, verity_work);
1808 int i;
1809
1810 /* Verify, update, and unlock the decompressed pages. */
1811 for (i = 0; i < dic->cluster_size; i++) {
1812 struct page *rpage = dic->rpages[i];
1813
1814 if (!rpage)
1815 continue;
1816
1817 if (fsverity_verify_page(rpage))
1818 SetPageUptodate(rpage);
1819 else
1820 ClearPageUptodate(rpage);
1821 unlock_page(rpage);
1822 }
1823
1824 f2fs_put_dic(dic, true);
1825 }
1826
1827 /*
1828 * This is called when a compressed cluster has been decompressed
1829 * (or failed to be read and/or decompressed).
1830 */
f2fs_decompress_end_io(struct decompress_io_ctx * dic,bool failed,bool in_task)1831 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1832 bool in_task)
1833 {
1834 int i;
1835
1836 if (!failed && dic->need_verity) {
1837 /*
1838 * Note that to avoid deadlocks, the verity work can't be done
1839 * on the decompression workqueue. This is because verifying
1840 * the data pages can involve reading metadata pages from the
1841 * file, and these metadata pages may be compressed.
1842 */
1843 INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1844 fsverity_enqueue_verify_work(&dic->verity_work);
1845 return;
1846 }
1847
1848 /* Update and unlock the cluster's pagecache pages. */
1849 for (i = 0; i < dic->cluster_size; i++) {
1850 struct page *rpage = dic->rpages[i];
1851
1852 if (!rpage)
1853 continue;
1854
1855 if (failed)
1856 ClearPageUptodate(rpage);
1857 else
1858 SetPageUptodate(rpage);
1859 unlock_page(rpage);
1860 }
1861
1862 /*
1863 * Release the reference to the decompress_io_ctx that was being held
1864 * for I/O completion.
1865 */
1866 f2fs_put_dic(dic, in_task);
1867 }
1868
1869 /*
1870 * Put a reference to a compressed folio's decompress_io_ctx.
1871 *
1872 * This is called when the folio is no longer needed and can be freed.
1873 */
f2fs_put_folio_dic(struct folio * folio,bool in_task)1874 void f2fs_put_folio_dic(struct folio *folio, bool in_task)
1875 {
1876 struct decompress_io_ctx *dic = folio->private;
1877
1878 f2fs_put_dic(dic, in_task);
1879 }
1880
1881 /*
1882 * check whether cluster blocks are contiguous, and add extent cache entry
1883 * only if cluster blocks are logically and physically contiguous.
1884 */
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)1885 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
1886 unsigned int ofs_in_node)
1887 {
1888 bool compressed = data_blkaddr(dn->inode, dn->node_folio,
1889 ofs_in_node) == COMPRESS_ADDR;
1890 int i = compressed ? 1 : 0;
1891 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_folio,
1892 ofs_in_node + i);
1893
1894 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1895 block_t blkaddr = data_blkaddr(dn->inode, dn->node_folio,
1896 ofs_in_node + i);
1897
1898 if (!__is_valid_data_blkaddr(blkaddr))
1899 break;
1900 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1901 return 0;
1902 }
1903
1904 return compressed ? i - 1 : i;
1905 }
1906
1907 const struct address_space_operations f2fs_compress_aops = {
1908 .release_folio = f2fs_release_folio,
1909 .invalidate_folio = f2fs_invalidate_folio,
1910 .migrate_folio = filemap_migrate_folio,
1911 };
1912
COMPRESS_MAPPING(struct f2fs_sb_info * sbi)1913 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1914 {
1915 return sbi->compress_inode->i_mapping;
1916 }
1917
f2fs_invalidate_compress_pages_range(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)1918 void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
1919 block_t blkaddr, unsigned int len)
1920 {
1921 if (!sbi->compress_inode)
1922 return;
1923 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr + len - 1);
1924 }
1925
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct folio * folio,nid_t ino,block_t blkaddr)1926 static void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
1927 struct folio *folio, nid_t ino, block_t blkaddr)
1928 {
1929 struct folio *cfolio;
1930 int ret;
1931
1932 if (!test_opt(sbi, COMPRESS_CACHE))
1933 return;
1934
1935 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1936 return;
1937
1938 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1939 return;
1940
1941 cfolio = filemap_get_folio(COMPRESS_MAPPING(sbi), blkaddr);
1942 if (!IS_ERR(cfolio)) {
1943 f2fs_folio_put(cfolio, false);
1944 return;
1945 }
1946
1947 cfolio = filemap_alloc_folio(__GFP_NOWARN | __GFP_IO, 0, NULL);
1948 if (!cfolio)
1949 return;
1950
1951 ret = filemap_add_folio(COMPRESS_MAPPING(sbi), cfolio,
1952 blkaddr, GFP_NOFS);
1953 if (ret) {
1954 f2fs_folio_put(cfolio, false);
1955 return;
1956 }
1957
1958 folio_set_f2fs_data(cfolio, ino);
1959
1960 memcpy(folio_address(cfolio), folio_address(folio), PAGE_SIZE);
1961 folio_mark_uptodate(cfolio);
1962 f2fs_folio_put(cfolio, true);
1963 }
1964
f2fs_load_compressed_folio(struct f2fs_sb_info * sbi,struct folio * folio,block_t blkaddr)1965 bool f2fs_load_compressed_folio(struct f2fs_sb_info *sbi, struct folio *folio,
1966 block_t blkaddr)
1967 {
1968 struct folio *cfolio;
1969 bool hitted = false;
1970
1971 if (!test_opt(sbi, COMPRESS_CACHE))
1972 return false;
1973
1974 cfolio = f2fs_filemap_get_folio(COMPRESS_MAPPING(sbi),
1975 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1976 if (!IS_ERR(cfolio)) {
1977 if (folio_test_uptodate(cfolio)) {
1978 atomic_inc(&sbi->compress_page_hit);
1979 memcpy(folio_address(folio),
1980 folio_address(cfolio), folio_size(folio));
1981 hitted = true;
1982 }
1983 f2fs_folio_put(cfolio, true);
1984 }
1985
1986 return hitted;
1987 }
1988
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)1989 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1990 {
1991 struct address_space *mapping = COMPRESS_MAPPING(sbi);
1992 struct folio_batch fbatch;
1993 pgoff_t index = 0;
1994 pgoff_t end = MAX_BLKADDR(sbi);
1995
1996 if (!mapping->nrpages)
1997 return;
1998
1999 folio_batch_init(&fbatch);
2000
2001 do {
2002 unsigned int nr, i;
2003
2004 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
2005 if (!nr)
2006 break;
2007
2008 for (i = 0; i < nr; i++) {
2009 struct folio *folio = fbatch.folios[i];
2010
2011 folio_lock(folio);
2012 if (folio->mapping != mapping) {
2013 folio_unlock(folio);
2014 continue;
2015 }
2016
2017 if (ino != folio_get_f2fs_data(folio)) {
2018 folio_unlock(folio);
2019 continue;
2020 }
2021
2022 generic_error_remove_folio(mapping, folio);
2023 folio_unlock(folio);
2024 }
2025 folio_batch_release(&fbatch);
2026 cond_resched();
2027 } while (index < end);
2028 }
2029
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)2030 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
2031 {
2032 struct inode *inode;
2033
2034 if (!test_opt(sbi, COMPRESS_CACHE))
2035 return 0;
2036
2037 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
2038 if (IS_ERR(inode))
2039 return PTR_ERR(inode);
2040 sbi->compress_inode = inode;
2041
2042 sbi->compress_percent = COMPRESS_PERCENT;
2043 sbi->compress_watermark = COMPRESS_WATERMARK;
2044
2045 atomic_set(&sbi->compress_page_hit, 0);
2046
2047 return 0;
2048 }
2049
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)2050 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
2051 {
2052 if (!sbi->compress_inode)
2053 return;
2054 iput(sbi->compress_inode);
2055 sbi->compress_inode = NULL;
2056 }
2057
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)2058 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
2059 {
2060 dev_t dev = sbi->sb->s_bdev->bd_dev;
2061 char slab_name[35];
2062
2063 if (!f2fs_sb_has_compression(sbi))
2064 return 0;
2065
2066 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
2067
2068 sbi->page_array_slab_size = sizeof(struct page *) <<
2069 F2FS_OPTION(sbi).compress_log_size;
2070
2071 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
2072 sbi->page_array_slab_size);
2073 return sbi->page_array_slab ? 0 : -ENOMEM;
2074 }
2075
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)2076 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
2077 {
2078 kmem_cache_destroy(sbi->page_array_slab);
2079 }
2080
f2fs_init_compress_cache(void)2081 int __init f2fs_init_compress_cache(void)
2082 {
2083 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
2084 sizeof(struct compress_io_ctx));
2085 if (!cic_entry_slab)
2086 return -ENOMEM;
2087 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2088 sizeof(struct decompress_io_ctx));
2089 if (!dic_entry_slab)
2090 goto free_cic;
2091 return 0;
2092 free_cic:
2093 kmem_cache_destroy(cic_entry_slab);
2094 return -ENOMEM;
2095 }
2096
f2fs_destroy_compress_cache(void)2097 void f2fs_destroy_compress_cache(void)
2098 {
2099 kmem_cache_destroy(dic_entry_slab);
2100 kmem_cache_destroy(cic_entry_slab);
2101 }
2102